
Research Paper Recommendation System

Using Natural Language Processing

Submitted in partial fulfilment of the requirements for the degree of

Bachelor of Technology

in

Computer Science & Engineering

by

Siddharth Sanjay Gandhi

19BCE0005

Under the guidance of

Dr. Akila Victor

School of Computer Science & Engineering

VIT Vellore

Dr. Felix Dietrich,

Department of Informatics

Technical University of Munich

May 2023

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 i

DECLARATION

I hereby declare that the thesis entitled “Research Paper Recommendation System with

Natural Language Processing" submitted by me, for the award of the degree of Bachelor of

Technology in Computer Science & Engineering to VIT is a record of bonafide work carried out

by me under the supervision of Dr. Akila Victor & Dr. Felix Dietrich.

I further declare that the work reported in this thesis has not been submitted and will not be

submitted, either in part or in full, for the award of any other degree or diploma in this institute or

any other institute or university.

Place: Vellore

Date: 17th May 2023

Signed,

Siddharth Gandhi [19BCE0005]

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 ii

CERTIFICATE

This is to certify that the thesis entitled “Research Paper Recommendation System

with Natural Language Processing" submitted by Siddharth Gandhi [19BCE0005],

School of Computer Science & Engineering, VIT, for the award of the degree of

Bachelor of Technology in Computer Science & Engineering, is a record of bonafide work

carried out by him/her under my supervision during the period, 22.12.2022 to 19.05.2023,

as per the VIT code of academic and research ethics.

The contents of this report have not been submitted and will not be submitted either

in part or in full, for the award of any other degree or diploma in this institute or any other

institute or university. The thesis fulfills the requirements and regulations of the University

and in my opinion, meets the necessary standards for submission.

Place: Vellore

Date: 17th May 2023 Signature of the Guide

Internal Examiner External Examiner

Dr. Vairamuthu S

Head of Department

School of Computer Science & Engineering

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 iii

Technical University of Munich
School of Computation, Information and Technology
Department of Informatics
Scientific Computing in Computer Science

 Dr. Felix Dietrich
Boltzmannstr. 3
85748 Garching b. München

 Tel. (089) 289 18 638
Fax (089) 289 18 607
felix.dietrich@tum.de
www.tum.de
www.fd-research.com

1/1

Technische Universität München |

Boltzmannstraße 3 | D-85748 Garching b. München

Siddharth Gandhi
K-602 Indraprastha Towers
Near Drive-In Cinema, Memnagar
Ahmedabad, Gujarat, 380052
India

Phone: +919429210616
Email: ssgandhi602@gmail.com / siddharthsanjay.gandhi2019@vitstudent.ac.in

Garching, May 10, 2023

Confirmation of advisory position for Bachelor project: Siddharth Gandhi

To whom it may concern,

I am writing this letter as a formal confirmation that I advised Siddharth Gandhi (currently final

year CSE student at VIT Vellore, Reg. No: 19BCE0005) on his Bachelor Thesis/Capstone Project,

from January 2023 until May 2023. The title of the project is “Research Paper Reference

Prediction with Natural Language Processing”.

The objective of the project was to develop and evaluate a method to predict a reference list for

a research paper, given its title and abstract. The work includes parsing a large volume of

research papers in the field of machine learning, extracting their abstracts and reference lists,

constructing a deep learning-based natural language encoding method, and construct a map from

the encoded abstract to its (encoded) reference list.

Sincerely,

Dr. Felix Dietrich

Emmy Noether Research Group Leader

TUM Junior Fellow

Scientific Computing in Computer Science

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 iv

ACKNOWLEDGEMENTS

 The project “Research Paper Recommendation System with Natural Language

Processing” was made possible because of valuable inputs from everyone involved, directly or

indirectly. I would like to thank both my advisors, Dr. Akila Victor and Dr. Felix Dietrich, for

their invaluable guidance, support, and encouragement throughout the entire process of

researching and writing this thesis. Their expertise and insightful comments have been

instrumental in shaping my work and helping me to achieve my academic goals.

I would also like to thank Vellore Institute of Technology, for providing us with a

flexible choice in the execution of the project and for providing me with an excellent academic

environment and the necessary resources.

Finally, I am immensely grateful to my parents for their unwavering love,

encouragement, and support throughout my academic journey. Their sacrifices and dedication

have been the driving force behind my success, and I cannot thank them enough for everything

they have done for me.

Place: Vellore

Date: 17th May 2023

Signed,

Siddharth Gandhi [19BCE0005]

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 v

ABSTRACT

The literature review is an essential part of the research process, as it helps researchers understand

the current state of knowledge in their field and identify gaps that their research can address.

However, the current review process with manual paper searching, can be time-consuming and

labour-intensive. This is particularly true for researchers working in fields with large and rapidly-

growing bodies of literature such as Medicine or Generative AI. To tackle this issue, we aim to

build RefPred - a system that uses a citation-informed transformer (SPECTER) with a

recommendation engine to recommend relevant papers to assist researchers in the review process.

Specifically, given a new title/abstract, it should be able to predict the most relevant papers and

sort them according to some metric (such as citation count or similarity score). For doing this, we

create a dataset comprising thousands of research paper metadata, sourced from Semantic Scholar

(S2), by crawling from the S2 API asynchronously and storing locally on a MongoDB database.

We then use the citation-informed transformer model SPECTER to embed each paper, capturing

its citation and semantic meaning simultaneously. Using this, we construct an embedding space

of papers, which is used to build a recommendation engine based on KNN as a baseline to give

relevant recommendations for a new paper. Finally, we propose a novel approach to use a feed-

forward neural network to rerank the initial KNN candidates, resulting in 70% better Precision

and Recall @ 20 scores on the test set over the baseline KNN approach.

Keywords: Recommendation System, Transformers, Reference Prediction, SPECTER,

Knowledge Graph, Semantic Similarity, Research Paper Embeddings

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF FIGURES viii

LIST OF TABLES ix

LIST OF ABBREVIATIONS x

1 INTRODUCTION 1

1.1 Motivation 1

1.2 Aim 1

1.3 Objectives 1

1.4 Background 2

1.4.1 Recommender Systems 2

1.4.2 Data Sources 5

2 LITERATURE REVIEW 7

2.1 Survey of Existing Work 7

2.2 Gaps Identified 13

3 METHODOLOGY 14

3.1 Architecture Diagram 14

3.2 Data Acquisition 15

3.3 SPECTER - Generating Paper Embeddings 17

3.3.1 Data Pre-processing 18

3.3.2 Training Model from Scratch 19

3.4 Recommender Engine 21

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 vii

3.4.1 Evaluation 21

3.4.2 KNN Baseline 22

3.4.3 Neural Network Based Reranking of KNN Candidates 24

3.5 System Analysis & Design 32

3.5.1 Introduction 32

3.5.2 Requirement Analysis 33

4 RESULTS & DISCUSSION 38

4.1 Data Acquisition & Parsing data from S2: 38

4.2 SPECTER Retraining 38

4.3 Neural Network-based Reranking 41

4.3.1 Exploratory Data Analysis 41

4.3.2 Generating Pairs for the Reranking Model 43

4.4 Web App 48

5 CONCLUSION & FUTURE WORK 49

6 REFERENCES 51

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 viii

LIST OF FIGURES

FIGURE 1: SYSTEM ARCHITECTURE ... 14

FIGURE 2: ASYNC CRAWLER RUNNING .. 16

FIGURE 3: PAPERS STORED IN MONGODB DATABASE .. 17

FIGURE 4: SAMPLE OF THE TRIPLETS USED TO GENERATE THE PICKLE FILES (5 = DIRECT

REFERENCE, 1 = REFERENCE OF A REFERENCE, 0 = RANDOM) ... 19

FIGURE 5: RETRAINING THE MODEL ON PAPERSPACE GRADIENT WITH RTX 5000 GPU 20

FIGURE 6: BALL TREE PARTITIONS AND THE CORRESPONDING SEARCH TREE (DOLATSHAH 2015)

... 22

FIGURE 7: CODE FOR GETTING EMBEDDING FOR A NEW PAPER, FINDING KNN FOR A GIVEN

EMBEDDING AND GETTING KNN PAPER IDS FOR A NEW TITLE AND ABSTRACT 24

FIGURE 8: PSEUDO CODE FOR PAPERPAIRDATASET ... 26

FIGURE 9: CODE FOR THE PAPERPAIRMODEL MODEL .. 27

FIGURE 10: CODE FOR THE RECOMMENDATIONS FUNCTION ... 30

FIGURE 11: CODE FOR EVALUATING THE RERANKING MODEL .. 31

FIGURE 12: 2D TSNE VISUALIZATION OF 768-DIMENSIONAL EMBEDDING VECTORS OF BOTH

RETRAINED & HF MODEL (SIZE & COLOUR BASED ON NUMBER OF CITATIONS) 40

FIGURE 13: EDA OF THE PAPER DATA .. 41

FIGURE 14: HISTOGRAMS OF MAX PRECISION @ 20 AND MAX RECALL @ 20 FOR TRAIN, VAL AND

TEST PAPER ID SETS. .. 42

FIGURE 15: TRAIN & VAL LOSS VS EPOCHS FOR BEST MODEL .. 47

FIGURE 16: FINAL RERANKED MODEL IMPLEMENTED INTO A FLASK WEB APP 48

file://///Users/siddharth/My%20Drive/Important%20Documents/Capstone/Review%203/Final%20Review%20Report%20-%2019BCE0005.docx%23_Toc135257715
file://///Users/siddharth/My%20Drive/Important%20Documents/Capstone/Review%203/Final%20Review%20Report%20-%2019BCE0005.docx%23_Toc135257726
file://///Users/siddharth/My%20Drive/Important%20Documents/Capstone/Review%203/Final%20Review%20Report%20-%2019BCE0005.docx%23_Toc135257726
file://///Users/siddharth/My%20Drive/Important%20Documents/Capstone/Review%203/Final%20Review%20Report%20-%2019BCE0005.docx%23_Toc135257727
file://///Users/siddharth/My%20Drive/Important%20Documents/Capstone/Review%203/Final%20Review%20Report%20-%2019BCE0005.docx%23_Toc135257730

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 ix

LIST OF TABLES

TABLE 1: LITERATURE REVIEW MAJOR THEMES ... 12

TABLE 2: TIME TAKEN TO CRAWL & STORE PAPER METADATA LOCALLY (FROM S2 API) 38

TABLE 3: TRAIN, VAL, TEST SPLIT .. 38

TABLE 4: NUMBER OF GENERATED TRIPLETS FOR SPECTER .. 39

TABLE 5: COMPARISON OF RETRAINING SPECTER VS ORIGINAL PAPER 39

TABLE 6: INFORMATION ABOUT PREPARING +VE AND -VE PAIRS.. 43

TABLE 7: MODEL LOSS W.R.T. VARIOUS NEGATIVE DISTRACTOR SELECTION & SKIPPING FUTURE

PAPERS ... 44

TABLE 8: ABLATION STUDY (AFTER 30 EPOCHS) ... 45

TABLE 9: HYPERPARAMETER OPTIMIZATION (AFTER 30 EPOCHS) .. 46

TABLE 10: BEST MODEL VS KNN BASELINE ... 47

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 x

LIST OF ABBREVIATIONS

KNN K-Nearest Neighbours

S2 Semantic Scholar

API Application Programming Interface

Val Validation (as in Val dataset)

TF-IDF Term Frequency - Inverse Document Frequency

t-SNE t-distributed Stochastic Neighbour Embedding

RNN Recurrent Neural Networks

GNN Graph Neural Networks

BERT Bidirectional Encoder Representations from

Transformers

GPT Generative Pre-trained Transformer

Async Asynchronous

AI2 Allen Institute of Artificial Intelligence

L2 Euclidean Distance

CPU Central Processing Unit

GPU Graphical Processing Unit

HF Hugging Face

Hparams Hyperparameters

TUM Technical University of Munich

LSI Latent Semantic Indexing

SVD Singular Value Decomposition

POS Part Of Speech

MAG Microsoft Academic Graph

NSP Next Sentence Prediction

SOTA State Of The Art

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 1

1 INTRODUCTION

1.1 Motivation

The rapid growth of research in fields such as artificial intelligence or medicine has made it

increasingly difficult for researchers to keep up with the vast number of publications. This can

make it challenging for researchers to identify the most relevant literature for their work,

particularly when they are just starting a new project and may not be familiar with the relevant

literature on that particular topic.

Additionally, identifying relevant literature for a research project can be time-consuming and

labour-intensive, requiring researchers to spend significant time searching through databases and

manually reviewing potentially relevant papers. This can be a significant barrier to productivity

and may hinder the ability of researchers to make significant contributions to their field.

1.2 Aim

To address these problems, we propose to develop RefPred - a system to automate the literature

review process. It should take as input a topic or abstract for a research project and use this

information to predict which references are most relevant to the project. By automating this

process, we aim to significantly streamline the literature review process and enable researchers

to more efficiently identify relevant references, even if they are not familiar with the entire

literature. This should allow researchers to focus on more high-value tasks, such as properly

analysing this literature and working on their methodology.

1.3 Objectives

The specific objectives of this thesis are as follows:

• To create a dense dataset of research paper metadata by asynchronously crawling

Semantic Scholar and storing the data in a MongoDB database.

• To generate SPECTER embeddings for the titles and abstracts of research papers to better

capture their semantic relationships.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 2

• To develop two recommendation approaches: basic KNN and a reranking model that

refines the KNN recommendations.

• To evaluate the performance of the proposed system using precision and recall @ 20 as

the performance metrics.

1.4 Background

The sheer volume of published papers necessitates the use of efficient recommendation systems

to assist researchers in identifying relevant articles and prioritizing their reading lists. Existing

recommendation systems can be broadly categorized into the following types:

1.4.1 Recommender Systems

o Content-based Filtering

Content-based filtering methods analyze the textual content of research papers, such as titles,

abstracts, or full texts, to identify similarities and generate recommendations. These methods rely

on extracting features from the documents and calculating the similarity between them. Here, we

discuss some of the common techniques employed in content-based filtering:

a) Term Frequency-Inverse Document Frequency (TF-IDF): TF-IDF is a widely used

technique in information retrieval and text mining. It calculates the importance of a term

within a document and across a corpus. The term frequency (TF) measures the frequency

of a term in a document, while the inverse document frequency (IDF) measures the

importance of a term across the entire corpus. The product of TF and IDF results in a

weight that reflects the significance of a term within a document and across the corpus.

By representing documents as vectors of TF-IDF weights, the similarity between

documents can be computed using distance measures such as cosine similarity.

b) Latent Semantic Indexing (LSI): LSI, also known as Latent Semantic Analysis (LSA),

is another widely used technique in content-based filtering. It addresses the limitation of

TF-IDF by capturing the latent semantic relationships between terms and documents. LSI

applies singular value decomposition (SVD) on the term-document matrix to reduce its

dimensionality, resulting in a lower-dimensional representation that captures the

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 3

underlying semantic structure. The similarity between documents can then be calculated

in this lower-dimensional space.

Despite the usefulness of these methods in providing relevant recommendations based on textual

similarities, they often fail to capture the deeper semantic relationships between papers. This

limitation can be addressed by employing more advanced methods, such as deep learning

techniques, to better capture the semantic content of research papers.

o Collaborative Filtering

Collaborative filtering methods generate recommendations based on the preferences or behaviour

of users who have similar interests. These approaches can be user-based, item-based, or a hybrid

of both. Collaborative filtering techniques can be classified as memory-based or model-based:

a) Memory-based Collaborative Filtering: This approach calculates the similarity

between users or items using historical data, such as user-item rating matrices. In user-

based collaborative filtering, recommendations are generated based on the preferences of

similar users. In item-based collaborative filtering, recommendations are made by

identifying items similar to those that the target user has previously interacted with or

rated. Common similarity measures used in memory-based collaborative filtering include

the Pearson correlation coefficient, cosine similarity, and Jaccard similarity.

b) Model-based Collaborative Filtering: This approach employs machine learning

algorithms to learn patterns from historical data and generate recommendations.

Techniques such as matrix factorization, clustering, and Bayesian networks have been

applied in model-based collaborative filtering. One popular matrix factorization technique

is singular value decomposition (SVD), which decomposes the user-item rating matrix

into lower-dimensional user and item latent factor matrices. These latent factors can then

be used to predict user preferences and generate recommendations.

While collaborative filtering can provide personalized recommendations, it suffers from the cold-

start problem, where the lack of sufficient user interaction data leads to poor recommendations

for new users or items. Additionally, collaborative filtering methods may not fully capture the

content-based similarities between items, which can be addressed by incorporating content-based

techniques or deep learning methods.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 4

o Graph-based Methods

Graph-based methods model the relationships between papers, authors, and other entities in a

network structure. Techniques such as citation analysis, co-authorship networks, and graph neural

networks have been applied to generate recommendations. Some common graph-based methods

include:

a) Citation Analysis: This approach models the relationships between papers based on their

citation patterns. By analysing citation networks, researchers can identify highly cited

papers, influential authors, and emerging research trends. Citation-based

recommendations can be generated by identifying papers that are highly cited by or

closely related to the target paper. However, citation analysis may not fully capture the

semantic content of papers, as it relies solely on citation patterns.

b) Co-authorship Networks: Co-authorship networks model the relationships between

authors based on their collaboration patterns. By analysing these networks, researchers

can identify influential authors, potential collaborators, and research communities.

Recommendations can be generated by identifying papers authored by collaborators or

members of the same research community as the target user. However, co-authorship

networks may not capture the content-based similarities between papers or the semantic

relationships between topics.

c) Graph Neural Networks (GNNs): GNNs are a class of deep learning methods that learn

to capture the complex patterns and relationships in graph-structured data. By modelling

the relationships between papers, authors, and other entities in a graph structure, GNNs

can learn powerful representations that capture both structural and content-based

information. GNNs have been applied to various tasks in the context of research paper

recommendations, such as link prediction, node classification, and clustering. However,

GNNs can be computationally expensive, especially for large-scale datasets, and may

require significant computational resources to train and deploy.

Despite the various approaches taken in existing research paper recommendation systems, there

is still room for improvement, particularly in capturing the semantic relationships between papers

and refining recommendations. Our proposed system addresses these limitations by using

SPECTER embeddings to represent the semantic content of research papers more effectively and

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 5

introducing a reranking model to enhance the initial KNN recommendations. This combination

of techniques promises to provide better quality recommendations, enabling researchers to

identify relevant literature more efficiently.

1.4.2 Data Sources

In addition to the development of effective recommender systems, another crucial aspect of

research paper recommendation is the collection of comprehensive and high-quality datasets.

Several resources and datasets are available for collecting research paper metadata, including

arXiv, Semantic Scholar, and other academic databases. In this section, we provide an overview

of some popular resources for collecting research paper data:

o arXiv

arXiv1 is a preprint repository maintained by Cornell University, which provides open access to

over a million research papers in various disciplines, including physics, mathematics, computer

science, and quantitative biology. The arXiv dataset on Kaggle2 contains periodically updated

metadata for more than 1.7 million research papers, including titles, abstracts, authors, categories,

and citation information. This rich dataset can be used for various tasks in recommender systems,

such as content-based filtering, citation analysis, and clustering.

o Semantic Scholar (S2)

Semantic Scholar 3 is a free, AI-powered research tool developed by the Allen Institute for AI. It

indexes millions of research papers across various disciplines and provides features such as

search, citation analysis, and author profiles. The Semantic Scholar Open Research Corpus 4

contains metadata for over 180 million research papers, including titles, abstracts, authors,

venues, and citation information. This large-scale dataset can be used for various tasks in

recommender systems, such as content-based filtering, collaborative filtering, and graph-based

methods.

1 https://arxiv.org/

2 https://www.kaggle.com/Cornell-University/arxiv

3 https://www.semanticscholar.org/

4 https://allenai.org/data/s2orc

https://www.kaggle.com/Cornell-University/arxiv
https://www.semanticscholar.org/
https://allenai.org/data/s2orc

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 6

o Microsoft Academic Graph

Microsoft Academic Graph (MAG) 5 is a large-scale, heterogeneous graph that contains

information about academic papers, authors, institutions, journals, conferences, and fields of

study. MAG includes metadata for over 200 million research papers, as well as citation and co-

authorship information. This comprehensive dataset can be used for various tasks in

recommender systems, such as content-based or collaborative filtering, and graph-based methods.

o PubMed

PubMed6 is a free search engine maintained by the US National Library of Medicine that provides

access to more than 30 million citations and abstracts from life science journals and online books.

PubMed offers a comprehensive and up-to-date resource for collecting research paper metadata

in the biomedical domain. The dataset can be used for various tasks in recommender systems,

such as content-based filtering, collaborative filtering, and graph-based methods.

o Web of Science

Web of Science7 is a subscription-based research database that provides access to more than 1.7

billion cited references and covers over 33,000 journals across various disciplines. Web of

Science offers features such as search, citation analysis, and journal impact factors. This dataset

can be used for various tasks in recommender systems, such as content-based filtering,

collaborative filtering, and graph-based methods.

These datasets offer a wealth of research paper metadata that can be used to develop and evaluate

recommender systems. Data collection methods, such as web scraping and APIs, can be

employed to gather and store the required metadata from these resources. The choice of resource

and data collection method depends on factors such as the domain, scale, and specific

requirements of the recommender system being developed.

5 https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/

6 https://pubmed.ncbi.nlm.nih.gov/

7 https://clarivate.com/webofsciencegroup/solutions/web-of-science/

https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
https://pubmed.ncbi.nlm.nih.gov/
https://clarivate.com/webofsciencegroup/solutions/web-of-science/

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 7

2 LITERATURE REVIEW

2.1 Survey of Existing Work

(Nigram 2021), a prior work at TUM, presented the groundwork for the reference prediction task. The

goal of the project was to make a word embedding space for thousands of open-access PDFs of scientific

papers. It involved finding the TF-IDF feature vector for various paper texts, clustering them together,

and visualizing the clusters with the t-SNE dimensionality reduction algorithm. Finally, new words can

be embedded into the embedding space by using the nearest clustering algorithm (like K-Means).

However, since TF-IDF only relies on the number of occurrences of various keywords in a text, it fails to

capture the semantics and meaning of a given paper. Thus, better techniques like BERT for document

embedding can be applied for improving document representation.

(Vaswani 2017), a seminal paper, presented a new model for machine translation called the

Transformer. This model uses self-attention mechanisms instead of the traditional recurrence or

convolutions, to weigh the importance of different parts of the input when making predictions. The model

architecture consists of an encoder and a decoder. The encoder is made up of multiple layers of self-

attention and feed-forward neural networks. The decoder is similar to the encoder but also includes an

attention mechanism that allows it to look at the encoder’s output. It is able to process input in parallel,

rather than sequentially as in RNNs, which greatly improves its efficiency and allows for faster training

times. The attention function can be described as mapping a query and a set of key-value pairs to an output.

The final score involves scaling the dot product of the attention mechanism by the square root of the

dimension of the input, which helps to prevent the gradients from becoming too large during training. It

also uses a technique called multi-head attention, which allows it to attend to different parts of the input

simultaneously. This architecture achieves state-of-the-art performance on multiple machine translation

benchmarks (WMT 2014 English-to-German and WMT 2014 English-to-French translation tasks) after

training for as little as twelve hours on eight P100 GPUs. The transformer has since been used in many

other natural language processing tasks.

(Devlin 2018) introduced BERT, which is designed to pre-train deep bidirectional representations from

the unlabelled text by joint conditioning on both left and right context in all layers. BERT consisted of

stacked transformer encoders and the paper proposes different layer numbers for different variations. It

uses WordPiece embeddings with a 30,000 token vocabulary and is trained on 2 unsupervised tasks -

Masked Language Modelling (predict the missing word(s) in a sentence, given the context of the

remaining words) and Next Sentence Prediction (NSP - given a pair of sentences, predict whether the

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 8

second sentence is the next sentence in the text or not). The authors showed that BERT significantly

outperforms previous state-of-the-art models on a wide range of natural language understanding

benchmarks, including the GLUE and SQuAD datasets, and also used for other tasks such as question

answering, textual entailment and so on. Using unmasked inputs to make the model bi-directional (instead

of the autoregressive models of GPT) made BERT very effective for capturing context for sentence-level

tasks. The authors also show that BERT can be fine-tuned for specific tasks using a smaller dataset and

that fine-tuning the model on a task-specific dataset improves its performance even further.

(Beltagy 2019) - Previous Large Language Models (LLMs) like GPT or BERT were trained

unsupervised on a large corpus of crowd-sourced data (such as Wikipedia), which significantly

improved performance for many NLP tasks. However, a major gap was the scientific literature for which

annotated data was difficult and expensive to collect. This paper aims at solving that exact problem, by

training BERT on a large corpus of scientific text. They use SciVocab vocabulary, a derivative of

WordPiece vocabulary specifically for scientific corpus and a random corpus of 1.14 million full-text

papers from Semantic Scholar. They first fine-tune the BERT model using the standard fine-tuning

procedure, where the model is trained on a task-specific dataset using the pre-trained weights as

initialization. After fine-tuning, they evaluate the performance of the SciBERT model on several scientific

text understanding tasks: named entity recognition (NER - identify and classify named entities such as

genes and chemicals), part-of-speech tagging (POS), and citation intent classification (classify the intent

of a citation in a scientific paper; e.g. whether it is used to provide background information or to support

a claim made in the paper). The results of the evaluation show that the SciBERT model outperforms the

BERT model on all of the scientific text understanding tasks and also on several other tasks such as text

classification, question answering, and semantic similarity. The authors also did an ablation study showing

that fine-tuning on scientific text allows it to perform better on scientific text understanding tasks than

fine-tuning it on general text.

(Jeong 2020) proposes a citation recommendation system that utilizes BERT and Graph Convolutional

Network (GCN) to improve the performance of citation recommendation. The model takes into account

the context of the input paper when making recommendations for additional citations. The datasets used

are a combination of ACL’s Anthropology Network (AAN) and FullTextPeerRead (derived from Kaggle),

both of which have well-organized bibliographic information. First, the authors pre-process the input data

by constructing a citation graph from the input dataset. The graph is constructed by connecting papers that

cite each other. Then, they use BERT to encode the entire input paper and the papers in the citation graph,

which captures the semantic information of the papers. Next, the authors use GCN to learn the

representations of the papers in the citation graph, which captures the structural information of the papers.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 9

The GCN is trained to propagate the representations of the papers along the edges of the citation graph,

which allows the model to take into account the context of the input paper when making recommendations.

The authors then combine the representations learned by BERT and GCN to make citation

recommendations. They evaluate the model on a dataset of academic papers and their associated citations

using rank-aware metrics like MRR (Mean Reciprocal Rank), MAP (Mean Average Precision) and Recall

@ K. The model outperforms existing citation recommendation models in terms of accuracy and diversity

of recommendations.

(Bhagavatula 2018) proposes a global content-based citation recommendation system that takes an

entire research paper as input and gives recommendations (instead of local recommendations which only

take a few sentences to recommend). Since the number of related works to an entire paper can be large,

the authors propose a 2-step method: first is a fast recall-oriented candidate selection phase and second is

a feature-rich precision-oriented ranking phase. Broadly, the first stage filters out all unrelated articles

with low recall scores and the second stage find the nearest neighbours in the document embedding

space to generate rankings for a given query paper. They evaluated their models with MRR and

F1@20 on DBLP, PubMed and OpenCorpus datasets where they achieved SOTA results in the

first two, even without the use of metadata (like authors, venue, or journal).

(Cohan 2020) introduces SPECTER, a system to generate document-level embedding of scientific

documents based on pre-training a Transformer on a powerful signal of document-level relatedness: the

citation graph. The paper argues that previous embedding models for scientific corpora (like SciBERT)

are trained for intra-document purposes (like understanding the contents of individual papers) and not on

inter-document metrics (like citation dependencies). It uses the title and abstract (which encapsulate the

semantic meaning of a paper) of around 178K papers from the Semantic Scholar Corpus and trains it based

on a custom loss function of citation-based pretraining objective. They also introduce the SciDocs

evaluation framework for various tasks related to scientific literature such as paper topic classification,

citation prediction, and reference recommendation. SPECTER was substantially better than other models

like SciBERT, ELMo, and SentBERT when evaluated on SciDocs.

(Lo 2019) introduces S2ORC, which is a corpus of 81.1M English scientific papers from a range of

academic disciplines from medicine to philosophy. It consists of rich metadata (title, abstract, authors,

venue, journal) for all papers along with resolved bibliographic references. It also contains 8.1M full-text

(parsed with ScienceParse and GROBID) open-access papers for research involving the entire contents of

papers. It has significantly more and better-organized data than the previous datasets of PubMed and AAN.

To evaluate the metadata quality, the authors pretrained a BERT model on S2ORC and compared it against

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 10

other SOTA datasets in various domains for a variety of different tasks (like dependency parsing and text

classification). The S2ORC-SciBERT model was comparable to all of the datasets proving a rich and

accurate variety of metadata for a multitude of domains. The pipeline used to construct the dataset CORD-

19 (literature specific to COVID-19) and the Semantic Scholar Academic Graph API.

(Singh 2022) introduces SciRepEval, the first comprehensive benchmark for training and evaluating

scientific document representations. It includes 25 challenging and realistic tasks, 11 of which are new,

across four formats: classification, regression, ranking and search. They investigate whether existing

document representation methods can generalize to a highly diverse set of tasks (SOTA models struggle

to generalize), whether training on multiple tasks can improve document representation (surprisingly it

doesn’t), and if task-format-specific representations can improve generalization (yes!). They conclude that

learning separate document representations (Burges 2005) for each of the four tasks is substantially better

than trying to learn a single representation for all tasks (generalization).

(Burges 2005) Recognizing the shortcomings of traditional approaches to document ranking (modelling

the score of each document independently) the authors proposed RankNet, a model that calculates the

target probabilities between any two documents for a given query, serving as a single training record. The

model was architected as a neural network function, where the output for each document, defined as 𝒐𝒊 =

 𝒇(𝒙𝒊) and 𝒐𝒋 = 𝒇(𝒙𝒋), was passed through a logistic function to transform it to a probability range of

[0,1]. A unique aspect of RankNet is the way it updates its weights. Unlike typical neural networks,

RankNet processes each pair of documents as one training record, passing both through the same weights

of the network to calculate 𝒐𝒊 & 𝒐𝒋, which are then used to compute the gradient and update the weights.

This approach is a departure from the typical feedforward neural network process, and it uses a cross-

entropy cost function to calculate the cost 𝑪𝒊𝒋 for a pair of documents 𝒅𝒊 and 𝒅𝒋. The paper provided the

mathematical foundation for this novel approach to document ranking, which became a key stepping stone

in the development of more advanced ranking algorithms.

Note: The next 3 papers were suggested by this very project in the end after training. We simply fed in

our title and abstract and reviewed the results to find some more relevant papers.

(Ebesu 2017) introduces "Neural Citation Network (NCN)", a novel citation recommendation system that

uses a flexible encoder-decoder architecture. The encoder in the NCN leverages a max time delay neural

network (TDNN) to robustly represent citation context, while the decoder, a recurrent neural network

(RNN), determines the best paper to recommend based on this representation and the paper's title. The

NCN also includes an attention mechanism and author networks to further refine its recommendations.

The system was evaluated on the large-scale CiteSeer dataset, where it demonstrated significant

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 11

improvements over existing methods. The experiments were conducted on the RefSeer dataset. The paper

also notes that NCN outperforms all baselines on every metric by 13-16%. Specifically, it performed better

than the Citation Translation Model (CTM), TDNN-to-RNN, and RNN-to-RNN models.

(Narechania 2021) presents VITALITY, a system aimed at promoting the serendipitous discovery

of relevant academic literature using transformer language models and visual analytics. The

system enables users to find semantically similar papers in a document-level embedding space

given a list of input papers or a working abstract. VITALITY visualizes this embedding space as

an interactive 2-D scatterplot using dimension reduction techniques. Additionally, it summarizes

metadata such as keywords and co-authors and allows users to save and export papers for use in

a literature review. The authors contribute data from 38 popular data visualization publication

venues, along with open-source scrapers for the research community to expand the list of

supported venues. VITALITY is evaluated through qualitative findings, which suggest that it can

be a promising complementary technique for conducting academic literature reviews. The initial

prototype focuses on the data visualization field, but the open-source system and scraper

framework enable expansion to other venues and academic communities. VITALITY has the

potential to enhance existing literature review practices by addressing the challenge of identifying

relevant literature that may use different terminology, thus bridging the gap in academic literature

searches and aiding in the exploration of new topics.

(Portenoy 2022) introduces Bridger, a system designed to facilitate the discovery of novel and

valuable scholars and their work, aiming to counteract the information "filter bubbles" that arise

from isolated silos of scientific research and information overload. Bridger constructs a faceted

representation of authors based on information from their papers and inferred author personas,

which enables the identification of commonalities and contrasts between scientists, thus

balancing relevance and novelty. The system includes "slices" of a user's papers, allowing them

to find authors who match the user only on a subset of their papers and on certain facets within

those papers. In studies with computer science researchers, the facet-based approach helps users

discover authors whose work is considered more interesting and novel compared to a relevance-

focused baseline representing state-of-the-art retrieval of scientific papers. The authors

demonstrate that Bridger connects authors from more distant communities in terms of publication

venues, citation links, and co-authorship social ties.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 12

Table 1: Literature Review Major Themes

Paper Major Theme

(Nigram 2021) This paper presents the groundwork for the reference prediction task by creating

a word embedding space for scientific papers using TF-IDF and t-SNE. It

discusses the limitations of TF-IDF and the potential for BERT to improve

document representation.

(Vaswani 2017) Introduces the Transformer model for machine translation, which uses self-

attention mechanisms and parallel processing. It achieves state-of-the-art

performance on multiple translation benchmarks and has since been used in

many other NLP tasks.

(Devlin 2018) Presents BERT, a model that pre-trains deep bidirectional representations from

unlabelled text. It outperforms previous models on various NLP benchmarks and

can be fine-tuned for specific tasks using smaller datasets.

(Beltagy 2019) Proposes SciBERT, a BERT model trained on a large corpus of scientific text. It

outperforms the original BERT model on scientific text understanding tasks and

several other NLP tasks.

(Jeong 2020) Proposes a citation recommendation system using BERT and Graph

Convolutional Network (GCN) that captures both semantic and structural

information of academic papers. The model outperforms existing citation

recommendation models in terms of accuracy and diversity of recommendations.

(Bhagavatula 2018) Introduces a global content-based citation recommendation system with a two-

step method involving candidate selection and precision-oriented ranking. The

model is evaluated on DBLP, PubMed, and OpenCorpus datasets and achieves

state-of-the-art results in the first two datasets, even without the use of metadata.

(Cohan 2020) Presents SPECTER, a system generating document-level embeddings of

scientific documents by pre-training a Transformer on citation graphs. The paper

introduces the SciDocs evaluation framework for tasks related to scientific

literature, with SPECTER outperforming other models like SciBERT, ELMo,

and SentBERT when evaluated on SciDocs.

(Lo 2019) Introduces the S2ORC corpus, containing 81.1M English scientific papers with

rich metadata. It provides more and better-organized data than previous datasets

and is used to pretrain a BERT model for evaluation.

(Singh 2022) Presents SciRepEval, a comprehensive benchmark for training and evaluating

scientific document representations. It investigates the generalization of existing

methods and the benefits of task-format-specific representations.

(Burges 2005) Introduces RankNet, a novel approach to document ranking using a neural

network function. It calculates target probabilities between documents for a

given query and serves as a stepping stone in the development of advanced

ranking algorithms.

(Ebesu 2017) Introduces Neural Citation Network (NCN), a citation recommendation system

using an encoder-decoder architecture with attention mechanisms & author

networks. Results in improvements over existing methods on CiteSeer dataset.

(Narechania 2021) Presents VITALITY, a system for serendipitous discovery of relevant academic

literature using transformer models & visual analytics. Enables users to find

semantically similar papers & visualize the document-level embedding space.

(Portenoy 2022) Introduces Bridger, a system for discovering novel scholars and their work by

constructing a faceted representation of authors. It helps users identify

commonalities and contrasts between scientists, balancing relevance and

novelty.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 13

2.2 Gaps Identified

1. Limitations of TF-IDF: The prior work by (Nigram 2021) relied on TF-IDF for creating

word embeddings, which fails to capture the semantics and meaning of a given paper. Our

work utilizes SPECTER, a citation-informed transformer model, to create more effective

embeddings.

2. Improved document representation: BERT and SciBERT are powerful models for

document representation, but they have limitations when it comes to inter-document

metrics like citation dependencies. Our work with SPECTER addresses this gap by

focusing on both citation and semantic meanings of papers (also tries to address the

generalization issue by (Singh 2022)).

3. Efficient recommendation engine: Many existing citation recommendation systems

struggle with recall and precision scores. By constructing an embedding space of papers

and utilizing KNN as a baseline, our work improves the performance of the

recommendation engine.

4. Neural network reranking: To further enhance the performance of the recommendation

system, we also propose a novel approach of using a neural network to rerank the initial

KNN candidates, resulting in a significant improvement in Precision and Recall @ 20

scores compared to the baseline KNN approach with SPECTER embeddings.

5. Balancing relevance and novelty: Addressing the balance between relevance and

novelty, as introduced by (Portenoy 2022), our work proposes a novel approach of using

a neural network to rerank the initial KNN candidates. This approach is expected to

improve the precision and recall scores on the test set, ensuring the recommendation

system provides a mix of relevant and novel research papers.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 14

3 METHODOLOGY

3.1 Architecture

Diagram

Figure 1: System Architecture

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 15

Overview of the system:

As mentioned in Figure 1, the system broadly consists of 3 stages:

a) Acquiring the data for thousands of research papers and storing them in a database.

b) Embedding each paper’s data into an embedding in a way which captures both its

semantic meaning and citation graphs to create an embedding space.

c) Finally, the recommendation engine which will use the embedding space to find relevant

recommendations for a new title/abstract.

All three sections are elaborated below.

3.2 Data Acquisition

The first step in building the automated research paper recommendation system is to acquire a

dataset of research papers that will be used to train the embedding model and recommendation

engine. The dataset should contain metadata about the papers such as title, abstract, year of

publication, citation count, and references. There are datasets available for this (such as Semantic

Scholar’s S2ORC dataset), however, they are too large (~500 GBs) which would require a lot of

compute, and sampling randomly from it might not ensure a dense enough citation graph to learn

from.

Hence, we have decided individually form a dataset using the Semantic Scholar API by starting

with some initial seed papers, some of which are highly referenced papers (like the influential

‘Attention is all you need’ paper). We then built an async crawler on the API to speed up the data

acquisition process as it allows for non-blocking I/O, which means that the system can continue

processing requests while waiting for responses from the server. Async is preferred because

multiprocessing will have too much overhead in creating and switching between processes while

multithreading is not efficient because of Python’s Global Interpreter Lock (GIL), meaning only

one thread can effectively operate at a given time.

The data acquisition process works as follows:

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 16

a) Start with initial seed papers and add them to a queue.

b) Deque papers one by one and for each paper fetch the references using the S2 API.

c) Construct the JSON object for the current paper with metadata and references and store

the JSON object to a MongoDB database.

d) Add the references to the queue.

e) Repeat b) to d) until N papers are stored asynchronously with 100 workers.

We also rate-limited the system to 100 requests/seconds to ensure that the system can continue

to crawl papers over a longer period without running into problems. Finally, we also implemented

a retry handling mechanism (up to 3 times per paper) to handle cases when the response is

corrupted during transmission.

Figure 2: Async Crawler Running

We have successfully stored the data for 10,000 and 50,000 papers in the database which took

around 12 minutes and 1 hour simultaneously. Going forward, we will be using the 10,000 papers

for our experiments as it is faster to iterate upon.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 17

This is how the database looked after crawling and storing 10K papers:

Figure 3: Papers stored in MongoDB database

3.3 SPECTER - Generating Paper Embeddings

Once the metadata is collected and pre-processed, the next step is to create a meaningful

representation of each paper's content. This is achieved by embedding the title and abstract of

each paper using the SPECTER model from AI2. SPECTER is a citation-informed transformer

model that leverages both semantic and citation information to create rich, contextual

embeddings.

The SPECTER model is initialized from SciBERT, a pre-trained language model specifically

designed for scientific text. To fine-tune the embeddings, a custom loss function is developed

based on triplets of papers which is as follows:

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 18

Each triplet consists of a query paper (PQ), a positive paper (P+), and a negative paper (P-). ‘m'

is the loss margin hyperparameter (we will follow the original paper and choose m = 1). For the

distance function ‘d’, we will use L2 norm distance. By training the model on these triplets,

SPECTER will create embeddings that capture both the semantic content and citation

relationships between papers. Each embedding vector has 768 dimensions, which allows for a

more accurate representation of each paper in the embedding space.

3.3.1 Data Pre-processing

Since the SPECTER model (used to generate document embeddings) requires triplets of papers

in order to encode the citation information into the semantic encodings, we have to first generate

these triplets. In each triplet, there is one query paper, a positive & negative paper. A positive

paper is a direct reference of the query paper (strong link) and a negative paper can either be a

random paper (no link) or a reference of a reference (weak link). We can assign scores to each of

these 3 states and generate Q number of triplets per query paper. In our case, there are around

8000 training papers with 1000 for validation and testing (with the standard 80-10-10 train-val-

test split). With Q = 5 for our case, we are left with around 29,000 training triplets and around

3600 validation and testing triplets, after removing papers for whom metadata was not parsed in

the initial 10K dataset.

So for each triplet, we get the necessary fields (concatenated title + author) for all 3 papers and

make it into an AllenNLP Instance. These instances are then stored in a pickle file to save the

pre-processed results.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 19

Figure 4: Sample of the triplets used to generate the pickle files (5 = direct reference, 1 = reference of a

reference, 0 = random)

3.3.2 Training Model from Scratch

1. Define classes to read dataset from Pickled file (in our case this was class

DataReaderFromPickled and IterableDataSetMultiWorkerTestStep).

2. Define a custom loss function class to implement the triplet loss function above.

3. Define the Specter model itself by inheriting from pl.LightningModule which helps to

streamline the model training process by taking care of boilerplate code.

4. Implement methods like _get_loader() to get train-val-test dataloaders.

5. Configure the optimizers and LR-schedulers.

6. Define the initial model and tokenizer from the pretrained SciBERT model.

7. Implement the training (and val) steps by passing the training data triplets to the model

by implementing the training_step method and calculating the triplet loss.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 20

8. After implementing some other important functions (validation_step, test_step),

pytorch lightning will handle the rest of the training process (like backward pass).

9. For testing, instead of calculating the loss on the embeddings e, just return e.

The original SPECTER model was trained with 630K triplets (compared to our 28K) and was

trained for 2 epochs with a batch size of 4 with each epoch lasting around 1.5 days. We tried to

retrain the model from scratch with 10K papers and it took around 2 hours on an NVIDIA RTX

5000 (16 GB GPU on Paperspace Gradient Pro) for a single epoch with batch size 4. There is

also a pretrained SPECTER model available on HuggingFace which is much better because of

being trained for longer with much more compute power. Hence, going forward, we plan to use

the embeddings from the pre-trained model for the recommendation engine.

Figure 5: Retraining the model on Paperspace Gradient with RTX 5000 GPU

With the trained model we can get embeddings for the entire dataset where each paper is

represented as a 768-dimensional vector which should capture its semantic and citation contents.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 21

3.4 Recommender Engine

The final step in building Refpred is to create a recommendation engine that can take in a new

paper's abstract or title and return the most relevant recommendations. The goal of this engine is

simple – given a new title and abstract (or an existing paper), predict what papers are most likely

(or were) its references.

3.4.1 Evaluation

We start with what evaluation metrics we will use to judge how good the recommendations from

the recommendation engine are. We will use Precision @ 20 and Recall @ 20 as our primary

evaluation metrics. These metrics are chosen over other commonly used metrics like Mean

Average Precision (MAP) or nDCG (normalized Discounted Cumulative Gain) for the following

reasons:

1. No inherent order: In the recommendation system for academic papers, there is no

inherent order in the list of references. As long as the most relevant references are at the

top, the order of the rest of the references is not crucial. This is unlike some other

recommendation systems where the order of the items is significant, such as search

engines or product recommendations.

2. Focus on relevance: Precision @ 20 and Recall @ 20 focus on identifying the most

relevant papers within the top 20 recommendations. Precision @ 20 measures the

proportion of the top 20 recommendations that are relevant, while Recall @ 20 measures

the proportion of relevant papers that are included in the top 20 recommendations. These

metrics highlight the effectiveness of the recommendation system in surfacing relevant

papers to the user.

3. Simplicity: Precision and Recall are easy to understand and interpret. They provide a

clear, intuitive way of assessing the quality of the recommendations. This simplicity can

be beneficial when communicating the results to a broader audience, as well as for the

developers themselves when interpreting the performance of the recommendation system.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 22

3.4.2 KNN Baseline

The baseline approach is to embed the new title+abstract using SPECTER and use K-Nearest

Neighbours (KNN) algorithm to find the most similar papers in the embedding space. By

calculating the L2 distance between the new paper's embedding and the embeddings of existing

papers, the KNN algorithm can return a set of research papers that are semantically and

contextually related. However, since the embedding space is high dimensional (768), manually

finding KNN neighbours becomes very inefficient. To solve this, we use Ball Trees.

o Ball Trees

Figure 6: Ball Tree Partitions and the corresponding search tree (Dolatshah 2015)

Ball Trees are a tree-based data structure designed for efficiently solving nearest neighbour search

problems in high-dimensional spaces. They recursively partition the input data into non-

overlapping hyperspherical regions called "balls," represented by a centroid and radius. The tree

is built hierarchically, with each internal node partitioning its parent node's data points into two

disjoint subsets.

The construction of a Ball Tree involves selecting a pivot and partition radius to divide the data

points into subsets. This process is recursively applied until a stopping criterion is met.

Searching for nearest neighbours in a Ball Tree involves traversing the tree from root to leaf

nodes while pruning branches that do not contribute to the final result. This pruning strategy

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 23

allows Ball Trees to perform nearest neighbour queries much faster than a brute-force approach,

especially in high-dimensional spaces.

In our k-nearest neighbours (KNN) baseline, we use a Ball Tree data structure to efficiently store

and search for nearest neighbours in the high-dimensional SPECTER embedding space,

providing an efficient and scalable solution for the recommendation task.

o The Problem of Limited Search Space

During the development of our KNN-based recommendation system, we encountered a limitation

related to the size of our initial dataset of 10K research papers. The restricted dataset size limited

the maximum precision and recall scores achievable by our model, as many of the references for

the papers were simply not present in the dataset. This issue had the potential to negatively impact

the effectiveness of our recommendation system.

To address this problem, we expanded the dataset used for the KNN search by including an

additional 100K references from the initial 10K papers. This allowed us to increase the coverage

of potential recommendations and improve the chances of finding relevant references for the

papers in our dataset. It is important to note that we did not use the entire 100K references for

training the neural network reranker, as this would have led to a similar, but larger-scale issue.

By incorporating the additional 100K references into the KNN search (following Section 3.3.1),

we were able to mitigate the limitations imposed by the initial dataset size, thus improving the

performance of our recommendation system. However, we maintained the training scope of the

neural network reranker to the initial 10K papers, ensuring that the model was not affected by the

same limitations when evaluating its effectiveness.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 24

o Getting KNN Recommendations

In the following code, we describe the procedure to get KNN paper IDs for a given title and

abstract. We use a ball tree as our KNN tree formed by the 100,000 reference embeddings parsed

in Section 3.2. We simply embed the new paper and find its nearest neighbours by querying the

KNN tree.

Figure 7: Code for getting embedding for a new paper, finding KNN for a given embedding and getting

KNN paper IDs for a new title and abstract

While the KNN algorithm is a good starting point for the recommendation engine, other

approaches can be explored to optimize the predictions. Currently, we look at a neural network

approach to learn the features that are most important for making recommendations.

3.4.3 Neural Network Based Reranking of KNN Candidates

As we will see in Section 0, while the recommendation for KNNs seems good, when tested with

our evaluation metrics described in Section 3.4.1, it does not score well. Hence to improve the

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 25

precision and recall scores, we train a reranking model which takes KNN candidates as inputs

and reranks them based on past reference patterns.

The main idea is to prepare pairs for paper_ids from existing data (i.e. papers in the dataset and

their references) and assigns a label of 1 for papers that cite each other and 0 for those that don’t.

The model should then learn from these prepared pairs so that when we find the KNN candidates

for a new embedding and pass them to the model, we should get better recommendations, which

are based on past patterns of citations.

o Dataset

This first and most important step of the reranking approach is the data we feed into the reranker,

as it determines the preferences the model learns with the labels. First, we define a class called

PaperPairDataset, which is a custom dataset class that inherits from PyTorch's Dataset. It's used

to create pairs of academic papers for a reranking model. These pairs will be passed to the model

described in the next section to learn from the past patterns of papers referencing each other.

The main steps it follows are:

1. Computes K-nearest neighbours (KNN) for each paper in the dataset, using the KNN tree.

2. Retrieves actual references for each paper & stores the maximum references present

(max_refs_present) & the total number of references (total_refs) for logging purposes.

3. Iterates over the recommendations randomly (not in order of KNN) and creates pairs such

that the label is 1 if rec_id is a reference of qid, else 0.

Note: It is very important to iterate over the recommendations randomly as otherwise we

penalize the top KNN neighbours every time by giving them 0 labels, which results in 0

Precision and Recall scores. (As tested in Section 0)

4. Checks whether the recommended paper was published after the query paper.

5. The getitem method returns embeddings, a flag indicating if the recommended paper was

published after the query paper (is_after), and the label.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 26

Figure 8: Pseudo code for PaperPairDataset

o Model

Next, the main neural network architecture driving our recommendation engine, which is

designed to process pairs of research papers and predict their new similarity scores. The

architecture is implemented as a PyTorch module called PaperPairModel, which inherits from the

nn.Module class. It takes as input 2 paper embeddings along with a flag (is_after) and determines

a similarity score between 0 and 1. We also pass cosine similarity between the 2 embeddings

along with x_diff and x_mul as additional features to help the model learn representations

between similar embeddings (labelled 1) faster.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 27

Figure 9: Code for the PaperPairModel model

A sample model architecture can be seen below:

PaperPairModel(
 (fc_layers): Sequential(
 (0): Linear(in_features=1538, out_features=1024, bias=True)
 (1): BatchNorm1d(1024, eps=1e-05, momentum=0.9, affine=True, track_running_stats=True)
 (2): Tanh()
 (3): Dropout(p=0.5, inplace=False)
 (4): Linear(in_features=1024, out_features=2048, bias=True)
 (5): BatchNorm1d(2048, eps=1e-05, momentum=0.9, affine=True, track_running_stats=True)
 (6): Tanh()
 (7): Dropout(p=0.5, inplace=False)
 (8): Linear(in_features=2048, out_features=1, bias=True)
)
)

The architecture is composed of a series of fully connected layers, batch normalization layers (if

enabled), activation functions, and dropout layers. The input to the model is formed by

concatenating the element-wise absolute difference, element-wise product, temporal information

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 28

(whether one paper is published after the other), and cosine similarity between the embeddings

of the two input papers.

The forward method takes three input tensors, x1, x2, and is_after, representing the embeddings

of the first paper, the embeddings of the second paper, and the temporal information, respectively.

The cosine similarity between x1 and x2 is computed using the F.cosine_similarity function.

The element-wise absolute difference (x_diff) and element-wise product (x_mul) between x1 and

x2 are also computed as extra features to learn the similarity effectively.

The input tensor x is formed by concatenating x_diff, x_mul, is_after, and the cosine similarity

along dimension 1. The concatenated input tensor is then passed through the fully connected

layers, batch normalization layers (if enabled), activation functions (Tanh), and dropout layers in

the self.fc_layers sequential model.

The output of the model is a single scalar value obtained by applying a sigmoid activation

function to the final layer, which represents the predicted similarity score between the input pair

of research papers. The output tensor is then squeezed to remove any singleton dimensions.

o Training

Before training we currently will have the following things with us:

1. embedding_map - maps paper id to the 768-dimensional embedding

2. reference_map - maps one paper id to a list of paper ids which are the actual references

of the original paper id

3. metadata - provides metadata such as title, abstract, and year of each paper_id

4. all_paper_ids - a list of all paper_ids

5. knn_tree – KNN Ball Tree formed from the embeddings of all_paper_ids. The order of

the knn_tree is the same as all_paper_ids (important to fetch paper_ids as the nearest

neighbours).

(1) was computed from the SPECTER embeddings, (2,3,4) were computed from the 100K paper

dataset and (4) was computed by feeding (1) in sklearn’s Ball Tree.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 29

Now, the training loop is as follows:

1. Create train_dataset and val_dataset instances of PaperPairDataset with the

respective paper_ids, embedding_map, reference_map, metadata, and all_pids.

2. Create train_dataloader and val_dataloader instances of DataLoader with the

respective datasets, batch_size, and shuffle settings.

3. Instantiate the PaperPairModel with hidden_dims, dropout_prob, use_bn, and

bn_momentum from hyperparameters.

4. Move the model to the appropriate device (CPU or GPU).

5. Set up the loss function (BCEWithLogitsLoss) and optimizer (AdamW).

6. Initialize the learning rate scheduler with early stopping (ReduceLROnPlateau).

7. Train the model using the following steps: a. Loop through the epochs. b. Set the model

to training mode. c. Iterate over the train_dataloader, getting batches of data

(embeddings, labels, and is_after flags). d. Move the data to the appropriate device

(CPU or GPU). e. Zero the gradients of the optimizer. f. Get the model's output by passing

the input data through the model. g. Calculate the training loss using the criterion. h.

Perform backpropagation and update the model's parameters with the optimizer.

Accumulate the training loss.

8. Evaluate the model on the validation set using the following steps: a. Set the model to

evaluation mode. b. Iterate over the val_dataloader, getting batches of data (embeddings,

labels, and is_after flags). c. Move the data to the appropriate device (CPU or GPU).

d. Get the model's output by passing the input data through the model. e. Calculate the

validation loss using the criterion. f. Accumulate the validation loss.

9. Evaluate the model's recommendations on a specific test paper (AIAYN) and calculate

the precision, recall, and F1 score.

10. Update the learning rate scheduler based on the validation loss.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 30

11. Check for early stopping criteria and save the best model's state.

This loop covers the training and evaluation of the PaperPairModel on the given dataset. It

includes data preparation, model instantiation, training, validation, and early stopping to prevent

overfitting.

o Getting Reranked Recommendations

To get new recommendations for a given title and abstract, we have defined a function called

get_recommendations.

Figure 10: Code for the recommendations function

Inside the function, we first set the model to evaluation mode. Then, we create a paper object

with the given title, abstract, and a fixed year (2023 in this case). We use the get_embedding

function to generate the SPECTER embedding for this new paper object using the HF model.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 31

Next, we find the k nearest neighbours in the embedding space using the find_knn function. We

then retrieve the paper IDs of the recommended papers using the indices returned by find_knn.

We create a tensor of the embeddings for these recommended papers.

We also create an is_after tensor that indicates if the new paper was published after each of the

recommended papers. This tensor is created based on the years of publication of the

recommended papers and the new paper's year (2023).

With the model in evaluation mode, we expand the new paper's embedding to match the shape of

the recommended papers' embeddings tensor. We move all tensors to the appropriate device

(CPU or GPU) and pass them through the model, along with the is_after tensor.

After obtaining the scores for each recommended paper, we return the model to training mode.

We then select the top-k recommendations based on their scores using the torch.topk function.

We extract the indices and values (scores) of the top-k recommendations and return the reranked

paper IDs. If the return_scores parameter is set to True, we also return the top-k scores alongside

the recommendations.

o Evaluating Reranked Results from Model

Figure 11: Code for evaluating the reranking model

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 32

The evaluate_model function is designed to assess the performance of a trained PaperPairModel

on a set of paper IDs. This function computes the mean precision and mean recall for these papers,

which are used as evaluation metrics to measure the effectiveness of the recommendation system.

To do this, the function iterates through each paper ID in the provided list of paper_ids. For each

paper, the function generates a set of recommendations using the get_recommendations function,

which returns the top_k most relevant papers based on the model, paper embeddings, and

metadata. Then, the function retrieves the set of true references from the reference_map using the

current paper ID. If there are no true references for the paper, the loop continues to the next paper

ID.

For each paper, the function calculates precision and recall by comparing the recommendations

and true references. Precision is calculated as the ratio of the number of intersecting papers (i.e.,

the papers present in both recommendations and true references) to the total number of

recommendations. Recall is calculated as the ratio of the number of intersecting papers to the

total number of true references. The function accumulates the precision and recall values for each

paper in separate lists. Finally, the function computes the mean precision and mean recall by

dividing the sums of the respective lists by their lengths and returns these values as the evaluation

metrics.

3.5 System Analysis & Design

The proposed system, RefPred, aims to provide a comprehensive and efficient solution for

researchers to identify relevant literature for their review process. To achieve this, the system

leverages a citation-informed transformer model (SPECTER) and a recommendation engine. The

design is focused on optimizing the performance and user experience, with the goal of helping

researchers save time and effort during the literature review process.

3.5.1 Introduction

RefPred is designed to address the challenges faced by researchers in identifying and prioritizing

relevant research papers. By employing state-of-the-art NLP techniques and a well-structured

recommendation engine, RefPred aims to provide a seamless and efficient way to recommend

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 33

research papers based on user input, while accounting for factors like citation count and similarity

score.

3.5.2 Requirement Analysis

o Functional Requirements

1. Product Perspective: RefPred is a standalone software product that integrates with

existing research workflows to assist researchers in their literature review process. By

recommending relevant research papers based on the input title or abstract, it aims to

enhance the overall research experience and facilitate informed decision-making.

2. Product Features:

a) Literature ingestion: RefPred can crawl and extract research paper metadata from

Semantic Scholar (S2) using their API.

b) Data storage: The collected metadata is stored in a MongoDB database.

c) Paper embedding: RefPred uses the SPECTER model to generate embeddings for

each paper in the dataset, capturing its citation and semantic meaning.

d) Embedding space: The system constructs an embedding space of papers based on the

generated embeddings.

e) Recommendation engine: A KNN-based recommendation engine serves as a baseline

to provide relevant recommendations for a new paper.

f) Neural network reranking: RefPred includes a neural network model to rerank the

initial KNN candidates, resulting in improved Precision and Recall @ 20 scores.

g) Input handling: The system accepts a new title or abstract as input and provides

relevant paper recommendations based on the input.

h) Sorting mechanism: RefPred can sort recommended papers based on chosen metrics

(e.g., citation count or similarity score).

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 34

3. User Characteristics: RefPred caters to researchers, academicians, and students who

require assistance in identifying, evaluating, and prioritizing relevant research papers for

their literature review process, regardless of their technical expertise.

4. Assumption & Dependencies: RefPred assumes that user-provided data is accurate and

complete, and the system's performance depends on the quality of data. The system relies

on the continuous availability and accuracy of data sourced from the Semantic Scholar

(S2) API and presumes that the underlying technologies remain supported and functional.

5. Domain Requirements: RefPred is designed to cater to research domains with vast and

rapidly-evolving bodies of literature, such as Medicine, Generative AI, and other

emerging fields. The system can be adapted to suit the specific needs of different domains,

ensuring a high degree of relevance and usefulness.

6. User Requirements: Users need to provide a title or abstract for the system to process, and

they must have access to the internet to ensure real-time updates and recommendations.

o Non-functional Requirements

1. Scalability: RefPred is designed to handle a large and growing number of research papers

and embeddings efficiently.

2. Performance: The recommendation engine provides fast and accurate recommendations

to researchers, ensuring minimal wait times.

3. Usability: RefPred's user interface is intuitive and easy to use for researchers without

extensive technical knowledge.

4. Maintainability: The system is modular and well-documented, allowing for easy updates,

bug fixes, and the addition of new features.

5. Reliability: RefPred provides consistent and accurate recommendations across different

research fields and queries.

6. Security: The system ensures the privacy and security of user data and intellectual

property.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 35

7. Interoperability: RefPred is compatible with various platforms and devices, allowing

researchers to access recommendations seamlessly.

o Organizational Requirements

1. Implementation Requirements (in terms of deployment): RefPred requires a

scalable and reliable infrastructure for deployment, ensuring high availability, and

accommodating growing data and user base. Cloud-based solutions or dedicated

servers can be utilized to meet these requirements, with proper backup and disaster

recovery plans in place.

2. Engineering Standard Requirements: RefPred should adhere to industry-standard

software engineering practices, including version control, code reviews,

continuous integration, and testing. This ensures maintainability, stability, and

ease of collaboration among team members.

o Operational Requirements

1. Economic: RefPred has the potential to save researchers time and effort in the literature

review process, contributing to overall research efficiency and cost-effectiveness.

2. Environmental: As a software product, RefPred has a low environmental impact, reducing

the need for physical resources such as paper.

3. Social: RefPred facilitates knowledge sharing and collaboration among researchers,

fostering a more inclusive and connected research community.

4. Political: By providing unbiased recommendations, RefPred promotes transparency and

fairness in research, avoiding undue influence of specific organizations or individuals.

5. Ethical: RefPred adheres to ethical considerations by ensuring the privacy and security of

user data, and recommending papers based on merit and relevance.

6. Health and Safety: RefPred indirectly contributes to health and safety by supporting

research efforts that may have implications in these areas.

7. Sustainability: As a digital solution, RefPred supports long-term sustainability by

minimizing resource consumption and environmental impact.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 36

8. Legality: RefPred complies with applicable laws and regulations related to data privacy,

security, and intellectual property.

9. Inspectability: RefPred's modular and well-documented design enables easy inspection

and evaluation by relevant stakeholders, ensuring compliance with industry standards and

best practices.

o Hardware & Software Requirements

The hardware and software requirements for building this project will depend on the scale of

the dataset and the desired performance of the recommendation system. Here are some general

requirements for each step:

a) Data Acquisition:

• A machine with a fast internet connection to crawl and scrape the Semantic Scholar

API.

• Sufficient storage capacity to store the metadata of the research papers (title,

abstract, year, citation count, references, etc.) in a MongoDB database.

• Depending on the size of the dataset, a machine with high RAM and CPU

processing power to handle large volumes of data efficiently.

• In our case, we’ve used a Macbook Pro (M1 Pro with 16 GB of RAM) to scrape

approximately 50K papers in 1 hour using the S2 API. For the retraining of

SPECTER, we have used Paperspace Gradient Pro with NVIDIA RTX5000 GPU.

b) Paper Embedding Generation:

• A machine with a fast CPU, enough RAM, and preferably, a dedicated GPU, such as

an NVIDIA graphics card, (in our case RTX 5000 via cloud service Paperspace

Gradient) for quicker training or embedding using the pretrained model.

c) Recommendation Engine:

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 37

• A machine with a fast CPU, enough RAM, and preferably, a dedicated GPU, such as

an NVIDIA graphics card to perform the KNN search in the high-dimensional

embedding space.

• If a more sophisticated recommendation algorithm is desired, such as graph neural

networks, then a machine with a more powerful GPU (again with Paperspace

Gradient) can help speed things up.

Software:

• Python 3.7 is used with Miniconda, as it provides proper dependency management and

virtual environments.

• The Semantic Scholar API and MongoDB database are used to collect and store

research paper metadata respectively.

• The SPECTER model and AllenNLP library are used to generate paper embeddings.

• For the recommendation engine, we use the scikit-learn library which provides KNN

Trees, and PyTorch for the reranking model.

The list of libraries needed are: pymongo, requests, aiohttp, asyncio, pandas, numpy,

scikit-learn, PyTorch, AllenNLP, matplotlib, transformers, tqdm, pytorch-lightning,

optuna, ujson, pickle, flask

The entire code for this project can be found at: https://github.com/siddharth-Gandhi/refpred/.

https://github.com/siddharth-Gandhi/refpred/

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 38

4 RESULTS & DISCUSSION

4.1 Data Acquisition & Parsing data from S2:

The following table shows the time it took to parse and store different numbers of papers both

synchronously and asynchronously:

Table 2: Time taken to crawl & store paper metadata locally (from S2 API)

Number of Papers Time Taken

100 papers (Synchronously) 2 minutes

100 papers (With Async Crawler) 3 seconds

10,000 papers ~10 minutes

50,000 papers ~1 hour

100,000 papers (with batch processing) ~ 1 hour

For all further reranking experiments we will be using the 10,000 paper datasets to construct the

train, val and test datasets. We will also use the 100,000 paper dataset to populate our KNN Tree

to ensure most references of the original 10,000 papers are present. However, from both datasets,

we remove some paper IDs for which abstracts or list of references is null.

4.2 SPECTER Retraining

Retraining SPECTER model requires triplets in the form (𝑄, 𝑄+, 𝑄−) as input. To do this we

need first divide the 10,000 initial paper IDs into train, val and test sets with 80, 10, 10 split. This

gives:

Table 3: Train, Val, Test Split

Dataset Number of IDs

Train 7455

Val 932

Test 933

We will be using this same 80-10-10 split throughout all of our experiments.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 39

Using these datasets, we generate the triplets for training SPECTER:

Table 4: Number of Generated triplets for SPECTER

Dataset Number of triplets

Train 31160

Val 3920

Test 3950

Finally, when training the SPECTER model with the above triplets, we get the following:

Table 5: Comparison of retraining SPECTER vs Original Paper

 Our Retrained Model Original SPECTER Model

Epochs 1 4

Batch Size 4 4

Number of Train Triplets 31,160 684,000

Number of Val Triplets 3920 145,000

Time Taken / epoch 2 hours 1-2 days

GPU Used RTX 5000 (16 GB) Titan V (12 GB)

Using SPECTER, we can embed a research paper (specifically the title + abstract of a paper),

into a 768-dimensional embedding. We use tSNE (t-distributed stochastic neighbour embedding)

to visualize these high-dimensional embeddings and see the grouping of papers (Figure 12). We

compare our retrained model against the pre-trained SPECTER model available on HuggingFace

(HF). The biggest circles represent highly cited papers like the original papers of Adam, R,

ImageNet, Transformers, etc.

Using a tool like Plotly, where we can interactively see what paper each dot represents, we can

see that both versions are great at grouping closely related papers. For example, papers for Image

Segmentation are grouped in one place while Markov Model papers are grouped in another.

However, the pretrained version seems to be better at modelling distant references (probably due

to the bigger training set) and thus might produce more accurate embeddings.

Ultimately, due to the intensive compute and time requirements, and the maximum usage

limitations provided in Paperspace Gradient (the cloud platform we used to retrain SPECTER),

we decided it would be best to use the HF embeddings for further experiments to get the best

quality embeddings.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 40

Figure 12: 2D tSNE Visualization of 768-dimensional embedding vectors

of both retrained & HF model (size & colour based on number of citations)

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 41

4.3 Neural Network-based Reranking

At this point, we have the high dimensional SPECTER embeddings for all the 9319 original

papers (excluding papers with null references or abstracts) + 107833 reference papers (to populate

the KNN Tree).

4.3.1 Exploratory Data Analysis

As we can see most papers have on average 29 papers as references and our dataset has most

papers published around 2006-07.

Now for all train, val and test datasets (see Dataset), we store max_refs_present and total_refs

for logging. Using this we can calculate the maximum possible precision and recall for each of

the train, val and test datasets. The formula for calculating the maximum precision and recall for

a paper at index 𝑖 in the dataset is as follows:

𝑚𝑎𝑥_𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =
𝑚𝑖𝑛(𝑚𝑎𝑥_𝑟𝑒𝑓𝑖 , 𝑡𝑜𝑝_𝑘)

𝑡𝑜𝑝_𝑘
, for  𝑖 = 1,2, … , 𝑛

𝑚𝑎𝑥_𝑟𝑒𝑐𝑎𝑙𝑙𝑖 =
𝑚𝑖𝑛(𝑚𝑎𝑥_𝑟𝑒𝑓𝑖 , 𝑡𝑜𝑝_𝑘)

𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑓𝑖
, for  𝑖 = 1,2, … , 𝑛

where 𝑡𝑜𝑝_𝑘 is the 𝑘 in 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 @ 𝑘 and 𝑅𝑒𝑐𝑎𝑙𝑙 @ 𝑘 (in our case we take 𝑡𝑜𝑝_𝑘 = 20). We

plot the histograms for max precision and recall for each of the train, val and test sets respectively:

Figure 13: EDA of the paper data

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 42

Figure 14: Histograms of Max Precision @ 20 and Max Recall @ 20 for train, val and test paper ID sets.

As we can see with the current KNN Tree (with ~100,000 papers), we can have on average 0.58

as maximum 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 @ 20 and 0.46 as maximum 𝑅𝑒𝑐𝑎𝑙𝑙 @ 20.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 43

4.3.2 Generating Pairs for the Reranking Model

Table 6: Information about preparing +ve and -ve pairs

Dataset Total Pairs +ve Pairs -ve Pairs Time Taken

Train 208346 104173 104173 16 minutes

Val 25440 12770 12770 2 minutes

Test 25440 12770 12770 2 minutes

As can be seen in the table above, the Dataset is constructed in a way to maintain +/− ratio to

be 1. This is done by selecting as many positive and negative papers as there are references

present in the KNN recommendations of a particular paper. For example, if a query paper Q has

37 references in total, with only 26 papers present in the top 1000 nearest neighbours of Q, then

we make 26 positive pairs (of all the references present in KNN neighbours) and 26 negative

pairs (selected randomly). The impact of being random (and not in the order of KNN) we will

see in the following sections.

o Hyperparameters

As mentioned in Section 3.4.3/Model, we have a feed-forward neural network with batch norm,

weight decay, early stopping, learning rate schedulers and variable hidden layer sizes. As a result,

the various hyperparameters which can be tweaked as listed below. The ones of interest are

hidden_dims, weight_decay, dropout_prob, use_bn and bn_momentum. We will be tweaking with

them in the following section with an Ablation study and hyperparameter optimization.

hparams = {
 'batch_size': 2048,
 'hidden_dims': [1024, 2048],
 'lr': 1e-2,
 'min_lr': 1e-7,
 'patience': 3,
 'factor': 0.1,
 'weight_decay': 1e-3,
 'dropout_prob': 0.5,
 'stop_after': 5,
 'knn_k': 1000, # for getting nearest neighbours
 'top_k': 20, # for evaluation
 'use_bn': True,
 'bn_momentum': 0.9,
 'num_epochs': 30
}

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 44

o Varying the Methods for preparing the Dataset

An important element in the reranking model is the data which is fed into it. The dataset (whose

construction is explained in Section 3.4.3/Dataset) creates pairs (Q, R) such that R is one of the

(say) 1000 KNN recommendations of Q and the label for the pair is 1 if R is a direct

recommendation of Q, else 0. However, selecting the negative distractors (with label 0) is an

important experiment. We could:

3. Select negative elements in the order of KNN neighbours, i.e. in the order of

similarity to the Q paper.

4. Randomly select R papers from the 1000 KNN recommendations.

5. Select R from the inverse order of KNN recommendations (i.e. least similar first).

6. Inspired by (Cohan 2020), we take 50% negative examples randomly and 50%

negative examples which are citations of citations (so similar to Q, but not a

citation).

Finally, since we have KNN neighbours which are published after the current query Q, we can

explore if skipping those recommendations is better than labelling it as 0 (in all 4 approaches

above). The results for these various methods for preparing dataset are mentioned below:

Table 7: Model Loss w.r.t. various negative distractor selection & skipping future papers

Model Train

Loss

Val

Loss

Test

Precision

@ 20

Test

Recall

@ 20

KNN Baseline - - 0.117 0.095

Negatives selected in KNN order (by L2 distance) 0.274 0.446 0.016 0.014

Randomly Selected Negatives 0.13 0.316 0.193 0.166

Negatives selected starting for reversed KNN order 0.08 0.25 0.151 0.123

Negatives with 50% random & 50% citation of

citations

0.504 0.588 0.168 0.140

Skip Papers published after Query Q 0.35 1.269 0.011 0.008

We can see that using randomly selected negative distractors (including future papers with 0

labels) yields the best results. Going in the order of KNN (by L2 distance) and selecting negatives

results in a terrible score, probably because the model learns to rank semantically similar papers

(which are the KNN neighbours) lower due to the 0 label. Even skipping future papers yields

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 45

terrible results, presumably because skipping those papers leads to the model having no idea of

what to do with future papers.

o Varying Model Architecture

To test whether the model architecture described in Section 3.4.3/Model performs well, we do an

ablation study studying the effects of removing individual components (in isolation) and seeing

its effect on evaluation metrics. We also test the effect of replacing x_diff and x_mul with x1 and

x2. The results are as follows:

Table 8: Ablation Study (after 30 epochs)

Config Batch

Norm

(0.5)

Drop

out

(0.5)

Weight

Decay

(1e-3)

Is
after

Cosine
Sim

x_mul x_diff Val

Loss

Test

Precisio

n @ 20

Test

Recall

@ 20

Base Model Yes Yes Yes Yes Yes Yes Yes 0.316 0.193 0.166

No BN No Yes Yes Yes Yes Yes Yes 0.693 0.118 0.09

No Dropout Yes No Yes Yes Yes Yes Yes 0.731 0.136 0.115

No Weight

Decay

Yes Yes No Yes Yes Yes Yes 0.321 0.199 0.171

No
is_after

Yes Yes Yes No Yes Yes Yes 0.346 0.138 0.112

No cosine
sim

Yes Yes Yes Yes No Yes Yes 0.314 0.186 0.155

No x_mul Yes Yes Yes Yes Yes No Yes 0.559 0.195 0.16

No x_diff Yes Yes Yes Yes Yes Yes No 0.28 0.173 0.144

With x1 &

x2 instead

of x_mul &
x_diff

Yes Yes Yes Yes Yes Repla-

ced

with
x1

Replac-

ed with
x2

0.14 0.11 0.09

With this table, it is clear that BN, Dropout are crucial layers in the model architecture while

cosine_sim, x_mul, and x_diff are important features to be added in the forward pass of the

model. The only optional argument seems to be weight decay, excluding which leads to better

results.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 46

o Hyperparameter Optimization

To find out the optimal values for hidden_dims, dropout_prob, weight_decay, and bn_momentum,

we perform a Hyperparameter search using the optuna python library. This was done by having

is_after, cosine_sim, x_mul and x_diff being passed to the forward pass of the model. Some of

the notable results are as follows:

Table 9: Hyperparameter Optimization (after 30 epochs)

Config Hidden Dims Drop

out

Weight

Decay

BN

momentum

Val Loss Test

Precision

@ 20

Test

Recall @

20

Config #1 [512, 768, 1536] 0.9 0.001 0.3 0.435 0.167 0.139
Config #2 [1024] 0.3 0.001 0.5 0.333 0.177 0.148

Config #3 [512, 512] 0.5 0.001 0.3 0.3140 0.184 0.154
Config #4 [768, 1536] 0.5 0.0001 0.7 0.330 0.178 0.150
Config #5 [768, 256] 0.5 0.0001 0.7 0.322 0.189 0.161
Config #6 [1024, 2048] 0.5 0.001 0.9 0.316 0.193 0.166

Config #7 [512, 768, 1024, 1536] 0.5 0.001 0.7 0.330 0.175 0.145

As we can see, adding more layers leads to worse evaluation metrics, presumably because of high

overfitting. A moderate dropout probability is also important to keep overfitting in check. Finally,

weight decay and BN momentum do not seem to have much impact on the final results.

o Final Model & Comparison With KNN Baseline

After much experimentation, we find that the best-performing model is the one with the

hyperparameters mentioned in Section 4.3.2/Hyperparameters but without any weight decay.

Training the model is only effective up to around 30-40 epochs after which learning stagnates.

The results can be seen in the graph below.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 47

Figure 15: Train & Val Loss vs Epochs for Best Model

The final evaluation results can be seen in the table below:

Table 10: Best Model vs KNN Baseline

Model Train

Precision

@ 20

Train

Recall

@ 20

Val

Precision

@ 20

Val

Recall

@ 20

Test

Precision

@ 20

Test

Recall

@ 20

KNN (baseline) 0.118 0.096 0.117 0.099 0.117 0.095

KNN + Best

Reranking Model

0.1946 0.1643 0.1987 0.1733 0.199 0.171

As we can see there is almost a 70% improvement in the evaluation metrics across all 3 - train,

val and test datasets, over the baseline KNN model. However, we are still quite far from the

theoretical maximum Precision @ 20 and Recall @ 20 values we derived in Section 4.3.1.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 48

4.4 Web App

We also implemented a flask web app with the final model, which can be seen below:

Figure 16: Final Reranked Model implemented into a Flask Web App

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 49

5 CONCLUSION & FUTURE WORK

In conclusion, this project investigated the development of a research paper recommendation

system that leverages citation-informed transformers (SPECTER) to generate dense paper

embeddings. The baseline recommendations were obtained using KNN, and our new deep

learning reranking approach improved these recommendations by 70% (measured by Precision

@ 20 and Recall @ 20), yielding more accurate results compared to the baseline KNN approach

on historical papers and their citation graphs. The primary contributions of the project include:

1. Design and implementation of a fast and efficient asynchronous crawler from scratch,

capable of recursively parsing thousands of specific research papers from Semantic

Scholar, along with their references, and storing them locally on a MongoDB database.

2. Attempt to retrain and recreate the original SPECTER results for comparison with the

pretrained version. However, due to vast compute requirements, it was not possible to

fully replicate the results, necessitating the use of the pretrained model for further

experiments.

3. Design and implementation of a novel approach to rerank KNN recommendations from

the SPECTER model based on historical citation graphs. This was achieved by creating

pairs from past citation graphs and allowing the model to determine the new similarity

score between two SPECTER embeddings of a query and a KNN recommendation guided

by the labels. Various aspects, such as model architecture, dataset preparation (including

selecting negative distractors), and hyperparameters, which were extensively tested,

influenced the final evaluation metrics. We also implemented a Flask Web App

using the final reranking mode.

Despite these advancements, there remains significant room for improvement, as the improved

results with reranking (Precision @ 20 = 0.19 and Recall @ 20 = 0.17) are still far from the

theoretical maximum of Precision @ 20 = 0.58 and Recall @ 20 = 0.47. Potential avenues for

future research include:

1. Establishing a comprehensive pipeline that incorporates SPECTER embeddings and the

reranking model, making the entire system trainable. This would enable the capture of

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 50

embeddings guided by both semantics and citation graphs, though it may be

computationally expensive.

2. Developing more intelligent techniques for selecting negative pairs or preparing the

dataset for reranking.

3. Exploring the use of Graph Neural Networks or other advanced neural network

architectures (such as attention mechanisms) for the reranking model instead of

conventional Feed Forward Neural Networks.

4. Investigating the integration of additional features, such as authorship, publication venue,

and temporal information, to further enhance the recommendation system's performance.

This could provide more context to the recommendation process and help identify highly

relevant papers that share similar authorship or are published in the same domain-specific

venues.

5. Exploring transfer learning and fine-tuning techniques to adapt pre-trained language

models like BERT, RoBERTa, or GPT for the specific task of research paper

recommendation. These models have shown strong performance in various natural

language processing tasks and could potentially improve the accuracy and relevance of

recommendations when fine-tuned for this application.

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 51

6 REFERENCES

[1] Nigram, Nishant. 2021. Research Paper Analysis using Natural Language Processing.

https://www.cs.cit.tum.de/en/sccs/news/sccs-colloquium/article/nishant-nigam-research-

paper-analysis-using-nlp-techniques/.

[2] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances

in neural information processing systems 30.

[3] Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805.

[4] Beltagy, Iz, Kyle Lo, and Arman Cohan. 2019. SciBERT: A pretrained language model

for scientific text. arXiv preprint arXiv:1903.10676 .

[5] Jeong, Chanwoo, Sion Jang, Eunjeong Park, and Sungchul Choi. 2020. A context-aware

citation recommendation model with BERT and graph convolutional networks.

Scientometrics 124.

[6] Bhagavatula, Chandra, Sergey Feldman, Russell Power, and Waleed Ammar. 2018.

Content-based citation recommendation. arXiv preprint arXiv:1802.08301.

[7] Cohan, Arman, Sergey Feldman, Iz Beltagy, Doug Downey, and Daniel S. Weld. 2020.

Specter: Document-level representation learning using citation-informed transformers.

arXiv preprint arXiv:2004.07180.

[8] Lo, Kyle, Lucy Lu Wang, Mark Neumann, Rodney Kinney, and Dan S. Weld. 2019.

S2ORC: The semantic scholar open research corpus. arXiv preprint arXiv:1911.02782.

[9] Singh, Amanpreet, Mike D'Arcy, Arman Cohan, Doug Downey, and Sergey Feldman.

2022. SciRepEval: A Multi-Format Benchmark for Scientific Document Representations.

arXiv preprint arXiv:2211.13308 .

Capstone Project Final Review Report – Siddharth Gandhi (19BCE0005)

 52

[10] Dolatshah, Mohamad, Ali Hadian, and Behrouz Minaei-Bidgoli. 2015. Ball*-tree:

Efficient spatial indexing for constrained nearest-neighbor search in metric spaces .

arXiv preprint arXiv:1511.00628.

[11] Burges, Chris, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and

Greg Hullender. 2005. Learning to rank using gradient descent. In Proceedings of the

22nd international conference on Machine learning, pp. 89-96.

[12] Ebesu, Travis, and Yi Fang. 2017. Neural citation network for context-aware citation

recommendation. Proceedings of the 40th international ACM SIGIR conference on

research and development in information retrieval.

[13] Narechania, Arpit, Alireza Karduni, Ryan Wesslen, and Emily Wall. 2021. Vitality:

Promoting serendipitous discovery of academic literature with transformers & visual

analytics. IEEE Transactions on Visualization and Computer Graphics 28, no. 1 (2021):

486-496.

[14] Portenoy, Jason, Marissa Radensky, Jevin D. West, Eric Horvitz, Daniel S. Weld, and

Tom Hope. 2022. Bursting scientific filter bubbles: Boosting innovation via novel author

discovery. In Proceedings of the 2022 CHI Conference on Human Factors in Computing

Systems (pp. 1-13).

	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	1 INTRODUCTION
	1.1 Motivation
	1.2 Aim
	1.3 Objectives
	1.4 Background
	1.4.1 Recommender Systems
	o Content-based Filtering
	o Collaborative Filtering
	o Graph-based Methods

	1.4.2 Data Sources
	o arXiv
	o Semantic Scholar (S2)
	o Microsoft Academic Graph
	o PubMed
	o Web of Science

	2 LITERATURE REVIEW
	2.1 Survey of Existing Work
	2.2 Gaps Identified

	3 METHODOLOGY
	3.1 Architecture Diagram
	3.2 Data Acquisition
	3.3 SPECTER - Generating Paper Embeddings
	3.3.1 Data Pre-processing
	3.3.2 Training Model from Scratch

	3.4 Recommender Engine
	3.4.1 Evaluation
	3.4.2 KNN Baseline
	o Ball Trees
	o The Problem of Limited Search Space
	o Getting KNN Recommendations

	3.4.3 Neural Network Based Reranking of KNN Candidates
	o Dataset
	o Model
	o Training
	o Getting Reranked Recommendations
	o Evaluating Reranked Results from Model

	3.5 System Analysis & Design
	3.5.1 Introduction
	3.5.2 Requirement Analysis
	o Functional Requirements
	o Non-functional Requirements
	o Organizational Requirements
	o Operational Requirements
	o Hardware & Software Requirements

	4 RESULTS & DISCUSSION
	4.1 Data Acquisition & Parsing data from S2:
	4.2 SPECTER Retraining
	4.3 Neural Network-based Reranking
	4.3.1 Exploratory Data Analysis
	4.3.2 Generating Pairs for the Reranking Model
	o Hyperparameters
	o Varying the Methods for preparing the Dataset
	o Varying Model Architecture
	o Hyperparameter Optimization
	o Final Model & Comparison With KNN Baseline

	4.4 Web App

	5 CONCLUSION & FUTURE WORK
	6 REFERENCES

