

B-Splines for flexible and robust multirate time stepping

Benjamin Rodenberg

preCICE Workshop 2023

February 15, 2023

Tur Uhrenturm

Why time interpolation and subcycling?

By North American Rockwell, Public Domain, https://commons.wikimedia.org/w/index.php?curid=2466251

Partitioned solver for ICP¹ wind tunnels

- $\Delta t_{
 m FLUX} pprox 10 \Delta t_{
 m HEGEL} pprox 1000 \Delta t_{
 m PATO}$
- HEGEL uses 3rd order RK
- PATO uses $\Delta t_{ extsf{PATO}} = 10^{-4} s = \Delta T_{ extsf{preCICE}}/100$
- HEGEL uses $\Delta t_{ ext{HEGEL}} = 10^{-2} s = \Delta T_{ ext{preCICE}}$
- FLUX uses $\Delta t_{\text{FLUX}} = 10^{-1} s = 10 \Delta T_{\text{preCICE}}$ (???).

¹Inductively Coupled Plasma

from Alessandro Munafò, et al. A Multi-Physics Modeling Framework for Inductively Coupled Plasma Wind Tunnels. 2022. https://doi.org/10.2514/6.2022-1011

preCICE v2: Constant in time window

Implementation idea: Waveform iteration

Proof of concept: Test case

More details will follow in talk "preCICE-FMI Runner to couple controller models to PDEs" by Leonard Willeke.

Proof of concept: Energy Conservation

A Simple Test Case for Convergence Order in Time and Energy Conservation of Black-Box Coupling Schemes. 2022. https://doi.org/10.23967/wccm-apcom.2022.038

Proof of concept: Order Conservation

Also piecewise linear and cubic interpolation tested in other publication.

A Simple Test Case for Convergence Order in Time and Energy Conservation of Black-Box Coupling Schemes. 2022. https://doi.org/10.23967/wccm-apcom.2022.038

Bringing waveforms to preCICE

¹my talk *From low-order to high-order coupling schemes* at preCICE Workshop 2022

Subcycling

- Time window size $\Delta T \ge$ time step size Δt_1 and Δt_2 .
- Do *n* time steps in window: $\Delta T = n_1 \Delta t_1 = n_2 \Delta t_2$
- Allows to create BSpline of degree n-1. (Goal reached: Something better than linear interpolation)
- Restriction: Only use data of current window!
- Larger window + subcycling has impact on number of QN iterations¹

¹Rüth, B, Uekermann, B, Mehl, M, Birken, P, Monge, A, Bungartz, H-J. Quasi-Newton waveform iteration for partitioned surface-coupled multiphysics applications. Int J Numer Methods Eng. 2021; 122: 5236–5257. https://doi.org/10.1002/nme.6443

Comparison v2.4 vs. v3.0

RK4 for both solvers, $\Delta T = 4\Delta t_{1,2}$

Summary:

- Decrease window size ΔT
- Convergence study w.r.t. ΔT
- · Does high-order interpolation work?

-•- v2.4.0, constant on ΔT -•- v2.4.0, linear on ΔT -•- v3.0.0, piecewise linear on ΔT -•- v3.0.0, third degree BSpline on ΔT

Benjamin Rodenberg (TUM) | B-Splines for multirate time stepping

Comparison v2.4 vs. v3.0

ТШ

Summary:

- Constant window size ΔT
- Decrease time step size $\Delta t_{1/2}$
- Does subcycling work?

-•- v2.4.0, constant on ΔT -•- v2.4.0, linear on ΔT -•- v3.0.0, piecewise linear on ΔT -•- v3.0.0, third degree BSpline on ΔT

Benjamin Rodenberg (TUM) | B-Splines for multirate time stepping

Different solvers for m_1 and m_2 , v3.0.0, third degree BSpline, T = 0.256

Summary:

- Combine TS schemes of different order
- Compensate low order with small Δt_1
- Decrease ΔT to avoid $\Delta T / \Delta t_1 > 1000$

• Does this strategy work?

- •- 1st order EE with $\Delta t_1 = \Delta T/64/2^n$ -•- 2nd order H with $\Delta t_2 = \Delta T/4$

Benjamin Rodenberg (TUM) | B-Splines for multirate time stepping

ПΠ

Summary:

- Combine TS schemes of different order
- Compensate low order with small Δt_1
- Decrease ΔT to avoid $\Delta T / \Delta t_1 > 1000$
- Does this strategy work?

- •- 1st order EE with $\Delta t_1 = \Delta T/64/2^n$ -•- 2nd order H with $\Delta t_2 = \Delta T/4$

Benjamin Rodenberg (TUM) | B-Splines for multirate time stepping

Summary:

- Combine TS schemes of different order
- Compensate low order with small Δt_1
- Decrease ΔT to avoid $\Delta T / \Delta t_1 > 1000$

Does this strategy work?

- •- 1st order EE with $\Delta t_1 = \Delta T/64/2^n$ -•- 2nd order H with $\Delta t_2 = \Delta T/4$

Benjamin Rodenberg (TUM) | B-Splines for multirate time stepping

Different solvers for m_1 and m_2 , v3.0.0, third degree BSpline, T = 0.256

Summary:

- Combine TS schemes of different order
- Compensate low order with small Δt_1
- Decrease ΔT to avoid $\Delta T/\Delta t_1 > 1000$

Does this strategy work?

- •- 1st order EE with $\Delta t_1 = \Delta T/64/2^n$
- --- 2nd order H with $\Delta t_2 = \Delta T/4$
- *- 1st order EE with $\Delta t_1 = \Delta T/64$
- \rightarrow 2nd order H with $\Delta t_2 = \Delta T/4$

Benjamin Rodenberg (TUM) | B-Splines for multirate time stepping

Conclusion

State of development

- Goal: Finalize implementation of all this for preCICE v3.0.0.
- If you want to try experimental version now: Talk to me!
- Restriction: High order only possible with subcycling. We think this is a good solution.

Where to be careful:

- BSpline interpolation works well for up to 100s of samples per window. From 1000+ samples it becomes very slow.
- Only very simple test case so far!

Many questions:

- Does less frequent synchronization due to subcycling improve performance?
- Are more Quasi-Newton iterations harmful?
- Better parallel performance and higher order vs. (slightly)
 higher effort
- Adaptivity (inside window / across windows)

World-Cafe table "Time stepping"

Discuss with us your time stepping setup!

- We cannot promise that we can solve it today or soon
- But: Helps us to consider real cases early on
- Plus: Helps me in writing my thesis

Homework questions:

- Which time stepping schemes?
- · Different rates?
- What interpolation requirements?

By North American Rockwell, Public Domain, https://commons.wikimedia.org/w/index.php?curid=2466251

QN iterations

rQN-WI ∆ <i>T</i>	0.5	0.1
WI(1,1;1)	7.85	5.45
WI(5,5;1)	10.95	7.48

rQN-WI means we only use the data at the end of the window for Quasi-Newton. Different example case, but similar implementation. More possibilities shown in¹.

¹Rüth, B, Uekermann, B, Mehl, M, Birken, P, Monge, A, Bungartz, H-J. Quasi-Newton waveform iteration for partitioned surface-coupled multiphysics applications. Int J Numer Methods Eng. 2021; 122: 5236-5257. https://doi.org/10.1002/nme.6443