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ABSTRACT 

The literature review is an essential part of the research process, as it helps researchers understand 

the current state of knowledge in their field and identify gaps that their research can address. 

However, the current review process with manual paper searching, can be time-consuming and 

labour-intensive. This is particularly true for researchers working in fields with large and rapidly-

growing bodies of literature such as Medicine or Generative AI. To tackle this issue, we aim to 

build RefPred - a system that uses a citation-informed transformer (SPECTER) with a 

recommendation engine to recommend relevant papers to assist researchers in the review process. 

Specifically, given a new title/abstract, it should be able to predict the most relevant papers and 

sort them according to some metric (such as citation count or similarity score). For doing this, we 

create a dataset comprising thousands of research paper metadata, sourced from Semantic Scholar 

(S2), by crawling from the S2 API asynchronously and storing locally on a MongoDB database. 

We then use the citation-informed transformer model SPECTER to embed each paper, capturing 

its citation and semantic meaning simultaneously. Using this, we construct an embedding space 

of papers, which is used to build a recommendation engine based on KNN as a baseline to give 

relevant recommendations for a new paper. Finally, we propose a novel approach to use a feed-

forward neural network to rerank the initial KNN candidates, resulting in 70% better Precision 

and Recall @ 20 scores on the test set over the baseline KNN approach. 

 

Keywords: Recommendation System, Transformers, Reference Prediction, SPECTER, 

Knowledge Graph, Semantic Similarity, Research Paper Embeddings 
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1 INTRODUCTION 

1.1 Motivation 

The rapid growth of research in fields such as artificial intelligence or medicine has made it 

increasingly difficult for researchers to keep up with the vast number of publications. This can 

make it challenging for researchers to identify the most relevant literature for their work, 

particularly when they are just starting a new project and may not be familiar with the relevant 

literature on that particular topic.  

Additionally, identifying relevant literature for a research project can be time-consuming and 

labour-intensive, requiring researchers to spend significant time searching through databases and 

manually reviewing potentially relevant papers. This can be a significant barrier to productivity 

and may hinder the ability of researchers to make significant contributions to their field.   

1.2 Aim 

To address these problems, we propose to develop RefPred - a system to automate the literature 

review process. It should take as input a topic or abstract for a research project and use this 

information to predict which references are most relevant to the project. By automating this 

process, we aim to significantly streamline the literature review process and enable researchers 

to more efficiently identify relevant references, even if they are not familiar with the entire 

literature. This should allow researchers to focus on more high-value tasks, such as properly 

analysing this literature and working on their methodology.  

1.3 Objectives 

The specific objectives of this thesis are as follows: 

• To create a dense dataset of research paper metadata by asynchronously crawling 

Semantic Scholar and storing the data in a MongoDB database. 

• To generate SPECTER embeddings for the titles and abstracts of research papers to better 

capture their semantic relationships. 
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• To develop two recommendation approaches: basic KNN and a reranking model that 

refines the KNN recommendations. 

• To evaluate the performance of the proposed system using precision and recall @ 20 as 

the performance metrics. 

1.4 Background 

The sheer volume of published papers necessitates the use of efficient recommendation systems 

to assist researchers in identifying relevant articles and prioritizing their reading lists. Existing 

recommendation systems can be broadly categorized into the following types: 

1.4.1 Recommender Systems 

o Content-based Filtering 

Content-based filtering methods analyze the textual content of research papers, such as titles, 

abstracts, or full texts, to identify similarities and generate recommendations. These methods rely 

on extracting features from the documents and calculating the similarity between them. Here, we 

discuss some of the common techniques employed in content-based filtering: 

a) Term Frequency-Inverse Document Frequency (TF-IDF): TF-IDF is a widely used 

technique in information retrieval and text mining. It calculates the importance of a term 

within a document and across a corpus. The term frequency (TF) measures the frequency 

of a term in a document, while the inverse document frequency (IDF) measures the 

importance of a term across the entire corpus. The product of TF and IDF results in a 

weight that reflects the significance of a term within a document and across the corpus. 

By representing documents as vectors of TF-IDF weights, the similarity between 

documents can be computed using distance measures such as cosine similarity. 

b) Latent Semantic Indexing (LSI): LSI, also known as Latent Semantic Analysis (LSA), 

is another widely used technique in content-based filtering. It addresses the limitation of 

TF-IDF by capturing the latent semantic relationships between terms and documents. LSI 

applies singular value decomposition (SVD) on the term-document matrix to reduce its 

dimensionality, resulting in a lower-dimensional representation that captures the 
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underlying semantic structure. The similarity between documents can then be calculated 

in this lower-dimensional space. 

Despite the usefulness of these methods in providing relevant recommendations based on textual 

similarities, they often fail to capture the deeper semantic relationships between papers. This 

limitation can be addressed by employing more advanced methods, such as deep learning 

techniques, to better capture the semantic content of research papers. 

o Collaborative Filtering 

Collaborative filtering methods generate recommendations based on the preferences or behaviour 

of users who have similar interests. These approaches can be user-based, item-based, or a hybrid 

of both. Collaborative filtering techniques can be classified as memory-based or model-based: 

a) Memory-based Collaborative Filtering: This approach calculates the similarity 

between users or items using historical data, such as user-item rating matrices. In user-

based collaborative filtering, recommendations are generated based on the preferences of 

similar users. In item-based collaborative filtering, recommendations are made by 

identifying items similar to those that the target user has previously interacted with or 

rated. Common similarity measures used in memory-based collaborative filtering include 

the Pearson correlation coefficient, cosine similarity, and Jaccard similarity. 

b) Model-based Collaborative Filtering: This approach employs machine learning 

algorithms to learn patterns from historical data and generate recommendations. 

Techniques such as matrix factorization, clustering, and Bayesian networks have been 

applied in model-based collaborative filtering. One popular matrix factorization technique 

is singular value decomposition (SVD), which decomposes the user-item rating matrix 

into lower-dimensional user and item latent factor matrices. These latent factors can then 

be used to predict user preferences and generate recommendations. 

While collaborative filtering can provide personalized recommendations, it suffers from the cold-

start problem, where the lack of sufficient user interaction data leads to poor recommendations 

for new users or items. Additionally, collaborative filtering methods may not fully capture the 

content-based similarities between items, which can be addressed by incorporating content-based 

techniques or deep learning methods. 
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o Graph-based Methods 

Graph-based methods model the relationships between papers, authors, and other entities in a 

network structure. Techniques such as citation analysis, co-authorship networks, and graph neural 

networks have been applied to generate recommendations. Some common graph-based methods 

include: 

a) Citation Analysis: This approach models the relationships between papers based on their 

citation patterns. By analysing citation networks, researchers can identify highly cited 

papers, influential authors, and emerging research trends. Citation-based 

recommendations can be generated by identifying papers that are highly cited by or 

closely related to the target paper. However, citation analysis may not fully capture the 

semantic content of papers, as it relies solely on citation patterns. 

b) Co-authorship Networks: Co-authorship networks model the relationships between 

authors based on their collaboration patterns. By analysing these networks, researchers 

can identify influential authors, potential collaborators, and research communities. 

Recommendations can be generated by identifying papers authored by collaborators or 

members of the same research community as the target user. However, co-authorship 

networks may not capture the content-based similarities between papers or the semantic 

relationships between topics. 

c) Graph Neural Networks (GNNs): GNNs are a class of deep learning methods that learn 

to capture the complex patterns and relationships in graph-structured data. By modelling 

the relationships between papers, authors, and other entities in a graph structure, GNNs 

can learn powerful representations that capture both structural and content-based 

information. GNNs have been applied to various tasks in the context of research paper 

recommendations, such as link prediction, node classification, and clustering. However, 

GNNs can be computationally expensive, especially for large-scale datasets, and may 

require significant computational resources to train and deploy. 

Despite the various approaches taken in existing research paper recommendation systems, there 

is still room for improvement, particularly in capturing the semantic relationships between papers 

and refining recommendations. Our proposed system addresses these limitations by using 

SPECTER embeddings to represent the semantic content of research papers more effectively and 
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introducing a reranking model to enhance the initial KNN recommendations. This combination 

of techniques promises to provide better quality recommendations, enabling researchers to 

identify relevant literature more efficiently. 

1.4.2 Data Sources 

In addition to the development of effective recommender systems, another crucial aspect of 

research paper recommendation is the collection of comprehensive and high-quality datasets. 

Several resources and datasets are available for collecting research paper metadata, including 

arXiv, Semantic Scholar, and other academic databases. In this section, we provide an overview 

of some popular resources for collecting research paper data: 

o arXiv 

arXiv1 is a preprint repository maintained by Cornell University, which provides open access to 

over a million research papers in various disciplines, including physics, mathematics, computer 

science, and quantitative biology. The arXiv dataset on Kaggle2 contains periodically updated 

metadata for more than 1.7 million research papers, including titles, abstracts, authors, categories, 

and citation information. This rich dataset can be used for various tasks in recommender systems, 

such as content-based filtering, citation analysis, and clustering. 

o Semantic Scholar (S2) 

Semantic Scholar 3 is a free, AI-powered research tool developed by the Allen Institute for AI. It 

indexes millions of research papers across various disciplines and provides features such as 

search, citation analysis, and author profiles. The Semantic Scholar Open Research Corpus 4 

contains metadata for over 180 million research papers, including titles, abstracts, authors, 

venues, and citation information. This large-scale dataset can be used for various tasks in 

recommender systems, such as content-based filtering, collaborative filtering, and graph-based 

methods. 

 

1 https://arxiv.org/ 

2 https://www.kaggle.com/Cornell-University/arxiv 

3 https://www.semanticscholar.org/ 

4 https://allenai.org/data/s2orc 

https://www.kaggle.com/Cornell-University/arxiv
https://www.semanticscholar.org/
https://allenai.org/data/s2orc
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o Microsoft Academic Graph 

Microsoft Academic Graph (MAG) 5  is a large-scale, heterogeneous graph that contains 

information about academic papers, authors, institutions, journals, conferences, and fields of 

study. MAG includes metadata for over 200 million research papers, as well as citation and co-

authorship information. This comprehensive dataset can be used for various tasks in 

recommender systems, such as content-based or collaborative filtering, and graph-based methods. 

o PubMed 

PubMed6 is a free search engine maintained by the US National Library of Medicine that provides 

access to more than 30 million citations and abstracts from life science journals and online books. 

PubMed offers a comprehensive and up-to-date resource for collecting research paper metadata 

in the biomedical domain. The dataset can be used for various tasks in recommender systems, 

such as content-based filtering, collaborative filtering, and graph-based methods. 

o Web of Science 

Web of Science7  is a subscription-based research database that provides access to more than 1.7 

billion cited references and covers over 33,000 journals across various disciplines. Web of 

Science offers features such as search, citation analysis, and journal impact factors. This dataset 

can be used for various tasks in recommender systems, such as content-based filtering, 

collaborative filtering, and graph-based methods. 

These datasets offer a wealth of research paper metadata that can be used to develop and evaluate 

recommender systems. Data collection methods, such as web scraping and APIs, can be 

employed to gather and store the required metadata from these resources. The choice of resource 

and data collection method depends on factors such as the domain, scale, and specific 

requirements of the recommender system being developed. 

 

 

5 https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/ 

6 https://pubmed.ncbi.nlm.nih.gov/ 

7 https://clarivate.com/webofsciencegroup/solutions/web-of-science/ 

https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
https://pubmed.ncbi.nlm.nih.gov/
https://clarivate.com/webofsciencegroup/solutions/web-of-science/
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2 LITERATURE REVIEW 

2.1 Survey of Existing Work 

(Nigram 2021), a prior work at TUM, presented the groundwork for the reference prediction task. The 

goal of the project was to make a word embedding space for thousands of open-access PDFs of scientific 

papers. It involved finding the TF-IDF feature vector for various paper texts, clustering them together, 

and visualizing the clusters with the t-SNE dimensionality reduction algorithm. Finally, new words can 

be embedded into the embedding space by using the nearest clustering algorithm (like K-Means). 

However, since TF-IDF only relies on the number of occurrences of various keywords in a text, it fails to 

capture the semantics and meaning of a given paper. Thus, better techniques like BERT for document 

embedding can be applied for improving document representation.  

(Vaswani 2017), a seminal paper, presented a new model for machine translation called the 

Transformer. This model uses self-attention mechanisms instead of the traditional recurrence or 

convolutions, to weigh the importance of different parts of the input when making predictions. The model 

architecture consists of an encoder and a decoder. The encoder is made up of multiple layers of self-

attention and feed-forward neural networks. The decoder is similar to the encoder but also includes an 

attention mechanism that allows it to look at the encoder’s output. It is able to process input in parallel, 

rather than sequentially as in RNNs, which greatly improves its efficiency and allows for faster training 

times. The attention function can be described as mapping a query and a set of key-value pairs to an output. 

The final score involves scaling the dot product of the attention mechanism by the square root of the 

dimension of the input, which helps to prevent the gradients from becoming too large during training. It 

also uses a technique called multi-head attention, which allows it to attend to different parts of the input 

simultaneously. This architecture achieves state-of-the-art performance on multiple machine translation 

benchmarks (WMT 2014 English-to-German and WMT 2014 English-to-French translation tasks) after 

training for as little as twelve hours on eight P100 GPUs. The transformer has since been used in many 

other natural language processing tasks.  

(Devlin 2018) introduced BERT, which is designed to pre-train deep bidirectional representations from 

the unlabelled text by joint conditioning on both left and right context in all layers. BERT consisted of 

stacked transformer encoders and the paper proposes different layer numbers for different variations. It 

uses WordPiece embeddings with a 30,000 token vocabulary and is trained on 2 unsupervised tasks - 

Masked Language Modelling (predict the missing word(s) in a sentence, given the context of the 

remaining words) and Next Sentence Prediction (NSP - given a pair of sentences, predict whether the 
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second sentence is the next sentence in the text or not). The authors showed that BERT significantly 

outperforms previous state-of-the-art models on a wide range of natural language understanding 

benchmarks, including the GLUE and SQuAD datasets, and also used for other tasks such as question 

answering, textual entailment and so on. Using unmasked inputs to make the model bi-directional (instead 

of the autoregressive models of GPT) made BERT very effective for capturing context for sentence-level 

tasks. The authors also show that BERT can be fine-tuned for specific tasks using a smaller dataset and 

that fine-tuning the model on a task-specific dataset improves its performance even further.  

(Beltagy 2019) - Previous Large Language Models (LLMs) like GPT or BERT were trained 

unsupervised on a large corpus of crowd-sourced data (such as Wikipedia), which significantly 

improved performance for many NLP tasks. However, a major gap was the scientific literature for which 

annotated data was difficult and expensive to collect. This paper aims at solving that exact problem, by 

training BERT on a large corpus of scientific text. They use SciVocab vocabulary, a derivative of 

WordPiece vocabulary specifically for scientific corpus and a random corpus of 1.14 million full-text 

papers from Semantic Scholar. They first fine-tune the BERT model using the standard fine-tuning 

procedure, where the model is trained on a task-specific dataset using the pre-trained weights as 

initialization. After fine-tuning, they evaluate the performance of the SciBERT model on several scientific 

text understanding tasks: named entity recognition (NER - identify and classify named entities such as 

genes and chemicals), part-of-speech tagging (POS), and citation intent classification (classify the intent 

of a citation in a scientific paper; e.g. whether it is used to provide background information or to support 

a claim made in the paper). The results of the evaluation show that the SciBERT model outperforms the 

BERT model on all of the scientific text understanding tasks and also on several other tasks such as text 

classification, question answering, and semantic similarity. The authors also did an ablation study showing 

that fine-tuning on scientific text allows it to perform better on scientific text understanding tasks than 

fine-tuning it on general text.  

(Jeong 2020) proposes a citation recommendation system that utilizes BERT and Graph Convolutional 

Network (GCN) to improve the performance of citation recommendation. The model takes into account 

the context of the input paper when making recommendations for additional citations. The datasets used 

are a combination of ACL’s Anthropology Network (AAN) and FullTextPeerRead (derived from Kaggle), 

both of which have well-organized bibliographic information. First, the authors pre-process the input data 

by constructing a citation graph from the input dataset. The graph is constructed by connecting papers that 

cite each other. Then, they use BERT to encode the entire input paper and the papers in the citation graph, 

which captures the semantic information of the papers. Next, the authors use GCN to learn the 

representations of the papers in the citation graph, which captures the structural information of the papers. 
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The GCN is trained to propagate the representations of the papers along the edges of the citation graph, 

which allows the model to take into account the context of the input paper when making recommendations. 

The authors then combine the representations learned by BERT and GCN to make citation 

recommendations. They evaluate the model on a dataset of academic papers and their associated citations 

using rank-aware metrics like MRR (Mean Reciprocal Rank), MAP (Mean Average Precision) and Recall 

@ K. The model outperforms existing citation recommendation models in terms of accuracy and diversity 

of recommendations.  

(Bhagavatula 2018) proposes a global content-based citation recommendation system that takes an 

entire research paper as input and gives recommendations (instead of local recommendations which only 

take a few sentences to recommend). Since the number of related works to an entire paper can be large, 

the authors propose a 2-step method: first is a fast recall-oriented candidate selection phase and second is 

a feature-rich precision-oriented ranking phase. Broadly, the first stage filters out all unrelated articles 

with low recall scores and the second stage find the nearest neighbours in the document embedding 

space to generate rankings for a given query paper. They evaluated their models with MRR and 

F1@20 on DBLP, PubMed and OpenCorpus datasets where they achieved SOTA results in the 

first two, even without the use of metadata (like authors, venue, or journal).  

(Cohan 2020) introduces SPECTER, a system to generate document-level embedding of scientific 

documents based on pre-training a Transformer on a powerful signal of document-level relatedness: the 

citation graph. The paper argues that previous embedding models for scientific corpora (like SciBERT) 

are trained for intra-document purposes (like understanding the contents of individual papers) and not on 

inter-document metrics (like citation dependencies). It uses the title and abstract (which encapsulate the 

semantic meaning of a paper) of around 178K papers from the Semantic Scholar Corpus and trains it based 

on a custom loss function of citation-based pretraining objective. They also introduce the SciDocs 

evaluation framework for various tasks related to scientific literature such as paper topic classification, 

citation prediction, and reference recommendation. SPECTER was substantially better than other models 

like SciBERT, ELMo, and SentBERT when evaluated on SciDocs.  

(Lo 2019) introduces S2ORC, which is a corpus of 81.1M English scientific papers from a range of 

academic disciplines from medicine to philosophy. It consists of rich metadata (title, abstract, authors, 

venue, journal) for all papers along with resolved bibliographic references. It also contains 8.1M full-text 

(parsed with ScienceParse and GROBID) open-access papers for research involving the entire contents of 

papers. It has significantly more and better-organized data than the previous datasets of PubMed and AAN. 

To evaluate the metadata quality, the authors pretrained a BERT model on S2ORC and compared it against 
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other SOTA datasets in various domains for a variety of different tasks (like dependency parsing and text 

classification). The S2ORC-SciBERT model was comparable to all of the datasets proving a rich and 

accurate variety of metadata for a multitude of domains. The pipeline used to construct the dataset CORD-

19 (literature specific to COVID-19) and the Semantic Scholar Academic Graph API.  

(Singh 2022) introduces SciRepEval, the first comprehensive benchmark for training and evaluating 

scientific document representations. It includes 25 challenging and realistic tasks, 11 of which are new, 

across four formats: classification, regression, ranking and search. They investigate whether existing 

document representation methods can generalize to a highly diverse set of tasks (SOTA models struggle 

to generalize), whether training on multiple tasks can improve document representation (surprisingly it 

doesn’t), and if task-format-specific representations can improve generalization (yes!). They conclude that 

learning separate document representations (Burges 2005) for each of the four tasks is substantially better 

than trying to learn a single representation for all tasks (generalization).  

(Burges 2005) Recognizing the shortcomings of traditional approaches to document ranking (modelling 

the score of each document independently) the authors proposed RankNet, a model that calculates the 

target probabilities between any two documents for a given query, serving as a single training record. The 

model was architected as a neural network function, where the output for each document, defined as 𝒐𝒊 =

 𝒇(𝒙𝒊) and 𝒐𝒋 =  𝒇(𝒙𝒋), was passed through a logistic function to transform it to a probability range of 

[0,1]. A unique aspect of RankNet is the way it updates its weights. Unlike typical neural networks, 

RankNet processes each pair of documents as one training record, passing both through the same weights 

of the network to calculate 𝒐𝒊 & 𝒐𝒋, which are then used to compute the gradient and update the weights. 

This approach is a departure from the typical feedforward neural network process, and it uses a cross-

entropy cost function to calculate the cost 𝑪𝒊𝒋 for a pair of documents 𝒅𝒊 and 𝒅𝒋. The paper provided the 

mathematical foundation for this novel approach to document ranking, which became a key stepping stone 

in the development of more advanced ranking algorithms. 

Note: The next 3 papers were suggested by this very project in the end after training. We simply fed in 

our title and abstract and reviewed the results to find some more relevant papers. 

(Ebesu 2017) introduces "Neural Citation Network (NCN)", a novel citation recommendation system that 

uses a flexible encoder-decoder architecture. The encoder in the NCN leverages a max time delay neural 

network (TDNN) to robustly represent citation context, while the decoder, a recurrent neural network 

(RNN), determines the best paper to recommend based on this representation and the paper's title. The 

NCN also includes an attention mechanism and author networks to further refine its recommendations. 

The system was evaluated on the large-scale CiteSeer dataset, where it demonstrated significant 
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improvements over existing methods. The experiments were conducted on the RefSeer dataset. The paper 

also notes that NCN outperforms all baselines on every metric by 13-16%. Specifically, it performed better 

than the Citation Translation Model (CTM), TDNN-to-RNN, and RNN-to-RNN models. 

(Narechania 2021) presents VITALITY, a system aimed at promoting the serendipitous discovery 

of relevant academic literature using transformer language models and visual analytics. The 

system enables users to find semantically similar papers in a document-level embedding space 

given a list of input papers or a working abstract. VITALITY visualizes this embedding space as 

an interactive 2-D scatterplot using dimension reduction techniques. Additionally, it summarizes 

metadata such as keywords and co-authors and allows users to save and export papers for use in 

a literature review. The authors contribute data from 38 popular data visualization publication 

venues, along with open-source scrapers for the research community to expand the list of 

supported venues. VITALITY is evaluated through qualitative findings, which suggest that it can 

be a promising complementary technique for conducting academic literature reviews. The initial 

prototype focuses on the data visualization field, but the open-source system and scraper 

framework enable expansion to other venues and academic communities. VITALITY has the 

potential to enhance existing literature review practices by addressing the challenge of identifying 

relevant literature that may use different terminology, thus bridging the gap in academic literature 

searches and aiding in the exploration of new topics. 

(Portenoy 2022) introduces Bridger, a system designed to facilitate the discovery of novel and 

valuable scholars and their work, aiming to counteract the information "filter bubbles" that arise 

from isolated silos of scientific research and information overload. Bridger constructs a faceted 

representation of authors based on information from their papers and inferred author personas, 

which enables the identification of commonalities and contrasts between scientists, thus 

balancing relevance and novelty. The system includes "slices" of a user's papers, allowing them 

to find authors who match the user only on a subset of their papers and on certain facets within 

those papers. In studies with computer science researchers, the facet-based approach helps users 

discover authors whose work is considered more interesting and novel compared to a relevance-

focused baseline representing state-of-the-art retrieval of scientific papers. The authors 

demonstrate that Bridger connects authors from more distant communities in terms of publication 

venues, citation links, and co-authorship social ties.  
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Table 1: Literature Review Major Themes 

Paper Major Theme 

(Nigram 2021) This paper presents the groundwork for the reference prediction task by creating 

a word embedding space for scientific papers using TF-IDF and t-SNE. It 

discusses the limitations of TF-IDF and the potential for BERT to improve 

document representation. 

(Vaswani 2017) Introduces the Transformer model for machine translation, which uses self-

attention mechanisms and parallel processing. It achieves state-of-the-art 

performance on multiple translation benchmarks and has since been used in 

many other NLP tasks. 

(Devlin 2018) Presents BERT, a model that pre-trains deep bidirectional representations from 

unlabelled text. It outperforms previous models on various NLP benchmarks and 

can be fine-tuned for specific tasks using smaller datasets. 

(Beltagy 2019) Proposes SciBERT, a BERT model trained on a large corpus of scientific text. It 

outperforms the original BERT model on scientific text understanding tasks and 

several other NLP tasks. 

(Jeong 2020) Proposes a citation recommendation system using BERT and Graph 

Convolutional Network (GCN) that captures both semantic and structural 

information of academic papers. The model outperforms existing citation 

recommendation models in terms of accuracy and diversity of recommendations. 

(Bhagavatula 2018) Introduces a global content-based citation recommendation system with a two-

step method involving candidate selection and precision-oriented ranking. The 

model is evaluated on DBLP, PubMed, and OpenCorpus datasets and achieves 

state-of-the-art results in the first two datasets, even without the use of metadata. 

(Cohan 2020) Presents SPECTER, a system generating document-level embeddings of 

scientific documents by pre-training a Transformer on citation graphs. The paper 

introduces the SciDocs evaluation framework for tasks related to scientific 

literature, with SPECTER outperforming other models like SciBERT, ELMo, 

and SentBERT when evaluated on SciDocs. 

(Lo 2019) Introduces the S2ORC corpus, containing 81.1M English scientific papers with 

rich metadata. It provides more and better-organized data than previous datasets 

and is used to pretrain a BERT model for evaluation. 

(Singh 2022) Presents SciRepEval, a comprehensive benchmark for training and evaluating 

scientific document representations. It investigates the generalization of existing 

methods and the benefits of task-format-specific representations. 

(Burges 2005) Introduces RankNet, a novel approach to document ranking using a neural 

network function. It calculates target probabilities between documents for a 

given query and serves as a stepping stone in the development of advanced 

ranking algorithms. 

(Ebesu 2017) Introduces Neural Citation Network (NCN), a citation recommendation system 

using an encoder-decoder architecture with attention mechanisms & author 

networks. Results in improvements over existing methods on CiteSeer dataset. 

(Narechania 2021) Presents VITALITY, a system for serendipitous discovery of relevant academic 

literature using transformer models & visual analytics. Enables users to find 

semantically similar papers & visualize the document-level embedding space. 

(Portenoy 2022) Introduces Bridger, a system for discovering novel scholars and their work by 

constructing a faceted representation of authors. It helps users identify 

commonalities and contrasts between scientists, balancing relevance and 

novelty. 
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2.2 Gaps Identified 

1. Limitations of TF-IDF: The prior work by (Nigram 2021) relied on TF-IDF for creating 

word embeddings, which fails to capture the semantics and meaning of a given paper. Our 

work utilizes SPECTER, a citation-informed transformer model, to create more effective 

embeddings. 

2. Improved document representation: BERT and SciBERT are powerful models for 

document representation, but they have limitations when it comes to inter-document 

metrics like citation dependencies. Our work with SPECTER addresses this gap by 

focusing on both citation and semantic meanings of papers (also tries to address the 

generalization issue by (Singh 2022)). 

3. Efficient recommendation engine: Many existing citation recommendation systems 

struggle with recall and precision scores. By constructing an embedding space of papers 

and utilizing KNN as a baseline, our work improves the performance of the 

recommendation engine. 

4. Neural network reranking: To further enhance the performance of the recommendation 

system, we also propose a novel approach of using a neural network to rerank the initial 

KNN candidates, resulting in a significant improvement in Precision and Recall @ 20 

scores compared to the baseline KNN approach with SPECTER embeddings. 

5. Balancing relevance and novelty: Addressing the balance between relevance and 

novelty, as introduced by (Portenoy 2022), our work proposes a novel approach of using 

a neural network to rerank the initial KNN candidates. This approach is expected to 

improve the precision and recall scores on the test set, ensuring the recommendation 

system provides a mix of relevant and novel research papers. 
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3 METHODOLOGY 

3.1 Architecture 

Diagram 

 

  

Figure 1: System Architecture 
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Overview of the system: 

As mentioned in Figure 1, the system broadly consists of 3 stages: 

a) Acquiring the data for thousands of research papers and storing them in a database. 

b) Embedding each paper’s data into an embedding in a way which captures both its 

semantic meaning and citation graphs to create an embedding space. 

c) Finally, the recommendation engine which will use the embedding space to find relevant 

recommendations for a new title/abstract. 

All three sections are elaborated below. 

3.2 Data Acquisition 

The first step in building the automated research paper recommendation system is to acquire a 

dataset of research papers that will be used to train the embedding model and recommendation 

engine. The dataset should contain metadata about the papers such as title, abstract, year of 

publication, citation count, and references. There are datasets available for this (such as Semantic 

Scholar’s S2ORC dataset), however, they are too large (~500 GBs) which would require a lot of 

compute, and sampling randomly from it might not ensure a dense enough citation graph to learn 

from. 

Hence, we have decided individually form a dataset using the Semantic Scholar API by starting 

with some initial seed papers, some of which are highly referenced papers (like the influential 

‘Attention is all you need’ paper). We then built an async crawler on the API to speed up the data 

acquisition process as it allows for non-blocking I/O, which means that the system can continue 

processing requests while waiting for responses from the server. Async is preferred because 

multiprocessing will have too much overhead in creating and switching between processes while 

multithreading is not efficient because of Python’s Global Interpreter Lock (GIL), meaning only 

one thread can effectively operate at a given time. 

The data acquisition process works as follows: 
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a) Start with initial seed papers and add them to a queue. 

b) Deque papers one by one and for each paper fetch the references using the S2 API. 

c) Construct the JSON object for the current paper with metadata and references and store 

the JSON object to a MongoDB database. 

d) Add the references to the queue. 

e) Repeat b) to d) until N papers are stored asynchronously with 100 workers. 

We also rate-limited the system to 100 requests/seconds to ensure that the system can continue 

to crawl papers over a longer period without running into problems. Finally, we also implemented 

a retry handling mechanism (up to 3 times per paper) to handle cases when the response is 

corrupted during transmission. 

 

Figure 2: Async Crawler Running 

We have successfully stored the data for 10,000 and 50,000 papers in the database which took 

around 12 minutes and 1 hour simultaneously. Going forward, we will be using the 10,000 papers 

for our experiments as it is faster to iterate upon.  
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This is how the database looked after crawling and storing 10K papers: 

 

Figure 3: Papers stored in MongoDB database 

3.3 SPECTER - Generating Paper Embeddings 

Once the metadata is collected and pre-processed, the next step is to create a meaningful 

representation of each paper's content. This is achieved by embedding the title and abstract of 

each paper using the SPECTER model from AI2. SPECTER is a citation-informed transformer 

model that leverages both semantic and citation information to create rich, contextual 

embeddings. 

The SPECTER model is initialized from SciBERT, a pre-trained language model specifically 

designed for scientific text. To fine-tune the embeddings, a custom loss function is developed 

based on triplets of papers which is as follows: 
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Each triplet consists of a query paper (PQ), a positive paper (P+), and a negative paper (P-).  ‘m' 

is the loss margin hyperparameter (we will follow the original paper and choose m = 1). For the 

distance function ‘d’, we will use L2 norm distance. By training the model on these triplets, 

SPECTER will create embeddings that capture both the semantic content and citation 

relationships between papers. Each embedding vector has 768 dimensions, which allows for a 

more accurate representation of each paper in the embedding space.  

3.3.1 Data Pre-processing 

Since the SPECTER model (used to generate document embeddings) requires triplets of papers 

in order to encode the citation information into the semantic encodings, we have to first generate 

these triplets. In each triplet, there is one query paper, a positive & negative paper. A positive 

paper is a direct reference of the query paper (strong link) and a negative paper can either be a 

random paper (no link) or a reference of a reference (weak link). We can assign scores to each of 

these 3 states and generate Q number of triplets per query paper. In our case, there are around 

8000 training papers with 1000 for validation and testing (with the standard 80-10-10 train-val-

test split). With Q = 5 for our case, we are left with around 29,000 training triplets and around 

3600 validation and testing triplets, after removing papers for whom metadata was not parsed in 

the initial 10K dataset. 

So for each triplet, we get the necessary fields (concatenated title + author) for all 3 papers and 

make it into an AllenNLP Instance. These instances are then stored in a pickle file to save the 

pre-processed results. 
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Figure 4: Sample of the triplets used to generate the pickle files (5 = direct reference, 1 = reference of a 

reference, 0 = random) 

3.3.2 Training Model from Scratch 

1. Define classes to read dataset from Pickled file (in our case this was class 

DataReaderFromPickled and IterableDataSetMultiWorkerTestStep). 

2. Define a custom loss function class to implement the triplet loss function above. 

3. Define the Specter model itself by inheriting from pl.LightningModule which helps to 

streamline the model training process by taking care of boilerplate code. 

4. Implement methods like _get_loader() to get train-val-test dataloaders. 

5. Configure the optimizers and LR-schedulers. 

6. Define the initial model and tokenizer from the pretrained SciBERT model. 

7. Implement the training (and val) steps by passing the training data triplets to the model 

by implementing the training_step method and calculating the triplet loss. 
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8. After implementing some other important functions (validation_step, test_step), 

pytorch lightning will handle the rest of the training process (like backward pass ). 

9. For testing, instead of calculating the loss on the embeddings e, just return e. 

The original SPECTER model was trained with 630K triplets (compared to our 28K) and was 

trained for 2 epochs with a batch size of 4 with each epoch lasting around 1.5 days. We tried to 

retrain the model from scratch with 10K papers and it took around 2 hours on an NVIDIA RTX 

5000 (16 GB GPU on Paperspace Gradient Pro) for a single epoch with batch size 4. There is 

also a pretrained SPECTER model available on HuggingFace which is much better because of 

being trained for longer with much more compute power. Hence, going forward, we plan to use 

the embeddings from the pre-trained model for the recommendation engine. 

 
 

Figure 5: Retraining the model on Paperspace Gradient with RTX 5000 GPU 

With the trained model we can get embeddings for the entire dataset where each paper is 

represented as a 768-dimensional vector which should capture its semantic and citation contents.  
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3.4 Recommender Engine 

The final step in building Refpred is to create a recommendation engine that can take in a new 

paper's abstract or title and return the most relevant recommendations. The goal of this engine is 

simple – given a new title and abstract (or an existing paper), predict what papers are most likely 

(or were) its references.  

3.4.1 Evaluation 

We start with what evaluation metrics we will use to judge how good the recommendations from 

the recommendation engine are. We will use Precision @ 20 and Recall @ 20 as our primary 

evaluation metrics. These metrics are chosen over other commonly used metrics like Mean 

Average Precision (MAP) or nDCG (normalized Discounted Cumulative Gain) for the following 

reasons: 

1. No inherent order: In the recommendation system for academic papers, there is no 

inherent order in the list of references. As long as the most relevant references are at the 

top, the order of the rest of the references is not crucial. This is unlike some other 

recommendation systems where the order of the items is significant, such as search 

engines or product recommendations. 

2. Focus on relevance: Precision @ 20 and Recall @ 20 focus on identifying the most 

relevant papers within the top 20 recommendations. Precision @ 20 measures the 

proportion of the top 20 recommendations that are relevant, while Recall @ 20 measures 

the proportion of relevant papers that are included in the top 20 recommendations. These 

metrics highlight the effectiveness of the recommendation system in surfacing relevant 

papers to the user. 

3. Simplicity: Precision and Recall are easy to understand and interpret. They provide a 

clear, intuitive way of assessing the quality of the recommendations. This simplicity can 

be beneficial when communicating the results to a broader audience, as well as for the 

developers themselves when interpreting the performance of the recommendation system. 
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3.4.2 KNN Baseline 

The baseline approach is to embed the new title+abstract using SPECTER and use K-Nearest 

Neighbours (KNN) algorithm to find the most similar papers in the embedding space. By 

calculating the L2 distance between the new paper's embedding and the embeddings of existing 

papers, the KNN algorithm can return a set of research papers that are semantically and 

contextually related. However, since the embedding space is high dimensional (768), manually 

finding KNN neighbours becomes very inefficient. To solve this, we use Ball Trees. 

o Ball Trees 

 

Figure 6: Ball Tree Partitions and the corresponding search tree (Dolatshah 2015) 

Ball Trees are a tree-based data structure designed for efficiently solving nearest neighbour search 

problems in high-dimensional spaces. They recursively partition the input data into non-

overlapping hyperspherical regions called "balls," represented by a centroid and radius. The tree 

is built hierarchically, with each internal node partitioning its parent node's data points into two 

disjoint subsets. 

The construction of a Ball Tree involves selecting a pivot and partition radius to divide the data 

points into subsets. This process is recursively applied until a stopping criterion is met. 

Searching for nearest neighbours in a Ball Tree involves traversing the tree from root to leaf 

nodes while pruning branches that do not contribute to the final result. This pruning strategy 
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allows Ball Trees to perform nearest neighbour queries much faster than a brute-force approach, 

especially in high-dimensional spaces. 

In our k-nearest neighbours (KNN) baseline, we use a Ball Tree data structure to efficiently store 

and search for nearest neighbours in the high-dimensional SPECTER embedding space, 

providing an efficient and scalable solution for the recommendation task. 

o The Problem of Limited Search Space 

During the development of our KNN-based recommendation system, we encountered a limitation 

related to the size of our initial dataset of 10K research papers. The restricted dataset size limited 

the maximum precision and recall scores achievable by our model, as many of the references for 

the papers were simply not present in the dataset. This issue had the potential to negatively impact 

the effectiveness of our recommendation system. 

To address this problem, we expanded the dataset used for the KNN search by including an 

additional 100K references from the initial 10K papers. This allowed us to increase the coverage 

of potential recommendations and improve the chances of finding relevant references for the 

papers in our dataset. It is important to note that we did not use the entire 100K references for 

training the neural network reranker, as this would have led to a similar, but larger-scale issue. 

By incorporating the additional 100K references into the KNN search (following Section 3.3.1), 

we were able to mitigate the limitations imposed by the initial dataset size, thus improving the 

performance of our recommendation system. However, we maintained the training scope of the 

neural network reranker to the initial 10K papers, ensuring that the model was not affected by the 

same limitations when evaluating its effectiveness. 
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o Getting KNN Recommendations  

In the following code, we describe the procedure to get KNN paper IDs for a given title and 

abstract. We use a ball tree as our KNN tree formed by the 100,000 reference embeddings parsed 

in Section 3.2. We simply embed the new paper and find its nearest neighbours by querying the 

KNN tree. 

 

Figure 7: Code for getting embedding for a new paper, finding KNN for a given embedding and getting 

KNN paper IDs for a new title and abstract 

While the KNN algorithm is a good starting point for the recommendation engine, other 

approaches can be explored to optimize the predictions. Currently, we look at a neural network 

approach to learn the features that are most important for making recommendations.  

3.4.3 Neural Network Based Reranking of KNN Candidates 

As we will see in Section 0, while the recommendation for KNNs seems good, when tested with 

our evaluation metrics described in Section 3.4.1, it does not score well. Hence to improve the 
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precision and recall scores, we train a reranking model which takes KNN candidates as inputs 

and reranks them based on past reference patterns. 

The main idea is to prepare pairs for paper_ids from existing data (i.e. papers in the dataset and 

their references) and assigns a label of 1 for papers that cite each other and 0 for those that don’t. 

The model should then learn from these prepared pairs so that when we find the KNN candidates 

for a new embedding and pass them to the model, we should get better recommendations, which 

are based on past patterns of citations. 

o Dataset  

This first and most important step of the reranking approach is the data we feed into the reranker, 

as it determines the preferences the model learns with the labels.  First, we define a class called 

PaperPairDataset, which is a custom dataset class that inherits from PyTorch's Dataset. It's used 

to create pairs of academic papers for a reranking model. These pairs will be passed to the model 

described in the next section to learn from the past patterns of papers referencing each other. 

The main steps it follows are: 

1. Computes K-nearest neighbours (KNN) for each paper in the dataset, using the KNN tree. 

2. Retrieves actual references for each paper & stores the maximum references present 

(max_refs_present) & the total number of references (total_refs) for logging purposes. 

3. Iterates over the recommendations randomly (not in order of KNN) and creates pairs such 

that the label is 1 if rec_id is a reference of qid, else 0. 

Note: It is very important to iterate over the recommendations randomly as otherwise we 

penalize the top KNN neighbours every time by giving them 0 labels, which results in 0 

Precision and Recall scores. (As tested in Section 0)  

4. Checks whether the recommended paper was published after the query paper. 

5. The getitem method returns embeddings, a flag indicating if the recommended paper was 

published after the query paper (is_after), and the label. 

 



Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005) 

 26 

 

Figure 8: Pseudo code for PaperPairDataset 

o Model 

Next, the main neural network architecture driving our recommendation engine, which is 

designed to process pairs of research papers and predict their new similarity scores. The 

architecture is implemented as a PyTorch module called PaperPairModel, which inherits from the 

nn.Module class. It takes as input 2 paper embeddings along with a flag (is_after) and determines 

a similarity score between 0 and 1. We also pass cosine similarity between the 2 embeddings 

along with x_diff and x_mul as additional features to help the model learn representations 

between similar embeddings (labelled 1) faster. 
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Figure 9: Code for the PaperPairModel model 

A sample model architecture can be seen below: 

PaperPairModel( 
  (fc_layers): Sequential( 
    (0): Linear(in_features=1538, out_features=1024, bias=True) 
    (1): BatchNorm1d(1024, eps=1e-05, momentum=0.9, affine=True, track_running_stats=True) 
    (2): Tanh() 
    (3): Dropout(p=0.5, inplace=False) 
    (4): Linear(in_features=1024, out_features=2048, bias=True) 
    (5): BatchNorm1d(2048, eps=1e-05, momentum=0.9, affine=True, track_running_stats=True) 
    (6): Tanh() 
    (7): Dropout(p=0.5, inplace=False) 
    (8): Linear(in_features=2048, out_features=1, bias=True) 
  ) 
) 
 

The architecture is composed of a series of fully connected layers, batch normalization layers (if 

enabled), activation functions, and dropout layers. The input to the model is formed by 

concatenating the element-wise absolute difference, element-wise product, temporal information 
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(whether one paper is published after the other), and cosine similarity between the embeddings 

of the two input papers. 

The forward method takes three input tensors, x1, x2, and is_after, representing the embeddings 

of the first paper, the embeddings of the second paper, and the temporal information, respectively. 

The cosine similarity between x1 and x2 is computed using the F.cosine_similarity function. 

The element-wise absolute difference (x_diff) and element-wise product (x_mul) between x1 and 

x2 are also computed as extra features to learn the similarity effectively. 

The input tensor x is formed by concatenating x_diff, x_mul, is_after, and the cosine similarity 

along dimension 1. The concatenated input tensor is then passed through the fully connected 

layers, batch normalization layers (if enabled), activation functions (Tanh), and dropout layers in 

the self.fc_layers sequential model. 

The output of the model is a single scalar value obtained by applying a sigmoid activation 

function to the final layer, which represents the predicted similarity score between the input pair 

of research papers. The output tensor is then squeezed to remove any singleton dimensions. 

o Training  

Before training we currently will have the following things with us: 

1. embedding_map - maps paper id to the 768-dimensional embedding 

2. reference_map - maps one paper id to a list of paper ids which are the actual references 

of the original paper id 

3. metadata - provides metadata such as title, abstract, and year of each paper_id 

4. all_paper_ids - a list of all paper_ids 

5. knn_tree – KNN Ball Tree formed from the embeddings of all_paper_ids. The order of 

the knn_tree is the same as all_paper_ids (important to fetch paper_ids as the nearest 

neighbours). 

(1) was computed from the SPECTER embeddings, (2,3,4) were computed from the 100K paper 

dataset and (4) was computed by feeding (1) in sklearn’s Ball Tree. 
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Now, the training loop is as follows: 

1. Create train_dataset and val_dataset instances of PaperPairDataset with the 

respective paper_ids, embedding_map, reference_map, metadata, and all_pids. 

2. Create train_dataloader and val_dataloader instances of DataLoader with the 

respective datasets, batch_size, and shuffle settings. 

3. Instantiate the PaperPairModel with hidden_dims, dropout_prob, use_bn, and 

bn_momentum from hyperparameters. 

4. Move the model to the appropriate device (CPU or GPU). 

5. Set up the loss function (BCEWithLogitsLoss) and optimizer (AdamW). 

6. Initialize the learning rate scheduler with early stopping (ReduceLROnPlateau). 

7. Train the model using the following steps: a. Loop through the epochs. b. Set the model 

to training mode. c. Iterate over the train_dataloader, getting batches of data 

(embeddings, labels, and is_after flags). d. Move the data to the appropriate device 

(CPU or GPU). e. Zero the gradients of the optimizer. f. Get the model's output by passing 

the input data through the model. g. Calculate the training loss using the criterion. h. 

Perform backpropagation and update the model's parameters with the optimizer. 

Accumulate the training loss. 

8. Evaluate the model on the validation set using the following steps: a. Set the model to 

evaluation mode. b. Iterate over the val_dataloader, getting batches of data (embeddings, 

labels, and is_after flags). c. Move the data to the appropriate device (CPU or GPU). 

d. Get the model's output by passing the input data through the model. e. Calculate the 

validation loss using the criterion. f. Accumulate the validation loss. 

9. Evaluate the model's recommendations on a specific test paper (AIAYN) and calculate 

the precision, recall, and F1 score. 

10. Update the learning rate scheduler based on the validation loss. 
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11. Check for early stopping criteria and save the best model's state. 

This loop covers the training and evaluation of the PaperPairModel on the given dataset. It 

includes data preparation, model instantiation, training, validation, and early stopping to prevent 

overfitting. 

o Getting Reranked Recommendations 

To get new recommendations for a given title and abstract, we have defined a function called 

get_recommendations.  

 

Figure 10: Code for the recommendations function 

Inside the function, we first set the model to evaluation mode. Then, we create a paper object 

with the given title, abstract, and a fixed year (2023 in this case). We use the get_embedding 

function to generate the SPECTER embedding for this new paper object using the HF model. 
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Next, we find the k nearest neighbours in the embedding space using the find_knn function. We 

then retrieve the paper IDs of the recommended papers using the indices returned by find_knn. 

We create a tensor of the embeddings for these recommended papers. 

We also create an is_after tensor that indicates if the new paper was published after each of the 

recommended papers. This tensor is created based on the years of publication of the 

recommended papers and the new paper's year (2023). 

With the model in evaluation mode, we expand the new paper's embedding to match the shape of 

the recommended papers' embeddings tensor. We move all tensors to the appropriate device 

(CPU or GPU) and pass them through the model, along with the is_after tensor. 

After obtaining the scores for each recommended paper, we return the model to training mode. 

We then select the top-k recommendations based on their scores using the torch.topk function. 

We extract the indices and values (scores) of the top-k recommendations and return the reranked 

paper IDs. If the return_scores parameter is set to True, we also return the top-k scores alongside 

the recommendations. 

o Evaluating Reranked Results from Model 

 

Figure 11: Code for evaluating the reranking model 
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The evaluate_model function is designed to assess the performance of a trained PaperPairModel 

on a set of paper IDs. This function computes the mean precision and mean recall for these papers, 

which are used as evaluation metrics to measure the effectiveness of the recommendation system. 

To do this, the function iterates through each paper ID in the provided list of paper_ids. For each 

paper, the function generates a set of recommendations using the get_recommendations function, 

which returns the top_k most relevant papers based on the model, paper embeddings, and 

metadata. Then, the function retrieves the set of true references from the reference_map using the 

current paper ID. If there are no true references for the paper, the loop continues to the next paper 

ID. 

For each paper, the function calculates precision and recall by comparing the recommendations 

and true references. Precision is calculated as the ratio of the number of intersecting papers (i.e., 

the papers present in both recommendations and true references) to the total number of 

recommendations. Recall is calculated as the ratio of the number of intersecting papers to the 

total number of true references. The function accumulates the precision and recall values for each 

paper in separate lists. Finally, the function computes the mean precision and mean recall by 

dividing the sums of the respective lists by their lengths and returns these values as the evaluation 

metrics. 

3.5 System Analysis & Design 

The proposed system, RefPred, aims to provide a comprehensive and efficient solution for 

researchers to identify relevant literature for their review process. To achieve this, the system 

leverages a citation-informed transformer model (SPECTER) and a recommendation engine. The 

design is focused on optimizing the performance and user experience, with the goal of helping 

researchers save time and effort during the literature review process. 

3.5.1 Introduction 

RefPred is designed to address the challenges faced by researchers in identifying and prioritizing 

relevant research papers. By employing state-of-the-art NLP techniques and a well-structured 

recommendation engine, RefPred aims to provide a seamless and efficient way to recommend 
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research papers based on user input, while accounting for factors like citation count and similarity 

score. 

3.5.2 Requirement Analysis 

o Functional Requirements 

1. Product Perspective: RefPred is a standalone software product that integrates with 

existing research workflows to assist researchers in their literature review process. By 

recommending relevant research papers based on the input title or abstract, it aims to 

enhance the overall research experience and facilitate informed decision-making. 

2. Product Features: 

a) Literature ingestion: RefPred can crawl and extract research paper metadata from 

Semantic Scholar (S2) using their API. 

b) Data storage: The collected metadata is stored in a MongoDB database. 

c) Paper embedding: RefPred uses the SPECTER model to generate embeddings for 

each paper in the dataset, capturing its citation and semantic meaning. 

d) Embedding space: The system constructs an embedding space of papers based on the 

generated embeddings. 

e) Recommendation engine: A KNN-based recommendation engine serves as a baseline 

to provide relevant recommendations for a new paper. 

f) Neural network reranking: RefPred includes a neural network model to rerank the 

initial KNN candidates, resulting in improved Precision and Recall @ 20 scores. 

g) Input handling: The system accepts a new title or abstract as input and provides 

relevant paper recommendations based on the input. 

h) Sorting mechanism: RefPred can sort recommended papers based on chosen metrics 

(e.g., citation count or similarity score). 
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3. User Characteristics: RefPred caters to researchers, academicians, and students who 

require assistance in identifying, evaluating, and prioritizing relevant research papers for 

their literature review process, regardless of their technical expertise. 

4. Assumption & Dependencies: RefPred assumes that user-provided data is accurate and 

complete, and the system's performance depends on the quality of data. The system relies 

on the continuous availability and accuracy of data sourced from the Semantic Scholar 

(S2) API and presumes that the underlying technologies remain supported and functional. 

5. Domain Requirements: RefPred is designed to cater to research domains with vast and 

rapidly-evolving bodies of literature, such as Medicine, Generative AI, and other 

emerging fields. The system can be adapted to suit the specific needs of different domains, 

ensuring a high degree of relevance and usefulness. 

6. User Requirements: Users need to provide a title or abstract for the system to process, and 

they must have access to the internet to ensure real-time updates and recommendations. 

o Non-functional Requirements 

1. Scalability: RefPred is designed to handle a large and growing number of research papers 

and embeddings efficiently. 

2. Performance: The recommendation engine provides fast and accurate recommendations 

to researchers, ensuring minimal wait times. 

3. Usability: RefPred's user interface is intuitive and easy to use for researchers without 

extensive technical knowledge. 

4. Maintainability: The system is modular and well-documented, allowing for easy updates, 

bug fixes, and the addition of new features. 

5. Reliability: RefPred provides consistent and accurate recommendations across different 

research fields and queries. 

6. Security: The system ensures the privacy and security of user data and intellectual 

property. 
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7. Interoperability: RefPred is compatible with various platforms and devices, allowing 

researchers to access recommendations seamlessly. 

o Organizational Requirements 

1. Implementation Requirements (in terms of deployment): RefPred requires a 

scalable and reliable infrastructure for deployment, ensuring high availability, and 

accommodating growing data and user base. Cloud-based solutions or dedicated 

servers can be utilized to meet these requirements, with proper backup and disaster 

recovery plans in place. 

2. Engineering Standard Requirements: RefPred should adhere to industry-standard 

software engineering practices, including version control, code reviews, 

continuous integration, and testing. This ensures maintainability, stability, and 

ease of collaboration among team members. 

o Operational Requirements 

1. Economic: RefPred has the potential to save researchers time and effort in the literature 

review process, contributing to overall research efficiency and cost-effectiveness. 

2. Environmental: As a software product, RefPred has a low environmental impact, reducing 

the need for physical resources such as paper. 

3. Social: RefPred facilitates knowledge sharing and collaboration among researchers, 

fostering a more inclusive and connected research community. 

4. Political: By providing unbiased recommendations, RefPred promotes transparency and 

fairness in research, avoiding undue influence of specific organizations or individuals. 

5. Ethical: RefPred adheres to ethical considerations by ensuring the privacy and security of 

user data, and recommending papers based on merit and relevance. 

6. Health and Safety: RefPred indirectly contributes to health and safety by supporting 

research efforts that may have implications in these areas. 

7. Sustainability: As a digital solution, RefPred supports long-term sustainability by 

minimizing resource consumption and environmental impact. 
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8. Legality: RefPred complies with applicable laws and regulations related to data privacy, 

security, and intellectual property. 

9. Inspectability: RefPred's modular and well-documented design enables easy inspection 

and evaluation by relevant stakeholders, ensuring compliance with industry standards and 

best practices. 

o Hardware & Software Requirements 

The hardware and software requirements for building this project will depend on the scale of 

the dataset and the desired performance of the recommendation system. Here are some general 

requirements for each step: 

a) Data Acquisition: 

• A machine with a fast internet connection to crawl and scrape the Semantic Scholar 

API. 

• Sufficient storage capacity to store the metadata of the research papers (title, 

abstract, year, citation count, references, etc.) in a MongoDB database. 

• Depending on the size of the dataset, a machine with high RAM and CPU 

processing power to handle large volumes of data efficiently. 

• In our case, we’ve used a Macbook Pro (M1 Pro with 16 GB of RAM) to scrape 

approximately 50K papers in 1 hour using the S2 API. For the retraining of 

SPECTER, we have used Paperspace Gradient Pro with NVIDIA RTX5000 GPU. 

b) Paper Embedding Generation: 

• A machine with a fast CPU, enough RAM, and preferably, a dedicated GPU, such as 

an NVIDIA graphics card, (in our case RTX 5000 via cloud service Paperspace 

Gradient) for quicker training or embedding using the pretrained model. 

c) Recommendation Engine: 
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• A machine with a fast CPU, enough RAM, and preferably, a dedicated GPU, such as 

an NVIDIA graphics card to perform the KNN search in the high-dimensional 

embedding space. 

• If a more sophisticated recommendation algorithm is desired, such as graph neural 

networks, then a machine with a more powerful GPU (again with Paperspace 

Gradient) can help speed things up. 

Software: 

• Python 3.7 is used with Miniconda, as it provides proper dependency management and 

virtual environments. 

• The Semantic Scholar API and MongoDB database are used to collect and store 

research paper metadata respectively. 

• The SPECTER model and AllenNLP library are used to generate paper embeddings. 

• For the recommendation engine, we use the scikit-learn library which provides KNN 

Trees, and PyTorch for the reranking model. 

The list of libraries needed are: pymongo, requests, aiohttp, asyncio, pandas, numpy, 

scikit-learn, PyTorch, AllenNLP, matplotlib, transformers, tqdm, pytorch-lightning, 

optuna, ujson, pickle, flask 

The entire code for this project can be found at: https://github.com/siddharth-Gandhi/refpred/. 

  

https://github.com/siddharth-Gandhi/refpred/
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4 RESULTS & DISCUSSION 

4.1 Data Acquisition & Parsing data from S2: 

The following table shows the time it took to parse and store different numbers of papers both 

synchronously and asynchronously: 

Table 2: Time taken to crawl & store paper metadata locally (from S2 API) 

Number of Papers Time Taken 

100 papers (Synchronously) 2 minutes 

100 papers (With Async Crawler) 3 seconds 

10,000 papers ~10 minutes 

50,000 papers ~1 hour 

100,000 papers (with batch processing) ~ 1 hour 

 

For all further reranking experiments we will be using the 10,000 paper datasets to construct the 

train, val and test datasets. We will also use the 100,000 paper dataset to populate our KNN Tree 

to ensure most references of the original 10,000 papers are present. However, from both datasets, 

we remove some paper IDs for which abstracts or list of references is null. 

4.2 SPECTER Retraining 

Retraining SPECTER model requires triplets in the form (𝑄, 𝑄+, 𝑄− ) as input. To do this we 

need first divide the 10,000 initial paper IDs into train, val and test sets with 80, 10, 10 split. This 

gives: 

Table 3: Train, Val, Test Split 

Dataset Number of IDs 

Train 7455 

Val 932 

Test 933 

 

We will be using this same 80-10-10 split throughout all of our experiments.  
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Using these datasets, we generate the triplets for training SPECTER: 

Table 4: Number of Generated triplets for SPECTER 

Dataset Number of triplets 

Train 31160 

Val 3920 

Test 3950 

 

Finally, when training the SPECTER model with the above triplets, we get the following: 

Table 5: Comparison of retraining SPECTER vs Original Paper 

 Our Retrained Model Original SPECTER Model 

Epochs 1 4 

Batch Size 4 4 

Number of Train Triplets 31,160 684,000 

Number of Val Triplets 3920 145,000 

Time Taken / epoch 2 hours 1-2 days 

GPU Used RTX 5000 (16 GB) Titan V (12 GB) 

 

Using SPECTER, we can embed a research paper (specifically the title + abstract of a paper), 

into a 768-dimensional embedding. We use tSNE (t-distributed stochastic neighbour embedding) 

to visualize these high-dimensional embeddings and see the grouping of papers (Figure 12). We 

compare our retrained model against the pre-trained SPECTER model available on HuggingFace 

(HF). The biggest circles represent highly cited papers like the original papers of Adam, R, 

ImageNet, Transformers, etc. 

Using a tool like Plotly, where we can interactively see what paper each dot represents, we can 

see that both versions are great at grouping closely related papers. For example, papers for Image 

Segmentation are grouped in one place while Markov Model papers are grouped in another. 

However, the pretrained version seems to be better at modelling distant references (probably due 

to the bigger training set) and thus might produce more accurate embeddings.  

Ultimately, due to the intensive compute and time requirements, and the maximum usage 

limitations provided in Paperspace Gradient (the cloud platform we used to retrain SPECTER), 

we decided it would be best to use the HF embeddings for further experiments to get the best 

quality embeddings. 
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Figure 12: 2D tSNE Visualization of 768-dimensional embedding vectors 

of both retrained & HF model (size & colour based on number of citations) 
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4.3 Neural Network-based Reranking 

At this point, we have the high dimensional SPECTER embeddings for all the 9319 original 

papers (excluding papers with null references or abstracts) + 107833 reference papers (to populate 

the KNN Tree). 

4.3.1 Exploratory Data Analysis 

 

As we can see most papers have on average 29 papers as references and our dataset has most 

papers published around 2006-07.  

Now for all train, val and test datasets (see Dataset), we store max_refs_present and total_refs 

for logging. Using this we can calculate the maximum possible precision and recall for each of 

the train, val and test datasets. The formula for calculating the maximum precision and recall for 

a paper at index 𝑖 in the dataset is as follows: 

𝑚𝑎𝑥_𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =
𝑚𝑖𝑛(𝑚𝑎𝑥_𝑟𝑒𝑓𝑖 , 𝑡𝑜𝑝_𝑘)

𝑡𝑜𝑝_𝑘
,  for  𝑖 = 1,2, … , 𝑛 

𝑚𝑎𝑥_𝑟𝑒𝑐𝑎𝑙𝑙𝑖 =
𝑚𝑖𝑛(𝑚𝑎𝑥_𝑟𝑒𝑓𝑖 , 𝑡𝑜𝑝_𝑘)

𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑓𝑖
,  for  𝑖 = 1,2, … , 𝑛 

where 𝑡𝑜𝑝_𝑘 is the 𝑘 in 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 @ 𝑘 and 𝑅𝑒𝑐𝑎𝑙𝑙 @ 𝑘 (in our case we take 𝑡𝑜𝑝_𝑘 =  20). We 

plot the histograms for max precision and recall for each of the train, val and test sets respectively: 

Figure 13: EDA of the paper data 
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Figure 14: Histograms of Max Precision @ 20 and Max Recall @ 20 for train, val and test paper ID sets. 

As we can see with the current KNN Tree (with ~100,000 papers), we can have on average 0.58 

as maximum 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 @ 20 and 0.46 as maximum 𝑅𝑒𝑐𝑎𝑙𝑙  @ 20. 
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4.3.2 Generating Pairs for the Reranking Model 

Table 6: Information about preparing +ve and -ve pairs 

Dataset Total Pairs +ve Pairs -ve Pairs Time Taken 

Train 208346 104173 104173 16 minutes 

Val 25440 12770 12770 2 minutes 

Test 25440 12770 12770 2 minutes 

 

As can be seen in the table above, the Dataset is constructed in a way to maintain +/− ratio to 

be 1. This is done by selecting as many positive and negative papers as there are references 

present in the KNN recommendations of a particular paper. For example, if a query paper Q has 

37 references in total, with only 26 papers present in the top 1000 nearest neighbours of Q, then 

we make 26 positive pairs (of all the references present in KNN neighbours) and 26 negative 

pairs (selected randomly). The impact of being random (and not in the order of KNN) we will 

see in the following sections. 

o Hyperparameters 

As mentioned in Section 3.4.3/Model, we have a feed-forward neural network with batch norm, 

weight decay, early stopping, learning rate schedulers and variable hidden layer sizes. As a result, 

the various hyperparameters which can be tweaked as listed below. The ones of interest are 

hidden_dims, weight_decay, dropout_prob, use_bn and bn_momentum. We will be tweaking with 

them in the following section with an Ablation study and hyperparameter optimization. 

hparams = { 
    'batch_size': 2048, 
    'hidden_dims': [1024, 2048], 
    'lr': 1e-2, 
    'min_lr': 1e-7, 
    'patience': 3, 
    'factor': 0.1,  
    'weight_decay': 1e-3, 
    'dropout_prob': 0.5, 
    'stop_after': 5,  
    'knn_k': 1000, # for getting nearest neighbours 
    'top_k': 20, # for evaluation 
    'use_bn': True, 
    'bn_momentum': 0.9, 
    'num_epochs': 30 
} 
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o Varying the Methods for preparing the Dataset 

An important element in the reranking model is the data which is fed into it. The dataset (whose 

construction is explained in Section 3.4.3/Dataset) creates pairs (Q, R) such that R is one of the 

(say) 1000 KNN recommendations of Q and the label for the pair is 1 if R is a direct 

recommendation of Q, else 0. However, selecting the negative distractors (with label 0) is an 

important experiment. We could: 

3. Select negative elements in the order of KNN neighbours, i.e. in the order of 

similarity to the Q paper. 

4. Randomly select R papers from the 1000 KNN recommendations. 

5. Select R from the inverse order of KNN recommendations (i.e. least similar first). 

6. Inspired by (Cohan 2020), we take 50% negative examples randomly and 50% 

negative examples which are citations of citations (so similar to Q, but not a 

citation). 

Finally, since we have KNN neighbours which are published after the current query Q, we can 

explore if skipping those recommendations is better than labelling it as 0 (in all 4 approaches 

above). The results for these various methods for preparing dataset are mentioned below: 

Table 7: Model Loss w.r.t. various negative distractor selection & skipping future papers 

Model Train 

Loss 

Val 

Loss 

Test 

Precision   

@ 20 

Test 

Recall 

@ 20 

KNN Baseline -  - 0.117 0.095 

Negatives selected in KNN order (by L2 distance)  0.274 0.446 0.016 0.014 

Randomly Selected Negatives 0.13 0.316 0.193 0.166 

Negatives selected starting for reversed KNN order 0.08 0.25 0.151 0.123 

Negatives with 50% random & 50% citation of 

citations 

0.504 0.588 0.168 0.140 

Skip Papers published after Query Q 0.35 1.269 0.011 0.008 

 

We can see that using randomly selected negative distractors (including future papers with 0 

labels) yields the best results. Going in the order of KNN (by L2 distance) and selecting negatives 

results in a terrible score, probably because the model learns to rank semantically similar papers 

(which are the KNN neighbours) lower due to the 0 label. Even skipping future papers yields 
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terrible results, presumably because skipping those papers leads to the model having no idea of 

what to do with future papers. 

o Varying Model Architecture 

To test whether the model architecture described in Section 3.4.3/Model performs well, we do an 

ablation study studying the effects of removing individual components (in isolation) and seeing 

its effect on evaluation metrics. We also test the effect of replacing x_diff and x_mul with x1 and 

x2. The results are as follows:  

Table 8: Ablation Study (after 30 epochs) 

Config Batch 

Norm 

(0.5) 

Drop

out 

(0.5) 

Weight 

Decay 

(1e-3)  

Is 
after 

 

Cosine 
Sim 

x_mul x_diff Val  

Loss 

Test 

Precisio

n @ 20 

Test 

Recall 

@ 20 

Base Model Yes Yes Yes Yes Yes Yes Yes 0.316 0.193 0.166 

No BN No Yes Yes Yes Yes Yes Yes 0.693 0.118 0.09 

No Dropout Yes No Yes Yes Yes Yes Yes 0.731 0.136 0.115 

No Weight 

Decay 

Yes Yes No Yes Yes Yes Yes 0.321 0.199 0.171 

No 
is_after 

Yes Yes Yes No Yes Yes Yes 0.346 0.138 0.112 

No cosine 
sim 

Yes Yes Yes Yes No Yes Yes 0.314 0.186 0.155 

No x_mul Yes Yes Yes Yes Yes No Yes 0.559 0.195 0.16 

No x_diff Yes Yes Yes Yes Yes Yes No 0.28 0.173 0.144 

With x1 & 

x2 instead 

of x_mul & 
x_diff 

Yes Yes Yes Yes Yes Repla-

ced 

with 
x1 

Replac-

ed with 
x2 

0.14 0.11 0.09 

 

With this table, it is clear that BN, Dropout are crucial layers in the model architecture while 

cosine_sim, x_mul, and x_diff are important features to be added in the forward pass of the 

model. The only optional argument seems to be weight decay, excluding which leads to better 

results.  
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o Hyperparameter Optimization 

To find out the optimal values for hidden_dims, dropout_prob, weight_decay, and bn_momentum, 

we perform a Hyperparameter search using the optuna python library. This was done by having 

is_after, cosine_sim, x_mul and x_diff being passed to the forward pass of the model. Some of 

the notable results are as follows: 

Table 9: Hyperparameter Optimization (after 30 epochs) 

Config Hidden Dims Drop

out 

 

Weight 

Decay 

 

BN 

momentum 
 

Val Loss Test 

Precision 

@ 20 

Test 

Recall @ 

20 

Config #1 [512, 768, 1536] 0.9 0.001 0.3 0.435 0.167 0.139 
Config #2 [1024] 0.3 0.001 0.5 0.333 0.177 0.148 

Config #3 [512, 512] 0.5 0.001 0.3 0.3140 0.184 0.154 
Config #4 [768, 1536] 0.5 0.0001 0.7 0.330 0.178 0.150 
Config #5 [768, 256] 0.5 0.0001 0.7 0.322 0.189 0.161 
Config #6 [1024, 2048] 0.5 0.001 0.9 0.316 0.193 0.166 

Config #7 [512, 768, 1024, 1536] 0.5 0.001 0.7 0.330 0.175 0.145 

 

As we can see, adding more layers leads to worse evaluation metrics, presumably because of high 

overfitting. A moderate dropout probability is also important to keep overfitting in check. Finally, 

weight decay and BN momentum do not seem to have much impact on the final results. 

o Final Model & Comparison With KNN Baseline 

After much experimentation, we find that the best-performing model is the one with the 

hyperparameters mentioned in Section 4.3.2/Hyperparameters but without any weight decay. 

Training the model is only effective up to around 30-40 epochs after which learning stagnates. 

The results can be seen in the graph below. 
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Figure 15: Train & Val Loss vs Epochs for Best Model 

The final evaluation results can be seen in the table below: 

Table 10: Best Model vs KNN Baseline 

Model Train 

Precision 

@ 20 

Train 

Recall  

@ 20 

Val  

Precision 

@ 20 

Val 

Recall  

@ 20 

Test 

Precision   

@ 20 

Test 

Recall 

@ 20 

KNN (baseline) 0.118 0.096 0.117 0.099 0.117 0.095 

KNN + Best 

Reranking Model 

0.1946 0.1643 0.1987 0.1733 0.199 0.171 

 

As we can see there is almost a 70% improvement in the evaluation metrics across all 3 - train, 

val and test datasets, over the baseline KNN model. However, we are still quite far from the 

theoretical maximum Precision @ 20 and Recall @ 20 values we derived in Section 4.3.1.  
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4.4 Web App 

We also implemented a flask web app with the final model, which can be seen below: 

Figure 16: Final Reranked Model implemented into a Flask Web App 
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5 CONCLUSION & FUTURE WORK 

In conclusion, this project investigated the development of a research paper recommendation 

system that leverages citation-informed transformers (SPECTER) to generate dense paper 

embeddings. The baseline recommendations were obtained using KNN, and our new deep 

learning reranking approach improved these recommendations by 70% (measured by Precision 

@ 20 and Recall @ 20), yielding more accurate results compared to the baseline KNN approach 

on historical papers and their citation graphs. The primary contributions of the project include: 

1. Design and implementation of a fast and efficient asynchronous crawler from scratch, 

capable of recursively parsing thousands of specific research papers from Semantic 

Scholar, along with their references, and storing them locally on a MongoDB database. 

2. Attempt to retrain and recreate the original SPECTER results for comparison with the 

pretrained version. However, due to vast compute requirements, it was not possible to 

fully replicate the results, necessitating the use of the pretrained model for further 

experiments. 

3. Design and implementation of a novel approach to rerank KNN recommendations from 

the SPECTER model based on historical citation graphs. This was achieved by creating 

pairs from past citation graphs and allowing the model to determine the new similarity 

score between two SPECTER embeddings of a query and a KNN recommendation guided 

by the labels. Various aspects, such as model architecture, dataset preparation (including 

selecting negative distractors), and hyperparameters, which were extensively tested, 

influenced the final evaluation metrics. We also implemented  a Flask Web App 

using the final reranking mode. 

Despite these advancements, there remains significant room for improvement, as the improved 

results with reranking (Precision @ 20 = 0.19 and Recall @ 20 = 0.17) are still far from the 

theoretical maximum of Precision @ 20 = 0.58 and Recall @ 20 = 0.47. Potential avenues for 

future research include: 

1. Establishing a comprehensive pipeline that incorporates SPECTER embeddings and the 

reranking model, making the entire system trainable. This would enable the capture of 
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embeddings guided by both semantics and citation graphs, though it may be 

computationally expensive. 

2. Developing more intelligent techniques for selecting negative pairs or preparing the 

dataset for reranking. 

3. Exploring the use of Graph Neural Networks or other advanced neural network 

architectures (such as attention mechanisms) for the reranking model instead of 

conventional Feed Forward Neural Networks. 

4. Investigating the integration of additional features, such as authorship, publication venue, 

and temporal information, to further enhance the recommendation system's performance. 

This could provide more context to the recommendation process and help identify highly 

relevant papers that share similar authorship or are published in the same domain-specific 

venues. 

5. Exploring transfer learning and fine-tuning techniques to adapt pre-trained language 

models like BERT, RoBERTa, or GPT for the specific task of research paper 

recommendation. These models have shown strong performance in various natural 

language processing tasks and could potentially improve the accuracy and relevance of 

recommendations when fine-tuned for this application. 
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