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Abstract

Time series forecasting is a growing area of research with diverse applications, such as
predicting the demand for a particular product or the health status of a patient. However,
this research domain faces several challenges, some of which are addressed in this thesis.
A major challenge is changing data distributions, i.e., the distribution of the data used to
train a model may differ from that of the samples processed during inference. This can
lead to inaccurate predictions, which can be problematic for downstream tasks and even
cause damage, such as financial loss in demand forecasting. Therefore, approaches are
needed that are specifically designed to handle changing data distributions and quickly
adapt a prediction model.

In this thesis, we first assess the applicability of time series forecasting approaches despite
changing data distributions for predicting demand for small and medium-sized companies
dealing with perishable goods. Sales forecasting is currently mainly used by large enterprises,
whereas lack of data and know-how are common challenges for smaller companies. For
perishable items, improved operational decisions due to accurate predictions can lead
to waste reduction besides financial benefits. That is why we chose horticulture as an
example industry. Despite having a multi-billion dollar turnover in Germany alone and
being heavily affected by the disposal of unsold items, this sector has received limited
attention in forecasting research. In a first-time comparative study using horticultural retail
sales data, we observe promising results, with the ensemble learner XGBoost showing the
best performance. However, all prediction models are limited in their ability to handle a
change in the data distribution. Finally, further research is needed to verify our results in
a broader study allowing for more general conclusions and to overcome several obstacles
that impede the practical operation of a forecasting system in this domain.

The development of novel online approaches to address changing data distributions is the
main objective of this thesis. With respect to the prediction model, we focus on Gaussian
Process Regression. We present the two already published approaches EVent-Triggered
Augmented Refitting of Gaussian Process Regression for Seasonal Data (EVARS-GPR)
and Event-Triggered Kernel Adjustments in Gaussian Process modeling (ETKA). We
further introduce an unpublished extension of the former called EVARS-GPR+. All three
approaches rely on online methods to detect a change in the data distribution during
inference. Each time a change point is detected, we adjust the prediction model with the
aim of providing up-to-date predictions at all times. Despite this similarity in terms of
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change point-triggered model adaptation, the three approaches differ in several ways. While
EVARS-GPR and EVARS-GPR+ focus on changes visible in the output scale of seasonal
data, ETKA also considers other types of changes, for instance, a shift in periodicity, as well
as non-seasonal data. The former two employ ChangeFinder for change point detection,
while we adopt a cumulative sum-based approach using the model’s prediction uncertainty
for ETKA. To allow for rapid model adaptation, EVARS-GPR reuses existing data via
augmentation, while keeping the hyperparameters unchanged. EVARS-GPR+ extends this
augmented adjustment with a non-augmented refitting for less significant changes in the
output scale. In contrast, ETKA adapts the kernel expression of the Gaussian Process
using Adjusting Kernel Search, which also accounts for other types of distributional shifts.
We show broad applicability using simulated data for both EVARS-GPR and ETKA. In
addition, we demonstrate good predictive performance of both approaches using real-world
data. Furthermore, EVARS-GPR+ outperforms EVARS-GPR on real-world data, suggesting
that the small enhancement of non-augmented refittings is beneficial. There are several
points of interest for future research based on our contributions, such as combining these
approaches by identifying the type of distributional shift and respond accordingly.

Beyond that, several forecasting competitions and comparative studies have not yielded an
overall predominant prediction model. Thus, multiple methods need to be re-evaluated
for each forecasting task while ensuring reproducibility and comparability of results. To
facilitate such comparative studies, even without expert knowledge, and to provide an
easily extensible tool for model developers, we present ForeTiS. ForeTiS is a time series
forecasting framework in Python that covers the entire pipeline from data pre-processing
over feature engineering and hyperparameter optimization to model selection. Although the
pipeline is fully automated using state-of-the-art approaches, e.g., Bayesian optimization
for hyperparameter search, ForeTiS is highly customizable. As an additional benefit, our
framework is designed for straightforward extension and quick benchmarking of novel
approaches, ensuring their accessibility. We further support users with comprehensive and
hands-on online documentation, including several video tutorials and step-by-step guides.
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Zusammenfassung

Zeitreihenprognosen sind ein wachsendes Forschungsgebiet mit zahlreichen Anwendungsfäl-
len, wie der Vorhersage der Nachfrage nach einem bestimmten Produkt oder des Gesund-
heitszustands eines Patienten. Dieses Forschungsfeld ist mit diversen Herausforderungen
konfrontiert, von denen einige in dieser Arbeit aufgegriffen werden. Eine große Herausforde-
rung sind Änderungen in der Datenverteilung, die dazu führen können, dass die Verteilung
der Trainingsdaten von der Verteilung der Stichproben während der Inferenz abweicht. Dies
kann ungenaue Vorhersagen und damit Probleme in nachgelagerten Prozessen zur Folge
haben, wie zum Beispiel finanzielle Verluste bei fehlerhaften Nachfrageprognosen. Daher
sind Ansätze erforderlich, die speziell für den Umgang mit Änderungen in der Datenvertei-
lung und für die schnelle Anpassung eines Prognosemodells konzipiert sind.

In dieser Arbeit wird zunächst die Anwendbarkeit von Methoden der Zeitreihenprognose
trotz sich ändernder Datenverteilungen für Nachfragevorhersagen bei kleinen und mittleren
Unternehmen, die mit verderblichen Waren handeln, untersucht. Absatzprognosen werden
derzeit vorwiegend von großen Firmen eingesetzt, während für kleinere Betriebe unter
anderem fehlende Daten und mangelnde Expertise herausfordernd sind. Bei verderblichen
Gütern kann eine Verbesserung der operativen Entscheidungen durch genaue Prognosen
neben finanziellen Vorteilen auch eine Reduktion der Abfallmengen bedeuten. Als An-
wendungsbeispiel wurde in der vorliegenden Arbeit der Gartenbau gewählt. Obwohl diese
Branche allein in Deutschland einen Umsatz in Milliardenhöhe erwirtschaftet, wurde sie
bisher in der Zeitreihenforschung kaum betrachtet. In einer ersten Vergleichsstudie anhand
von Einzelhandelsdaten wurden vielversprechende Ergebnisse erzielt, wobei die Ensemble-
methode XGBoost die besten Prognosen liefert. Jedoch sind alle Prognosemodelle nur
begrenzt in der Lage, mit Änderungen in der Datenverteilung umzugehen. Für allgemeinere
Schlussfolgerungen und zur Adressierung weiterer Herausforderungen bezüglich des Betriebs
eines Vorhersagesystems im Gartenbau sind weitere Forschungsarbeiten erforderlich.

Die Entwicklung neuer Methoden, die auf Änderungen in der Datenverteilung reagieren, ist
das primäre Ziel dieser Arbeit. Als Prognosemodell wurde die Gaußprozess-Regression ge-
wählt. In diesem Kontext werden die beiden bereits publizierten Methoden Event-Triggered
Augmented Refitting of Gaussian Process Regression for Seasonal Data (EVARS-GPR) und
Event-Triggered Kernel Adjustments in Gaussian Process modeling (ETKA) vorgestellt.
Außerdem wird eine bisher unveröffentlichte Erweiterung des erstgenannten Ansatzes,
EVARS-GPR+, präsentiert. Alle drei Methoden basieren auf einer Online-Erkennung von
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Änderungen in der Datenverteilung während der Inferenz. Wird eine Änderung erkannt,
wird das Prognosemodell angepasst, um stets aktuelle Vorhersagen zu gewährleisten. Trotz
dieser Ähnlichkeit hinsichtlich der Initiierung einer Modellanpassung unterscheiden sich
die drei Algorithmen in mehrfacher Hinsicht. EVARS-GPR und EVARS-GPR+ sind für
Änderungen in der Skala der Zielvariable saisonaler Daten konzipiert. ETKA hingegen
berücksichtigt auch andere Arten von Änderungen, wie zum Beispiel eine Verschiebung
der Periodizität, sowie nicht-saisonale Daten. Die ersten beiden verwenden ChangeFinder
zur Erkennung von Änderungen, wohingegen ETKA einen auf der kumulativen Summe
basierenden Ansatz nutzt, der die Vorhersageunsicherheit des Modells berücksichtigt. Um
eine schnelle Modellanpassung zu ermöglichen, verwendet EVARS-GPR vorhandene Daten
mittels Augmentierung wieder, während die Hyperparameter unverändert bleiben. EVARS-
GPR+ erweitert diese augmentierte Anpassung um eine nicht-augmentierte Nachjustierung
für weniger signifikante Änderungen des Wertebereichs der Zielvariable. Im Gegensatz dazu
adaptiert ETKA den Kernelausdruck des Gaußprozesses mit Hilfe der Adjusting Kernel
Search, wodurch auch andere Arten von Verteilungsänderungen berücksichtigt werden.
Anhand von simulierten Daten wird eine breite Anwendbarkeit sowohl für EVARS-GPR
als auch für ETKA demonstriert. Zudem zeigen beide Methoden gute Resultate für reale
Datensätze. EVARS-GPR+ übertrifft EVARS-GPR auf realen Daten, was darauf hindeutet,
dass die Erweiterung um nicht-augmentierte Modellanpassungen vorteilhaft ist. Basierend
auf diesen Erkenntnissen ergeben sich mehrere Ansatzpunkte für zukünftige Forschung,
wie beispielsweise die Kombination dieser Methoden, um mit Hilfe einer Erkennung der Art
der Verteilungsänderung entsprechend zu reagieren.

Darüber hinaus konnte in verschiedenen Studien kein führendes Prognosemodell identifiziert
werden. Daher müssen für jede Prognoseaufgabe mehrere Methoden evaluiert werden,
wobei die Reproduzierbarkeit und Vergleichbarkeit der Ergebnisse gewährleistet sein muss.
Um solche Vergleichsstudien zu vereinfachen und Modellentwicklern ein einfach zu erwei-
terndes Werkzeug zur Verfügung zu stellen, wurde ForeTiS entwickelt. ForeTiS ist ein
Zeitreihenvorhersage-Framework in der Programmiersprache Python, das den gesamten
Prozess von der Datenvorverarbeitung über die Merkmalsbestimmung und Hyperparameter-
optimierung bis hin zur Modellauswahl umfasst. Obwohl der Ablauf vollständig automatisiert
ist und moderne Ansätze, wie Bayes’sche Optimierung für die Hyperparametersuche, ver-
wendet werden, ist ForeTiS in hohem Maße anpassbar. Weiterhin ist das Framework leicht
erweiterbar, so dass neue Methoden schnell getestet werden können und leicht zugänglich
sind. Zusätzlich bietet eine umfangreiche Online-Dokumentation, einschließlich mehrerer
Video-Tutorials und Schritt-für-Schritt-Anleitungen, Unterstützung.
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Chapter 1
Introduction

Time series forecasting is a research area with diverse application domains, such as predicting
energy demand and production, demand for a certain product, or a patient’s health status.
The availability of data due to increasing digitalization and the recognition of the power
of accurate forecasts by various stakeholders, for instance, commercial enterprises and
governments, have led to continued growth in this research area (Ahmad et al., 2020; Deb
et al., 2017; Hobensack et al., 2023; Hong et al., 2019; Ingle et al., 2021; Liu & Chen,
2019; Mediavilla et al., 2022; Rajkomar et al., 2018; Sharadga et al., 2020; Yasrebi-de Kom
et al., 2023; Zhang et al., 2021). Accurate predictions of future developments, e.g., the
demand for a particular product, enable early interventions such as increasing or decreasing
production and adjusting procurement plans. Consequently improved operational decisions
are a potential competitive advantage, for instance, leading to higher revenues when
meeting an increasing demand or to lower costs when responding early to a decrease
in demand (Ivanov et al., 2019). As another example, accurate predictions of energy
consumption and renewable energy production can support the transition to sustainable
energy sources while ensuring energy security by enabling early adaptation in a smart
grid (Ibrahim et al., 2020). In addition, there are use cases in healthcare where time
series forecasting techniques could help improve patient treatment, for example, based on
electronic health records (Tomašev et al., 2021).

However, time series forecasting faces several challenges, which we outline in Section 1.2,
and some of which we address in this thesis. A major challenge in time series forecasting is
changing data distributions, i.e., the data distribution from model training and inference
during live operation of a forecasting system are different. With respect to the potential
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2 1.1. An Introduction to Time Series Forecasting

benefits of time series forecasting described above, relying on a forecasting model trained on
an outdated data distribution would be problematic. For example, for demand forecasting,
such an inaccurate prediction model could result in financial loss due to overstocking or
understocking. Moreover, in the case of smart grid applications, inaccurate forecasts could
lead to security of energy supply and grid stability problems. Therefore, changing data
distributions are an important yet unsolved challenge in time series forecasting (Ditzler
et al., 2015; Gama, 2012; Lu et al., 2019; Rossi, 2013; Žliobaitė et al., 2016). The focus
of this thesis is on self-adaptive Gaussian Process Regression (GPR), i.e., accurate and
computationally efficient approaches that enable GPR to quickly adapt online to such
distributional shifts. We also address further challenges in time series forecasting besides
changing data distributions, which is described in more detail in Section 1.4.

In the following, we first give an introduction to time series forecasting. We then outline
current challenges in the field, before reviewing related work that is relevant to the challenges
we address. Finally, we describe the objectives and contributions of this thesis. After
this introduction, we outline the material and methods relevant to this work in Chapter
2, including classical and machine learning (ML) time series forecasting approaches with
a focus on GPR as the main prediction model in this thesis. We further describe model
selection and evaluation techniques as well as change point detection (CPD) approaches.
In Chapter 3, we present the results of this thesis. This chapter consists of summaries
of four research papers, which are the main contributions of this thesis and are given in
Section 1.5.1. We then discuss the results of these papers and some more general aspects
relevant to this thesis in Chapter 4, before concluding in Chapter 5.

1.1 An Introduction to Time Series Forecasting

In time series forecasting, we consider a dataset D = {(xt, yt) | t = 1, . . . , n} containing
n ∈ N pairs of a feature vector xt ∈ Rm consisting of m ∈ N feature values and a
target value yt ∈ R at time step t ∈N. We assume that the target variable y ∈ Rn is a
time series, i.e., it can be defined as a chronologically ordered sequence of data points yt

observed at successive time steps t = 1, . . . , n, often recorded at constant intervals. Our
goal is to predict a future value ŷt+h ∈ R of the target variable y with a given forecast
horizon h ∈ N. To determine these predictions, we can use past values of the target
variable y itself, as well as m external features that influence the target values, denoted
by X ∈ Rn×m for n samples. For example, if we consider ice cream sales as the target
variable, weather-related and calendrical information, such as holidays or weekdays, may
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be predictive features. Besides the target variable y itself, some of the features can be a
time series as well, for example daily weather data (Brockwell & Davis, 2016).

A time series may contain certain patterns that describe its behavior. A common pattern
is seasonality, i.e., the time series is influenced by factors that occur with a known and
fixed periodicity, such as the day of the week. Another typical component is trend, which
reflects a long-term increase or decrease in the time series values, often following a linear
behavior. These components can be used to model a time series. Furthermore, we may
observe a cyclic behavior, i.e., the values of the time series increase and decrease with
varying frequency.

(a) Seasonal pattern (b) Negative trend pattern

(c) Seasonal with positive trend pattern (d) Multi-seasonal pattern 

Figure 1.1: Examples of time series patterns: All examples include additive noise. (a)
Seasonal behavior. (b) Negative trend pattern without seasonality. (c) Seasonal
pattern combined with positive linear trend. (d) Multi-seasonal behavior.

Figure 1.1 visualizes some of these common time series patterns. For example, Figure
1.1a shows a seasonal behavior and Figure 1.1b a negative trend pattern. In Figures 1.1c
and d, we can see combinations of patterns, i.e., seasonality with a linear increasing trend
as well as a multi-seasonal behavior. An example of the latter is ice cream sales with
annual in addition to weekly seasonality. When identifying such patterns, the number of



4 1.1. An Introduction to Time Series Forecasting

available data points should be considered. For instance, the negative trend depicted in
1.1b could also be a downward part of a long cyclical or seasonal behavior (Hyndman &
Athanasopoulos, 2021).

With respect to the operation of a time series forecasting system, we can distinguish
between the offline and the online phase. During the offline phase, we collect data to
build our prediction model. Then, we use this prediction model to predict future values
during the online phase. Usually, new samples become available in this stage that we could
employ to refine our model. Several approaches can be used for time series prediction.
In this thesis, we consider classical time series forecasting methods, e.g., Exponential
Smoothing and Autoregressive Integrated Moving Average (ARIMA), see Section 2.1, as
well as ML-based approaches described in Sections 2.2 and 2.3. Regarding the former,
we include univariate models that use only the target time series y, besides multivariate
approaches, which additionally leverage features X that influence the target variable.
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Figure 1.2: A common procedure in a time series forecasting project: After collecting
the raw target time series, the data must be cleaned and missing values may
need to be imputed. Then, in the case of a multivariate prediction model,
feature engineering must be performed. Using this dataset, model selection,
including hyperparameter optimization and model training, can be performed
to finally select a model with the best hyperparameter configuration based on
the results on validation data, see Section 2.4 for more details. Finally, we can
evaluate the generalization ability of the model on unseen data.

We visualize a typical procedure in a time series forecasting project in Figure 1.2. First, we
need to collect historical data on the target time series. Then, we may need to clean up the
data, e.g., handle outliers and missing values. For instance, we may want to impute missing
values by employing methods such as mean and k-Nearest Neighbor (k-NN) imputation.
In the next step, we can add features that influence the target variable to enable the
application of multivariate prediction models. For external features, we may also need to
collect historical observations, e.g., when integrating weather data. We can further infer
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additional features, i.a., statistical information about these external factors and the target
variable. For example, past sales of a certain product may be relevant to future demand.
Some of these features may also require a pre-processing step, e.g., due to outliers or
missing values. Depending on the number of features and samples, we may additionally
include dimensionality reduction approaches, such as Principal Component Analysis (PCA).
With the resulting dataset, we can perform the hyperparameter optimization and training
for each prediction model we consider in a study. Using these results, we can select the
best-performing model with its best-fitting hyperparameters on the basis of validation data.
For more details on this step, see Section 2.4. Finally, we can evaluate the generalization
ability of the model on unseen data. In time series forecasting, this can be combined with
simulating the live operation of a forecasting system with continuously incoming new data
and potential model updates (Hyndman & Athanasopoulos, 2021; Meisenbacher et al.,
2022).

1.2 Current Challenges in Time Series Forecasting

Time series forecasting faces several challenges, some of which are outlined in the following.
A major issue in time series forecasting, and the focus of this thesis, is changing data
distributions. In ML, we usually aim to build a well-generalizing model based on a dataset
that reflects the entire system behavior. Therefore, it is common to train a prediction
model on data collected offline and use it to predict a certain outcome based on unseen
data, assuming that the data distribution does not change. However, this assumption is
often not true for time series forecasting. Sudden changes in system behavior are a common
problem that can be caused by external or internal influences. For example, operational or
strategic decisions may affect sales of a certain product. In addition, external factors, such
as the outage of a major consumer in the case of energy demand forecasting or the recent
SARS-CoV-2 pandemic affecting sales in various industries, may be influential. Some of
these factors can be considered as features when building a forecasting system, but probably
not all of them, e.g., due to lack of historical data, unavailability of a continuous data
source, or when an influence is unknown in the first place. A change in the generative data
distribution can lead to an outdated prediction model. Continuing to use such a prediction
model during live operation of a forecasting system and deriving operational decisions
based on it could cause damage, for instance, financial loss in case of a misestimation of
demand. We can distinguish between different types of data distribution changes, although
there are varying definitions in the literature. For example, concept drift can be defined as



6 1.2. Current Challenges in Time Series Forecasting

a change in the joint probability distribution of the features and the target variable, and
data or covariate drift refers to a change in the distribution of a model’s inputs, i.e., the
features. Since in both cases an adaptation of the prediction model is required, we refer
to these phenomena as changing data distributions or distributional shifts. Detecting and
adapting to such a change in system behavior during the online phase is difficult. With
respect to detection, we are in a trade-off between preventing false alarms, e.g., in case
of outliers, and ensuring a quick reaction of the forecasting system. Furthermore, if we
react early, we only have a few samples of the new data distribution available to adapt the
prediction model. Therefore, handling changes in the data distribution, especially during
the online phase, requires specific approaches that take these circumstances into account
(Ditzler et al., 2015; Gama, 2012; Lu et al., 2019; Rossi, 2013; Žliobaitė et al., 2016).

An application of time series forecasting with great potential is demand prediction. Accurate
predictions of future demand enable early operational decisions to meet increases in demand
or reduce costs in the event of a decrease. Currently, demand forecasting is mainly used
by large enterprises such as Amazon and Walmart (Böse et al., 2017; Fildes et al., 2022;
Seaman & Bowman, 2022). However, especially for small and medium-sized companies,
which often have less financial flexibility, the accurate adjustment of procurement and
production can be a significant competitive advantage. Thus, time series forecasting is an
opportunity for such companies, but there are often challenges, e.g., a lack of know-how
and budget. Moreover, many state-of-the-art approaches such as DeepAR require large
amounts of data that may not be available (Benidis et al., 2022; Salinas et al., 2020). It is
particularly important to be able to adapt procurement and production quickly and early
when working with perishable goods that can only be kept in stock for a short period of
time. For such products, the disposal of unsold items in overstock situations results in
financial loss as well as environmental damage due to wasted resources in production and
transportation (Duan et al., 2012). The challenge of changing data distributions described
above can be especially problematic for smaller companies with fewer financial resources.
Financial losses due to inaccurate forecasts may be harder for these companies to deal with,
in particular if storing unsold items is not an option due to perishability. A domain that
is highly affected by these issues is horticulture. Most horticultural businesses are small
and medium-sized, and this sector deals with perishable goods such as ornamental plants
(Bundesministerium für Ernährung und Landwirtschaft, 2021). Furthermore, demand
for horticultural products tends to be highly seasonal, subject to sudden changes, and
influenced by several external factors, for instance, holidays and weather. These properties
make manual forecasting difficult, and in addition, both external and internal factors can
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cause changing data distributions. Even though the horticultural industry generates billions
in annual sales in Germany alone (Zentralverband Gartenbau e.V., 2022), there are no
scientific publications using time series forecasting approaches to predict horticultural sales.
Thus, horticulture is a good example to evaluate time series forecasting for sales prediction
in small and medium-sized companies that deal with perishable products and for which
changing data distributions are particularly challenging.

As outlined in Section 1.1, multiple classical as well as ML-based approaches for time
series forecasting exist. However, several forecasting competitions and comparative studies
have not resulted in an overall predominant prediction method (Bojer & Meldgaard, 2021;
Makridakis & Hibon, 2000; Makridakis et al., 2018, 2022). Thus, a re-evaluation of various
prediction models is required for every new time series forecasting task. For this purpose,
an easy-to-use and easy-to-extend comprehensive time series forecasting framework would
be beneficial for both end users and model developers. Besides simplifying the application
of state-of-the-art time series forecasting approaches, such a framework can help to ensure
reproducibility and comparability of results through a unified pipeline.

The example described above in Figure 1.1b, where a negative trend pattern could be
incorrectly identified due to a lack of data, shows that the amount of data collected offline
can affect the quality of the initial prediction model. When considering the data collection
process for a time series forecasting project, an additional challenge is the need for historical
observations of the system behavior. If not already recorded, it may even take years to
collect a meaningful number of samples in the case of a time series with annual seasonality.
Consequently, the start of a time series forecasting project would also be delayed (Hyndman
& Athanasopoulos, 2021; Shumway & Stoffer, 2000).

A well-known and often neglected problem in demand forecasting is that typically sales
figures are collected, which can be used to only approximate demand. However, the
true demand is not known because it may have been higher, for example, in out-of-stock
situations. If stock quantities are recorded, they could be used to better estimate the real
demand, e.g., by including them in the forecasting system or by imputing out-of-stock
situations, but still without knowing the exact demand figures (Fildes et al., 2022). In this
thesis, we use the terms sales and demand forecasting as synonyms, since stock recordings
to distinguish between both are not available for the data we employ.
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1.3 Related Work

In the following, we present related work with respect to the current challenges that are
addressed in this thesis. Predicting horticultural demand, as outlined, is a good example to
assess the challenges and applicability of time series forecasting for small and medium-sized
companies dealing with perishable products. Furthermore, horticultural sales are affected
by various internal and external factors that can cause a change of the data distribution,
making this domain suitable to assess this challenge on real-world data. Since there
are no scientific publications on horticultural demand forecasting, domains with similar
characteristics could provide some guidance. Therefore, we first provide an overview of
time series forecasting applications for predicting food and tourism demand. We then
describe several approaches specifically designed for changing data distributions, the main
challenge addressed in this thesis. Finally, we provide information on currently available
time series forecasting frameworks that allow the use of multiple prediction models while
ensuring reproducibility and comparability of results.

1.3.1 Demand Forecasting in Domains Similar to Horticulture

Similar to horticulture, food companies often deal with perishable items such as baked
goods or agricultural products, e.g., vegetables and fruits. In addition to perishability,
the demand for many of these products is often also seasonal (Tsoumakas, 2019). In
contrast to horticulture, several comparative studies have been published evaluating classical
forecasting and ML-based approaches for predicting food demand. In addition to the market
size, food enterprises are often bigger than horticultural companies, which may explain
why they receive more attention in forecasting research. For more details regarding the
subsequently mentioned prediction methods, see Sections 2.1, 2.2, and 2.3. Shukla and
Jharkharia (2011) evaluate the applicability of time series forecasting methods to predict
sales of onions in an Indian market using the univariate classical model ARIMA. With
the seasonal extension of ARIMA, Seasonal Autoregressive Integrated Moving Average
(SARIMA), Sankaran (2014) achieves lower percentage errors when trying to forecast sales
figures of onions in wholesale. In contrast to these studies, Arunraj and Ahrens (2015)
and Arunraj et al. (2016) consider external factors in a Seasonal Autoregressive Integrated
Moving Average with eXogenous factors (SARIMAX) model to forecast retail sales of
bananas in a German supermarket. The external factors are modeled using multiple linear
regression and quantile regression, respectively, and are combined with the regular SARIMA
model. In their study, the SARIMA model combined with quantile regression outperforms
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a Multilayer Perceptron (MLP). Žliobaitė et al. (2012) take into account that some time
series are difficult or even impossible to predict because they follow a random pattern. Thus,
they develop a two-step approach. They first categorize time series into predictable and
random. Then, they use a moving average for the latter and train a linear regression, k-NN,
or regression tree to predict the former. In a more recent comparative study, Priyadarshi
et al. (2019) include a recurrent neural network with Long Short-Term Memory (LSTM)
cells, a classical ML-based technique, namely Support Vector Regression (SVR), and the
ensemble methods Random Forest and XGBoost. The authors aim to predict daily sales of
tomatoes, potatoes, and onions and observe that the LSTM network and SVR perform
best. This result is in contrast to (Turgut & Erdem, 2022), where XGBoost performs
better than an LSTM network and SARIMA in predicting vegetable and fruit sales.

While fruits and vegetables usually have a shelf life of a few days or weeks, bakery products,
such as rolls and pretzels, often have to be sold within a few hours. Typically, large bakeries
deliver to stores on a daily basis, but often articles need to be prepared for sale in the
store, e.g., frozen items need to be baked. Thus, besides daily sales forecasts, intraday
demand is highly relevant for scheduling this preparation (Huber, 2019). Huber et al.
(2017) propose a decision support system employing Autoregressive Integrated Moving
Average with eXogenous factors (ARIMAX) to forecast sales in a bakery chain. The authors
conclude that predicting sales in clusters based on intraday patterns containing substitutional
products provides similar results to item-by-item forecasting with less computational cost.
In another publication focusing on sales on special days such as holidays, Huber and
Stuckenschmidt (2020) observe advantages for the neural network-based approaches MLP
and LSTM for time series with a history of more than 150 days. For an extension of their
work with the goal of retrieving daily and intraday demand forecasts, they employ also
an LSTM network. In addition to internal sales data, they include external factors such
as calendar and weather information, as well as features characterizing the sales location.
On a dataset of 14 products, nine stores, and 987 days, an LSTM network consistently
performs best (Huber, 2019; Huber & Stuckenschmidt, 2021). Yang and Sutrisno (2018)
utilize early morning sales to predict demand for bakery products for the remainder of the
day, concluding that an MLP performs best. In an earlier study, Doganis et al. (2006) use a
radial basis function neural network with a genetic algorithm to predict a dairy company’s
fresh milk sales. Liu and Ichise (2017) combine an LSTM network with an autoencoder,
i.e., a second neural network, to predict sales of beverages as an example of a product
for which meteorological data strongly influence demand. Their method outperforms an
LSTM network and gradient boosted trees, among others.
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Both in tourism and horticulture, demand is characterized by strong seasonality with
sudden changes and influenced by several external factors such as weather and holidays.
Thus, tourism is a domain that could provide insights for horticultural sales forecasting.
Athanasopoulos et al. (2011) describe a forecasting competition with 366 monthly, 427
quarterly and 518 annual time series restricted to the tourism sector. In this competition,
including univariate approaches and methods using explanatory features, the former deliver
a better performance. In a more recent review paper, Jiao and Chen (2019) provide
an overview of methodological improvements in tourism forecasting from 2008 to 2017,
reviewing 72 studies published during this period. The authors also identify that classical
time series forecasting approaches are still widely used, while they observe a trend towards
incorporating external features, e.g., online search engine data. Furthermore, ML-based
approaches became more popular, often in an ensembled form. Several other review papers
on tourism demand forecasting exist, i.a., (Witt & Witt, 1995), (Song & Li, 2008), (Peng
et al., 2014), (Wu et al., 2017), and (Song et al., 2019). Song et al. (2019) present a
comprehensive review based on 211 papers published between 1968 and 2018, focusing on
the most influential publications in terms of citations. The authors also observe a trend
towards hybrid models combining different approaches and an increasing use of ML-based
approaches, especially due to the increase of online data. However, they also conclude that
there is no overall predominant prediction method.

1.3.2 Approaches Addressing Changing Data Distributions

Since changing data distributions are a major challenge in time series forecasting, approaches
are needed that specifically address this problem. A common and straightforward solution
is to periodically refit a prediction model with sequentially incoming new data samples. An
initial prediction model is first trained and optimized using historical data. Then, as new
samples become available during the online phase, this prediction model is periodically
retrained at regular intervals, either by keeping the model’s hyperparameters fixed or by
even performing a hyperparameter optimization. For this retraining, old samples may be
discarded in order to focus on newer ones and to lower the runtime. However, periodical
refitting can be computationally exhaustive depending on the retraining frequency, especially
in the case of unnecessary model updates when the data distribution has not changed. On
the other hand, less frequent refittings would save computational resources but could lead
to extended periods of using an outdated prediction model during the live operation of a
forecasting system (Huber, 2019; Hyndman & Athanasopoulos, 2021).
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With respect to other methods for handling changing data distributions, we focus on
approaches that use GPR, as this is the prediction model that is used in the contributions
of this thesis addressing this challenge. We have chosen GPR, which is described in more
detail in Section 2.3.2, because of its many advantages such as its inherent provision of
prediction uncertainties and its good performance in a first comparative study, see Section
3.1. Periodical refitting as described above is also possible for GPR, either on a certain
window of current samples or on the whole dataset, and with fixed or even optimized
hyperparameters (Perez-Cruz et al., 2013). Garnett et al. (2009) introduce an additional
hyperparameter in the covariance function of a Gaussian Process (GP) model to account
for change points, i.e., time steps at which the data distribution changes. However, their
approach assumes a single change point within a pre-defined window size. Saatçi et al.
(2010) use GPs within Bayesian Online Change Point Detection (BOCPD), primarily to
accurately detect change points online. A common technique for finding a kernel, one
of the most important components of a GP model, is the Compositional Kernel Search
(CKS), see Section 2.3.2. This search algorithm has been extended to Automatic Bayesian
Covariance Discovery (ABCD) in order to account for change points. Change points
are modeled by multiplying a kernel expression by a sigmoidal function, which results
in transitioning between parts of the entire kernel expression at pre-defined time steps
(Duvenaud, 2014; Lloyd et al., 2014). Thus, change points are not determined online. The
approach of Liu et al. (2015) requires the definition of certain steady states associated
with a specific prediction model. During the online phase, the forecasting system can then
automatically switch between them or train a new one if no pre-trained model is declared
reliable for a particular data point. This approach also requires a priori knowledge to define
steady states and train individual models for them, which is possible for some technical
processes. The authors later extended this work by using fuzzy c-means clustering to
partition data samples for training local GPR models. For inference, these local predictors
are included in an ensemble weighted by their probability to obtain the final prediction
value (Liu & Gao, 2015). Jin et al. (2015) follow a similar idea, but propose a new
procedure for clustering the data samples and use online adaptation of the local predictors
previously trained on individual data clusters. Moving-Window GPR is another approach
that combines a periodical adaptation using the latest samples within a fixed window
with a dual updating and pre-processing strategy. With respect to the dual updating,
Moving-Window GPR updates the mean and variance used to normalize the data, as well
as a bias term based on past model errors to correct current predictions. Furthermore, the
authors use a Savitzky-Golay filter (Savitzky & Golay, 1964) for noise reduction on the
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covariates and the target variable (Ni et al., 2012). GP-non-Bayesian clustering (GP-NBC)
is designed for real-time CPD and regression, with emphasis on computational efficiency
and robustness to changing data distributions. For computational efficiency, GP-NBC
separates the tasks of CPD, prediction, and model reidentification. In this algorithm, a GP
model predicts the next value before being updated with the current sample and stored in
a queue of a certain size. For CPD, a likelihood ratio test is performed, buffering a number
of samples equal to the size of the model queue. A new candidate GP model is then
trained with this data. If a significant deviation of the likelihood ratio is detected, a change
point is declared and a new predictor is initialized. For model reuse, a likelihood ratio test
is again performed to determine whether a new predictor is significantly different from
previous models (Grande et al., 2017). The INstant TEmporal structure Learning (INTEL)
algorithm first trains a template GPR model based on data collected offline. Using this
template, an ensemble is created by varying hyperparameters based on assumptions about
changes that can occur during live operation. For inference, the individual predictions are
combined based on the likelihood of a new observation given each model. A drawback of
INTEL is that potentially occurring changes must be assumed a priori (Liu et al., 2020).

1.3.3 Time Series Forecasting Frameworks

Forecasting competitions and comparative studies have not yielded an overall predominant
method, thus requiring the re-evaluation of different prediction models for each time series
forecasting task (Bojer & Meldgaard, 2021; Makridakis & Hibon, 2000; Makridakis et al.,
2018, 2022). To ensure reproduciblity and comparability of results, a user-friendly and
automated framework that covers the entire time series forecasting pipeline from data
pre-processing over feature engineering to hyperparameter optimization, model selection,
and results analysis would be beneficial. Furthermore, a framework should allow for
straightforward extension, besides already integrating state-of-the-art prediction methods,
to support the development and benchmarking of new forecasting approaches. Meisenbacher
et al. (2022) conclude in a recent review paper that no such framework currently exists, most
of the available ones covering only parts of the time series forecasting pipeline. In this thesis,
we focus on Python as one of the most widely-used programming languages, especially in
data science. Several Python libraries are available for ML in general. Frameworks such
as statsmodels (Seabold & Perktold, 2010), scikit-learn (Pedregosa et al., 2011),
PyTorch (Paszke et al., 2019), and TensorFlow (Abadi et al., 2015) are intended for
specific types of prediction models, for instance neural networks with respect to the latter
two. However, these libraries are not specifically designed for time series forecasting, but
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provide important functionality for parts of the pipeline. Beyond that, there are several
AutoML frameworks that fully automate the entire ML pipeline, i.a., auto-sklearn (Feurer
et al., 2015), and AutoKeras (Jin et al., 2023). Furthermore, AutoGluon (Erickson et al.,
2020) and HyperTS (Zhang et al., 2022) also include time series prediction capabilities.
However, AutoML libraries usually provide a rather high-level interface, making them a
useful tool for end users without providing insights into what is actually happening in the
background, and often offering restricted customization options. Thus, such frameworks
may be less interesting for model developers due to limited extensibility and for research
in general, where it is essential to understand the background procedures (Alsharef et al.,
2022). There are several publications that present Python libraries designed for specific
parts of the time series forecasting pipeline, such as (Bauer et al., 2020), (Züfle & Kounev,
2020), and (Martínez et al., 2019), for which Meisenbacher et al. (2022) give an overview.
Darts (Herzen et al., 2022) and sktime (Löning et al., 2019) are two powerful frameworks
providing various time series prediction models. However, both are limited with respect to
hyperparameter optimization. For example, they do not integrate state-of-the-art Bayesian
optimization, see Section 2.4. This observation also applies to Merlion (Bhatnagar et al.,
2021), which additionally provides a graphical user interface. pyWATTs (Heidrich et al.,
2021) has recently been released with the goal of covering the entire time series forecasting
pipeline. Beyond that, PyCaret (Moez, 2023) integrates time series forecasting capabilities
since one of its recent releases, but without including a neural network specific library, for
instance, PyTorch. These libraries have in common that a user needs to write several lines of
code to perform a comparative study, which may require expert knowledge. Moreover, they
do not provide a command line interface, which could be helpful for a straightforward setup
and deployment on multiple machines in combination with containerization, e.g., via Docker
(Merkel, 2014). In summary, there are many libraries available for time series forecasting,
with a large community maintaining them and developing new functionality. However,
there is currently a lack of a comprehensive framework that allows for straightforward,
customizable, and reproducible application on multiple machines, including various already
integrated prediction models of different types, providing state-of-the-art fully-automated
hyperparameter optimization, and allowing for rapid integration and benchmarking of novel
approaches.
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1.4 Objectives of this Thesis

Focusing on changing data distributions, this thesis intends to address some of the challenges
described in Section 1.2, which leads to the objectives outlined subsequently.

Objective 1: Assess the potential and limitations of time series forecasting ap-
proaches for predicting sales for small and medium-sized companies dealing with
perishable goods in the presence of changing data distributions. As mentioned
above, small and medium-sized companies dealing with perishable products could gain a
competitive advantage by leveraging accurate demand forecasting. However, changes in the
data distribution resulting in inaccurate predictions are a risk, especially for less financially
strong companies. In this thesis, we aim to (i) evaluate the potential and limitations of
time series forecasting approaches in predicting demand for perishable products of such
companies, and (ii) assess potential limitations due to changing data distributions using
real-world data. As an example, we select the horticultural sector, a domain with annual
sales in the billions in Germany alone, which is affected by the disposal of unsold items
but has received only limited attention in forecasting research. Furthermore, horticultural
sales show scientifically interesting characteristics such as strong seasonality and many
influencing external factors. These factors, as well as operational and strategic decisions,
can further lead to a shift in the data distribution. For a first proof of concept, we use
retail sales data, the level of trade that is closest to the end customer and thus most likely
to be influenced by external factors such as weather and holidays. We assess both classical
time series forecasting as well as frequentist and probabilistic ML-based approaches, which
are outlined in Chapter 2, for this prediction task. Based on the results of this study, we
can decide whether the time series forecasting methods used have the potential to predict
horticultural sales accurately enough. In addition, this study allows for the assessment of
limitations due to distributional shifts that may be present in the data, i.e., whether the
employed prediction models are able to handle such changes in a real-world setting. Our
findings can then be transferred to a broader comparative study using data from companies
across the entire value chain, and provide guidance for the development of approaches
addressing changes in the data distribution.

Objective 2: Develop novel computationally efficient methods that can quickly
adapt to changing data distributions during live operation of a forecasting system.
Changing data distributions are a challenge for time series forecasting systems, especially
during live operation. The use of outdated prediction models trained on a previous data
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distribution can cause damage, e.g., financial loss. Therefore, methods that quickly adapt
to such changes are essential. We aim to develop novel online approaches for this purpose,
focusing on computational efficiency and fast adaptation to a changed data distribution
to allow for integration into a real-world forecasting system. The primary objective is to
provide up-to-date predictions at all times while considering a potential trade-off with
computational efficiency. In order to assess the applicability and limitations, we evaluate
our newly developed approaches on simulated data with pre-defined characteristics and
on real-world data from different domains. Regarding the prediction model, we focus
on GPR, see Section 2.3.2, a probabilistic approach with good performance in several
studies and providing prediction uncertainties that are potentially useful for subsequent
applications. Based on the assumptions for the design of an algorithm addressing this
challenge, Objective 2 can be further divided into two subgoals:

Objective 2A: Develop a novel computationally efficient online method that can
quickly adapt to a change in the output scale of seasonal data. Seasonality, i.e.,
periodic system behavior, is a pattern that many time series show. This property can
be advantageous for detecting a change in the data distribution, since we can compare
current data points to previous seasons. Furthermore, a distributional shift may be visible
in the scale of the target variable, leading to higher or lower values, but not change the
system behavior entirely. We aim to exploit these two properties to develop a novel and
computationally efficient online method that allows for rapid adaptation of a prediction
model while focusing on changes in the output scale of seasonal data. These assumptions
can be beneficial for the algorithm development and are not a major limitation due to their
commonness.

Objective 2B: Develop a novel and computationally efficient method that can
quickly adapt online to various types of distributional shifts. Nevertheless, other
types of distributional shifts may require different detection and adaptation mechanisms,
e.g., a new kernel search in case of GPR. Therefore, we aim to develop a novel approach
that accounts for different types of distributional shifts and adapts a prediction model
accordingly during the online phase. Besides not being limited to output scale changes,
this method should also be able to handle non-seasonal time series. Thus, by making
fewer assumptions, we aim to achieve a broader applicability, which may be at the cost of
computational efficiency as well as speed and accurateness of model adaptation compared
to the more specific scenario of Objective 2A.
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Objective 3: Enable reproducibility and comparability of results and facilitate
accessibility of novel approaches through a fully-automated, user-friendly and easy-
to-extend time series forecasting framework. Several forecasting competitions and
comparative studies have shown the need to re-evaluate different prediction models for each
new time series forecasting task. However, as outlined in Section 1.3.3, there is currently
no comprehensive, easy-to-use, and easy-to-extend framework available to perform such
studies. A key issue in this context is to ensure reproducible and comparable results. Hence,
we aim to address this challenge by developing a novel time series forecasting framework
that covers the entire workflow and employs state-of-the-art approaches. For ease of use,
the pipeline should be fully automated but allow for customization. Furthermore, it should
pre-integrate various classical forecasting and ML-based prediction models, while allowing
for rapid integration and benchmarking of novel approaches. Hence, we also want to
facilitate the accessibility of newly developed methods, for instance, ours with respect to
Objective 2. In this way, we aim to provide a powerful resource for both end users and
model developers. The framework should be available with a command line interface and as
a programming library, both of which require only a single line of code to run a comparative
study. In addition, users need to be supported with comprehensive and hands-on online
documentation.

1.5 Contributions

The aforementioned objectives of this thesis are addressed in four publications, for which
detailed summaries and author contributions are given in Chapter 3. During my PhD, I
further contributed to the four research papers that are outlined in a second subsection
below. Since these are not main contributions of this thesis, the topics and author
contributions are briefly described without detailed summaries.

1.5.1 Main Contributions

One of the objectives of this thesis is to assess the applicability of time series forecasting
methods to predict the sales of small and medium-sized horticultural companies in the
presence of distributional shifts. For this purpose, we use horticultural retail sales data in a
first-time comparison of classical time series forecasting and ML-based approaches to predict
sales for products such as potted plants, cut flowers, and shrubs. Our comparative study
further allows to evaluate prediction results with and without changes in the data distribution
based on a real-world example. This research resulted in the following publication, which
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we describe in more detail in Section 3.1:

Publication A:

Florian Haselbeck, Jennifer Killinger, Klaus Menrad, Thomas Hannus, and Do-
minik G. Grimm (2022). Machine Learning Outperforms Classical Forecasting on
Horticultural Sales Predictions. Machine Learning with Applications, 7, 100239.
https://doi.org/10.1016/j.mlwa.2021.100239

With respect to the general problem of changing data distributions, we observe that all
prediction models are limited in handling this challenge despite periodical model refittings.
We therefore address this issue in two further research papers. In a first publication,
described in detail in Section 3.2, we focus on changes in the output scale and seasonal
data, see Objective 2A. In the resulting paper given below, we apply CPD methods to
trigger an augmented refitting of a GPR model. By augmenting existing data, we allow for
a quick adjustment of the current prediction model.

Publication B:

Florian Haselbeck and Dominik G. Grimm (2021). EVARS-GPR: EVent-Triggered
Augmented Refitting of Gaussian Process Regression for Seasonal Data. KI 2021:
Advances in Artificial Intelligence, 12873, 135–157. https://doi.org/10.1007/978-3-
030-87626-5_11

To ensure an up-to-date model delivering useful predictions at all times for other data
distribution changes as well, e.g., a shift of the periodicity, we extended our work addressing
Objective 2B. This goal requires searching for a new kernel expression of the underlying
GPR model, for which we use the efficient Adjusting Kernel Search (AKS), see Section
2.3.2. To trigger this model adjustment, we also employ an online CPD method. For more
details on the following publication, we refer to Section 3.3.

Publication C:

Jan D. Hüwel∗, Florian Haselbeck∗, Dominik G. Grimm and Christian Beecks (2022).
Dynamically Self-adjusting Gaussian Processes for Data Stream Modelling. KI 2022:
Advances in Artificial Intelligence, 13404, 96-114. https://doi.org/10.1007/978-3-
031-15791-2_10
∗Both authors contributed equally and share first authorship.

A further problem in this field is the need for a comprehensive, easily extensible, and
user-friendly time series forecasting framework. This is required to ensure reproducible and
comparable results as well as to facilitate accessibility of novel methods, such as the ones

https://doi.org/10.1016/j.mlwa.2021.100239 
https://doi.org/10.1007/978-3-030-87626-5_11
https://doi.org/10.1007/978-3-030-87626-5_11
https://doi.org/10.1007/978-3-031-15791-2_10 
https://doi.org/10.1007/978-3-031-15791-2_10 
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presented in the two publications given above. Therefore, we have developed ForeTiS,
an easy-to-use Python framework that fully automates the entire time series forecasting
pipeline. Our framework applies state-of-the-art methods, e.g., Bayesian optimization
for hyperparameter tuning, and allows for rapid integration and benchmarking of new
forecasting approaches. ForeTiS is published in the following research paper, see Section
3.4 for more details.

Publication D:

Josef Eiglsperger∗, Florian Haselbeck∗ and Dominik G. Grimm (2023). ForeTiS: A
comprehensive time series forecasting framework in Python. Machine Learning with
Applications, 12, 100467. https://doi.org/10.1016/j.mlwa.2023.100467
∗Both authors contributed equally and share first authorship.

1.5.2 Further Contributions

The four above-described main contributions of this thesis are related to three further
research papers in which I have been involved. The relationships to the main publications,
the topics addressed, and the individual author contributions are briefly outlined below,
without detailed summaries of the content.

The time series forecasting framework ForeTiS presented in Publication D is based on
the design and implementation of easyPheno, which has been developed for phenotype
prediction, a field of research in bioinformatics. Despite this different application domain,
the design principles, e.g., to simplify the integration of new prediction models and several
parts of the code, i.a., the fully-automated hyperparameter optimization, have been
transferable.

Florian Haselbeck∗, Maura John∗ and Dominik G. Grimm (2023). easyPheno: An
easy-to-use and easy-to-extend Python framework for phenotype prediction using
Bayesian optimization. Bioinformatics Advances, 3. https://doi.org/10.1093/bioadv/
vbad035
∗Both authors contributed equally and share first authorship.

Florian Haselbeck, Maura John, and Dominik G. Grimm designed the software package.
Maura John implemented the data pre-processing and the synthetic data generation,
with contributions from Dominik G. Grimm. Florian Haselbeck wrote the code for the
fully-automated hyperparameter optimization, the prediction models, including their easy-to-
extend structure, the results analysis, and the surrounding parts for the pipeline automation.

https://doi.org/10.1016/j.mlwa.2023.100467
https://doi.org/10.1093/bioadv/vbad035
https://doi.org/10.1093/bioadv/vbad035
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Florian Haselbeck and Maura John created the online documentation as well as the initial
draft of the manuscript, which was reviewed and edited by Dominik G. Grimm.

We employed easyPheno to conduct a comparative study of classical and ML-based
phenotype prediction models, both on simulated and real-world data. This research resulted
in the following publication:

Maura John∗, Florian Haselbeck∗, Rupashree Dass, Christoph Malisi, Patrizia
Ricca, Christian Dreischer, Sebastian J. Schultheiss and Dominik G. Grimm (2022).
A comparison of classical and machine learning-based phenotype prediction meth-
ods on simulated data and three plant species. Frontiers in Plant Science, 13.
https://doi.org/10.3389/fpls.2022.932512
∗Both authors contributed equally and share first authorship.

Maura John, Florian Haselbeck, and Dominik G. Grimm designed the study. Rupashree
Dass, Christoph Malisi, Patrizia Ricca, Christian Dreischer, and Sebastian J. Schultheiss
provided and prepared two real-world breeding datasets. Maura John prepared the data of
the model organism Arabidopsis thaliana and generated the synthetic datasets. Florian
Haselbeck and Maura John performed all experiments and comparative as well as statistical
analyses. Maura John, Florian Haselbeck, and Dominik G. Grimm analyzed and interpreted
the results. Maura John, Florian Haselbeck, and Dominik G. Grimm wrote the manuscript,
with contributions from the further authors.

Beyond that, the code base of ForeTiS and easyPheno was further transferred to another
bioinformatics problem, namely the prediction of protein thermophilicity. This enabled us
to quickly develop and benchmark new approaches for this domain, including a protein
language model-based classifier, which outperforms the current state-of-the-art.

Florian Haselbeck, Maura John, Yuqi Zhang, Jonathan Pirnay, Juan Pablo Fuenzalida-
Werner, Rubén D. Costa and Dominik G. Grimm (2023). Superior Protein Ther-
mophilicity Prediction With Protein Language Model Embeddings.
currently under review

Florian Haselbeck, Maura John, and Dominik G. Grimm designed the study and the archi-
tecture of the novel prediction model. Maura John and Yuqi Zhang collected, reviewed, and
prepared the data. Florian Haselbeck implemented the analysis pipeline, with contributions
from Jonathan Pirnay for the transformer-based models. Florian Haselbeck and Maura
John conducted all experiments. Florian Haselbeck, Maura John, and Dominik G. Grimm
analyzed and interpreted the results. Florian Haselbeck, Maura John, and Dominik Grimm

https://doi.org/10.3389/fpls.2022.932512
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created the manuscript, with support from Jonathan Pirnay, Yuqi Zhang, Juan Pablo
Fuenzalida-Werner, and Rubén D. Costa.

I further contributed to the following publication, which is topic-wise not related to the
main contributions of this thesis, by running parts of the experiments, supporting with
results analysis, as well as reviewing and editing the manuscript. In this work, we leverage
a deep learning (DL)-based approach to identify weeds in sorghum fields using images
collected by a drone.

Nikita Genze, Raymond Ajekwe, Zeynep Güreli, Florian Haselbeck, Michael Grieb,
Dominik G. Grimm (2022). Deep learning-based early weed segmentation using motion
blurred UAV images of sorghum fields. Computers and Electronics in Agriculture,
202(C), 107388. https://doi.org/10.1016/j.compag.2022.107388

https://doi.org/10.1016/j.compag.2022.107388


Chapter 2
Material and Methods

In the following, we present the material and methods relevant to this thesis. First, we outline
classical time series forecasting methods, before explaining frequentist and probabilistic
machine learning (ML) approaches that can be applied for time series prediction. In
Section 2.3, we focus on Gaussian Process Regression (GPR), which is a key component
for two of the main contributions of this thesis. Section 2.4 describes model selection
and hyperparameter optimization techniques. Finally, we introduce change point detection
(CPD) methods that are important for this work.

2.1 Classical Time Series Forecasting Methods

Recalling the problem formulation that is given in the introduction, we consider a dataset
D = {(xt, yt) | t = 1, . . . , n} containing n ∈ N pairs of a feature vector xt ∈ Rm

consisting of m ∈ N feature values and a target value yt ∈ R at time step t ∈ N.
Classical forecasting methods aim to predict future sequences by using chronologically
ordered time series data, of which they usually retrieve statistical information for projection.
While univariate approaches use only the time series of the target variable y ∈ Rn containing
n target values yt observed at successive time steps t, multivariate methods additionally
consider the m external features collected in X ∈ Rn×m for the whole dataset with n
samples. Two common univariate classical forecasting models are Exponential Smoothing
and Autoregressive Integrated Moving Average (ARIMA). In its basic form, Exponential
Smoothing predicts a weighted average of past time series values with exponentially
decaying weights to place more emphasis on more recent observations (Brown, 1956).
This can be extended with a trend and seasonal component to additionally capture such

21
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properties, which can be modeled in an additive or multiplicative way (Holt, 1957; Winters,
1960). Using the additive formulation, the predicted value ŷt+h ∈ R at time step t + h
with the forecast horizon h ∈N can be determined as

ŷt+h = lt + (ρ + ρ2 + · · ·+ ρh)vt + ct−nseas+⌊(h−1) mod nseas⌋+1 (2.1)

with the floor function ⌊x⌋ giving the largest integer value less than or equal to x, the
seasonal length nseas ∈ N, and the damping parameter ρ ∈ ]0, 1] to model a damped
trend, for which ρ = 1 is equal to a linear trend. The level lt ∈ R, the trend component
vt ∈ R, and the seasonal part ct ∈ R at time step t are further defined as

lt = α(yt − ct−nseas) + (1− α)(lt−1 + ρvt−1)

vt = β(lt − lt−1) + (1− β)ρvt−1

ct = γ(yt − lt−1 − vt−1) + (1− γ)ct−nseas

(2.2)

with α ∈ [0, 1], β ∈ [0, 1], and γ ∈ [0, 1] being the smoothing parameters of the level,
trend and seasonal component, respectively (Gardner, 2006; Hyndman & Athanasopoulos,
2021).

In contrast to Exponential Smoothing, which attempts to approximate the individual
components of a time series, the key idea of ARIMA is to model autocorrelations, i.e., the
correlation between a series and a lagged version of itself. An ARIMA model consists of
autoregressive (AR) and moving average (MA) terms. The AR part determines predictions
using a linear combination of past observations of the target variable, similar to a multiple
regression model but employing lagged target values instead of independent features.
The MA component uses a linear combination of past error terms for forecasting. An
assumption of these models is a stationary time series. Therefore, the so-called integrated
component was introduced because differencing, i.e., calculating the difference between
consecutive observations, can help stabilize the mean (Box & Jenkins, 1970). Using the d
times differenced time series yd ∈ Rn leads to the formulation of an ARIMA(pAR, d, qMA)
model with the differencing degree d ∈N, the intercept µ ∈ R, the white noise error term
εwn,t ∈ R, the order of the AR and MA part pAR ∈ N and qMA ∈ N, and the model
parameters λi ∈ R and χi ∈ R:

yd
t = µ +

pAR

∑
i=1

λiyd
t−i

︸ ︷︷ ︸
AR(pAR)

+
qMA

∑
i=1

χiεwn,t−i

︸ ︷︷ ︸
MA(qMA)

+εwn,t (2.3)
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A widely-used extension of ARIMA accounting for seasonal behavior is Seasonal Autoregres-
sive Integrated Moving Average (SARIMA). SARIMA additionally introduces seasonal AR
and MA components and a seasonal differencing step for stationarity. The formulation of
these parts is similar to the non-seasonal ones but includes a backshift of a seasonal cycle
nseas. The parameters of the seasonal components are typically given in uppercase notation:
PAR ∈ N, D ∈ N, and QMA ∈ N (Hyndman & Athanasopoulos, 2021; Shumway &
Stoffer, 2000). To include external factors X, SARIMA has been further extended to its
multivariate version Seasonal Autoregressive Integrated Moving Average with eXogenous
factors (SARIMAX). Typically, this is achieved by an additional linear regression model
using the external factors, see Section 2.2, allowing the usually uncorrelated error term to
be autocorrelated. This additive error term is modeled using SARIMA, leading to the full
SARIMAX model (Hyndman & Athanasopoulos, 2021; Shumway & Stoffer, 2000).

2.2 Frequentist Machine Learning for Time Series
Forecasting

The problem of predicting a continuous target value yt+h of a time series based on features
can be considered as a regression task with respect to ML. From a frequentist viewpoint,
probabilities are seen as long-run frequencies of random and repeatable events. Regarding
the likelihood function p(D | w), we consider a model’s parameters w to be fixed. Hence,
in frequentist ML, we try to determine point estimates w∗ of the parameters that best
explain the observed data D (Bishop, 2006; Murphy, 2022). In the following, we outline
frequentist ML-based methods for time series forecasting that are relevant to this thesis,
namely regularized linear regression, the ensemble learner XGBoost, and neural network-
based approaches including a Multilayer Perceptron (MLP) and a Long Short-Term Memory
(LSTM) network.

A common approach in this context is linear regression, which models the relationship
between the target values y and the feature matrix X as

y = X†w + ε, (2.4)

with the weights w = (w0, w1, . . . , wm)
T ∈ Rm+1 including the intercept w0 ∈ R and the

model coefficients wk ∈ R, X† ∈ Rn×m+1 containing a vector of ones and the feature
matrix X, and the unobserved random error ε ∈ Rn. For regularization, a penalty term
Ω(w) ∈ R is usually included when fitting a linear regression model. With Ω(w) weighted
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by κ ∈ R>0, we can estimate the weights w by minimizing the deviation between the
target values y and the predicted values X†w (James et al., 2017; Yan & Su, 2009):

argmin
w

1
2
∥y− X†w∥2

2 + κΩ(w) (2.5)

Depending on the regularization term Ω(w), we can distinguish between Least Absolute
Shrinkage and Selection Operator (LASSO), Ridge, and Elastic Net Regression. LASSO
uses the L1-norm ∥w∥1, i.e., the sum of the absolute values of the weights, for penalization.
This sparsity constraint forces the weights of unimportant features toward zero, which is why
this is often considered an automatic feature selection (Tibshirani, 1996). Ridge Regression
instead employs the L2-norm ∥w∥2

2, for which squared instead of absolute values of the
weights are used. This regularizer is known to distribute the influence among correlated
features (Hoerl & Kennard, 1970). For Elastic Net, we use Ω(w) = ζ∥w∥2

2 +(1− ζ)∥w∥1,
i.e., a weighted sum of the L1-norm and the L2-norm controlled by the hyperparameter
ζ ∈ [0, 1], combining both above-mentioned effects (Zou & Hastie, 2005).

Gradient boosted trees have performed well in several forecasting competitions, which
makes these approaches highly relevant to this thesis (Bojer & Meldgaard, 2021). XGBoost
is a scalable and runtime-efficient implementation of gradient boosting. With this technique,
weak learners, often decision trees, are added sequentially with a focus on the errors of the
current ensemble. Thereby, the model’s bias with respect to the bias-variance trade-off
gets reduced. This process is guided by a gradient descent algorithm over a loss function.
Besides computationally efficient procedures and the ability to work with missing values,
XGBoost adds measures to prevent overfitting. XGBoost uses a regularized objective and
so-called shrinkage, which scales newly added weights after each step of tree boosting.
Furthermore, XGBoost employs feature and row subsampling, i.e., randomly selecting
features and samples to construct an individual weak learner instead of using all of them
(Chen & Guestrin, 2016; James et al., 2017).

Beyond that, neural network-based approaches can be applied for time series forecasting.
Using MLPs, we can model complex and nonlinear relationships. The output vector
oi ∈ Rni,o of each layer i ∈N with the number of neurons ni,o ∈N can be defined as

oi = a(W T
i xi,in + bi), (2.6)

with the activation function a : Rni,o → Rni,o , the weight matrix of the i-th network layer
Wi ∈ Rni,in×ni,o , the input vector of the i-th layer xi,in ∈ Rni,in with the number of inputs
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ni,in ∈N, and the bias bi ∈ Rni,o . In an MLP, multiple layers are combined, leading to a
chain of functions that form the neural network (Goodfellow et al., 2016). Beyond that,
recurrent neural networks accounting for temporal dependencies are an obvious option when
working with time series data. In a recent review, Hewamalage et al. (2021) conclude that
in particular LSTM networks show a competitive performance. LSTM cells can capture
long-term dependencies while preventing vanishing gradients through memory and gating
mechanisms. A key component of an LSTM cell for storing long-term dependencies is
the cell state. In addition, there are three gates that manage the flow of information.
The input gate controls the influence of the input on the current state of the cell, while
the forget gate determines how much of the current and previous information is retained.
Finally, the output gate filters the updated cell state to control the impact on the output
of the LSTM cell (Hochreiter & Schmidhuber, 1997). Neural networks are typically trained
employing empirical risk minimization, i.e., minimizing the average loss function across
the used data samples. This optimization is usually done in multiple epochs, with the
whole training data being processed once per epoch, using gradient descent algorithms on
so-called mini-batches of the data. By doing so, a subset of the data is passed through
the network, the gradient of the loss function with respect to the model’s parameters is
calculated using backpropagation, and the weights are adjusted accordingly. The size of
the mini-batch is a hyperparameter, with smaller batch sizes leading to more frequent
model updates but potentially less accurate error estimates (Goodfellow et al., 2016). A
typical optimizer for training neural networks is Adam (Kingma & Ba, 2014). Both MLPs
and LSTMs are powerful approximators, and thus regularization needs to be employed to
prevent overfitting. A common technique in this context is dropout, randomly ignoring a
certain ratio of neurons during each training iteration (Srivastava et al., 2014). Furthermore,
early stopping can be used, i.e., monitoring the loss on validation data during training and
interrupting the process if no improvement is observed for a certain number of epochs
(Bishop, 2006).

2.3 Probabilistic Machine Learning for Time Series
Forecasting

In probabilistic ML, the parameters w with respect to the likelihood function p(D | w) are
not considered to be fixed in contrast to frequentist ML. We assume that the parameters
w contain uncertainty, which is achieved by defining a probability distribution over w
(Murphy, 2022). From a Bayesian perspective, we define a prior belief over our model



26 2.3. Probabilistic Machine Learning for Time Series Forecasting

parameters p(w) before considering evidence, e.g., the observed data points D. With this
evidence, we can define a posterior probability p(w | D) using Bayes’ theorem

p(w | D) = p(D | w)p(w)

p(D) . (2.7)

From a practical perspective, probabilistic models have the advantage of providing uncer-
tainties of predicted values, which can be helpful for downstream tasks. Subsequently,
we first outline Bayesian regression and Bayesian neural network approaches. Then, we
describe GPR, one of the most relevant prediction models in the context of this thesis.

2.3.1 Bayesian Regression and Bayesian Neural Networks

Linear regression can also be formulated in a Bayesian viewpoint, where yt is assumed to
follow a normal distribution

p(yt | xt, w) = N (yt | w0 + wTxt, σ2) (2.8)

with mean w0 + wTxt, including the bias term w0 ∈ R and model coefficients w ∈ Rm,
and variance σ2 ∈ R>0. Typically, regularization is applied to prevent overfitting, leading
to a so-called maximum a posterior (MAP) estimation. Putting a zero-mean Gaussian prior
on the weights p(w | ν) = N (w | 0, ν−1I) with precision ν ∈ R>0 and the identity matrix
I ∈ Rm×m leads to Bayesian Ridge Regression, which can be shown to be equivalent to the
frequentist approach (Bishop, 2006; Murphy, 2022). Automatic Relevance Determination
(ARD) is similar to Bayesian Ridge Regression but uses a different prior for the weights
w. Each coefficient is drawn from a Gaussian distribution with zero mean and precision
νi ∈ R>0. This leads to p(w | Υ) = N (w | 0, Υ−1), with the precision matrix Υ ∈ Rm×m

only containing positive values and diag(Υ) = {ν1, ..., νm}. Finally, pruning features with
low variance, i.e., with weights likely to be close to zero, leads to sparser solutions (Bishop,
2006; Tipping, 2001).

Furthermore, Bayesian neural networks, namely Bayesian versions of an MLP and an LSTM
network outlined in Section 2.2, are relevant to this thesis. Instead of point estimates
of the neural network parameters, i.e., the weights W and biases b, Bayesian neural
networks learn probability distributions for them. Thus, a Bayesian neural network can be
thought of as an ensemble of networks, each parameterized by weights drawn from a shared
probability distribution. By considering the model’s parameters this way, we also retrieve
uncertainties of the output and the underlying process, respectively, since the uncertainty



Chapter 2. Material and Methods 27

is low if the different models agree. Furthermore, by accounting for the uncertainty of
the underlying process, we reduce the risk of overfitting. Since in this context exact
inference is generally intractable, we have to use approximations. A common approach is
variational inference, which reformulates finding the intractable probability distribution p
as an optimization problem over a class of tractable distributions to determine the one that
most closely approximates the true distribution (Jospin et al., 2022; Murphy, 2023). Bayes
by Backprop is a variational inference method that employs a reparametrization trick to
enable using regular backpropagation. As a result, a quick transformation of a frequentist
implementation is possible (Blundell et al., 2015).

2.3.2 Gaussian Process Regression

GPR is a non-parametric Bayesian ML-based model that can be employed for regression
tasks. Non-parametric means that no explicit assumptions are made about the model’s
functional form, but it automatically adapts to the data. Besides the advantage of
inherently providing prediction uncertainties, GPR is a flexible method that works well for
small datasets but also scales to large amounts of data when using methodical extensions.
Two of the main contributions of this thesis outlined in Sections 3.2 and 3.3 are based on
GPR, which is why it is subsequently introduced in detail.

Mathematical Description

The following mathematical description is based on (Rasmussen & Williams, 2006), (Bishop,
2006), and (Williams & Rasmussen, 1995). To understand the details, it makes sense to
recall the linear regression model. Let yt ∈ R denote the target value and ŷt ∈ R the
prediction based on the input vector xt ∈ Rm and the model parameters w ∈ Rm:

ŷt = xT
t w, yt = ŷt + εt (2.9)

We assume that the true and the predicted value differ by zero-mean Gaussian noise
εt ∼ N (0, σ2

n) with variance σ2
n, neglecting a bias term. Further assuming independence

of the observations in the training data, we can factorize over all n samples to obtain the
likelihood term

p(y | X, w) =
n

∏
t=1

p(yt | xt, w) = N (XTw, σ2
n I) (2.10)

with the identity matrix I ∈ Rn×n. Specifying a zero-mean Gaussian prior over the
model parameters w ∼ N (0, C) with covariance matrix C ∈ Rm×m leads to the posterior
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distribution. Using Bayes’ theorem, we can connect the likelihood term given in Equation
2.10 with the prior p(w):

p(w | y, X) =
p(y | w, X)p(w)

p(y | X)
. (2.11)

Note that the normalizing constant in the denominator is independent of the model
parameters, allowing to continue with the likelihood and prior given in the numerator.
Finally, this leads to the form of the posterior distribution, which is also a Gaussian

p(w | y, X) ∼ N (w, A−1) (2.12)

with the mean w ∈ Rm being 1
σ2

n
A−1Xy and the covariance matrix A−1 ∈ Rm×m, where

A = σ−2
n XXT + C−1. To get a prediction for an input xtest ∈ Rm, we marginalize out

w ∈ Rm by averaging over all possible parameter values weighted by the corresponding
posterior probability, leading again to a Gaussian distribution:

p(ytest | xtest, X, y) =
∫

p(ytest | xtest, w)p(w | X, y)dw

= N (
1
σ2

n
xT

test A−1Xy, xT
test A−1xtest)

(2.13)

The mean of this distribution is equal to the mean of the posterior multiplied by the test
input xtest, and the variance only depends on the test input and the posterior variance.

So far, this is still equal to Bayesian linear regression constrained to linearity, which we
overcome by transforming the inputs to a high-dimensional space and applying the linear
solution there. For that purpose, we define the function ϕ : Rm → R f mapping an
m-dimensional vector into an f -dimensional feature space with f ∈N. Inserting this to
the linear model given in Equation 2.9 leads to

yt = ϕ(xt)
Tw + εt (2.14)

with the model parameters w ∈ R f . Using this equation, we can perform the same
derivations as we did for the linear model. Substituting X ∈ Rn×m with transformed and
transposed Φ ∈ R f×n and xtest ∈ Rm with transformed ϕ(xtest) ∈ R f finally leads to the
predictive distribution again:

p(ytest | xtest, X, y) = N (
1
σ2

n
ϕ(xtest)

T A−1Φy, ϕ(xtest)
T A−1ϕ(xtest)) (2.15)
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Note that after this transformation, Φ is part of A = σ−2
n ΦΦT + C−1 with the covariance

matrix C ∈ R f× f of the model parameters w. To obtain predictions according to the above
equation, we need to invert A. Inverting an f × f matrix A becomes computationally
expensive for large dimensional feature spaces. Defining K = ΦTCΦ ∈ Rn×n enables to
rewrite Equation 2.15 with the identity matrix I ∈ Rn×n as follows:

p(ytest | xtest,X, y) =

= N (ϕ(xtest)
TCΦ(K + σ2

n I)−1y,

ϕ(xtest)
TCϕ(xtest)−ϕ(xtest)

TCΦ(K + σ2
n I)−1ΦTCϕ(xtest))

(2.16)

Since the dimension of K is n× n, we only need to invert n× n matrices in Equation 2.16,
which is computationally less expensive if n < f . Hence, the computational complexity of
the matrix inversion depends on the number of samples n and not on the dimensionality of
the feature space f . In Equation 2.16, elements in the dimensionality of the feature space
are part of the terms ΦTCΦ, ϕ(xtest)TCΦ, and ϕ(xtest)TCϕ(xtest), respectively. We can
further define a so-called kernel k with k(x, x′) = ϕ(x)TCϕ(x′), where x and x′ are in the
training and test set, respectively. This inner product can be further reformulated as the dot
product k(x, x′) = ψ(x) ·ψ(x′), where ψ(x) = C1/2ϕ(x), decomposing positive definite
C into (C1/2)2. Replacing the inner products in the input space with a kernel to implicitly
get to the feature space is also called the kernel trick. Applying this to Equation 2.16
and defining the n× n∗ covariance matrix K(X, X∗) ∈ Rn×n∗ resulting from all pairwise
evaluations of n training samples X ∈ Rn×m and n∗ ∈N test samples X∗ ∈ Rn∗×m yields
the predictive distribution with the target vector of the test samples y∗ ∈ Rn∗ :

p(y∗ | X∗, X, y) = N (y∗, COV(y∗)) (2.17)

with

y∗ = K(X∗, X)[K(X, X) + σ2
n I]−1y, (2.18)

COV(y∗) = K(X∗, X∗)− K(X∗, X)[K(X, X) + σ2
n I]−1K(X, X∗) (2.19)

The mean of this distribution y∗ ∈ Rn∗ is a linear combination of the observed target values
y, whereas the variance COV(y∗) ∈ Rn∗×n∗ only depends on the features. Equations
2.18 and 2.19 give the mean function and the covariance function of the posterior process,
respectively. Finally, a Gaussian Process (GP) can be seen as a distribution over functions
fGP , which is completely defined by its mean function mf and its covariance function, also
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called kernel, k:
fGP (x) ∼ GP(mf(x), k(x, x′)) (2.20)

Often, the mean function mf is set to zero for simplicity, which is not a significant limitation
as the mean of the posterior given in Equation 2.18 is not restricted to zero. The kernel
however is an essential choice when building a GPR model and reflects the similarity
between data points x and x′.

Kernel Functions

A kernel is a function k that maps the inputs x ∈ X and x′ ∈ X into R, which is symmetric
by definition k(x, x′) = k(x′, x). We can further define the covariance matrix K ∈ Rn×n

containing Kii∗ = k(xi, xi∗) for n inputs xi. A real matrix has to be positive semidefinite
to be a valid covariance matrix. Common base kernels describing specific patterns are, for
instance, the following ones:

• Linear: kLin(x, x′) = σ2(x− z)(x′ − z), with variance σ2 ∈ R and offset z ∈ R

• SquaredExponential: kSE(x, x′) = σ2 exp
(
− (x−x′)2

2ι2

)
,

with variance σ2 and lengthscale ι ∈ R>0

• Rational Quadratic: kRQ(x, x′) = σ2
(

1 + (x−x′)2

2τι2

)−τ

,

with variance σ2, lengthscale ι, and scale mixture parameter τ ∈ R>0

• Matérn52: kMat(x, x′) = σ2 21−ν

Γ(ν)

(√
2ν x−x′

ι

)ν

Kν

(√
2ν x−x′

ι

)
,

here with ν ∈ R>0 = 5/2, variance σ2, lengthscale ι, and a modifided Bessel
function Kν

For each of them, we visualize the kernel and show samples drawn from a GP parameterized
with the respective kernel in Figure 2.1a. We observe a distinct behavior for each base
kernel, which we can use to define the prior of the GP to specify which structures are likely.
It is also possible to combine kernels by multiplication and summation while still meeting
the requirements for a valid kernel. Composite kernels can model a more complex system
behavior, which is often required in practice. In Figure 2.1b, we visualize some examples of
combined kernels based on the base kernels given above. For instance, we observe that
the product of two linear kernels can be used to model a quadratic function and that the
summation of a linear and a periodic kernel shows a periodic behavior with a linear trend
(Bishop, 2006; Duvenaud et al., 2013; Rasmussen & Williams, 2006).
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(a) Examples of base kernels

(b) Examples of combined kernels

Figure 2.1: Examples of kernels k: For each kernel, we visualize the kernel k(·, 1) in the
upper part of the plot as well as samples drawn from a GP with the respective
kernel. The x-axes have the same range for all plots. (a) Examples of base
kernels. (b) Examples of combined kernels created by adding or multiplying
base kernels.

Kernel Search

The definition of the kernel function is a decisive choice for a GP. However, there are many
options, especially when considering combinations of base kernels. Since thus a manual
selection is difficult, even with expert knowledge, we need automatic data-driven search
methods to find the kernel that best describes the data to be modeled. A common criterion
to evaluate how well a GP(mf, k) with mean function mf and kernel k fits for a dataset D
with n samples is the log marginal likelihood Llml(GP(0, k),D) defined as follows:

Llml(GP(0, k),D) = log p(y | X) =

= −1
2

yT(K(X, X) + σ2
n I)−1y− 1

2
log | K(X, X) + σ2

n I | −n
2

log 2π
(2.21)

For simplicity, we set the mean function to constant zero (Rasmussen & Williams, 2006).
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In this thesis, we consider three kernel search approaches: treating the kernel as a
hyperparameter during the optimization process, Compositional Kernel Search (CKS)
(Duvenaud et al., 2013), and Adjusting Kernel Search (AKS) (Hüwel et al., 2021). The
first option is straightforward, as we only need to generate different combinations by
summation and multiplication, i.e., a set of kernel expressions K, based on a set of base
kernels B. Then, we consider the choice of the kernel k ∈ K as a hyperparameter during
optimization by evaluating the performance based on a criterion, see Section 2.4.

Compositional Kernel Search (CKS) however is a stage-wise algorithm, iteratively yielding
the final kernel expression k. For the formulation of CKS, we first need to define the
following operations:

• AddSums(k,B): generate composed kernel expressions kc = k + kbase by adding
any base kernel kbase ∈ B to the kernel expression k

• AddProducts(k,B): generate composed kernel expressions kc = k kbase by multiply-
ing the kernel expression k with any base kernel kbase ∈ B

• Replace(k,B): generate composed kernel expressions kc by replacing any base kernel
in k with any base kernel kbase ∈ B

Algorithm 1 Pseudocode of the Compositional Kernel Search (CKS)

Require: dataset D = {(xt, yt) | t = 1, . . . , n}, set of base kernels B, maximum number
of iterations iCKS

1: k← argmax
kbase∈B

(Llml(GP(0, kbase),D)) ▷ see Eq.(2.21)

2: for i = 0, . . . , iCKS − 1 do
3: K ← k
4: K ← K ∪ AddSums(k,B)
5: K ← K ∪ AddProducts(k,B)
6: K ← K ∪ Replace(k,B)
7: knew ← argmax

kc∈K
(Llml(GP(0, kc),D)) ▷ see Eq.(2.21)

8: if knew == k then
9: terminate

10: else
11: k← knew

Algorithm 1 outlines the procedure of CKS. Besides the dataset D, we need to define a set
of base kernels B as well as a maximum number of iterations iCKS ∈N. Then, CKS first
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chooses the most appropriate base kernel kbase ∈ B based on the log marginal likelihood
Llml(GP(0, kbase),D) given in Equation 2.21. After this step, the iterative process starts
for, at most, iCKS runs, defining the maximum number of elements used for the final
kernel expression. In each of the iterations, a set of candidate kernels K is generated using
the operations AddSums(k,B), AddProducts(k,B), and Replace(k,B). Among these,
we then choose again the composed kernel expression kc with the highest log marginal
likelihood Llml(GP(0, kc),D). If the found kernel expression knew does not differ from
k, the algorithm terminates, and continues otherwise. At the latest after iCKS runs, we
retrieve the final kernel expression k. By doing so, complex kernels can be generated
in a data-driven way at the cost of multiple optimizations and evaluations per iteration
(Duvenaud, 2014; Duvenaud et al., 2013).

Algorithm 2 Pseudocode of the Adjusting Kernel Search (AKS)

Require: dataset D = {(xt, yt) | t = 1, . . . , n}, set of base kernels B, maximum number
of iterations iAKS, starting kernel k0

1: k← k0
2: for i = 0, . . . , iAKS − 1 do
3: K ← k
4: K ← K ∪ AddSums(k,B)
5: K ← K ∪ AddProducts(k,B)
6: K ← K ∪ Replace(k,B)
7: K ← K ∪ Remove(k,B)
8: knew ← argmax

kc∈K
(Llml(GP(0, kc),D)) ▷ see Eq.(2.21)

9: if knew == k then
10: terminate
11: else
12: k← knew

Since the complexity of a GP is O(n3) and CKS always starts from scratch, this can
be computationally expensive. AKS is based on CKS but addresses this issue by not
starting from scratch and also considering kernel expressions with a lower complexity during
each iteration. To achieve this, AKS defines a further operation Remove(k,B) generating
composed kernel expressions kc by removing any base kernel kbase ∈ B from k. With this
extension, AKS can be used to adjust an initial kernel expression k0 that was, for instance,
found with CKS on an initial window of data points, potentially requiring less maximum
iterations iAKS ∈ N. Since we consider time series data with continuously incoming
new data points, AKS may suit well, especially when assuming that the best-performing
kernels do not differ entirely for consecutive segments. Due to the additional operation
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Remove(k,B), AKS considers |k| (number of base kernels in k) more kernel expressions
for each iteration. Nevertheless, Hüwel et al. (2021) show that AKS can work with
fewer iterations and lead to lower runtimes than CKS, especially if more complex kernel
expressions are necessary for which starting from scratch is computationally more expensive
than a few iterations of AKS. However, for low-complexity datasets and significant changes
of the kernel expression, AKS can be inferior in terms of runtime (Hüwel et al., 2021).

2.4 Model Selection and Evaluation

After outlining several time series forecasting methods, we describe different data splitting
and hyperparameter optimization approaches. Finally, we introduce several evaluation
metrics and simple baselines.

2.4.1 Data Splits

The classical time series forecasting approaches described above and some ML-based
techniques, e.g., LSTM networks, require a chronological order of samples. This requirement
must be taken into account when splitting the data. In a regular j-fold cross-validation,
we split the dataset D, or a subset of it if we separate samples for a test set in advance,
into j ∈ N subsets as equal in size as possible. Then, we run j iterations using one
of the subsets for validation and the remaining ones for training (Bishop, 2006). With
this procedure, we neglect the chronological order of the dataset, which makes this split
inappropriate for some of the applied methods. Another option would be to split the whole
dataset into three subsets for training, validation and test according to the chronological
order. This approach maintains the temporal order, but has the disadvantage that the
model selection is based on the results obtained on a single validation set.

Therefore, time series cross-validation may be a good option to estimate the performance
of a model based on multiple validation sets while accounting for the chronological order.
In Figure 2.2a, we visualize time series cross-validation with three folds and a separate
test set. First, we assign a certain amount of the most recent samples to the test set, for
example, 20% of the entire dataset. Then, we use the remaining data for a j-fold time
series cross-validation, where we divide the data into j + 1 equally sized parts, taking into
account the chronological order. For the first fold, we use the first subset for training and
the second for validation. Then, these two subsets form the training set for the second fold,
where we validate using the third subset. This process continues until we reach the last
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fold. Finally, we usually average the performance across all validation sets and retrain the
best-performing model using the whole training and validation data. This prediction model
can then be tested on the initially held-out test data. However, depending on the size of
the dataset, time series cross-validation can be problematic, leading to folds with a small
number of samples. This is particularly relevant for seasonal data, where each training and
validation set should contain at least one full season. In such cases, the aforementioned
split into three subsets for training, validation, and test, while maintaining the temporal
order, may be more appropriate (Bishop, 2006; Hyndman & Athanasopoulos, 2021).
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Figure 2.2: Time series cross-validation, Grid and Random Search: (a) Visualization
of a time series cross-validation with a separate test set shown for three folds
used for training and validation. (b) and (c): Visualization of Grid and Random
Search, see Section 2.4.2. We show nine trials for optimizing two parameters,
of which one is important, i.e., influencing the prediction result significantly.
With Grid Search, only three distinct places of the important parameter are
tested, whereas Random Search tests a different place in each trial. Figures
(b) and (c) are similar to (Bergstra & Bengio, 2012).

2.4.2 Hyperparameter Optimization

Model selection is usually driven by the performance on validation data, as described in the
previous section. Many prediction models, especially the ML-based approaches, contain
hyperparameters that significantly affect their performance, such as the number of layers
in a neural network. Thus, in addition to selecting the overall best-performing model, the
performance on validation data is usually also used to optimize the models’ hyperparameters.
With a hyperparameter set θ ∈ Rnh containing values for nh ∈N hyperparameters, which
we assume to be real numbers, and a hyperparameter space Θ ∈ Rnh×nt containing all
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nt ∈N hyperparameter sets, we can define

θ∗ ∈ argmin
θ∈Θ

Lv(θ), (2.22)

where Lv(θ) ∈ R is the validation loss achieved using a given parameter set θ, and
θ∗ ∈ Rnh is the one that yields the best result, assuming we want to minimize the loss.

A straightforward option in this context is Grid Search. With this method, we define
certain values for each hyperparameter and build the hyperparameter space Θ using the
combinations of all these values. After evaluating all of these, we choose the parameter
setting with the best validation performance. In Figure 2.2b, we visualize Grid Search for two
parameters, of which one is important, i.e., significantly influencing the performance, and the
other one is not. We observe that evaluating different values for the unimportant parameter
does not affect the result much. Furthermore, Grid Search is usually computationally
exhaustive. For instance, evaluating three hyperparameters with ten possible values for
each would already lead to trying nt = 103 = 1000 configurations, of which many might
not influence the performance much. Thus, this approach does not scale well to higher
dimensions with several hyperparameters and values (Murphy, 2022).

In contrast to Grid Search, Random Search does not employ a fixed grid of parameter
settings, but randomly samples from a distribution defined for each hyperparameter.
Thus, we do not need to specify fixed hyperparameter values, which may be difficult
even with expert knowledge, but only an upper and lower bound for a usually applied
uniform distribution. We can further set the number of trials to run, i.e., the width of the
hyperparameter space Θ, which is fixed by the number of combinations for Grid Search.
As we observe in Figure 2.2c, this leads to evaluating multiple values for the important
and unimportant parameter in contrast to Grid Search, where we define certain values in
advance. In the given example, both approaches run nine trials, but six are uninformative
for Grid Search. Beyond this example, it has been shown empirically and theoretically that
Random Search is more efficient (Bergstra & Bengio, 2012; Murphy, 2023).

Both Grid and Random Search do not use information gained during the optimization
process, which is a drawback compared to Bayesian optimization. In Bayesian optimization,
the hyperparameter space Θ is not fixed in advance, but hyperparameter sets θi are
suggested based on the performance of previously tested ones. In Algorithm 3, we show
the procedure of a sequential model-based optimization algorithm, which is commonly used
for Bayesian optimization. We may start the optimization with n f inished ∈ N previously
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tested hyperparameter combinations with corresponding objective values, gathered in H,
and an initial surrogate model M0. First, we must decide which parameter setting θi

to test based on a particular policy. Then, we can use θi to observe the corresponding
objective value ovi ∈ R, e.g., by running a cross-validation and retrieving the performance.
With this result, we can extend the set of historical observations H, which we then use to
update the surrogate model Mi. This procedure is repeated until we reach a termination
criterion; in terms of Bayesian optimization, for instance, the maximum number of trials.
Finally, we retrieve the parameter set θ∗ that yields the best objective value ov.

Algorithm 3 Pseudocode of a sequential model-based optimization algorithm

Require: historical observations H = {(θi, ovi) | i = 1, . . . , n f inished}, initial surrogate
model M0 ▷ H may be empty

1: Mi ←M0
2: repeat
3: θi ← POLICY(H,Mi)
4: ovi ← OBSERVE(θi)
5: H ← H∪ {(θi, ovi)}
6: Mi ← UPDATE(Mi,H)
7: until termination condition ▷ e.g., maximum number of trials reached

return θ∗ yielding best ovi ▷ may be minimum or maximum

Hence, we need to select approaches for the POLICY and OBSERVE steps and a surrogate
model. For the OBSERVE step, it is common to use performance on validation data as the
objective value ov that we want to optimize. With respect to the surrogate model, a GP
can be constructed using the historical observations H. Another possibility is the so-called
tree-structured Parzen estimator, a lightweight implementation that reduces the problem
to density ratio estimation. Based on the surrogate model, we can choose a POLICY to
select the parameter values for the next iteration. One of the most common approaches
is expected improvement, for which we define the improvement function i : Rnh → R≥0

with i(θ) = max(0, o ft+1(θ)− o f (θ+)). The objective function o f : Rnh → R returns
the objective value ovi and θ+ is the hyperparameter configuration that currently yields
the best result. We can now determine the expected improvement EI(θ) = E[i(θ)],
and choose the parameter values with the largest expected improvement over the current
best configuration. With respect to hyperparameter optimization, the OBSERVE step
is usually computationally expensive. In this step, we need to train a prediction model
parameterized with the selected hyperparameter values and observe its performance, which
requires, for example, to run a full cross-validation. Thus, despite the resources spent on
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the surrogate model and the policy, Bayesian optimization is potentially more efficient than
Grid or Random Search, requiring fewer iterations to converge, i.e., less OBSERVE steps
are necessary (Bergstra et al., 2011; Garnett, 2023; Snoek et al., 2012).

2.4.3 Evaluation Metrics and Baselines

We further require metrics that we can use for model selection and evaluation. For a
dataset D with n samples, the true target value yt, and the predicted value ŷt at time step
t, we can define the following common criterions:

• Mean absolute error (MAE): MAE =
1
n

n

∑
t=1
|yt − ŷt|

• Mean squared error (MSE): MSE =
1
n

n

∑
t=1

(yt − ŷt)
2

• Root mean squared error (RMSE): RMSE =

√
1
n

n

∑
t=1

(yt − ŷt)2

• Mean absolute percentage error (MAPE): MAPE =
100 %

n

n

∑
t=1

∣∣∣yt − ŷt

yt

∣∣∣

• Symmetric mean absolute percentage error (sMAPE):

sMAPE =
100 %

n

n

∑
t=1

|yt − ŷt|
(|yt|+ |ŷt|)/2

A lower value reflects a better performance for all five metrics. MAE, MSE, and RMSE are
scale-dependent and can be used to compare the results of different methods on the same
dataset, but not across datasets. MSE and RMSE are furthermore sensitive to outliers,
although RMSE has the advantage of being on the same scale as the data. Despite these
properties, these three metrics are still widely used, i.a., because of their interpretability
and straightforward computation. Furthermore, MAPE and sMAPE are two common
metrics that are percentage errors and thus scale-independent. This property allows to
compare results across datasets. To prevent division by zero, which is particularly an issue
for intermittent sales data, a small value is often added to the denominator. Although this
problem is more likely with MAPE, it can also occur with sMAPE, since the prediction can
also be zero for time steps with a true value of zero. MAPE is known to penalize negative
errors more than positive ones. This means that for the same absolute difference, cases
where ŷt > yt leads to a higher MAPE. For example, ŷt = 150 with yt = 100 gives a
MAPE of 50.0%, but ŷt = 100 with yt = 150 results in 33.3%. This problem does not
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occur for sMAPE, which yields the same values in such cases. However, if we consider an
evaluation metric to be symmetric if the same deviation upwards and downwards from a
fixed true value leads to the same result, then MAPE would be symmetric in contrast to
sMAPE (Flores, 1986; Hyndman & Athanasopoulos, 2021; Hyndman & Koehler, 2006).

Because of this lack of a universal evaluation criterion, it is common to include simple
baseline models as comparison partners. With a true value yt, a season length nseas, and a
window size nw, the predicted value at time step ŷt for the given simple baselines is defined
as follows:

• Historical average: ŷt =
1

t− 1

t−1

∑
i=1

yi

• Moving average: ŷt =
1

nw

t−1

∑
i=t−nw

yi

• Random walk / Naïve method: ŷt = yt−1

• Seasonal random walk / Seasonal naïve method: ŷt = yt−nseas

For many time series, these simple approaches work surprisingly well (Hyndman & Athana-
sopoulos, 2021; Hyndman & Koehler, 2006)

2.5 Change Point Detection

Changing data distributions are a challenge in time series forecasting, as outlined in Section
1.2. A straightforward yet computationally exhaustive approach to account for this issue
is to periodically trigger a refitting of the prediction model during the live operation,
i.e., the online phase with new samples becoming available continuously (Hyndman &
Athanasopoulos, 2021). However, this can lead to wasting computational resources in
case of unnecessary model adjustments or working with outdated models for less frequent
triggers. Another option is to trigger a model refitting event-based using a CPD method.
The time step t at which a shift of the data distribution p(yt | xt) occurs is called a
change point. In the context of this thesis, in particular, for the contributions outlined
in Sections 3.2 and 3.3, we want to detect change points for sequentially arriving data
points. Thus, we do not consider offline approaches that work retrospectively, such as
change point kernels for GPR that switch between kernel expressions at certain time steps.
Besides working online, the CPD method should enable a quick reaction requiring only
a few samples of the new data distribution and be computationally efficient to facilitate
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the integration in a forecasting system. A simple yet commonly used CPD approach is
cumulative sum (CUSUM). Thereby, deviations from an expected value, e.g., the difference
between predictions and observed values, are summed up and a change point is declared if
this score exceeds a certain threshold (Page, 1954).

ChangeFinder applies a two-stage learning and smoothing strategy to detect a change
point, reformulating the problem to outlier detection in time series. First, ChangeFinder
fits a sequentially discounting autoregressive (SDAR) model on incoming data points of
y, see Section 2.1, gradually lowering the influence of older samples. Using this SDAR
model, we can determine a probability density pCF

t at time step t. Based on the sequential
updating at each time step, we obtain a sequence of probability densities pCF

1 , . . . , pCF
t .

Then, at the end of the first learning stage, we can determine a so-called outlier score
score(yt) = − log pCF

t−1(yt). In the first smoothing stage, we calculate a moving average
within a time window nw of these outlier scores, yielding a sequence of smoothed outlier
scores:

yCF
t =

1
nw

t

∑
i=t−nw+1

score(yi) (2.23)

We can interpret yCF ∈ Rt as the difference between consecutive time periods. Using
yCF as input, we perform the same steps in a second learning and smoothing stage to
identify abrupt changes between two consecutive differences. Finally, we obtain a sequence
of change point scores zCF ∈ Rt. A higher score indicates a higher probability of a
distributional shift, requiring the specification of a threshold to declare a change point. The
smoothing lowers the risk of false alarms due to isolated outliers in y. Larger window sizes
nw for the moving average calculation lead to a less sensitive CPD by filtering out outliers
and only detecting significant change points. However, this might result in a delayed
identification of a change point. Smaller window sizes instead enable quick detection but
the risk of false alarms due to outliers is higher (Aminikhanghahi & Cook, 2017; Iwata
et al., 2019; Takeuchi & Yamanishi, 2006).

Bayesian Online Change Point Detection (BOCPD) is a probabilistic method assuming
that a time series can be divided into non-overlapping intervals, each of which is related to
a certain probability distribution. BOCPD defines a so-called run length rt ∈N0 at time
step t, which indicates the time elapsed since the last change point occurred and is set to
zero when a change point is identified. Thus, we can determine the posterior distribution
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of rt using Bayes’ theorem as

p(rt | yt
i=1) =

∑rt−1
p(rt | rt−1)p(yt | rt−1, yr

t )p(rt−1, yt−1
i=1 )

∑rt
p(rt, yt

i=1)
, (2.24)

where yr
t ∈ Rrt are the observations associated with the run length rt and yt

i=1 are all
observations from time step 1 to t. The prior p(rt | rt−1) is defined as

p(rt | rt−1) =





H(rt−1 + 1) if rt = 0

1− H(rt−1 + 1) if rt = rt−1 + 1

0 otherwise

(2.25)

with the so-called hazard function H(t′) =
pgap(g=t′)

∑∞
t=t′ pgap(g=t) , i.e., the ratio between the

probability density of the current run and the sum of all probability densities, where pgap

denotes the probability distribution of the interval between change points. The computation
of the prior is thus efficient, as it only contains two non-zero cases, which both only require
the calculation the hazard function’s value. With respect to pgap, we could assume a
geometric distribution with success probability ps ∈ ]0, 1], leading to a hazard function not
depending on time H(t′) = ps. Finally, we can use the posterior distribution of the run
length given in Equation 2.24 to determine whether a change point occurred (Adams &
MacKay, 2007; Aminikhanghahi & Cook, 2017).





Chapter 3
Results

Subsequently, the results of this thesis based on the four main publications given in Section
1.5.1 are described. For each publication, we show the bibliographic information and give
the individual author contributions before summarizing the content and outlining the key
findings. For one section, we include further unpublished results obtained in additional
experiments after the time of publication.

3.1 Time Series Forecasting for Small and Medium-Sized
Companies

The following publication, for which the original full version can be found in Appendix A,
is summarized in this section:

Publication A:

Florian Haselbeck, Jennifer Killinger, Klaus Menrad, Thomas Hannus, and Do-
minik G. Grimm (2022). Machine Learning Outperforms Classical Forecasting on
Horticultural Sales Predictions. Machine Learning with Applications, 7, 100239.
https://doi.org/10.1016/j.mlwa.2021.100239

The individual contributions of the authors are as follows: Florian Haselbeck and Dominik
G. Grimm conceptualized the study. Florian Haselbeck implemented the analysis pipeline,
prepared the data, and performed the experiments. Florian Haselbeck and Dominik G.
Grimm analyzed and interpreted the results with the help of Jennifer Killinger. Florian
Haselbeck created the original manuscript draft, which was reviewed and edited by Dominik
G. Grimm with the support of Klaus Menrad, Thomas Hannus, and Jennifer Killinger.
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3.1.1 Summary

Despite sales in the billions in Germany alone, potential economic and environmental
benefits, and several scientifically interesting characteristics such as abrupt changes in
demand, horticulture is a domain with limited attention in forecasting research so far, see
Section 1.2 for more details. To assess the potential of time series forecasting methods to
predict horticultural sales despite changing data distributions, we presented a comparative
study using three classical forecasting and nine ML-based approaches on five retail sales
datasets. With respect to classical forecasting methods, we included both the univariate
approaches Exponential Smoothing and SARIMA as well as the multivariate extension
of the latter SARIMAX (Brown, 1956; Holt, 1957; Hyndman & Athanasopoulos, 2021;
Winters, 1960). Regarding ML-based models, we applied linear regression with different
regularization terms, both in a frequentist and probabilistic formulation (Hoerl & Kennard,
1970; Tibshirani, 1996; Zou & Hastie, 2005). We further employed the ensemble learner
XGBoost, two neural network-based approaches with an MLP and an LSTM network, and
the nonparametric Bayesian model GPR (Chen & Guestrin, 2016; Goodfellow et al., 2016;
Hochreiter & Schmidhuber, 1997; Rasmussen & Williams, 2006; Williams & Rasmussen,
1995). For details regarding the forecasting methods, see Sections 2.1, 2.2, and 2.3.

For our study, we used five horticultural retail sales datasets from Germany based on
two data sources, see Figure 3.1a. Two datasets were manually documented and contain
daily sales numbers of tulips over one three-month-long season with abrupt changes in
demand. The manual documentation shows a 16-day-long gap with missing values after
two months, which is why we derived two datasets: one only containing values before
this gap (OwnDoc_SoldTulips_short) and one for which we imputed the missing values
(OwnDoc_SoldTulips_long). The other three datasets were collected using an electronic
cashier system and show weekly sales numbers from December 2016 to August 2020
without missing values. In contrast to the two manually documented ones, they contain
multiple seasons and revenues are aggregated into product groups. Based on this second
data source, we created a dataset with sales of cut flowers (CashierData_CutFlowers) and
two datasets showing sales of potted plants. For potted plants, we can observe a sharp
increase in revenue in the first half of 2020, probably due to the SARS-CoV-2 pandemic.
We thus distinguish between CashierData_PotTotal_short ending in December 2019 and
CashierData_PotTotal_long containing the whole time period to assess whether the
prediction models are able to handle this change in the data distribution.
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Figure 3.1: Datasets, featuresets, and pre-processing methods for our study: This
figure contains parts of Figures 1 and 2 of the original publication and is
shown for better readability (Haselbeck et al., 2022). (a) Overview of the five
horticultural retail sales datasets based on two data sources. (b) Composition
of the four featuresets that we used in addition to the univariate case as well
as the missing value imputation and dimensionality reduction methods we
considered for each featureset.

We enriched all datasets with features from external sources, namely public and school
holidays as well as weather-related information, for example, the mean temperature and sun
duration. Subsequently, these are referred to as raw features. We also derived calendric and
statistical features to assess their influence. Regarding calendric features, we determined,
i.a., date-based information such as the month and countdowns indicating special days
that could increase demand, e.g., Valentine’s Day. In terms of statistical features, we
considered past sales and weather information, as both could influence future horticultural
demand. For instance, we determined mean values within a period before the time of sale,
calculated features using the information at a similar time step in previous seasons for the



46 3.1. Time Series Forecasting for Small and Medium-Sized Companies

three datasets containing multiple years, and derived weekday-specific sales statistics for
the two datasets with daily time resolution. For more detailed information regarding the
features, see Section 3.1.2 of the original publication in Appendix A. As shown in Figure
3.1b, in addition to the univariate case, these features enabled us to define four featuresets.
Besides the raw features, these include the following ones: no additional features (sub1),
with additional calendric features (sub2), with additional statistical features (sub3), and
with both (full).

The inclusion of information from previous seasons as part of the statistical features results
in missing values for the beginning of the dataset. Furthermore, as outlined, there is a
16-day-long documentation gap in OwnDoc_SoldTulips_long. Since most forecasting
methods cannot handle missing values, we considered three imputation methods: mean,
k-Nearest Neighbor (k-NN), and iterative imputation. Both mean and k-NN use average
values for imputation, but whereas the former uses all, k-NN determines the k closest
training samples. Iterative imputation instead tries to predict missing values using all other
features. We did not consider all imputation methods for every feature setting, see Figure
3.1b. CashierData and the calendric features do not have missing values, and the raw
weather information only contains a few, so the effect of testing different approaches seems
negligible for these variants. For dimensionality reduction on the larger featuresets, we
applied a Principal Component Analysis (PCA) selecting components that explain at least
95 % of the variance (Figure 3.1b).

To simulate the productive operation of a forecasting system with a continuous update of
sales data and to account for potentially changing data distributions, we applied time series
cross-validation with a regular model refitting. We used 80% of the whole dataset for
hyperparameter tuning with a Random Search, with a second in-depth optimization for the
best-working configurations. With the remaining data, we simulated the above-mentioned
productive operation, predicting the next value and then refitting the prediction model with
fixed hyperparameters for each new sample. For evaluation, we averaged the performance
over the whole test set using the metrics RMSE, MAPE and sMAPE, see Section 2.4. We
further conducted runtime experiments, for which we ran a full training cycle using 100
randomly sampled parameter combinations and the test procedure.

Considering the results for all 15 comparisons (five datasets and three evaluation metrics)
visualized in Figure 3 of our publication (Appendix A), an ML-based approach performed
best in each of them. The ensemble learner XGBoost was the clear winner with the best
results in 13 out of 15 comparisons, often closely followed by LSTM and GPR, and twice
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outperformed by the former. This observation also holds with respect to the in-depth
optimization of the best-performing configurations, after which XGBoost surpassed LSTM
in one further comparison. While the performance of the classical forecasting methods was
relatively comparable for the smaller OwnDoc datasets, the advantage of the ML-based
models increased for CashierData. For CashierData_PotTotal_long, which contains a sharp
increase in sales numbers, we observed a worse performance than for the other two datasets
based on CashierData. Thus, all prediction models were limited in handling this change in
the output scale of the data. Interestingly, the univariate method SARIMA outperformed
its multivariate extension SARIMAX several times. Nevertheless, the superiority of the
ML-based techniques generally suggests that external factors are important for predicting
horticultural demand. We observed that the best-performing featureset depends on the
prediction model and the dataset, with no clear overall winner. For OwnDoc, we identified
advantages for the full featureset, whereas sub2 containing raw and calendrical features
worked best for CashierData. The feature importances of the top performer XGBoost also
showed varying results in terms of the most influential features for the different datasets.
Regarding the runtime, linear regression approaches and univariate Exponential Smoothing
required the lowest resources, but XGBoost also proved its efficiency.

3.1.2 Key Findings

In this first-time comparative study, we showed that time series forecasting approaches
are promising for predicting horticultural demand, especially ML-based methods and in
particular the ensemble learner XGBoost. Moreover, external factors such as holiday and
weather-related information were beneficial, even though we could not identify a best-
performing featureset for all prediction models and datasets. However, all prediction models
were limited in handling the change in the output scale for CashierData_PotTotal_long
despite a regular model refitting scheme. For more general conclusions, our findings
need to be verified in a broader study using data from multiple companies along the
entire value chain and products with diverse characteristics. Besides these key findings,
we identified two factors that impede demand forecasting. First, as already explained,
changing data distributions as observed for CashierData_PotTotal_long are challenging,
probably requiring methods that specifically account for this issue. In Sections 3.2 and
3.3, two approaches designed for this purpose are outlined. Second, no comprehensive and
state-of-the-art time series forecasting framework is available that is easy to use and extend
to ensure reproducible and comparable results as well as accessibility of novel approaches.
For this reason, we have published ForeTiS, which is introduced in Section 3.4.
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3.2 Event-Triggered Augmented Refitting of Gaussian
Process Regression

The following publication, for which the original full version can be found in Appendix B,
is summarized in this section:

Publication B:

Florian Haselbeck and Dominik G. Grimm (2021). EVARS-GPR: EVent-Triggered
Augmented Refitting of Gaussian Process Regression for Seasonal Data. KI 2021:
Advances in Artificial Intelligence, 12873, 135–157. https://doi.org/10.1007/978-3-
030-87626-5_11

The individual contributions are as follows: Florian Haselbeck and Dominik G. Grimm
developed the presented method. Florian Haselbeck implemented the code, prepared the
simulated and the real-world data, and performed the experiments. Florian Haselbeck
and Dominik G. Grimm analyzed and interpreted the results. Florian Haselbeck wrote the
original draft of the manuscript, which was reviewed and edited by Dominik G. Grimm.

3.2.1 Summary

Changing data distributions over time is a well-known challenge in time series forecasting,
which can lead to incorrect predictions using an outdated forecasting model and subsequent
damage, e.g., financial loss. In Section 1.2, this issue is outlined in more detail. To
ensure an up-to-date forecasting model that delivers accurate predictions at all times,
we developed EVent-Triggered Augmented Refitting of Gaussian Process Regression for
Seasonal Data (EVARS-GPR). This novel online forecasting algorithm addresses shifts in
the target variable scale of seasonal data. In contrast to many existing approaches, EVARS-
GPR is event-triggered and thus computationally efficient while ensuring an immediate
reaction after a detected change point. Moreover, EVARS-GPR does not require a priori
assumptions about potential changes of the system behavior, and augments existing data
to be able to reuse it. Our algorithm is focused on seasonal data, a characteristic that is
true for many time series when considering seasonality as a periodic system behavior. As
the prediction model, we employ GPR (Williams & Rasmussen, 1995), see Section 2.3.2,
which showed a good performance in our previous publication outlined in Section 3.1 and
delivers prediction uncertainties that might be useful for downstream applications.

For EVARS-GPR, we distinguish between the offline phase during which the initial prediction
model is built and the online phase, i.e., the productive operation of a forecasting system.

https://doi.org/10.1007/978-3-030-87626-5_11
https://doi.org/10.1007/978-3-030-87626-5_11
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In Figure 3.2, we give an overview of EVARS-GPR to provide an intuitive understanding.
We refer to the original publication in Appendix B for mathematical and algorithmic details.
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Figure 3.2: Overview of EVARS-GPR: This figure is similar to Figure 1 of the original
publication and is shown for better readability (Haselbeck & Grimm, 2021).
During the offline phase, the initial prediction model is determined. With every
new sample available during the online phase, the next target value is first
predicted before an online change point detection algorithm runs. If a change
point is detected, the algorithm checks whether the extent of the output scale
change compared to previous seasons exceeds a threshold. In case this condition
is also fulfilled, the current prediction model is refitted using augmented existing
data. EVARS-GPR continues with the current prediction model if one of these
conditions is not met.

During the offline phase, EVARS-GPR is not different from the usual approach to determine
the prediction model, for instance, in a cross-validation setup to optimize hyperparameters.
Since EVARS-GPR is an online algorithm, its main procedure starts in the online phase
with continuously available new samples. First, EVARS-GPR forecasts the next value of
the target variable using its current prediction model. After this step, we run an online
CPD method to check if a change in the data distribution has occurred. If this is true,
we determine the extent of the output scale change by setting the target values within a
window of the current season in relation to previous seasons. This output scaling factor is
then compared to a threshold value to trigger the augmented refitting if it is exceeded.
Online CPD approaches are prone to false alarms, e.g., due to outliers. With this additional
check and smoothing of values within a window, we intend to prevent unjustified model
refittings. In the augmented refitting step, we reuse the data prior to the change point and
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augment it using the information we gained on the output scale change. For computational
efficiency and to focus more on recent samples, we limit the data we use to a certain
number of previous seasons. Finally, we refit the current prediction model using this
augmented dataset. If we do not detect a change point or the output scaling factor does
not exceed the threshold, EVARS-GPR continues with its current prediction model. This
procedure is repeated for every time step t with a new sample becoming available.

To select the CPD and data augmentation methods and their as well as EVARS-GPR’s
parameters, such as the number of previous seasons and the window size to consider for
the the output scaling factor, we used synthetic data. In total, we simulated 67 scenarios
that differed, for instance, in terms of the extent and speed of the output scale change,
and applied a Random Search for hyperparameter optimization, see Section 2.4. Based on
this, we have finally selected ChangeFinder (Takeuchi & Yamanishi, 2006) and not BOCPD
(Adams & MacKay, 2007) for CPD, see Section 2.5, and a simple scaling of the original
dataset for augmentation. For more details on the data simulation and the selection of the
algorithm components and parameters, we refer to the original publication.

We further used the synthetic data to analyze the behavior of EVARS-GPR under pre-
defined conditions, see Section 6.1 of the original publication. In summary, EVARS-GPR
showed broad applicability for various output scale changes and consistently performed at
least as well as a configuration without model updates. Beyond that, we evaluated EVARS-
GPR on ten real-world datasets, separating the last 20% to simulate an online scenario.
EVARS-GPR was robust without any incorrect model adjustments for five datasets that did
not show an output scale change. For the other five datasets, EVARS-GPR outperformed
all comparison partners with a comparable computational resource consumption in terms
of RMSE, on average by at least 20.8%. Not surprisingly, EVARS-GPR yielded a higher
RMSE than computationally exhaustive methods employing periodical refittings. However,
for three of the five datasets, EVARS-GPR delivered comparable results and, in addition,
showed a six-fold runtime reduction averaged over all datasets in relation to the approach
with the second-lowest runtimes.

3.2.2 Further Unpublished Results

We further extended EVARS-GPR to EVARS-GPR+, which is unpublished and shown
in Algorithm 4. In contrast to EVARS-GPR, its extension aims to also account for less
significant changes of the output scale, or even data distribution changes that are unrelated
to the output scale. Since EVARS-GPR’s augmented refitting showed a good performance
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for datasets containing an output scale change and demonstrated broad applicability on
synthetic data, we kept the augmented adjustment scheme. In addition to the augmented
refitting, we include a second retraining mechanism if a change point is detected, but the
output scale change criterion is not met, see line 14 of Algorithm 4. For this purpose, we
complement the dataset of the last augmented refitting with the unchanged samples since
then to perform a non-augmented refitting of the current prediction model.

Algorithm 4 EVARS-GPR+ including a non-augmented refitting in contrast to EVARS-GPR

Require: initial prediction model Mbase; offline data Do f f = {(xt, yt) | t = 1, . . . , to f f };
parameters for output scale change criterion: number of previous seasons nη ∈
N, window size nw ∈ N, seasonal length nseas ∈ N, threshold πη ∈ R≥0;
parameters for CPD method ChangeFinder θCF.

1: Mcurrent ← Mbase
2: ηold ← 1
3: D′ ← {}
4: tlast ← to f f
5: for t = to f f , . . . , tend do
6: predict next value: ŷt+1 ← predict(Mcurrent, xt)
7: run change point detection: cp← ChangeFinder(Dt

i=1, θCF) ▷ see Sec. 2.5
8: if cp then
9: get output scaling factor: η ← calc_eta(Dt

i=1, nη, nseas, nw)
▷ see Eq.(1) App. B

10: if |η − ηold|/ηold > πη then
11: Mcurrent,D′ ← augmented_refitting(Mcurrent, η, Dt

i=1)
12: tlast ← t
13: ηold ← η
14: else
15: Mcurrent ← non_augmented_refitting(Mcurrent„ Dt

i=tlast
,D′)

To evaluate the performance of EVARS-GPR+, we also used the ten real-world datasets
from our original publication to simulate an online scenario with the last 20 % of the data.
For our comparison, we included Mbase, which does not refit the prediction model at all,
and the computationally exhaustive approaches PR1 and PR2, which perform a refitting
in every respective every second time step. Moving-Window GPR (MWGPR) combines a
refitting in every time step with discarding the oldest samples and a recursive bias term
to correct the model based on the previous performance (Ni et al., 2012), see Section
1.3.2. In our original publication, we have already shown that EVARS-GPR outperformed
algorithms that do not augment at all (CPD_retrain and CPD_MW), which is why we did
not include these. Table 3.1 gives an overview of the results. Compared to EVARS-GPR,
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we observe that EVARS-GPR+ leads to equal or better results in nine out of ten cases. We
only see a slight RMSE increase of 1.0% for AirPassengers. For five datasets, we obtain
better results, with an improvement of up to 59.8%. In summary, the second refitting
mechanism seems to be beneficial in most cases, making EVARS-GPR+ a straightforward
yet reasonable extension.

Table 3.1: Overview of results in terms of RMSE on real-world data: The unpub-
lished extension EVARS-GPR+ is compared to EVARS-GPR, Mbase without any
refitting during the online phase, and the computationally exhaustive approaches
PR1, PR2, and MWGPR. PR1 and PR2 refit the prediction model in every and
every second time step, respectively. Moving-Window GPR (MWGPR) performs
a model refitting every time step, discarding the oldest sample and a recursive
bias term for model correction (Ni et al., 2012). We show results for the
real-world datasets used in the EVARS-GPR publication, half of which does not
contain an output scale change. The best result for each dataset is highlighted
in bold. For EVARS-GPR+, we show the percentage change in RMSE compared
to EVARS-GPR. Dataset sources: (Haselbeck et al., 2022): CashierData; (Hynd-
man & Athanasopoulos, 2021): DrugSales, VisitorNights, and Beer ; (Box et al.,
2016): AirPassengers; (Earth System Research Laboratory, 2021): MaunaLoa;
(Makridakis & Wheelwright, 1989): ChampagneSales; (Chakrabarty, 2021):
TouristsIndia; (Makridakis et al., 1998): Milk, and USDeaths.

dataset Mbase PR1 PR2 MWGPR EVARS-GPR EVARS-GPR+
datasets with an output scale change

CashierData 1351.43 1119.23 1185.82 1098.16 1125.34 1094.77 (↓ 2.7 %)
DrugSales 6.15 2.44 2.54 2.86 2.75 2.75 (→)
AirPassengers 171.58 69.06 74.28 72.27 93.88 94.80 (↑ 1.0%)
MaunaLoa 34.37 11.12 12.60 9.88 27.96 11.25 (↓ 59.8%)
VisitorNights 10.97 5.08 5.21 5.85 5.11 5.11 (→)

datasets without an output scale change
ChampagneSales 1158.26 1096.10 1098.79 1369.95 1158.26 1158.26 (→)
TouristsIndia 90707.30 92083.88 73924.96 190762.90 90707.30 90707.30 (→)
Milk 15.16 10.69 11.09 8.31 15.16 12.01 (↓ 20.8%)
Beer 16.88 14.54 14.53 18.82 16.88 14.98 (↓ 11.3%)
USDeaths 276.72 261.07 263.98 253.81 276.72 260.80 (↓ 5.8%)
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3.2.3 Key Findings

EVARS-GPR demonstrated its computational efficiency, its broad applicability to various
output scale changes, and its ability to achieve results that are even comparable to
computationally exhaustive approaches. Regarding the results of the unpublished extension
EVARS-GPR+, we observed that a second refitting mechanism without data augmentation
was beneficial. Hence, we developed two computationally efficient online forecasting
algorithms that can handle sudden changes in the target variable scale of seasonal data. As
a further plus, both EVARS-GPR and EVARS-GPR+ are model-agnostic, allowing for the
integration of a different prediction model, which may be beneficial for some forecasting
tasks. However, we also observed that for some datasets, e.g., Milk and AirPassengers,
both EVARS-GPR and its extension were significantly outperformed in terms of RMSE.
A potential reason is that the parameterization is based on synthetic data, which might
not lead to the best configuration for every real-world dataset. Furthermore, we keep
the hyperparameters, particularly the kernel expression of the GPR model, fixed for both
adjustment mechanisms. Thus, an accurate adaptation to larger system behavior changes
might be difficult using our approaches.

3.3 Dynamically Self-Adjusting Gaussian Processes

The following publication, for which the original full version can be found in Appendix C,
is summarized in this section:

Publication C:

Jan D. Hüwel∗, Florian Haselbeck∗, Dominik G. Grimm and Christian Beecks (2022).
Dynamically Self-adjusting Gaussian Processes for Data Stream Modelling. KI 2022:
Advances in Artificial Intelligence, 13404, 96-114. https://doi.org/10.1007/978-3-
031-15791-2_10
∗Both authors contributed equally and share first authorship.

The individual contributions are as follows: Florian Haselbeck and Jan D. Hüwel developed
the presented method. Jan D. Hüwel implemented the code with contributions from Florian
Haselbeck. Florian Haselbeck prepared the simulated and the real-world data. Jan D.
Hüwel performed the experiments with help of Florian Haselbeck. Florian Haselbeck and
Jan D. Hüwel analyzed and interpreted the results with contributions from Dominik G.
Grimm and Christian Beecks. Florian Haselbeck and Jan D. Hüwel prepared the manuscript
draft, which was reviewed and edited by Dominik G. Grimm and Christian Beecks.

https://doi.org/10.1007/978-3-031-15791-2_10 
https://doi.org/10.1007/978-3-031-15791-2_10 
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3.3.1 Summary

With our previous publication outlined in Section 3.2, we primarily address changes in
the data distribution in seasonal time series that are reflected in a change of the output
scale. However, as we do not change the kernel expression of the GPR prediction model,
other changes, i.a., a shift in the periodicity, may be challenging. To provide useful
predictions using an up-to-date model at all times, we presented dynamically self-adjusting
GPs with our novel algorithm Event-Triggered Kernel Adjustments in Gaussian Process
modeling (ETKA), which we subsequently summarize. For more details, we refer to our
original publication in Appendix C. ETKA combines a novel GP-based CPD approach
with AKS (Hüwel et al., 2021), see Section 2.3.2, during the online phase. Previous AKS
applications perform a periodical model reconfiguration. We replace this procedure by an
event-triggered mechanism employing a CPD, to prevent on the one hand extended periods
with an outdated model and on the other hand unnecessary and computationally expensive
kernel searches.

Similar to the common approach, we first use CKS (Duvenaud et al., 2013), see Section
2.3.2, during the offline phase to determine the best-fitting kernel expression for the GPR
model (Williams & Rasmussen, 1995). Then, with each new sample becoming available,
we predict the next target value before running our novel and efficient CPD approach,
which is CUSUM-based (Page, 1954). For this CPD method, we accumulate the absolute
prediction error |yt − ŷt| using the true value yt and the predicted value ŷt to determine a
change point score s ∈ R≥0:

s = max(0, s + |yt − ŷt| − 2 · δ · σ) (3.1)

We further use the square root of the noise σ2 of the GP model and a tolerance factor
δ ∈ R to not count predictions that are within the inner δ · 100 % of the prediction model’s
confidence interval. In case this change point score s exceeds a threshold ϵETKA ∈ R>0,
we detect a change point and reset s to zero. With this computationally efficient approach,
we make use of the GP’s uncertainty. The further a predicted value is outside of the
tolerance interval mentioned above, the more it counts towards declaring a change point.
If a change point is detected, we use AKS to adjust the GPR prediction model using the
most recent data points within a window of size nw.

We again used simulated data to determine the algorithm’s parameters δ and ϵETKA and
to analyze its behavior under controlled conditions. However, the simulation setup differs
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from our previous publication. We also considered other types of data distribution changes
in addition to output scale shifts, i.a., a changing period length. For evaluation, we used
the MAE during the online phase. We further included AKS employing periodical refitting
scheme (PER AKS) as well as a change point-triggered adjustment of the GP without a
kernel search (CPD HPO) as comparison partners.

With respect to the results averaged across all simulated scenarios, we observed that ETKA
outperforms both comparison partners in terms of the prediction error and showed the best
performance for a rather sensitive CPD with δ = 0.5 and ϵETKA = 5.0. Since providing
an up-to-date model at all times is the primary objective of ETKA, we decided to use
this configuration at the cost of a longer runtime, which, not surprisingly, decreases for a
less sensitive CPD. Using this parameterization, we further tested ETKA on 14 real-world
datasets from different domains showing varying characteristics, such as the number of
samples. Averaged across all 14 datasets, ETKA outperformed PER AKS and CPD HPO
regarding the prediction error by 2.73 % and 6.19 %, respectively. However, at the cost of
longer runtimes for several datasets. Interestingly, when focusing on the datasets for which
the runtime advantage of PER AKS is bigger than 100 %, we observed a lower prediction
error of ETKA for three out of four cases, with a decrease of up to 19.30%.

3.3.2 Key Findings

Analyzing ETKA’s behavior using simulated data, we again identified broad applicability
despite different change point patterns, with ETKA mostly outperforming its comparison
partners. We also observed a lower prediction error on most real-world datasets, at the
cost of longer runtimes, since we have chosen a rather sensitive CPD parameterization.
This parameterization could be changed for applications focused on fast processing, to
trade a potential decrease in prediction performance for lower runtimes. Furthermore, the
number of samples and AKS iterations for the model configuration could be adjusted.
Thus, in addition to EVARS-GPR and EVARS-GPR+, which focus on output scale changes
in seasonal data, we presented a flexible online method that handles various change point
patterns in seasonal and non-seasonal data and automatically provides an up-to-date model
at all times.
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3.4 A Comprehensive Time Series Forecasting Framework

The following publication, for which the original full version can be found in Appendix D,
is summarized in this section:

Publication D:

Josef Eiglsperger∗, Florian Haselbeck∗ and Dominik G. Grimm (2023). ForeTiS: A
comprehensive time series forecasting framework in Python. Machine Learning with
Applications, 12, 100467. https://doi.org/10.1016/j.mlwa.2023.100467
∗Both authors contributed equally and share first authorship.

The individual contributions of the authors are as follows: Florian Haselbeck and Josef
Eiglsperger designed the software framework with contributions from Dominik G. Grimm.
Florian Haselbeck and Josef Eiglsperger implemented the code and created the online
documentation. Josef Eiglsperger prepared the data and conducted the experiments for
the case studies of the publication. Josef Eiglsperger and Florian Haselbeck prepared the
original draft of the manuscript, which was reviewed and edited by Dominik G. Grimm.

3.4.1 Summary

A key finding of our first comparative study on time series forecasting for horticultural sales
prediction and a general issue as outlined in Section 1.2 is the need for a comprehensive
and state-of-the-art framework. This facilitates to conduct such studies while ensuring
reproducible and comparable results as well as accessibility of novel methods. Therefore,
we have developed ForeTiS, a time series forecasting framework in Python that covers
the whole pipeline from data pre-processing over feature engineering to hyperparameter
optimization and model selection using state-of-the-art approaches. In addition, we support
novice users with a comprehensive online documentation, including various hands-on
tutorials and video guides, at https://foretis.readthedocs.io/.

The main modules of ForeTiS are structured according to the common time series
forecasting workflow, see Figure 3.3. The largest benefit for end users is the possibility to
perform state-of-the-art time series forecasting with a single line of code. Users simply need
to provide data, for instance, as a CSV file, and a dataset-specific configuration file. This
implementation allows for straightforward yet customizable usage. The data pre-processing,
feature engineering, and hyperparameter search are fully automated. Regarding data pre-
processing, we integrate three missing value imputation methods and PCA for dimensionality
reduction. We offer to include calendrical, for instance, date-based information, e.g., the

https://doi.org/10.1016/j.mlwa.2023.100467
https://foretis.readthedocs.io/
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day of the week, and statistical features, i.a., statistics over past sales. For seasonal
time series, a characteristic that many datasets show, we allow deriving features based on
previous seasons, which is likely to be predictive.
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Figure 3.3: Overview of the main components of ForeTiS: This figure is similar
to Figure 1 of the original publication and is shown for better readability
(Eiglsperger et al., 2023). The submodule preparation contains the data pre-
processing and feature engineering methods. We designed model to allow for
easy integration of further prediction models and already included several ones.
For hyperparameter search, we leverage Bayesian optimization via the Python
package Optuna. Our testing module enables to test different refitting
schemes, of which the results can be analyzed using evaluation.

Furthermore, the user can freely choose from a variety of already integrated prediction
models ranging from classical time series forecasting approaches over ML-based methods
to deep learning (DL)-based architectures. We consider both frequentist and probabilistic
approaches, i.a., GPR or Bayesian neural networks. Regarding data splits, see Section
2.4, ForeTiS includes a regular and a time-series cross-validation, as well as a split into
training, validation and test data maintaining the chronological order. The subsequent
hyperparameter search is completely automated using Bayesian optimization via the Python
package Optuna (Akiba et al., 2019; Bergstra et al., 2011). We further include procedures
to test different refitting approaches, for instance, periodical schemes or CPD-based EVARS-
GPR (Haselbeck & Grimm, 2021). For evaluation, we provide common metrics and simple
baselines, e.g., Random Walk. We further support results analysis with functions that
summarize optimization outcomes and generate plots showing predicted and true values.
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For advanced users who aim to develop novel methods, ForeTiS and, in particular,
its submodule model are designed to allow for quick integration and benchmarking of
new prediction approaches. In a base class, we define methods that are useful for all
prediction models, as well as methods and attributes that need to be implemented by each
child class. For the common Python frameworks scikit-learn (Pedregosa et al., 2011),
statsmodels (Seabold & Perktold, 2010), PyTorch (Paszke et al., 2019) and TensorFlow

(Abadi et al., 2015), we already implement some of these mandatory methods, for instance,
the training loops. Thus, users only need to implement two methods defining the prediction
model and the hyperparameters with their ranges. This concept allows advanced users to
focus on the design of the forecasting method while relying on a thoroughly-tested and
fully-automated remaining pipeline. Furthermore, we support quick and fair benchmarking
as we have already integrated various forecasting approaches.

3.4.2 Key Findings

In summary, we provide a powerful resource for both end users and forecasting experts
that ensures highly reproducible and comparable results. ForeTiS is easy to use, its main
pipeline is fully automated yet customizable, and it is easily extendable. Users can conduct
comparative studies to evaluate, e.g., which prediction model, featureset and refitting
scheme works best for their application. A further plus is the possibility to quickly integrate
and benchmark new forecasting approaches, increasing the development speed and lowering
the risk of errors by using a reliable framework. Moreover, we ensure user support through a
comprehensive online documentation, including various hands-on guides and video tutorials.



Chapter 4
Discussion

After outlining the four main contributions of this thesis, we subsequently discuss the
findings. The discussion is structured with respect to the objectives of this thesis given
in Section 1.4. Since the main contributions of this work addressing these objectives also
include discussions, some points outlined below are inspired by (Haselbeck et al., 2022),
(Haselbeck & Grimm, 2021), (Hüwel et al., 2022), and (Eiglsperger et al., 2023). Besides
aspects related to the objectives, we present further general points of discussion, also with
respect to current challenges in time series forecasting outlined in Section 1.2 but not
addressed in this thesis.

4.1 Time Series Forecasting for Small and Medium-Sized
Companies

One objective of this thesis is to assess the potential of time series forecasting methods
despite changing data distributions for sales prediction of small and medium-sized companies
dealing with perishable goods based on the example of horticulture. In a first-time
comparative study in this domain, we used five horticultural retail sales datasets, i.e., the
trade level that is closest to the end customer and thus probably more directly influenced
by external factors such as weather. We further enriched these datasets with external
features, e.g., weather and calendric information, and employed three classical as well
as nine ML-based forecasting methods. More details regarding the experimental setup
and results can be found in Section 3.1 and Appendix A. Most of the employed methods
outperformed simple baselines, see Section 2.4. Manual demand predictions by an expert,
the most common current procedure in horticulture, were not available for comparison.
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Indicators for manual predictions are past sales in the current and previous seasons. The
simple baselines we included in our comparison, e.g., a random walk and a seasonal random
walk, use the same information. Thus, these approaches, which were mostly outperformed,
can be considered to be similar to manual predictions, indicating that time series forecasting
is beneficial for predicting horticultural demand. XGBoost, an ensemble learner leveraging
gradient boosting, performed best in most comparisons. This observation is consistent
with scientific publications in other application domains, for which ensembling, particularly
gradient boosting methods, has shown a good performance (Bojer & Meldgaard, 2021;
Makridakis et al., 2022). Furthermore, LSTM and GPR performed comparably well. The
competitive performance of ensemble learners and LSTM networks was also observed for
domains with similar characteristics to horticulture, namely food and tourism, which is
described in Section 1.3.1. In accordance with findings for these domains, we identified
a superiority of ML-based approaches, especially for larger datasets (Huber, 2019; Jiao
& Chen, 2019; Priyadarshi et al., 2019; Turgut & Erdem, 2022). Besides the amount
of available data, a potential reason for this improved performance is that multivariate
patterns and nonlinear relationships may be more prominent in these larger datasets, and
that ML-based methods have the ability to capture these. However, the top performer
XGBoost also showed the lowest error for most of the smaller datasets. As shown in our
publication, a further plus of this ML-based ensemble learner is its comparably low runtime.
With respect to changing data distributions and a potentially required model refitting, this
advantage becomes even more important.

We further observed a significant increase in sales in 2020 for one of our datasets, i.e., a
change in the data distribution, probably due to the SARS-CoV-2 pandemic. Regarding the
results on the relative measures sMAPE and MAPE, we obtained higher values than for the
other datasets, indicating that such a shift in the scale of the target variable is challenging.
All prediction models were limited in their ability to capture this change, even though we
performed regular model refittings that were probably beneficial. However, the amount of
data resulting from the changed data distribution was comparatively low in relation to the
whole refitting data, potentially influencing the prediction model only to a limited extent.
For this dataset, XGBoost was also the top performer. Surprisingly, the univariate classical
approach SARIMA performed well. The features used for the multivariate methods could
even have impeded the forecasting quality, since the data distribution changed and the
prediction model was trained on an outdated relationship between the features and the
target variable. This observation is not true for the other datasets, for which we did not
detect a changing data distribution, with the top performer always being a multivariate
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approach. Thus, in general, external factors are probably beneficial for horticultural sales
prediction, in particular for the ML-based methods that have proven their strength when
these features are available. Unfortunately, we could not determine an overall superior set
of features, but rather a need to re-evaluate different ones for each task.

We made some simplifications for this first-time comparative study. As explained in
Section 1.2, sales numbers only approximate the actual demand, particularly in out-of-stock
situations. Furthermore, stock figures were not recorded, which could be used to better
estimate the real demand. Hence, we had to approximate the real demand using sales
figures. Moreover, we enriched our dataset with weather information. For this purpose, we
leveraged historical weather observations. However, for a real-world forecasting system,
only short-term weather forecasts with a lead time of about two weeks would be available,
which also contain uncertainty. With the test data, we simulated the live operation of a
forecasting system with a continuous data stream. We first predicted the next day’s or
week’s sales, depending on the dataset. Hence, using historical weather data seems to be a
reasonable simplification, as the weather forecasts for the next day or week are likely to be
less uncertain than long-term predictions. However, due to the lack of historical weather
forecast records, we also had to use historical weather data to optimize the prediction
models that we used to simulate the live operation. For this hyperparameter optimization,
we used longer forecasting horizons, for which weather forecasts would not be available in
practice or contain uncertainty. This simplification is common when using weather data,
but should be evaluated in more detail for long-term forecasts. For instance, it would
be possible to create separate models for different forecasting horizons that use different
external information, neglecting weather-related features for long-term prediction models.
Beyond that, we only considered calendar and weather data as external information, but
other features, such as promotional or communication activities of a retailer, could be
predictive. However, these are often not recorded in computer systems and must be
collected manually, leading to costs and potentially inaccurate data.

This study is the first proof of concept to predict horticultural demand with time series
forecasting approaches based on retail data. We provide some insights and show the
potential of such an approach. However, a broader study using data from various companies
across the whole value chain and products with different characteristics is essential to draw
more general conclusions. Besides providing guidance for such a broader study with our
findings, we can derive several points that are interesting for future research. With XGBoost,
an ensemble learner lead to the best result, which is in accordance with the literature.
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Therefore, it is interesting for future research to evaluate other combined approaches,
possibly using different types of methods. For instance, the winning method of the M4
forecasting competition combined Exponential Smoothing with a recurrent neural network,
i.e., a classical forecasting and a DL-based approach (Smyl, 2020). We further chose a
rather computationally exhaustive approach with periodical model refittings, however with
limited success for a dataset with a changing distribution. Thus, our results demonstrate
the necessity of approaches that specifically account for changing data distributions. We
address this issue, as outlined, in two further publications, see Sections 3.2 and 3.3, and
discuss the findings in the next section of this chapter. Beyond that, we employed retail
sales data for our study, the level of trade potentially most directly affected by external
features such as weather data. However, data from the whole value chain, e.g., from
wholesalers or producers cooperating with a retailer, could be predictive. Furthermore,
retail sales data could also be interesting for demand predictions at these upstream parts
of the value chain.

A challenge for time series forecasting for small and medium-sized companies is comparably
small datasets. Beyond that, horticultural companies often have a very wide range of
products with various different characteristics, i.a., seasonality or peak sales periods. In
addition, some articles have rather short seasons, resulting in sparse and intermittent
datasets. A potential way to address this issue in future research is to combine data from
different companies and thus benefit from the unified information based on several sources.
However, this is challenging due to the diversity of the products and their quantity, as well
as the heterogeneity of many horticultural companies, e.g., specializing on different plants
and services. To enable a prediction model based on such a combined dataset, groups
of companies and products with similar characteristics must be defined, which would be
facilitated in a larger consortium. Predicting individual items, for instance, cut roses, makes
it difficult to combine datasets and would require the development of many prediction
models. Thus, meta-products that summarize several articles could be defined to allow for
the development of a more general model. Due to the large number of products, automated
approaches are needed to define the product groups. A grouping based on the biological
taxonomy might not be useful. For instance, the family Rosaceae includes ornamental
plants such as roses, as well as fruit trees such as apples, with completely different purposes
of use and sales characteristics (Erhardt et al., 2014). With respect to demand prediction,
the grouping should rather be guided by similar sales characteristics, which may require
other data-driven approaches. Demand predictions for such meta-products could support
an expert’s operational decisions with respect to specific items that are part of the product
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group. Generative models are a further option for enriching small datasets, which is outlined
in more detail in Section 4.4 together with further points of discussion related to synthetic
data.

As discussed, several challenges, such as heterogeneous data and company structures,
must be solved with technological measures. Overcoming these issues is essential because
creating and maintaining many prediction models would be expensive and error-prone.
However, there are further issues impeding the practical operation of a forecasting system
for horticultural demand. Most companies are small or medium-sized and independent.
Horticultural retailers, for instance, often operate only one store (Bundesministerium für
Ernährung und Landwirtschaft, 2021). This company size limits their potential financial
benefits when using accurate demand predictions and thus probably the amount of money
they are willing to pay for such a service. As a result, the ratio between the cost of
integrating a company and the revenue that a forecasting system operator can generate
with that business may be economically unattractive. The cost-income ratio may be
better for other domains dealing with perishable goods, e.g., bakeries, which often operate
multiple stores. Furthermore, several suppliers for merchandise management systems exist,
often with additional customization for certain companies. This heterogeneity of the
information technology infrastructure can additionally increase the efforts of a forecasting
system operator. Collaborations with cooperatives representing the interests of multiple
member companies could be an option to standardize interfaces and sales documentation
as an enabler for a forecasting system. For a live operation, a standardized interface to a
merchandise management system would be essential to enable an automated access to
the latest data. Thus, integrating a forecasting system into a merchandise management
system could be beneficial. Besides simplifying interfaces, users would not need to use
different tools. Orders could be even placed fully automatically or by an expert supported
by accurate predictions. To better estimate the real demand, stock recordings could be
helpful. However, stock recordings are expensive and not common due to the wide range
of products, which are often fast-moving, and high manual efforts for additional quality
assessments. Thus, the simplification of using sales numbers as an approximation of the
demand must probably still be made. These issues impeding horticultural sales predictions
can provide guidance for other domains with small and medium-sized companies dealing
with perishable goods when aiming to offer a forecasting service.
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4.2 Novel Approaches for Changing Data Distributions

A further objective of this thesis is to develop novel and computationally efficient online
methods that quickly adapt to changing data distributions. Such distributional shifts
are a common problem in time series forecasting that we also observed in our first-
time comparative study. As already described, predictions from a model trained on an
outdated data distribution could be useless and even cause damage, e.g., financial loss when
misestimating demand. Computational efficiency and quick adaptation are important for the
integration of an algorithm into a live-operated forecasting system and potentially needed
model adjustments. However, the primary objective is often to get accurate predictions at
all times.

To address changes visible in the output scale, see Objective 2A outlined in Section 1.4,
we first developed EVARS-GPR. EVARS-GPR focuses on this type of change pattern and
is limited to seasonal data, a property that many time series show. We demonstrated
the broad applicability and good performance of EVARS-GPR on both simulated and
real-world data. To assess the limitations and strengths of the algorithm, we used synthetic
data with different times of occurrence, durations, speeds, and extents of the change
in the output scale. In all scenarios, EVARS-GPR outperformed a non-refitting scheme.
As expected, the benefit of using EVARS-GPR was bigger for longer lasting and larger
output scale changes. Shorter and less pronounced changes were rather hard to detect
for the integrated CPD method, reducing the advantage of EVARS-GPR. Regarding the
speed of the output scale change, i.e., the abruptness of the change, we observed a
broad applicability with minor differences. However, lower speeds were harder to detect,
which lead to a later adjustment of the prediction model. EVARS-GPR further proved its
usefulness on real-world data, outperforming comparison partners with a similar resource
consumption on average by 20.8% with respect to RMSE compared to the second-best
competitor. In a further benchmark against computationally exhaustive periodical refitting
schemes, EVARS-GPR performed, as expected, worse in terms of RMSE. Nevertheless,
our algorithm delivered a comparable performance for three out of five datasets. The
other two datasets contained rather small output scale changes, so probably not all change
points may have been detected by the CPD integrated into EVARS-GPR. Furthermore,
these datasets may contain changing data distributions that are not visible in the output
scale, e.g., a change in the periodicity. A major advantage of EVARS-GPR compared
to the periodical refitting schemes is its computational efficiency. We observed a more
than six-fold lower averaged runtime in relation to the second-most efficient approach,
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which triggers a refitting at every second time step. For MaunaLoa and AirPassengers, the
two datasets for which EVARS-GPR was outperformed by the largest margin regarding
RMSE, the runtime reduction was even 250 and 16 times, respectively. This high runtime
reduction in conjunction with the higher RMSE also indicates that probably not all change
points have been detected to trigger the augmented refitting. The parameterization of a
CPD method is usually a trade-off between unjustified alarms and not detecting actual
changes. As shown on datasets that do not contain an output scale change, EVARS-GPR
was robust against false alarms and did not lead to augmented refittings in these cases.
However, the parameterization of the CPD could also be a reason for the worse results
compared to computationally exhaustive approaches for datasets with smaller changes in
the output scale.

Hence, accurately detecting change points during the live operation is essential for EVARS-
GPR. To prevent false alarms, for instance, in case of outliers, we additionally introduced
a threshold for the change of the output scale in comparison with previous seasons.
Improvements regarding the online CPD that is part of our algorithm could probably
lead to a better downstream performance regarding the prediction error. As described
above, the parameterization of the CPD method within EVARS-GPR strongly influences
the downstream performance. We employed simulated data to parameterize the whole
pipeline, taking into account a diverse set of potential output scale changes. Although
this approach is reasonable, the parameter values may not be suitable for all datasets.
Hence, besides the above-described enhancement of the CPD method itself, improvements
with respect to the hyperparameter optimization of EVARS-GPR are interesting for future
research. For instance, simulating changing distributions of real-world data could be
integrated into the cross-validation that is performed to determine the initial prediction
model. In this way, dataset-specific parameters could be obtained, potentially accounting
for the dataset’s characteristics. However, such an approach would require additional
computational resources during the offline phase of EVARS-GPR. Moreover, EVARS-GPR
has proven its computational efficiency, but periodical refitting schemes have shown lower
prediction errors. Thus, a combination of both could be beneficial, with low frequently
triggered model refittings in EVARS-GPR in conjunction with the current procedure of
CPD-based and augmented adjustments. This combination could prevent extended periods
using an outdated prediction model if a change point was not detected while still ensuring
computational efficiency. A further plus would be that refittings would not only be performed
in case of a detected output scale change, so other types of changing data distributions
could also be addressed. Beyond that, we selected GPR as the prediction model due to its
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good performance in our first comparative study and the inherent prediction uncertainties.
Nevertheless, for some datasets, other prediction models could be of advantage. EVARS-
GPR is model-agnostic, and thus integrating other forecasting approaches seems interesting
for future research. In a Master’s thesis, we conducted initial experiments to consider a
dataset-specific parameterization and the integration of further prediction models. However,
these preliminary results showed limited success (Golubovic, 2022). Further research is
needed to analyze these challenges in more detail.

EVARS-GPR+, which we integrated as unpublished results in this thesis, is an extension of
EVARS-GPR that additionally includes a non-augmented refitting in case a change point is
detected, but the threshold for output scale change in comparison with previous seasons
is not exceeded. We assessed EVARS-GPR+ using the parameterization of EVARS-GPR
on ten real-world datasets. For the five datasets that contain an output scale change,
we observed a worse performance for only one dataset, no change in RMSE for two,
and an improvement by 2.7% and 59.8%, respectively. The largest improvement was
observed for MaunaLoa, for which EVARS-GPR was outperformed by its computationally
exhaustive comparison partners by a large margin. However, EVARS-GPR+ even achieved a
comparable performance. Interestingly, EVARS-GPR+ also led to an averaged improvement
of 12.6 % for three of the five datasets without an output scale change, while the results for
the other two datasets remained unchanged. In summary, the additional model adjustments
of EVARS-GPR+ were beneficial. In EVARS-GPR+, the threshold for the change of the
output scale compared to previous seasons is not used to prevent false alarms of the CPD,
but to decide whether to perform an augmented refitting or a regular model adjustment.
Hence, EVARS-GPR+ prevents to perform an unjustified dataset augmentation before the
model adjustment, and also accounts for smaller output scale changes. This assumption is
supported by the large improvement on MaunaLoa, which shows a rather small change in
the output scale. Even though the parameterization of the integrated CPD was guided by
a simulation of several output scale changes, other types of changing data distributions
were potentially detected, since we achieved an improvement on datasets without output
scale changes. Nevertheless, in case of other types of data distribution changes, model
adjustment procedures that specifically account for these may still be more beneficial.
EVARS-GPR+ is a small and straightforward enhancement of EVARS-GPR that led to
better results. However, the points for future research described above for EVARS-GPR,
e.g., improving the CPD method, enhancing the pipeline parameterization, or integrating
additional prediction models, also apply to EVARS-GPR+.
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EVARS-GPR and EVARS-GPR+ focus on changes in the output scale in seasonal data.
However, other types of changing data distributions, such as a change in the period length,
may require different model adjustments, for example a kernel search. To address this issue
with respect to Objective 2B outlined in Section 1.4, we developed ETKA. ETKA also
applies a change point-triggered model adjustment during the online phase, but employs
AKS to find a new kernel. With this model adjustment, it may be possible to react
appropriately to a more drastic change in system behavior. Similar to EVARS-GPR, we
parameterized and assessed ETKA using simulated data consisting of diverse scenarios and
different change point patterns. We observed that ETKA outperformed its comparison
partners in most cases, also for scenarios with multiple change points within the same
time series. Thus, we can assume that the CPD developed for ETKA works for various
change point settings. However, we have also identified weaknesses of ETKA. In scenar-
ios with slower changes in periodicity or output scale, the prediction errors were higher
compared to more abrupt shifts. This effect is probably caused by a delayed reaction of
the CUSUM-based CPD, for which the change point score increases more slowly for less
pronounced changes. Consequently, this leads to longer periods with an outdated prediction
model, but probably with less potential damage, since the predictions should also be more
accurate than in scenarios with more abrupt changes. Based on the results on simulated
data, we parameterized the CPD to be rather sensitive, focusing on an up-to-date model
at all times and accepting potential disadvantages in terms of computational efficiency.
ETKA also yielded the most accurate predictions on real-world data, but as expected, at
the cost of higher runtimes. While the performance improvement of ETKA was rather
stable, the runtime difference varied greatly depending on the number of change points
detected and consequently triggered model adjustments. The largest benefit in terms of
the prediction error was achieved for Airline, Radio, and Airquality. For Airline, a detailed
analysis of the results showed that ETKA detected fewer change points but these more
accurately than the comparison partners. With respect to the other two datasets, ETKA
was advantageous in terms of the prediction error, but showed a higher runtime, which was
caused by the multiple change points present and detected by ETKA. Thus, the higher
runtimes are justified in these cases. Not surprisingly, the performance of ETKA depends
on the success of the initial kernel search using CKS on offline-collected data. AKS starts
its search depending on this initial kernel expression, leading to a less accurate model and
consequently more model adjustments if this starting point is unsuitable. We observed
such behavior for the dataset Internet, for which ETKA was outperformed both in terms
of prediction error and runtime.
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A periodical refitting scheme at constant intervals, as used for AKS in the original pub-
lication, is highly dependent on coincidence. For instance, a change point could occur
immediately after a model adjustment, resulting in a prolonged period with an outdated
prediction model and wasted computational resources due to an unnecessary model refit-
ting. In contrast, ETKA employs a change point-triggered refitting scheme that does not
depend on coincidence, which is potentially more accurate and efficient. Nevertheless, the
performance of ETKA, similar to EVARS-GPR and EVARS-GPR+, is strongly influenced
by the integrated CPD. The parameterization was again determined using a diverse set
of simulated data. As outlined for EVARS-GPR, this may not lead to the best parameter
set for all real-world datasets, although it is a reasonable approach. A dataset-specific
parameterization could also be beneficial for ETKA, making this an interesting point for
future research. Furthermore, we focused on an up-to-date model at all times, accepting
potential drawbacks in terms of computational resources. For settings that require lower
runtimes, ETKA offers several adjustment options that lead to higher computational
efficiency but potentially result in a less accurate prediction model. For example, the
number of samples and base kernels considered for the model adaptation could be reduced.
Furthermore, the number of AKS iterations could be changed, and the parameters of the
CPD could be adjusted to result in less sensitivity. Our experiments on simulated data
show the trade-off between prediction error and runtime when setting the CPD parameters.
Higher tolerance factors and thresholds lead to a lower runtime, but also to less accurate
predictions. In addition, we set the window size of samples used for the model adjustments
to be constant. However, this could also be determined dynamically, depending on the time
elapsed since previous changes. Moreover, AKS within ETKA is efficient and applicable if
the system behavior does not change completely. In such cases, even a new kernel search
from scratch may be necessary to achieve an accurate prediction model.

With EVARS-GPR, its extension EVARS-GPR+, and ETKA, we have developed three
approaches that address the important issue of changing data distributions in time series
forecasting. All three methods work online without requiring a priori knowledge or assump-
tions about changes in the data distribution, neither about the time of occurrence nor the
type. In contrast to Garnett et al., 2009 and Automatic Bayesian Covariance Discovery
(ABCD) (Lloyd et al., 2014), we do not need to pre-define the time steps at which change
points occur, and we allow for multiple changes in the data distribution. Moreover, some
methods in the literature are designed for systems for which certain steady states can be
defined, a limitation that does not apply to our approaches (Jin et al., 2015; Liu et al.,
2015; Liu & Gao, 2015). Nevertheless, if it is possible to define such steady states, these
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techniques could be a good solution, potentially providing an accurate model for each
state based on data collected offline. In cases where this definition is not possible, our
approaches may be advantageous. INstant TEmporal structure Learning (INTEL) (Liu
et al., 2020) creates an ensemble of models by defining potentially occurring changes in
the data distribution. This procedure requires a priori assumptions regarding the types of
changes that might occur during the online phase, which is not necessary for our three
approaches. A key advantage of EVARS-GPR and EVARS-GPR+ over existing methods
such as GP-non-Bayesian clustering (GP-NBC) is the reuse of data through augmentation
for the adjustment the prediction model, which enables a quick adaptation. Beyond that,
we empirically demonstrated the computational efficiency of EVARS-GPR. Moving-Window
GPR (Ni et al., 2012) involves computationally exhaustive periodical model refittings at
each time step, which we also observed in the runtime comparison with EVARS-GPR. ETKA
was outperformed by its comparison partners in terms of runtime. However, we compared
our algorithm with a rather low-frequent periodical refitting scheme with three equidistant
model adjustments during the whole online phase. As expected, a pure hyperparameter
refitting without a new kernel search triggered by a CPD required lower runtimes, but was
also outperformed with respect to the prediction error.

Despite these advantages compared to existing methods, our novel approaches also have
potential for further improvement. EVARS-GPR and EVARS-GPR+ focus on changing data
distributions visible in the output scale change and have proven their efficiency and applica-
bility for these cases. However, in case of unjustified model adaptations, e.g., if the CPD
detects a change point that is not related to the output scale, the data augmentation of
EVARS-GPR could even lead to a model that is less accurate than an unadjusted predictor.
ETKA performs a kernel search using AKS for model adaptation, which is computationally
more expensive but also accounts for other types of data distribution changes. However,
we also observed that a new kernel search from scratch might be necessary in cases with a
more drastic change in system behavior. An interesting point for future research could be
the combination of these three approaches. The change point-triggered model adjustment
has advantages such as efficiency and a fast reaction after a change occurred, which we
also demonstrated empirically. Thus, a CPD developed for various change point patterns
should be part of such a combined algorithm. To account for different types of changing
data distributions, it would be interesting to integrate them into the simulated scenarios or
manipulate the real-world data for a dataset-specific parameterization accordingly to enable
the CPD to detect all distributional shifts in the first place. Then, model adjustments could
be made that explicitly account for the type of changing data distribution. To enable such
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an approach, it would be necessary to distinguish between different change point patterns
and react accordingly. For instance, in case of a more significant change in the output
scale, EVARS-GPR might be suitable and efficient, and in case of a shift in the period
length, a model adjustment using AKS could be appropriate. The accurate identification
of change point patterns as an enabler is an interesting point for future research.

4.3 A Comprehensive Time Series Forecasting Framework

As a further contribution of this thesis, we aimed to publish a comprehensive time series
forecasting framework that is easy to use, even without expert knowledge, and easy to extend,
ensuring reproducible and comparable results as well as accessibility of novel approaches.
With ForeTiS, we provide a powerful Python framework that addresses this objective. Our
framework covers the entire time series forecasting pipeline, in contrast to many existing
programming libraries, as Meisenbacher et al. (2022) conclude. ForeTiS is specifically
focused on state-of-the-art time series forecasting, fully automating the pipeline while
allowing for customization. Similar to AutoML frameworks, e.g., auto-sklearn (Feurer
et al., 2015) or AutoGluon (Erickson et al., 2020), ForeTiS is user-friendly. However,
these frameworks usually provide limited access to understand the procedure happening
in the background, which we ensure for ForeTiS as an essential part when conducting
research. Nevertheless, ForeTiS provides an easy-to-use interface that requires only a
single line of code to conduct a comparative study employing state-of-the-art methods. This
ease of use is one of the things that distinguishes ForeTiS from pyWATTs (Heidrich et al.,
2021), PyCaret (Moez, 2023), and sktime (Löning et al., 2019). With these frameworks,
users need to write several lines of code to achieve similar functionality, potentially requiring
expert knowledge. In addition, ForeTiS already contains several time series prediction
models as well as templates for the most widely-used frameworks scikit-learn (Pedregosa
et al., 2011), statsmodels (Seabold & Perktold, 2010), PyTorch (Paszke et al., 2019),
and TensorFlow (Abadi et al., 2015). This design allows for a straightforward extension
of ForeTiS with various types of models and for a quick benchmarking of newly developed
approaches. The support for this wide range of DL-based prediction models differs from
sktime (Löning et al., 2019) and PyCaret (Moez, 2023), which only offer support for
Keras and none of the common DL frameworks, respectively. As a big plus of ForeTiS
compared to, for example, Darts (Herzen et al., 2022), sktime (Löning et al., 2019),
and Merlion (Bhatnagar et al., 2021), our framework integrates and fully automates
state-of-the-art Bayesian optimization for hyperparameter search. Another advantage of
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ForeTiS is that it provides a command line interface via Docker (Merkel, 2014) as well as
a Python package, enabling integration into existing code. We further support users with
comprehensive online documentation, including step-by-step guides and hands-on video
tutorials. In summary, we provide a powerful resource for end users who want to conduct
comparative studies and researchers who want to develop novel time series forecasting
approaches that differs from existing packages in several ways.

Nevertheless, several aspects are interesting for the future development of ForeTiS. Data
exploration and visualization capabilities could assist users in determining the pipeline’s
parameters. For multivariate approaches, there are several options regarding features that
could be predictive. For instance, one could consider external information such as weather
or statistical values, e.g., past sales on the same day of the week in case of demand
forecasting. This procedure quickly leads to a large number of possible features. One
option for dimensionality reduction that is already integrated is PCA, but this method
has the disadvantage of reducing interpretability. Regarding automated feature selection,
various approaches exist, for example, forward and backward selection or correlation-based
filtering, with the need to prevent information leakage to validation and test data (Guyon
& Elisseeff, 2003). Integrating such approaches while taking into account computational
resources is of great interest for future research. Moreover, there are several options for
extending ForeTiS with further prediction models. First, approaches that simultaneously
predict multiple target variables could be beneficial and efficient for several tasks. Second,
ensemble forecasting, not only by using already integrated ensemble methods such as
XGBoost, but also by combining different model types, is a potential improvement. Such
methods have shown superior performance in recent forecasting competitions (Makridakis
et al., 2020, 2022). Third, additional published prediction models, i.a., DeepAR (Salinas
et al., 2020), could be integrated. The implementation of these new models is supported
by ForeTiS, which already provides template classes and general functionalities and allows
for quick benchmarking. Regarding benchmarking and the development of novel methods,
it is also interesting to integrate techniques for simulating time series, allowing for the
evaluation of novel approaches under pre-defined conditions. A major advantage of packages
such as PyCaret (Moez, 2023) and sktime (Löning et al., 2019) is the large number of
contributing software developers, which enables fast and comprehensive enhancements of
their frameworks. ForeTiS provides useful capabilities, but is currently maintained and
developed by a single research lab, making it difficult to compete with existing large libraries
in the long run. Thus, we have intended to reduce obstacles for further contributors with
our easy-to-extend design and by providing a comprehensive documentation.
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4.4 Further Points of Discussion

As discussed above, we addressed some of the current challenges described in the introduc-
tion. In addition to these, we outline further points of discussion below, i.e., more general
aspects and current challenges that we did not focus on.

Feature engineering is an essential part when employing multivariate time series forecasting
approaches. Besides external information, such as meteorological or calendrical data, some
datasets include covariates of the target variable. For example, a sales dataset often
contains the number of sold units of the target variable and other articles. Using statistical
information about these covariates, e.g., past sales of a competing product, could be helpful
in attempting to predict future sales of the target variable. However, a dataset may contain
various covariates, resulting in a large number of features when multiple statistical values
are derived for each of them. Many of these features are probably not influencing the target
variable significantly and are thus not helpful in training a prediction model. Moreover,
a large number of features is problematic for most ML-based models, and performing an
extensive feature selection would be computationally exhaustive. Therefore, choosing a
subset of covariates for feature engineering makes sense. An expert could perform this
selection. However, for larger numbers of covariates, this task becomes cumbersome and
requires domain expertise in addition to knowledge about the dataset itself, e.g., character-
istics of a company’s customers in case of sales prediction. Hence, data-driven methods
that automatically identify relevant ones to derive features are highly interesting. One
possibility would be to consider correlations between the covariates and the target variable
on a subset of the data and select the most relevant ones. However, this relationship may
change as changing data distributions are an issue in time series forecasting. Furthermore,
the datasets of small and medium-sized companies are often limited, so further reducing the
number of samples for training a model could be problematic. Therefore, future research is
necessary in this direction, which may have implications for several areas of time series
forecasting.

Another challenge in demand forecasting, as described in Section 1.2, is that sales figures are
often used to approximate demand, but the actual demand is unknown. If stock numbers
are tracked, there are methods to include this information to account for out-of-stock
situations in which demand and sales are not equal. For instance, this information could
be included as a feature, or time steps in which an out-of-stock situation occurred could
be treated as missing values and imputed (Fildes et al., 2022). Besides the drawbacks of
these approaches, stock numbers may not have been recorded, especially for fast-moving
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and perishable goods, as we observed in horticulture. Thus, the development of new
methods that account for out-of-stock situations is an interesting topic for future research.
Some patterns could be indicators of out-of-stock situations, e.g., a sharp decline in sales
followed by an increase, which, in case of a seasonal time series, may also not be present
in previous seasons. However, such patterns could also suggest a change point, especially
when considering an online algorithm where the subsequent increase in sales is not visible
at the time of processing. Thus, it seems reasonable to integrate such methods with CPD
to prevent false alarms. By doing so, we could react accordingly, perhaps in a combined
approach that takes into account different types of changes in the data distribution, as
described in Section 4.2.

Many time series forecasting approaches, especially ML-based methods, require a certain
amount of historical data. As outlined in Section 1.2, this is a challenge in this domain
since data collection may take several years in case of annual seasonality, which applies,
for instance, to many horticultural products. This issue is particularly relevant for small
and medium-sized companies with less data and often a limited information technology
infrastructure that has already been used for data collection without considering a time
series forecasting project in the first place. In recent years, generative models, such
as Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) and Variational
Auto-Encoders (VAEs) (Kingma & Welling, 2014), have shown impressive performance in
creating synthetic data. Most of these methods were originally developed for image data,
but have been successfully transferred to the synthesis of time series and tabular data.
Therefore, it seems interesting to assess whether synthetically generated data can support
the training of a time series forecasting model even when a limited amount of real data is
available. As a major advantage, this approach could reduce the time needed to collect real
historical data. In two Master’s theses, we evaluated several generative models developed
for synthesizing tabular and time series data. Besides time series data generators, we also
included models designed for tabular data, since time series data could also be considered
in this way. While this leads to a loss of temporal dependency, we can choose from a
wider range of generative models. In a first Master’s thesis (Eiglsperger, 2022), we focused
on GANs, namely CTGAN (Xu et al., 2019) and TimeGAN (Yoon et al., 2019). We
extended this work by benchmarking CTAB-GAN+ (Zhao et al., 2022), TVAE (Xu et al.,
2019), diffusion model-based TAB-DDPM (Kotelnikov et al., 2022), and self-implemented
diffusion models employing an MLP and an LSTM network, respectively (Pecini, 2023).
In these two theses, we assessed the ability of the models to generate realistic samples,
yielding promising results. It seems highly interesting to extend this preliminary research by
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evaluating the influence on downstream prediction tasks when training models on synthetic
data or a mixture of artificially generated and real data. Addressing the need to collect
historical data by leveraging generative models could be beneficial for several time series
forecasting applications.



Chapter 5
Conclusion

The four main contributions of this thesis address several current challenges in time series
forecasting. We first assessed the applicability of time series forecasting methods to predict
horticultural sales, an application domain selected as representative of small and medium-
sized companies dealing with perishable goods, despite changes in the data distribution. In
a first proof of concept outlined in Section 3.1, we observed promising results and gained
insights, but also identified limited capability of handling changing data distributions with
respect to all prediction models. Nevertheless, our findings need to be assessed in a broader
comparison using data from several companies along the value chain for more general
conclusions, for which we provide guidance and interesting points for future research. In
particular, we focused on online methods that account for changing data distributions and
adjust a prediction model, namely GPR, accordingly. In this context, we contribute by
publishing two algorithms: EVARS-GPR, described in Section 3.2, and ETKA, summarized
in Section 3.3. We further extended the former to EVARS-GPR+, which is included as an
unpublished result in this thesis. All three approaches leverage a CPD-based adaptation
of the prediction model, but differ with respect to the integrated CPD and the model
adjustment mechanism. EVARS-GPR augments existing data to achieve a quick refitting
of the model’s parameters, whereas ETKA employs a new kernel search using AKS. While
the former focuses on changes that are visible on the output scale change in seasonal time
series, ETKA is intended for further types of changes, e.g., a change in the periodicity, in
both seasonal and non-seasonal data. EVARS-GPR+ extends EVARS-GPR by including a
non-augmented model adjustment when a change point was detected, but the extent of the
output scale change compared to previous seasons does not exceed a specified threshold
used to trigger the augmented refitting. We demonstrated the usefulness of EVARS-GPR
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and ETKA on both simulated and real data. Beyond that, we developed ForeTiS, a
comprehensive time series forecasting framework in Python. Our framework is easy to use
and extend, making it a powerful resource for end users as well as model developers, see
Section 3.4. In summary, this thesis contributes to research in time series forecasting by (i)
assessing time series forecasting for demand prediction in a domain with mainly small and
medium-sized companies dealing with perishable goods in the presence of changing data
distributions, (ii) providing accurate and computationally efficient approaches to account
for changing data distributions, and (iii) developing a user-friendly and easy-to-extend
Python framework that supports accessibility and reproducibility of time series forecasting
as well as the development of new methods. Beyond these contributions, there are several
interesting opportunities for future research based on this work, as outlined in Chapter
4. Thus, we address some of the current challenges in time series forecasting, especially
changing data distributions, provide several follow-up ideas, and leave room for future
research.
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A B S T R A C T

Forecasting future demand is of high importance for many companies as it affects operational decisions. This is
especially relevant for products with a short shelf life due to the potential disposal of unsold items. Horticultural
products are highly influenced by this, however with limited attention in forecasting research so far. Beyond
that, many forecasting competitions show a competitive performance of classical forecasting methods. For
the first time, we empirically compared the performance of nine state-of-the-art machine learning and three
classical forecasting algorithms for horticultural sales predictions. We show that machine learning methods
were superior in all our experiments, with the gradient boosted ensemble learner XGBoost being the top
performer in 14 out of 15 comparisons. This advantage over classical forecasting approaches increased for
datasets with multiple seasons. Further, we show that including additional external factors, such as weather
and holiday information, as well as meta-features led to a boost in predictive performance. In addition, we
investigated whether the algorithms can capture the sudden increase in demand of horticultural products
during the SARS-CoV-2 pandemic in 2020. For this special case, XGBoost was also superior. All code and data
is publicly available on GitHub: https://github.com/grimmlab/HorticulturalSalesPredictions.

1. Introduction

Predicting future demand to support corporate analysis and
decision-making is a potential competitive advantage in many domains.
One solution for forecasting customer demand are time series pre-
diction methods. With accurate estimations, company managers can
quickly react to changing market signals and consequently adjust their
procurement and production plans. These possibilities may lead to
increased revenues when early adoption due to a rising demand is
applied or decreasing costs as a response to a decline (Ivanov et al.,
2019). This becomes even more relevant when dealing with goods that
have a limited shelf life and can therefore only be kept in stock for a few
days (Duan et al., 2012). Horticultural products are strongly influenced
by these issues.

Currently, there are no scientific publications regarding time series
prediction for sales of horticultural products, although total sales of
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ornamental plants are worth €9.4 billion in 2020 in Germany (Zen-
tralverband Gartenbau e.V, 2020). Horticultural sales are usually char-
acterized by a strong seasonality. In addition, sales cycles of certain
products are shaped by abrupt changes in both directions of rising
and decreasing numbers. Moreover, various external factors such as
holidays or regional events affect demand. In addition, some of these
factors, such as weather forecasts, are uncertain and only available for
a short period (Behe et al., 2012). Furthermore, the short shelf life of
horticultural products, particularly of cut flowers, is a challenge for
operational decisions. In practical operations, this may cause out-of-
stock situations with possibly missed sales as well as excess-stock cases,
which often lead to the disposal of products. Besides financial loss, the
latter induces environmental damage due to wasted resources during
production and transport.
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Classical forecasting methods such as Autoregressive Integrated
Moving Average and Exponential Smoothing are still widely applied
in research and industry. Despite their rather simple concept, they
often show a competitive performance. As demonstrated in several
publications and contests such as the M-Competitions, they are even
able to outperform more complex machine learning (ML) approaches,
e.g. Artificial Neural Networks (Kolassa, 2021; Makridakis et al., 2020,
2021). Thus, although ML algorithms are becoming more common in
the forecasting literature, it is not clear that they are superior, but
dependent on the application and data.

These horticultural product-specific aspects and unsolved questions
in forecasting encourage conducting research in this domain. Hence,
in this paper, we present a first-time comparison of ML-based and
classical time series prediction methods to forecast sales for products
such as potted plants, cut flowers and shrubs. We did not consider
non-herbal products merchandized in this industry, e.g. plant pots, and
edible products such as vegetables and fruits, which were already taken
into account by other researchers (Arunraj & Ahrens, 2015; Priyadarshi
et al., 2019; Sankaran, 2014; Shukla & Jharkharia, 2011). First, we
want to answer the question whether ML is superior compared to
classical forecasting approaches for horticultural sales predictions. Sec-
ond, we investigate potential improvements by multivariate concepts
making use of external factors, such as weather or holiday data, by
comparing with classical univariate methods. Third, we examine the
computational resource consumption of the applied methods, a critical
issue with the necessity of model refittings due to potentially changing
data distributions during the live operation of a forecasting system in
mind. In addition, we evaluate whether the models are able to capture
sudden change in data, such as strong increases in demand during the
SARS-CoV-2 pandemic in 2020.

To this end, we present a comparative study of nine state-of-the-
art ML and three classical forecasting methods. Regarding classical
forecasting approaches, we used the univariate techniques Exponential
Smoothing and Seasonal Autoregressive Integrated Moving Average
as well as the multivariate extension of the latter. Furthermore, we
show a comparison to Multiple Linear Regression models with different
regularizations. We included nonlinear ML methods such as Artifi-
cial Neural Networks as well as Long Short-Term Memory Networks.
Moreover, we applied the ensemble learner Extreme Gradient Boosting
(XGBoost), and a nonparametric Bayesian approach by implementing
Gaussian Process Regression. Furthermore, we implemented a setup
with a regular refit of the forecasting model in order to simulate a
potential scenario for a productive operation with a continuous update
of company-specific sales data and a potentially changing data distri-
bution in mind. Finally, we are able to provide initial insights in the
new forecasting domain of horticultural sales.

The remainder of this paper is organized as follows. In Section 2,
we provide an overview of related work. Afterwards, we describe the
materials and methods, see Section 3. In Section 4, we outline and
discuss our results, before we draw conclusions.

2. Related Work

In the following section, we summarize classical forecasting and ML
methods that can be used for predicting demand. Then, we describe
empirical comparisons and related work from similar domains, such as
the food and tourism sector.

2.1. Machine Learning-based and Classical Time Series Forecasting Meth-
ods

In Table 1, we provide an overview of the approaches discussed in
this paper. Classical forecasting methods use chronologically ordered
time series data and try to predict future sequences, usually by pro-
jecting statistical information recovered from historical data. Methods
can be divided into univariate and multivariate approaches, with the

latter one using external information in addition to the time series
itself. Two common univariate methods are Exponential Smoothing
(ES) and Autoregressive Integrated Moving Average (ARIMA) (Box
et al., 2016; Holt, 1957; Winters, 1960). In its simple form, ES is
a weighted sum of past observations of a time series with weights
decaying exponentially. In contrast, modeling autocorrelations – the
correlation between a series and a lagged version of itself – is the key
idea of ARIMA. A common extension, SARIMA, involves seasonal parts
(Gardner, 2006; Hyndman & Athanasopoulos, 2018). Furthermore, a
multivariate version involving external factors called SARIMAX can be
formulated (Arunraj et al., 2016).

Sales forecasting can also be defined as a regression task for ML
methods. In ML, we can distinguish between Frequentist and Bayesian
formulations of various models with the latter one referred to as
probabilistic in this work. Here, Frequentist ML methods minimize the
empirical risk for a certain loss function including different regular-
ization terms to determine point estimates of the most likely model
parameters. Probabilistic approaches instead use Bayes’ theorem to
calculate a full posterior distribution over the parameters given the
data and a prior (Bishop, 2009; James et al., 2017). For regression
tasks, Multiple Linear Regression (MLR) is often used as a baseline.
Common approaches are Ridge, Lasso and Elastic Net Regression, which
involve different regularization terms in order to prevent overfitting
(Hoerl & Kennard, 1970; James et al., 2017; Santosa & Symes, 1986;
Tibshirani, 1996; Zou & Hastie, 2005). MLR can further be defined
in a Bayesian perspective as follows: 𝑝(𝑦|𝒙,𝒘) = N(𝑦|𝒙𝑻𝒘, 𝜎2), where
the target variable 𝑦 follows a Gaussian distribution with the mean
𝒙𝑻𝒘 (determined by the predictors 𝒙 and the weights 𝒘) and the
variance 𝜎2. If the weights of the model are constrained to a zero-
mean Gaussian prior, the solution is equivalent to Ridge Regression and
therefore called Bayesian Ridge Regression (BayesRidge). Automatic
Relevance Determination (ARD) is related to it, but introduces an
individual variance for each weight (Bishop, 2009; James et al., 2017;
Tipping, 2001). A widely applied approach in time series prediction
are Artificial Neural Networks (ANN) (Rosenblatt, 1958; Zhang et al.,
1998). Especially Recurrent Neural Networks (RNN), such as Long
Short-Term Memory Networks (LSTM), are suitable for time series data,
since they are able to capture temporal dependencies by definition
(Hewamalage et al., 2021; Hochreiter & Schmidhuber, 1997). Sev-
eral publications and forecasting competitions indicate a superiority
of combined methods, e.g. achieved via ensemble learners (Bojer &
Meldgaard, 2021; Petropoulos et al., 2018). XGBoost (XGB) is an en-
semble technique that uses gradient boosted regression trees. With this
approach, decision trees are sequentially added in a greedy manner
based on the gradient of the loss function in order to correct the
errors made by the current ensemble (Chen & Guestrin, 2016). With
regard to the practical use of demand forecasts, the uncertainty of a
prediction value seems profitable. Providing those is a main advantage
of the nonparametric Bayesian method Gaussian Process Regression
(GPR) (Williams & Rasmussen, 1996). The determining parameters
of a Gaussian Process are the kernel 𝑘(𝒙,𝒙′), which consists of the
covariance value between any two sample points 𝒙 and 𝒙′ resulting
in a 𝑛 × 𝑛 matrix for a training set length of 𝑛 and the mean function
𝑚(𝒙). The assumption is that the similarity between samples reflects the
strength of the correlation between their corresponding target values.
Therefore, the function evaluation can be seen as a draw from a
multivariate Gaussian distribution defined by 𝑚(𝒙) and 𝑘(𝒙,𝒙′). Thus,
Gaussian Processes are rather a distribution over functions (Rasmussen
& Williams, 2008; Roberts et al., 2013). More detailed descriptions can
be found in Appendix A.

2.2. Time Series Forecasting Competitions and Related Domains

There are several publications regarding empirical comparisons of
forecasting approaches, e.g. the influential M-competitions that started
in 1982 (Bojer & Meldgaard, 2021; Hong et al., 2019; Lloyd, 2014;
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Table 1
Overview of classical forecasting and machine learning methods with their abbreviations and certain characteristics.

Category Algorithm Abbreviation Univariate Multivariate Probabilistic

Classical forecasting Exponential Smoothing ES ×
Seasonal Autoregressive Integrated Moving Average SARIMA ×
Seasonal Autoregressive Integrated Moving Average with external factors SARIMAX ×

Machine learning Lasso Regression LassoReg ×
Ridge Regression RidgeReg ×
Elastic Net Regression ElasticNet ×
Artificial Neural Network ANN ×
Long Short-Term Memory Network LSTM ×
Extreme Gradient Boosting (XGBoost) XGB ×
Bayesian Ridge Regression BayesRidge × ×
Automatic Relevance Determination ARD × ×
Gaussian Process Regression GPR × ×

Makridakis et al., 1982, 1993; Makridakis & Hibon, 2000; Makridakis
et al., 2018, 2020, 2021; Stepnicka & Burda, 2017). Nevertheless, these
competitions do not show a general superiority of a specific approach.
While the M4-competition did not yield advantages for single ML mod-
els, but for approaches combined with classical forecasting methods,
gradient boosted trees were superior for the recent M5-study with
strongly correlated time series and explanatory variables (Makridakis
et al., 2018; Seaman & Bowman, 2021). This is in accordance with
a recent review of several Kaggle forecasting competitions (Bojer &
Meldgaard, 2021). So in summary, combined respectively ensemble
methods were advantageous in many empirical comparisons without
yielding a generally superior technique.

Besides these broad forecasting competitions, there are publications
in similar domains such as food and tourism demand forecasting. Food
demand forecasting is a domain with similarities to horticultural sales,
especially when dealing with agricultural products such as vegetables
or fruits, which are also perishable and seasonal. Arunraj et al. showed
the superiority of SARIMAX supplemented with holiday and promo-
tional features over its univariate version SARIMA when predicting
sales of bananas in a retail store (Arunraj et al., 2014). A comparison of
several ML methods forecasting food sales of a Japanese supermarket
chain with an emphasis on the influence of meteorological data was
done in (Liu & Ichise, 2017). It yielded a better performance of a LSTM
compared to others, e.g. Random Forest. A recently published compar-
ative study on bakery sales predictions, including LSTM and gradient
boosted regression trees, indicated a superiority of ML algorithms (Hu-
ber & Stuckenschmidt, 2020). Besides that, the demand for ornamental
plants is characterized by a strong seasonality with abrupt changes in
requests and influenced by various external factors, such as the weather
and holidays. Thus, tourism is another domain, which shares similar
attributes. Athanasopoulos et al. compared the performance of several
univariate time series algorithms with their multivariate extensions
based on 366 monthly, 427 quarterly and 518 annual series. They con-
cluded that the first ones deliver better results, but also mentioned that
this is in contrast to other publications (Athanasopoulos et al., 2011).
Jiao and Chen provided a review of methodological developments in
tourism forecasting during the 2008 to 2017 time period. According
to them, econometric and time series models are still widely applied
and often lead to competitive predictions Besides that, they observed
a trend in enhancing time series with additional features as well as
an increasing use of ML methods. Furthermore, combining different
approaches often seems to yield better results than single ones (Jiao
& Chen, 2019). In summary, these findings in similar domains provide
some guidance for horticultural demand forecasting, but also do not
show a general superiority of classical or ML-based approaches.

3. Materials and Methods

In the next section, we provide insights into the data and its prepa-
ration. Afterwards, we describe the model selection and training. Fi-
nally, we outline the evaluation metrics and baselines. All code and
data is publicly available on GitHub: https://github.com/grimmlab/
HorticulturalSalesPredictions

3.1. Data Preparation

In the following, we provide an overview on the datasets. After-
wards, we summarize the feature engineering and data preprocessing
steps in detail.

3.1.1. Datasets
For our analysis, we used typical horticultural retail sales data

from Germany. We distinguished between five datasets based on two
data sources, as shown in Fig. 1. OwnDoc was manually created by a
daily documentation of sales numbers of tulips. These datasets have
scientifically interesting characteristics, such as a strong seasonality
in early spring with abrupt changes in demand. Regarding predic-
tions, we focused on private customer sales of tulips, subsequently
called SoldTulips. Records for the OwnDoc dataset begin on February
7, 2020 and last until May 11, 2020, as the tulip season usually ends
in mid-May. Thus, data exists for one seasonal cycle lasting about
three months. OwnDoc shows a detailed product aggregation level of
the target variable with the plant species and delivers quantities. As
indicated in Fig. 1, we generated two datasets based on OwnDoc. There
is a 16 day long documentation gap starting on April 10. Thus, we
derived a variant for which we only use values before that period
(OwnDoc_SoldTulips_short), whereas we imputed them for the long one
(OwnDoc_SoldTulips_long).

CashierData was created based on an electronic cashier system
providing a summary of all sales. These sales figures, which are aggre-
gated into product groups, were accumulated to daily turnovers. As we
focused on herbal products, we selected cut flowers (CutFlowers) and
potted plants (PotTotal) as target variables. Beyond that, CashierData
differs from OwnDoc regarding several properties. It ranges from De-
cember 2016 to August 2020 and as a result contains several seasonal
cycles. Additionally, due to the aggregation into product groups, we
can only see patterns of these whole clusters instead of individual
plants. Since CashierData is based on exports from an electronic cashier
system, for which a gapless logging is required by tax law, there
are no missing values. Furthermore, numbers in CashierData represent
the turnover in euros. For CashierData, we derived three datasets, see
Fig. 1. The first one reflects sales of CutFlowers over the whole period
(CashierData_CutFlowers). Besides this, we observe a sharp increase of
revenues for PotTotal in the first half of 2020, probably caused by the
SARS-CoV-2 pandemic. Therefore, we separated an alternative version
ending 12/2019 (CashierData_PotTotal_short) in addition to the one
ranging over the whole period (CashierData_PotTotal_long).

Table 2 shows characteristics for all datasets on a daily basis as well
as on a weekly one for all CashierData versions. As already mentioned,
CashierData does not contain missing values in contrast to OwnDoc.
Furthermore, the standard deviations and maximum values are high
compared to the mean, reflecting a dataset with strong variations. Due
to this and the practical usefulness of predictions, we resampled all
variants based on CashierData to a weekly cycle.
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Fig. 1. Overview of all five datasets based on the two data sources OwnDoc and CashierData. OwnDoc_SoldTulips_short was derived due to a 16 day long period with missing
values, CashierData_PotTotal_short because of a strong sales increase in 2020.

Table 2
Characteristics for all datasets. Statistics are on a daily basis as well as weekly resampled for CashierData, with the weekly values shown below the daily ones.

Dataset Period Samples Target variable characteristics

Missing value
ratio

Mean Standard
deviation

Maximum

OwnDoc_SoldTulips_short 07.02.–09.04.2020 63 1/63 158.90 107.47 428.00
OwnDoc_SoldTulips_long 07.02.–11.05.2020 95 17/95 145.36 103.36 428.00
CashierData_CutFlowers 12/2016–08/2020 1359

195
0/1359
0/195

244.00
1700.47

244.74
719.31

2346.45
4828.85

CashierData_PotTotal_short 12/2016–12/2019 1115
160

0/1115
0/160

160.94
1121.58

210.41
1041.74

1605.30
5358.70

CashierData_PotTotal_long 12/2016–08/2020 1359
195

0/1359
0/195

189.55
1321.04

267.04
1384.95

1926.40
7529.25

3.1.2. Feature Engineering
All datasets have been enriched with certain features. To examine

whether external factors support the forecasting of horticultural sales,
we added daily weather and holiday information. Historical obser-
vations for the former were provided by the German Meteorological
Service. Regarding holiday information, we considered public as well
as school holidays. The included features and their explanations can be
found in Table 3.

Further, two categories of additional features were derived: (i)
calendric and (ii) statistical features, as summarized in Table 3. Cal-
endric features are date-based properties such as the weekday and
typically outstanding selling days, e.g. Valentine’s and Mother’s Day.
Furthermore, we created counters for these special days and public
holidays as sales might be higher close to such an event and lower
afterwards. Statistical features are, among others, lagged variants of
the target variables (both seasonal and non-seasonal). Moreover, we
added lagged weather information (mean temperature, precipitation
amount and sun duration), because the conditions prior to a date of
sale might be influential. Beyond that, we derived rolling statistical
values (both seasonal and non-seasonal), such as its mean over a fixed
period prior to a sales date. Finally, for daily data, we calculated rolling
statistical numbers for a specific weekday, e.g. the mean sales of the last
four instances. Eventually, we divided these features into four different
featuresets, see Table 3. We included raw features from external sources
for all four. Beyond that, sub2 was focused on calendric features and
sub3 on statistical ones. The full featureset contained all features.

3.1.3. Data Imputation and Dimensionality Reduction
Many algorithms cannot handle missing values, except for XGB.

Therefore, we applied different strategies for data imputation: Mean,
K-Nearest-Neighbors (KNN) and Iterative Imputation. The featuresets
sub3 and full introduce additional missing values at the beginning of
the dataset because statistical values such as lagged variables cannot
be calculated. We imputed these as well and did not drop samples as
the amount of lacking seasonal features would lead to a large infor-
mation loss. There are no missing values for CutFlowers and PotTotal
on CashierData and only few in the raw weather data. Moreover, we
did not insert new ones using featuresets sub1 and sub2 as both do not

contain statistical features. Therefore, the effect of different imputation
methods seemed negligible, and we only considered Mean Imputation
for these setups. In summary, we can distinguish five different feature
settings, including the univariate case, which were combined with the
data imputation approaches. Fig. 2a provides an overview of all setups
we considered.

To examine the effect of dimensionality reduction on the multi-
variate feature settings, we considered two variants: using the original
featureset or running a Principal Component Analysis (PCA) selecting
the components which explain at least 95% of the variance (Jolliffe &
Cadima, 2016). As shown in Fig. 2a, we did not include PCA for the
sub1 featureset due to the low dimensionality.

3.2. Model Selection and Training

We included all algorithms summarized in Table 1 to show a com-
parative study of ML and classical forecasting methods. ES and SARIMA
were selected as two common univariate techniques. SARIMAX was
included as a multivariate classical alternative for a fair comparison
with ML methods using additional features. MLR approaches were
taken into account as a baseline for regression problems. Furthermore,
ML methods able to capture nonlinear relationships were considered.
ANNs have proven their suitability for time series predictions (Zhang
et al., 1998). As temporal dependencies might be important, RNNs were
included and designed with LSTM cells as preceding research suggests
(Hewamalage et al., 2021). Beyond that, combined methods were
superior in many comparisons (Bojer & Meldgaard, 2021; Petropoulos
et al., 2018). Therefore, we included XGB. Eventually, with GPR, a
nonparametric Bayesian method with its inherent ability to model
uncertainty was selected. Furthermore, we applied normalization and
standardization methods such as the Yeo–Johnson power transforma-
tion (Yeo & Johnson, 2000) or logarithmic scaling as certain methods
are sensitive to input distributions. A summary of all hyperparameters
and transformations for all algorithms is shown in Appendix B (Ta-
bles B.1 to B.8). Hence, we randomly sampled parameter combinations
for model and preprocessing configuration.

We employed time series cross-validation with a regular model refit
in order to simulate a potential scenario for the productive operation
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Table 3
Overview of features and structure of the featuresets. Features are based on external sources or derived based on others. With regard to raw features from external sources, holiday
and weather information was added. Furthermore, calendric and statistical features were derived. Based on that, four multivariate featuresets were designed. Their structure can
be seen in the last four columns.

Source Category Feature Explanation Featureset

sub1 sub2 sub3 full

Features from external sources Raw features Public holiday Name of public holiday × × × ×
School holiday Name of school holiday × × × ×
Mean temperature Daily mean air temperature × × × ×
Mean humidity Daily mean relative humidity × × × ×
Precipitation amount Daily mean and total precipitation amount × × × ×
Precipitation flag Ratio of hours with precipitation and flag

for full day
× × × ×

Sun duration Daily mean and total sun duration × × × ×

Derived features Calendric features Date based features Day of the month, weekday, month, quarter × ×
Working day Flag showing if the day is a working day × ×
Special days Valentine’s and Mother’s Day added to

public holidays
× ×

Public holiday counter Counter for a public holiday starting seven
days before and ending three days after
with separate counters for Easter as well as
Valentine’s and Mother’s Day

× ×

Statistical features Lagged variables Lagged versions of target variables and
weather features mean_temp,
total_prec_height_mm and total_sun_dur_h

× ×

Seasonal lagged
variables

Seasonal lagged versions of same variables
as above

× ×

Rolling statistics Rolling mean, median and maximum within
a window for same variables as above

× ×

Seasonal rolling
statistics

Seasonal rolling mean, median and
maximum within a window for target
variables

× ×

Rolling weekday
statistics

Rolling mean, median and maximum within
a window calculated for each weekday on
target variables

× ×

Fig. 2. (a) Overview of the applied combinations of the five feature settings and the preprocessing methods. The overview shows the preprocessing methods combined for each
of the feature settings. For CashierData, certain imputation strategies are excluded for settings with no or few missing values. PCA was considered in multivariate cases and not
performed on featureset sub1 due to its low dimensionality. (b) Time series cross-validation. Visualization of the evaluation on a rolling forecasting origin, which we employ to
simulate a productive operation of a forecasting system with a continuous data update.

of a forecasting tool with a continuous update of company-specific
sales data and a potentially changing data distribution in mind. Fig. 2b
shows a visualization of this approach. First, we separated a training set
covering 80% of the whole dataset to select the best working hyper-
parameter combination. Then, we simulated an online scenario using
the remaining data. Whenever a new sample was available, we fore-
casted the next target value and refitted the model parameters keeping
the already optimized hyperparameters fixed. A model configuration
was evaluated by the average performance across the whole test set
according to the evaluation metrics described in Section 3.3 (Hyndman
& Athanasopoulos, 2018). For the best working solutions, we ran an in-
depth optimization selecting more parameter combinations on a denser
grid.

Beyond that, we compared the runtime needed by each algorithm.
For this purpose, we selected OwnDoc_SoldTulips_long with sub1 as
well as CashierData_CutFlowers with full to include opposing examples

regarding size. Furthermore, we randomly sampled 100 parameter
combinations for every algorithm. Then, we ran the whole optimiza-
tion for one training and prediction loop and calculated the average
computation time. All runs for these experiments were executed on the
same machine with four 4.0 GHz Intel i7-6700K CPUs, 62 GB memory
and two Nvidia GeForce GTX 1080 Ti GPUs used for ANN and LSTM
optimization.

The source code is written in Python 3.8 and published on GitHub:
https://github.com/grimmlab/HorticulturalSalesPredictions. A list of
all used packages and their versions can be found in this repository,
including libraries such as GPflow (Matthews et al., 2017), Matplotlib
(Hunter, 2007), NumPy (Harris et al., 2020), pandas (McKinney, 2010),
PyTorch (Paszke et al., 2019), scikit-learn (Pedregosa et al., 2011),
SciPy (Virtanen et al., 2020), seaborn (Waskom, 2021) and statsmodels
(Seabold & Perktold, 2010). We used Docker to ensure a standardized
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working environment on different servers. A Dockerfile for its setup is
included in the repository.

3.3. Evaluation Metrics and Baselines

For evaluation, we used the scale-dependent metric Root Mean
Squared Error (RMSE) as well as the relative measures Mean Absolute
Percentage Error (MAPE) and Symmetric Mean Absolute Percentage
Error (sMAPE). With the forecast value 𝑦̂𝑖, the true value 𝑦𝑖 and the
length of the evaluated set 𝑛, they are defined as follows:

𝑅𝑀𝑆𝐸 =

√√√√1
𝑛

𝑛∑
𝑖=1

(
𝑦𝑖 − 𝑦̂𝑖

)2

𝑠𝑀𝐴𝑃𝐸 = 100%
𝑛

𝑛∑
𝑖=1

|𝑦𝑖 − 𝑦̂𝑖|(||𝑦𝑖|| + ||𝑦̂𝑖||
)
∕2

𝑀𝐴𝑃𝐸 = 100%
𝑛

𝑛∑
𝑖=1

||||
𝑦𝑖 − 𝑦̂𝑖
𝑦𝑖

||||
For all three evaluation measures, a lower value reflects a better
performance. In order to prevent division by zero when using MAPE,
we added a constant (0.1) to the denominator. MAPE values can get
large, if sales numbers are close to zero (common in datasets with
daily observations). This circumstance is less severe for sMAPE, because
it is divided by the mean of 𝑦𝑖 and 𝑦̂𝑖, but is still present as the
predicted value might also be close to zero in these cases. Furthermore,
due to the quadratic term, RMSE is sensitive to outliers. On the basis
of these weaknesses and the lack of a universal evaluation metric
for forecasting, it is common to assess the performance compared to
baseline methods (Hyndman & Koehler, 2006). To that end, we used
the ones described in Table 4.
Table 4
Baseline methods with length of training set 𝑇 and seasonal period m.

Historical Average (HA) 𝑦̂𝑡 =
1

𝑡 − 1

𝑡−1∑
𝑡=1

𝑦𝑡

Random Walk (RW) 𝑦̂𝑡 = 𝑦𝑡−1
Seasonal Random Walk (seasRW) 𝑦̂𝑡 = 𝑦𝑡−𝑚

HA predicts the mean of all known values. RW predictions are equal
to the last value, whereas seasRW uses the known observations of the
last season (Hyndman & Athanasopoulos, 2018).

4. Results and Discussion

In the next section, we give an overview of our results followed by
a more detailed analysis of the best performing algorithms. Afterwards,
the influence of different features as well as the runtime are analyzed.
Finally, a discussion of the results is provided.

4.1. Results Overview

For a full analysis of our experiments, we generated an overview of
the best results for all five datasets with respect to the three evaluation
metrics (15 comparisons in total) for all baselines, algorithms and
featuresets, see Appendix C and Supplementary 1. Our results show
that a baseline (RW, seasRW and HA) was never best overall. How-
ever, MLR approaches (LassoReg, RidgeReg, ElasticNet, BayesRidge
and ARD) were inferior in several cases on both OwnDoc variants and
CashierData_PotTotal_long. If we exclude MLR algorithms, only in three
out of the 15 comparisons, one of the baselines performed better than at
least one ML method, with two of these cases occurring on the smallest
dataset (OwnDoc_SoldTulips_short).

Following this comparison with baseline methods, we selected the
best performances of each algorithm, independent of featuresets and
preprocessing methods. The results are summarized in Tables D.1 and
D.2, see Appendix D.1. Fig. 3a–e visualize them for all datasets (rows)
and evaluation metrics (columns). In all comparisons, a ML-based
method performed best. The results of the ML and classical approaches

were rather comparable for OwnDoc, whereas the advantage of ML
techniques was larger for CashierData, probably due to the size of the
datasets. In total, XGB was the leading method in 13 out of 15 compar-
isons, outperformed by LSTM two times for CashierData_PotTotal_short.
Regarding univariate methods, SARIMA was competitive for both Own-
Doc variants and the SARS-CoV-2-influenced CashierData_PotTotal_long
dataset. Its multivariate extension, SARIMAX, achieved results close
to the best ones for both OwnDoc versions. Furthermore, GPR and
LSTM delivered competitive results in several cases, especially on all
CashierData variants. All MLR methods as well as ES fell behind in
most conditions, and ANN only kept up in a few instances. However,
in summary, we can conclude a superiority of ML-based approaches.

4.2. Best Performing Algorithms

We subsequently focused on the best performing algorithms, so
mainly ML-based methods. As described in Section 3.2, we conducted
a further optimization of the best performers on a denser grid of hyper-
parameters. The results of these in-depth runs and a comparison with
the results prior to them can be found in Tables 5 and 6. Overall, we
again observed a superiority of ML-based approaches. Improvements
based on the in-depth runs were rather small or mediocre with only
one change regarding the overall ranking: XGB outperformed LSTM on
RMSE for CashierData_PotTotal_short. In summary, XGB’s predominance
was extended, leading in 14 out of 15 comparisons after the in-depth
optimization.

With regard to OwnDoc variants presented in Table 5, we observed
that XGB was the clear winner. However, it was closely followed by
SARIMAX for the shorter dataset. Besides that, GPR and LSTM were
competitive for sMAPE. GPR was furthermore close for MAPE with two
second best performances.

Table 5
Top results for OwnDoc after in-depth optimization. A lower value reflects a better
performance. Results prior to in-depth optimization are given in brackets in case of an
improvement. The best results overall are printed in bold. In-depth optimization was
not done for SARIMA on OwnDoc_SoldTulips_short.

Algorithm OwnDoc_SoldTulips_short OwnDoc_SoldTulips_long

RMSE SMAPE MAPE RMSE SMAPE MAPE

SARIMA – – – 48.70
(52.02)

55.83 2366.01
(3675.31)

SARIMAX 58.06 52.58 85.75 48.45
(50.35)

52.37 203.34
(231.52)

LSTM 73.66 52.49 707.61 56.06 50.04 2884.77
XGB 57.11 50.89 34.21

(35.98)
43.48
(43.52)

48.65 52.87
(54.22)

GPR 68.14 52.27 67.99 56.05 52.43 65.84

Table 6 shows a similar overview for all CashierData variants. For
CashierData_CutFlowers, XGB was the top algorithm in all comparisons.
Besides that, the ensemble learner improved its performance on RMSE
for CashierData_PotTotal_short and consequently outperformed the pre-
vious best algorithm LSTM. However, the results of the LSTM were
comparable for this dataset. Regarding CashierData_PotTotal_long, XGB
performed best and GPR delivered the second-best results for RMSE and
sMAPE.

Beyond that, we show example plots of the best performing al-
gorithms in Fig. 4. Each of them displays the ground truth accom-
panied by the predictions of two of the top performing models. We
observed that several predictions are close to the ground truth, but
there are also problematic regions, e.g. the end of the test period
on both OwnDoc datasets. Partially, this is due to its limitation to
only one season. Because of this, we were not able to capture the
high sales on May 10 at the end of OwnDoc_SoldTulips_long. All algo-
rithms predicted low sales as it was a Sunday, but actually they were
high because it was Mother’s Day. Furthermore, the demand peaks of
CashierData_PotTotal_long during the SARS-CoV-2 pandemic were hard
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Fig. 3. Top results for each algorithm and dataset (rows) with respect to all evaluation metrics (columns). A lower value reflects a better performance. Classical forecasting and
machine learning approaches are separated by a small horizontal offset and a vertical line. The best outcome in each plot is marked by a horizontal dashed line. For the exact
values, see Tables D.1 and D.2 in Appendix D.1. MAPE values for both OwnDoc variants are plotted on a logarithmic scale as the results differ in a range from two- to four-digit
numbers.
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Fig. 4. Example plots of best performing algorithms. Predictions show selected examples of two of the top performers accompanied by the ground truth. The test periods are
highlighted in light gray. Missing values for OwnDoc_SoldTulips_long were iteratively imputed and are marked with a red background. In the legends, the evaluation measures
RMSE/sMAPE/MAPE are given in brackets. A lower value reflects a better performance. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

to forecast. Nevertheless, overall the plots confirm the promising results

of the evaluation measures as most of the curves show a prediction

close to the target.

4.3. Feature Analysis

We furthermore analyzed the performance influence of the different
featuresets, see Table 3 regarding their structure. For that purpose,
we focused on the top performing multivariate approaches SARIMAX,
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Table 6
Top results for CashierData after in-depth optimization. A lower value reflects a better performance. Results prior to in-depth optimization are given in brackets in case of an
improvement. The best results overall are printed in bold. In-depth optimization was not done for SARIMA on CashierData_CutFlowers and for ANN on the other two variants.

Algorithm CashierData_CutFlowers CashierData_PotTotal_short CashierData_PotTotal_long

RMSE SMAPE MAPE RMSE SMAPE MAPE RMSE SMAPE MAPE

SARIMA – – – 439.03 34.08
(35.05)

40.13 945.91
(979.10)

36.84
(37.03)

46.41
(56.59)

ANN 475.66
(485.60)

23.31
(23.43)

26.61
(32.19)

– – – – – –

LSTM 460.61 21.78
(22.57)

29.65 390.98 28.85 29.71
(31.11)

1037.11
(1064.14)

39.65
(38.96)

47.70

XGB 388.09
(390.96)

19.71
(20.03)

23.98
(24.52)

348.60
(392.31)

29.86
(31.50)

28.59
(30.70)

892.04
(898.56)

34.61
(35.35)

36.69
(42.45)

GPR 493.58 23.61 30.45 421.46
(424.50)

31.00
(31.88)

32.91
(34.42)

922.46 36.03 52.35
(54.20)

Fig. 5. Ten most important features of XGB according to the gain on selected examples of top performing configurations. The gain of a feature reflects the average improvement
across all its usages. A higher value corresponds to a greater importance. (a) OwnDoc_SoldTulips_long with full featureset, (b) CashierData_CutFlowers with sub2 featureset, (c)
CashierData_PotTotal_long with full featureset.

LSTM, XGB and GPR. To ensure a fair comparison, we used the predic-
tions prior to the in-depth optimization, as this step was not done for
all configurations. We compared the best results achieved with each
featureset with respect to all evaluation metrics. An overview of the
results (Tables D.3 and D.4) as well as their visualization (Fig. D.1) can
be found in Appendix D.2. Based on this, we counted the number of
times a featureset led to the best result for each algorithm and dataset,
subsequently called a win. Table D.5 in Appendix D.2 summarizes this
analysis. Counting all datasets, the win percentages were divided as
follows: sub1 (raw weather and holiday features) 11.7%, sub2 (focus
on calendric features) 41.7%, sub3 (focus on statistical features) 21.7%
and full (all features) 25.0%. However, the results varied depending on
the dataset and algorithm. We discovered that the full featureset was
superior for OwnDoc with the best result in 12 out of 24 comparisons.
For GPR, sub2, sub3 and full were on a par, whereas full was superior
for the other three algorithms. Regarding CashierData, sub2 led to the
best result in 20 out of 36 cases (about 55%), followed by sub3 with
seven wins, sub1 with six and full with three. If we exclude the Cashier-
Data_PotTotal_long dataset influenced by the SARS-CoV-2 pandemic, the
advantage of sub2 was even clearer with 15 wins in 24 comparisons
(about 62%). XGB worked best with sub3, but sub2 did so for the other
three methods.

Beyond determining the top performing featuresets, we analyzed the
feature importance of XGB as this was the best predictor. We present
one example for each target variable in Fig. 5. They indicate both a
benefit due to external factors such as weather and holiday data as
well as derived features such as statistical values. In Fig. 5a, we can see
that statistical quantities, both of the external factor weather and past
sales numbers, were relevant. The best RMSE for CashierData_CutFlowers
was achieved with the featureset sub2 (focus on calendric features),

for which we show the feature importance in Fig. 5b. We found out
that calendric features were ranked high, e.g. the counters for the
typical high sales days of Mother’s and Valentine’s Day. Furthermore,
the school autumn holidays seemed important as they correlate with All
Saint’s Day on which religious traditions boost flower sales. Statistical
features were the most frequent category for CashierData_PotTotal_long.
As shown in Fig. 5c, the leading ones were the lagged sales numbers
of the previous week and of the same one in the preceding season.
Furthermore, delayed information of other product groups improved
forecasting. With the mean temperature, a weather property was part
of the leaderboard.

4.4. Runtime Comparison

Besides the prediction performance, the computational resource
consumption of an algorithm is an important characteristic, especially
with a regular model refit due to a changing data distribution in
mind. Therefore, we compared the runtimes as described at the end
of Section 3.2. The results are visualized in Fig. 6. In summary, the top
performer XGB was in both cases in the middle range of the ranking
and closer to the efficient methods, which is a further advantage. As
we observe in Fig. 6a, ANN and LSTM required the longest runtime
for OwnDoc_SoldTulips_long, followed by SARIMAX and GPR with about
80% less runtime than LSTM. The MLR approaches showed the lowest
values, whereas XGB was comparable to ES and SARIMA. SARIMAX
had by far the longest runtime for CashierData_CutFlowers, as shown
in Fig. 6b, followed by its univariate version and LSTM. ES and the
MLR approaches, except ARD, showed low runtimes. The results for
GPR and ANN were comparable and XGB was closer to the efficient
methods.
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Fig. 6. Mean runtime of one optimization based on 100 random hyperparameter settings for every algorithm. Plots are shown on a logarithmic scale with the exact runtime in
seconds above each bar. (a) OwnDoc_SoldTulips_long with sub1 featureset. (b) CashierData_CutFlowers with full featureset.

4.5. Discussion

In this paper, we show a first-time comparison of ML-based and
classical forecasting approaches for horticultural sales predictions. Most
of the methods outperformed simple baseline comparison partners.
Further, our results show a superiority of ML-based methods compared
to classical forecasting ones with the former delivering the lowest error
in each of the 15 comparisons. The ensemble learner XGB performed
best in 14 cases. We assume that its combination of multiple weak
learners is beneficial for capturing different effects, which improves
the quality and robustness of the final result. LSTM was first in one
out of the 15 cases. In summary, LSTM together with GPR were most
competitive compared to XGB. The performance of ML algorithms is
usually highly influenced by the amount of available data. CashierData
contains 1359 daily observations, which is about 14 times more than
the OwnDoc dataset. Nevertheless, XGB also delivered the lowest errors
for OwnDoc, but the advantage tended to be smaller. With only a few
exceptions, the advantage of ML techniques increased on the larger
CashierData datasets. We assume that, additionally to the dataset size,
multivariate patterns and nonlinear relationships in the data, which
ML models are rather able to capture, are more pronounced in these
datasets that contain several seasons.

One of the research questions of this paper is whether the applied
methods cope with the sales increase during the SARS-CoV-2 crisis
in CashierData_PotTotal_long. We observed that the relative measures
sMAPE and MAPE were larger compared to the other two CashierData
datasets. Beyond that, Fig. 4 suggests that the algorithms were limited
in capturing this phenomenon. However, with XGB, an ML approach
also performed best for this special case. We assume that the regular
refit of the models is beneficial, as recent samples are taken into
account. Nevertheless, the samples which comprise this sudden change
are only a few compared to the whole train set. Therefore, the algo-
rithms tended to follow the majority of the training instances, which
reflect the sales prior to the SARS-CoV-2 pandemic. The comparably
good performance of SARIMA might be caused by external factors
that correspond to a different data distribution in the training set and
consequently could even impede forecasting. But in general, our results
indicate that external factors such as weather information as well as de-
rived features, e.g. statistical measures, lead to an improved forecasting
performance as all superior methods were multivariate. This additional
info is especially useful for ML-based methods. However, regarding the
influence of different features, see Section 4.3, a configuration being
superior for all algorithms and datasets could not be determined.

Beyond that, the runtime comparison in Section 4.4 shows that
SARIMAX – the most competitive classical approach – has poor scal-
ability on larger data- and featuresets. By contrast, XGB was efficient

in both cases. This is an additional advantage of the ML-based method
XGB, especially when considering regular refits of the model.

There are several publications on competitions including classical
forecasting and ML techniques, based on which a general superiority of
one of them cannot be concluded (Bojer & Meldgaard, 2021; Makridakis
et al., 2020, 2021) . Nevertheless, our conclusion that ML performs
better agrees with recent publications on food and tourism demand
forecasting (Huber & Stuckenschmidt, 2020; Jiao & Chen, 2019). Sev-
eral papers have shown a superiority of combined approaches (Bojer
& Meldgaard, 2021; Makridakis et al., 2020; Petropoulos et al., 2018).
Hence, our results with XGB performing best confirms previous work
for the new forecasting domain of horticultural sales. Beyond that, GPR
produced competitive results. For this reason and its advantage of pro-
viding prediction uncertainties, it might be interesting for horticultural
sales prediction and similar domains.

Besides this, we made certain simplifications for our analysis. First,
we used historical weather data as external information, but when
predicting the demand in production-ready systems, only short-time
weather forecasts are available. However, since historical weather fore-
casts were not retrievable for the whole period, this is a reasonable
approximation. Second, the datasets provide sales numbers, which do
not fully reflect the potential demand as out-of-stock situations (as an
indicator for a higher demand of customers) were not documented.
Third, we used holiday and weather data as external information, but
there could be additional features which might improve prediction
performances (e.g. promotional and communication activities of the
company).

This study is the first analysis of horticultural demand forecasting
based on typical retail data. So far, it is not obvious if our results
generalize, e.g. for companies of the whole value chain. Neverthe-
less, we provide first insights, which need to be further evaluated
before drawing more general conclusions. In accordance with litera-
ture, an ensemble method led to the best result. This suggests that
combined approaches might also be superior for horticultural demand
forecasting. Therefore, the integration of further combined methods,
e.g. those including ML-based as well as classical forecasting tech-
niques, is interesting for further research. Beyond that, we employed
a computationally expensive approach with a model refit when new
samples arrive. This seems reasonable for a first-time adoption with po-
tential changes in data and a productive operation of a forecasting tool
with a continuous update of company-specific sales data in mind. Nev-
ertheless, the necessity of model refits should be further examined with
multi-step-ahead forecasts and a periodical retraining. The focus of this
paper is on horticultural retail sales. It is interesting whether including
data of businesses along the whole value chain, e.g. from wholesalers
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or producers, might improve forecasts. Furthermore, as horticultural
companies are typically small and medium-sized, datasets are hetero-
geneous and rather small. Thus, novel approaches that combine data of
diverse sources and consequently benefit from the information derived
from several smaller datasets are an interesting research direction. This
might also be beneficial for other domains such as e.g. agricultural
producers or small and medium-sized food processing companies. The
influence of the SARS-CoV-2 pandemic resulted in a sudden rise in
demand for potted plants. Most of the algorithms were not able to deal
with this change of the data distribution. Therefore, research based on
methods enabling them to cope with such phenomena such as EVARS-
GPR could be useful for various applications (Grande et al., 2017;
Haselbeck & Grimm, 2021; Liu et al., 2020; Ni et al., 2012).

5. Conclusion

In this paper, we presented a first-time comparative study for hor-
ticultural sales predictions with nine state-of-the-art ML and three
classical methods. Our study was based on typical horticultural retail
data with distinct characteristics, e.g. regarding size and seasonality.
We employed a forecasting setup with a regular refit of the model
parameters in order to simulate a productive operation of a forecasting
system with a continuous data update and a potentially changing data
distribution. Our findings show a superiority of ML approaches, espe-
cially of the ensemble learner XGB. This advantage increased for larger
datasets containing multiple seasons. Beyond that, we experienced a
performance increase by including additional features, such as weather
or holiday data. Finally, we showed that the top performer XGB is
computationally efficient. Based on these first results, a plethora of
new research questions arise with a lot of potential for future research.
Especially the transfer and verification of these results within the same
sector are of general interest and might allow the generalization of our
conclusions.
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Appendix A. Time Series Forecasting Methods

A.1. Classical Forecasting Methods

Classical forecasting methods use chronologically ordered time se-
ries data and try to predict future sequences, usually by projecting
statistical information recovered from historical data (Hyndman &
Athanasopoulos, 2018). In Table 1 of the main document, we provide
an overview of the approaches discussed in this paper. Methods can
be divided into univariate and multivariate approaches, with the latter
one using external information in addition to the time series itself.
Two common univariate methods are Exponential Smoothing (ES) and
Autoregressive Integrated Moving Average (ARIMA) (Box et al., 2016;
Holt, 1957; Winters, 1960). Gardner (2006) gave a detailed overview
about the theoretical background of ES and its application (Gardner,
2006). In its simple form, ES is a weighted sum of past observations of a
time series with weights decaying exponentially. Therefore, recent val-
ues have more influence on the output. More elaborate versions include
linear or damped trend as well as seasonal components, which are char-
acteristics that many real-world time series possess. Both components
can be formulated in an additive or multiplicative way, depending on
the characteristics of the time series.

In contrast, modeling autocorrelations – the correlation between a
series and a lagged version of itself – is the key idea of ARIMA. Thereby,
autoregressive (AR) and moving average (MA) parts are calculated. The
first is a linear combination based on the time series itself, whereas the
latter is a weighted sum of past model errors. One of the algorithm’s
assumptions is stationarity of the input, so trend and seasonality should
be removed. One way to achieve this property is differencing prior
to optimizing the AR and MA parameters. This step is called the
‘‘integrated’’ part of ARIMA. The determining parameters are thus the
degree of differencing and the lags considered when constructing the
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AR and MA elements. A common extension, SARIMA, involves seasonal
parts. Their formulation is similar to the non-seasonal ones, but uses
the observations of previous seasons. Therefore, besides the arguments
of the seasonal differencing, AR and MA components, the length of
such a period needs to be defined (Hyndman & Athanasopoulos, 2018;
Shumway & Stoffer, 2000).

SARIMA is univariate by definition. Consequently, external factors
potentially providing useful information are not included. Hence, a
multivariate extension called SARIMAX exists. One way to implement
it is combining multivariate regression depending on external factors
and a SARIMA model, which is driven by the errors of the first one.
Usually, both elements are optimized jointly delivering a final output
after summation (Arunraj et al., 2016).

A.2. Machine Learning Methods

Sales forecasting can also be formulated as a regression task for ML
methods. These data-driven approaches are able to discover complex
relationships, which are more likely to be present in multivariate
datasets. Therefore, as stated in Table 1 of the main document, we only
consider ML approaches in such setups.

For regression tasks, Multiple Linear Regression (MLR) is often used
as a baseline. MLR models try to predict a target variable by building a
weighted sum of several features and an intercept. Typically, the sum
of squared errors between the observed and predicted value is opti-
mized with Ordinary Least Squares during training. With an increasing
number of features, this might lead to overfitting. To prevent this, we
can use regularized regression approaches by adding a penalty term to
the loss function. The goal of this is to learn models which generalize
better to unknown data. Common approaches are Ridge, Lasso and
Elastic Net Regression (Hoerl & Kennard, 1970; Santosa & Symes, 1986;
Tibshirani, 1996; Zou & Hastie, 2005). The first one – also called L2-
regularization – introduces a quadratic term penalizing the weights’
size. This usually leads to a lower influence of correlated features by
distributing the weight among them. However, Ridge Regression does
not push the weights of irrelevant features exactly to zero, but reduces
their influence. Lasso Regression uses L1-norm (the absolute value of
the weights instead of the quadratic ones) as penalty term. This leads to
the effect of forcing the weights of unimportant features to zero, which
can be seen as an automatic feature selection process (James et al.,
2017). Elastic Net Regression combines both L1- and L2-regularization
with an additional hyperparameter controlling the influence of each
one. Consequently, the variable selection effect of Lasso as well as the
grouping mechanism for correlated features of Ridge are included (Zou
& Hastie, 2005).

Moreover, we used ML methods because they can cover nonlin-
earities. A common approach in time series prediction, as shown by
Zhang et al. (1998), are Artificial Neural Networks (ANN) (Rosenblatt,
1958; Zhang et al., 1998). Their advantages, such as the ability to
model nonlinear and complex relationships in a data-driven way, make
them an appropriate alternative. As we work with time series data,
it seems obvious to use Recurrent Neural Networks (RNN), which are
able to capture temporal dependencies as they – intuitively speaking
– possess a memory of previous states. Hewamalage et al. presented
an overview of RNNs in time series forecasting (Hewamalage et al.,
2021). They concluded that RNNs are competitive and that Long Short-
Term Memory Networks (LSTM) show the best performance. Due to
their memory and gating mechanisms, LSTMs can capture long-term
dependencies and prevent the vanishing gradient problem (Hochreiter
& Schmidhuber, 1997). Based on these scientific findings, it is common
to design recurrent networks for time series forecasting with these cells.
However, the flexibility of ANNs and RNNs might lead to overfitting.
To prevent this, regularization techniques can be employed. A common
regularization method is dropout. With this approach, a specified share
of neurons are randomly ignored during each training iteration, leaving
a reduced network (Srivastava et al., 2014). Another regularization

procedure is early stopping. Thereby, the loss on a validation set
(independent data) is monitored during training and if there is no
improvement for a certain period, the optimization gets terminated
(Bishop, 2009).

Many publications and forecasting competitions indicate a superi-
ority of combined methods, e.g. achieved via ensemble learners and
mechanisms such as Bagging or Boosting (Bojer & Meldgaard, 2021;
Petropoulos et al., 2018). XGB is an ensemble technique that uses gra-
dient boosted regression trees as weak learners. With this approach, de-
cision trees are sequentially added in a greedy manner based on the gra-
dient of the loss function in order to correct the errors made by the cur-
rent ensemble. This is in contrast to algorithms using Bagging, e.g. Ran-
dom Forests, which train several weak learners in parallel on boot-
strapped samples. Furthermore, Boosting algorithms showed a good
performance in forecasting competitions (Bojer & Meldgaard, 2021).
XGB is a sparse-aware and computationally efficient implementation
of this technique (Chen & Guestrin, 2016).

Besides the frequentist approach, for which we view probability as
the relative frequency of an event in an experiment, we can interpret
probability in a Bayesian perspective. Thereby, we define a prior belief
before considering evidence as we assume that certain hypotheses
are more plausible than others. Then, we take evidence into account,
e.g. observations in an experiment, leading to a posterior belief. This
is regularized by the prior, as we usually do not completely reject
our previous belief. For ML methods, we can define the prior as a
probability distribution over the model parameters and calculate their
posterior based on observations in a dataset. Therefore, in contrast
to a frequentist viewpoint with fixed parameter values, probability
distributions over the model parameters reflecting their uncertainty are
estimated (Bishop, 2009).

MLR can be defined in a Bayesian perspective as follows: 𝑝(𝑦|𝒙,𝒘) =
N(𝑦|𝒙𝑻𝒘, 𝜎2), where the target variable 𝑦 follows a Gaussian distri-
bution with the mean 𝒙𝑻𝒘 (determined by the predictors 𝒙 and the
weights 𝒘) and the variance 𝜎2. If the weights of the model are
constrained to a zero-mean Gaussian prior, the solution is equivalent
to Ridge Regression and therefore called Bayesian Ridge Regression
(BayesRidge). Automatic Relevance Determination (ARD), also known
as Sparse Bayesian Learning or Relevance Vector Machine, is related to
it, but introduces an individual variance for each weight. If the variance
of a feature is low, the corresponding weight is likely to be close to zero
and can be pruned leading to sparser solutions (Bishop, 2009; James
et al., 2017; Tipping, 2001).

With regard to the practical use of demand forecasts, the uncertainty
of a prediction value seems profitable. Providing those by its definition
is a main advantage of the nonparametric Bayesian method Gaussian
Process Regression (GPR) (Williams & Rasmussen, 1996). To explain it,
it makes sense to go back to the linear model. This is defined as

𝑓 (𝒙) = 𝒙𝑇𝒘, 𝑦 = 𝑓 (𝒙) + 𝜖,

with 𝒙 being the input vector, 𝒘 the vector of weights, the function
value 𝑓 (𝒙) and observed target value 𝑦 with additive noise 𝜖 assumed
to follow a zero-mean Gaussian. Combined with the independence
assumption of the observation values, we get the likelihood, which
reflects how probable the observed target values 𝒚 are for the different
inputs 𝑿 and weights 𝒘:

𝑝(𝒚|𝑿,𝒘) =
𝑗∏

𝑖=1
𝑝(𝑦𝑖|𝒙𝒊,𝒘)

As usual for a Bayesian formulation, we define a prior over the weights,
for which we again choose a zero-mean Gaussian. With the defined
prior and the likelihood based on the observed data, we can use Bayes’
rule to get the posterior of the weights given the data:

𝑝(𝒘|𝑿, 𝒚) = 𝑝(𝒚|𝑿,𝒘)𝑝(𝒘)
𝑝(𝒚|𝑿)
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This is also called the maximum a posteriori estimate which – provided
the data – delivers the most likely set of weights 𝒘. As 𝑝(𝒚|𝑿) is inde-
pendent of 𝒘, we can reformulate this equation expressing the posterior
distribution with a Gaussian defined by a mean and covariance matrix:

𝑝(𝒘|𝑿, 𝒚) ∼ N(𝒘,𝑨−1)

During inference, we marginalize out 𝒘 and as a result take the average
based on all possible 𝒘 weighted by their posterior probability:

𝑝
(
𝑦𝑇 𝑒𝑠𝑡|𝒙𝑇 𝑒𝑠𝑡,𝑿, 𝒚

)
= ∫ 𝑝

(
𝑦𝑇 𝑒𝑠𝑡|𝒙𝑇 𝑒𝑠𝑡,𝒘

)
𝑝 (𝒘|𝑿, 𝒚) 𝑑𝒘

= N( 1
𝜎2

𝒙𝑇𝑇 𝑒𝑠𝑡𝑨
−1𝑿𝒚,𝒙𝑇𝑇 𝑒𝑠𝑡𝑨

−1𝒙𝑇 𝑒𝑠𝑡)

Therefore, we do not only get an output value, but also an uncertainty.
So far, we reached the Bayesian formulation of linear regression with
its limited expressiveness. To overcome this constraint to linearity, we
can project the inputs into a high-dimensional space and apply the
linear concept there. This transformation can be accomplished using
basis functions 𝜙(𝒙)∶R𝑑 → R𝑖 leading to the following model with 𝑖
weights 𝒘:

𝑓 (𝒙) = 𝜙(𝒙)𝑇𝒘

Conducting the same derivation as shown above results in a similar
outcome:

𝑝
(
𝑦𝑇 𝑒𝑠𝑡|𝒙𝑇 𝑒𝑠𝑡,𝑿, 𝒚

)
= N( 1

𝜎2
𝜙
(
𝒙𝑇 𝑒𝑠𝑡

)𝑇 𝑨−1𝛷(𝑿)𝒚,

𝜙
(
𝒙𝑇 𝑒𝑠𝑡

)𝑇 𝑨−1𝜙(𝒙𝑇 𝑒𝑠𝑡))

The need of inverting the 𝑖𝑥𝑖 matrix 𝑨 possibly causes computational
problems if the dimension of the feature space 𝑖 becomes large. To solve
this, we can reformulate the above using the so-called ‘‘kernel trick’’.
This leads to the formulation of a Gaussian Process, which is completely
specified by its mean and covariance function:

𝑓 (𝒙) ∼ 𝐺𝑃 (𝑚(𝒙), 𝑘(𝒙,𝒙′))

𝑚 (𝒙) = E [𝒇 (𝒙)] , 𝒌(𝒙,𝒙′) = E[(𝒇 (𝒙) −𝒎(𝒙))(𝒇 (𝒙′) −𝒎(𝒙′))]

𝑘(𝒙,𝒙′) consists of the covariance value between any two sample points
𝒙 and 𝒙′ resulting in a 𝑛𝑥𝑛 matrix for a training set length of 𝑛. The
assumption is that the similarity between samples reflects the strength
of the correlation between their corresponding target values. Therefore,
the function evaluation can be seen as a draw from a multivariate Gaus-
sian distribution defined by 𝑚(𝒙) and 𝑘(𝒙,𝒙′). Thus, Gaussian Processes
are a distribution over functions rather than parameters, in contrast to
Bayesian linear regression. For simplicity, the mean function is often set
to zero or a constant value. There are many forms of kernel functions,
which need to fulfill certain properties, e.g. being positive semidefinite
and symmetric. Furthermore, they can be combined, e.g. by summation
or multiplication. The choice of the covariance kernel function is a de-
termining configuration of GPR and its parameters need to be optimized
during training (Rasmussen & Williams, 2008; Roberts et al., 2013).

Appendix B. Hyperparameters

Subsequently, the hyperparameters and transformations we used
for all algorithms can be found. For every one, we randomly sampled
hyperparameter combinations for optimization. All tables show the
values used for the comparison before the best working solutions were
analyzed in an in-depth optimization. Beyond that, we used differ-
ent imputation strategies, from which KNN and Iterative Imputation
needed to be parametrized. We empirically determined k = 10 for KNN
and a maximum number of iterations of 100 for Iterative Imputation.

B.1. Exponential Smoothing (ES)

See Table B.1.

Table B.1
Hyperparameters Exponential Smoothing.

Parameter Values Notes

seasonal_periods [7, 14, 21] Only for SoldTulips: period for
seasonality

trend [‘add’, None] Trend component
damp [False, True] Damp trend
seasonality [‘add’, ‘mul’, None] Seasonal component
remove_bias [False, True] Force average residual to zero
use_brute [False, True] Search starting values using

brute force or use a naive set
transf [False, ‘log’, ‘pw’] Transformation method

B.2. Seasonal Autoregressive Integrated Moving Average (with external
factors) (SARIMA(X))

See Table B.2.

Table B.2
Hyperparameters Seasonal Autoregressive Integrated Moving Average (with external
factors).

Parameter Values Notes

𝑝∕𝑞∕𝑃∕𝑄 [0, 1, 2, 3] Non-seasonal/seasonal lag for AR
and MA component

d/D [0, 1] Non-seasonal/seasonal
differencing

exog [False, True] Use exogeneous variables
(SARIMA or SARIMAX)

transf [False, ‘log’, ‘pw’] Transformation method

B.3. Regularized Regression (LassoReg, RidgeReg, ElasticNet)

See Table B.3.

Table B.3
Hyperparameters Regularized Regression.

Parameter Values Notes

normalize [False, True] Normalization prior to regression
alpha [10** x for x in range(−5, 5)] Constant multiplying the

regularization penalty term
l1_ratio Np.arange(0.1, 1, 0.1) Only for Elastic Net: ratio of

L1-regularization

B.4. Artificial Neural Network (ANN)

See Table B.4.

Table B.4
Hyperparameters Artificial Neural Network.

Parameter Values Notes

activation_function ReLu Activation function
after each neuron

optimizer Adam Optimizer for
hyperparameter
optimization

dropout_rate [0.0, 0.5] Rate for dropout layer
batch_size [4, 8, 16, 32] Batch size for training
learning_rate [1e−4, 1e−3, 1e−2,

1e−1]
Learning rate for Adam
optimizer

min_val_loss_improvement [100, 1000] Minimum validation
loss improvement for
early stopping

max_epochs_wo_improvement [20, 50, 100] Maximum epochs
without improvement
for early stopping

n_hidden [10, 20, 50, 100] Number of hidden
neurons of input layer

num_hidden_layer [1, 2, 3] Number of hidden layer
(including input layer)

B.5. Long Short-Term Memory Network (LSTM)

See Table B.5.
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Table B.5
Hyperparameters Long Short-Term Memory Network.

Parameter Values Notes

activation_function ReLu Activation function after each
neuron

optimizer Adam Optimizer for hyperparameter
optimization

dropout_rate [0.0, 0.5] Rate for dropout layer
batch_size [4, 8, 16, 32] Batch size for training
learning_rate [1e−3, 1e−2,

1e−1]
Learning rate for Adam
optimizer

min_val_loss_improvement [0.01, 0.1] Minimum validation loss
improvement for early
stopping

max_epochs_wo_improvement [20, 50, 100] Maximum epochs without
improvement for early
stopping

lstm_hidden_dim [5, 10, 50] Dimensionality of the hidden
state

lstm_num_layers [1, 2] Number of recurrent layers
seq_length [1, 4, sea-

sonal_periods]
Sequence length for input

B.6. Extreme Gradient Boosting (XGB)

See Table B.6.
Table B.6
Hyperparameters Extreme Gradient Boosting.

Parameter Values Notes

learning_rate [0.05, 0.1, 0.3] Learning rate / eta
max_depth [3, 5, 10] Maximum tree depth of a base

learner
subsample [0.3, 0.7, 1] Subsample ratio of a training

instance
n_estimators [10, 100, 1000] Number of gradient boosted trees
gamma [0, 1, 10] Minimum loss reduction for a

partition on a leaf node
alpha [0, 0.1, 1, 10] Weight for L1-regularization
reg_lambda [0, 0.1, 1, 10] Weight for L2-regularization

B.7. Bayesian Regression (BayesRidge, ARD)

See Table B.7.
Table B.7
Hyperparameters Bayesian Regression.

Parameter Values Notes

normalize [False, True] Normalization prior to
regression

alpha_1 [10** x for x in
range(−6, 1)]

Shape parameter for Gamma
distribution over alpha

alpha_2 [10** x for x in
range(−6, −4)]

Rate parameter for Gamma
distribution over alpha

lambda_1 [10** x for x in
range(−6, 1)]

Shape parameter for Gamma
distribution over lambda

lambda_2 [10** x for x in
range(−6, 1)]

Rate parameter for Gamma
distribution over lambda

threshold_lambda [10** × for × in
range(2, 6)]

Only for ARD: threshold for
pruning weights

B.8. Gaussian Process Regression (GPR)

The determining parameter for GPR is the kernel function. We
used different kernel functions as well as combinations of up to three
kernels (sums and products). The base kernels we used can be found in
the following list, which are formulated according to the used library
GPflow (Matthews et al., 2017):

• SquaredExponential()
• Matern52()
• White()
• RationalQuadratic()

• Polynomial(),
• Periodic(kernels=SquaredExponential(), period=seasonal_periods),
• Periodic(kernels=Matern52(), period=seasonal_periods),
• Periodic(kernels=RationalQuadratic(), period=seasonal_periods)]

Furthermore, we used the subsequent hyperparameters.
Table B.8
Hyperparameters Gaussian Process Regression.

Parameter Values Notes

mean_function [None, Constant()] Mean function used for Gaussian
distribution

noise_variance [0.01, 1, 10, 100] Noise variance added to diagonal
of kernel matrix

standardize_x [False, True] Standardize features
standardize_y [False, True] Standardize target variable

Appendix C. Results Overview Tables

The tables, which reflect an overview of the results of the compar-
ison performed in this paper, are published in supplementary fashion
as ‘‘Supplementary 1 - Results Overview Tables.xlsx’’. This file contains
several tabs, of which each one presents the results of one dataset.
These show an overview of the best optimization results with respect to
the three evaluation metrics of every algorithm for each experimental
setting. Every table is grouped in ‘‘Univariate Methods and Baselines’’ as
well as ‘‘Multivariate Methods’’. Besides that, every chart is structured by
the used featureset, imputation strategy and dimensionality reduction.
If a specific combination was not included in the comparison, the
related cell is filled in gray. The best results are printed in bold, and
the cells are highlighted with a green background.

Appendix D. Top Results Tables

The following tables show top results for several setups such as
the best performance of every algorithm on each dataset over all
featuresets and preprocessing methods, see Tables D.1 and D.2. As in all
subsequent tables, the best results are printed in bold and highlighted
in green. The results based on each feature- and dataset for the multi-
variate top performers are summarized in Appendix D.2. The evaluation
is based on the results before the in-depth optimization, as this second
optimization was not conducted for all configurations.

D.1. Top Results Overall

See Tables D.1 and D.2.

Table D.1
Top results overall for the OwnDoc datasets.
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Table D.2
Top results overall for the CashierData datasets.

Table D.3
Top results per featureset of the OwnDoc datasets.

D.2. Featureset-specific Top Results for SARIMAX, LSTM, XGB and GPR

To visualize the top results per featureset, we derived the stacked
bar plots shown in Fig. D.1 based on the information presented in
Tables D.3 and D.4. Furthermore, Table D.5 summarizes the featuresets
leading to the best result for each dataset.

Appendix E. Supplementary Data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.mlwa.2021.100239.
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Table D.4
Top results per featureset of the CashierData datasets.

Table D.5
Win counts for each featureset on every algorithm and dataset. A win is defined as a featureset leading to the best result for
one of the evaluation metrics. The wins of every featureset are summed up. The leading featuresets for every algorithm on
OwnDoc and CashierData are printed in bold and highlighted in green.
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Fig. D.1. Top results per featureset for SARIMAX, LSTM, XGB, GPR (columns) on every dataset (rows). The values achieved with every featureset are scaled by the worst result.
Smaller bars represent a better outcome with similar ones plotted with a small offset on the 𝑥-axis to ensure visibility. Bars might not be visible in case of a major difference to
the worst result, e.g. XGB’s MAPE for OwnDoc_Sold_Tulips_short.
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Abstract. Time series forecasting is a growing domain with diverse applications.
However, changes of the system behavior over time due to internal or external
influences are challenging. Therefore, predictions of a previously learned forecast-
ing model might not be useful anymore. In this paper, we present EVent-triggered
AugmentedRefitting of Gaussian Process Regression for Seasonal Data (EVARS-
GPR), a novel online algorithm that is able to handle sudden shifts in the target
variable scale of seasonal data. For this purpose, EVARS-GPR combines online
change point detection with a refitting of the prediction model using data aug-
mentation for samples prior to a change point. Our experiments on simulated data
show that EVARS-GPR is applicable for a wide range of output scale changes.
EVARS-GPRhas on average a 20.8% lowerRMSEondifferent real-world datasets
compared to methods with a similar computational resource consumption. Fur-
thermore, we show that our algorithm leads to a six-fold reduction of the averaged
runtime in relation to all comparison partners with a periodical refitting strategy. In
summary, we present a computationally efficient online forecasting algorithm for
seasonal time series with changes of the target variable scale and demonstrate its
functionality on simulated as well as real-world data. All code is publicly available
on GitHub: https://github.com/grimmlab/evars-gpr.

Keywords: Gaussian process regression · Seasonal time series · Change point
detection · Online time series forecasting · Data augmentation

1 Introduction

Time series forecasting is an emerging topic with applications in diverse domains, e.g.
business, medicine or energy. These approaches make use of time series data, which
describes a system behavior by a sequence of observations within a certain time period
and try to predict future values. However, sudden changes of the system behavior over
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time are common issues in time series analysis. These sudden changes can be either
caused by external or internal influences, e.g. due to operational or strategic decisions.
For instance, currently many sales forecasting systems are affected by the SARS-CoV-2
pandemic and energy demand predictions might be impeded by energetic optimizations
of big consumers. Some but probably not all of the influential factors can be captured by
features. Nevertheless, after a change of the generative data distribution, which reflects
the relation between explanatory features and the target variable, predictions of a previ-
ously learned model might not be useful anymore. As a result, decisions based on these
could cause damage such as a financial loss if e.g. an underestimated demand leads to
missed sales [2, 13].

A commonbut computationally exhaustive approach to handle this problem is to peri-
odically retrain a prediction model during the productive operation [13]. Furthermore,
several methods combine change point detection (CPD), i.e. the problem of identifying
a change of the generative data distribution, and Gaussian Process Regression (GPR).
Some of them work offline and are therefore not suitable for changing data distributions
during the online phase [9, 16]. Existing online approaches are either not event-triggered
[21, 22], require a certain number of samples of a new generative distribution [12] or are
based on a priori assumptions in terms of potentially changing time series properties
[17]. Furthermore, none of them apply data augmentation (DA) on samples prior to a
detected change point to reuse these augmented samples for model retraining.

In this work, we present EVent-triggered Augmented Refitting of Gaussian Process
Regression for Seasonal Data (EVARS-GPR), for which we provide an overview in
Fig. 1. This novel online algorithm combines change point monitoring with a refitting
of the prediction model using data augmentation. Compared to existing approaches,
the main focus of our algorithm is on seasonal data with sudden changes of the target
variable scale while values of explanatory features remain approximately equal, which
is a common issue in seasonal time series forecasting. The data augmentation step is
triggered after the detection of a change point and a deviation of the target variable
scale compared to a certain threshold. This step updates known samples prior to a
change point with new information on the changed target variable scale. Consequently,
we gain potential useful data for the refitting of the prediction model. Hence, EVARS-
GPR is event-triggered and as a result more efficient than a periodical refitting strategy.
Furthermore, the algorithm reacts immediately after a detected change point and a priori
assumptions on the output scale changes are not required. As prediction model we use
Gaussian Process Regression (GPR), see Appendix A for an overview. GPR is a flexible
andnon-parametricBayesianmethod includinguncertainties of a prediction value,which
seems profitable with regard to the practical use of forecasts. Moreover, we evaluate
the integration of different approaches for online CPD and DA, two essential parts of
EVARS-GPR. We further analyze EVARS-GPR using simulated data and evaluate the
performance on real-world datasets including different comparison partners.

The remainder of this paper is organized as follows. In Sect. 2, we describe the
related work. Afterwards, we provide the problem formulation in Sect. 3. Then, we
outline EVARS-GPR in Sect. 4 followed by the experimental setup in Sect. 5. The
experimental results are shown and discussed in Sect. 6, before we draw conclusions.
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Fig. 1. OverviewofEVARS-GPRduring the online phase and the preconditions in the offline
phase. The initial prediction model is trained offline. During the online phase, the prediction of
the next target value is followed by a change point detection. If a change point is detected, the
output scaling factor, which sets the target values of the current season in relation to previous
seasons, is calculated. If the deviation between the current and last output scaling factor exceeds
a threshold, then an augmented refitting of the prediction model is triggered. In case one of the
two conditions is not fulfilled, EVARS-GPR continues using the current prediction model.

2 Related Work

Methods enabling GPR models to work with nonstationary data distributions can be
divided into offline and online techniques. A common offline approach is to switch
between kernel functions, e.g. by multiplication with sigmoid functions [9]. For some
technical processes, multiple steady states can be determined. This enables the associa-
tion of a corresponding model. For inference, the one associated with the current state is
selected [16].However, these approaches are limited to scenarios forwhich change points
respectively steady states can be defined a priori. Furthermore, change points occurring
abruptly at a single point can be treated as a hyperparameter of a nonstationary covari-
ance function [11]. A further possibility of handling nonstationary data distributions is
to augment the input using time-related functions. One option is the introduction of a
forgetting factor, which leads to a lower influence of the information contained in older
samples. Another common technique is to periodically update the hyperparameters of
a GPR model using samples within a specified moving window [22]. A more elabo-
rate approach is Moving-Window GPR (MWGPR). This method discards the oldest
sample after a new one becomes available. Moreover, a dual preprocessing and dual
updating strategy is performed. This introduces a recursive bias term, which depends on
past model errors and is added to the model’s prediction to get the final forecast value
[21]. All these approaches have the drawback of losing potentially useful information
from earlier samples even if the data distribution did not change [22]. GP-non-Bayesian
clustering (GP-NBC) is focused on computational efficiency with the goal of making it
suitable for resource-constrained environments, e.g. robotic platforms. Based on online-
trained GP models, likelihood ratio tests are performed in order to determine whether a
new candidate model or a previously stored one should be used in the further process. A
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disadvantage of GP-NBC is that a certain number of new samples needs to be available
to enable the training of a new model. This may lead to a delayed reaction after a change
point occurred [12]. The INstant TEmporal structure Learning (INTEL) algorithm was
recently proposed. First, a template model is learned using offline data. Then, a set of
candidate models with varying hyperparameters due to assumptions of potential changes
during the productive operation is constructed based on the template model. For the final
prediction, all models are combined using weights that correspond to the likelihood of
a new observation given each model. In its current implementation, INTEL is limited to
univariate data. Furthermore, possible changes happening during the online phase need
to be assumed a priori [17].

3 Problem Formulation

We define a multivariate time series D = {xt, yt}n as a sequence of n samples consisting
of d -dimensional explanatory variables called covariates xt ∈ Rd and a corresponding
target value yt ∈ R at time step t. The target value at time step t, yt , is drawn from a
distribution pi(y|xt), i.e. it is dependent on the covariates xt . In this work, we consider
seasonal data, meaning data that follows a certain periodicity of length nseas. We assume
that periodicity is present for the target variable y as well as for at least some of the
covariates X. Thus, the target variable at time step t can be decomposed in a seasonal
component st and a residual rt summing up all other effects: yt = st + rt . Based on its
periodicity of length nseas, the seasonal component at time step t is similar to those of
previous seasons: st ≈ st−k·nseas with k ∈ N\{0}. The covariates xt respectively a subset
χ t ⊆ xt of them can also be decomposed in a seasonal component sχ,t and a residual
rχ,t into χ t = sχ,t + rχ,t , with similar periodicity characteristics regarding sχ,t . The
strength of the seasonal pattern, i.e. the influence of the seasonal component on the final
value, might vary for different covariates and target variables.

With noff samples of D, a model M , here a Gaussian Process Regression, can be
trained offline using cross-validation to determine the hyperparameter configuration that
delivers predictions y

∧

generalizing best to the true distribution pi(y|x). During the online
phase, with a new input xt provided at every time step t, the modelM is used to deliver
a prediction for the target variable value y

∧

t based on xt . However, it is a common issue
in time series forecasting that the generative distribution pi(y|x) our predictor M was
trained on might change to another distribution pj(y|x). The time step at which such
a shift happens is called a change point. In this work, we focus on output scale shifts,
meaning that the value range of the target variable y changes. Therefore, with regard to
the periodicity of the covariates X and the target variable y, a similar covariate vector
xt corresponds to a different target variable yt as the generative distribution changed.
Consequently, the predictions produced by the previously trained model M might not
be useful anymore. With EVARS-GPR, we address this problem by combining online
change point monitoring of the target variable y and a refitting of the base model M
using data augmentation in case a change point is detected. A list of symbols including
those of subsequent sections is provided in Appendix B.
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4 EVARS-GPR

EVARS-GPR is an online algorithm that is focused on changes resulting in an output
scale shift of seasonal multivariate time series, as outlined in Sect. 3. In Fig. 1 and
Algorithm 1, we give an overview of EVARS-GPR. Following the problem formulation,
we assume an offline-trained model M , which we subsequently call the base model
Mbase. Prior to the online phase, the current prediction modelMcurrent is initialized with
this offline-trained model Mbase. As EVARS-GPR operates online, the main part starts
with a new sample becoming available at time step t. As a first step, we retrieve the
prediction of the next target value y

∧

t using the covariates xt as well as the current model
Mcurrent . Then, we run an online change point detection (CPD) algorithm, which is
updated with the current target variable value yt . In case we do not detect a shift of the
generative distribution p(y|xt), the current prediction model Mcurrent stays unchanged
and the algorithm waits for the next time step t + 1. However, if we determine a change
point at time step t, the remaining procedures of EVARS-GPR are triggered. First, as
EVARS-GPR is focused on changes of the output scale in seasonal time series data, the
output scaling factor η is determined. For that purpose, the target values y prior to the
change point and within a window of size nw are considered. These are set in relation
to the target values y within the corresponding window of nη previous seasons with a
season length of nseas:

η = 1
nη

nη∑

k=1

∑t
i=t−nw yi

∑t−k·nseas
j=t−k·nseas−nw

yj
(1)

The nominator of Eq. (1) includes current target values yi prior to the change point,
whereas the denominator conveys information on the corresponding period of a previous
season. This ratio is averaged over the number of seasons taken into account to retrieve
the output scaling factor. Online CPD is prone to false alarms due to outliers. For this
reason and to limit the amount of refittings for efficiency, we set a minimum threshold
πη for the deviation between the current output scaling factor η and the output scaling
factor of the last augmented refitting ηold . If this threshold is exceeded, the augmented
refitting of the current modelMcurrent is triggered. First, we generate an augmented set of
samplesD′ based on the dataset prior to the change point at time step t. Thereby, we reuse
known samples and update them with new information on the changed target variable
scale. Consequently, we gain an augmented dataset D′ for the refitting of the current
modelMcurrent . Furthermore, the last output scaling factor ηold is stored. Subsequently,
the refitted current model is used for the predictions of the target value. With a new
sample arriving at the next time step t + 1, the whole cycle of predicting, change point
monitoring, potential data augmentation and model refitting starts again.

The goal of CPD is to find abrupt changes in data, in the context of this work
resulting in a shift of the scale of the target variable y. A CPD method should ensure
a quick reaction to a change point. Considering a real time operation, computationally
efficient CPD methods are advantageous. Beyond that, for EVARS-GPR, the CPD and
the prediction methods are separated in order to enable the output scale-dependent,
augmented model refitting. For these reasons, we excluded approaches such as GPTS-
CP [24] and BOCPD-MS [15]. Based on the outlined criteria, we evaluated Bayesian
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Online Change Point Detection (BOCPD) and ChangeFinder (CF). More information
on these two methods can be found in Appendix C. In both cases, we deseasonalize data
via seasonal differencing in order to prevent false alarms due to seasonal effects [2].

Besides online CPD, DA is an essential part of EVARS-GPR. For this work, we focus
on computationally efficient approaches ensuring a real time operation and consider
small datasets as well. Therefore, we excluded generative models such as TimeGAN
[28] or C-RNN-GAN [20]. First, we augmented the original dataset consisting of all
samples prior to a change point at time step t,D0:t , by scaling the original target variable
vector y0:t . Thereby, we multiply the target variable vector y0:t with the output scaling
factor η and leave the covariates x0:t unchanged, resulting in the augmented datasetDη

0:t .
Considering the focus on shifts of the output scale, augmenting the dataset by scaling
the target variable vector y is a reasonable and efficient approach. Second, we used two
virtual sample generation techniques for imbalanced regression: RandomOversampling
with the introduction of Gaussian Noise (GN) [26] and SMOGN, which combines the
former and the SyntheticMinority Oversampling TEchnique for Regression (SMOTER)
[5, 27]. Both methods are outlined in Appendix D.

5 Experimental Setup

Subsequently, we will first describe the simulated data we used to determine the configu-
ration of EVARS-GPR and to analyze its behavior. Afterwards, we outline the real-world
datasets and the performance evaluation.
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5.1 Simulated Data

EVARS-GPR is focused on seasonal datawith changes regarding the target variable scale
during the online phase. In order to configure and parametrize the algorithm as well as
to analyze its behavior, we generated simulated data fulfilling these properties. Figure 2
visualizes a simplified example of simulated data to explain its configuration. As we
observe in Fig. 2a, the target variable y follows a periodical pattern with a season length
nseas and an amplitude a. Between tstart and tend during the online phase, we manipulate
y by a multiplication with a factor δ, which results in a change of the output scale. The
characteristics of thismanipulation factor are visualized in Fig. 2b.At tstart , we beginwith
δbase and increase δ by a slope of κ at every time step t, up to a maximum manipulation
factor δmax. Then, the manipulation factor δ stays constant until its sequential decrease
is triggered in order to reach δbase at tend . To meet the properties specified in Sect. 3,
the covariates x are also periodical. Both x and y can be modified with additive random
noise in order to model the seasonality more realistic.

Fig. 2. (a) Visualization of a simplified example of simulated data with the base as well as the
changed series, both with a season length of nseas. Between tstart and tend , the base series with
its amplitude a is changed by multiplication with a manipulation factor δ. (b) Configuration of
the manipulation factor δ. Starting from δbase at tstart , the manipulation factor δ increases by a
slope κ at every time step t. If a maximum manipulation factor δmax is reached, δ stays constant.
At tend , the base factor δbase is reached again after sequentially decreasing δ using κ .

In summary, the parameters nseas, tstart , tend , δmax and κ enable us to simulate various
settings of the output scale change. For instance, tstart and tend modify the duration and
time of occurrence. Furthermore, δmax marks the maximum extent of the output scale
change, whereas κ determines its increase at every time step t, thus the speed respectively
abruptness. Based on this, we formulated 67 scenarios and evaluated the performance
to select the online CPD and DA method for EVARS-GPR, see Sect. 6.1. Furthermore,
the parametrization of EVARS-GPR is based on these scenarios, see Appendix E for an
overview. For that purpose, we employed a random search with 100 different parameter
settings for each combination of online CPD and DA method [3].

5.2 Real-World Datasets

Weadditionally evaluated EVARS-GPRon real-world datasets. Based on the algorithm’s
scope, we selected seasonal time series data, for which we provide more information in
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Appendix F. For the horticultural sales prediction dataset CashierData1, we observe a
strong sales increase of potted plants (PotTotal) during the SARS-CoV-2 pandemic in
2020. Furthermore, we included the following common and publicly available datasets
with changes of the output scale during the online phase: DrugSales [13], VisitorNights
[13], AirPassengers [4] and MaunaLoa [10]. Beyond that, we used time series data
without such changes to test the robustness of EVARS-GPR: ChampagneSales [18],
TouristsIndia [7], Milk [19], Beer [13] and USDeaths [19]. We further applied mean
imputation for missing values and added calendric as well as statistical features, e.g.
lagged target variables, seeAppendix F for an overview. Then,we used 80%of the data to
determine the base modelMbase, i.e. the configuration that leads to the best performance
in a cross-validation setup. Thereby, we employed a random search over the model’s
hyperparameters such as the kernel function as well as preprocessing parameters, e.g.
whether to perform a principal component analysis [3]. Finally, we evaluated EVARS-
GPR in an online setting for the remaining left out 20% of the data.

5.3 Evaluation

To evaluate the performance on a set of n samples, we used the Root Mean Squared

Error (RMSE), which is defined as RMSE =
√

1/n
∑n

i=1

(
yi − y

∧

i

)2 with the true value
yi and the prediction y

∧

i. As the RMSE is scale-dependent, we further applied a scaling
by the RMSE value achieved with Mbase, subsequently called RMSE-ratio. Thus, the
performances on simulated scenarios with different scales are comparable.

We included several comparison partners for the real-world datasets. Mbase applies
the offline-trainedmodel during thewhole online phase. Furthermore,we employed com-
mon but computationally exhaustive periodical refits of the predictionmodel, which trig-
ger a retraining at every (PR1) respectively every second (PR2) time step [13]. Moving-
WindowGPR (MWGPR) is included as an additional computational resource demanding
comparison partner, because a refit is needed at every time step t [21]. Moreover, we
defined methods with a computational resource consumption similar to EVARS-GPR.
These methods also react after a valid change point was detected, so the number of
refittings and thus the resource consumption is similar. CPD_scaled scales the predic-
tions ofMbase using the output scaling factor η, whereas CPD_retrain triggers a refitting
of the current prediction model Mcurrent using all original samples prior to a change
point. CPD_MW also leads to a refitting, but only uses data of the season before the
detected change point. For an estimate of the resource consumption, we measured the
process-wide CPU time of EVARS-GPR and the computationally exhaustive methods
on a machine with two 2.1 GHz Intel Xeon Gold 6230R CPUs (each with 26 cores and
52 threads) and a total of 756 GB of memory.

6 Experimental Results

In this section, we will first describe the behavior on simulated data. Afterwards, we
outline the results on real-world datasets, before we discuss them.

1 https://github.com/grimmlab/HorticulturalSalesPredictions.
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6.1 Behavior on Simulated Data

We determined the configuration and parameters of EVARS-GPR based on simulated
data. Using CF for online CPD and a scaling of the original dataset for DA lead to the
lowest RMSE-ratio averaged over all scenarios (0.549). Thereby, we experienced that
EVARS-GPR is sensitive to hyperparameters, e.g. the window size nw, see Appendix E
regarding the final values. We further analyzed EVARS-GPR on different output scale
changes regarding the extent (maximummanipulation factor δmax), speed (slope κ), time
of occurrence and duration (both via start tstart respectively end index tend ). Results are
visualized inFig. 3. TheperformanceofEVARS-GPRwas in all scenarios at least equal to
Mbase and outperformed it in most of the cases. Figure 3a and 3b show that the advantage
of EVARS-GPR was larger for longer periods with an output change. However, there
was also an improvement for shorter durations. EVARS-GPR was beneficial for several
extents and speeds of the shift as well as robust for constant scenarios (δmax = 1), see
Fig. 3c and 3d. For smaller slopes κ , the improvement tended to decrease with a higher
maximum manipulation factor δmax. We observe in Fig. 3d that EVARS-GPR’s benefit
was mostly smaller for maximum manipulation factors dmax close to one. We included
further scenarios in Appendix G, which show similar results.

Fig. 3. Behavior on a variety of simulated data (nseas = 50). Each box shows the result of the
scenario parametrized with the values given on the x- and y- axis. Numbers are RMSE-ratios,
lower values reflect a higher improvement compared toMbase. We analyzed the following factors
of the output scale change: (a) time of occurrence and duration via start and end indices tstart
respectively tend , (b) same factors with a higher slope κ and maximum manipulation factor δmax,
(c) extent and speed of the change via κ and δmax , (d) same factors on a finer grid for δmax .
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6.2 Results on Real-World Datasets

Wefurther evaluatedEVARS-GPRon several real-world datasets. InTable 1,we show the
model performance in terms ofRMSEcompared tomethodswith a similar computational
resource consumption for datasets with a changing target variable scale. As we observe,
EVARS-GPR was superior on all datasets. Our algorithm outperformed Mbase with an
improvement of 37.9% averaged over all datasets and the second-best competingmethod
among all datasets by 20.8%.

Table 1. Performance comparison based on RMSE for datasets with output scale changes
during the online phase for EVARS-GPR andmethods with a similar resource consumption.
Numbers show the RMSE of the simulated online phase. The best results are printed bold.

Mbase CPD_scaled CPD_retrain CPD_MW EVARS-GPR

CashierData 1351.43 2266.57 1314.55 1683.11 1125.34

DrugSales 6.15 5.39 3.90 4.46 2.75

AirPassengers 171.58 101.61 108.79 174.31 93.88

MaunaLoa 34.37 32.01 31.22 33.50 27.96

VisitorNights 10.97 9.30 8.80 10.34 5.11

Beyond that, we compared EVARS-GPR to computationally exhaustive methods,
for which we show the results as well as the process-wide CPU time in Table 2. EVARS-
GPR outperformed all other methods with respect to the CPU time. In comparison to
PR2, the method with the second lowest runtimes, the runtime of EVARS-GPR averaged
over all datasets was more than six times lower.

Table 2. RMSE and CPU time compared to computationally exhaustive methods for
datasets with output scale changes. Numbers show the RMSE and the CPU time averaged
over ten runs. The best RMSE results and lowest CPU times excludingMbase are printed bold.

Mbase PR1 PR2 MWGPR EVARS-GPR

CashierData RMSE 1351.43 1119.23 1185.82 1098.16 1125.34

CPU time [s] 2.38 1443.80 741.71 1106.53 166.06

DrugSales RMSE 6.15 2.44 2.54 2.86 2.75

CPU time [s] 0.61 762.05 404.47 550.99 52.40

AirPassengers RMSE 171.58 69.06 74.28 72.27 93.88

CPU time [s] 0.93 587.70 303.31 514.53 34.53

MaunaLoa RMSE 34.37 11.12 12.60 9.88 27.96

CPU time [s] 3.60 27459.79 13790.61 19525.85 78.99

VisitorNights RMSE 10.97 5.08 5.21 5.85 5.11

CPU time [s] 0.35 40.85 22.28 33.87 6.24
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It is not surprising that these comparison partners outperformed EVARS-GPR with
respect to predictive power, however at the cost of computational runtime. Regarding
AirPassengers and MaunaLoa, for which EVARS-GPR was outperformed in terms of
RMSE, the CPU time of EVARS-GPR was 16 respectively 250 times more efficient.
However, for CashierData, DrugSales and VisitorNights, the RMSE of EVARS-GPR
was comparable to the leading ones, while being computationally much more efficient.

In Table 3, we see that EVARS-GPR was robust for datasets without an output scale
change during the online phase as the results were identical to Mbase.

Table 3. Robustness on datasets without output scale changes during the online phase.
Numbers show the RMSE of the simulated online phase.

ChampagneSales TouristsIndia Milk Beer USDeaths

Mbase 1158.26 90707.30 15.16 16.88 276.72

EVARS-GPR 1158.26 90707.30 15.16 16.88 276.72

6.3 Discussion

We showed that EVARS-GPR is able to handle seasonal time series with changes of
the target variable scale, both on simulated and real-world data. The performance on
simulated data demonstrates a broad applicability regarding the time of occurrence,
duration, speed and extent of the output scale change, with a higher advantage overMbase
for longer durations. Shorter changes aremore difficult to detect for onlineCPDmethods,
which is one reason for the lower improvement in such settings. Our results further
indicate that EVARS-GPR can handle various speeds and extents of the output scale
change, which can be seen as different abruptness levels. This applies both for increases
as well as decreases. Experiments with smaller extents showed smaller improvements
of EVARS-GPR, as it is more difficult to detect such changes. A similar effect can be
observed for smaller speeds and larger extents of the output scale change. Nevertheless,
EVARS-GPR was at least on par withMbase in all cases and outperformed it in most of
the settings.

In addition, EVARS-GPR outperformed all methods with a similar computational
resource consumption with respect to RMSE on real-world datasets, with a mean
improvement of 20.8% compared to the second-best approaches. Regarding AirPas-
sengers and MaunaLoa, the advantage of EVARS-GPR in terms of RMSE was 7.6%
respectively 10.4%. For these datasets, the output scale changes at the detected change
points were rather small. Consequently, the DA step did not enhance the performance
that much, which might be a reason for the smaller improvements on RMSE in contrast
to the other datasets. Furthermore, the difference to other periodical refitting strategies
was largest for AirPassengers and MaunaLoa. This might indicate that not all possi-
ble change points were detected or that these datasets possess further data distribution
shifts not resulting in an output scale change. With respect to the other three datasets,
EVARS-GPR’s results were comparable to the periodical refitting strategies, suggesting
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that all relevant change points could be detected. Moreover, we showed EVARS-GPR’s
efficiency in comparison with periodical refitting strategies with a more than six-fold
reduction of the averaged runtime in relation to PR2. This advantage of EVARS-GPR
was even bigger for AirPassengers and MaunaLoa with a 16 respectively 250 times
lower runtime compared to the best performer. Finally, EVARS-GPR was robust for
datasets without changes of the target variable scale.

The online detection of change points is an essential part of EVARS-GPR, as wrong
or missed detections might lead to a performance decrease. We addressed the problem
of misdetections due to outliers with the introduction of a threshold for the output scal-
ing factor. Nevertheless, EVARS-GPR would probably benefit a lot from improvements
of the online CPD method. Moreover, we observed lower RMSE values for periodi-
cal refitting strategies, especially on a dataset with more samples (MaunaLoa). Thus, a
combination of EVARS-GPR and a periodical refitting strategy with a lower frequency
is an interesting approach for future research. This might result in a computationally
efficient algorithm, which is additionally able to capture changing data distributions that
do not result in a target variable scale. We further determined the parameters of the
whole pipeline based on simulated data. This might not be the best strategy for all set-
tings and real-world applications. However, as the simulated scenarios were diverse and
reflected the scope of this work with output scale changes, this is a reasonable approach.
Nevertheless, another way for parameter optimization is a further potential for future
research. One possibility is to integrate this into the cross-validation performed offline
by simulating different manipulations of the real-world data. Beyond that, EVARS-GPR
is model-agnostic. Therefore, it seems interesting to transfer this approach to other pre-
diction models, e.g. XGBoost, which is limited to prediction values within the target
value range of the training set [8].

7 Conclusion

In this paper,we presentedEVARS-GPR, a novel online time series forecasting algorithm
that is able to handle sudden shifts in the target variable scale of seasonal data by combin-
ing change point monitoring with an augmented refitting of a prediction model. Online
change point detection and data augmentation are essential components of EVARS-GPR,
for which we evaluated different approaches based on simulated scenarios. Using the
resulting configuration and parameterization, we showed on simulated data that EVARS-
GPR is applicable for a wide range of output scale changes. Furthermore, EVARS-GPR
had on average a 20.8% lower RMSE on different real-world datasets compared to meth-
ods with a similar computational resource consumption. Moreover, we demonstrated its
computational efficiency compared to periodical refitting strategies with a more than
six-fold reduction of the averaged runtime.
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Appendix A: Gaussian Process Regression

With regard to the practical use of forecasts, the uncertainty of a prediction value seems
profitable. Providing those by its definition is a main advantage of the nonparametric
Bayesian method GPR. To explain this approach, we use the linear model that is defined
as

f (x) = xTw, y = f (x) + ε (2)

with x being the input vector, w the vector of weights, the function value f (x) and
observed target value y with additive noise ε assumed to follow a zero-mean Gaussian.
Combined with the independence assumption of the observation values, we get the
likelihood, which reflects how probable the observed target values y are for the different
inputs X and weights w:

p(y|X,w) =
j∏

i=1
p(yi|xi,w) (3)

As usual for a Bayesian formulation, we define a prior over the weights, for which
we again choose a zero-mean Gaussian. With the defined prior and the likelihood based
on the observed data, we can use Bayes’ rule to get the posterior of the weights given
the data:

p(w|X, y) = p(y|X,w)p(w)
p(y|X)

(4)

This is also called the maximum a posteriori estimate, which - provided the data
- delivers the most likely set of weights w. As p(y|X) is independent of w, we can
reformulate this equation expressing the posterior distribution with a Gaussian defined
by a mean and covariance matrix:

p(w|X, y) ∼ N
(
w,A−1

)
(5)

During inference, we marginalize out w and as a result take the average based on all
possible w weighted by their posterior probability:

p(yTest |xTest,X, y) = ∫
p(yTest |xTest,w)p(w|X, y)dw

= N
(

1
σ 2 x

T
TestA

−1Xy, xTTestA
−1xTest

) (6)

Therefore, we do not only get an output value, but also an uncertainty. So far, we
reached the Bayesian formulation of linear regression with its limited expressiveness. To
overcome this constraint to linearity, we can project the inputs into a high-dimensional
space and apply the linear concept there. This transformation can be accomplished using
basis functions φ(x) : Rd → Ri leading to the following model with i weights w:

f (x) = φ(x)Tw (7)

Conducting the same derivation as shown above results in a similar outcome:

p(yTest |xTest,X, y) = N
(

1
σ 2 φ(xTest)TA−1
(X)y, φ(xTest)TA−1φ(xTest)

)
(8)
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The need of inverting the ixi matrix A possibly causes computational problems if
the dimension of the feature space i becomes large. To solve this, we can reformulate
the above using the so-called “kernel trick”. This leads to the formulation of a Gaussian
Process, which is completely specified by its mean and covariance function:

f (x) ∼ GP
(
m(x), k

(
x, x′)) (9)

m(x) = E
[
f (x)

]
(10)

k
(
x, x

′) = E
[
(f (x) − m(x))

(
f
(
x′) − m

(
x′))] (11)

k(x, x′) consists of the covariance value between any two sample points x and x′ resulting
in a nxnmatrix for a training set length of n. The assumption is that the similarity between
samples reflects the strength of the correlation between their corresponding target values.
Therefore, the function evaluation can be seen as a draw from a multivariate Gaussian
distributiondefinedbym(x) and k(x, x′). Thus,GaussianProcesses are a distributionover
functions rather than parameters, in contrast toBayesian linear regression. For simplicity,
the mean function is often set to zero or a constant value. There are many forms of kernel
functions, which need to fulfill certain properties, e.g. being positive semidefinite and
symmetric. Furthermore, they can be combined, e.g. by summation or multiplication.
The choice of the covariance kernel function is a determining configuration of GPR and
its parameters need to be optimized during training [15, 17].

Appendix B: List of Symbols

General Symbols

M prediction model
t current time step
D time series dataset
n number of samples of the time series dataset D
noff number of samples that are available during the offline phase
xt covariate vector at time step t
d dimensionality of the covariate vector xt
X covariate matrix including all covariates vectors
χ t subset of the covariate vector xt at time step t
sχ,t seasonal component of the subset of the covariate vector χ t at time step t
rχ,t residual component of the subset of the covariate vector χ t at time step t
yt true target value at time step t
st seasonal component of yt at time step t
rt residual component of yt at time step t
nseas length of one season
y
∧

t predicted target value at time step t
p(y|xt) generative distribution of y.
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EVARS-GPR

Mbase offline-trained base model
Mcurrent current prediction model
η current output scaling factor
ηold output scaling factor of last augmented refitting
nw window size for the calculation of the output scaling factor η

nη number of previous seasons considered for the calculation of the output scaling
factor η

πη minimum threshold for the deviation between the current η and the last output
scaling factor ηold

D′ augmented set of samples.

Simulated Data

a amplitude
nseas length of a season
tstart start index of the output scale change
tend end index of the output scale change
δ multiplicative manipulation factor for the output scale change
δbase starting manipulation factor
δmax maximum manipulation factor for the output scale change
κ slope, i.e. increase per time step t, for the manipulation factor δ.

Appendix C: Online Change Point Detection

The goal of CPD is to find abrupt changes in data, in the context of this work resulting
in a shift of the scale of the target variable y. Based on the criteria outlined in Sect. 4,
we selected Bayesian Online Change Point Detection and ChangeFinder.

Bayesian Online Change Point Detection (BOCPD) is a common probabilistic tech-
nique. BOCPD assumes that a sequence of observations y1, y2, . . . , yT can be divided
into non-overlapping partitions ρ within which the data is i.i.d. from a distribution
p(yt |θρ), with the parameters θρ being i.i.d. as well. A central aspect of BOCPD is the
definition of the run length at time step t, rt , i.e. the time since the last change point. The
posterior distribution of the run length rt can be determined using Bayes’ theorem with
y(r)
t denoting the observations associated with rt :

p(rt |y1:t) =
∑

rt−1
p(rt |rt−1)p(yt |rt−1,y

(r)
t )p(rt−1,y1:t−1)

∑
rt
p(rt ,y1:t)

(12)
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The conditional prior p(rt |rt−1) is defined to be nonzero only for rt = 0 and rt = rt−1+1
making the algorithm computationally efficient:

p(rt |rt−1) =
⎧
⎨

⎩

H (rt−1 + 1) if rt = 0
1 − H (rt−1 + 1) if rt = rt−1 + 1

0 otherwise
(13)

H (τ ) = pgap(g=τ)
∑∞

t=τ pgap(g=t)
is the so-called hazard function with the a priori probability dis-

tribution over the interval between between change points pgap(g). To apply BOCPD,
a hazard function needs to be provided. With pgap(g) being a discrete exponential dis-
tribution with timescale λ, the hazard function is constant at H (τ ) = 1/λ, which is
a common assumption. Finally, using the posterior distribution of the run length rt , a
change point can be determined [1, 2].

Another type of online CPD techniques suitable for our purposes are likelihood
ratio methods, which declare a change point if the probability distributions before and
after a candidate point differ significantly. ChangeFinder is a common approach of this
kind, which employs a two-stage learning and smoothing strategy using Sequentially
Discounting Auto-Regression (SDAR)model learning. In the first stage, we fit an SDAR
model for each new sample at time step t to represent the statistical behavior of the data.
The model parameters are updated sequentially with a reduction of the influence of older
samples. Thereby, we obtain a sequence of probability densities p1, p2, . . . , pt for each
yt . Based on these, we assign an outlier score to each data point, which is defined as
score(yt) = −logpt−1(yt). This enables the formulation of an auxiliary time series ot
by building moving averages of the outlier scores within a time window T for each time
step t:

ot = 1
T

∑t
i=t−T+1score(yi) (14)

After this first smoothing, the second stage starts. Thereby, another SDARmodel is fitted
using ot , also resulting in a sequence of probability densities q1, q2, . . . , qt . Finally, we
get a change point score zt after a second smoothing step within a time window T :

zt = 1
T

∑t
i=t−T+1 − logqt−1(ot) (15)

A higher value of zt corresponds to a higher probability of a change point at time step t.
Hence, a threshold πcf at which a change point is declared, needs to be defined [2, 14,
25].
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Appendix D: Data Augmentation

As outlined in Sect. 4, we used Virtual Sample Generation approaches for imbalanced
regression besides a scaling of the original dataset for data augmentation. Thesemethods
are suitable for continuous target variables and small datasets. We therefore selected the
two following approaches: Random Oversampling with the introduction of Gaussian
Noise (GN) [26] and SMOGN, which combines the former and the Synthetic Minority
Oversampling TEchnique for Regression (SMOTER) [5, 27]. Both methods start with
the assignment of a relevance value to every sample (xi, yi) of a dataset Dvsg using a
relevance function φ : y → [0, 1]. Based on these and a specified threshold πrel , the
dataset Dvsg is splitted into a subset of normal and rare cases, DN respectively DR.
We employed a relevance function, which proposes an inverse proportionality of the
relevance value and the probability density function of y [23]. Therefore, extreme cases
have a higher relevance value. Furthermore, we tested two compositions of Dvsg . In the
first case, Dvsg was equal to the original dataset up to the change point at time step t,
D0:t , and in the second one D0:t and the output scaled dataset Dη

0:t were concatenated.
Both GN and SMOGN then apply a Random Undersampling strategy for the normal
cases DN , meaning that a specified share of these is randomly selected to get Dus.

Furthermore, GN generates new samples Dos based on the rare cases DR by adding
GaussianNoise to the target variable aswell as the numeric covariates.Values for nominal
attributes are randomly selected with a probability proportional to their frequency in the
dataset. Finally, for GN, the undersampled and oversampled cases are concatenated to
the augmented dataset DGN = {Dus,Dos}.

SMOGN instead employs twodifferent oversampling techniques:GNandSMOTER.
Prior to the sample generation, the k-nearest neighbors of a seed sample are determined.
If a randomly selected k-nearest neighbor is within a specified maximum distance,
SMOTER is performed resulting in a set of new samples DSMOTER

os . With SMOTER,
values of numeric attributes are interpolated and nominal ones are randomly selected.
The target value is determined by a weighted average with weights that are inversely
proportional to the distance between the seed samples and the new generated one. In case
the maximum distance is exceeded, GN is performed, leading to a second oversampling
dataset DGN

os . The final augmented dataset for SMOGN therefore consists of three sets:
DSMOGN = {Dus,DSMOTER

os ,DGN
os } [5, 6, 23].
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Appendix E: EVARS-GPR Parameters

Table 4 provides an overview of EVARS-GPR’s parameters including all applied CPD
and DA methods.

Table 4. Overview of EVARS-GPR’s parameters with all analyzed methods CPD and DA.

Category Parameter Explanation

General parameters scale_window(_factor) Size of window prior to detected change point for
calculation of output scaling factor, alternatively
formulated as a factor of the season length

scale_window_minimum Minimum window size for output scaling factor

scale_seasons Number of seasons considered for output scaling
factor

scale_thr Minimum threshold for the deviation between the
current and last output scaling factor to trigger
augmented refitting

CPD parameters BOCPD

const_hazard(_factor) Constant of the hazard function, alternatively
formulated as a factor of the season length

ChangeFinder

cf_r Forgetting factor of the SDAR models

cf_order Order of the SDAR models

cf_smooth Window size for the smoothing step

cf_thr_perc Percentile threshold of the anomaly score during the
offline phase to declare a change point

DA parameters max_samples(_factor) Maximum number of samples for DA, alternatively
formulated as number of seasons

GN

gn_operc Oversampling percentage

gn_uperc Undersampling percentage

gn_thr Threshold to determine normal and rare values

append Specify if scaled dataset version is appended prior to
sample generation

SMOGN

smogn_relthr Threshold to determine normal and rare values

smogn_relcoef Box plot coefficient for relevance function

smogn_under_samp Specify if undersampling is performed

append Specify if scaled dataset version is appended prior to
sample generation

Based on the results over all 67 simulated scenarios, we selected CF for online
CPD and a scaling of the original dataset for DA. Furthermore, our experiments yielded
the following parameters: scale_window_factor = 0.1, scale_window_minimum = 2,
scale_seasons= 2, scale_thr= 0.1, cf_r= 0.4, cf_order= 1, cf_smooth= 4, cf_thr_perc
= 70. For efficiency, we set max_samples_factor = 10.
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Appendix F: Real-World Datasets

Tables 5 and 6 show an overview of the real-world datasets used for evaluation as well
as the additionally derived features.

Table 5. Overview of the used real-world datasets.

Dataset Explanation Samples

Datasets with a changing output scale during the online phase

CashierData Weekly sales of a horticultural retailer 195

DrugSales Sales of antidiabetic drugs per month 204

VisitorNights Visitor nights per quarter in millions in Australia 68

AirPassengers Total number of US airline passengers per month 144

MaunaLoa Monthly averaged parts per million of CO2 measured at Mauna Loa
observatory, Hawaii

751

Datasets without a changing output scale during the online phase

ChampagneSales Sales of perrin freres champagne 105

TouristsIndia Foreign tourist arrivals per quarter in India 48

Milk Average milk production per cow and month 168

Beer Australian monthly beer production 56

USDeaths Accidental deaths in the US per month 72

Table 6. Overview of additional calendric and statistical features. Not all features are applicable
for all datasets, e.g. due to the temporal resolution. Features are added to existing ones.

Category Features Explanation

Calendric features Date based features Hour, day of month, weekday, month, quarter

Working day Flag showing if the day is a working day

Statistical features Lagged variables Prior values of the target variable/features

Seasonal lagged variables Prior values of the preceding season

Rolling statistics Rolling mean and maximum within a window

Seasonal rolling statistics Seasonal rolling mean and maximum within a window

Rolling weekday statistics Rolling mean and maximum within a window calculated
for each weekday
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Appendix G: Further Simulated Scenarios
Figures 4, 5 and 6 show further simulated scenarios. Each box shows the result of
the scenario parametrized with the value given on the x- and y- axis. Numbers are
RMSE-ratios, lower values reflect a higher improvement compared to Mbase.

Fig. 4. Behavior on a variety of simulated data (nseas = 25). (a) time of occurrence and
duration via start and end indices tstart respectively tend , (b) same factors with a higher slope κ

and maximum manipulation factor δmax, (c) extent and speed of the change via κ and δmax , (d)
same factors on a finer grid for δmax .

Fig. 5. Behavior on a variety of simulated data (nseas = 75). (a) time of occurrence and
duration via start and end indices tstart respectively tend , (b) same factors with a higher slope κ

and maximum manipulation factor δmax, (c) extent and speed of the change via κ and δmax , (d)
same factors on a finer grid for δmax .
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Fig. 6. Behavior on a variety of simulated data (nseas = 100). (a) time of occurrence and
duration via start and end indices tstart respectively tend , (b) same factors with a higher slope κ

and maximum manipulation factor δmax, (c) extent and speed of the change via κ and δmax , (d)
same factors on a finer grid for δmax .

References

1. Adams, R.P., MacKay, D.J.C.: Bayesian online changepoint detection (2007)
2. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change point detection.

Knowl. Inf. Syst. 51(2), 339–367 (2016). https://doi.org/10.1007/s10115-016-0987-z
3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn.

Res. 13(10), 281–305 (2012)
4. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis. Forecasting

and Control. Wiley Series in Probability and Statistics. Wiley, Hoboken (2016)
5. Branco, P., Torgo, L., Ribeiro, R.P.: SMOGN: a pre-processing approach for imbalanced

regression. In: Torgo, L., Krawczyk, B., Branco, P., Moniz, N. (eds.) Proceedings of the First
International Workshop on Learning with Imbalanced Domains: Theory and Applications,
pp. 36–50. PMLR, Skopje (2017)

6. Branco, P., Torgo, L., Ribeiro, R.P.: Pre-processing approaches for imbalanced distributions
in regression. Neurocomputing 343, 76–99 (2019). https://doi.org/10.1016/j.neucom.2018.
11.100

7. Chakrabarty, N.: Quarterly foreign tourist arrivals in India. Determinants of Foreign Tourism
Demand and Foreign Tourist Arrivals (2005–2016). https://www.kaggle.com/navoneel/fta-
data. Accessed 14 May 2021

8. Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: Krishnapuram, B.,
Shah, M., Smola, A., Aggarwal, C., Shen, D., Rastogi, R. (eds.) KDD 2016. 22nd ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 785–794. Association
for Computing Machinery Inc. (ACM), New York (2016). https://doi.org/10.1145/2939672.
2939785



156 F. Haselbeck and D. G. Grimm

9. Duvenaud, D.: Automatic model construction with Gaussian processes. Doctoral thesis,
University of Cambridge (2014)

10. Earth System Research Laboratory: CO2 PPM - Trends in Atmospheric Carbon Dioxide.
Atmospheric Carbon Dioxide Dry Air Mole Fractions at Mauna Loa, Hawaii. https://dat
ahub.io/core/co2-ppm-daily#data. Accessed 14 May 2021

11. Garnett, R., Osborne, M.A., Reece, S., Rogers, A., Roberts, S.J.: Sequential Bayesian predic-
tion in the presence of changepoints and faults. Comput. J. 53(9), 1430–1446 (2010). https://
doi.org/10.1093/comjnl/bxq003

12. Grande, R.C., Walsh, T.J., Chowdhary, G., Ferguson, S., How, J.P.: Online regression for data
with changepoints using gaussian processes and reusable models. IEEE Trans. Neural Netwo.
Learn. Syst. 28(9), 2115–2128 (2017). https://doi.org/10.1109/TNNLS.2016.2574565

13. Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice, 2nd edn. OTexts,
Melbourne (2018)

14. Iwata, T., Nakamura, K., Tokusashi, Y., Matsutani, H.: Accelerating online change-point
detection algorithm using 10 GbE FPGA NIC. In: Mencagli, G., et al. (eds.) Euro-Par 2018.
LNCS, vol. 11339, pp. 506–517. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
10549-5_40

15. Knoblauch, J., Damoulas, T.: Spatio-temporal Bayesian on-line changepoint detection with
model selection. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference
on Machine Learning, pp. 2718–2727. PMLR (2018)

16. Liu, Y., Chen, T., Chen, J.: Auto-switch Gaussian process regression-based probabilistic soft
sensors for industrial multigrade processes with transitions. Ind. Eng. Chem. Res. 54(18),
5037–5047 (2015). https://doi.org/10.1021/ie504185j

17. Liu, B., Qi, Y., Chen, K.-J.: Sequential online prediction in the presence of outliers and
change points: an instant temporal structure learning approach. Neurocomputing 413, 240–
258 (2020). https://doi.org/10.1016/j.neucom.2020.07.011

18. Makridakis, S., Wheelwright, S.C.: Forecasting Methods for Management, 5th edn. Wiley,
New York (1989)

19. Makridakis, S.G.,Wheelwright, S.C.,Hyndman,R.J.: Forecasting.Methods andApplications,
3rd edn. Wiley, Hoboken (1998)

20. Mogren, O.: C-RNN-GAN: A continuous recurrent neural network with adversarial training.
In: Constructive Machine Learning Workshop (CML) at NIPS 2016 (2016)

21. Ni,W., Tan, S.K., Ng,W.J., Brown, S.D.:Moving-windowGPR for nonlinear dynamic system
modelingwith dual updating anddual preprocessing. Ind. Eng.Chem.Res.51(18), 6416–6428
(2012). https://doi.org/10.1021/ie201898a

22. Perez-Cruz, F., van Vaerenbergh, S., Murillo-Fuentes, J.J., Lazaro-Gredilla, M., Santamaria,
I.: Gaussian processes for nonlinear signal processing: an overview of recent advances. IEEE
Signal Process. Mag. 30(4), 40–50 (2013). https://doi.org/10.1109/MSP.2013.2250352

23. Ribeiro, R.P.: Utility-based regression. Doctoral thesis, University of Porto (2011)
24. Saatçi, Y., Turner, R., Rasmussen, C.E.: Gaussian process change point models. In: Proceed-

ings of the 27th International Conference on International Conference on Machine Learning,
pp. 927–934. Omnipress, Madison (2010)

25. Takeuchi, J., Yamanishi, K.: A unifying framework for detecting outliers and change points
from time series. IEEE Trans. Knowl. Data Eng. 18(4), 482–492 (2006). https://doi.org/10.
1109/TKDE.2006.1599387

26. Torgo, L., Ribeiro, R.: Utility-based regression. In: Kok, J.N., Koronacki, J., Lopez de Man-
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Abstract. One of the major challenges in time series analysis are chang-
ing data distributions, especially when processing data streams. To
ensure an up-to-date model delivering useful predictions at all times,
model reconfigurations are required to adapt to such evolving streams.
For Gaussian processes, this might require the adaptation of the internal
kernel expression. In this paper, we present dynamically self-adjusting
Gaussian processes by introducing Event-Triggered Kernel Adjustments
in Gaussian process modelling (ETKA), a novel data stream modelling
algorithm that can handle evolving and changing data distributions. To
this end, we enhance the recently introduced Adjusting Kernel Search
with a novel online change point detection method. Our experiments on
simulated data with varying change point patterns suggest a broad appli-
cability of ETKA. On real-world data, ETKA outperforms comparison
partners that differ regarding the model adjustment and its refitting trig-
ger in nine respective ten out of 14 cases. These results confirm ETKA’s
ability to enable a more accurate and, in some settings, also more efficient
data stream processing via Gaussian processes.

Keywords: Gaussian process · Time series modelling · Change point
detection · Kernel search · Data stream modelling

1 Introduction

For many applications, accurate real-time analysis of data streams is essential to
guarantee a constant workflow. In order to analyze data streams, incoming data
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points need to be incorporated into an online-generated data model. However,
changing data distributions at so called change points are a common challenge
in data stream modelling [4]. As a consequence, an outdated prediction model
might impair a downstream application. For instance, this could lead to over-
stocking and missed sales in demand forecasting or power supply issues in case
of smart grid systems [2,11,12]. Providing an up-to-date model is therefore a
major objective when modelling data streams. However, identifying the correct
time point for model reconfiguration is challenging. Simply adjusting the current
model periodically bypasses this challenge, but it might lead to prolonged peri-
ods with inaccurate models or increased computational costs due to unnecessary
reconfigurations. Because of these drawbacks, many algorithms aim to detect
change points online and consequently trigger model adjustments [3,18].

A Gaussian process (GP) is a stochastic process based on the Gaussian dis-
tribution and is commonly used as a non-parametric machine learning model
[17]. GPs’ probabilistic nature makes them excel at dealing with small and noisy
datasets. To incorporate knowledge on the general behavior of the data, GPs use
positive semi-definite covariance functions, often called kernels. If no prior knowl-
edge about this behavior is available, an automatic kernel search can determine
a fitting function for the given data [8]. However, this is usually a computation-
ally expensive process and requires the optimization of numerous GP models.
Recently, the Adjusting Kernel Search (AKS) [13] algorithm was introduced to
accelerate this process on data streams. If multiple GP models are used to rep-
resent consecutive segments of a stream, it is often reasonable to assume that
the models’ covariance functions will be similar. AKS enables a search of similar
kernels based on a given kernel expression and circumvents the construction of
novel expressions from scratch.

In this paper, we enhance AKS with a novel GP-based change point detection
(CPD) method in order to propose the Event-Triggered Kernel Adjustments
in Gaussian process modelling (ETKA) algorithm. The major objective of this
algorithm is to deliver an up-to-date GP model describing the current data
behavior at all times. We evaluate ETKA based on simulated as well as real-
world data and compare it to alternatives in CPD and model inference. Beyond
that, we present multiple ways to further expand and improve this method.

The rest of the paper is structured as follows: In Sect. 2, we outline rele-
vant literature about GPs, kernel search algorithms and CPD methods. Sect. 3
introduces the ETKA algorithm. In Sect. 4 we describe our experimental setup.
Afterwards, in Sect. 5, we show and discuss the results, before we conclude our
findings in Sect. 6.

2 Related Work

The research we present in this paper combines the fields CPD and GP-based
data stream modelling. In this section, we briefly introduce relevant works from
these fields. Due to a lack of space, we include a formal introduction of GPs and
kernel search approaches in Appendix 1.
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GPs are commonly used probabilistic machine learning models that mainly
depend on their inherent kernel function. An appropriate kernel expression can
be chosen by an expert based on previous knowledge about the data. Without
such expert knowledge, automatic kernel search algorithms can be employed to
find an optimal fit for the given data [6,8,14,15]. In 2013, Duvenaud et al. [8]
introduced such an algorithm for the first time, i.e. the Compositional Kernel
Search (CKS). Lloyd et al. [15] expanded the method to the Automatic Bayesian
Covariance Discovery (ABCD) by including change point kernels. Since both
algorithms require the exact evaluation of numerous GP models per iteration,
they are restricted to small to medium-sized datasets only.

The problem of scalability was addressed in different ways: Kim et al. [14]
introduced the Scalable Kernel Composition (SKC) in 2018, which performs
model selection via lower and upper bounds for the GPs’ marginal likelihood
instead of the exact evaluations. Berns et al. developed new approaches that use
a prior segmentation of the data to accelerate the search [5] or perform the seg-
mentation themselves [6]. We aim to expand this idea by performing a dynamic
segmentation via online CPD during the modelling process. Recently, Hüwel et
al. [13] introduced the Adjusting Kernel Search (AKS) algorithm, which exploits
prior assumptions about the data without ascertaining the kernel function. More
details about AKS can be found in Appendix 1.

Haselbeck et al. [10] developed EVARS-GPR, a framework to update a GP
model online at certain change points. While this approach is restricted to output
scale changes, it can be seen as a predecessor of this work due to its retraining
of a GP at online-detected change points.

CPD approaches can be separated into offline and online methods. The for-
mer were extensively reviewed by Truong et al. [18]. In this paper, we focus
on online methods to enable real-time model adjustments. Aminikhanghahi and
Cook [3] provided an elaborate overview of available approaches in this area. One
widely-used method is the Bayesian Online Change Point Detection [1]. It uses
Bayes’ rule to determine the number of observations since the last change point
and a hazard function to predict a new one. Another commonly used method
is the cumulative sum (CUSUM) [16]. It tracks an accumulated deviation score
over multiple data points and detects a change point when that score exceeds
a custom threshold. CUSUM’s high potential for adjustments allows us to use
this approach for ETKA.

3 ETKA

Previous applications of AKS employed periodic adjustments of the GP model
[13]. This potentially leads to extended periods of incoming data points being
processed with an outdated model. Contrariwise, unnecessarily frequent model
reconfigurations cause increased computational costs. For this reason, we present
the Event-Triggered Kernel Adjustments in Gaussian process Modelling (ETKA)
algorithm, an enhancement of AKS with a novel GP-based online CPD approach.

The combination of a kernel search algorithm with a CPD method is obvi-
ous, but the nature of GPs results in specific requirements for an optimal CPD
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method. Changes should not be detected in primary statistics of the incoming
data, such as its mean or variance, as a GP model does not need to be adjusted
to regular changes of that kind. Rather, we need to find changes in the abstract
behavior and tendencies underlying the data. For example, if the periodicity
changes, we want to adjust the model to find a new period length value. Aside
from an accurate modelling, there are two additional requirements for CPD: the
method should be simple, computationally efficient and easily comprehensible
in order to maintain high explainability.

Within ETKA, we achieve these goals by employing a CUSUM approach [16]
based on the current GP’s performance. We hypothesize that data that differs
from the current model’s prediction for multiple points in a row signifies a change
point. In this case, a kernel search using AKS is triggered to adjust the model to
the novel data. The exact procedure of ETKA is explained below and presented
in Algorithm 1.

Algorithm 1: The Event-Triggered Kernel Adjustment

Data: D = (xi, yi)i=1,..,N , base kernel set B, window size w, tolerance δ,
threshold ε, CKS iterations iCKS , AKS iterations iAKS

Result: change points CP , kernels K
1 CP ← []
2 K ← []
3 s ← 0
4 k, σ2 ← CKS (D1:w , B, iCKS)
5 for i = w + 1, .., N do
6 ŷi ←

k (xi, xi−w ,...,i−1)
[
k (xi−w,...,w−1, xi−w ,...,w −1) + σ2I

]−1
yi−w ,...,w −1

7 s ← max(0, s + |yi − ŷi| − δ · 2 · σ)
8 if s > ε then
9 s ← 0

10 K ← K ∪ [k]
11 CP ← CP ∪ [xi]
12 k, σ2 ← AKS(Di−w ,..,w , B, iAKS , k)

First, we construct a GP model using CKS on an initial window of w data
points. By using this model with kernel k : R × R → R, we make a prediction ŷi

for the next value starting from i = w + 1 after this initial window of length w
as follows [17]:

ŷi = k (xi,xi−w,...,i−1)
[
k (xi−w,...,w−1,xi−w,...,w−1) + σ2I

]−1
yi−w,...,w−1

(1)
Then, we calculate the absolute deviation |yi − ŷi| between the observed value
yi and our prediction ŷi. Afterwards, the window slides one position further and
the consecutive data points are used for the next prediction step employing the
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current GP. The accumulating error is used together with the GP’s noise σ2 and
a tolerance factor δ ∈ R to compute a change point score s:

s ← max (0, s + |yi − ŷi| − δ · 2 · σ) (2)

If this score surpasses a certain threshold ε ∈ R>0, a change point is detected at
xi and s is reset to zero. With this CPD approach, incoming data points need to
be within the inner 100 · δ% of the GP’s confidence interval in order to count as
accurately predicted. The further a data point is outside this interval, the more
it increases s and the faster a change point is detected. When the need for a
model adjustment is triggered due to a detected change point, the GP’s kernel
is adjusted with AKS on the current window w. Then, the procedure with the
CUSUM-based CPD and a potential trigger of AKS continues with this updated
model. In settings where other kernel search methods are considered more useful,
this step can easily be substituted with the corresponding approach.

4 Experimental Setup

In this section, we present the experimental settings that we employed to produce
the results shown in Sect. 5. All experiments were conducted on an 11th genera-
tion Intel Core i9-11900H processor with 8 cores à 2.50 GHz. For reproducibility,
we published all code and data on GitHub1.

4.1 Simulated Data

For the development and evaluation of ETKA under controlled and predefined
settings, we generated artificial datasets2. The simulations are based on univari-
ate time series of length n with values b ∈ Rn that follow a periodicity of length
nper and have an amplitude of size a. Furthermore, we consider the multiplica-
tive components linear trend l ∈ Rn and random noise η ∈ Rn. The size of the
linear trend l is defined by the coefficient m of a linear model. The random noise
η is sampled from a normal distribution with a mean value of 1 and a standard
deviation s. These components enable the simulation of time series data y ∈ Rn

with
yi = bi · li · ηi (3)

where bi is the value of the base signal b at index i, li the factor of the linear
trend l at index i and ηi the factor of the random noise η at index i. A factor
can be left out to simulate that a component is not present. Finally, we can
generate change points by fading between time series y of different properties.
The abruptness of the change is adjustable via a fading window wfade. We used
this framework to model for instance changes of the period length (parameter
nper of b), the output scale (parameter a of b), the size of the linear trend

1 https://github.com/JanHuewel/ETKA.
2 https://github.com/Nike-Inc/timeseries-generator.
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(parameter m of l) or the noise level (parameter s of η). We both considered
time series with single and multiple change points, all having a length of 2000
data points. An overview of all simulation settings can be found in Table 3 in
Appendix 2.

4.2 Real-World Data

We further included 14 real-world datasets from various domains, see Table 4
in the appendix. Besides the different domains, the datasets show a wide range
regarding the number of samples reaching from 180 (Call centre) up to 7718
(Airquality). Examining the minimum (min) and maximum (max) target values
of each time series, we further observe that many datasets have a large value
range. Beyond that, several datasets have a standard deviation (std) that is
rather high relative to their value range, indicating a strong variation in the
time series. In summary, this collection of common time series datasets with
varying characteristics and domains enables a broad evaluation of ETKA.

4.3 Evaluation

As comparison partners in our experiments, we included alternatives to ETKA
in both main aspects: the choices when to adjust the model and how to adjust
the model. Hence, we compare the previously described CPD-based approach
to data-agnostic periodic model adjustments (PER AKS ). These model adjust-
ments are done three times in equidistant intervals within the dataset after the
initial kernel search. Furthermore, only the data in the current window is used,
disregarding everything before that. By doing so, we examine the concept of
CPD-driven adjustments at the cost of frequent model predictions needed to
enable CPD. Furthermore, as mentioned in Sect. 2, different kernel search algo-
rithms exist [6,8,14,15]. For this proof of concept, we included a hyperparameter
optimization (no change of the GP’s kernel expression) after a detected change
point as a comparison partner (CPD HPO). This approach also performs its
retraining on the current window exclusively.

The two evaluation criteria we consider in this work are runtime and the mean
absolute error of the prediction. Regarding the former, we measured the total
runtime for processing each dataset, excluding the initial model construction
as it is identical for all comparison partners. With respect to the prediction
performance, we calculated the mean absolute error 1

N−w

∑N
i=w+1 |yi − ŷi| on

every step after the initial model construction. Finally, we set the results in
relation to all comparison partners. Thereby, a negative value represents a shorter
runtime respective more accurate modelling of ETKA, i.e. an improvement.

For all experiments, we use a window size w equivalent to 20% of the whole
dataset. We allow kernels consisting of up to three base kernels and employ one
iteration of adjustments when using AKS. The base kernel set B consists of the
periodic, the linear and the squared exponential kernel. Before the initial kernel
search with CKS, the data is rescaled using a Z-normalization.
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5 Experimental Results

In this section, we provide an overview of our experimental results, both on
simulated as well as on real-world data, and discuss our findings.

5.1 Simulated Data

As outlined in Sect. 4.1, we conducted experiments based on simulated data to
evaluate ETKA under controlled and predefined settings. We further considered
different configurations of the online CPD integrated in ETKA. These differ with
respect to the defining parameters, i.e. the tolerance factor δ and the threshold
ε. With the former, one can control how strict ETKA’s CPD is, i.e. a higher
value increases the tolerance range for deviations between real and prediction
values. A change point is declared, if the threshold ε is exceeded, so a higher
value allows higher change point scores and leads to a less sensitive CPD.

We show detailed results with absolute evaluation values for all simulated
datasets and CPD configurations in Figs. 2 and 3 in Appendix 3. In Table 1, we
provide a summary of these results. Besides the absolute evaluation values of
ETKA, all results are shown in relation to the comparison partners PER AKS
and CPD HPO. The table shows averaged values over all simulated datasets and
its standard deviations. As CPD HPO also differs based on δ and ε, the values of
the relative comparison with ETKA cannot be compared across CPD settings,
but give an impression which algorithm is in advantage for the specific CPD.

We observe that ETKA constantly outperforms both comparison partners
with respect to the prediction error. The predictions of ETKA tend to be more
accurate with a more sensitive CPD. In comparison with PER AKS, ETKA
shows the largest improvement for δ = 0.5 and ε = 5.0. With respect to CPD
HPO, ETKA’s top result is achieved for δ = 0.5 as well, but with ε = 7.0. In
terms of the absolute prediction error of ETKA, we see that the best overall
result is achieved for δ = 0.5 and ε = 5.0. Regarding the runtime, CPD HPO
is in all cases more computationally efficient, while ETKA is faster or at least
on a par with PER AKS. As expected, we observe that the runtime of ETKA
decreases with a less sensitive CPD due to higher values for δ and ε. This decrease
is larger for an increasing δ with a constant ε than the other way round.

Assessing Fig. 2 in Appendix 3 for the best performing CPD configuration
with δ = 0.5 and ε = 5.0, we observe that ETKA outperforms its comparison
partners on the majority of the simulated datasets (PER AKS is best in 7
and CPD HPO in 4 out of 24 simulation settings). Furthermore, in cases for
which ETKA does not deliver the best outcome, it is generally close to the top
performer. We further see that results for lower noise levels tend to be better
(scenarios with a variable noise are also less noisy than those with s = 0.05 as
the maximum of s is 0.05 for them).

The main goal of ETKA is an up-to-date GP model at all times. For that
reason, the prediction error is more important than the runtime. Consequently,
we set δ to 0.5 and ε to 5.0 at the cost of longer runtimes for the experiments
on real-world data.
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Table 1. Summary of the results on simulated data. The table shows the results
of ETKA in terms of the prediction error respective the runtime, as well as both eval-
uation values of ETKA in relation to PER AKS and CPD HPO. All results are given
for four different configurations regarding the CPD with different tolerance factors
δ and thresholds ε. Each cell shows the mean and standard deviation over all sim-
ulated datasets. For the abolsute ETKA results, a smaller value is better, both for
the prediction error and the runtime. For the relative values, a negative value reflects
an improvement by ETKA. All cases for which ETKA outperforms its comparison
partners are highlighted in bold.

δ ε ETKA results Runtime vs. Prediction error vs.

Prediction

error

Runtime [s] PER AKS CPD HPO PER AKS CPD HPO

0.5 5.0 0.1403
(±0.1120)

1336
(±385)

+0.96%
(±28.70%)

+114.71%
(±105.65%)

−16.68%
(±23.42%)

−16.37%
(±20.73%)

0.5 7.0 0.1413
(±0.1117)

1121
(±316)

−10.79%
(±28.88%)

+92.25%
(±80.69%)

−13.95%
(±23.33%)

−21.40%
(±23.13%)

0.7 5.0 0.1472

(±0.1137)

922

(±288)

−24.86%

(±29.07%)

+56.84%

(±58.70%)

−6.40%

(±32.91%)

−21.02%

(±24.28%)

0.7 7.0 0.1522

(±0.1110)

919

(±317)

−28.21%

(±24.83%)

+49.07%

(±47.07%)

−1.27%

(±33.12%)

−20.17%

(±22.00%)

5.2 Real-World Data

Besides simulated data, we evaluated ETKA on real-world data from different
domains (see Sect. 4.2). An overview of the results with absolute evaluation val-
ues is shown in Fig. 4 in Appendix 3. In Table 2, we provide the comparison
of ETKA with PER AKS and CPD HPO. On average, ETKA outperforms
the comparison partners in terms of the prediction error by 2.73% and 6.19%,
respectively. Considering the individual datasets, ETKA is more accurate than
PER AKS and CPD HPO in 9 out of 14 respective 10 out of 14 cases. For two
respectively three cases, ETKA is only slightly outperformed. Both comparison
partners deliver better predictions than ETKA for Unemployment. Beyond that,
PER AKS is the top performer for Internet and Gas production.

We observe the largest improvement of ETKA over both comparison partners
in terms of the prediction error for Airline, which we show in Fig. 1a. ETKA
detected two change points, so less refittings than for PER AKS were employed.
Furthermore, the reconfigurations that ETKA performed are closer to the actual
changes in the dataset, which leads to advantages regarding the prediction error.
For Gas production shown in Fig. 1b, ETKA performs significantly better than
CPD HPO, but is outperformed by PER AKS. By chance, the periodical refitting
points of PER AKS are accurate, leading to better predictions.

Regarding the runtime overall, both PER AKS and CPD HPO are more
efficient, with the latter requiring the lowest runtimes as expected. Furthermore,
this disadvantage of ETKA is clearer for the real-world data than it was for
simulated data. However, when focusing on the datasets for which the runtime
of ETKA is more than 100% higher than for PER AKS (Wheat, Internet, Radio
and Airquality), we observe lower prediction errors in three out of fourcases.
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Table 2. Results overview on real-world data. The table shows the results of
ETKA in terms of runtime respective prediction error in relation to PER AKS and
CPD HPO. A negative value reflects an improvement by ETKA, both for the runtime
and the prediction error. All cases for which ETKA outperforms its comparison partners
are highlighted in bold.

Dataset Runtime vs. Prediction error vs.

PER AKS CPD HPO PER AKS CPD HPO

Solar irradiance +62.51% +918.00% +1.90% −1.31%

Mauna Loa −86.96% −0.91% −1.07% +0.00%

Airline +0.79% +2059.33% −21.46% −26.37%

Wheat +161.54% +1327.28% −2.83% +2.15%

Temperature −31.83% +159.92% −0.57% −6.66%

Internet +134.97% +183.77% +12.51% −19.76%

Call centre +48.67% +1811.77% −2.39% −1.96%

Radio +228.26% +2458.84% −19.30% −7.51%

Gas production +16.29% +531.39% +8.66% −23.77%

Sulphuric +23.14% +631.26% −6.32% −11.77%

Unemployment −1.81% +760.48% +7.21% +15.44%

Births −38.92% +79.1% −2.47% −1.46%

Wages −59.78% +129.56% +1.27% +0.41%

Airquality +130.22% +37.77% −13.44% −4.19%

Summary +41.93%
(± 91.77%)

+792.03%
(± 819.75%)

−2.73%
(± 9.84%)

−6.19%
(± 11.16%)

In comparison with PER AKS, Radio and Airquality are within the three
datasets with the largest improvement on the prediction error. Internet, which
already was noticeable with respect to the prediction error, is also problematic
regarding the runtime.

5.3 Discussion

With respect to synthetic data, we overall observe a broad applicability of ETKA.
Despite different change point patterns and noise levels, ETKA mostly outper-
forms its comparison partners. We further observe that ETKA does not perform
worse in case of multiple changes in comparison with single changes. This indi-
cates that the CPD within ETKA delivers the intended results and is applicable
on data with multiple change points. Simulation settings B and C (see Table 3
and Fig. 2 in the Appendix) lead to the worst results for all three noise levels,
while ETKA performs best for four of these six datasets. Setting B triggers a
slow change of the periodicity. In contrast, settings E and H contain abrupt
shifts of the periodical length, for which all three prediction models show lower
prediction errors. Furthermore, the slow change of the amplitude a for setting
C is problematic, whereas an abrupt shift of a for setting H is captured better
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Fig. 1. Comparison of the model predictions and segmentation by the three
different approaches for Airline and Gas production . The top-most plot shows
the results of PER AKS, the second row contains CPD HPO ’s results and the final
row ETKA’s outcome. Each plot shows the observed data, mean prediction of the GP
model as well as the confidence intervals. Points at which the model is refitted are
marked with a red vertical line. The confidence interval of the GP is shown in separate
colors for each segment for visual clarity.

by all methods. This lets us assume that slow changes are problematic for all
three prediction models. A potential explanation for this phenomenon for both
CPD-based approaches (ETKA and CPD HPO) is that abrupt changes increase
the change point score s faster. Consequently, this might lead to quicker model
adjustments. In contrast to abrupt changes, slow shifts can lead to prolonged
inaccuracies without triggering the model adjustment.
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On real-world data, ETKA still delivered the best performance in terms of
the mean absolute error. However, it comes at the cost of higher runtimes com-
pared to both alternative approaches. The primary goal of ETKA is to deliver an
up-to-date model at all times. As we therefore chose a rather sensitive CPD con-
figuration based on the results on simulated data, higher runtimes were expected.
A notable exception is the Mauna Loa dataset, for which ETKA had the low-
est runtime. The prediction error comparison to CPD HPO let us infer that no
change point was detected. Furthermore, the slightly lower prediction error of
ETKA in comparison with PER AKS indicates that model adjustments are not
beneficial for Mauna Loa. Hence, it might be valid that ETKA does not detect
any change points. On the other datasets, the runtime difference varies greatly,
while the performance improvement is, albeit not constant, more stable. For
Airline, Radio and Airquality, we observe the highest improvement in terms of
the prediction error. As outlined, ETKA detected less change points more accu-
rately than its comparison partners for the former. In contrast to the improved
prediction error, Radio and Airquality lead to higher runtimes for ETKA. Both
datasets contain several change points, which were detected by ETKA and lead
to multiple model adjustments. Consequently, ETKA delivered more accurate
GP models, however at the cost of computational resources. Periodical refittings
highly depend on coincidence regarding an appropriate timing of model recon-
figurations, as for instance observed for Gas production. Not depending on a by
chance well chosen time for refitting is a big advantage of ETKA’s CPD-based
approach. With respect to Internet, we observe both a higher runtime as well
as prediction error for ETKA in comparison with PER AKS. This is probably
caused by poor results of the initial kernel search using CKS, indicating data
that would require a higher complexity of the kernel expression. For such data,
AKS and consequently ETKA might intuitively be advantageous as its search is
based on the current kernel expression instead of restarting from scratch.

In settings focused on fast processing, ETKA has multiple options to
trade potential prediction performance for lowered computational costs, e.g. by
employing a smaller window size w and a reduced set of base kernels. In contrast,
more iterations of AKS per adjustment or a more sensitive CPD can increase the
model quality at the cost of longer processing times. The effect of the CPD con-
figuration can be seen in our results on simulated data, cf. Table 1. As expected,
settings with higher values for δ and ε lead to lower runtimes at the cost of a
higher prediction error.

ETKA’s performance is highly dependent on the integrated CPD and con-
sequently on its parameters. For this study, the CPD parameters were deter-
mined using simulated data. Despite having generated a broad variety of change
point patterns, this might not lead to the optimal parameters for all settings.
Therefore, future work enabling a parameter determination based on the pro-
cessed dataset could improve ETKA and the evaluation of other state-of-the-
art CPD approaches is an interesting point for future research. Beyond that,
for severe changes of the data behavior, a kernel search from scratch might be
more efficient than AKS. A classification of detected change points could enable
ETKA to always choose the most appropriate kernel search approach. A further
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potential improvement could be a dynamically determined window size w in
contrast to the fixed value we applied. This could be beneficial both in terms of
efficiency and prediction performance.

6 Conclusion

In this paper, we enhanced AKS, a recently-introduced kernel search algorithm
for GPs with a novel CUSUM-based CPD approach. The resulting algorithm,
ETKA, offers the ability to automatically deliver an up-to-date GP model for
data streams. In our experiments, ETKA proved to be broadly applicable to
data of different behavior and noise levels. Compared to intuitive alternatives,
ETKA delivered improved predictions. Especially on simulated data, the results
were significantly better. On real-world datasets, the improvement was smaller.
Overall, ETKA reached its main goal of an up-to-date model at all times and is
therefore especially well suitable for applications for which an accurate modelling
is paramount.
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Appendix 1: Background

In the following, we formally introduce the foundations of ETKA, namely GPs
and the AKS algorithm.

A GP is a non-parametric probabilistic machine learning model [9,17]. A
model GP (m, k) is uniquely defined by its mean function m : R → R and its
covariance function or kernel k : R × R → R. While the mean function can
often be set to constant zero [17], the kernel contains assumptions about the
GP’s behavior. There are various kernels that are well understood and describe
specific patterns, like the periodic KPER and the linear kernel KLIN . These
simple kernels will be referred to as base kernels throughout this paper.

Kernels often depend on parameters such as a lengthscale or a period length.
These parameters are referred to as hyperparameters of the GP model and can
be (locally) optimized for given data. One possible measure of performance for
such optimization is the GP’s log marginal likelihood L (GP (m, k),D) on the
data D = (xi, yi)i=1,..,N [17]. While there exist alternative measures [8,17], we
will use the log marginal likelihood for model optimization in our experiments.

Individual base kernels can be combined to more complex kernel expression
via addition or multiplication [8]. This way, a kernel that optimally describes
the data’s behavior can be constructed by experts. Alternatively, an algorithmic
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approach to find such an optimal kernel expression automatically can be
employed. An example for this type of algorithm is CKS [8], which is depicted
in Algorithm 2.

Algorithm 2: Pseudocode of the Compositional Kernel Search

Data: D = (xi, yi)i=1,..,N , base kernel set B, max iterations imax

Result: Kernel expression K
1 K ← argmaxb∈B (L(GP (0, b), D))
2 for i = 1, .., imax do
3 C ← AddV iaAddition(K, B)
4 C ← C ∪ AddV iaMultiplication(K, B)
5 C ← C ∪ ReplaceKernel(K, B)
6 K ← argmaxc∈C (L(GP (0, c), D))

In each iteration, the algorithm adjusts the current best kernel expression K
given a set of base kernels B by

1. adding any base kernel to any subexpression of K,
2. multiplying any base kernel to any subexpression of K or
3. replacing any base kernel in K with a different base kernel from B.

The abstract functions AddV iaAddition, AddV iaMultiplication and
ReplaceKernel in Algorithm 2 correspond to these three options. The best per-
forming candidate from the thus generated set is used as the basis for the next
iteration. This way, the algorithm can build arbitrarily complex kernels at the
cost of multiple model optimizations and evaluations per iteration. Since the
candidate generation can not lower the kernel’s complexity, any searches for new
kernels need to start from scratch.

Our goal is to model consecutive segments of potentially infinite time series.
We utilize the AKS algorithm [13] as it has inherent advantages in this specific
setting. In particular, the AKS algorithm is able to adjust a given kernel to fit
new data instead of starting from zero. This is accomplished by adding a fourth
possibility in the candidate generation: the removal of a base kernel from the
current expression. This procedure is depicted Algorithm 3.

Algorithm 3: Pseudocode of the Adjusting Kernel Search

Data: D = (xi, yi)i=1,..,N , base kernel set B, max iterations imax, starting
kernel K0

Result: Kernel expression K
1 K ← K0

2 for i = 1, .., imax do
3 C ← AddV iaAddition(K, B)
4 C ← C ∪ AddV iaMultiplication(K, B)
5 C ← C ∪ ReplaceKernel(K, B)
6 C ← C sup RemoveKernel(K)
7 K ← argmaxc∈C (L(GP (0, c), D))
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It has been shown before that AKS can lead to a faster modelling process
than CKS [13]. Especially in high-complexity models, the computational cost
of constructing a kernel from zero are much higher than a few iterations of
adjustment. However, for low-complexity models, the larger set of candidates in
AKS can lead to longer processing compared to CKS, even if fewer iterations
are needed.

Appendix 2: Simulated and Real-World Data
Characteristics

Table 3. Overview of simulated datasets. Artificial datasets were generated at
three different noise levels. For the third setting, the standard deviation s changed for
each ηi. Various scenarios with single and multiple changes of the time series compo-
nents as well as several configurations regarding the type of the change were simulated.
We considered both abrupt as well as slower occurring changes.

y1 wfade y2 wfade y3 wfade y4

b l b l b l b l

nper a m nper a m nper a m nper a m

η with

s = 0.01

A0.01 100 0.1 – 500 100 0.1 1

B0.01 100 0.1 – [600, 650] 200 0.1 –

C0.01 100 0.1 – [1000, 1050] 100 0.2 –

D0.01 100 0.1 1 [500, 550] 100 0.1 5

E0.01 100 0.1 1 500 200 0.1 2 1250 200 0.1 –

F0.01 100 0.1 – 500 100 0.2 – 1250 200 0.2 –

G0.01 100 0.1 4 500 100 0.1 1 1250 100 0.1 −0.1 1500 100 0.1 0.5

H0.01 100 0.1 2 500 200 0.1 0.5 1250 200 0.2 0.5 1500 100 0.1 0.2

η with

s = 0.05

A0.05 100 0.1 – 500 100 0.1 1

B0.05 100 0.1 – [600, 650] 200 0.1 –

C0.05 100 0.1 – [1000, 1050] 100 0.2 –

D0.05 100 0.1 1 [500, 550] 100 0.1 5

E0.05 100 0.1 1 500 200 0.1 2 1250 200 0.1 –

F0.05 100 0.1 – 500 100 0.2 – 1250 200 0.2 –

G0.05 100 0.1 4 500 100 0.1 1 1250 100 0.1 −0.1 1500 100 0.1 0.5

H0.05 100 0.1 2 500 200 0.1 0.5 1250 200 0.2 0.5 1500 100 0.1 0.2

ηi with

smax = 0.05

Avar 100 0.1 – 500 100 0.1 1

Bvar 100 0.1 – [600, 650] 200 0.1 –

Cvar 100 0.1 – [1000, 1050] 100 0.2 –

Dvar 100 0.1 1 [500, 550] 100 0.1 5

Evar 100 0.1 1 500 200 0.1 2 1250 200 0.1 –

Fvar 100 0.1 – 500 100 0.2 – 1250 200 0.2 –

Gvar 100 0.1 4 500 100 0.1 1 1250 100 0.1 −0.1 1500 100 0.1 0.5

Hvar 100 0.1 2 500 200 0.1 0.5 1250 200 0.2 0.5 1500 100 0.1 0.2
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Table 4. Overview of the real-world data for our experiments. We considered
14 datasets from various domains and show some characteristics below. Most datasets
were obtained from Lloyd et al. [15]. The Airquality data was published by De Vito et
al. [7].

Dataset Length Mean Std Min Max

Solar irradiance 391 1365.82 0.24 1365.52 1366.68

Mauna Loa 702 352.30 26.18 313.21 407.65

Airline 144 280.30 119.97 104.00 622.00

Wheat prices 370 107.88 67.21 11.00 381.00

Temperature 1000 11.21 4.14 −0.80 26.30

Internet 1000 46355.45 22058.93 13486.74 125058.79

Call centre 180 492.50 189.54 161.00 872.00

Radio 240 8.08 2.44 4.30 13.50

Gas production 476 21415.27 18678.34 1646.00 66600.00

Sulphuric production 462 131.34 41.26 42.00 228.00

Unemployment 408 520.28 261.22 122.00 1350.00

Births 1000 248.53 42.06 136.00 366.00

Wages 735 8.76 8.18 2.15 49.99

Airquality 7718 246.90 212.98 2.00 1479.00
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Appendix 3: Results Overviews

Fig. 2. Results overview in terms of the prediction error on all simulated
data and CPD configurations. Each cell shows the result for the model given on
the horizontal axis and the simulated dataset given on the vertical axis. Smaller values
reflect a better performance. The best performing model for each CPD configuration
and dataset is highlighted in bold.
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Fig. 3. Results overview in terms of runtime on all simulated data and CPD
configurations. Each cell shows the result for the model given on the horizontal axis
and the simulated dataset given on the vertical axis. Smaller values are considered
better. The most efficient model for each CPD configuration and dataset is highlighted
in bold.
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Fig. 4. Results overview for real-world data. Each cell shows the result for the
model given on the horizontal axis and the dataset given on the vertical axis. Smaller
values reflect a better performance. The best performing respective most efficient model
for each dataset is highlighted in bold.
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A B S T R A C T

Summary: Time series forecasting is a research area with applications in various domains, nevertheless
without yielding a predominant method so far. We present ForeTiS, a comprehensive and open source
Python framework that allows rigorous training, comparison, and analysis of state-of-the-art time series
forecasting approaches. Our framework includes fully automated yet configurable data preprocessing and
feature engineering. In addition, we use advanced Bayesian optimization for automatic hyperparameter search.
ForeTiS is easy to use, even for non-programmers, requiring only a single line of code to apply state-of-the-art
time series forecasting. Various prediction models, ranging from classical forecasting approaches to machine
learning techniques and deep learning architectures, are already integrated. More importantly, as a key benefit
for researchers aiming to develop new forecasting models, ForeTiS is designed to allow for rapid integration
and fair benchmarking in a reliable framework. Thus, we provide a powerful framework for both end users
and forecasting experts.
Availability: ForeTiS is available at https://github.com/grimmlab/ForeTiS. We provide a setup using
Docker, as well as a Python package at https://pypi.org/project/ForeTiS/. Extensive online documentation
with hands-on tutorials and videos can be found at https://foretis.readthedocs.io.

1. Introduction

Time series forecasting is a research area with diverse applications,
such as predicting product demand, energy consumption, or health
status. Several forecasting competitions, including classical forecasting
and machine learning (ML) techniques, have not resulted in a dominant
method, although recent publications show advantages for ML-based
approaches (Bojer & Meldgaard, 2021; Haselbeck et al., 2022; Huber
& Stuckenschmidt, 2020; Jiao & Chen, 2019; Makridakis et al., 2020,
2022). Despite the need to re-evaluate different prediction models
for each time series forecasting task, no comprehensive time series
forecasting framework is publicly available.

As Meisenbacher et al. (2022) conclude in a recent review paper, ex-
isting frameworks such as Bauer et al. (2020), Züfle and Kounev (2020),
and Martínez et al. (2019) cover only parts of the typical time series
forecasting pipeline consisting of data preprocessing, feature engineer-
ing, hyperparameter optimization, and model selection. In addition,
many packages such as statsmodels (Seabold & Perktold, 2010),
scikit-learn (Pedregosa et al., 2011), or PyTorch (Paszke et al.,
2019) are focused on a particular type of prediction model and are not
explicitly designed for time series forecasting. pyWATTs has recently

∗ Corresponding author at: Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Bioinformatics, Schulgasse 22, Straubing,
94315, Germany.
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been published as a Python framework aimed at automating the time
series forecasting workflow (Heidrich et al., 2021). However, its use
requires expert knowledge, and several lines of code must be written
to run any model. Furthermore, it does not include hyperparameter op-
timization and mainly provides wrappers for third-party libraries. The
low code machine learning library PyCaret (Moez, 2023) recently
included time series forecasting but similar to sktime (Löning et al.,
2019) also requires several lines of code to run a comparative study
and is not available as a command line tool. PyCaret does not include
deep learning frameworks, whereas sktime is focused on Keras with-
out providing inherited general functionalities. Beyond that, sktime
does not leverage Bayesian optimization for hyperparameter search.

In this paper, we present ForeTiS, a comprehensive and open
source Python framework that allows for rigorous training, com-
parison, and analysis of different time series forecasting approaches,
covering the entire time series forecasting workflow. Unlike existing
frameworks, ForeTiS is easy to use, requiring only a single-line
command to apply state-of-the-art time series forecasting. In addi-
tion, data preprocessing and feature engineering are configurable and
fully automated, as is hyperparameter search, for which we use ad-
vanced Bayesian optimization. In terms of forecasting approaches, our

https://doi.org/10.1016/j.mlwa.2023.100467
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framework already offers three classical forecasting models and eleven
ML-based methods, ranging from classical ML to modern deep learning
(DL) architectures. In addition, ForeTiS is designed to facilitate the
development and benchmarking of new prediction models. In sum-
mary, ForeTiS is unique compared to existing frameworks in several
ways. First, ForeTiS is easy to install as a Python package and as
a command line tool using Docker. Second, ForeTiS is the only
framework that covers and fully automates the whole time series
forecasting pipeline, already including various prediction models and
only requiring a single line of code to run a comparative study. Hence,
ForeTis is applicable in a user-friendly manner, also for users that
are not forecasting experts. In addition, ForeTiS employs advanced
Bayesian optimization for a fully-automated hyperparameter search.
More importantly, in contrast to other frameworks, ForeTiS supports
the development of new prediction models by already implementing
general functionalities for a variety of model types and enabling quick
benchmarking.

Overall, ForeTiS is a powerful tool for improved time series
forecasting. The framework simplifies the use of time series forecasting
for end users while providing a reliable framework for researchers
to develop new forecasting models. To support novice users, we also
provide comprehensive online documentation supplemented by various
hands-on tutorials and videos. In the following, we will first outline
the user benefits of ForeTiS before providing information on the
implementation of its main features. We then present a case study using
three publicly available datasets with different characteristics and draw
conclusions.

2. User benefits

ForeTiS provides several benefits to end users and researchers
that want to develop new time series forecasting models. These benefits
are outlined below.

2.1. Easy to use

We designed ForeTiS to provide user-friendly time series forecast-
ing so that even non-programmers can benefit from our work. The com-
mand line interface of ForeTiS requires only a single-line command

to perform a comprehensive, reproducible study over several freely
selectable forecasting models. To start the pipeline, users only need to
provide a CSV file containing the data and specify dataset-specific set-
tings via a configuration file. All data preprocessing, feature engineer-
ing, and hyperparameter optimization are fully automated, as described
in Section 3. Regarding the prediction models, the user can choose from
a wide range of pre-integrated models, ranging from classical forecast-
ing methods over ML-based approaches to modern DL techniques. In
addition, ForeTiS supports result analysis, e.g., via a plotting func-
tion. Our online documentation provides a hands-on tutorial on how
to run ForeTiS: https://tinyurl.com/TutorialRunDocker. To simplify
the installation, we provide a setup using Docker (Merkel, 2014),
which we also explain step-by-step in our documentation at https:
//foretis.readthedocs.io/en/latest/install_docker.html. In addition, we
released ForeTiS as a Python package, which requires only one
function call to start the whole time series prediction pipeline, see
https://tinyurl.com/UseTutorialPythonPackage.

2.2. Easy to customize

In addition to its straightforward application, ForeTiS can be
customized in several ways. A variety of arguments can be passed
to ForeTiS to allow the user to customize the pipeline, such as
the imputation method for missing values or data splitting settings.
In addition, ForeTiS can be configured using the dataset-specific
configuration file. In this configuration file, the user can, for exam-
ple, specify items from the provided CSV file for which statistical
features should be generated. ForeTiS prevents pipeline failures due
to mismatches in a user’s configuration by catching them and assist-
ing the user in resolving them with meaningful error messages. The
following video tutorial shows two case studies in which we explain
how to create a dataset-specific configuration file: https://tinyurl.com/
TutorialCaseStudies. Beyond that, users can even customize an already
integrated prediction model, e.g., in terms of hyperparameter ranges,
as shown here: https://tinyurl.com/TutorialAdjustModels.

Fig. 1. Overview of the structure of ForeTiS: In preparation, we summarize the fully automated and configurable data preprocessing and feature engineering. In model,
we have already integrated several time series forecasting models from which the user can choose. Furthermore, the design of this module allows for easy integration of new
prediction models. We use state-of-the-art Bayesian optimization with the Python package Optuna for automated hyperparameter optimization. With the testing module, we
allow the user to test different fitting procedures. Finally, we provide several methods to analyze the results in evaluation. To start the optimization pipeline, users only need
to provide a CSV file containing the data and a configuration file that allows the pipeline to be customized. This design allows end users to apply time series forecasting with
just a single line of code. In addition, we support researchers who want to develop new forecasting methods with quick integration into a reliable framework and benchmarking
against existing approaches.
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2.3. Easy to extend

ForeTiS allows advanced users to integrate new prediction mod-
els into the framework quickly. This process is especially facilitated
for models based on the widely used Python packages scikit-
learn (Pedregosa et al., 2011), statsmodels (Seabold & Perktold,
2010), PyTorch (Paszke et al., 2019), and TensorFlow (Abadi et al.,
2016). A forecasting expert can focus on improving a new forecasting
model by using our reliable and tested framework that includes fully
automated data preprocessing, feature engineering, and hyperparam-
eter search. As an additional benefit, the implemented model can
be easily benchmarked against a wide range of already integrated
forecasting models. Thus, ForeTiS accelerates the development of
new prediction models while reducing risks and testing efforts. As a
further plus, ForeTiS is available as a Python package, allowing the
framework or parts of it to be integrated into existing code.

3. Implementation

ForeTiS is structured according to the common time series fore-
casting pipeline. In Fig. 1, we provide an overview of the main packages
of our framework along the typical workflow. In the following, we
outline the implementation of the main features.

3.1. Data preparation

In preparation, we summarize the fully automated yet con-
figurable data preprocessing and feature engineering. First, the data
is transformed and stored in a unified format to enable consistent
handling. Since many prediction models cannot handle missing values,
ForeTiS offers three imputation methods, namely mean, k-nearest-
neighbors, and iterative imputation. We have also integrated Princi-
pal Component Analysis for dimensionality reduction, which can be
disabled by the user or automatically selected during optimization.

In terms of feature engineering, we consider calendrical and statis-
tical features. In addition to date-based features, such as the day of the
week or month, we include special event countdowns. Special events
can influence the target variable, e.g., product sales before Christmas
or flower sales before Valentine’s Day. Therefore, a user can define
such special events in the configuration file, for which the pipeline
will determine a countdown. For statistical features, we consider lagged
versions of configurable dataset items, i.e., past values, since, for ex-
ample, past sales may influence future demand. For seasonal time
series, a feature that applies to many time series when seasonality is
considered a periodic system behavior, the values of previous seasons
may be predictive. To account for this, we also include seasonally
lagged features. However, calculating these features leads to missing
values at the beginning of the dataset as values from previous seasons
are not available. For these samples, imputation may be problematic

due to a long period without information. To reduce data loss when
dropping these samples, we dynamically set the number of previous
seasons considered for these seasonally lagged features depending on
the length of the dataset. In addition, ForeTiS computes statistical
information such as averages of past information within a user-defined
window. Then we encode the non-numerical information and resample
the dataset to a weekly resolution if specified in the configuration file.
Finally, we drop features with constant values.

We have implemented three types of data splits for the user to
choose from: train-validation-test, cross-validation with a separate test
set, and time series cross-validation with an independent test set.
Because many time series prediction models require a chronological
order of samples, time series cross-validation with a separate test set is
the default data split of ForeTiS, and the use of the other data splits
is disabled for such models. In the upper part of Fig. 2, we visualize
time series cross-validation using three folds. The size of the validation
and test sets can be set as a percentage of the entire dataset or a certain
number of seasons in a seasonal time series.

To conserve computing resources and ensure identical data, we
perform all data preparation steps once and save the result in an
HDF5 file for reuse. This procedure ensures comparable and repro-
ducible results, even on different machines. Furthermore, with regular
expressions specified in the configuration file, users can define sub-
sets of features related to feature names. By default, ForeTiS starts
a separate optimization pipeline for the entire featureset and these
subsets. Alternatively, when running ForeTiS, the user can select the
featureset to use within the optimization pipeline.

3.2. Forecasting models and extendability

We already included several time series forecasting methods in
model. Besides uni- and multivariate classical forecasting methods,
e.g., Exponential Smoothing (Winters, 1960), we provide several ML-
based approaches. These ML methods range from classical regression
models, such as Elastic Net (Zou & Hastie, 2005), over the ensemble
learner XGBoost (Chen & Guestrin, 2016), to modern DL-based archi-
tectures, e.g., Long Short-Term Memory (LSTM) networks (Hochreiter
& Schmidhuber, 1997). We also use probabilistic models, such as
Gaussian Process Regression (GPR) (Williams & Rasmussen, 1995)
and Bayesian implementations of neural network-based architectures
(Denker & LeCun, 1990). These provide prediction uncertainties that
may be useful for downstream tasks. In addition, we have integrated
the recently published EVARS-GPR approach, which handles sudden
changes in the data distribution and adjusts the prediction model
accordingly (Haselbeck & Grimm, 2021). We summarize the integrated
forecasting approaches in Table 1. Due to the lack of a universal
evaluation metric for time series forecasting, it is common to evaluate
performance against baseline methods (Hyndman & Koehler, 2006). For

Table 1
Overview of classical forecasting and machine learning methods already integrated into ForeTiS: We show the prediction models with the abbreviations we use in ForeTiS.
We also specify whether a prediction model is multivariate, i.e., whether it includes features in addition to the time series. In addition, we have implemented probabilistic models
that provide prediction uncertainties.

Category Prediction model Abbreviation Multivariate Probabilistic

Classical
forecasting

Exponential Smoothing ES
(Seasonal) Autoregressive Integrated Moving Average (S)ARIMA
(Seasonal) Autoregressive Integrated Moving Average with eXogenous factors (S)ARIMAX ×

Machine
learning

Elastic Net Regression ElasticNet ×
Lasso Regression LassoReg ×
Ridge Regression RidgeReg ×
eXtreme Gradient Boosting XGB ×
Automatic Relevance Determination Regression ARD × ×
Bayesian Ridge Regression BayesRidge × ×
Gaussian Process Regression GPR × ×
EVent-triggered Augmented Refitting of for Seasonal Data EVARS-GPR × ×
(Bayesian) Long Short-Term Memory network (Bayes)LSTM × (×)
(Bayesian) Multilayer Perceptron (Bayes)MLP × (×)
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Fig. 2. Scheme for the hyperparameter optimization, exemplarily shown with a three-fold time series cross-validation and a separate test set. Based on the results averaged over
the three validation sets, hyperparameters are determined that are used to retrain the prediction model using the entire dataset. The refit frequency 𝑟 defines the number of
predicted samples before the model is refitted with new samples. A user-defined amount of previous data is used for this refitting, dropping the oldest samples in the training set.

this purpose, ForeTiS provides the baselines listed in Table 2. De-
tailed explanations of all time series forecasting and baseline methods
are included in our documentation: https://foretis.readthedocs.io/en/
latest/models.html.

Table 2
Baseline methods with a predicted value 𝑦̂𝑡 and a true value 𝑦𝑡
at time step 𝑡, a seasonal period 𝑚, and a window size 𝑤.

Average Historical 𝑦̂𝑡 =
1

𝑡 − 1

𝑡−1∑
𝑡=1

𝑦𝑡

Average Moving/Random Walk 𝑦̂𝑡 =
1
𝑤

𝑡−1∑
𝑡=𝑡−𝑤

𝑦𝑡

Average Seasonal 𝑦̂𝑡 =
1
𝑚

𝑡−1∑
𝑡=𝑡−𝑚

𝑦𝑡

Average Seasonal Lag 𝑦̂𝑡 =
1
𝑤

𝑡−𝑚−1∑
𝑡=𝑡−𝑚−𝑤

𝑦𝑡

ForeTiS also allows for quick integration of new forecasting mod-
els. We have created a base class in which we have already defined
general methods useful for all prediction models and abstract methods
needed by each child class. For the commonly used packages scikit-
learn, statsmodels, PyTorch, and TensorFlow, we already
implemented most of the mandatory methods, for instance, the train-
ing loops. To create a new prediction model based on one of these
widely used programming libraries, a user only needs to implement
two methods: the actual prediction model and the hyperparameters
with the corresponding ranges. This easy-to-extend design allows model
developers to focus on the model design while relying on thoroughly

tested surrounding code. Our online documentation provides a detailed
tutorial on integrating a new prediction model, including a video,
at https://tinyurl.com/TutorialIntegrateNewModel. Another benefit of
using ForeTiS when developing a new forecasting model is the ability
to quickly and fairly benchmark against multiple comparison partners,
as the same data preparation and hyperparameter search is used.

3.3. Hyperparameter optimization

We achieve an automatic hyperparameter search by using state-of-
the-art Bayesian optimization via the Python package Optuna (Akiba
et al., 2019). Unlike grid and random search, Bayesian optimization
uses information from the performance of previously tested parameter
choices to suggest new parameter candidates (Snoek et al., 2012;
Turner et al., 2021). Thus, only promising parameter values are con-
sidered further, potentially improving efficiency and leading to better-
performing hyperparameter choices. To further improve efficiency, we
also applied a pruning of selected parameter sets that did not confirm a
good performance on intermediate cross-validation results. In Fig. 2, we
visualize the hyperparameter search using a three-fold time series cross-
validation. The best-performing hyperparameters are selected based on
the results averaged over the three validation sets, and we obtain the
final model after retraining on the entire training and validation data.
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Table 3
Overview of the datasets used for our case study. In addition to a description, we show statistics for each dataset. All datasets differ in terms of the application domain, the
number of samples, and the number of features. MetroInterstateTraffic contains hourly data, the other two show daily information.

Dataset Description Samples Features Time resolution Season length Mean Standard deviation Max

MetroInterstateTraffic Traffic volume, weather & holidays 52551 7 Hourly 24 3291 1985 7280
DailyDelhiClimate Weather forecasting for Delhi, India 1462 3 Daily 365 6.80 4.56 42.22
BikeSharing Bikes rented & rental period information 731 9 Daily 365 4504 1937 8714

3.4. Testing and model refitting

A well-known problem in time series forecasting are sudden changes
in system behavior that are not captured by features, e.g., a construc-
tion site on an access road when predicting stationary retail sales or
an unexpected breakdown at a large factory when predicting energy
consumption. A common technique to account for these changing data
distributions is to refit a prediction model using new data periodically
but keeping the optimized hyperparameters fixed. Therefore, to simu-
late the productive operation of a time series forecasting application,
we integrate periodical refittings on test data in ForeTiS. The user can
configure the amount of historical data considered and the frequency
of the refittings. Fig. 2 outlines this procedure for a refitting frequency
𝑟. At each time step 1 + 𝑛 ⋅ 𝑟, we predict the subsequent 𝑟 samples of
the test data and refit the prediction model using the updated refit set.
In addition, ForeTiS allows selecting refit frequency 0, leading to a
single refitting at the beginning of the test data using the configured
amount of previous data. Further, ForeTiS predicts the whole test
set without a refitting, referred to as ‘complete’. The EVARS-GPR
algorithm mentioned above can be considered an alternative to this
periodic refitting scheme, as it adjusts the prediction model based on
change point detection (Haselbeck & Grimm, 2021). In addition, the
easily extensible design described above allows the integration of other
methods that address this challenge, such as dynamically self-adjusting
GPR (Hüwel et al., 2022).

3.5. Evaluation

We include the typical evaluation metrics (root) mean squared
error (MSE and RMSE), r2 score, explained variance, and the (scaled)
mean absolute percentage error (MAPE and sMAPE). We save each
optimization trial’s results, configuration, and runtime to a CSV file
for debugging purposes. If a prediction model provides feature im-
portances, e.g., XGBoost, we store these for result analyses. ForeTiS
further supports results analysis by providing a plot function to visual-
ize the predictions and actual values on the test data, see for instance
Fig. 3. Additionally, we save the optimized prediction model for reuse
on new data.

4. Case study

To demonstrate the broad applicability and flexibility of ForeTis,
we show below a case study using three publicly available datasets,
namely MetroInterstateTraffic, DailyDelhiClimate, and BikeSharing. De-
scriptions and statistics of these datasets can be seen in Table 3.
All datasets differ in their application domain and the number of
samples and features. Furthermore, MetroInterstateTraffic has an hourly
resolution, while the other three datasets contain daily information.
For each dataset, we ran 200 optimization trials. In addition, we
varied certain arguments to show the customizability of ForeTiS.
In our documentation, we provide a step-by-step guide and a video
explaining the pipeline configurations and setup: https://tinyurl.com/
TutorialCaseStudies.

In the following, we outline some specific results from this case
study, demonstrating how ForeTiS can be used to assess refitting fre-
quencies, featuresets, and prediction models. Fig. 3 shows an exam-
ple plot generated by ForeTiS on the results for MetroInterstate-
Traffic. Similar plots are automatically generated for each prediction

Fig. 3. An example plot of ForeTiS showing prediction results and true data for
MetroInterstateTraffic. On the horizontal axis, we plot the time step within the test set,
while we plot the target variable, here the traffic volume, on the vertical axis. The
predicted values are plotted in a red dashed line, and the true values are shown in a
blue solid line. The legend gives the refitting frequency, the prediction model, and the
RMSE obtained.

model, refitting frequency, and featureset included in the optimization
pipeline.

The effect of periodic refittings can be seen in Table 4, which
compares results using different refitting frequencies for XGBoost on
BikeSharing and for ARD on MetroInterstateTraffic. With respect to Bike-
Sharing, which is a rather short dataset, we do not observe a difference
in performance when we drop samples for the final model retraining
after hyperparameter optimization (refitting frequency ‘complete’ vs.
‘0’). However, regular model refittings are beneficial for this dataset,
as XGBoost achieves the best performance when the prediction model
is refitted every time step. On the other hand, for the relatively long
dataset MetroInterstateTraffic, we see a significant drop in performance
when we only use the most recent training data for refitting (‘0’).
Thus, there is a trade-off between the computational resources required
for model retraining and the potential loss of information if we limit
the amount of previous data used for refitting. Regarding the refitting
frequency, we observe that the behavior differs between the datasets, as
less frequent retraining improves the performance for MetroInterstate-
Traffic. ForeTiS can indicate this behavior, so the user can choose
the most promising refitting frequency for the specific dataset in a
production setup.
Table 4
Comparison of different refitting frequencies for XGBoost on BikeSharing and ARD
on MetroInterstateTraffic. The full training set is used for retraining in the refitting
frequency ‘complete’, while in the ‘0’ refitting frequency, only the most recent seasons
are used for a single retraining at the beginning of the test data.

Dataset RMSE on refitting frequency

complete 0 1 2 3

BikeSharing 905 905 827 831 837
MetroInterstateTraffic 424 1853 1783 1708 1613

Another important functionality of ForeTiS is the automated fea-
ture engineering. In Table 5, we compare the performance of XGBoost
using different featuresets for BikeSharing. We observe that XGBoost
performs best with the full featureset, with a smaller performance
drop when considering only calendrical features compared to weather-
related ones. As outlined, ForeTiS allows the creation of feature
subsets to determine the best-performing one in a comparative study.
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Table 5
Comparison of the performance of XGBoost using different featuresets for
BikeSharing. For a fair comparison, we set the refitting frequency to 0.

RMSE for featureset

Full Calendrical Weather

905 1614 1898

Finally, we demonstrate the quick benchmarking of ForeTiS for
DailyDelhiClimate, assuming we want to evaluate the multivariate model
GPR against the univariate classical forecasting approach SARIMA.
After running both models with a single line of code, we see in
Table 6 that GPR outperforms SARIMA on both refitting frequencies
we evaluated. Also, the average runtime for each optimization trial is
longer for SARIMA. With the aid of such results, a user can decide
which algorithm to use for a productive operation, considering the
prediction performance and required computational resources.
Table 6
Benchmarking GPR – using the full featureset – and univariate SARIMA on DailyDelhi-
Climate. GPR outperforms SARIMA on both refitting frequencies regarding RMSE and is
computationally less exhaustive with respect to the average runtime of one optimization
trial.

Prediction model RMSE refitting frequency Average runtime [s]

1 2

SARIMA 3.67 3.85 211495
GPR 3.43 3.42 251

5. Conclusion

We present ForeTiS, a Python framework that covers the entire
time series forecasting workflow and allows for performing a compar-
ative study with a single line of code. As outlined, the preprocessing,
feature engineering, and optimization pipeline is fully automated yet
customizable by the user. We have already implemented various pre-
diction models, ranging from classical forecasting models over machine
learning-based approaches to modern deep learning techniques from
which users can freely choose. Besides this benefit, especially for non-
programmers, ForeTiS simplifies developing and benchmarking new
prediction models. This design allows for continuous improvements
of ForeTiS and invites other researchers to collaborate. We further
provide a comprehensive online documentation with several hands-on
tutorials and videos to guide novice users.

CRediT authorship contribution statement

Josef Eiglsperger: Conceptualization, Methodology, Software, In-
vestigation, Visualization, Writing – original draft. Florian Haselbeck:
Conceptualization, Methodology, Software, Writing – original draft.
Dominik G. Grimm: Conceptualization, Methodology, Writing – re-
view & editing, Supervision, Resources, Project administration, Funding
acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data and code is publicly available at https://github.com/grimmla
b/ForeTiS.

Funding

The project is supported by funds of the Federal Ministry of Food
and Agriculture (BMEL) based on a decision of the Parliament of the
Federal Republic of Germany via the Federal Office for Agriculture
and Food (BLE) under the innovation support program [grant number
2818504A18].

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G.,
Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., .... Zheng, X. (2016).
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Sys-
tems. http://dx.doi.org/10.48550/ARXIV.1603.04467, URL https://arxiv.org/abs/
1603.04467.

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-
generation hyperparameter optimization framework. In Proceedings of the 25th
ACM SIGKDD International conference on knowledge discovery and data mining (pp.
2623–2631). New York, NY, USA: Association for Computing Machinery, http:
//dx.doi.org/10.1145/3292500.3330701.

Bauer, A., Züfle, M., Grohmann, J., Schmitt, N., Herbst, N., & Kounev, S. (2020). An
Automated Forecasting Framework based on Method Recommendation for Seasonal
Time Series. In Proceedings of the ACM/SPEC International Conference on Performance
Engineering (pp. 48–55). Edmonton AB Canada: ACM, http://dx.doi.org/10.1145/
3358960.3379123, URL https://dl.acm.org/doi/10.1145/3358960.3379123.

Bojer, C. S., & Meldgaard, J. P. (2021). Kaggle forecasting competitions: An overlooked
learning opportunity. International Journal of Forecasting, 37(2), 587–603. http://
dx.doi.org/10.48550/arXiv.2009.07701, URL https://ideas.repec.org/a/eee/intfor/
v37y2021i2p587-603.html.

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In
B. Krishnapuram, M. Shah, A. Smola, C. Aggarwal, D. Shen, & R. Rastogi (Eds.),
Proceedings of the 22nd ACM SIGKDD International conference on knowledge discovery
and data mining (pp. 785–794). New York, NY: ACM, http://dx.doi.org/10.1145/
2939672.2939785.

Denker, J., & LeCun, Y. (1990). Transforming neural-net output levels to probability
distributions. In R. Lippmann, J. Moody, & D. Touretzky (Eds.), Advances in neural
information processing systems, vol. 3. Morgan-Kaufmann, URL https://proceedings.
neurips.cc/paper/1990/file/7eacb532570ff6858afd2723755ff790-Paper.pdf.

Haselbeck, F., & Grimm, D. G. (2021). EVARS-GPR: Event-triggered augmented refitting
of Gaussian process regression for seasonal data. In S. Edelkamp, R. Möller, &
E. Rueckert (Eds.), KI 2021: Advances in artificial intelligence (pp. 135–157). Cham:
Springer International Publishing.

Haselbeck, F., Killinger, J., Menrad, K., Hannus, T., & Grimm, D. G. (2022).
Machine Learning Outperforms Classical Forecasting on Horticultural Sales Pre-
dictions. Machine Learning with Applications, 7, Article 100239. http://dx.doi.
org/10.1016/j.mlwa.2021.100239, URL https://linkinghub.elsevier.com/retrieve/
pii/S2666827021001201.

Heidrich, B., Bartschat, A., Turowski, M., Neumann, O., Phipps, K., Meisenbacher, S.,
Schmieder, K., Ludwig, N., Mikut, R., & Hagenmeyer, V. (2021). pyWATTS: Python
Workflow Automation Tool for Time Series. http://dx.doi.org/10.48550/arXiv.
2106.10157, URL http://arxiv.org/abs/2106.10157.

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computa-
tion, 9(8), 1735–1780. http://dx.doi.org/10.1162/neco.1997.9.8.1735, arXiv:https:
//direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf.

Huber, J., & Stuckenschmidt, H. (2020). Daily retail demand forecasting using machine
learning with emphasis on calendric special days. International Journal of Forecasting,
36(4), 1420–1438. http://dx.doi.org/10.1016/j.ijforecast.2020.02.005, URL https:
//EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:4:p:1420-1438.

Hüwel, J. D., Haselbeck, F., Grimm, D. G., & Beecks, C. (2022). Dynamically
self-adjusting Gaussian processes for data stream modelling. In R. Bergmann,
L. Malburg, S. C. Rodermund, & I. J. Timm (Eds.), KI 2022: Advances in artificial
intelligence (pp. 96–114). Cham: Springer International Publishing, http://dx.doi.
org/10.1007/978-3-031-15791-2_10.

Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of fore-
cast accuracy. International Journal of Forecasting, 22(4), 679–688. http://
dx.doi.org/10.1016/j.ijforecast.2006.03.001, URL https://linkinghub.elsevier.com/
retrieve/pii/S0169207006000239.

Jiao, E. X., & Chen, J. L. (2019). Tourism forecasting: A review of methodological
developments over the last decade. Tourism Economics, 25(3), 469–492. http://dx.
doi.org/10.1177/1354816618812588.

Löning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines, J., & Király, F. J. (2019). Sktime:
A unified interface for machine learning with time series. In Workshop on systems
for ML a NeurIPS 2019.

6



J. Eiglsperger, F. Haselbeck and D.G. Grimm Machine Learning with Applications 12 (2023) 100467

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2020). The M4 competition:
100,000 time series and 61 forecasting methods. International Journal of Forecast-
ing, 36(1), 54–74. http://dx.doi.org/10.1016/j.ijforecast.2019.04.014, URL https:
//www.sciencedirect.com/science/article/pii/S0169207019301128.

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2022). M5 accuracy competi-
tion: Results, findings, and conclusions. International Journal of Forecasting, 38(4),
1346–1364. http://dx.doi.org/10.1016/j.ijforecast.2021.11.013, URL https://www.
sciencedirect.com/science/article/pii/S0169207021001874.

Martínez, F., Frías, M. P., Pérez, M. D., & Rivera, A. J. (2019). A methodology for
applying k-nearest neighbor to time series forecasting. Artificial Intelligence Review,
52(3), 2019–2037. http://dx.doi.org/10.1007/s10462-017-9593-z, URL http://link.
springer.com/10.1007/s10462-017-9593-z.

Meisenbacher, S., Turowski, M., Phipps, K., Rätz, M., Müller, D., Hagenmeyer, V., &
Mikut, R. (2022). Review of automated time series forecasting pipelines. WIREs
Data Mining and Knowledge Discovery, 12(6), http://dx.doi.org/10.1002/widm.1475,
URL https://onlinelibrary.wiley.com/doi/10.1002/widm.1475.

Merkel, D. (2014). Docker: lightweight linux containers for consistent development and
deployment. Linux Journal, 2014(239).

Moez, A. (2023). PyCaret: An open source, low-code machine learning library in Python.
URL https://www.pycaret.org PyCaret version 3.0.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., .... Chintala, S. (2019). PyTorch:
An imperative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, & R. Garnett (Eds.),
Advances in neural information processing systems, vol. 32 (pp. 8024–8035). Curran
Associates, Inc., URL http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and statistical modeling
with python. In 9th Python in science conference.

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of
machine learning algorithms. In Proceedings of the 25th International conference on
neural information processing systems - volume 2 (pp. 2951–2959). Red Hook, NY,
USA: Curran Associates Inc..

Turner, R., Eriksson, D., McCourt, M., Kiili, J., Laaksonen, E., Xu, Z., & Guyon, I.
(2021). Bayesian optimization is superior to random search for machine learning
hyperparameter tuning: Analysis of the black-box optimization challenge 2020. In
H. J. Escalante, & K. Hofmann (Eds.), Proceedings of Machine Learning Research: vol.
133, Proceedings of the NeurIPS 2020 Competition and demonstration track (pp. 3–26).
PMLR, URL https://proceedings.mlr.press/v133/turner21a.html.

Williams, C., & Rasmussen, C. (1995). Gaussian processes for regression. In D. Touret-
zky, M. Mozer, & M. Hasselmo (Eds.), Advances in neural information processing
systems, vol. 8. MIT Press, URL https://proceedings.neurips.cc/paper/1995/file/
7cce53cf90577442771720a370c3c723-Paper.pdf.

Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages.
Management Science, 6(3), 324–342. http://dx.doi.org/10.1287/mnsc.6.3.324.

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society. Series B., 67, 301–320. http://dx.doi.org/10.
1111/j.1467-9868.2005.00503.x.

Züfle, M., & Kounev, S. (2020). A Framework for Time Series Preprocessing and History-
based Forecasting Method Recommendation. (pp. 141–144). http://dx.doi.org/10.
15439/2020F101, URL https://annals-csis.org/proceedings/2020/drp/101.html.

7



List of Symbols

General Symbols

p probability distribution

D dataset containing features and corresponding target values

n ∈N number of samples, i.e., pairs of feature vectors and corresponding
target values, in the dataset D

t ∈N time step

m ∈N number of features

xt ∈ Rm feature vector at time step t

X ∈ Rn×m feature matrix containing feature vectors xt of the whole dataset,
also referred to as external factors

yt ∈ R target value at time step t

y ∈ Rn target variable time series containing all target values yt of the whole
dataset in chronological order

ŷt ∈ R predicted target value at time step t

h ∈N forecast horizon
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nseas ∈N seasonal length

nw ∈N window size

ε ∈ Rdim unobserved error term (dimension dim ∈N depending on context)

I ∈ Rdim×dim identity matrix (dimension dim ∈N depending on context)

j ∈N number of folds for cross-validation

Classical Time Series Forecasting Symbols

lt ∈ R level component at time step t of Exponential Smoothing

vt ∈ R trend component at time step t of Exponential Smoothing

ct ∈ R seasonal component at time step t of Exponential Smoothing

α ∈ [0, 1] smoothing parameter for the level component of Exponential Smooth-
ing

β ∈ [0, 1] smoothing parameter for the trend component of Exponential Smooth-
ing

ρ ∈ ]0, 1] damping parameter for damped trend of Exponential Smoothing

γ ∈ [0, 1] smoothing parameter for the seasonal component of Exponential
Smoothing

⌊x⌋ floor function giving the largest integer value less than or equal to x

d ∈N differencing degree of ARIMA and related prediction models

yd ∈ Rn d times differenced time series

pAR ∈N order of the autoregressive term of ARIMA and related prediction
models
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qMA ∈N order of the moving average term of ARIMA and related prediction
models

εwn,t ∈ R white noise error term at time step t of ARIMA and related prediction
models

µ ∈ R intercept of ARIMA and related prediction models

λi ∈ R model parameters for the autoregressive part of ARIMA and related
prediction models

χi ∈ R model parameters for the moving average part of ARIMA and related
prediction models

PAR ∈N order of the seasonal autoregressive term of SARIMA and SARIMAX

D ∈N seasonal differencing degree of SARIMA and SARIMAX

QMA ∈N order of the seasonal moving average term of SARIMA and SARIMAX

Machine Learning Symbols

p(D | w) likelihood term

p(w) prior for model parameters w

p(w | D) posterior probability

p(D) probability distribution of observed data D

w ∈ Rdim model parameters (dimension dim ∈N depending on context)

w∗ ∈ Rdim point estimates of the model parameters that explain the observed
data best (dimension dim ∈N depending on context)

X† ∈ Rn×m+1 matrix containing a vector of ones and the feature matrix X
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wk ∈ R model coefficient of linear regression

w0 ∈ R intercept and bias term, respectively

Ω(w) ∈ R penalty term for regularization

κ ∈ R>0 coefficient of the penalty term for regularization

∥x∥1 L1-norm of a vector x

∥x∥2
2 L2-norm of a vector x

ζ ∈ [0, 1] weighting factor between L1- and L2-norm of Elastic Net

oi ∈ Rni,o output vector of a neural network at layer i

ni,o ∈N number of neurons in layer i of a neural network

ni,in ∈N number of inputs at layer i of a neural network

a : Rni,o → Rni,o activation function of a neural network

Wi ∈ Rni,in×ni,o weight matrix of neural network at layer i

xi,in ∈ Rni,in input vetor of neural network at layer i

bi ∈ Rni,o bias vector of neural network at layer i

σ2 ∈ R>0 variance for a Gaussian distribution

ν ∈ R>0 precision for a Gaussian distribution

Υ ∈ Rdim×dim precision matrix for ARD (dimension dim ∈N depending on size of
weight vector w)

C ∈ Rdim×dim covariance matrix for prior over model parameters in mathematical
description of GPR, dim = m before mapping to feature space and
dim = f afterwards
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A−1 ∈ Rdim×dim covariance matrix for posterior in mathematical description of GPR,
dim = m before mapping to feature space and dim = f afterwards

w ∈ Rm mean for posterior in mathematical description of GPR before map-
ping to feature space

xtest ∈ Rm test input vector in mathematical description of GPR

ytest ∈ R test output variable in mathematical description of GPR

ϕ : Rm → R f function mapping from m-dimensional space into f -dimensional
feature space in mathematical description of GPR

Φ ∈ R f×n feature matrix mapped to feature space in mathematical description
of GPR

ϕ(xtest) ∈ R f test input vector mapped to feature space in mathematical description
of GPR

K ∈ Rdim1×dim2 covariance matrix based on pairwise evaluation of input samples,
with dim1 ∈N and dim2 ∈N depending on the size of the input
samples in mathematical description of GPR

k(x, x′) kernel with vector x in training set and vector x′ in test set in
mathematical description of GPR

ψ(x) mapping function for kernel trick in mathematical description of GPR

n∗ ∈N number of test samples in mathematical description of GPR

X∗ ∈ Rn∗×m matrix of test samples in mathematical description of GPR

y∗ ∈ Rn∗ target vector of the test samples in mathematical description of GPR

y∗ ∈ Rn∗ mean of predictive distribution of GPR

COV(y∗) ∈ Rn∗×n∗ covariance of predictive distribution of GPR

fGP a GP can be seen as a distribution over functions fGP
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GP(mf, k) GP defined by mean function mf and kernel k

mf mean function of a GP

kLin linear kernel

z ∈ R offset of a linear kernel

kSE squared exponential kernel

ι ∈ R>0 lengthscale of a kernel

kRQ rational quadratic kernel

τ ∈ R>0 scale mixture parameter of rational quadratic kernel

kMat Matérn kernel

ν ∈ R>0 parameter controlling the smoothness of the Matérn kernel

Kν modified Bessel function of the Matérn kernel

Llml log marginal likelihood

K set of kernel expression

B set of base kernels

kbase base kernel

kc composed kernel expression

knew new kernel expression

iCKS ∈N maximum number of iterations for CKS

iAKS ∈N maximum number of iterations for AKS

k0 starting kernel for AKS
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Hyperparameter Optimization Symbols

θ ∈ Rnh hyperparameter set

nh ∈N number of hyperparameters

nt ∈N number of hyperparameter sets

Θ ∈ Rnh×nt hyperparameter space

Lv ∈ R validation loss

θ∗ ∈ Rnh hyperparameter set yielding the best result

H historical observations during hyperparameter optimizaton process

n f inished ∈N number of already tested hyperparameter combinations before start-
ing hyperparameter optimizaton process

Mi surrogate model

M0 initial surrogate model

ov ∈ R objective value for hyperparameter optimization

o f : Rnh → R objective function

θ+ ∈ Rnh hyperparameter set currently leading to best result during hyperpa-
rameter optimization

i : Rnh → R≥0 improvement function

EI(θ) expected improvement

Change Point Detection Symbols

pCF
t probability density at time step t of ChangeFinder
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yCF ∈ Rt vector of smoothed outlier scores of ChangeFinder

zCF ∈ Rt vector of change point scores of ChangeFinder

rt ∈N run length at time step t of BOCPD

yr
t ∈ Rrt observations associated with run length rt of BOCPD

H(t′) hazard function of BOCPD

pgap probability distribution of interval between change points of BOCPD

ps ∈ ]0, 1] success probability of a geometric distribution

Symbols in Chapter Results

Mbase initial prediction model of EVARS-GPR and EVARS-GPR+

Mcurrent current prediction model of EVARS-GPR and EVARS-GPR+

Do f f dataset containing samples collected offline, i.e., before the online
phase, of EVARS-GPR and EVARS-GPR+

to f f ∈N last time step of the offline phase of EVARS-GPR and EVARS-GPR+

D′ augmented dataset of EVARS-GPR and EVARS-GPR+

cp ∈ {False, True} boolean showing whether a change point was detected in EVARS-
GPR and EVARS-GPR+

η ∈ R output scaling factor of EVARS-GPR and EVARS-GPR+

nη ∈N number of previous seasons to consider for calculation of output
scale change of EVARS-GPR and EVARS-GPR+

πη ∈ R≥0 threshold for output scale change of EVARS-GPR and EVARS-GPR+
to declare an output scale-related change point
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θCF parameters of ChangeFinder included in EVARS-GPR and EVARS-
GPR+

ηold ∈ R output scaling factor of last augmented refitting of EVARS-GPR and
EVARS-GPR+

tlast ∈N time step of last augmented refitting of EVARS-GPR and EVARS-
GPR+

s ∈ R≥0 change point score of ETKA

δ ∈ R tolerance factor for change point score calculation of ETKA

ϵETKA ∈ R>0 threshold for change point score s to declare a change point in ETKA
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