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Abstract

The dynamics of open quantum systems is of great interest for many fields in physics and chemistry. For
systems strongly interacting with their environments the dynamics are inherently non-Markovian, which
is notoriously difficult to study and simulate. In this thesis I implement in detail the Hierarchy of Pure
States (HOPS) [1] and the recently developed Hierarchy of Matrix Product States (HOMPS) [2] methods,
which can be used to simulate non-Markovian dynamics. I then benchmark both methods using the spin-
boson model.

Zusammenfassung

Die Dynamik offener Quantensysteme ist in vielen Bereichen der Physik und Chemie von großer Bedeu-
tung. Systeme, die stark mit ihrer Umgebung interagieren, besitzen eine inherent nicht-Markovianische
Dynamik, was erhebliche Probleme bei der theoretischen Beschreibung und Simulation dieser Systeme
verursachen kann. In dieser Arbeit implementiere ich die Hierarchy of Pure States (HOPS) [1] und die Hier-
archy ofMatrix Product States (HOMPS) [2]Methoden, die für die Simulation offener, nicht-Markovianischer
Systeme benutzt werden können. Anschließend benchmarke ich beide Methoden mit dem Spin-Boson
Modell.
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1 Introduction

Open quantum systems, i.e., quantum systems that are interacting with an environment, are important for
modellingmany complex processes, including the decoherence of quantum computers andmany processes
in the field of chemical physics. Most often, these systems cannot be described analytically, but only
numerically. Thus, the field of open quantum system simulation is very important.
In many cases, the dynamics of an open quantum system can be described with a Markov approximation,
where the state of the environment is assumed to only depend on the current state of the system. However,
in many interesting situations (for example involving short length scales and high energies), the Markov
approximation fails. The environment develops a memory and depends on previous states of the system
as well.
A popular approach for the simulation of open quantum systems is the Hierarchy Of Pure States (HOPS)
[1]. With the HOPS, one can integrate the non-Markovian quantum state diffusion equation and simulate
non-Markovian open quantum systems. Recently it was shown [2] that the popular Matrix Product State
formalism can be used to derive aHierarchyOfMatrix Pure States (HOMPS), which can drastically improve
the memory requirements for HOPS.
The goal of this thesis is to implement and benchmark both the HOPS method and the HOMPS method in
detail. I start by summarizing the theory which is necessary for understanding both methods in Section
2. This includes the derivation of the HOPS from the non-Markovian quantum state diffusion equation
in Section 2.2 and a brief introduction of Matrix Product States and Matrix Product Operators in Section
2.4. Next, I explain in detail how the HOPS method can be implemented and test my implementation on
the spin-boson model in Section 3. In Section 4, I then derive and implement the HOMPS method, and
test it on the spin-boson model as well. Finally, I give a conclusion and some references on how to further
improve the methods in Section 5.
My implementation of both HOPS and HOMPS, including the code that was used to generate all plots in
this thesis, is openly available under [3].
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2 Theory

2.1 Non-Markovian Quantum State Diffusion (NMQSD)

To simulate an open quantum system, we first need to model the system, its environment, and the inter-
action between the two. We will consider a system S linearly coupled to a bath B of harmonic oscillators.
We can split the Hamiltonian of such a model into a system, bath, and interaction part

�̂� = �̂�S ⊗ 1B + 1S ⊗ �̂�B + �̂�int.

We assume that the bath consists of 𝐾 harmonic oscillators, which couple linearly to the system. The bath
Hamiltonian is then given by

�̂�B =

𝐾∑︁
𝑘=1

a𝑘𝑎
†
𝑘
𝑎𝑘 ,

where 𝑎†
𝑘
, 𝑎𝑘 are the bosonic creation and annihilation operators of the 𝑘th harmonic oscillator, and a𝑘 are

constants. The interaction Hamiltonian can be written as

�̂�int =

𝐾∑︁
𝑘=1

(
𝛾∗
𝑘
�̂� ⊗ 𝑎†

𝑘
+ h.c.

)
with constants 𝛾𝑘 . The system operator �̂� describes the coupling of the system to the bath modes.
In the context of open systems it is useful to define the bath correlation function

𝛼 (𝜏) = 1
𝜋

∫ ∞

0
d𝜔𝑆 (𝜔)

[
coth

( 𝜔
2𝑇

)
cos (𝜔𝜏) − 𝑖 sin (𝜏)

]
(2.1)

with the spectral density 𝑆 (𝜔). The bath correlation function fully characterizes the influence of the envi-
ronment at temperature T [2] and is connected to the constants a𝑘 and 𝛾𝑘 .
We are interested in the dynamics of the system S, which can be described in terms of the reduced density
matrix

𝜌 (𝑡) = trB {𝜌tot (𝑡)} ,

where 𝜌tot (𝑡) is the density matrix of the total system (system and bath) at time 𝑡 . trB {· · · } denotes the
trace over all bath degrees of freedom. We assume that the total system is initially in the state

𝜌tot (0) = 𝜌S (0) ⊗ 𝜌B, therm,

where the bath is in the thermal state

𝜌𝐵therm =
𝑒−�̂�B/𝑇

𝑍B

with the partition function 𝑍B = trB
{
𝑒−�̂�B/𝑇

}
.

The idea of Non-Markovian Quantum State Diffusion (NMQSD) [4, 5, 6, 7, 8] is that one can obtain the
reduced density matrix 𝜌 (𝑡) from an average over pure states

𝜌 (𝑡) = 𝔼 [ |Ψ𝑡 (𝑧)⟩ ⟨Ψ𝑡 (𝑧)) |] . (2.2)

The pure states |Ψ𝑡 (𝑧)⟩ ∈ HS are vectors in the system Hilbert space HS that depend on a complex
gaussian stochastic process 𝑧 : 𝑡 → 𝑧𝑡 ∈ ℂ. The expectation value 𝔼 [· · · ] can then be computed by taking
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the average over different realizations of 𝑧. For NMQSD, the stochastic process must have the following
properties:

𝔼 [𝑧𝑡 ] = 𝔼
[
𝑧∗𝑡

]
= 0,

𝔼 [𝑧𝑡𝑧𝑠] = 0,
𝔼

[
𝑧𝑡𝑧

∗
𝑠

]
= 𝛼 (𝑡 − 𝑠) .

(2.3)

Each pure state |Ψ𝑡 (𝑧)⟩ starts off in the same initial state |Ψ𝑡=0 (𝑧)⟩ = |Ψ0⟩ and then evolves according to
the Non-Markovian Quantum State Diffusion (NMQSD) equation [4, 5]

𝜕

𝜕𝑡
|Ψ𝑡 ⟩ = −𝑖�̂�S |Ψ𝑡 ⟩ + �̂�𝑧∗𝑡 |Ψ𝑡 ⟩ − �̂�†

∫ 𝑡

0
ds𝛼 (𝑡 − 𝑠) 𝛿 |Ψ𝑡 ⟩

𝛿𝑧∗𝑠
, (2.4)

where we omitted the explicit dependency of |Ψ𝑡 ⟩ on 𝑧 due to brevity. It is important to realize that the
NMQSD equation describes the dynamics in terms of a stochastic expectation value of pure states, whereas
regular master equations involve a non-stochastic differential equation of the reduced density matrix. The
advantage of the NMQSD equation is that it is often easier to work with pure states than with density
matrices.
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2.2 Hierarchy Of Pure States (HOPS)

2.2.1 Linear HOPS

The NMQSD Equation (2.4) cannot easily be solved numerically due to the functional derivative. However,
one can bring the equation into a hierarchically structured set of differential equations, the Hierarchy of
Pure States (HOPS) [1], which can then be integrated numerically. In this section, we will derive the linear
HOPS equation, mainly following the derivation in [9], but the same result is also obtained in [1, 10].
We will start by approximating the bath correlation function (BCF) (2.1) by a finite sum of exponentials

𝛼 (𝜏) ≈
𝐾∑︁
𝑘=1

𝛼𝑘 (𝜏) B
𝐾∑︁
𝑘=1

𝑔𝑘𝑒
−𝜔𝑘𝜏 ,

with constants 𝑔𝑘 and𝜔𝑘 . The total number of terms 𝐾 corresponds to the number of harmonic oscillators
coupling to the system. Such an approximation of the bath correlation function is possible for many
systems of interest, and a specific example is given in Appendix A, where we approximate the BCF of the
spin-boson model using two different expansion methods.
We will work with the discrete version of the NMQSD equation [9]

Ψ𝑡+1 = Ψ𝑡 + Δ ·
{
−𝑖�̂�S + �̂�𝑧∗𝑡 − �̂�†

𝑡−1∑︁
𝑠=0

𝛼 ((𝑡 − 𝑠) · Δ) 𝜕

𝜕𝑧∗𝑠

}
Ψ𝑡 , (2.5)

where 𝑧𝑡 with 𝑡 ∈ ℕ0 now is a discrete stochastic process and we introduced the time step Δ ∈ ℝ>0. One
can easily see that the NMQSD equation (2.4) is recovered if the limit Δ → 0 is taken. The reason for
using the discrete version of the NMQSD equation is that we can replace the functional derivative with an
ordinary derivative, simplifying the following derivation.
We define the operator

𝐷𝑡
𝑘
B

𝑡−1∑︁
𝑠=0

𝛼𝑘 ((𝑡 − 𝑠) · Δ)
𝜕

𝜕𝑧∗𝑠
= 𝑔𝑘

𝑡−1∑︁
𝑠=0

𝑒−𝜔𝑘 (𝑡−𝑠 ) ·Δ
𝜕

𝜕𝑧∗𝑠

and the auxillary states

Ψ (n)
𝑡 B

𝐾∏
𝑘=1

(
𝐷𝑡
𝑘

)𝑛𝑘 Ψ𝑡 , (2.6)

using an index vector n ∈ ℕ𝐾
0 . The physical pure state is recovered when setting the index vector to zero,

Ψ𝑛 = Ψ (0)
𝑛 . Using these definitions, we can rewrite the discrete NMQSD Equation (2.5):

Ψ (0)
𝑡+1 = Ψ (0)

𝑡 + Δ ·
(
−𝑖�̂�S + �̂�𝑧∗𝑡 − �̂�†

𝐾∑︁
𝑘=1

𝐷𝑡
𝑘

)
Ψ (0)
𝑡 = Ψ (0)

𝑡 + Δ ·
(
−𝑖�̂�S + �̂�𝑧∗𝑡

)
Ψ (0)
𝑡 − Δ · �̂�†

𝐾∑︁
𝑘=1

Ψ (0+e𝑘 )
𝑡 ,

where e𝑘 is the 𝑘th unit vector.
Our next goal is to derive an equation of motion for an arbitrary auxillary state Ψ (n)

𝑡 . Using Equation (2.6),
we can write

Ψ (n)
𝑡+1 =

𝐾∏
𝑘=1

(
𝐷𝑡+1
𝑘

)𝑛𝑘 Ψ𝑡+1. (2.7)

We can expand

𝐷𝑡+1
𝑘

= (1 − 𝜔𝑘Δ)
(
𝑔𝑘

𝜕

𝜕𝑧∗𝑡
+ 𝐷𝑡

𝑘

)
+𝑂

(
Δ2)

and hence (
𝐷𝑡+1
𝑘

)𝑛𝑘
= (1 − 𝑛𝑘𝜔𝑘Δ)

(
𝑔𝑘

𝜕

𝜕𝑧∗𝑡
+ 𝐷𝑡

𝑘

)𝑛𝑘
+𝑂

(
Δ2) .
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To further simplify Equation (2.7), we can use the fact that the state at time 𝑡 , Ψ (n)
𝑡 , depends only on the

stochastic variables 𝑧1, 𝑧2, . . . , 𝑧𝑡−1, but not on 𝑧𝑡 , which we can write as Ψ (n)
𝑡 = Ψ (n) (

𝑧 |𝑡−10
)
. It follows that

𝜕
𝜕𝑧∗𝑡

Ψ (n)
𝑡 = 0. Using Equation (2.5) we can see 𝜕2

𝜕𝑧∗2𝑡
Ψ (n)
𝑡+1 = 0 and therefore

(
𝐷𝑡+1
𝑘

)𝑛𝑘 Ψ𝑡+1 = (1 − 𝑛𝑘𝜔𝑘Δ)
(
𝑛𝑘𝑔𝑘

(
𝐷𝑡
𝑘

)𝑛𝑘−1 𝜕

𝜕𝑧∗𝑡
+

(
𝐷𝑡
𝑘

)𝑛𝑘 ) Ψ𝑡+1 +𝑂 (
Δ2) . (2.8)

Inserting Equations (2.5) and (2.8) into Equation (2.7) and performing some additional algebra, one arrives
at

Ψ (n)
𝑡+1 = Ψ (n)

𝑡 + Δ ·
(
−𝑖�̂�S − n · 𝝎 + �̂�𝑧∗𝑡

)
Ψ (n)
𝑡 + Δ · �̂�

𝐾∑︁
𝑘=1

𝑛𝑘𝑔𝑘Ψ
(n−e𝑘 )
𝑡 − Δ · �̂�†

𝐾∑︁
𝑘=1

Ψ (n+e𝑘 )
𝑡 ,

wherewe have omitted terms of order𝑂
(
Δ2) . Taking the limitΔ → 0, we obtain the linearHOPS equations

for a system coupled to 𝐾 bath modes:

𝜕

𝜕𝑡
Ψ (n)
𝑡 =

(
−𝑖�̂�S − n · 𝝎 + �̂�𝑧∗𝑡

)
Ψ (n)
𝑡 + �̂�

𝐾∑︁
𝑘=1

𝑛𝑘𝑔𝑘Ψ
(n−e𝑘 )
𝑡 − �̂�†

𝐾∑︁
𝑘=1

Ψ (n+e𝑘 )
𝑡 . (2.9)

Note that the HOPS equations do not contain any functional derivatives and therefore can be readily
integrated numerically.

2.2.2 Non-linear HOPS

A problem of the linear HOPS is that the states are not normalized. For that reason, different realizations
of the noise can produce state vectors with vastly different magnitudes. The stochastic expectation value
is then dominated by the state vectors with the largest magnitudes, which causes the expectation value to
converge very slowly. If a specific realization happens to produce a state vector with low magnitude, this
will not change the result much and can be seen as wasted computation time. To fix this problem, one can
derive a non-linear version of HOPS, where the density matrix of the reduced systems is computed as an
expectation value over normalized states

Ψ̃𝑡 (𝑧) B
Ψ𝑡 (𝑧)
∥Ψ𝑡 (𝑧)∥

instead:
𝜌 (𝑡) = 𝔼

[
|Ψ̃𝑡 (𝑧)⟩ ⟨Ψ̃𝑡 (𝑧)) |

]
. (2.10)

The non-linear HOPS equations are obtained by replacing [4]

�̂�† → �̂�† −
〈
�̂�†

〉
𝑡

and
𝑧∗𝑡 → 𝑧∗𝑡 B 𝑧∗𝑡 +

∫ 𝑡

0
𝛼∗(𝑡 − 𝑠)

〈
�̂�†

〉
𝑠
ds (2.11)

in the linear HOPS equations. Here, ⟨·⟩𝑡 denotes the expectation value at time 𝑡 . The full non-linear HOPS
then becomes

𝜕

𝜕𝑡
Ψ (n)
𝑡 =

(
−𝑖�̂�S − n · 𝝎 + �̂�𝑧∗𝑡

)
Ψ (n)
𝑡 + �̂�

𝐾∑︁
𝑘=1

𝑛𝑘𝑔𝑘Ψ
(n−e𝑘 )
𝑡 −

(
�̂�† − ⟨�̂�†⟩𝑡

) 𝐾∑︁
𝑘=1

Ψ (n+e𝑘 )
𝑡 . (2.12)
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2.2.3 Computing Expectation Values

In both the linear and the non-linear HOPS methods the density matrix of the system is computed by
averaging over multiple realizations of pure states, see Equations (2.2) and (2.10). However, one is mostly
not interested in the density matrix directly, but in the expectation value of a given system operator 𝐴. In
linear HOPS, the average is taken over unnormalized states, and thus the expectation value is calculated
as

𝔼
[
⟨𝐴⟩𝑡

]
=
tr

{
𝜌 (𝑡)𝐴

}
tr {𝜌 (𝑡)} ≈

tr
{ 1
𝑁

∑𝑁
𝑖=1 |Ψ𝑡 (𝑧∗𝑖 )⟩ ⟨Ψ𝑡 (𝑧∗𝑖 ) |𝐴

}
tr

{ 1
𝑁

∑𝑁
𝑖=1 |Ψ𝑡 (𝑧∗𝑖 )⟩ ⟨Ψ𝑡 (𝑧∗𝑖 ) |

} =

∑𝑁
𝑖=1 ⟨Ψ𝑡 (𝑧∗𝑖 ) |𝐴 |Ψ𝑡 (𝑧∗𝑖 )⟩∑𝑁
𝑖=1 ⟨Ψ𝑡 (𝑧∗𝑖 ) |Ψ𝑡 (𝑧∗𝑖 )⟩

, (2.13)

where we denote different realizations 𝑖 of the stochastic process with 𝑧∗𝑖 , 𝑖 = 0, . . . , 𝑁 and we used the
cyclic property of the trace.
In non-linear HOPS the average is taken over normalized states |Ψ̃𝑡 (𝑧∗)⟩ instead, and thus it holds
tr {𝜌} = 1. The expectation value can then be computed as

𝔼
[
⟨𝐴⟩𝑡

]
=
tr

{
𝜌 (𝑡)𝐴

}
tr {𝜌 (𝑡)} ≈ 1

𝑁

𝑁∑︁
𝑖=1

⟨Ψ̃𝑡 (𝑧∗𝑖 ) |𝐴 |Ψ̃𝑡 (𝑧∗𝑖 )⟩ .

2.2.4 Truncation

When integrating the HOPS equations numerically, one has to truncate the hierarchy at some order, such
that only a finite number of auxillary states Ψ (n)

𝑡 remain.
The most straight-forward truncation method is to set all auxillary states for which one entry of the index
vector exceeds a certain threshhold value 𝑁trunc to zero:

Ψ (n)
𝑡 = 0 ⇔ ∃𝑘 : 𝑛𝑘 ≥ 𝑁trunc. (2.14)

A more involved truncation method is triangular truncation, where all index vectors exceeding a given
magnitude𝑀trunc are set to zero:

Ψ (n)
𝑡 = 0 ⇔ ∥n∥ ≥ 𝑀trunc.

Instead of just setting truncated auxillary states to zero one can also use so-called terminators for a better
approximation of the exact hierarchy. Terminators for the simple and the triangular truncation method
are given in [1]. However, just setting the truncated states to zero yields good results in practice. This is
done throughout all computations in this thesis.
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2.3 Generation of the Stochastic Process

There are multiple options to generate a gaussian stochastic process with the Properties (2.3). In the
following, I will give three examples, implementations of which can be found at [3].
First, one can generate the process using a complex multivariate normal distribution, which is available
in multiple numerical libraries, e.g., the numpy package for python. The disadvantage of this method is
that computing the multivariate gaussian is slow for large stochastic processes, which are necessary for
the HOPS method with small time steps.
Second, one can use the method discussed in the appendix of [11] and in the supplementary material of
[2], where the integral in the bath correlation function is approximated with a sum. The stochastic process
can then be generated as

𝑧 (𝑡) =
𝑁∑︁
𝑗=1

√︂
𝑆 (𝜔 𝑗Δ𝜔)

𝜋

©«
√︄

1
2
coth

(
𝜔 𝑗𝛽

2

)
− 1
2
𝑒𝑖 (𝜔 𝑗 𝑡+2𝜋Φ𝑗,1 ) +

√︄
1
2
coth

(
𝜔 𝑗𝛽

2

)
+ 1
2
𝑒𝑖 (−𝜔 𝑗 𝑡+2𝜋Φ𝑗,2 )

ª®¬ ,
where theΦ𝑗,1 andΦ𝑗,2 are independent randomnumbers uniformly distributed in [0, 1), and𝜔 𝑗 =

(
𝑗 − 1

2
)
Δ𝜔 .

This method generally works well, but introduces two additional parameters to tune (the cutoff 𝑁 and step
size Δ𝜔 for approximating the integral with the sum).
Third, one can use the Fourier filtering technique [12]. The idea of this method is to first generate uncor-
related gaussian white noise, then to transform it to the frequency domain using a Fourier transform, and
to apply a multiplicative filter. An inverse Fourier transform is then used to go back to the time domain,
creating noise with the requested correlations.
Throughout my thesis, I use he Fourier filtering technique to generate stochastic processes. In the follow-
ing, I will explain the method in more detail.
We start by generating complex gaussian white noise. This can for example be done with the Box-
Mueller-Wiener algorithm [13]: Given two random numbers b1, b2 ∈ [0, 1] drawn from a uniform
distribution, we can obtain the complex white noise \ as

\ =
√︁
− log(b1) · 𝑒2𝑖𝜋b2 .

Our objective now is to generate a discrete stochastic process z of length 𝑁 with correlations〈
𝑧𝑡𝑧

∗
𝑠

〉
= 𝛼 (𝑡 − 𝑠) ≡ 𝛼 (𝜏).

For this, we transform the white noise \𝑡 = {\1, \2, . . . , \𝑁 } into frequency space:

\̂𝑘 =

𝑁∑︁
𝑡=1

\𝑡𝑒
− 2𝜋𝑖
𝑁
𝑘𝑡 .

Next, we construct the correlated noise in frequency space

𝑧𝑘 B \̂𝑘 ·
√︁
𝛼𝑘 ,

where we have introduced the Fourier transformed bath correlation function

𝛼𝑘 =

𝑁∑︁
𝑛=0

𝛼 (𝑛 · Δ𝑡)𝑒− 2𝜋𝑖
𝑁
𝑘Δ𝑡

with the time step Δ𝑡 . To obtain the correlated noise in the time domain, we simply perform an inverse
Fourier transform

𝑧𝑡 =
1
𝑁

𝑁∑︁
𝑘=1

𝑧𝑘 .

One can show that the stochastic process 𝑧 fulfills the Conditions (2.3). It is important to note that, because
of the symmetries of the Fourier transform, only 𝑁 /2 of the generated values can be used; the other half
are periodically correlated with the first half.
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2.4 Matrix Product State (MPS) and Matrix Product Operators (MPO)

In this section, I give a brief introduction to the Matrix Product State formalism. Much more in-depth
introductions to Matrix Product States and many of the popular algorithms can be found in [14, 15].

Matrix Product States (MPS)

Matrix product states (MPS), also known as tensor trains, are a useful way of writing quantum states. An
arbitrary many-body state for a system consisting of 𝑁 subsystem (for instance 𝑁 spins on a chain) can
be written as

|Ψ⟩ =
∑︁

𝑙1,𝑙2,...,𝑙𝑁

Ψ𝑙1,𝑙2,...,𝑙𝑁 |𝑙1, 𝑙2, . . . , 𝑙𝑁 ⟩ ,

where |𝑙1, 𝑙2, . . . , 𝑙𝑁 ⟩ B |𝑙1⟩ ⊗ |𝑙2⟩ ⊗ · · · ⊗ |𝑙𝑁 ⟩ are basis vectors of the many-body Hilbert space and
Ψ𝑙1,𝑙2,...,𝑙𝑁 are scalars. We may rewrite this state into

|Ψ⟩ =
∑︁

𝑙1,𝑙2,...,𝑙𝑁

𝜒0∑︁
𝑖0=1

𝜒1∑︁
𝑖1=1

· · ·
𝜒𝑁 −1∑︁
𝑖𝑁 −1=1

𝐴
[1],𝑙1
𝑖0,𝑖1

𝐴
[2],𝑙2
𝑖1,𝑖2

· · ·𝐴[𝑁 ],𝑙𝑁
𝑖𝑁 −1,𝑖0

|𝑙1, 𝑙2, . . . , 𝑙𝑁 ⟩

=
∑︁

𝑙1,𝑙2,...,𝑙𝑁

tr
(
A[1],𝑙1A[2],𝑙2 · · ·A[𝑁 ],𝑙𝑁

)
|𝑙1, 𝑙2, . . . , 𝑙𝑁 ⟩ ,

(2.15)

where the A[𝑛] are tensors of rank three. Each tensor has a physical leg 𝑙𝑛 with the dimension of the
local subsystem and two virtual legs with bond dimension 𝜒𝑛−1 and 𝜒𝑛 . The superscript [𝑛] denotes the
subsystem that the tensor represents. When using open boundary conditions, the bond dimensions 𝜒0 and
𝜒𝑁 of the tensors A[1] and A[𝑁 ] are set to one.
Themain advantage of using theMPS formulism is that one can easily approximate states by truncating the
virtual bond dimensions using truncated singular value decomposition. If we assume that all subsystems
live in 𝐷-dimensional Hilbert spaces and denote the largest allowed virtual bond dimension with 𝑁trunc,
we need only 𝑁 · 𝐷 · 𝑁 2

trunc coefficients to store the approximated state, compared to 𝐷𝑁 for the full state.
Increasing the bond dimensions 𝑁trunc leads to a better approximation of the exact state.
Since often one is interested in systems with a large amount 𝑁 of subsystems, the MPS formalism has
proven to be a very valuable tool. Furthermore, it has led to a variety of intuitive and useful algorithms,
e.g., for computing ground states (DMRG [14, 16]) or time evolution (TEBD [17], TDVP [18]). There also
exists an intuitive diagrammatic notation for tensor networks, where tensors are represented by shapes
and their indices are represented by lines emerging from these shapes. In this notation, a single tensor
𝑨[𝑛] of rank three can be written as

A[n]

an−1 an

ln

.

Connecting lines of two tensors represents a contraction of these tensors along the specified legs. A full
MPS can be drawn by connecting the virtual legs of neighbouring tensors:

A[1] A[2] A[3] A[4] A[5]

.
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Matrix Product Operators (MPO)

After defining Matrix Product States it is a natural next step to also write operators in the MPS formalism.
A general operator �̂� acting on the previously defined many-body system can be written as

�̂� =
∑︁

𝑙1,𝑙2,...,𝑙𝑁

∑︁
𝑙 ′1,𝑙

′
2,...,𝑙

′
𝑁

𝐻
𝑙 ′1,𝑙

′
2,...,𝑙

′
𝑁

𝑙1,𝑙2,...,𝑙𝑁
|𝑙1, 𝑙2, . . . , 𝑙𝑁 ⟩ ⟨𝑙 ′1, 𝑙 ′2, . . . , 𝑙 ′𝑁 |

with the matrix elements 𝐻 𝑙
′
1,𝑙

′
2,...,𝑙

′
𝑁

𝑙1,𝑙2,...,𝑙𝑁
. In the MPS formalism, the operator becomes

�̂� =
∑︁

𝑙1,𝑙2,...,𝑙𝑁

∑︁
𝑙 ′1,𝑙

′
2,...,𝑙

′
𝑁

𝜒0∑︁
𝑗0=1

𝜒1∑︁
𝑗1=1

· · ·
𝜒𝑁 −1∑︁
𝑗𝑁 −1=1

𝑊
[1],𝑙1,𝑙 ′1
𝑗0, 𝑗1

𝑊
[2],𝑙2,𝑙 ′2
𝑗1, 𝑗2

· · ·𝑊 [𝑁 ],𝑙𝑁 ,𝑙 ′𝑁
𝑗𝑁 −1, 𝑗0

|𝑙1, 𝑙2, . . . , 𝑙𝑁 ⟩ ⟨𝑙 ′1, 𝑙 ′2, . . . , 𝑙 ′𝑁 |

=
∑︁

𝑙1,𝑙2,...,𝑙𝑁

∑︁
𝑙 ′1,𝑙

′
2,...,𝑙

′
𝑁

tr
(
W[1],𝑙1,𝑙 ′1W[2],𝑙2,𝑙 ′2 · · ·W[𝑁 ],𝑙𝑁 ,𝑙 ′𝑁

)
|𝑙1, 𝑙2, . . . , 𝑙𝑁 ⟩ ⟨𝑙 ′1, 𝑙 ′2, . . . , 𝑙 ′𝑁 | ,

(2.16)

where the W[𝑛] are tensors of rank four. Each of the tensors of the MPO has two physical and two virtual
legs. In the diagrammatic notation, an MPO can be written as

W [1] W [2] W [3] W [4] W [5]

.
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2.5 Time Evolution of Matrix Product States

One of the main problems concerning quantum systems is time evolution. The goal is to find the state at a
time 𝑡 , under the condition that the state at time 𝑡0 is known and the time-dependent Schrödinger equation

𝑑

𝑑𝑡
|Ψ(𝑡)⟩ = −𝑖�̂� (𝑡) |Ψ(𝑡)⟩

holds, where we have set ℏ = 1. There exist many algorithms implementing time evolution directly on
MPS [19]. Some of these algorithms, for example the very popular Time Evolving Block Decimation (TEBD
[17]), are not applicable to long-range interactions. Here, we will focus on two methods in particular, the
fourth order Runge Kutta method (RK4) and the Time Dependent Variational Principle (TDVP), which
work with a Hamiltonian given as an MPO and can handle long-range interactions. Implementations of
both methods can be found at [3].

2.5.1 Runge-Kutta

The fourth order Runge-Kutta or RK4 method is a well known numerical method for solving linear equa-
tions. With this method, the state at time 𝑡 + Δ𝑡 can be computed from the state at time 𝑡 as

|Ψ(𝑡 + Δ𝑡)⟩ ≈ |Ψ(𝑡)⟩ + Δ𝑡

6
(
|𝑘1⟩ + 2 |𝑘2⟩ + 2 |𝑘3⟩ + |𝑘4⟩

)
,

where
|𝑘1⟩ = −𝑖�̂� (𝑡) |Ψ(𝑡)⟩ ,

|𝑘2⟩ = −𝑖�̂� (𝑡 + Δ𝑡/2)
(
|Ψ(𝑡)⟩ + Δ𝑡

2
|𝑘1⟩

)
,

|𝑘3⟩ = −𝑖�̂� (𝑡 + Δ𝑡/2)
(
|Ψ(𝑡)⟩ + Δ𝑡

2
|𝑘2⟩

)
,

|𝑘4⟩ = −𝑖�̂� (𝑡 + Δ𝑡) ( |Ψ(𝑡)⟩ + Δ𝑡 |𝑘3⟩) .

For this method to work with MPSs and MPOs we have to implement two operations: Addition of two
MPSs and multiplication of an MPS with an MPO. The addition of two MPSs

|Ψ⟩ =
∑︁

𝑙1,𝑙2,...,𝑙𝑁

tr
(
A[1],𝑙1A[2],𝑙2 · · ·A[𝑁 ],𝑙𝑁

)
|𝑙1, 𝑙2, . . . , 𝑙𝑁 ⟩

and
|Φ⟩ =

∑︁
𝑙1,𝑙2,...,𝑙𝑁

tr
(
B[1],𝑙1B[2],𝑙2 · · ·B[𝑁 ],𝑙𝑁

)
|𝑙1, 𝑙2, . . . , 𝑙𝑁 ⟩

can be constructed by merging the tensors for each sub system block diagonally [20]:

|Ψ⟩ + |Φ⟩ =
∑︁

𝑙1,𝑙2,...,𝑙𝑁

tr
(
C[1],𝑙1C[2],𝑙2 · · ·C[𝑁 ],𝑙𝑁

)
|𝑙1, 𝑙2, . . . , 𝑙𝑁 ⟩ ,

C[𝑛],𝑙𝑛 =

(
A[𝑛],𝑙𝑛 0

0 B[𝑛],𝑙𝑛

)
.

If the bond dimensions of the original two MPSs are 𝜒1 and 𝜒2, the resulting MPS has bond dimension
𝜒1 + 𝜒2.
Applying an MPO to an MPS can be done by contracting the two networks together along their physical
legs. The result of applying the MPO (2.16) to the MPS (2.15) is

�̂� |Ψ⟩ =
∑︁

𝑙1,𝑙2,...,𝑙𝑁

tr
(
D[1],𝑙1D[2],𝑙2 · · ·D[𝑁 ],𝑙𝑁

)
|𝑙1, 𝑙2, . . . , 𝑙𝑁 ⟩ ,

𝐷
[𝑛],𝑙𝑛
𝑘𝑛−1,𝑘𝑛

B 𝐷
[𝑛],𝑙𝑛
(𝑖𝑛−1 𝑗𝑛−1 ),(𝑖𝑛 𝑗𝑛 ) = reshape ©«

∑︁
𝑙 ′𝑛

𝑊
[𝑛],𝑙𝑛,𝑙 ′𝑛
𝑗𝑛−1, 𝑗𝑛

𝐴
[𝑛],𝑙 ′𝑛
𝑖𝑛−1, 𝑗𝑛

ª®¬ ,
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where the tensors C[n] are computed by first contracting the 𝐴[𝑛] and𝑊 [𝑛] tensors along their physical
legs and then reshaping the result, grouping together the virtual legs 𝑖𝑛−1 with 𝑗𝑛−1 and 𝑖𝑛 with 𝑗𝑛 . The
operation can also be written diagrammatically:

χ χ χ

χ′ χ′ χ′ =
χχ′ χχ′ χχ′

.

Applying an MPO to an MPS also increases the bond dimension: If the bond dimension of the original
MPS is 𝜒 and the bond dimension of the MPO is 𝜒 ′, the bond dimension of the result will be 𝜒 · 𝜒 ′.
We have seen that both the addition of two MPSs and the multiplication of an MPS with an MPO increase
the bond dimension. This is a problem since the computational cost of both operations scales with a power
of the bond dimension. Therefore we need to truncate the MPS regularly. This can for example be done by
sweeping accross the MPS, performing singular value decompositions, and keeping only the 𝑁trunc largest
singular values [20].

2.5.2 Time Dependent Variational Principle (TDVP)

The idea of the Time Dependent Variational Principle [18, 21, 22] is to project the right hand side of the
Schrödinger equation to the tangent space of the MPS:

𝑑

𝑑𝑡
|Ψ(𝑡)⟩MPS = −𝑖𝑃𝑇 |Ψ(𝑡 ) ⟩MPS�̂� (𝑡) |Ψ(𝑡)⟩MPS . (2.17)

The tangent space is a manifold of MPSs that are orthogonal to the current MPS state |Ψ(𝑡)⟩MPS. When
integrating this equation, the resulting state never leaves the MPS manifold.
There are two versions of TDVP, one that updates MPS tensors one after the other (TDVP1), and one that
updates two neighbouring MPS tensors at once (TDVP2). We will focus on TDVP2, since it allows to grow
the bond dimension as needed, whereas TDVP1 assumes a fixed bond dimension.
To discuss the algorithm, we must first introduce the canonical form of MPSs. When constructing an MPS,
we have an inherent gauge degree of freedom, because we can replace every tensor in the MPS

A[n] X A[n] X−1

→

and recover the original MPS. This gauge degree of freedom can be used to transform any MPS into the
mixed canonical form

. . . . . .

A
[1]
L A

[m−1]
L A

[m]
L C [m] A

[m+1]
R A

[m+2]
R A

[N ]
R

,

where it holds

1

A
[n]
L

A
[n]∗
L

= 1 ,

A
[n]
R

A
[n]∗
R

1 = 1 ∀𝑛 ∈ {1, 2, . . . , 𝑁 }.
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𝑨[𝑛]
𝐿

and𝑨[𝑛]
𝑅

are then called left-/right-canonical and 𝑪 [𝒎] is the orthogonality center. Algorithms to turn
any MPS into mixed canonical form and to shift the orthogonality center around can be found in [14, 15].
Assume now that the current MPS is given in mixed-canonical form. It is possible to show that the tangent
space projection operator then has the form [21, 22]

𝑃𝑇 |Ψ(𝑡 ) ⟩MPS =

𝑁∑︁
𝑛=1

𝑷 [1:𝑛−1]
L ⊗ 1

[𝑛] ⊗ 𝑷 [𝑛+1:𝑁 ]
R −

𝑁−1∑︁
𝑛=1

𝑷 [1:𝑛]
L ⊗ 𝑷 [𝑛+1:𝑁 ]

R ,

where

𝑷 [1:𝑛]
L =

. . .

. . .

A
[1]
L A

[n−1]
L A

[n]
L

A
[1]∗
L A

[n−1]∗
L A

[n]∗
L

and

𝑷 [𝑛:𝑁 ]
R =

. . .

. . .

A[n] A[n+1] A[N ]

A[n]∗ A[n+1]∗ A[N ]∗

.

We can now write the right hand side of the time evolution Equation (2.17), up to the factor −𝑖 , as

𝑃𝑇 |Ψ(𝑡 ) ⟩MPS�̂� (𝑡) |Ψ(𝑡)⟩MPS

=

𝑁∑︁
𝑛=1 . . .

. . .

. . .

. . .

. . . . . .

. . . . . .
A[n]

−
𝑁−1∑︁
𝑛=1 . . .

. . .

. . .

. . .

. . . . . .

. . . . . .
A[n]

=

𝑁∑︁
𝑛=1

. . . . . .

H
[n,n+1]
eff

θ[n,n+1]

−
𝑁−1∑︁
𝑛=1

. . . . . .

H
[n]
eff

A[n]

,

where we introduced the two-site tensor 𝜽 [𝑛,𝑛+1] , which can be constructed by contracting the two neigh-
bouring tensors 𝑨[𝑛] and 𝑨[𝑛+1] . Additionally, we contracted the MPO with parts of the MPS into the
effective two-site and one-site Hamiltonians 𝐻 [𝑛,𝑛+1]

eff and 𝐻 [𝑛]
eff .

In the following, the TDVP2 algorithm is briefly summarized. A more in-depth description can be found
at [18, 21, 22]. The algorithm sweeps through the MPS, updating pairs of neighbouring tensors along the
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way. A single update on the two-site tensor 𝜽 [𝑛,𝑛+1] during the process of sweeping from left to right is
made as follows: First, we contract 𝜽 [𝑛,𝑛+1] with

exp
(
−𝑖Δ𝑡

2
𝐻

[𝑛,𝑛+1]
eff

)
. (2.18)

We then split and truncate the resulting tensor using SVD to obtain the updated tensors 𝑨[𝑛]′ and 𝑨[𝑛+1]′.
Next, we apply

exp
(
𝑖Δ𝑡

2
𝐻

[𝑛]
eff

)
(2.19)

to 𝑨[𝑛+1]′, forming 𝑨[𝑛+1]′′. Finally, we can contract 𝑨[𝑛+1]′′ with 𝑨[𝑛+2] to form the two-site tensor for
the next step. We repeat this procedure until we arrive at the right-most tensor of the MPS. Sweeping from
right to left can be done analogeously.
After sweeping through the MPS from left to right and back, we have performed a full time step Δ𝑡 and
obtain the updated MPS |Ψ(𝑡 + Δ𝑡)⟩MPS.
The implementation of TDVP2 is very similar to the implementation of the popular DMRG algorithm [14];
it is possible to obtain TDVP2 fromDMRG by only changing a few lines of code [22]. It is worth to note that
it is not necessary to compute the matrix exponentials (2.18) and (2.19) directly, which is a costly operation.
Instead, we only need the result of multiplying the matrix exponential with the current state vector 𝜽 [𝑛,𝑛+1]

or 𝑨[𝑛+1]′, which can be computed efficiently, e.g., using the scipy function scipy.expm_multiply.
An efficient implementation also involves storing environment tensors of every site in a list and updating
them during a sweep, such that the effective Hamiltonians do not have to be recomputed from scratch at
each step.
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2.6 The Spin-Boson Model

The spin-bosonmodel is a goodmodel for testing and benchmarkingmethods for describing open quantum
systems. It is often used to show the applicability of new algorithms. The system Hamiltonian of the spin-
boson model is

�̂�S = −1
2
Δ�̂�𝑥 +

1
2
𝜖�̂�𝑧, (2.20)

where �̂�𝑥 and �̂�𝑧 are Pauli operators and Δ and 𝜖 are constants. The coupling to the bath is mediated by
the operator �̂� = �̂�𝑧 , and the Debye spectral density

𝑆 (𝜔) = [ 𝜔𝛾

𝜔2 + 𝛾2 (2.21)

characterizes the bath correlation function (2.1). Before we can describe the spin-boson model using the
HOPS method, we have to expand the bath correlation function as a sum of exponentials

𝛼 (𝜏) ≈
𝐾−1∑︁
𝑘=0

𝛼𝑘 (𝜏) B
𝐾−1∑︁
𝑘=0

𝑔𝑘𝑒
−𝜔𝑘𝜏 .

In the case of the Debye spectral density this can be done with a Matsubara expansion, resulting in the
following expansion coefficients:

𝑔0 =
[𝛾

2

(
cot

( 𝛾
2𝑇

)
− 𝑖

)
, 𝜔0 = 𝛾 ;

𝑔𝑘 = [
4𝜋𝑇 2𝑘𝛾

4𝜋2𝑇 2𝑘2 − 𝛾2 , 𝜔𝑘 = 2𝜋𝑇𝑘 for 𝑘 ≥ 1.
(2.22)

At low temperatures the Matsubara expansion converges very slowly, as I will show in Section 4. Instead,
one can use the Padé expansion

𝑔0 = [𝛾

(
1
𝛾𝛽

− 𝑖

2
−
𝐾−1∑︁
𝑗=1

2[̃ 𝑗𝛾𝛽

b̃2
𝑗
− 𝛾2𝛽2

)
, 𝜔0 = 𝛾 ;

𝑔𝑘 =
2[̃𝑘[𝛾b̃𝑘
b̃2
𝑘
− 𝛾2𝛽2

, 𝜔𝑘 =
b̃𝑘

𝛽
for 𝑘 ≥ 1.

(2.23)

The constants [̃𝑘 and b̃𝑘 can be computed using the [𝑁 −1/𝑁 ] Padé spectrum decomposition (PDS) scheme
[23] with 𝑁 = 𝐾 − 1.
The derivation of the expansion coefficients (2.22) and (2.23) is given in detail in Appendix A.
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3 Implementing and Testing the HOPS method

3.1 Implementation

In this thesis we only implement HOPS for a single bath mode, 𝐾 = 1. The implementation for 𝐾 > 1
follows analogeously, but with more involved book-keeping. If we only use a single bath mode, we can
use a scalar index 𝑛 instead of a vector index n to distinguish between the different auxillary states Ψ𝑛𝑡 .
We can store all auxillary states in a single vector

Ψt ≡
©«

Ψ (0)
𝑡

Ψ (1)
𝑡
...

Ψ (𝑁trunc−1)
𝑡

ª®®®®®¬
.

Both the linear and the non-linear HOPS equations can be integrated by using regular numerical integra-
tion schemes, e.g., Euler or other Runge-Kutta methods. In this thesis, I choose a Runge-Kutta method of
fourth order. Given the differential equation

d
d𝑡

Ψ = f (𝑡,Ψ) (3.1)

and the state Ψt at time 𝑡 , the state at time 𝑡 + Δ𝑡 can be computed as

Ψt+∆t = Ψt +
1
6
(k1 + 2k2 + 2k3 + k4) · Δ𝑡

where

k1 = 𝑓 (𝑡,Ψn) ,

k2 = 𝑓

(
𝑡 + Δ𝑡

2
,Ψt + Δ𝑡

k1

2

)
,

k3 = 𝑓

(
𝑡 + Δ𝑡

2
,Ψt + Δ𝑡

k2

2

)
,

k4 = 𝑓 (𝑡 + ℎ,Ψt + Δ𝑡k3) .

Linear HOPS

For implementing linear HOPS it is a good idea to split the right hand side of Equation (3.1) into a "linear"
and a "noise" part:

𝑓𝑘 (𝑡,Ψt) =
(
𝑴 linear + 𝑧∗𝑡 ·𝑴noise

)
Ψt,

where we have defined the linear propagator

Mlinear =

©«
−𝑖�̂�S −�̂�† 0 · · · 0
𝛼 (0)�̂� −𝑖�̂�S − 𝜔1 −�̂�† 0 · · · 0
0 2𝛼 (0)�̂� −𝑖�̂�S − 2𝜔1 −�̂�† 0 · · · 0
...

...
...

...
...

...
...

ª®®®®¬
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and the noise propagator

Mnoise =

©«
�̂� 0 · · ·
0 �̂� 0 · · ·
... 0 �̂�

. . .

...
. . .

. . .

ª®®®®®¬
.

These propagators can be easily derived from Equation (2.9). The advantage of defining the differential
equation in such a way is that an update can then be computed by simple matrix addition and multipli-
cation. It is worth noting that most of the entries of the propagator matrices are zero, giving way to an
efficient implementation using sparse matrices, for example with the python package scipy.sparse.

Non-Linear HOPS

The non-linear HOPS can be implemented by including a "non-linear" propagator in the right hand side
of Equation (3.1),

𝑓𝑘 (𝑡,Ψt) =
(
𝑴 linear + 𝑧∗𝑡 ·𝑴noise +

〈
�̂�†

〉
·𝑴non-linear

)
Ψt,

where

Mnon-linear =

©«
0 1 · · ·
0 0 1 · · ·
... 0 0 . . .

...
. . .

. . .

ª®®®®®¬
.

The expectation value of �̂�† can be easily computed with the physical state Ψ (0)
𝑡 at time 𝑡 :

〈
�̂�†

〉
𝑡
=

⟨Ψ (0)
𝑡 | �̂�† |Ψ (0)

𝑡 ⟩
⟨Ψ (0)
𝑡 |Ψ (0)

𝑡 ⟩
.

The last remaining problem is the computation of the memory term

𝑧∗memory(𝑡) B
∫ 𝑡

0
𝛼∗(𝑡 − 𝑠)

〈
�̂�†

〉
ds

in the "shifted noise" (2.11) of the non-linear HOPS. To avoid recomputing the memory term at each step,
we can derive an iterative update equation using some approximations:

𝑧∗memory(𝑡 + Δ𝑡) =
∫ 𝑡+Δ𝑡

0
𝛼∗(𝑡 + Δ𝑡 − 𝑠)

〈
�̂�†

〉
𝑠
ds = 𝑒−𝜔

∗Δ𝑡
∫ 𝑡+Δ𝑡

0
𝛼∗(𝑡 − 𝑠)

〈
�̂�†

〉
𝑠
ds

= 𝑒−𝜔
∗Δ𝑡𝑧∗memory(𝑡) + 𝑒−𝜔

∗Δ𝑡
∫ 𝑡+Δ𝑡

𝑡

𝛼∗(𝑡 − 𝑠)
〈
�̂�†

〉
𝑠
ds

≈ 𝑒−𝜔∗Δ𝑡𝑧∗memory(𝑡) + 𝑒−𝜔
∗Δ𝑡Δ𝑡𝛼∗(0)

〈
�̂�†

〉
𝑡

≈ 𝑧∗memory(𝑡) − 𝜔∗Δ𝑡 𝑧∗memory(𝑡) + Δ𝑡 𝑔∗
〈
�̂�†

〉
𝑡

. (3.2)

With this, the memory term can be easily updated using Runge-Kutta or any other numerical integration
scheme.
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3.2 Testing HOPS with the Spin-Boson Model

To test my implementation of the HOPS, I use the spin-boson model (2.20) with Δ = 1 and 𝜖 = 0. For the
bath correlation function I use the simple expansion

𝛼 (𝜏) = 𝑔𝑒−𝜔𝜏 (3.3)

with only a single bath mode and constants 𝑔 = 2 and𝜔 = 0.5+2𝑖 . The constants for the spin-boson model
and the bath correlation function are taken from [1]. I begin by testing the generation of the stochastic
process. For this, 100, 1000, and 10000 realizations of the stochastic process are generated. The expectation
value𝔼[𝑧𝑡𝑧0] is then computed and shown in Figure 3.1. One can see that the expectation value approaches
the bath correlation function as the number of realizations is increased, meaning Condition (2.3) is well
fulfilled.

0 2 4 6 8 10
−2

0

2

𝑡

Re
(
𝔼[𝑧𝑡𝑧∗0]

)
100 realizations
1000 realizations
10000 realizations

𝛼 (𝑡)

0 2 4 6 8 10
𝑡

Im
(
𝔼[𝑧𝑡𝑧∗0]

)

Figure 3.1 The real and imaginary parts of the expectation value 𝔼[𝑧𝑡𝑧∗0] of the stochastic process used for testing
HOPS with the spin-boson model are computed from 100, 1000, and 10000 realizations. One can see that the corre-
lations approach the bath correlation function 𝛼 (𝜏) (3.3) with 𝑔 = 2 and 𝜔 = 0.5 + 2𝑖 .

0 10 20 30 40 50
−1

−0.5

0

0.5

1

𝑡

𝔼
[ ⟨
𝜎
𝑧
⟩]

linear HOPS

0 10 20 30 40 50
𝑡

non-linear HOPS

100 realizations
1000 realizations
10000 realizations

Figure 3.2 The dynamics of the spin-boson model are computed using the HOPS method. The stochastic expecta-
tion value of the �̂�𝑧 operator is plotted against the time. The expectation value is taken over 100, 1000, and 10000
realizations of the stochastic processes. Both the linear (left) and the non-linear (right) HOPS was used. The time
steps for all realizations was chosen as Δ𝑡 = 0.05. The parameters for the spin-boson model are Δ = 1 and 𝜖 = 0. The
HOPS was truncated using simple truncation (2.14) with 𝑁trunc = 8.
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Next, I integrate both the linear and non-linear HOPS as detailed in Section 3.1. I use 𝑁trunc = 8 and a time
step of Δ𝑡 = 0.02. The expectation value 𝔼 [⟨�̂�𝑧⟩] is then computed by averaging over 100, 1000, and 1000
realizations. The result is shown in Figure 3.2. One can directly see that the linear HOPS converges much
slower than the non-linear HOPS. The reason for this is that the states from different realizations of the
noise have strongly different magnitudes, as can be seen in Figure 3.3. When computing the stochastic
expectation value for linear HOPS (2.13), states with small magnitudes do not contribute much to the
result. The expectation value is thus dominated by only a few states with large magnitudes, which leads
to slow convergence. In contrast, the states in the non-linear HOPS are normalized, avoiding the problem
and leading to faster convergence.
The convergence of the non-linear HOPS method with respect to the truncation dimension 𝑁trunc is shown
in Figure 3.4.
My results match well the ones obtained in [1].

10−6 10−5 10−4 10−3 10−2 10−1 100 101
0

100

200

300

∥Ψ𝑖 ∥

𝑁

Figure 3.3 The magnitudes of states from 10000 linear HOPS realizations of the spin-boson model are shown in a
histogram. There are big differences in the magnitudes of the different realizations, which leads to the problem that
states with small magnitudes do not contribute much to the overall expectation value and can therefore be seen as
wasted computation time.

0 2 4 6 8 10 12 14 16 18 20
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0.2
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0.6

0.8

1

𝑡

𝔼
[ ⟨
𝜎
𝑧
⟩]

𝑁trunc = 2
𝑁trunc = 4
𝑁trunc = 8
𝑁trunc = 16

Figure 3.4 In this figure, the convergence of non-linearHOPS in the𝑁trunc parameter is shown. For different values of
𝑁trunc, 10000 realizations of non-linear HOPS with the spin-boson model were computed each. The other parameters
are the same as for Figure 3.2. 𝑁trunc = 8, which was used for the full runs in Figure 3.2, is already well converged.
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4 Implementing and Testing the HOMPS method

4.1 Implementation

Constructing the HOMPS MPO

The goal of this section is to rewrite the linear and non-linear HOPS Equations (2.9) and (2.12) in the MPS
formalism. We will perform the derivation for the non-linear equation, following [2]. The linear equation
can be derived analogeously.
We start by representing the full hierarchy at time 𝑡 by a single quantum state

|𝚿𝒕 ⟩ =
∑︁
𝑙,n

Ψ𝑙,(n)𝑡 |𝑙, 𝑛1, 𝑛2, . . . , 𝑛𝐾 ⟩ , (4.1)

where the basis states |𝑙, 𝑛1, 𝑛2, . . . , 𝑛𝐾 ⟩ are tensor products of system states |𝑙⟩ and auxillary pseudo-Fock
states |n⟩. We choose a simple truncation condition 𝑛k ∈ 0, 1, . . . , 𝑁trunc − 1. The HOPS equations then
become

𝜕

𝜕𝑡
Ψ𝑙,(n)𝑡 =

(
−𝑖�̂�S − n · 𝝎 + �̂�𝑧∗𝑡

)
Ψ𝑙,(n)𝑡 + 𝐿

𝐾∑︁
𝑘=1

𝑛𝑘𝑔𝑘Ψ
𝑙,(n−𝒆𝑘 )
𝑡 −

(
�̂�† − ⟨�̂�†⟩𝑡

) 𝐾∑︁
𝑘=1

Ψ𝑙,(n+𝒆𝑘 )𝑡 ,

where e𝑘 again denotes the 𝑘th unit vector. Next, we define the ladder operators

𝑏
†
𝑘
|n⟩ B |n + e𝑘⟩

𝑏𝑘 |n⟩ B |n − e𝑘⟩

and the number operator
�̂�𝑘 |n⟩ B 𝑛𝑘 |n⟩

and use them to write an update equation for the full state:

𝑑

𝑑𝑡
|𝚿𝑡 ⟩ = −𝑖�̂�eff |𝚿𝒕 ⟩ ,

with the effective Hamiltonian

�̂�eff = �̂�S ⊗ 1 − 𝑖
𝐾∑︁
𝑘=1

𝜔𝑘 · 1 ⊗ �̂�𝑘 + 𝑖𝑧∗𝑡 · �̂� ⊗ 1

+ 𝑖
𝐾∑︁
𝑘=1

𝑔𝑘 · �̂� ⊗ �̂�𝑘𝑏†𝑘 − 𝑖
𝐾∑︁
𝑘=1

(
�̂�† − ⟨�̂�†⟩𝑡

)
⊗ 𝑏𝑘 .

(4.2)

We now switch to the MPS formalism. We can write the full state (4.1) as an MPS

|𝚿𝒕 ⟩ =
∑︁
𝑙,n,i

𝐴
[1],𝑙
𝑖0,𝑖1

𝐴
[2],𝑛1
𝑖1,𝑖2

𝐴
[3],𝑛2
𝑖2,𝑖3

· · ·𝐴[𝐾+1]𝑛𝐾
𝑖𝐾 ,𝑖0

|𝑙, 𝑛1, 𝑛2, . . . , 𝑛𝐾 ⟩ ,
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Figure 4.1 In this figure the state machine that can be used to generate the MPO (4.3) is sketched. The state machine
can be constructed from Equation (4.2). For reference on how to use state machines to construct MPOs, see [24].

using 𝐾 + 1 tensors in total. next, we need to write the effective Hamiltonian (4.2) in MPO form. Here this
is done with the finite state machine method discussed in [24]. By using the finite state machine depicted
in Figure 4.1, we arrive at the following tensors:

𝑾 [1] B

©«
−𝑖1 𝑖�̂� 𝑖

(〈
�̂�†

〉
1 − �̂�†

)
�̂�S + 𝑖𝑧∗𝑡 �̂�

0 0 0 0
0 0 0 0
0 0 0 0

ª®®®®¬
,

𝑾 [𝑘+1] B

©«
1 0 0 𝜔𝑘 �̂�𝑘

0 1 0 𝑔𝑘 �̂�𝑘𝑏
†
𝑘

0 0 1 𝑏𝑘
0 0 0 1

ª®®®®¬
, 𝑘 = 1, 2, . . . , 𝐾 .

(4.3)

Note that this construction is not unique. An alternative construction can be done by using the graph-
based algorithm in [25].

The HOMPS with MPO (4.3) produces correct results, but becomes numerically unstable for large 𝑁trunc.
Better stability can be achieved by rescaling the auxillary states to

Ψ̃(n)
𝑡 B

(
𝐾∏
𝑘=1

𝑛𝑘 !|𝑔𝑘 |𝑛𝑘
)−1/2

Ψ(n)
𝑡

as proposed in [2]. The HOMPS expressed in terms of these rescaled states becomes

𝑑

𝑑𝑡
|˜𝚿𝑡 ⟩ = −𝑖�̂� ′

eff |˜𝚿𝑡 ⟩ ,

with

�̂� ′
eff = �̂�S ⊗ 1 − 𝑖

𝐾∑︁
𝑘=1

𝜔𝑘 · 1 ⊗ �̂�𝑘 + 𝑖𝑧∗𝑡 · �̂� ⊗ 1

+ 𝑖
𝐾∑︁
𝑘=1

𝑔𝑘√︁
|𝑔𝑘 |

· �̂� ⊗ 𝑏′†
𝑘
− 𝑖

𝐾∑︁
𝑘=1

√︁
|𝑔𝑘 |

(
�̂�† − ⟨�̂�†⟩𝑡

)
⊗ 𝑏′

𝑘
.



4 Implementing and Testing the HOMPS method

21

where the raising and lowering operators have also been rescaled to

𝑏
′†
𝑘
|n⟩ B

√︁
𝑛𝑘 + 1 |n + e𝑘⟩ ,

𝑏′
𝑘
|n⟩ B √

𝑛𝑘 |n − e𝑘⟩ .

The effective Hamiltonian in MPO form becomes

𝑾 [1]′ B

©«
−𝑖1 𝑖�̂� 𝑖

(〈
�̂�†

〉
𝑡
1 − �̂�†

)
�̂�S + 𝑖𝑧∗𝑡 �̂�

0 0 0 0
0 0 0 0
0 0 0 0

ª®®®®¬
,

𝑾 [𝑘+1]′ B

©«
1 0 0 𝜔𝑘 �̂�𝑘

0 1 0 𝑔𝑘√
|𝑔𝑘 |
𝑏
′†
𝑘

0 0 1

√︁
|𝑔𝑘 |𝑏′𝑘

0 0 0 1

ª®®®®¬
, 𝑘 = 1, 2, . . . , 𝐾,

(4.4)

which can be derived similarily to (4.3).
A comparison of the default and rescaled HOMPS, highlighting the numerical stability issues, can be found
in Appendix B.

Computing Expectation Values

The expectation value
〈
�̂�†

〉
𝑡
can be easily computed from the MPS (4.3) by setting the index vector 𝒏 = 0:

〈
�̂�†

〉
𝑡
=

⟨𝚿 (0)
𝑡 | �̂�† |𝚿 (0)

𝑡 ⟩
⟨𝚿 (0)

𝑡 |𝚿 (0)
𝑡 ⟩

,

|𝚿 (0)
𝑡 ⟩ =

∑︁
𝑙,𝒊

𝐴
[1],𝑙
𝑖0,𝑖1

𝐴
[2],0
𝑖1,𝑖2

𝐴
[3],0
𝑖2,𝑖3

. . . 𝐴
[𝐾+1],0
𝑖𝐾 ,𝑖0

|𝑙⟩ .

Updating the Memory Terms

To compute the memory term

𝑧∗memory(𝑡) B
∫ 𝑡

0
𝛼∗(𝑡 − 𝑠)

〈
𝐿†

〉
𝑠
ds ≈

𝐾∑︁
𝑘=1

∫ 𝑡

0
𝑔𝑘𝑒

−𝜔𝑘 〈
𝐿†

〉
𝑠
ds

in the "shifted" noise (2.11) for 𝐾 > 1 bath modes, we first split it into 𝐾 terms

𝑧∗memory(𝑡) =
𝐾∑︁
𝑘=1

𝑧∗memory,𝑘 (𝑡), 𝑧∗memory,𝑘 (𝑡) B
∫ 𝑡

0
𝑔𝑘𝑒

−𝜔𝑘 〈
𝐿†

〉
𝑠
ds.

Each of the terms 𝑧∗memory,𝑘 (𝑡) can then be updated similar to (3.2).
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4.2 Testing HOMPS with the High Temperature Spin-Boson Model

To test my implementation of the HOMPS, I start with a simple high temperature and low damping case
of the spin-boson model (2.20). I use the Debye spectral density (2.21) with 𝑇 = 2, 𝛾 = 0.25 amd [ = 0.5;
the parameters for the spin-boson model are chosen as 𝜖 = 2 and Δ = −2. The same parameters are used
in [2] and [11]. The approximation of the bath correlation function is shown in Figure 4.2. For the used
parameters one bath mode of the Matsubara approximation (2.22) is already enough to achieve a good
approximation.

0 5 10 15 20 25 30
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0.5

1

𝜏

Re (𝛼 (𝜏))

𝐾 = 1
numerically exact

0 5 10 15 20 25 30
𝜏

Im (𝛼 (𝜏))

Figure 4.2 The approximation of the bath correlation function using the Debye spectral density (2.21) with 𝑇 =

2, 𝛾 = 0.25 and [ = 0.5 (high temperature, weak damping) is shown. The real and imaginary parts of the bath
correlation function are shown on the left and right respectively. The numerically exact result is computed by
replacing the integral with a sum. Already one term of the Matsubara approximation (2.22) is enough to converge
to the numerically exact result.
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Figure 4.3 For the three different methods implemented (HOPS (RK4), HOMPS (RK4), and HOMPS (TDVP)), 10000
realizations are computed each. The stochastic expectation value 𝔼 [⟨�̂�𝑧⟩] is then plotted against 𝑡 . The parameters
for the computation were chosen as 𝐾 = 1, 𝑁trunc = 40, Δ𝑡 = 0.002.
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Next, I compare the different methods of integrating the HOMPS. In Figure 4.3, 10000 realizations of the
hierarchy are computed using RK4 and TDVP2 and compared with the HOPS method. The three methods
produce similar dynamics. In the following, I use RK4 for integrating the HOMPS since it is slightly faster
than TDVP2 in my implementation.
In Figure 4.4a the stochastic expectation value of �̂�𝑧 is computed with the HOMPS using 100, 1000, and
10000 realizations of the stochastic process. The HOMPS are integrated using RK4 with 𝑁trunc = 40
and a time step of Δ𝑡 = 0.06. The truncation threshhold for the truncation of singular values is set
to zero. This is possible since the maximum possible bond dimension for 𝐾 = 1 bath mode is 𝜒max =

min (dim (HS) , 𝑁trunc), where dim (HS) is the dimension of the system Hilbert space. In the case of the
spin-boson model it holds dim (HS) = 2. Therefore, the virtual bond dimension cannot exceed 𝜒max = 2
and we do not need to truncate any singular values.
The convergence of the hierarchy with respect to the truncation dimension 𝑁trunc is shown in Figure 4.4b.
The results match well the ones obtained in [1] and [11].
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Figure 4.4 In this figure, the HOMPS is integrated using RK4 with a time step of Δ𝑡 = 0.06. (a) 100, 1000, and 10000
realizations, each computed with 𝑁trunc = 40. (b) For different values for 𝑁trunc, 10000 realizations were computed
each. 𝑁trunc = 40 is well converged.
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4.3 Testing HOMPS with the Low Temperature Spin-Boson Model

As a second test, I use a low temperature and high damping case of the spin-boson model (2.20). I again
use the Debye spectral density and set the parameters to𝑇 = 0.02, 𝛾 = 5, [ = 0.5, 𝜖 = 2, Δ = −2, which are
also used in [1, 11]. The approximations of the bath correlation function using the Matsubara summation
and Padé approximation methods are shown in Figures 4.5a and 4.5b respectively. At low temperatures the
Padé approximation converges a lot faster than the Matsubara summation. The following computations
are done with 𝐾 = 13 terms of the Padé approximation, which yields a sufficiently converged BCF.
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Figure 4.5 The approximation of the bath correlation function using the Debye spectral density (2.21) with𝑇 = 0.02,
𝛾 = 5 and [ = 0.5 (low temperature, strong damping) is shown. The real part of the bath correlation function is
approximated using the Matsubara approximation (2.22) and the Padé approximation (2.23) on the left and right
respectively. The numerically exact result is computed by replacing the integral with a sum. One can see that
the Padé approximation converges a lot faster than the Matsubara approximation. The imaginary part of the bath
correlation function is not shown, as it is already well converged using 𝐾 = 1 terms of either approximation.
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Figure 4.6 The HOMPS equations of the low temperature spin-bosonmodel are integrated using different truncation
threshholds 𝜖SVD for the singular value decomposition. The integration method used is RK4 with a time step of
Δ𝑡 = 0.02, 𝐾 = 13 terms of the Padé approximation, and 𝑁trunc = 9. The parameters for the spin-boson model are
given in the text. On the left, the stochastic expectation value 𝔼 [⟨�̂�𝑧⟩] is computed over 10000 realizations. Already
at 𝜖SVD = 10−4, the method is well converged. On the right, the maximal bond dimension averaged over 10000
realizations is shown. Smaller truncation threshholds 𝜖SVD lead to larger bond dimensions, giving rise to higher
computation times.
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Because now multiple bath nodes are used, the MPS needs to be truncated in order to keep computa-
tion times managable. In Figure 4.6, the HOMPS equations are integrated using different values for the
truncation threshhold 𝜖SVD. After each Singular Value Decomposition, singular values smaller than the
truncation threshhold are omitted. Lower threshhold values lead to larger bond dimensions, which dras-
tically increases computation times. For the spin-boson model, a truncation threshhold of 𝜖SVD = 1.𝑒 − 3
yields good results and leads to a maximal bond dimension of 𝜒max ≈ 2. Finally, I integrate the HOMPS
equations using 100, 1000, and 10000 realizations of the stochastic process in Figure 4.7. The parameters
used are 𝐾 = 13, 𝑁trunc = 9, and 𝜖SVD = 10−3; The integration method is RK4. The results match well the
ones obtained in [1, 11]. Note that the effect of the noise is low compared to the high temperature case
(compare figure 4.4a and 4.7).
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Figure 4.7 In this figure, the HOMPS equations of the low temperature spin-boson model are integrated using RK4
with a time step of Δ𝑡 = 0.02, 𝐾 = 13 terms of the Padé approximation, and 𝑁trunc = 9. The parameters for the
spin-boson model are given in the text. The stochastic expectation value is computed using 100, 1000, and 10000
realizations of the stochastic process.
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5 Conclusion

As we have seen, the HOPS method is able to relieably simulate the dynamics of non-Markovian open
quantum systems. If one wants to use multiple bath modes, the HOMPS method is a good strategy to min-
imize memory requirements by compressing the quantum state into Matrix Product form. We discussed
two integration methods, RK4 and TDVP2, which are both viable for solving the HOMPS equations. There
are however some additional steps that can be made to further improve the methods.
First, there exists an alternative realization of the non-Markovian stochastic Schrödinger equation [11],
where, in contrast to (2.3), a stochastic process with non-zero correlations 𝔼 [𝑧𝑡𝑧𝑠] ≠ 0 is used. This leads
to a smaller bath correlation function, reducing the amplitude of the non-Markovian memory term at high
temperatures. For models that need many terms for approximating the bath correlation function suffi-
ciently well, this can be a crucial improvement.
Second, one has to consider how systems consisting of multiple subsystems, i.e., many-body systems,
should be treated in the HOMPS method. Because of the exponential growth of the Hilbert space, using
one tensor for the complete many-body system is inefficient. It is therefore better to split the system into
smaller subsystems and to represent each subsystem by a single tensor. A question that arises is how to
connect the different tensors. One idea is to use an MPS, repeating a structure where each physical tensor
is followed by multiple bath mode tensors, which is done in [2]. Alternatively, it could be beneficial to
use a tree tensor network [26] instead. The physical subsystems would then be represented by rank-4
tensors, where two legs are used to connect to the neighbouring subsystems, one leg is the physical leg,
and the last leg is connected to anMPS representing the bath modes. TDVP2 can be adapted for tree tensor
networks [26]. This approach would help to further reduce the memory requirements for computing the
non-Markovian dynamics of open many-body systems.
In conclusion, I believe that the HOPS and HOMPS methods are very useful for simulating open quantum
systems and will be widely used for studying new systems and comparing experiments to theory in the
future.
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A Approximating the BCF of the Spin-Boson model

In this section we derive the coefficients (2.22) and (2.23) that can be used to approximate the bath corre-
lation function

𝛼 (𝜏) = 1
𝜋

∫ ∞

0
𝑆 (𝜔)

[
coth

( 𝜔
2𝑇

)
cos(𝜔𝜏) − 𝑖 sin(𝜔𝜏)

]
d𝜔 =

∫ ∞

0
𝐼 (𝜔, 𝜏)d𝜔

with the Debye spectral density
𝑆 (𝜔) = [ 𝜔𝛾

𝜔2 + 𝛾2

as a sum of exponentials

𝛼 (𝜏) ≈
𝐾−1∑︁
𝑘=0

𝑔𝑘𝑒
−𝜔𝑘𝜏 .

We first note that the integrand 𝐼 (𝜔, 𝜏) is symmetric with respect to 𝜔 ; 𝐼 (−𝜔, 𝜏) = 𝐼 (𝜔, 𝜏). Therefore, we
can extend the integral over the negative real axis:

𝛼 (𝜏) = 1
2𝜋

∫ ∞

−∞
𝑆 (𝜔)

[
coth

( 𝜔
2𝑇

)
cos(𝜔𝜏) − 𝑖 sin(𝜔𝜏)

]
d𝜔.

Next, we write the sine and cosine in terms of complex exponentials and use the identity coth(𝑥) =

2𝑓 Bose(2𝑥) − 1 with the Bose function
𝑓 Bose(𝑥) B 1

1 − 𝑒−𝑥
to arrive at

𝛼 (𝜏) = 1
𝜋

∫ ∞

−∞
𝑆 (𝜔)

[
𝑓 Bose(𝜔𝛽) − 1

]
d𝜔. (A.1)

In the following, we will derive two different approximations of this integral.

Matsubara frequency summation

The Matsubara frequency summation uses the residue theorem to turn the integral (A.1) into an infinite
sum. This sum then has to be truncated to get an approximation with a finite number of terms. The
resulting approximation works well at high temperatures, but converges only slowly at low temperatures.
Consider the line integral in Figure A.1. Because of the exponential term 𝑒𝑖𝜔𝜏 , the contribution along 𝐿2
vanishes as we take the limit 𝑅 → ∞. This then leaves us with

𝛼 (𝜏) = 1
𝜋

∮
b

𝑆 (𝜔)
[
𝑓 Bose(𝜔𝛽) − 1

]
d𝜔 = 2𝑖

∑︁
{𝜔 𝑗 }

Res
(
𝑆 (𝜔)𝑒−𝑖𝜔𝜏

[
𝑓 Bose(𝜔𝛽) − 1

]
;𝜔 𝑗

)
= 2𝑖

∑︁
{𝜔 ′

𝑗
}
Res

(
𝑆 (𝜔);𝜔 ′

𝑗

)
𝑒
𝑖𝜔 ′
𝑗𝜏

[
𝑓 Bose(𝜔 ′

𝑗𝛽) − 1
]
+ 2𝑖

∑︁
{𝜔 ′′

𝑗
}
Re

(
𝑓 Bose(𝜔𝛽);𝜔 ′′

𝑗

)
𝑆 (𝜔 ′′

𝑗 )𝑒
𝑖𝜔 ′′
𝑗 𝜏 ,

where 𝜔 𝑗 are the poles of 𝑆 (𝜔)
[
𝑓 Bose(𝜔𝛽) − 1

]
, 𝜔 ′

𝑗 the poles of 𝑆 (𝜔), 𝜔 ′′
𝑗 the poles of 𝑓 Bose(𝜔𝛽), and we

have used the residue theorem. We also assumed that 𝜔 ′
𝑖 ≠ 𝜔 ′′

𝑗 for all 𝑖, 𝑗 , which is the case for almost
all 𝛾, 𝛽 . Next, we need to compute all poles and residues. The Debye spectral density has simple poles at
𝜔 ′
𝑗 = ±𝑖𝛾 , with residues

Res (𝑆 (𝜔);±𝑖𝛾) = lim
𝜔→𝑖𝛾

(𝜔 ∓ 𝑖𝛾)𝑆 (𝜔) = [𝛾

2
.
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The poles of the Bose function lie on the imaginary axis, 𝜔 ′′
𝑗 = 2𝜋𝑖𝑛/𝛽 with 𝑛 ∈ ℤ, and are again simple

poles with residues

Re
(
𝑓 Bose(𝜔𝛽); 2𝜋𝑖𝑛

𝛽

)
= lim
𝜔→2𝜋𝑖𝑛/𝛽

(𝜔 − 2𝜋𝑖𝑛/𝛽)
1 − 𝑒−𝜔𝛽

= lim
𝑥→0

𝑥

1 − 𝑒−𝛽𝑥−2𝜋𝑖𝑛
= lim
𝑥→0

1
𝛽𝑒−𝛽𝑥

=
1
𝛽
,

where we substituted 𝑥 = 𝜔 − 2𝜋𝑖𝑛/𝛽 and used the rule of L’Hopital.
With this, we are now equipped to solve the integral:

𝛼 (𝜏) = [𝛾

2
𝑒−𝛾𝜏 [cot(𝛾𝛽) − 𝑖] 𝑒−𝛾𝜏 +

∞∑︁
𝑘=1

[
4𝜋𝑇 2𝑘𝛾

4𝜋2𝑇 2𝑘2 − 𝛾2𝑒
−2𝜋𝑇𝑘𝜏 =

∞∑︁
𝑘=0

𝑔𝑘𝑒
−𝜔𝑘𝜏

with the coefficients (2.22). The result is similar to the one obtained in [27] (up to a different normalization).

Padé spectrum decomposition

The Padé spectrum decomposition is a method to approximate the Bose function 𝑓Bose(𝑥) by a finite sum
[23]. We will use the Padé approximant [𝑁 − 1/𝑁 ] with 𝑁 ≡ 𝐾 − 1 to rewrite

𝛼 (𝜏) ≈ 1
𝜋

∫ ∞

−∞
𝑆 (𝜔)𝑒𝑖𝜔𝜏

[
1
𝜔𝛽

− 1
2
+
𝐾−1∑︁
𝑘=1

2[̃𝑘𝜔𝛽
(𝜔𝛽)2 + b̃2

𝑘

]
d𝜔,

where the derivation of the constants [̃𝑘 and b̃𝑘 can be found in [23]. We can now proceed in a similar
way to the Matsubara frequency summation. We will again consider the line integral along the contour in
Figure A.1 and use the residue theorem. The poles and residues of the new terms are

Res
(
1
𝜔𝛽

; 0
)
=

1
𝛽

and

Res

(
2[̃𝑘𝜔𝛽

(𝜔𝛽)2 + b̃2
𝑘

;±𝑖 b̃𝑘
𝛽

)
=
[̃𝑘

𝛽
.

A bit of algebra yields the final result

𝛼 (𝜏) ≈ [𝛾
[
1
𝛾𝛽

− 𝑖

2
−
𝐾−1∑︁
𝑘=1

2[̃𝑘𝛾𝛽
b̃2
𝑘
− 𝛾2𝛽2

]
𝑒−𝛾𝜏 +

𝐾−1∑︁
𝑘=1

2[̃𝑘[𝛾b̃𝑘
b̃2
𝑘
− 𝛾2𝛽2

𝑒
− b̃𝑘
𝛽
𝜏
=

𝐾−1∑︁
𝑘=0

𝑔𝑘𝑒
−𝜔𝑘𝜏

with the coefficients (2.23).
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Figure A.1 In this figure, the line integral for computing the expansion of the bath correlation function is shown.
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B Stability of the default and rescaled HOMPS

The non-rescaled HOMPS (4.3) has numerical stability problems for higher values of 𝑁trunc. To illustrate
the problem, I plot the expectation value 𝔼 [⟨�̂�𝑧⟩𝑡 ] of the high temperature spin-boson model in Figure
B.1, using both the non-rescaled HOMPS (4.3) and the rescaled HOMPS (4.4). For a better comparison, the
stochastic process was set to 𝑧 (𝑡) = 0 for both methods. A high truncation value of 𝑁trunc = 40 was used.
One can see that the non-rescaled HOMPS diverges after a short time and does not produce the correct
behaviour.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

𝑡

𝔼
[ ⟨
𝜎
𝑧
⟩]

non-rescaled HOMPS
rescaled HOMPS

Figure B.1 The expectation value𝔼 [⟨�̂�𝑧⟩] is computed for both the non-rescaled and the rescaled HOMPS. I use the
high temperature spin-bosonmodel with the same parameters as in Figure 4.4a, but only compute a single realization
whithout noise (𝑧 (𝑡) = 0). One can see that the non-rescaled version of HOMPS is unstable, diverging after a short
time.

The reason for this instability could be the fact that different auxillary states have vastly different magni-
tudes in the non-rescaled version of HOMPS. In Figure B.2, I plot the magnitudes of the different auxillary
states of both the non-rescaled and rescaled HOMPS against time. One can see that the non-rescaled ver-
sion produces magnitudes that differ by up to 15 orders of magnitudes, whereas in the rescaled version
they differ only up to 7 orders of magnitude. In the HOMPSmethod addition of tensors is performed, which
could lead to cancellation, a well-known limitation of floating point arithmetic. The rescaling "normalizes"
the auxillary states and increases numerical stability.
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Figure B.2 In this figure, the magnitudes of different HOMPS auxillary states Ψ (𝑛)
𝑡 are plotted against 𝑡 . I use

the high temperature spin-boson model with the same parameters as in Figure 4.4a, but only compute a single
realization whithout noise (𝑧 (𝑡) = 0). One can see that the magnitudes of different auxillary states take on vastly
more widespread values when using the non-rescaled version of HOMPS than when using the rescaled version.
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