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Abstract

Time series forecasting is a growing area of research with diverse applications, such as
predicting the demand for a particular product or the health status of a patient. However,
this research domain faces several challenges, some of which are addressed in this thesis.
A major challenge is changing data distributions, i.e., the distribution of the data used to
train a model may differ from that of the samples processed during inference. This can
lead to inaccurate predictions, which can be problematic for downstream tasks and even
cause damage, such as financial loss in demand forecasting. Therefore, approaches are
needed that are specifically designed to handle changing data distributions and quickly

adapt a prediction model.

In this thesis, we first assess the applicability of time series forecasting approaches despite
changing data distributions for predicting demand for small and medium-sized companies
dealing with perishable goods. Sales forecasting is currently mainly used by large enterprises,
whereas lack of data and know-how are common challenges for smaller companies. For
perishable items, improved operational decisions due to accurate predictions can lead
to waste reduction besides financial benefits. That is why we chose horticulture as an
example industry. Despite having a multi-billion dollar turnover in Germany alone and
being heavily affected by the disposal of unsold items, this sector has received limited
attention in forecasting research. In a first-time comparative study using horticultural retail
sales data, we observe promising results, with the ensemble learner XGBoost showing the
best performance. However, all prediction models are limited in their ability to handle a
change in the data distribution. Finally, further research is needed to verify our results in
a broader study allowing for more general conclusions and to overcome several obstacles

that impede the practical operation of a forecasting system in this domain.

The development of novel online approaches to address changing data distributions is the
main objective of this thesis. With respect to the prediction model, we focus on Gaussian
Process Regression. We present the two already published approaches EVent-Triggered
Augmented Refitting of Gaussian Process Regression for Seasonal Data (EVARS-GPR)
and Event-Triggered Kernel Adjustments in Gaussian Process modeling (ETKA). We
further introduce an unpublished extension of the former called EVARS-GPR+. All three
approaches rely on online methods to detect a change in the data distribution during
inference. Each time a change point is detected, we adjust the prediction model with the

aim of providing up-to-date predictions at all times. Despite this similarity in terms of




change point-triggered model adaptation, the three approaches differ in several ways. While
EVARS-GPR and EVARS-GPR+ focus on changes visible in the output scale of seasonal
data, ETKA also considers other types of changes, for instance, a shift in periodicity, as well
as non-seasonal data. The former two employ ChangeFinder for change point detection,
while we adopt a cumulative sum-based approach using the model’s prediction uncertainty
for ETKA. To allow for rapid model adaptation, EVARS-GPR reuses existing data via
augmentation, while keeping the hyperparameters unchanged. EVARS-GPR+ extends this
augmented adjustment with a non-augmented refitting for less significant changes in the
output scale. In contrast, ETKA adapts the kernel expression of the Gaussian Process
using Adjusting Kernel Search, which also accounts for other types of distributional shifts.
We show broad applicability using simulated data for both EVARS-GPR and ETKA. In
addition, we demonstrate good predictive performance of both approaches using real-world
data. Furthermore, EVARS-GPR+ outperforms EVARS-GPR on real-world data, suggesting
that the small enhancement of non-augmented refittings is beneficial. There are several
points of interest for future research based on our contributions, such as combining these

approaches by identifying the type of distributional shift and respond accordingly.

Beyond that, several forecasting competitions and comparative studies have not yielded an
overall predominant prediction model. Thus, multiple methods need to be re-evaluated
for each forecasting task while ensuring reproducibility and comparability of results. To
facilitate such comparative studies, even without expert knowledge, and to provide an
easily extensible tool for model developers, we present ForeTiS. ForeTiS is a time series
forecasting framework in Python that covers the entire pipeline from data pre-processing
over feature engineering and hyperparameter optimization to model selection. Although the
pipeline is fully automated using state-of-the-art approaches, e.g., Bayesian optimization
for hyperparameter search, ForeTiS is highly customizable. As an additional benefit, our
framework is designed for straightforward extension and quick benchmarking of novel
approaches, ensuring their accessibility. We further support users with comprehensive and

hands-on online documentation, including several video tutorials and step-by-step guides.




Zusammenfassung

Zeitreihenprognosen sind ein wachsendes Forschungsgebiet mit zahlreichen Anwendungsfal-
len, wie der Vorhersage der Nachfrage nach einem bestimmten Produkt oder des Gesund-
heitszustands eines Patienten. Dieses Forschungsfeld ist mit diversen Herausforderungen
konfrontiert, von denen einige in dieser Arbeit aufgegriffen werden. Eine grole Herausforde-
rung sind Anderungen in der Datenverteilung, die dazu fiihren kdnnen, dass die Verteilung
der Trainingsdaten von der Verteilung der Stichproben wahrend der Inferenz abweicht. Dies
kann ungenaue Vorhersagen und damit Probleme in nachgelagerten Prozessen zur Folge
haben, wie zum Beispiel finanzielle Verluste bei fehlerhaften Nachfrageprognosen. Daher
sind Ansatze erforderlich, die speziell fiir den Umgang mit Anderungen in der Datenvertei-

lung und fiir die schnelle Anpassung eines Prognosemodells konzipiert sind.

In dieser Arbeit wird zunichst die Anwendbarkeit von Methoden der Zeitreihenprognose
trotz sich dndernder Datenverteilungen fiir Nachfragevorhersagen bei kleinen und mittleren
Unternehmen, die mit verderblichen Waren handeln, untersucht. Absatzprognosen werden
derzeit vorwiegend von groRen Firmen eingesetzt, wihrend fiir kleinere Betriebe unter
anderem fehlende Daten und mangelnde Expertise herausfordernd sind. Bei verderblichen
Giitern kann eine Verbesserung der operativen Entscheidungen durch genaue Prognosen
neben finanziellen Vorteilen auch eine Reduktion der Abfallmengen bedeuten. Als An-
wendungsbeispiel wurde in der vorliegenden Arbeit der Gartenbau gewahlt. Obwohl diese
Branche allein in Deutschland einen Umsatz in Milliardenhdhe erwirtschaftet, wurde sie
bisher in der Zeitreihenforschung kaum betrachtet. In einer ersten Vergleichsstudie anhand
von Einzelhandelsdaten wurden vielversprechende Ergebnisse erzielt, wobei die Ensemble-
methode XGBoost die besten Prognosen liefert. Jedoch sind alle Prognosemodelle nur
begrenzt in der Lage, mit Anderungen in der Datenverteilung umzugehen. Fiir allgemeinere
Schlussfolgerungen und zur Adressierung weiterer Herausforderungen beziiglich des Betriebs
eines Vorhersagesystems im Gartenbau sind weitere Forschungsarbeiten erforderlich.

Die Entwicklung neuer Methoden, die auf Anderungen in der Datenverteilung reagieren, ist
das priméare Ziel dieser Arbeit. Als Prognosemodell wurde die GauBprozess-Regression ge-
wahlt. In diesem Kontext werden die beiden bereits publizierten Methoden Event-Triggered
Augmented Refitting of Gaussian Process Regression for Seasonal Data (EVARS-GPR) und
Event-Triggered Kernel Adjustments in Gaussian Process modeling (ETKA) vorgestellt.
AuRerdem wird eine bisher unveréffentlichte Erweiterung des erstgenannten Ansatzes,
EVARS-GPR+, prasentiert. Alle drei Methoden basieren auf einer Online-Erkennung von




Anderungen in der Datenverteilung wihrend der Inferenz. Wird eine Anderung erkannt,
wird das Prognosemodell angepasst, um stets aktuelle Vorhersagen zu gewahrleisten. Trotz
dieser Ahnlichkeit hinsichtlich der Initiierung einer Modellanpassung unterscheiden sich
die drei Algorithmen in mehrfacher Hinsicht. EVARS-GPR und EVARS-GPR+ sind fiir
Anderungen in der Skala der Zielvariable saisonaler Daten konzipiert. ETKA hingegen
beriicksichtigt auch andere Arten von Anderungen, wie zum Beispiel eine Verschiebung
der Periodizitdt, sowie nicht-saisonale Daten. Die ersten beiden verwenden ChangeFinder
zur Erkennung von Anderungen, wohingegen ETKA einen auf der kumulativen Summe
basierenden Ansatz nutzt, der die Vorhersageunsicherheit des Modells beriicksichtigt. Um
eine schnelle Modellanpassung zu ermdglichen, verwendet EVARS-GPR vorhandene Daten
mittels Augmentierung wieder, wihrend die Hyperparameter unveradndert bleiben. EVARS-
GPR+ erweitert diese augmentierte Anpassung um eine nicht-augmentierte Nachjustierung
fiir weniger signifikante Anderungen des Wertebereichs der Zielvariable. Im Gegensatz dazu
adaptiert ETKA den Kernelausdruck des GauBprozesses mit Hilfe der Adjusting Kernel
Search, wodurch auch andere Arten von Verteilungsdnderungen beriicksichtigt werden.
Anhand von simulierten Daten wird eine breite Anwendbarkeit sowohl fiir EVARS-GPR
als auch fiir ETKA demonstriert. Zudem zeigen beide Methoden gute Resultate fiir reale
Datensitze. EVARS-GPR+ iibertrifft EVARS-GPR auf realen Daten, was darauf hindeutet,
dass die Erweiterung um nicht-augmentierte Modellanpassungen vorteilhaft ist. Basierend
auf diesen Erkenntnissen ergeben sich mehrere Ansatzpunkte fiir zukiinftige Forschung,
wie beispielsweise die Kombination dieser Methoden, um mit Hilfe einer Erkennung der Art

der Verteilungsanderung entsprechend zu reagieren.

Dariiber hinaus konnte in verschiedenen Studien kein fiihrendes Prognosemodell identifiziert
werden. Daher miissen fiir jede Prognoseaufgabe mehrere Methoden evaluiert werden,
wobei die Reproduzierbarkeit und Vergleichbarkeit der Ergebnisse gewahrleistet sein muss.
Um solche Vergleichsstudien zu vereinfachen und Modellentwicklern ein einfach zu erwei-
terndes Werkzeug zur Verfligung zu stellen, wurde ForeTiS entwickelt. ForeTi$ ist ein
Zeitreihenvorhersage-Framework in der Programmiersprache Python, das den gesamten
Prozess von der Datenvorverarbeitung iiber die Merkmalsbestimmung und Hyperparameter-
optimierung bis hin zur Modellauswahl umfasst. Obwohl der Ablauf vollstandig automatisiert
ist und moderne Ansatze, wie Bayes'sche Optimierung fiir die Hyperparametersuche, ver-
wendet werden, ist ForeTiS in hohem Male anpassbar. Weiterhin ist das Framework leicht
erweiterbar, so dass neue Methoden schnell getestet werden konnen und leicht zugénglich
sind. Zusatzlich bietet eine umfangreiche Online-Dokumentation, einschlieBlich mehrerer

Video-Tutorials und Schritt-fiir-Schritt-Anleitungen, Unterstiitzung.
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Chapter

Introduction

Time series forecasting is a research area with diverse application domains, such as predicting
energy demand and production, demand for a certain product, or a patient’s health status.
The availability of data due to increasing digitalization and the recognition of the power
of accurate forecasts by various stakeholders, for instance, commercial enterprises and
governments, have led to continued growth in this research area (Ahmad et al., 2020; Deb
et al., 2017; Hobensack et al., 2023; Hong et al., 2019; Ingle et al., 2021; Liu & Chen,
2019; Mediavilla et al., 2022; Rajkomar et al., 2018; Sharadga et al., 2020; Yasrebi-de Kom
et al., 2023; Zhang et al., 2021). Accurate predictions of future developments, e.g., the
demand for a particular product, enable early interventions such as increasing or decreasing
production and adjusting procurement plans. Consequently improved operational decisions
are a potential competitive advantage, for instance, leading to higher revenues when
meeting an increasing demand or to lower costs when responding early to a decrease
in demand (lvanov et al., 2019). As another example, accurate predictions of energy
consumption and renewable energy production can support the transition to sustainable
energy sources while ensuring energy security by enabling early adaptation in a smart
grid (Ibrahim et al., 2020). In addition, there are use cases in healthcare where time
series forecasting techniques could help improve patient treatment, for example, based on

electronic health records (Tomasev et al., 2021).

However, time series forecasting faces several challenges, which we outline in Section 1.2,
and some of which we address in this thesis. A major challenge in time series forecasting is
changing data distributions, i.e., the data distribution from model training and inference

during live operation of a forecasting system are different. With respect to the potential




2 1.1. An Introduction to Time Series Forecasting

benefits of time series forecasting described above, relying on a forecasting model trained on
an outdated data distribution would be problematic. For example, for demand forecasting,
such an inaccurate prediction model could result in financial loss due to overstocking or
understocking. Moreover, in the case of smart grid applications, inaccurate forecasts could
lead to security of energy supply and grid stability problems. Therefore, changing data
distributions are an important yet unsolved challenge in time series forecasting (Ditzler
et al., 2015; Gama, 2012; Lu et al., 2019: Rossi, 2013: Zliobaité et al., 2016). The focus
of this thesis is on self-adaptive Gaussian Process Regression (GPR), i.e., accurate and
computationally efficient approaches that enable GPR to quickly adapt online to such
distributional shifts. We also address further challenges in time series forecasting besides

changing data distributions, which is described in more detail in Section 1.4.

In the following, we first give an introduction to time series forecasting. We then outline
current challenges in the field, before reviewing related work that is relevant to the challenges
we address. Finally, we describe the objectives and contributions of this thesis. After
this introduction, we outline the material and methods relevant to this work in Chapter
2, including classical and machine learning (ML) time series forecasting approaches with
a focus on GPR as the main prediction model in this thesis. We further describe model
selection and evaluation techniques as well as change point detection (CPD) approaches.
In Chapter 3, we present the results of this thesis. This chapter consists of summaries
of four research papers, which are the main contributions of this thesis and are given in
Section 1.5.1. We then discuss the results of these papers and some more general aspects

relevant to this thesis in Chapter 4, before concluding in Chapter 5.

1.1 An Introduction to Time Series Forecasting

In time series forecasting, we consider a dataset D = {(x;,y;) |t =1,...,n} containing
n € IN pairs of a feature vector x; € R™ consisting of m € IN feature values and a
target value y; € R at time step t € IN. We assume that the target variable y € R" is a
time series, i.e., it can be defined as a chronologically ordered sequence of data points y;
observed at successive time steps t = 1,...,n, often recorded at constant intervals. Our
goal is to predict a future value §;,, € R of the target variable y with a given forecast
horizon i € IN. To determine these predictions, we can use past values of the target
variable y itself, as well as m external features that influence the target values, denoted
by X € R"™ ™ for n samples. For example, if we consider ice cream sales as the target

variable, weather-related and calendrical information, such as holidays or weekdays, may
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be predictive features. Besides the target variable y itself, some of the features can be a

time series as well, for example daily weather data (Brockwell & Davis, 2016).

A time series may contain certain patterns that describe its behavior. A common pattern
is seasonality, i.e., the time series is influenced by factors that occur with a known and
fixed periodicity, such as the day of the week. Another typical component is trend, which
reflects a long-term increase or decrease in the time series values, often following a linear
behavior. These components can be used to model a time series. Furthermore, we may
observe a cyclic behavior, i.e., the values of the time series increase and decrease with

varying frequency.

(a) Seasonal pattern (b) Negative trend pattern
Time Time

(c) Seasonal with positive trend pattern (d) Multi-seasonal pattern

Value
Value

Time Time

Figure 1.1: Examples of time series patterns: All examples include additive noise. (a)
Seasonal behavior. (b) Negative trend pattern without seasonality. (c) Seasonal
pattern combined with positive linear trend. (d) Multi-seasonal behavior.

Figure 1.1 visualizes some of these common time series patterns. For example, Figure
1.1a shows a seasonal behavior and Figure 1.1b a negative trend pattern. In Figures 1.1c
and d, we can see combinations of patterns, i.e., seasonality with a linear increasing trend
as well as a multi-seasonal behavior. An example of the latter is ice cream sales with

annual in addition to weekly seasonality. When identifying such patterns, the number of
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available data points should be considered. For instance, the negative trend depicted in
1.1b could also be a downward part of a long cyclical or seasonal behavior (Hyndman &
Athanasopoulos, 2021).

With respect to the operation of a time series forecasting system, we can distinguish
between the offline and the online phase. During the offline phase, we collect data to
build our prediction model. Then, we use this prediction model to predict future values
during the online phase. Usually, new samples become available in this stage that we could
employ to refine our model. Several approaches can be used for time series prediction.
In this thesis, we consider classical time series forecasting methods, e.g., Exponential
Smoothing and Autoregressive Integrated Moving Average (ARIMA), see Section 2.1, as
well as ML-based approaches described in Sections 2.2 and 2.3. Regarding the former,
we include univariate models that use only the target time series y, besides multivariate
approaches, which additionally leverage features X that influence the target variable.

. ) . Feature Model Model
Data Collection = Preprocessing . . . .
Engineering Selection Evaluation
A A N Data cleaning Integration Hyperparameter Generalization
\ \ \ external features optimization assessment
WA Missing value
AR \/" \ imputation Statistical features Model training
based on
raw target target time series
time series and external
features

Figure 1.2: A common procedure in a time series forecasting project: After collecting
the raw target time series, the data must be cleaned and missing values may
need to be imputed. Then, in the case of a multivariate prediction model,
feature engineering must be performed. Using this dataset, model selection,
including hyperparameter optimization and model training, can be performed
to finally select a model with the best hyperparameter configuration based on
the results on validation data, see Section 2.4 for more details. Finally, we can
evaluate the generalization ability of the model on unseen data.

We visualize a typical procedure in a time series forecasting project in Figure 1.2. First, we
need to collect historical data on the target time series. Then, we may need to clean up the
data, e.g., handle outliers and missing values. For instance, we may want to impute missing
values by employing methods such as mean and k-Nearest Neighbor (k-NN) imputation.
In the next step, we can add features that influence the target variable to enable the
application of multivariate prediction models. For external features, we may also need to

collect historical observations, e.g., when integrating weather data. We can further infer
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additional features, i.a., statistical information about these external factors and the target
variable. For example, past sales of a certain product may be relevant to future demand.
Some of these features may also require a pre-processing step, e.g., due to outliers or
missing values. Depending on the number of features and samples, we may additionally
include dimensionality reduction approaches, such as Principal Component Analysis (PCA).
With the resulting dataset, we can perform the hyperparameter optimization and training
for each prediction model we consider in a study. Using these results, we can select the
best-performing model with its best-fitting hyperparameters on the basis of validation data.
For more details on this step, see Section 2.4. Finally, we can evaluate the generalization
ability of the model on unseen data. In time series forecasting, this can be combined with
simulating the live operation of a forecasting system with continuously incoming new data
and potential model updates (Hyndman & Athanasopoulos, 2021; Meisenbacher et al.,
2022).

1.2 Current Challenges in Time Series Forecasting

Time series forecasting faces several challenges, some of which are outlined in the following.
A major issue in time series forecasting, and the focus of this thesis, is changing data
distributions. In ML, we usually aim to build a well-generalizing model based on a dataset
that reflects the entire system behavior. Therefore, it is common to train a prediction
model on data collected offline and use it to predict a certain outcome based on unseen
data, assuming that the data distribution does not change. However, this assumption is
often not true for time series forecasting. Sudden changes in system behavior are a common
problem that can be caused by external or internal influences. For example, operational or
strategic decisions may affect sales of a certain product. In addition, external factors, such
as the outage of a major consumer in the case of energy demand forecasting or the recent
SARS-CoV-2 pandemic affecting sales in various industries, may be influential. Some of
these factors can be considered as features when building a forecasting system, but probably
not all of them, e.g., due to lack of historical data, unavailability of a continuous data
source, or when an influence is unknown in the first place. A change in the generative data
distribution can lead to an outdated prediction model. Continuing to use such a prediction
model during live operation of a forecasting system and deriving operational decisions
based on it could cause damage, for instance, financial loss in case of a misestimation of
demand. We can distinguish between different types of data distribution changes, although

there are varying definitions in the literature. For example, concept drift can be defined as
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a change in the joint probability distribution of the features and the target variable, and
data or covariate drift refers to a change in the distribution of a model’s inputs, i.e., the
features. Since in both cases an adaptation of the prediction model is required, we refer
to these phenomena as changing data distributions or distributional shifts. Detecting and
adapting to such a change in system behavior during the online phase is difficult. With
respect to detection, we are in a trade-off between preventing false alarms, e.g., in case
of outliers, and ensuring a quick reaction of the forecasting system. Furthermore, if we
react early, we only have a few samples of the new data distribution available to adapt the
prediction model. Therefore, handling changes in the data distribution, especially during
the online phase, requires specific approaches that take these circumstances into account
(Ditzler et al., 2015; Gama, 2012; Lu et al., 2019; Rossi, 2013; Zliobaité et al., 2016).

An application of time series forecasting with great potential is demand prediction. Accurate
predictions of future demand enable early operational decisions to meet increases in demand
or reduce costs in the event of a decrease. Currently, demand forecasting is mainly used
by large enterprises such as Amazon and Walmart (Bdse et al., 2017; Fildes et al., 2022;
Seaman & Bowman, 2022). However, especially for small and medium-sized companies,
which often have less financial flexibility, the accurate adjustment of procurement and
production can be a significant competitive advantage. Thus, time series forecasting is an
opportunity for such companies, but there are often challenges, e.g., a lack of know-how
and budget. Moreover, many state-of-the-art approaches such as DeepAR require large
amounts of data that may not be available (Benidis et al., 2022; Salinas et al., 2020). It is
particularly important to be able to adapt procurement and production quickly and early
when working with perishable goods that can only be kept in stock for a short period of
time. For such products, the disposal of unsold items in overstock situations results in
financial loss as well as environmental damage due to wasted resources in production and
transportation (Duan et al., 2012). The challenge of changing data distributions described
above can be especially problematic for smaller companies with fewer financial resources.
Financial losses due to inaccurate forecasts may be harder for these companies to deal with,
in particular if storing unsold items is not an option due to perishability. A domain that
is highly affected by these issues is horticulture. Most horticultural businesses are small
and medium-sized, and this sector deals with perishable goods such as ornamental plants
(Bundesministerium fiir Erndhrung und Landwirtschaft, 2021). Furthermore, demand
for horticultural products tends to be highly seasonal, subject to sudden changes, and
influenced by several external factors, for instance, holidays and weather. These properties

make manual forecasting difficult, and in addition, both external and internal factors can
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cause changing data distributions. Even though the horticultural industry generates billions
in annual sales in Germany alone (Zentralverband Gartenbau e.V., 2022), there are no
scientific publications using time series forecasting approaches to predict horticultural sales.
Thus, horticulture is a good example to evaluate time series forecasting for sales prediction
in small and medium-sized companies that deal with perishable products and for which

changing data distributions are particularly challenging.

As outlined in Section 1.1, multiple classical as well as ML-based approaches for time
series forecasting exist. However, several forecasting competitions and comparative studies
have not resulted in an overall predominant prediction method (Bojer & Meldgaard, 2021;
Makridakis & Hibon, 2000; Makridakis et al., 2018, 2022). Thus, a re-evaluation of various
prediction models is required for every new time series forecasting task. For this purpose,
an easy-to-use and easy-to-extend comprehensive time series forecasting framework would
be beneficial for both end users and model developers. Besides simplifying the application
of state-of-the-art time series forecasting approaches, such a framework can help to ensure

reproducibility and comparability of results through a unified pipeline.

The example described above in Figure 1.1b, where a negative trend pattern could be
incorrectly identified due to a lack of data, shows that the amount of data collected offline
can affect the quality of the initial prediction model. When considering the data collection
process for a time series forecasting project, an additional challenge is the need for historical
observations of the system behavior. If not already recorded, it may even take years to
collect a meaningful number of samples in the case of a time series with annual seasonality.
Consequently, the start of a time series forecasting project would also be delayed (Hyndman
& Athanasopoulos, 2021; Shumway & Stoffer, 2000).

A well-known and often neglected problem in demand forecasting is that typically sales
figures are collected, which can be used to only approximate demand. However, the
true demand is not known because it may have been higher, for example, in out-of-stock
situations. If stock quantities are recorded, they could be used to better estimate the real
demand, e.g., by including them in the forecasting system or by imputing out-of-stock
situations, but still without knowing the exact demand figures (Fildes et al., 2022). In this
thesis, we use the terms sales and demand forecasting as synonyms, since stock recordings
to distinguish between both are not available for the data we employ.



8 1.3. Related Work

1.3 Related Work

In the following, we present related work with respect to the current challenges that are
addressed in this thesis. Predicting horticultural demand, as outlined, is a good example to
assess the challenges and applicability of time series forecasting for small and medium-sized
companies dealing with perishable products. Furthermore, horticultural sales are affected
by various internal and external factors that can cause a change of the data distribution,
making this domain suitable to assess this challenge on real-world data. Since there
are no scientific publications on horticultural demand forecasting, domains with similar
characteristics could provide some guidance. Therefore, we first provide an overview of
time series forecasting applications for predicting food and tourism demand. We then
describe several approaches specifically designed for changing data distributions, the main
challenge addressed in this thesis. Finally, we provide information on currently available
time series forecasting frameworks that allow the use of multiple prediction models while

ensuring reproducibility and comparability of results.

1.3.1 Demand Forecasting in Domains Similar to Horticulture

Similar to horticulture, food companies often deal with perishable items such as baked
goods or agricultural products, e.g., vegetables and fruits. In addition to perishability,
the demand for many of these products is often also seasonal (Tsoumakas, 2019). In
contrast to horticulture, several comparative studies have been published evaluating classical
forecasting and ML-based approaches for predicting food demand. In addition to the market
size, food enterprises are often bigger than horticultural companies, which may explain
why they receive more attention in forecasting research. For more details regarding the
subsequently m