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ABSTRACT 
 

Digital twins (DTs) can support the operation and maintenance process of bridges by providing a 

digital model representing the actual asset in reality. The underlying semantic-geometric model of 

bridges can be created from point cloud data (PCD), obtained by laser scanning or 

photogrammetry. The bridge PCD, however, needs to be processed and abstracted to a parametric 

model to handle geometric updates. Today, this process is conducted manually which in turn 

increases the geometric modeling costs. This paper aims to automate semantic segmentation and 

parametric modeling as essential steps in the geometric modeling of bridges. The point cloud of 

bridges is semantically segmented first through a deep-learning model. The value of parameters is 

then extracted by a heuristic optimization algorithm. Finally, the model of the entire bridge is 

created. The results of the paper show that the geometric modeling process of bridges can be 

automated to a large extent through computational methods. 

 

INTRODUCTION 

 

Following the ASCE report card (ASCE, 2021), the number of existing bridges requiring 

substantial attention is increasing as the rate of deterioration is exceeding the rate of rehabilitation 

and repair. Despite the feasibility of the conventional approaches for the operation and 

maintenance of bridges, these methods are loosely supported by digital methods, thus leading to 

more manual effort and higher costs. Bridge information modeling (BrIM) is a technique to 

generate the digital representation of bridges based on the physical and functional characteristics 

of the structure. BrIM can be used in as-designed, as-built, and as-is phases of the structure for 

accelerated bridge construction, virtual design, structural analysis, and health monitoring 

(Vilgertshofer et al., 2022). Most recently, Digital Twins (DTs) have been also proposed for 

bridges to represent the digital counterpart of the asset (Lu et al., 2020, Mafipour et al., 2021). The 

DT of a bridge is defined a purpose-driven manner based on a set of criteria and requirements. 

Contrary to BrIM, a DT necessarily requires a link/connection to the existing asset to handle 

bidirectional updates. This model can even visualize the occurring deteriorations on the body of 

the structure. These features enable a DT to act as a flexible model to facilitate the operation and 

maintenance process of bridges (Lu et al., 2020). 

Terrestrial laser scanning and photogrammetry are comparatively low-effort techniques to 

capture existing bridges. Both methods generally result in Point Cloud Data (PCD) representing 

the partial geometric-semantic information of the bridge. PCD can be considered a resource to 

create the geometric model of existing bridges. However, it needs to be processed and abstracted 

further to provide the model fulfilling the requirements of a BrIM or DT. Semantic segmentation 

and parametric modeling are two primary steps in the geometric modeling process of bridges.  
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Today, these steps are conducted in a manual manner which is not only labor-intensive but 

also error-prone. To alleviate the costs associated with the geometric modeling of bridges, this 

paper aims to propose an approach to automating these steps.  

The point cloud of bridges is semantically segmented by training and testing a deep 

learning model for photogrammetric bridge point clouds. A base model is created and the spatial 

features of points in different local neighborhoods are described. These features are then processed 

further and used for classifying points. To create the model of the bridge, parametric prototype 

models (PPMs) are proposed to extract the dimensions of the bridge elements from the PCD. PPMs 

are instantiated with random values in ranges inspired by bridge engineering knowledge, and a 

metaheuristic algorithm is used to fit each PPM into the PCD. The extracted values are then used 

to create the 3D model of the entire bridge. The paper describes all steps in detail and presents a 

case study comprising six concrete bridges in Bavaria, Germany. 

  

BACKGROUND AND RELATED WORKS  

 

The proposed approaches for the geometric digital twinning of bridges can be categorized as 

bottom-up, top-down, and deep learning-based ones. Here, a general overview of these approaches 

is presented:  

Bottom-up: The bottom-up methods start from low-level features such as the x, y, z coordinates 

of points to cover or generate a system at higher levels. The low-level features can be directly used 

or converted to high-level features such as normals. The bottom algorithms generally initialize a 

set of seed points and employ low-level or high-level features to expand the local neighborhood. 

The bottom-up algorithms have been principally or partially used in the geometric modeling of 

bridges. Truong-Hong and Lindenbergh (2022) proposed a bottom-up algorithm based on voxel-

based region growing (VRG) to detect planer surfaces and elements. Qin et al. (2021) computed 

and vertical and horizontal density of points to detect the point clusters of bridge elements. Lee et 

al. (2020) detected and measured the distance between planar surfaces of bridge decks to model 

specific types of decks.  

Top-down: The top-down approach starts with the entire system and decomposes it to subordinate 

elements. Most of the existing algorithms in this category are heuristic. These algorithms generally 

leverage the existing geometric and semantic information for classifying points. This approach has 

been also used for the geometric digital twinning of bridges. Lu et al. (2019) expressed the existing 

geometric relationships between the points, and segmented the point cloud of RC bridges based 

on a set of criteria. Girardet and Boton (2021) proposed an approach using a visual programming 

tool to foster the modeling process of bridges. Pan et al. (2019) constructed a graph based on the 

spatial relationships between the points and classified points using a rule-based algorithm. Yan 

and Hajjar (2021) employed the existing connection rules to segment the steel-concrete composite 

bridges based on a top-down approach. 

Deep learning-based: Deep learning (DL) models can receive a PCD containing low-level or 

high-level features and extract further features for automated semantic segmentation of point 

clouds. Most of the proposed DL models are supervised and require a dataset for training. 

However, the trained models can provide more flexibility, especially facing point clouds that might 

not meet presumptions. DL models have been also used for the geometric modeling of bridges. Hu 

et al. (2021) extracted features from photogrammetric data (images) through a multi-view 
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convolutional neural network (CNN) and connected it to a multilayer perceptron (MLP) to segment 

the point cloud of bridges. Lee et al. (2021) collected the features from the local neighborhoods of 

points through a k-d tree and KNN search algorithm and improved the performance of PointNet 

(Qi et al., 2017) and dynamic graph CNN (DGCNN) (Wang et al., 2019). Xia et al. (2022) 

described a local reference frame for points and described the local neighborhoods through a set 

of features for the centroid point. They further used the extracted features and classified points.  

 

SEMANTIC SEGMENTATION  

 

Semantic segmentation of a bridge point cloud is the process of associating points with predefined 

labels representing the bridge elements. Bridges mostly consist of vertical and horizontal elements 

such as the bridge deck and abutments. To increase awareness of the network about intersecting 

regions between these elements, the bridge point clouds can be encoded more efficiently. In this 

section, the encoder of RandLA-Net (Hu et al., 2020) is modified and a modified version of this 

model is presented.  

 
Figure 1. The architecture of Modified RandLA-Net (retrieved from (Hu et al., 2020)) 

 

Modified RandLA-Net. RandLA-Net (Hu et al., 2020) benefits from a U-shaped autoencoder as 

shown in Figure 1. The encoder of this model consists of a spatial encoder followed by random 

sampling. The spatial encoder describes the relationship between points and the random sub-

sampling layer reduces the processing load. To improve the performance of the network, a spatial 

feature descriptor (SFD) module is used which is similar to the feature aggregation module in 

RandLA-Net, however, encodes the points through two blocks named Local Spherical 

Representation (LSpR) and Local Surface Representation (LSuR).  

 
 

(a) (b) 

Figure 2. Representation of a local neighborhood: (a) local spherical representation 

(LSpR); (b) local surface representation (LSuR).  
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Local Spherical Representation (LSuR). RandLA-Net encodes ten features including the 

coordinate of the centroid point and its neighboring points, the relative position of the neighboring 

points to the centroid point, and their distance. Among these features, the coordinate of points is 

highly vulnerable to possible transformations such as rotation and translation. In addition, relative 

positions might become very small due to normalization. To address these issues, the relative 

position of points can be expressed in the spherical coordinate system. Contrary to the Cartesian 

coordinate system, this system defines data points with two angles limited in the range of [0, 2𝜋] 

and distance/radius from the origin. Figure 2(a) shows the local neighborhood of the query point 

𝑝𝑖 and its 𝐾 neighbors {𝑝𝑖
1, 𝑝𝑖

2, . . . , 𝑝𝑖
𝐾} obtained by the K-nearest neighbors (KNN) algorithm. The 

relative position of 𝑝𝑖 to its neighbors can be described as below: 
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Local Surface Representation (LSuR). The previous module cannot solely provide adequate 

information about the underlying surface the points are representing. To enhance the awareness of 

the network, the Darboux frame of the points can be defined and the curvature, normal curvature, 

and relative torsion of the surface are encoded implicitly. As shown in Figure 2(b), a Darboux 

frame with the axes (𝑢𝑖
𝑘, �⃗�𝑖

𝑘, �⃗⃗⃗�𝑖
𝑘) can be defined for each pair of (𝑝𝑖, 𝑝𝑖

𝑘) and the dependencies 

between each pair (𝑛𝑖 , 𝑛𝑖
𝑘) is described by three angles 𝛼𝑖

𝑘, 𝛽𝑖
𝑘 , and 𝛾𝑖

𝑘 as follows (Rusu et al., 

2008): 
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LSuR and LSpR modules result in six features, five out of the six expressed by angles. The 

modified RandLA-Net employs these six features only to encode the local neighborhoods.  

Training and validation. The model is trained on the photogrammetric point cloud of six bridges, 

collected in Bavaria, Germany. To reduce the processing load, each point cloud is sub-sampled by 

uniform grid sampling with a grid size of 5 cm. The bridge samples consist of a bridge deck, 

railings, abutments, and background. Thus, these four classes are considered for semantic 

segmentation. The model is trained on a single GPU (RTX 3080) with 16 GB RAM and its 

performance is tested on an unseen sample. Due to imbalanced classes, the corresponding weights 

of the classes are calculated and multiplied by the value of loss resulting from each class. All the 

point clouds are translated to the origin and normalized in the range of zero to one. The model has 

four layers with 1/4 sampling in each layer as shown in Figure 1. The number of 16 neighbors is 

considered for the KNN algorithm and a batch size of two for training. The number of points in 

each batch is also limited to 60,000 points and a learning rate of 0.001 is used in training. 

Semantic segmentation results. To evaluate the performance of the Modified RandLA-Net, it is 

compared with RandLA-Net (Hu et al., 2020) in terms of accuracy (Acc) and intersection over 

union (IoU). These statistical metrics are obtained from the confusion matrix of points based on 

the total number of true positive, false negative, and false positive predictions. Their mean value, 
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i.e. mean Acc (mAcc) and mean IoU (mIoU), also show the overall performance of the model. 

Table 1 shows the results of training RandLA-Net and its modified version on bridges 2-5 and 

testing on the unseen sample bridge 1. As can be seen, both models have gained almost the same 

performance in terms of mAcc while the value of mIoU after applying the modifications in the 

encoder of RandLA-Net is 3.54% higher. This conveys that the new encoder can improve the 

prediction results. Figure 3 also shows a visual comparison of the models in which the modified 

version has been more successful in classifying points.  

Table 1. Comparing the prediction results of the models 

Model Metric 
Class Mean 

(mAcc/mIoU) 
Abutment Deck  Railing Background 

RnadLA-Net 
Acc 99.81 98.79 98.51 98.13 98.81 

IoU 94.03 96.51 77.69 97.78 91.50 

Modified RandLA-

Net 

Acc 99.92 99.30 97.18 98.79 98.80 

IoU 94.94 97.96 89.24 98.04 95.05 

 

 
Figure 3. Comparing the prediction results: ground truth (left); RandLA-Net (middle); 

Modified RandLA-Net (right) 

PARAMETRIC MODELING 

 

Parametric modeling allows to create geometrically and topologically consistent and coherent 

Digital Twins of bridges consisting of several components. It is also necessary to handle the 

geometric alterations occurring throughout the life-cycle of a bridge. Through parametric 

modeling, the geometric model becomes capable of changing shape and mirroring the geometric 

conditions of the real asset. In this section, parametric prototype models (PPMs) are introduced as 

means for representing engineering knowledge on the shape of individual bridge components in a 

parametric manner.  

 

Parametric Prototype Model (PPM). A parametric model comprises a set of parameters through 

which it can be altered. It also comprises a set of constraints that control and preserve the shape of 

the object. Similarly, a parametric prototype model (PPM) is defined as a dummy model 

comprising human-definable parameters and constraints with the ability to update its shape. A 

PPM has a particular class type and objects generated from this class all preserve the type and only 

differ in attributes such as the value of parameters. A PPM can be defined in 2D or 3D depending 

on its particular use case. For instance, Figure 4 shows the 2D PPM of a typical bridge deck 

described by a set of parameters. As can be seen, any change in the value of parameters leads to a 

new instance of the bridge deck. Considering a point cloud associated with this bridge deck, a list 

of candidates can be proposed for the value of dimensions the point cloud is representing. To 
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determine the value of parameters through a PPM, each candidate needs to be quantified. To this 

end, a fitness function is defined and connected to an optimization algorithm, as described in the 

next section. 

 
Figure 4. The PPM of a typical bridge deck and its instances. 

PPM-to-cloud fitting. Contrary to the conventional model fitting methods, the PPMs pave the 

way to fitting into not only primitive shapes but also non-primitive shapes. The programming 

process of a PPM is started from an origin and extended to other vertices based on the value of 

parameters. Concurrently, constraints such as parallelism, connectivity, perpendicularity, and 

symmetry are implicitly applied to the prototype model. The mathematical model of the PPM 

cannot be simply expressed and derived by gradient-based algorithms. Therefore, metaheuristic 

algorithms can be employed to adjust PPMs and fit them into point clouds. To instantiate a PPM, 

random values can be generated in predefined ranges derived from bridge engineering knowledge. 

To fit a PPM, the shortest Euclidean distance of the edges to the point cloud is required to be 

minimized. Considering a set of points 𝑆 = {𝑠𝑖 | 𝑖 =  1, . . . , 𝑛}, where 𝑠𝑖 ∈  ℝ2, and a 2D PPM 

described by a set of parameters 𝑃 = {𝑝𝑗  | 𝑗 =  1, . . . , 𝑚} with lower bound 𝑙𝑗 and upper bound 𝑢𝑗 , 

in which 𝑝𝑟 ∈  [𝑙𝑗 , 𝑢𝑗], the following objective/fitness function can be defined in the term of the 

root mean squared error (RMSE): 

𝑇𝑜 𝑚𝑖𝑛: 𝐹(𝑝1, 𝑝2, … , 𝑝𝑚) = √
1

𝑛
∑ 𝑒𝑖

2

𝑛

𝑖=1

, 𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜: 𝑙𝑗 ≤ 𝑝𝑗 ≤ 𝑢𝑗  (4)  

where 𝑒𝑗 is the shortest distance of the points to the edges and vertices of the PPM. As can be seen, 

the parameter set 𝑃 is not directly represented in the objective function of the problem. Therefore, 

derivatives of the function cannot be calculated simply by gradient-based algorithms. To handle 

this challenge, metaheuristic algorithms can be employed as they are derivative-free and do not 

require the closed-form formulation of the fitness function.  

 

Parametric modeling results. The parameter values of a bridge point cloud can be extracted from 

the faces and cross-sections through the 2D PPMs. To this end, the points of the bridge deck, 

detected through semantic segmentation, are projected onto the xy plane. As the variance of points 

along the length of the bridge deck is higher, principal component analysis (PCA) can be applied 

to align the bridge point cloud with the x-axis. Using the abutment point clouds, the distance 

between the retaining walls can be considered as the bridge deck. These points are projected onto 

the yz plane and a 2D PPM resembling the deck is fitted into the points as shown in Figure 5. 

Similarly, PPMs can be used for extracting the value of parameters from the other segmented point 

clouds such as abutments. To create the model of the entire bridge, a 3D PPM of the bridge was 
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created that is capable to represent a large variety of single-span RC bridges through parameter 

variation. As mentioned, PPMs require the parameter values to resemble the point clouds. To this 

end, the values determined from analyzing the faces and cross-sections through 2D PPMs are fed 

into this model. To assemble PPMs after model-fitting, a simple average function is applied to the 

parameters that are common in different elements. This list of values is finally imported into the 

3D PPM. The result is a high-quality geometric-semantic digital twin of the captured bridge 

(Figure 6).   

   

(a) (b) (c) 

Figure 5. PPM-to-cloud fitting: (a) iteration 1; (b) iteration 10; (c) iteration 100 

 

 
Figure 6. The geometric digital twin of the bridge 

 

 

CONCLUSION 
 

This paper presents an approach to creating the geometric model of the single-span RC bridges 

from their point clouds. The point clouds are semantically segmented and these parts are used for 

extracting the value of parameters. To this end, a deep learning model is employed that encodes 

the points based on six features mostly defined based on angles. The results of the paper show that 

these features can aid the network in classifying points. To extract the value of parameters from 

the segmented parts, Parametric Prototype Models (PPMs) have been proposed. These dummy 

models are capable of model-fitting into not only primitives but also the point cloud of more 

complicated elements that exist commonly in bridges. The results of the paper show that the 

proposed approach can provide a modeling solution that fulfills the industry’s demand to a large 

extent. However, this approach still needs to be tested on more samples and more complicated 

bridges such as curved or multi-span bridges. Also, more classes can be considered for the 

semantic segmentation of the bridge point cloud to cover a more variety of bridge types.  
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