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Abstract. To model the field response of a fully saturated halfspace coupled with an elas-
todynamic trench, the Wave Based Method (WBM) is applied. This numerical method repre-
sents an indirect Trefftz approach and is based on weighted wave functions to describe field
responses. The wave functions are derived from the analytical solutions for the underlying dif-
ferential equations. This method has firstly been introduced for vibroacoustic problems in the
mid-frequency range. Amongst others, the performance of the WBM strongly depends on the
relation between the applied excitation frequency and the dimensions of the observed problem.
This relation lies about in the same range for a vibroacoustic structure as for a soil halfspace,
which permits to use similar wave function sets. Considering a fully saturated poroelastic half-
space, a second irrotational potential is introduced according to Biot’s theory. This so-called
second P-wave is approximated by an additional set of wave functions, which increases the
number of unknowns for the numerical model. To reduce the total number of wave functions,
the coupled trench is modeled by a Timoshenko beam. This permits to replace the wave function
sets of the original elastodynamic trench by the analytical solution for the Timoshenko beam.
Simulation results are used to assess the accuracy and the mitigation efficiency of the wave
barrier.
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1 INTRODUCTION

Open or infilled trenches [1, 2, 3] are often installed to reduce vibrations induced for example
by traffic or machinery, which are acting on constructions. Even though pure open trenches
are highly effective as wave barriers against incoming Rayleigh waves, their excavation often
needs to be stabilized to reach an effective depth. This is especially the case, when the trench
is inclined or the surrounding ground is water saturated. To stabilize such an excavation, it is
possible to create i.a. a simple wall, an infilled trench with concrete or an open trench with sheet
walls. To consider the interaction between such a wave barrier and a water saturated halfspace,
different numerical methods have been introduced. One often used approach is to model the
wave barrier and the halfspace by the finite element method (FEM) [4, 5]. This usually requires
a large amount of degrees of freedom, to model the far field of of the poroelastic halfspace
adequately. An alternative presents for example the coupling of the FEM mesh for the wave
barrier to a boundary element model (BEM) for the poroelastic halfspace [6].

In this paper, the Wave Based Method (WBM) is extended to model a simple wall as a wave
barrier, which is coupled to a poroelastic halfspace. This approach is chosen as the WBM
needs less degrees of freedom than a FEM approach. Moreover, the WBM permits to extend
such a model by additional inclined soil layers, by introducing compatibility and equilibrium
equations between the different soil layers. However, the investigation of different soil layers
with the WBM is not analyzed in this paper and is part of future work. The WBM is originally
developed by [7] to describe vibro-acoustic problems in the mid-frequency range. It is based on
weighted wave functions to approximate the underlying potentials of a boundary value problem.
As shown by [7] for an acoustic problem and by [8] for an elastodynamic problem, these wave
functions are derived from the underlying analytical solution of a boundary value problem. In
further publications, the WBM is extended to model coupled FEM and WBM domains [9, 10]
and to treat poroelastic materials according to Biot’s theory for higher frequencies [11]. These
publications revealed that the WBM shows a high convergence rate and requires significantly
less degrees of freedom than a FEM approach. Moreover, [11] gives an example to model
coupled poroelastic domains with different material properties by introducing compatibility
and equilibrium equations.

These findings motivated to extend the WBM by Biot’s theory for low frequencies [12, 13]
to model a poroelastic halfspace, coupled to a simple wall. To approximate the Sommerfeld
radiation condition, the WBM is extended by an absorbing boundary condition [14], which
transmits normally incident wave fronts. The trench wall is modeled by the analytical solution
for a Timoshenko beam [15, 16, 17], to consider influences from its shearing behaviour. To
couple the deformation field of the Timoshenko beam to a poroelastic halfspace, compatibility
and equilibrium conditions are set up and boundary conditions are formulated for the beam.
These compatibility and equilibrium equations are involved into a weighted residual Galerkin
approach, to derive the final system of linear equations. The defined boundary conditions for
the beam are then added to the final system of linear equations, which is solved to derive the
unknown weighting values for the wave functions of the WBM domains and the homogeneous
solution of the beam. A similar approach is also presented by [7] to couple a Kirchhoff plate to
an acoustic cavity.

The paper is organized as follows. In Section 2, Biot’s theory for low frequencies is intro-
duced and it is described, how the defined displacement fields for a poroelastic halfspace are
approximated by the WBM. Moreover, the analytical solution for the longitudinal and vertical
displacement field of a Timoshenko beam are presented and it is shown how these are coupled



M. Lainer and G. Müller

to the attached WBM domains. In Section 3, a numerical example is presented to check the
convergence of the WBM and to compare the results with data from the publication [6].

2 GOVERNING EQUATIONS AND NUMERICAL MODEL

2.1 Biot’s theory for a fully saturated halfspace

The displacement field for a fully saturated halfspace is divided into the solid phase dis-
placements us = [ux, uy]

T and the fluid seepage field U = [Ux, Uy]
T . The fluid seepage field

describes the relative displacements between the enclosed fluid and the solid skeleton, which is
weighted by the porosity nf : U = nf (uf − us). These displacement fields are described by a
superposition of the gradients of two irrotational potentials Φp1/2 and the curl of one solenoidal
potential Ψs, based on Biot’s theory [12, 13]. The approximation of these potentials with the
Wave Base Method (WBM) is shown in the next subsection.

us = ∇Φp1 +∇Φp2 + ∇̃Ψs (1)

U = γp1∇Φp1 + γp2∇Φp2 + γs∇̃Ψs (2)

The values γp1/2 and γs in equation (2) describe eigenvalues of the two dynamic equations
according to Biot’s theory for low frequencies [12], when these are solved either for ∇Φp1/2 or
∇̃Ψs. Moreover, these potentials correspond to the so-called first and second P-wave and the
S-wave, which are characterized by their wave numbers kp1/2 and ks. These wave numbers are
described by the following equation and depend on the radial excitation frequency ω = 2πf
as well as on the material parameters summarized in Table 1. Moreover, the wave numbers for
the first and second P-wave depend on the parameter ρf2, which indicates the coupling between
fluid phase and solid skeleton. Its imaginary part depends on the dissipation parameter ξ.

kp1/2 =

√
ρf + γp1/2ρf2

(α + γp1/2)M
· ω, ks =

√(
1 + γs

ρf
ρ

)
ρ

µ
· ω (3)

with ρf2 =
ρfa

nf
− iξ

ω(nf )2
, ξ =

ρf · (nf )2

kc
· 9.81m/s2, kc =

κ · ρf
ηf

· 9.81m/s2

Based on the description of the displacement fields, given by the equations (1) and (2), the
following compatibility equations are defined for a poroelastic halfspace. Here, the value ζ
describes the divergence of the fluid seepage field, or respectively the amount of fluid leaving
the pores. 

εxx
εyy
γxy
ζ

 =


∂
∂x

0 0 0
0 ∂

∂y
0 0

∂
∂y

∂
∂x

0 0

0 0 ∂
∂x

∂
∂y



ux

uy

Ux

Uy

 (4)

These expressions permit to evaluate the total stresses within a poroelastic halfspace. The
following constitutive equations consider the two Lamé coefficients λ and µ and the two Biot
coefficients M and α. The value σf describes the total fluid stresses.
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σxx

σyy

τxy
σf

 =


λ+ 2µ+ α2M λ+ α2M 0 αM

λ+ α2M λ+ 2µ+ α2M 0 αM
0 0 µ 0

αM αM 0 M



εxx
εyy
γxy
ζ

 (5)

Symbol Value Definition
ρs 2650 kg/m3 density, solid matrix
ρf 1000 kg/m3 density, water
nf 0.20 porosity
ρ 2320 kg/m3 density, mixture
η 0.00 loss factor, drained rock
E 19.333 · 109 N/m2 E-modulus, drained rock
ν 0.30 Poisson’s ratio
K 18.891 · 109 N/m2 bulk modulus, mixture
α 0.55 first Biot coefficient
M 9.11 · 109 N/m2 second Biot coefficient
kc [10−6; 10−2] m/s hydraulic conductivity
at 1.0 tortuosity

Table 1: Material parameters for water saturated sandstone [6, 18]

2.2 Description of a poroelastic halfspace with the Wave Based Method

The Wave Based Method (WBM) permits to approximate the displacement fields for the solid
skeleton us and the fluid seepage field U by a sum of weighted wave functions. The following
equations refer to displacement fields, which are described by their homogeneous solution. For
this, the equations (1) and (2) are approximated by the following WBM approaches ûs

h and Ûh.

us ∼= ûs
h =

np1∑
i=1

cp1,i∇Φp1,i +

np2∑
j=1

cp2,j∇Φp2,j +
ns∑
k=1

cs,k∇̃Ψs,k (6)

U ∼= Ûh =

np1∑
i=1

γp1cp1,i∇Φp1,i +

np2∑
j=1

γp2cp2,j∇Φp2,j +
ns∑
k=1

γscs,k∇̃Ψs,k (7)

The wave functions Φp1,i,Φp2,j and Ψs,k are chosen according to [11] and are derived from
the underlying analytical solution for an elastodynamic problem, as shown by [8]. These permit
to describe the displacement fields of convex domains, by approximating each body wave (P-
and S-waves) with a finite number of wave functions. The minimum number of wave functions
(np1 , np2 , ns) is derived from the maximum wave number, respectively the highest oscillating
wave, used in a WBM approach, which must be larger than the truncated physical wave number
of the approximated body wave [7]. This relation is given by the following equation, in which
the parameter T denotes a truncation factor chosen by the user. For the simulation results
presented in this paper, the value is set to T = 2, based on the publications by [8, 11].

kmax ≥ T · k, T ∈ [1; 6] (8)
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In the equations (6) and (7), the unknowns cp1,i, cp2,j and cs,k represent the weighting val-
ues of the wave functions for a boundary value problem and are derived within a weighted
residual Galerkin approach. Figure 1 shows an exemplary boundary value problem, which is
divided into two convex subdomains, whose edges are described by different boundary con-
ditions. These consist of Neumann (Γσ), coupling (Γ(α,β)), mixed (ΓSE) and absorbing (ΓZ)
boundary conditions, defined according to the publications [14, 19, 20].

p(t)

Γ
(α)
SE

Γ
(α)
Z

Γ
(β)
Z

Γ
(β)
σ

Γ
(α)
σ

Γ(α,β)

Ω(α)

Ω(β)

Figure 1: Example for the definition of boundaries

2.3 Description of the displacement fields of a Timoshenko beam

In the following, the displacement field of a beam is divided into its longitudinal u(s) and
vertical displacements y(s), which are described separately from each other. The longitudinal
and vertical displacements of the beam consist of a homogeneous solution (uh(s), yh(s)) and a
particular solution (up(s), yp(s)). The derivation of the longitudinal and vertical displacement
fields is for example shown in [21, 22] and applied in [16, 17].

u(s) ∼=
2∑

r=1

c(u)r Θ(u)
r︸ ︷︷ ︸

uh(s)

+

n(α)∑
m=1

cmu
(α)
m +

n(β)∑
q=1

cpu
(β)
q︸ ︷︷ ︸

up(s)

(9)

y(s) ∼=
4∑

l=1

c
(y)
l Θ

(y)
l︸ ︷︷ ︸

yh(s)

+

n(α)∑
m=1

cmy
(α)
m +

n(β)∑
q=1

cpy
(β)
q︸ ︷︷ ︸

yp(s)

(10)

The homogeneous solution uh(s) consists of two wave functions [Θ(u)], whereas yh(s) is pre-
sented by four wave functions [Θ(y)]. These are derived analytically by assessing the underlying
dynamic equations for the unloaded case of a longitudinal rod and a Timoshenko beam [15].
The homogeneous solutions depend either on the wave number k(u) (longitudinal rod) or on the
two wave numbers k(y,1) and k(y,2) (Timoshenko beam). The values, which are necessary to
evaluate these wave numbers, are summarized in Table 2.

[Θ(u)] = [eik(u)s, e−ik(u)s], k(u) =
√
ω2 · ρ/E (11)
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[Θ(y)] = [eik(y,1)s, e−ik(y,1)s, eik(y,2)s, e−ik(y,2)s] (12)

k(y,1) = ±
√(

−χ+
√

χ2 + 4ς
)
/2, k(y,2) = ±

√(
−χ−

√
χ2 + 4ς

)
/2

Symbol Value Definition
E 210 · 109 N/m2 Young’s E-modulus
η 0.10 loss factor
ν 0.30 Poisson’s ratio
ρ 7850 kg/m3 density
T [0.5; 1.5] · λr length
B {0.10; 0.05} · T width
G E/(2 · (1 + ν)) shear modulus
A 1 m ·B cross section
I 1 m ·B3/12 second moment of inertia
κ 10 · (1 + ν)/(12 + 11 · ν) shear correction factor

χ −ρω2

Gκ
− ρω2

E
–

ς −ρ2ω4

EGκ
+ ρAω2

EI
–

Ã 1
EI

− ρω2

EGAκ
–

B̃ 1
GAκ

–

Table 2: Parameters for the Timoshenko beam with respect to the Rayleigh wave length λr [6]

For the particular solution of the longitudinal and vertical displacement field, it is necessary
to evaluate the tangential and normal stresses of the attached WBM domains, as indicated in
Figure 2. The difference between the tangential stresses σ(α)

t and σ
(β)
t then corresponds to the

longitudinal loading qt, generating longitudinal displacements along the beam. In contrast to
this, the normal stresses σ(α)

n/f and σ
(β)
n/f contribute to the normal loading qn, which causes vertical

displacements along the beam. The following particular solutions describe the displacements
[u(⋄)(s)] and [y(⋄)(s)], with ⋄ ∈ [α, β]. The stresses [σ

(⋄)
t ] and [σ

(⋄)
n/f ] depend on the wave

functions of the respective domain Ω(⋄). The function H(s) corresponds to the Heaviside step
function.

[u(⋄)(s)] =
i

2EAk(u)
·

L∫
0

[σ
(⋄)
t (ξ)] · H(s− ξ) ·

(
eik(u)(s−ξ) − e−ik(u)(s−ξ)

)
dξ (13)

[y(⋄)(s)] =
i

2(k2
(y,1) − k2

(y,2))
·

L∫
0

Ã+ k2
(y,1)B̃

k(y,1)
·[σ(⋄)

n/f (ξ)]·H(s−ξ)·
(
eik(y,1)(s−ξ) − e−ik(y,1)(s−ξ)

)
. . .

. . .−
Ã+ k2

(y,2)B̃

k(y,2)
· [σ(⋄)

n/f (ξ)] · H(s− ξ) ·
(
eik(y,2)(s−ξ) − e−ik(y,2)(s−ξ)

)
dξ (14)
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For the evaluation of the internal forces of a Timoshenko beam, it is necessary to compute
the angular rotation φ(s). The homogeneous and particular solution for φ(s) are derived from
the underlying dynamic equations [15], which is similar to the derivation procedure for y(s).
The angle of shear is then defined as follows.

γ = y′ − φ (15)

σ
(α)
t σ

(β)
t

s, u(s)

y(s)

qt qn

Ω(α) Ω(β)

σ
(α)
n/f σ

(β)
n/f

E,A, I,G, ρ, κ

T

Figure 2: Stresses from coupled WBM domains acting on a beam

2.4 Coupling of the displacement field of a Timoshenko beam to a poroelastic halfspace

The following coupling approach describes the connection of the displacement field of a
Timoshenko beam to a poroelastic halfspace, and is based on the coupling procedure between
a Kirchhoff plate and an acoustic cavity according to [7]. Therefore, it is necessary to set up
compatibility conditions between the normal and tangential displacements of a WBM domain
Ω(⋄), with ⋄ ∈ {α, β}, and the beam. In the case of a water saturated halfspace, the beam is
assumed to be impermeable, so that the fluid flux along the coupled edge of a WBM domain is
set to U

(⋄)
n = 0. These compatibility conditions are defined for each coupled WBM domain.

R(α,beam)(r) =


R

(α,beam)
un (r) = u

(α)
n − y = 0

R
(α,beam)
ut (r) = u

(α)
t − u = 0

R
(α,beam)
Un

(r) = U
(α)
n = 0

(16)

R(β,beam)(r) =


R

(β,beam)
un (r) = u

(β)
n + y = 0

R
(β,beam)
ut (r) = u

(β)
t + u = 0

R
(β,beam)
Un

(r) = U
(β)
n = 0

(17)

In the next step, these compatibility conditions go through a weighted residual Galerkin
approach, to set up their contributions to the final system of linear equations. Its unknowns
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represent the weighting values for the wave functions of the WBM domains and the weighting
values for the homogeneous solution of the longitudinal and vertical displacement field of the
beam. The last contributions to the final system of linear equations represent the boundary
conditions of the coupled beam in the model. The two ends of the beam are supposed to be free,
so that the normal force, the shear force and the moment have to be zero at these points.

R(beam,α/β)(r) =



N(0) = EA · u′(0) = 0
N(L) = EA · u′(L) = 0
Q(0) = GAκ · γ(0) = 0
Q(L) = GAκ · γ(L) = 0
M(0) = −EI · φ′(0) = 0
M(L) = −EI · φ′(L) = 0

(18)

3 NUMERICAL EXAMPLE

3.1 Model description

Figure 3 depicts a water saturated halfspace, which is excited by a harmonic line loading
p(t) = p0 · eiΩt with the amplitude p0 = 100 N/m and the excitation frequency f = 350 Hz
(Ω = 2πf ). This loading results in a Rayleigh wave length of approximately 5 m, which is
evaluated according to the derivations of [6]. The material data for the poroelastic halfspace
and the coupled beam are given in Table 1 and Table 2, referring to [6, 18]. The dissipation
coefficient ξ is described as a dimensionless value ξ∗ = ξ · T/√µρ, which is chosen to be
ξ∗ = 0.2 for the following evaluations in order to compare them with the results given by [6].
The dimensionless dissipation coefficient ξ∗ and the trench length T become then decisive for
the computation of the hydraulic conductivity, which is described within the equation 3.

x

T
=

λ
r

1.0 m5λr

2.0 m

R

p0 · eiΩt

1

2

4

y

coupled beam

s

3

Figure 3: Model description of a beam coupled to a water saturated halfspace

The poroelastic halfspace in Figure 3 is divided into four domains 1 - 4 , of which each
is defined by four nodes. The surface of the halfspace is modeled with Neumann boundary
conditions and the circular edges correspond to absorbing boundaries, which transmit incident
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wave fronts [14]. The domains 1 and 4 are coupled to a beam with the length T and the local
s-coordinate system. Dotted lines indicate that two domains are coupled by compatibility and
equilibrium equations [20].

Figure 4 illustrates the absolute value for the displacement |uy| in vertical direction in the
vicinity of the coupled beam for T = λr and T/B = 10 (λr = 5 m). The peaks and valleys
in front of the barrier indicate that the incoming Rayleigh wave is reflected, as especially the
distance between two valleys corresponds to about λr/2. In front of the beam, the absolute value
of the vertical displacement goes up to |uy| = 3.3 · 10−9 m along the surface. Behind the trench
in its shadow zone, these values decrease and are between 1.0 · 10−9 m and 1.3 · 10−9 m. In
order to show exemplarily that the defined boundary conditions from equation (18) are fulfilled,
Figure 5 depicts the real part of the moment M(s) for the Timoshenko beam. It can be seen, that
the moment vanishes at both ends, which fulfills the predefined boundary conditions adequately.

[m]
x

y

x [m]

y
[m

]

Figure 4: Absolute value of the vertical displacement ampli-
tude |uy| for the water saturated halfspace coupled to a Timo-
shenko beam

Figure 5: Real part of the
moment for the Timoshenko
beam

3.2 Convergence of the WBM model

For the presented example, the sum of the square of the residuals for the compatibility condi-
tions between the WBM domains (Ω(α),Ω(β)) and the coupled beam is evaluated. Two integral
expressions are set up, to compute the square of the residuals for the longitudinal and verti-
cal displacements along the beam length T . These residuals are given by the equations (16)
and (17). The expression ⋄̂ denotes here a complex conjugate field variable.

∥Ru∥2 =
T∫

0

(u
(⋄)
t (s)− u(s)) · (û(⋄)

t (s)− û(s)) ds, with ⋄ ∈ {α, β} (19)

∥Ry∥2 =
T∫

0

(u(⋄)
n (s)− y(s)) · (û(⋄)

n (s)− ŷ(s)) ds, with ⋄ ∈ {α, β} (20)
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These residuals are normalized by the square of the maximum amplitude of the longitu-
dinal displacement (|umax|2), or respectively the maximum vertical displacement (|ymax|2), of
the beam. These values are computed for several sets of wave functions and plotted in Fig-
ure 6 and Figure 7. In these figures, the value nDOF denotes the total number of unknowns,
respectively the number of degrees of freedom (DOF). Both figures indicate, that the sum of
the squared residuals decreases steadily for a higher number of wave functions. However, for
4000 < nDOF < 6000, this value remains between 10−5 and 10−4 without changing sig-
nificantly. For 1000 < nDOF < 2000, a substantial drop is observed in both figures. This
indicates, that the generated wave numbers for the wave functions of the WBM domains are
lower than the physical wave numbers for the body waves of the poroelastic halfspace and
the Timoshenko beam. This violates the condition defined in equation (8), revealing a strong
mismatch between the coupled displacement fields of the beam and the attached domains.

Figure 6: ∥R∥2 for the longitudinal displace-
ments along the coupled beam

Figure 7: ∥R∥2 for the vertical displacements
along the coupled beam

3.3 Comparison with reference data

To compare the introduced example in Figure 3 with data from literature [6], the average
vertical displacement amplitude reduction ratio Ay is calculated.

Ay =
1

10λr

−10λr∫
0

|uy,beam(x, y = 0)|
|uy,ref(x, y = 0)| dx (21)

Ay corresponds to the mean value of the ratio between the absolute displacement ampli-
tudes |uy,beam| and |uy,ref |. The value |uy,beam| stands for displacements with an installed beam,
whereas |uy,ref | refers to the displacement field without a wave barrier. In the following, Ay is
evaluated along the surface of the halfspace in the shadow zone of the beam, respectively for
x ∈ [0;−10λr] and y = 0.
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Figure 8 depicts results for Ay in dependency of the trench length T/λr ∈ [0.5; 1.5] and the
trench widths B, which is chosen as T/B ∈ {10; 20}. For T/λr ≤ 1.3, the average reduction
ratio Ay with the WBM model lies under the results by [6], in which a BEM-FEM approach
is used. The maximum difference is 0.051 for T/B = 10 and 0.029 for T/B = 20. The
best compliance is reached for T/λr > 1.3 with differences of 0.008 (T/B = 10) and 0.004
(T/B = 20). The presented data indicates that the WBM model predicts mostly lower values
for Ay than the BEM-FEM approach. This corresponds to a slightly higher mitigation efficiency
of the beam according to the WBM model. However, these differences are still in an acceptable
range.

Figure 8: Comparison of Ay in dependency of the trench length L and the width B, computed
with the WBM model and a BEM-FEM approach [6]

3.4 CONCLUSION

In this paper, the Wave Based Method (WBM) is extended by Biot’s theory for low frequen-
cies [12, 13] and coupled to the analytical solution of the Timoshenko beam [15, 16]. This
coupling approach is based on [7], in which a Kirchhoff plate is connected to an acoustic cavity.
The presented coupling approach permits to model a water saturated halfspace with a simple
wall, which is installed as a wave barrier against an incoming Rayleigh wave. It is shown that
the residuals of the compatibility conditions between the beam and the attached halfspace re-
duce significantly and also converge for an increasing number of wave functions. For a total
number of unknowns between 1000 and 2000 considerable drops are observed for the squared
residuals of the coupled displacement fields. The reason for this is, that the wave numbers of the
wave function sets of the WBM domains become lower than the wave numbers of the approxi-
mated body waves within the halfspace. Moreover, the average vertical displacement amplitude
reduction ratio is evaluated for different trench dimensions and compared with results from the
BEM-FEM model presented in [6]. The simulation results with the WBM approach reveal an
adequate accordance with the data from the BEM-FEM model.



M. Lainer and G. Müller

REFERENCES

[1] W. Haupt, Isolation of vibrations by concrete core walls. Proceedings of the 9th Interna-
tional Conference on Soil Mechanics and Foundation Engineering, Tokyo, Japan, 1977.

[2] D. Beskos, B. Dasgupta, I. Vardoulakis, Vibration isolation using open or filled trenches.
Computational Mechanics, 1(1), 43-63, 1986.

[3] J. Freisinger, G. Müller, Coupled ITM-FEM approach for the assessment of the mitigation
efficiency of finite and infinite open trenches and infilled barriers. XI International Con-
ference on Structural Dynamics (EURODYN 2020), Athens, Greece, November 23-26,
2020.

[4] A.E. Moghadam, R. Rafiee-Dehkharghani, Ground-borne vibration screening in layered
dry and saturated grounds using optimal inclined wave barriers. Soil Dynamics and Earth-
quake Engineering, 162, 2022.

[5] J.P. Li, X.L. Zhang, S.J. Feng, Z.L. Chen, Y.C. Li, Numerical Investigation of ground-
borne vibration mitigation by infilled trenches in a poroelastic half-space considering the
moving water table. International Journal of Geomechanisc, 21(10), 2021.
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