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Fig. 1: Visualization of 3D box labels and tracks in the TUMTraf Intersection Dataset. The first row shows the labels
projected into the two camera images. Below a point cloud from two LiDARs contains 3D box labels of the same scene.

Abstract— Intelligent Transportation Systems (ITS) allow a
drastic expansion of the visibility range and decrease occlusions
for autonomous driving. To obtain accurate detections, detailed
labeled sensor data for training is required. Unfortunately, high-
quality 3D labels of LiDAR point clouds from the infrastructure
perspective of an intersection are still rare. Therefore, we
provide the TUM Traffic (TUMTraf) Intersection Dataset,
which consists of labeled LiDAR point clouds and synchronized
camera images. Here, we recorded the sensor output from two
roadside cameras and LiDARs mounted on intersection gantry
bridges. The data was labeled in 3D by experienced annotators.
Furthermore, we provide calibration data between all sensors,
which allow the projection of the 3D labels into the camera
images and an accurate data fusion. Our dataset consists of
4.8k images and point clouds with more than 57.4k manually
labeled 3D boxes. With ten classes, it has a high diversity of
road users in complex driving maneuvers, e.g. left/right turns,
overtaking, and U-turns. In experiments, we provided baselines
for the perception tasks. Overall, our dataset is a valuable
contribution to the scientific community to perform complex
3D camera-LiDAR roadside perception tasks. Find data and
code at https://innovation-mobility.com/tumtraf-dataset.

Index Terms— Dataset, 3D Perception, Camera, LiDAR, In-
telligent Transportation Systems, Autonomous Driving
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I. INTRODUCTION

The roadside deployment of high-tech sensors to detect
road traffic participants offers significant added value for
intelligent and autonomous driving. This technology allows
the vehicle to react to events and situations that are not
covered by the vehicle’s internal sensor range. Thus, the
advantage is the drastic expansion of the field of view
and the reduction of occlusions. For this reason, we can
observe a continuous increase in Intelligent Transportation
Systems (ITS) worldwide. It is noticeable that cameras and,
increasingly, LiDARs are used to create a live digital twin
of road traffic [15]. To obtain accurate detections with such
sensor systems, labeled sensor data is required for training.

Numerous datasets in the field of intelligent and au-
tonomous driving have already been created. Datasets like
[1], [2], [4], [5] are taken from the vehicle perspective.
In contrast, [3], [7]–[9], [16] are recorded from a very
steep elevated view from a drone or a high building, so
they are more suitable for trajectory prediction and tracking
tasks. They are less suitable for 3D object detection because
vehicles are far away and are only observed from above.
Recently, a few datasets [10]–[14] have been acquired from
a roadside perspective and are thus suitable for improving
perception algorithms for ITS. However, some datasets have
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TABLE I: Comparison of popular autonomous driving datasets. Here we compare the perspective, the number of frames, the
number of classes, the number of labeled objects, the number of tracks, and the license terms. The datasets cover different
view perspectives: the vehicle view (V), from the steep elevated view (SE), and from the roadside view (R).

Name Year Perspective # Point Clouds # Images # Classes # 3D Labels # Tracks License
KITTI [1] 2013 V 15.4k 15k 8 80k - CC BY-NC-SA 3.0
Cityscapes [2] 2016 V - 25k 30 - - Non-Commercial Use
highD [3] 2018 SE - 1.4M 2 - 20k Custom
nuScenes [4] 2020 V 400k 1.4M 23 1.4M - CC BY-NC-SA 4.0
Waymo [5] 2020 V 200 1M 4 12.6M 7.6M Custom
inD [6] 2020 SE - 0.9M 5 - 11.5k Custom
rounD [7] 2020 SE - 0.5M 8 - 13.7k Custom
exiD [8] 2022 SE - 1.4M 3 - 69k Custom
MONA [9] 2022 SE - 11.7M 2 - 702k Custom
DAIR-V2X∗ [10] 2022 V,R 71k 71k 10 1.2M - Non-Commercial Use
IPS300+∗∗ [11] 2022 R 14.1k 14.1k 7 4.5M - CC BY-NC-SA 4.0
Rope3D [12] 2022 R - 50k 13 1.5M - Non-Commercial Use
LUMPI [13] 2022 R 90k 200k 6 - - CC BY-NC 3.0
TUMTraf 2022 R 5.3k 5.4k 10 71.9k 506 CC BY-NC-ND 4.0
- TUMTraf-A9 Highway [14] 2022 R 0.5k 0.6k 9 14.5k - CC BY-NC-ND 4.0
- TUMTraf-I (Ours) 2023 R 4.8k 4.8k 10 57.4k 506 CC BY-NC-ND 4.0

∗ 40% of data from roadside perspective, 60% from vehicle perspective.
∗∗Trucks and buses are sparsely represented which can lead to a limited perception performance.

deficiencies in their labeling quality, which harm the training
of the algorithms (e.g., censored image areas with filled
rectangles), or they lack certain vehicle classes (e.g., missing
trucks and buses), or the datasets are too small in terms of
3D box labels and attributes.

According to the work mentioned, it can be recognized
that high-quality 3D box labels of LiDAR point clouds from
the roadside perspective with a wide diversity of traffic
participants and scenarios are still rare. Therefore, our TUM
Traffic Intersection (TUMTraf-I) Dataset provides LiDAR
point clouds and camera images from a road intersection.
The 4.8k labeled point cloud frames, which were labeled by
experts, contain complex driving maneuvers such as left and
right turns, overtaking maneuvers, and U-turns. With its ten
object classes, our dataset has a wide variety of road users,
including vulnerable road users. Furthermore, we provide
synchronized camera images and the extrinsic calibration
data between LiDARs and the cameras. These matrices
allow the projection of the 3D box labels to the camera
images. All in all, our TUMTraf-I offers synchronized
4.8k images and 4.8k point clouds with 57.4k 3D box
labels with track IDs that were manually labeled. In this
work, we show additional comprehensive statistics and
the effectiveness of our dataset. Over and beyond, we
would like to emphasize that TUMTraf-I is an extension
of our previous debut the TUMTraf-A9 Highway Dataset
[14], which covers highway traffic scenarios. Thus, we
extend the existing TUMTraf-A9 Highway Dataset with
additional traffic scenarios on a crowdy intersection and
scale it up from 14k labeled 3D box labels to 57.4k
including vulnerable road users. In evaluation experiments,
we provide multiple baselines for the 3D perception task
of 3D object detection with a monocular camera, a LiDAR
sensor, and a multi-modal camera-LiDAR setup. Last but
not least, we offer our dataset in OpenLABEL format under
the Creative Commons License CC BY-NC-ND 4.0 so that
it can be widely used by the scientific research community.

In summary, our contributions are:

• A detailed and diverse dataset of 4.8k camera images
as well as 4.8k labeled LiDAR point cloud frames.
Thereby, we used two synchronized cameras and Li-
DARs, which cover an intersection from an elevated
view of an ITS.

• Extrinsic calibration data between cameras and LiDARs
allow an early and late fusion of objects.

• We provide an extensive TUMTraf-Devkit to load,
transform, split, evaluate, and visualize the data.

• 57.4k high-quality manually labeled 3D boxes with
273k attributes for both LiDARs resulting in 38k 3D
box labels after data fusion. The labeled attributes are,
for example, occlusion level, color, number of trailers,
vehicle subtypes, state of the flashing light, and 3D
points within each bounding box.

• Comprehensive statistics and analysis of the labels,
number of points, occlusions, and tracks on the dataset,
and the distribution of ten different object classes of
road traffic.

• Multiple baselines for the 3D perception task of 3D
object detection with a monocular camera, a LiDAR
sensor, and a multi-modal camera-LiDAR setup.

II. RELATED WORK

As part of the development in the field of autonomous
driving and intelligent vehicles, the number of datasets is
increasing rapidly. The most popular datasets in this field
are KITTI [1], nuScenes [4], Cityscapes [2], and Waymo
Open dataset [5]. Except for the Cityscapes, the datasets
provide labeled camera images and LiDAR point clouds.
These datasets are used to train perception algorithms. Un-
fortunately, these valuable datasets only contain data from
a vehicle’s perspective. Therefore, this ego perspective is
suboptimal for transfer learning. Networks trained on a



dataset from the vehicle’s perspective do not perform well
on data obtained, e.g. from a roadside perspective.

Another sensor perspective is, for example, the elevated
view. With this, the scene can ideally be viewed without
occlusions. To achieve a high level of perception for this
elevated view, training with appropriate datasets is necessary.
The focus of the drone dataset family highD [3], inD [16],
rounD [7], and exiD [8] is the trajectory of road users in
the city as well as in the freeway area. The datasets were
recorded by a drone and provide a vast top-down view of
the scene. The main limitation is the limited recording time
in challenging weather conditions. To overcome this drone-
related issue, the MONA [9] dataset provides data that was
created with a camera mounted on a building. On the one
hand, these datasets are ideal for trajectory research, because
they were recorded from a very steep angle to the road. On
the other hand, they are less suitable for 3D object detection,
because of the missing 3D dimensions.

A dataset that contains data from an elevated view of an
ITS with an angle that is not too steep is the DAIR-V2X [10].
The main focus of DAIR-V2X is the support of 3D object
detection tasks. It consists of 71k labeled camera images
and LiDAR point clouds, 40% of which are from a roadside
infrastructure. For this purpose, the dataset covers city roads,
highways, and intersections in different weather and lighting
conditions. Unfortunately, no exact statistics for this variation
or exact sensor specifications are available. As a last point,
the quality of the data is further compromised by filled
rectangles over privacy-sensitive image areas (e.g., license
plates), which can lead to problems during training for object
detection. Another dataset from the roadside infrastructure
perspective with a camera and LiDAR combination is the
IPS300+ [11]. The dataset includes 14k data frames, with
an average of 319 labels per frame. They used 1 LiDAR
and 2 cameras as a stereo setup with a lens focal length of
4.57 mm. The dataset was recorded several times a day at one
intersection and provides seven different object categories:
car, cyclist, pedestrian, tricycle, bus, truck, and engineer car.
According to the statistics, unfortunately, there is less rep-
resentation in the classes of trucks and buses, so the recog-
nition of these classes will probably be poor. The Roadside
Perception 3D dataset (Rope3D) [12] provides 50k images,
including 3D box labels from a monocular infrastructure
camera at an intersection. The missing 3D information of the
detected objects in the 2D camera image was added with a
LiDAR, which was mounted on a vehicle. In total, the images
contain over 1.5M labeled 3D boxes, 670k 2D bounding
boxes, in various scenes at different times (daytime, night,
dawn/dusk), different weather conditions (sunny, cloudy,
rainy), and different traffic densities. Furthermore, the objects
are divided into 13 classes with several attributes. Another
roadside infrastructure dataset is LUMPI [13], which was
recorded at an intersection in Hanover, Germany. For this
purpose, a total of 200k images as well as 90k point clouds
were acquired. Three different cameras and five different
LiDARs provide several field of views on the scene. Here,
different sensor configurations were used for the recordings.
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Fig. 2: Two cameras and two LiDARs are used to create
the TUMTraf Intersection Dataset. The sensors are mounted
on a sign gantry and thus record the central intersection
area. Then, the Data Fusion Unit (DFU) processes the data
streams, which results in a fused digital twin of the road
traffic. Furthermore, the coordinate systems of the individual
sensors and the road coordinate system, which were defined
at the northern stem of the bridge, can be taken from the
figure.

The sensor perspective is from a vehicle as well as from the
roadside infrastructure. Unfortunately, the number of labels
and other detailed information about the labeled objects was
not provided. A further contribution in the field of roadside
infrastructure data for training perception algorithms is the
TUMTraf-A9 Highway Dataset [14]. It is our preliminary
work and includes a total of 1k labeled cameras and LiDAR
frames covering the same traffic scene from four different
viewpoints. Here, we labeled 14k 3D box labels. Moreover,
each frame contains 13.17 3D box labels on average. For this
purpose, we supported the common classes of car, trailer,
truck, van, pedestrian, bicycle, bus, and motorcycle in the
domain of a highway. The main limitations in our previous
work were, firstly, the small number of labeled LiDAR point
clouds and, secondly, that we only had a simple highway
scenario. For this reason, we present an extension to our
dataset that addresses these weaknesses.



III. TUMTRAF INTERSECTION DATASET

In this section, we present the TUMTraf Intersection
Dataset. It is an extension of our previous work, the
TUMTraf-A9 Dataset [14], which covers the highway do-
main. We describe the sensor setup at our intersection, the
data selection and annotation process, and the data structure
used. Last, this section contains comprehensive statistics and
an introduction to our TUMTraf-Devkit.

A. Sensor Setup

The TUMTraf-I Dataset is recorded on the ITS testbed,
which was established as part of the Providentia++ project
[17], [18]. Here, roadside sensors are set up on a gantry
located at the intersection of Schleißheimer Straße (B471)
and Zeppelinstraße in Garching near Munich, Germany. For
this dataset, we use two cameras and two LiDARs with the
following specifications:

• Camera: Basler ace acA1920-50gc, 1920×1200, Sony
IMX174, glo. shutter, color, GigE with 8 mm lenses.

• LiDAR: Ouster OS1-64 (gen. 2), 64 vert. layers, 360◦

FOV, below horizon configuration, 120 m range, 1.5−
10 cm accuracy.

The sensors are mounted side by side on the gantry, as shown
in Figure 2. Here, the sensors detect the traffic in the center of
the intersection from a height of 7 m. It is worth mentioning
that the cameras and LiDARs are spatiotemporally calibrated.
For the temporal calibration, we synchronized the sensors
with a Network Time Protocol (NTP) server. With this
method, a synchronization error of 18.54 ms on average was
achieved for all sensors. For the spatial calibration between
the cameras and the LiDARs, we used a targetless automatic
calibration method, which was inspired by [19].

B. Data Selection and Annotation

We select the data based on interesting and challenging
traffic scenarios like left, right, and U-turns, overtaking
maneuvers, tail-gate events, and lane merge scenarios. Fur-
thermore, we take highly diverse and dense traffic situations
into account so that we get an average of over 15 road users
per frame. To cover diverse weather and light conditions, our
TUMTraf-I Dataset consists of 25% nighttime data, including
heavy rain, and 75% daytime data with sunny and cloudy
weather conditions. This enables the detector to perform well
even in challenging weather conditions.

We record camera data at 25 Hz and LiDAR data at
10 Hz into rosbag files. Then, we extract the raw data
and synchronize the camera and LiDAR frames at 10 Hz
based on timestamps. Based on the raw data of the LiDAR
point clouds, 3D box labels were created by experts. As
all four sensors are cross-calibrated, we can also use these
3D box labels from the point cloud to evaluate monocular
3D object detection algorithms. Since the labeling quality of
the test sequence is very important, we reviewed it multiple
times. Here, we improve the labeling quality by using our
preliminary proAnno labeling toolbox [20].

C. Data Structure
Our dataset is divided into subsets S1 through S4, which

contain continuous labeled camera and LiDAR recordings.
Set S1 and S2 are each 30 seconds long and demonstrate
a daytime scenario at dusk. A 120-second long sequence
during daytime and sunshine can be found in sequence S3.
Sequence S4 contains 30-second data recording at night and
in heavy rain. The file structure is given below:

tum traffic intersection dataset

tum traffic intersection dataset r02 s01

point clouds

s110 lidar ouster north

timestamp sensor id.pcd

s110 lidar ouster south

timestamp sensor id.pcd

images

s110 camera basler south1 8mm

timestamp sensor id.jpg

s110 camera basler south2 8mm

timestamp sensor id.jpg

labels

s110 lidar ouster north

timestamp sensor id.json

s110 lidar ouster south

timestamp sensor id.json

tum traffic intersection dataset r02 s02

tum traffic intersection dataset r02 s03

tum traffic intersection dataset r02 s04

All labeled data is in OpenLABEL format [21]. OpenLA-
BEL files are stored in .json format. One file contains all
labeled objects of a single frame with 32-bit long unique
identifiers (UUIDs), the position, dimensions, rotation, and
attributes like the occlusion level, the body color, the number
of trailers, the specific object type, and the number of 3D
points. Furthermore, a frame contains properties like the
exact epoch timestamp, the weather type, the time of day,
and the corresponding image and point cloud file names.
The label files in OpenLABEL also contain the calibration
data – intrinsic and extrinsic information.

We suggest a split into training (80%), validation (10%),
and test set (10%). The test set is made up of a continuous
sequence with track IDs, as well as randomly sampled frames
from four different scenarios and daytimes. We sample
frames using stratified sampling to create a balanced dataset
among sensor types, weather scenarios, and day times. To
prevent overfitting, we do not publish our test set labels.

D. Data Statistics
In total, we provide 4, 800 labeled LiDAR point cloud

frames sampled from four different sequences. Here, 57, 406
3D objects (506 unique objects) were annotated with
273, 861 object attributes. After fusing the labels from both
LiDARs, we get 38, 045 registered 3D objects (482 unique
objects) with 209, 090 attributes. The following statistics
refer to the fusion result with the complete dataset, which
includes training, validation, and a test set. In Table II, we
can see an overview of the registered 3D box labels.
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Fig. 3: The TUMTraf-I Dataset consists of 38, 045 3D box labels after data fusion, where the CAR class is dominant and
78.2% of the objects are occlusion-free. The 3D box labels show different rotations, which is due to the road traffic in an
intersection.
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Fig. 4: As expected, there is a causality between the dimensions of road users and the number of points. Most classes have
the highest number of points at a distance between 10 to 30 meters. On average, each 3D box label contains 73.52 points.

CA
R

TRU
CK

TR
A
IL

ER
VA

N

M
O
TO

RCY
CLE

BU
S

PED
EST

R
IA

N

BIC
Y
CLE

EM
ERG

EN
CY

V
EH

O
TH

ER
0

20

40

60

80

100

∅
tr

ac
k

le
n

gt
h

[i
n

m
]

16

28
34

22

13

59

11

43

12

63

30

(a) Average track length per class.

0 20 40 60 80 100 120 140 160 180
Track length [m]

0
1

5

10

50

100

200

N
u

m
.

of
tr

ac
k
s

192

103

58

39

26

16

7

3

1

5

1 1 1

2

0 0 0

30.07 m Total track length:
8.76 km

0

34

68

102

136

170

(b) Distribution of the several track lengths.

−40 −20 0 20 40
Longitude [m]

0

20

40

60

80

100

L
at

it
u

d
e

[m
]

CAR

TRUCK

TRAILER

VAN

MOTORCYCLE

BUS

PEDESTRIAN

BICYCLE

EMERGENCY VEH

OTHER

(c) Visualization of tracks in BEV.

Fig. 5: The 3D box label of each traffic participant has always received the same track ID in successive frames in a sequence.
The average track length is 30.07 m. In total, our 3D box labels have a track length of 8.76 km.

A deep dive into the distribution of the labels of our
TUMTraf-I Dataset is provided in Figure 3. Here, the distri-
bution of the ten object classes is shown. The vehicle class

CAR is dominant, followed by the classes TRUCK, TRAILER,
VAN, and PEDESTRIAN, which occur in roughly the same
order of magnitude. The classes MOTORCYCLE, BUS, BI-



TABLE II: The total number of 3D box labels, average
dimensions in meters, and the average number of 3D LiDAR
points among all classes.

Class #Labels �Length �Width �Height �Points
Car 22,773 4.27 1.91 1.59 34.03
Truck 2,704 3.11 2.90 3.43 116.87
Trailer 3,177 10.19 3.12 3.65 328.36
Van 4,353 6.35 2.52 2.47 86.11
Motorcycle 734 1.90 0.83 1.60 21.23
Bus 908 12.65 2.95 3.27 222.36
Pedestrian 2,507 0.80 0.73 1.72 14.98
Bicycle 663 1.57 0.74 1.72 20.95
Emergency
Vehicle

142 6.72 2.35 2.35 58.95

Other 84 5.28 1.92 1.90 128.17
Total 38,045 - - - 103.20

CYCLE, EMERGENCY VEHICLES, and OTHER are present
in a slightly smaller number. Since we have annotated the
occlusion level for each 3D box label, we come to the result
that 78.2% were classified as NOT OCCLUDED, 16.1% as
PARTIALLY OCCLUDED, 0.8% as MOSTLY OCCLUDED,
and 4.9% were classified as UNKNOWN (not labeled). It
can also be seen that most of the labeled frames contain
between 15 and 20 labeled 3D boxes. In 100 frames, there
are even between 45 and 50 labeled 3D objects. Furthermore,
the TUMTraf-I includes significantly more variations in the
maneuvers of road users at the intersection, as compared
to our previous work [14]. We can see three peaks where
vehicles move in the south, north, and east directions of
the intersection. Vehicles moving between south and north
are indicated by the peaks around 90 and 270 degrees. The
smaller peaks adjacent to the main peaks correspond to
turning maneuvers, such as right or left turns.

The labels are based on the LiDAR point clouds. In Figure
4, we performed a detailed analysis of the points concerning
the labeled classes, of the individual distances of the points
concerning the labeled classes, and of the distribution of
the points. Firstly, as expected, the correlation between the
average number of points and the average size of the class
can be observed. Here, the TRAILER class, which has the
highest height, also has the highest average number of points,
followed by the BUS class, which is the longest. Conversely,
the PEDESTRIAN class, which has the smallest size, has
the lowest average number of points. Second, in general,
due to the elevated position of the LiDARs, the field of
view only starts to have an effect from about 10 m onwards.
Most classes have the highest number of points at a distance
between 10 m to 30 m. Interestingly, the class TRAILER has
the highest average number of points at a distance between
15 m and 20 m. With increasing distance, the average number
of points is naturally declining. Lastly, all 3D box labels have
a total of 2, 797, 112 points. According to the distribution of
the number of points per 3D box label, most of the boxes
have a maximum of about 50 points. However, the 3D box
labels have on average 73.52 points per object.

In addition to the statistics about the labels and the
underlying point clouds, we also analyzed the calculated

tracks, see Figure 5. We determined these trivially since the
same track ID was selected for each consecutive frame when
marking the 3D box labels. The average track length in our
TUMTraf-I Dataset is 30.07 m. E.g., the class BUS is very
dominant with an average track length of 59 m. The reason
for this is because, firstly, the buses are very visible, and
secondly, completely cross the intersection. All in all, the full
dataset contains 482 unique objects (3D box labels) with a
total track length of 8.76 km with a maximum track length of
138.60 m. Thus, our TUMTraf Intersection Dataset can also
be used to handle issues regarding tracking that are addressed
by [22].

E. TUMTraf-Devkit

To work with our TUMTraf-I Dataset, we provide the
TUMTraf Development Kit: https://github.com/tum-traffic-
dataset/tum-traffic-dataset-dev-kit. It contains a dataset
loader to load images, point clouds, labels, and calibration
data. Furthermore, we provide a converter from OpenLABEL
to multiple different dataset formats like KITTI, COCO,
YOLO, and the other way round. We follow the .json-based
OpenLABEL standard [21] from the ASAM organization for
the label structure. Some pre-processing scripts transform
and filter the raw point cloud .pcd ASCII data into binary
data to reduce the file size and make it compatible with point
cloud loaders. In addition, a point cloud registration module
can merge multiple point clouds to increase the point density.
Finally, we provide a data visualization module to project the
point clouds and labels into the camera images.

IV. EVALUATION

In our study, we conducted a comparative analysis of
monocular camera and LiDAR 3D object detection with
early and late fusion. In our first evaluation experiment, we
used our MonoDet3D [23] 3D object detector that takes
camera images as input. It transforms the 2D instance
masks into 3D bottom contours by using extrinsic calibration
data. Our augmented L-Shape-Fitting algorithm extracts the
dimensions and calculates the rotation for each object. In our
second experiment, we used PointPillars [24] and trained
the model from scratch on all classes of our camera field
of views Camera south1, Camera south2, and full. In the
last experiment, we evaluate our multi-modal InfraDet3D
[23] detector, which incorporates a late fusion approach,
leveraging the Hungarian algorithm to establish correspon-
dences between detections obtained from the MonoDet3D
and PointPillars baselines. For all these experiments, we
provide post-processing scripts in our TUMTraf-Devkit for
early data fusion, and cropping the point cloud labels to fit
the mentioned field of view.

We evaluated each detector on three difficulty levels Easy,
Moderate, and Hard, see Table III. The Hard category
contains objects with a distance over 50 m, objects that are
mostly occluded, or objects that have less than 20 points
within the 3D box. Partially occluded objects with a distance
of 40 to 50 m, and 20 to 50 points are part of the Moderate
category. Lastly, the Easy category contains objects that are

 https://github.com/tum-traffic-dataset/tum-traffic-dataset-dev-kit
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TABLE III: Evaluation results on the TUMTraf-I Dataset test set (N=North, S=South, EF=Early Fusion, LF=Late Fusion).
We report the mAP3D@0.1 results for the following six classes: Car, Truck, Bus, Motorcycle, Pedestrian, Bicycle. According
to [23], we crop the dataset into three subsets: TUMTraf-I-south1 (Camera South1), TUMTraf-I-south2 (Camera South2),
and TUMTraf-I-full (Camera full).

FOV Model Sensor Modality mAP3D

Easy Mod. Hard Overall
Camera S1 MonoDet3D [23] Camera S1 43.27 13.28 2.16 19.57
Camera S1 PointPillars⋆ [24] LiDAR N 76.19 34.58 30.00 46.93
Camera S1 PointPillars⋆ [24] LiDAR S 46.35 41.05 24.16 37.18
Camera S1 PointPillars⋆ [24] EF(LiDAR N + LiDAR S) 75.81 47.66 42.16 55.21
Camera S1 InfraDet3D [23] LF(Camera S1 + EF(LiDAR N + LiDAR S)) 67.08 31.38 35.17 44.55
Camera S2 MonoDet3D [23] Camera S2 16.82 27.87 26.67 23.78
Camera S2 PointPillars⋆ [24] LiDAR N 45.26 27.26 26.24 32.92
Camera S2 PointPillars⋆ [24] LiDAR S 26.27 38.24 13.16 25.89
Camera S2 PointPillars⋆ [24] EF(LiDAR N + LiDAR S) 38.92 46.60 43.86 43.13
Camera S2 InfraDet3D [23] LF(Camera S2 + EF(LiDAR N + LiDAR S)) 58.38 19.73 33.08 37.06
Camera full MonoDet3D [23] LF(Camera S1 + Camera S2) 19.05 24.12 25.55 22.91
Camera full PointPillars⋆ [24] LiDAR N 76.04 26.03 20.60 40.89
Camera full PointPillars⋆ [24] LiDAR S 38.82 32.83 10.93 27.53
Camera full PointPillars⋆ [24] EF(LiDAR N + LiDAR S) 70.53 44.20 39.04 51.25
Camera full InfraDet3D [23] LF(LF(Camera S1+Camera S2) + LF(LiDAR N+LiDAR S)) 47.27 26.15 19.71 31.04
Camera full InfraDet3D [23] LF(LF(Camera S1+Camera S2) + EF(LiDAR N+LiDAR S)) 64.30 23.83 26.05 38.06
⋆PointPillars inference score threshold is set to 0.3.

(a) MonoDet3D (b) PointPillars (c) InfraDet3D

Fig. 6: Qualitative results on the test set of the three baselines: MonoDet3D (camera-only), PointPillars (LiDAR-only) and
InfraDet3D (camera-LiDAR fusion) during the day (top row) and the night time (bottom row). Detections for MonoDet3D
and PointPillars are colored by their class color. The InfraDet3D fusion model combines the matched detections from camera
and LiDAR (red), unmatched camera detections (green), and unmatched LiDAR detections (blue).

not occluded, less than 40 m away, and contain more than 50
points. As a quantitative metric, we used the mean Average
Precision (mAP) to evaluate the performance. The overall
mAP is the average of Easy, Moderate, and Hard.

The advantage of using a monocular setup is a better
detection of small objects such as pedestrians. On the other
side, a LiDAR detector can detect objects during nighttime.
Combining LiDAR and the camera through late fusion can
significantly enhance the overall performance. In this work,
we were able to confirm this assumption in our evaluation.
We achieved the best detection results with the InfraDet3D

model within the Camera S2 field of view and the Easy dif-
ficulty level. Interestingly, the early fusion with PointPillars
consistently achieves the best performance in all subsets at
Moderate and Hard difficulty level. The better performance
of PointPillars and InfraDet3D over the MonoDet3D shows
the strengths of the LiDAR in comparison to a camera, e.g.,
at nighttime. In the Hard difficulty level, the late fusion of
LiDAR and the camera provided better overall results than a
single LiDAR detector. Moreover, the combination of early
fusion between LiDAR sensors with camera sensors via late
fusion, which combines the advantages of both sensors, gives



consistently robust results. A visual representation of the
qualitative results is provided in Figure 6.

V. CONCLUSIONS
In this work we extended the TUMTraf-A9 Highway

Dataset with labeled data of an intersection. We provided 3D
box labels from elevated road side sensors. Two synchronized
cameras and LiDARs were used to record challenging traffic
scenarios. Our data was labeled by experienced experts. As
all sensors were calibrated to each other, we can use the
3D bounding box point cloud labels to perform Monocular
3D object detection. In total, our dataset contains 4.8k RGB
images and 4.8k LiDAR point cloud frames with 57.4k high-
quality labeled 3D boxes, partitioned into ten object classes
of traffic participants. We offered a comprehensive statistics
of the labels including their occlusion levels, the number
of points grouped by class category and distance, and an
extensive analysis of the labeled tracks. In our evaluation
experiments, we provided three baselines for the perception
task of 3D object detection: A camera, a LiDAR and a multi-
modal camera-LiDAR combination. With these experiments,
we were able to show the potential of our dataset for your
3D perception tasks.

For future work, we plan to create and publish more
ground truth labels based on the presented camera images
which can support more evaluation methods for our data
fusion algorithm. Furthermore, the publication of further
labeled sensor data with specific traffic scenarios, e.g. ac-
cidents, as well as the usage of other sensor modalities is
also on our agenda.
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