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ABSTRACT 
 
While helpful for engineering applications, digital models representing the as-is status of the built 
environment are rarely available and costly to create using conventional methods. Commonly, 
editable and preferably parametric model geometries are preferred over less easy-to-process, 
triangulated meshes where possible; additional semantic information beyond the geometry is 
required in almost any case. We propose an end-to-end method starting from conventional laser-
scanned point clouds including RGB color information: The captured data is processed using 
semantic and instance segmentation and model fitting first to identify semantic clusters and object 
instances, and then selected structural and MEP elements are reconstructed using geometric 
primitives and procedural geometric operations such as sweeps to generate meaningful, ready-to-
use models. We describe all steps individually, along with a prototypical implementation in which 
we use state-of-the-art segmentation and reconstruction methods on a real-world dataset collected 
by the authors. Intermediate and final results are showcased and critically discussed. 
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INTRODUCTION 
 
All stakeholders and involved parties along the lifecycle of a building can significantly benefit 
from accurate, up-to-date digital information on the facilities. While the method of BIM (Building 
Information Modeling) initially focused on the planning and construction phase, its scope is 
increasingly extended to cover the operation phase (Borrmann et al., 2018). For existing buildings, 
where usable models are rarely available, the approach of Scan-to-BIM focuses on methods that 
allow for the generation of as-built or as-is models for further use. As this is conventionally an 
expert-based, manual, and therefore time- and cost-intensive (Fumarola & Poelman, 2011), many 
attempts exist to automate this process. Generally, the required steps can be split into data 
acquisition, processing, and model provision. The requirements for the resulting model vary 
greatly and depend entirely on the intended use case. For the industrial domain, geometry itself 
plays an important role, as in industrial buildings, MEP components and supply lines, in general, 
are often laid openly. In contrast, all building equipment is subject to frequent or cyclic changes 
(Hullo et al., 2015). 
Most current works focus on specific methods to solve single steps or include many manual 
processing steps to complete an end-to-end workflow; rather than focusing on and optimizing a 
single step, the modular approach presented in this paper aims to provide an end-to-end workflow 
by covering all stages from semantically segmented point cloud data to a ready-to-use, semantics-
rich procedural 3D model of a typical industrial scene. 
 
BACKGROUND AND RELATED WORKS 
 
As indicated, the domain of Scan-to-BIM has seen an ever-increasing amount of attention and 
success in recent years. The term was arguably coined around 2010; Tang et al. (2010) reported a 
comprehensive overview of methods for the automatic reconstruction of building models; Hajian 
& Becerik-Gerber (2010) provide the first available source that discusses “Scan-to-BIM”, 
concerning computation and productivity aspects. Since then, there have been abundant 
developments in the above-introduced distinct stages of Scan-to-BIM. For complete end-to-end 
observations, however, there is still a lack of solutions. Amongst others, Perez-Perez et al. (2021) 
present semantic segmentation specifically for Scan-to-BIM applications. Andriasyan et al. (2020) 
present an end-to-end approach to cover historical building model reconstruction- the work of B. 
Wang et al. (2021) introduces an end-to-end method for generating MEP scenes from scanned 
data. Until now, these end-to-end methods are limited to specific scopes, such as reconstructing a 
purely tubular structure (Liu et al., 2022). This paper aims to address the research gap in the current 
lack of versatile and robust end-to-end methods. 
Our previous work focused on combining multimodal data through automated co-registration to 
automatically reconstruct a simple pipe system model (Pan et al., 2022). In the industrial domain, 
manual remodeling is particularly challenging, which is why Agapaki et al. (2018) investigated 
the most frequent and difficult parts to remodel in the industrial context; since they are mainly 
elongated components, they are classified based on their cross-sectional shape.  
For a comprehensive review of the individual steps of the process beyond those mentioned above, 
we refer to Xie et al. (2019) and Zhang et al. (2019) for semantic segmentation, Oh et al. (2021) 
and Schnabel et al. (2007) for model fitting and Quintana et al. (2017) and Q. Wang et al. (2019) 
for model reconstruction approaches. 
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PROPOSED METHOD 
 
In this paper, we propose a methodology for creating semantics-rich 3D models in the form of 
procedural geometry from indoor LiDAR point clouds. Building towards a comprehensive, 
modular toolbox for applicable Scan-to-BIM, our recent work provides an approach to 
automatically create and enrich 3D models for the simple extract of a pipe system by co-
registration of laser-scanned point clouds and photos (Pan et al., 2022). In the reality of industrial 
facilities, elongated parts such as pipes and steel beams usually occur in combined structures, 
which we call coherent systems. In the method presented in this paper, the previously proposed 
methodology is extended to cover more complicated systems of objects and different cross-section 
types. After introducing the method on a high level, the individual included steps are introduced 
in more detail in the following. 

 
Overview. We aim to automatically reconstruct a usable 3D model based on procedural geometry 
only (Borrmann et al., 2018) starting from a laser-scan-based point cloud. For this, the point cloud 
is first enriched with semantic and instance information. This paper focuses on this phase and the 
subsequent ones, as highlighted within the full context in Figure 1. Based on the identified 
semantic instance clusters, information is derived to provide the necessary foundation to reason 
about the basic structure of the semantic systems. This information is then used to combine the 
instance objects into coherent systems structures of load-bearing and MEP systems. Finally, the 
geometric models of the systems are recreated using basic methods of procedural geometry, 
preserving their semantics through knowledge of the individual parts’ origins. 
 
Instance enrichment. The method presented in this paper starts from a set of semantic clusters. 
Instances are separated by means of subsequent region growing to separate pipe systems and 
cylinder detection using RANdom SAmple Consensus (RANSAC, Schnabel et al., 2007) to 
identify straight pipe sections and manual instance segmentation (beams). For each instance 
cluster, we apply several methods to identify the specific parameters necessary for model 
reconstruction. The applied techniques depend on the object class. 
 
Beams: As the variance of points along the direction of a linear element, such as a beam, is 
significantly higher than in other directions, principal component analysis (PCA) can be used to 
identify the point cluster’s primary direction and align the beam point cluster with the x-axis. The 
rotated points are then projected onto the yz plane. To extract the value of parameters from the 
point cloud, a parametric dummy model for an I-beam cross-section is created and instantiated 
with random values. The shape is parametric and fully customizable using four parameters (cf. 
Figure 4). To best fit the dummy model to the projected points representing the real beam cross-
section, the distance between the points and the edges and vertices of the model must be 
minimized. Assuming 𝑒𝑒𝑖𝑖 as the shortest distance of the point 𝑖𝑖 to the model, the following fitness 
function can be defined using the root mean squared error (RMSE):  

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚:𝐹𝐹(𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑚𝑚) = �1
𝑛𝑛
∑ 𝑒𝑒𝑖𝑖2𝑛𝑛
𝑖𝑖=1                     𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡: 𝑙𝑙𝑗𝑗 ≤ 𝑝𝑝𝑗𝑗 ≤ 𝑢𝑢𝑗𝑗                     (1) 

Figure 1: Overview of the proposed method. Green box indicates focus of this paper. 
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where {𝑝𝑝1,𝑝𝑝2, … , 𝑝𝑝𝑚𝑚} are the set of parameter values to define the dummy model, 𝑙𝑙𝑗𝑗 and 𝑢𝑢𝑗𝑗  are the 
lower and upper bound of each parameter, and 𝑛𝑛 is the total number of points. As the parameters 
set {𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑚𝑚} cannot be directly seen in Eq. 1, the derivatives of this function cannot simply 
be calculated. Therefore, gradient-based algorithms cannot directly minimize the fitness function. 
Contrary to gradient-based algorithms, metaheuristic algorithms are derivative-free and do not 
require the closed-form formulation of the objective function. In this paper, we use particle swarm 
optimization (PSO), as it is easily applicable and can preserve the spatial relationships between 
the solutions (particles) in the space of the problem. PSO is inspired by the migration pattern of 
birds (Kennedy & Eberhart, 1995) and requires the following input parameters: the number of 
particles, the cognitive (𝑐𝑐1), and social coefficient (𝑐𝑐2) as well as the inertia weight (𝜔𝜔).  
 
Pipes: The pipes’ cross section is known a priori to be circular, such that its shape can be described 
by the radius alone. Therefore, we can apply model fitting in the individual straight sections 
represented in our instance clusters using RANSAC to fit cylinder models with no additional 
required steps (such as projection) directly in the instance clusters. We have previously described 
this step in more detail, for which we would like to refer the reader to Pan et al. (2022). 
 
For either class, the start and endpoints of the objects can be identified by projecting all points 
within a point cluster to the identified center line. These start and endpoints are handed over to the 
next step to aggregate the individual object instances into coherent systems within a semantic class. 
The identified cross-section parameters are preserved and finally used in the model reconstruction 
process. 
 
Basic Structure Retrieval. Individual instance objects have to be connected to form coherent 
systems to identify the structure of combined elements and enable the reconstruction of a coherent 
geometry. While the individual instances are known to be connected, they are derived from 
instance clusters of the point cloud, such that no intersections are included in the derived line 
representations. We merge them based on their relative pose and proximity to enforce connectivity. 
We use a hierarchical approach to achieve this: 
 

1. Identify all potential element joints in the system. 
2. Classify the joints by type: Join on passing or join free ends, depending on the number of 

line segments that need to be extended to achieve connectivity. 
3. Evaluate each classified potential joint regarding the distance of the closest relevant ends. 
4. Prioritize starting from the passing element with the maximum number of qualified joining 

lines. 
5. Iterate join operations for both types of joints until no more potential joints are qualified. 

 

Figure 2: Schematic explanation of the merging of unconnected parts in 2D: Join on passing 
elements (left) and join of free ends (right) 
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With this algorithm, we ensure connectivity within systems and generate suitable input for model 
reconstruction to generate closed-surface geometries.  
 

 
Model Reconstruction. Based on the retrieved, combined basic structure, we reconstruct the 
whole 3D geometries for further usage through procedural geometries (sweeps). All relevant 
information for this step is retrieved from the previous steps. 
 
EXPERIMENT AND RESULTS 
 
To validate our method and showcase exemplary results, the introduced toolchain is applied to a 
LiDAR point cloud dataset captured by the authors. The dataset consists of 1’430’000 points 
captured by a FARO Focus 3D terrestrial laser scanner. Semantic segmentation is performed using 
the KPFCNN network architecture (Thomas et al., 2019) using synthetic, simulation-based data as 
ground truth for training (Noichl et al., 2021). Thus, the point cloud is enriched with the class 
labels of walls, roofs, beams, and pipes. The raw input point cloud is depicted in Figure 2a, and 
the semantic segmentation results are shown in Figure 2b. Within the pipes class, two pipe systems 
can be separated using a region-growing approach as presented by Pan et al. (2022), within which 
RANSAC is applied to identify straight pipe elements and their respective radii (example cf. Table 
1). Within the semantic clusters, instances are separated manually for further processing (cf. Figure 
5). 
 
Table 1: Model fitting results for an exemplary beam 
and pipe object. 

 

part parameter 
true 
[mm] 

fit 
[mm] 

deviation 
[%] 

beam flange width (bf) 121.8 125.3 2.9 
flange thickness (tf) 6.9 6.6 -4.5 
beam height (d) 114.6 113.2 -1.2 
web thickness (tw) 5.6 6.0 7.3 

pipe diameter 353.1 354.2 0.3 
Figure 4: I-beam with 
dimensions per ASTM A6 

Figure 3: Fitting the cross-section to the point projection using metaheuristic optimization 
of a parametric shape. Random initialization (left), after 10 iterations (middle), and final 
result after 100 iterations (right). 
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PSO is applied with parameters 𝑐𝑐1  and 𝑐𝑐2  set to 1.49445, and the inertia weight is linearly 
decreased from 0.9 to 0.4, as recommended in Eberhart & Shi (2001) to maintain the algorithm’s 
stability. Figure 3 shows three stages of the model-fitting process with 35 particles over 100 
iterations. After the model-fitting process, the initial random parameter values converge with the 
real cross-section values measured in the point cloud (cf. Table 1).  
The subsequent processing provides the underlying structure of both systems with their center line 
reconstruction, as depicted in Figure 5e. Finally, these parameters and coordinates are transferred 
to the open-source CAD tool FreeCAD (Riegel et al., 2022) to create the procedural geometry 
using sketches and sweeps.  
The achieved accuracy of the model fitting for cross-sections used in the sweep operations is 
further investigated using two arbitrary parts, one pipe and one beam object. Selected results are 
shown in Table 1. The measured reference values (‘true’) are manually obtained in the point cloud, 
and the ‘fit’ values are obtained by cross-section optimization for the beam using PSO and directly 
from the result of RANSAC cylinder fitting for the pipe object. The used direction detection by 
PCA produces results of uneven quality, which significantly affects the projection and model 
generation steps- we present here only very good results to demonstrate the functionality of our 
method. 
 
CONCLUSION AND FUTURE WORK 
 
Scan-to-BIM is a versatile, highly active research domain in which concrete implementations 
depend on the intended use case, requirements, and input data. The presented method starts from 
a semantically enriched point cloud and produces high-quality procedural models. Apart from one 
manual step in instance segmentation, it is entirely automated and requires little computational 
effort. The method covers a set of geometries that suffices to produce coherent models depicting 
typical structural and MEP systems. 
We introduce our method and showcase its applicability through several stages in an experiment, 
as summarized in Figure 5: We start from a semantically segmented point cloud (b), produced 
from a raw laser scan point cloud (a) depicting the roof structure of a typical industrial scene. This 
data is then enriched to recover the underlying basic structure (d) and produce a semantic-
geometric 3D model based on procedural geometries as the final model reconstruction result (e). 

Figure 5: Stages of the Experiment: Original, colored point cloud (a), semantic segmentation 
results color-coded: wall, roof, beam, pipe (b), instance segmentation result (beams only) (c), 
refined recovered basic structure (beams, pipes) (d), and model reconstruction result (e). 
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The presented method can still be improved in terms of precision and robustness by finding more 
precise methods for segment identification and reconstruction than PCA and by extending it to 
allow for more different types of beams (T, L, etc.), ducts and more to build towards a robust 
solution applicable to real-world projects. Furthermore, the current implementation works solely 
on sweeping operations - the resulting model quality can be improved by avoiding object collisions 
and joining the geometries more realistically. The presented hierarchical refinement algorithm 
already ensures the required precision in the basic structure. While the method contains a new 
approach to building coherent systems of objects, it relies on the precondition that instances are 
correctly identified in the first place.  
Overall this contribution adds to the body of knowledge with a set of methods for Scan-to-BIM to 
answer potential requirements with a high degree of automation - while the individual steps are 
based on reliable, well-proven techniques that lead to robust results. 
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