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Abstract

Since global and regional sea level changes are important indicators of climate change, acquiring

sea surface height measurements with utmost accuracy is crucial as reliable information for scien-

tists and policymakers. Altimetry satellites are a valuable advancement in the space segment for

providing such measurements and understanding climate change. Increasing the orbit accuracy of

altimetry satellites, specifically in the radial direction, is one step towards achieving highly accurate

sea level measurements. To investigate the current accuracy of altimetry satellite orbits, many fac-

tors should be considered to compare the various orbit solutions, such as the reference frames, the

time systems, the step size of the time instants, the data gaps, and others. In the scope of this

study, orbit analysis techniques and new background models are investigated with their impact on

orbits of TOPEX/Poseidon and Jason-1/-2/-3 satellite missions covering the period from September

1992 to October 2021. Firstly, different interpolation methods for the comparison of satellite coor-

dinates are studied. Among the Lagrange, Newton, spline, and Hermite interpolation methods, the

latter provides the best accuracy of 0.3 mm in the radial direction, whereas, the fastest method is

the spline interpolation method. Secondly, spectral analysis methods, such as Fourier transform,

Lomb-Scargle periodogram, and wavelet transform, are examined for determining the prominent or-

bit frequencies and amplitudes in cases where there are gaps and noise. Since the Lomb-Scargle

periodogram was designed for the purpose of irregularly sampled data, it provides better accuracy

than the Fourier transform and wavelet transform methods. However, the Fourier transform is the

fastest among the other tested methods. On the other hand, the wavelet transform is a powerful

tool to detect signals that are changing in time. Finally, the impact of new background models on

the orbits is investigated. The new thermospheric density model (NRLMSIS 2.0) is compared to the

older version (NRLMSISE-00). Both models show a similar impact on the orbit parameters of the

Jason satellites, with less than 1 mm difference of orbit coordinates in the radial direction. The new

RL05 release of the Earth’s mean gravity field model by the Centre National D’Etudes Spatiales

(CNES) and the Groupe de Recherche de Géodésie Spatiale (GRGS) shows a 2% improvement in

the root mean square fits of satellite laser ranging observations of Jason-3 satellite over the previ-

ous RL04 release. The differences in the orbits computed with the 2 models reach up to 1 cm for

the investigated time span.
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1. Introduction

Climate change is one of the biggest societal, economic, and environmental concerns that are detri-

mental to the future of humanity. The Global Climate Observing System (GCOS) was established

as an outcome of the second World Climate Conference that took place in 1990. It is responsible

for observations related to climate change and regularly delivers guidelines for its enhancement1.

GCOS has identified Essential Climate Variables (ECVs), which consist of 3 main domains, at-

mospheric, oceanic, and terrestrial domains, that include 54 different ECVs. Under the oceanic

domain lies the ECV “sea level”. Accurate monitoring of sea level is crucial to understand its global

and regional variations.

Since 1975, altimetric measurements tests from space have been initialized with the launch of

Geodynamic Experimental Ocean Satellite 3 (GEOS 3) by the National Aeronautics and Space

Administration (NASA) followed by the Seasat mission in 1978 (Stammer and Cazenave, 2017).

However, reliable results with very high precision were not obtained until the early 1990s with the

European Remote Sensing-1 (ERS-1) satellite and Topography Experiment (TOPEX)/Poseidon mis-

sion. TOPEX/Poseidon had a fifth-generation altimeter occupied with a C-band (5.3 GHz) channel

specified for ionospheric measurements. Combining the C-band with Ku-band (13.6 GHz), the

mission was able to deliver an improved quality of sea level height measurement, as well as to

provide wind speed, ionospheric correction, and significant wave height2. Furthermore, it was the

first altimetry mission to carry Doppler Orbitography and Radiopositioning Integrated by Satellite

(DORIS) receiver, which led to an improved orbit determination. The 3-band microwave radiometer

for measuring the atmospheric water vapor, as well as the progress in modeling of the incoming

signal, noise, and biases, allowed TOPEX/Poseidon and its successor missions to deliver sea level

measurements with an accuracy of 2-3 cm and higher (Seeber, 2003), compared to the accuracy

of the early age missions (GEOS 3, Seasat, and GEOSAT) that was around 100 cm (Stammer and

Cazenave, 2017).

Satellite altimeters measure the range between the sea surface and the satellite. Therefore, in

order to obtain the sea surface height, precise knowledge of the position, specifically, the altitude

of the satellite, is essential to achieve high-accuracy measurements. Recent altimetry missions,

starting from TOPEX/Poseidon, to Sentinel-6A, carry Global Navigation Satellite System (GNSS)

receivers, Satellite Laser Ranging (SLR) retroreflector arrays and DORIS receivers for Precise Orbit

Determination (POD). There are other positioning techniques, such as Precise Range and Range

Rate Equipment (PRARE) which was used by ERS-2 mission, and the Tracking and Data Relay

Satellite System (TDRSS), which was used by TOPEX/Poseidon (Montenbruck and Gill, 2000).

In addition, perturbing forces acting on the center of mass of the satellites, i.e. gravitational forces,

and on the surface of the satellites, i.e. non-gravitational forces, should be taken into account to

1 https://gcos.wmo.int/en/about
2 http://www.altimetry.info/missions/past-missions/topexposeidon/tp-instruments/topex-altimeter-or-nra/
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present precise orbits with reduced errors. Therefore, accurate modeling of dynamic forces should

always be a top priority in POD (Wu et al., 1991). Today, new models are being developed, such as

realizations of the International Terrestrial Reference System (ITRS), Earth’s gravity field models,

ocean tides, and atmospheric models. In this thesis, the newest models will be used in the POD

of altimetry satellites together with SLR observations using a software developed at Deutsches

Geodätisches Forschungsinstitut (DGFI-TUM) called: the DGFI Orbit and Geodetic Parameter Esti-

mation Software - Orbit Computation library (DOGS-OC). Specifically, the new thermospheric den-

sity model (NRLMSIS 2.0; Emmert et al. 2021) will be compared to the older version (NRLMSISE-

00; Picone et al. 2002), the Mass Spectrometer Incoherent Scatter (MSIS) radar series which were

developed at the Naval Research Laboratory (NRL) (Picone et al., 2002). Furthermore, a new re-

lease of the mean Earth’s gravity field EIGEN-GRGS.RL04.MEAN-FIELD has been developed at

the Centre National D’Etudes Spatiales (CNES) and the Groupe de Recherche de Géodésie Spa-

tiale (GRGS) called the CNES_GRGS.RL05MF_combined_GRACE_SLR_DORIS. The 2 Earth’s

gravity field models will also be analyzed. The models will be compared by computing 2 altime-

try satellite orbits with each model (2 thermospheric density models and Earth’s gravity models).

Comparing different orbit solutions requires each solution to have common time instants. There-

fore, interpolation of the orbit is necessary to perform the comparison. Spline, Newton, Lagrange,

trigonometric, and Hermite interpolation methods are used in literature for Global Positioning Sys-

tem (GPS) orbit interpolation (Neta et al., 1996; Yousif and El-Rabbany, 2007; Wang et al., 2018).

One of the main tasks is the investigation of an appropriate interpolation method in order to find the

highest precision method that will least influence the analysis and provide optimal results. The orbit

comparison analysis is done using a MATLAB program developed at the DGFI-TUM, described in

Section 4.1. The obtained orbit differences are then analyzed over the entire mission time span us-

ing spectral analysis methods to determine the discrepancies between the current models. Spectral

analysis methods, such as Fourier transform, Lomb-Scargle periodogram, and wavelet transform,

are discussed in detail and assessed in terms of accuracy and efficiency.

The structure of the thesis will be as follows: first, the state of art of orbit determination methods,

reference systems, tracking techniques, and background models is discussed in Chapter 2. Then,

different interpolation methods are evaluated in Chapter 3. After that, spectral analysis methods and

their assessment are discussed in Chapter 4. Finally, the impact of the new background models

on the orbits of altimetry satellites is examined in Chapter 5, and the conclusions are given in

Chapter 6.
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2. Literature review

2.1. Precise orbit determination

Precise knowledge of the altitude of a satellite altimeter is critical for its essential performance,

which is measuring sea level height. In 1994, the error budget for the TOPEX/Poseidon satellite

was set to 12.5 cm, however, with the rapid progress of POD, this accuracy has been reduced to

2 cm. Higher standards were expected for Jason-1, the successor to TOPEX/Poseidon satellite

mission. In 2003, a 1 cm radial orbit error was achieved using GPS data (Luthcke et al., 2003). As

mentioned earlier, there are several tracking techniques that are mainly used in the POD of altimetry

satellites, based on the size of the ground network, as well as the preference of analysis centers to

process data from these techniques.

Realization of the International Terrestrial Reference System (ITRS) depends on the combination

of the observations from all of the 3 techniques, SLR, DORIS, and GNSS, in addition to another

technique which will not be discussed in the course of this work, the Very Long Baseline Interfer-

ometry (VLBI). Orbit determination directly from the observation system is called kinematic orbit

determination. With this method, the satellite position is obtained at each measurement epoch. On

the other hand, dynamic orbit determination considers the perturbing forces acting on the satellite.

In order to obtain the satellite position, numerical integration of the equations of motion is required.

The main difference between the 2 methods lies in the number of parameters to be estimated in the

process. As the dynamic orbit determination relies on a limited number of unknowns, i.e. the dy-

namic parameters to be estimated as well as the initial position of the satellite, the kinematic method

estimates a new position at each epoch. Therefore, the number of parameters to be estimated is

much larger. Another method is called reduced dynamic orbit determination. This method is a com-

bination of kinematic and dynamic methods, where the initial position of the satellite is unknown,

and dynamic parameters are considered. It allows a stochastic component to be involved, and the

parameters to be estimated are unlimited and may vary depending on the problem (Beutler, 2005).

This method takes advantage of the 2 other methods and helps in overcoming the deficiencies in

the force models. For more information about reduced dynamic orbit determination of Low Earth

Orbit (LEO) satellites, see Arnold et al. (2019).

2.2. Satellite tracking techniques

2.2.1. Satellite Laser Ranging (SLR)
Since the introduction of SLR in 1964, it was the first technique used for POD of altimetry satellites

(Stammer and Cazenave, 2017). It is based on measuring the two-way flight time of short laser

pulses of 532 nm wavelength between the ground station and the satellite’s retroreflector arrays

(Eq. 2.1), and from there, the range d is computed.

d =
1

2
∆t c, (2.1)
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where ∆t is the time travel of the signal, and c is the speed of light.

SLR is a vital technique for geodetic applications, such as the determination of Earth Orientation

Parameters (EOP), and hence, for the realization of the ITRS. Despite having an essential role in

POD, the limitation of using solely SLR for POD is the inhomogeneous distribution of its network. A

precise orbit is also dependent on the precise knowledge of the station coordinates, as well as clear

weather for an accurate measurement (Montenbruck and Gill, 2000). However, it is more sensitive

than DORIS when comparing POD background models. Furthermore, the number of observing

sites and observations in an orbital arc are much lower than of DORIS, i.e. less computation time is

required. Therefore, using SLR-only orbits is suitable for the aim of this study. There are additional

parameters and corrections that should be introduced to the ranging equation (Eq. 2.2) to fulfill the

simple model shown in Figure 1.

Figure 1: Geometrical outline in Satellite Laser Ranging (Figure from Seeber 2003).

The following equation reads,

d =
1

2
∆t c + ∆d0 + ∆ds + ∆db + ∆dr + η , (2.2)

where ∆d0 is the offset between the station marker and the position of the telescope, it is often

known as the eccentricity.

∆ds is the offset between the satellite’s center of mass and the optical center of the retroreflector.

∆db is the signal delay at the ground station. The geometric reference point "0" on the telescope

can be different from the electric zero point of the measurement. Therefore, it is calibrated to a

known target (Z) for older systems, and new systems are calibrated from inside the laser system.
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∆dr is the atmospheric delay. The correction is applied using predefined atmospheric models.

Finally, η is defined as a combination of other systematic and random errors.

In theory, the above-mentioned corrections should be at least with an accuracy of one order of

magnitude higher than the required accuracy of the measurement (Seeber, 2003).

2.2.2. Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS)
DORIS uses microwave signals directed from the ground station to the satellite, with the Doppler

effect, the frequency is highest when the satellite is at the closest point to the ground station (directly

above the station) where the distance between the satellite and the station can be computed. The

first altimetry mission, which had a DORIS antenna onboard, was TOPEX/Poseidon, followed by

Jason-1, Envisat, and others (Tavernier et al., 2006). The main objective of the technique is POD.

The technique has taken an important role in other geodetic and geophysical applications, such

as tracking the Earth’s crust and determining the geocenter motion and polar motion. Thanks to

the global homogeneous station distribution, DORIS plays a significant role in the realization of

the ITRS. Given the good distribution of the network, firstly, it is active under any weather condition.

Secondly, it allows a reduced-dynamic orbit determination; with accurate dynamic models, a precise

orbit can be achieved (Willis et al., 2006). DORIS orbits are more sensitive in the along-track

component, where the time tag offset is mostly dominant, unlike SLR orbits which are most sensitive

in the radial component (Willis et al., 2006). The satellite receiver is equipped with an ultra-stable

oscillator (USO) with stability of 5× 10−13 Hz over a period of 10-100 s (Jayles et al., 2006).

2.3. Reference systems and frames

Terrestrial reference frames are realizations of the terrestrial reference system conceptualized by

the International Earth Rotation and Reference Systems Service (IERS) by defining the origin,

orientation, scale, and time evolution. The origin is the center of mass of the Earth, also known

as the geocenter. The orientation is that of the 3-dimensional, orthogonal, and right-handed vector

space, defined by the Bureau International de l’Heure (BIH) orientation at 1984.0. The scale is the

common unit of length of the basis vector in meter (SI). A condition of a no-net-rotation with respect

to horizontal tectonics motions over the Earth is applied to secure the evolution of the frame’s

orientation (Bloßfeld, 2015).

Since the first realization in 1988, observations from all 4 space geodetic techniques mentioned

above were used for station positions and velocities (Petit and Luzum, 2010). Stations are in motion

for many reasons, such as geophysical movements, instrumental deformations, or anthropogenic

activities. This causes a non-linear change of station positions, and it is referred to as instantaneous

station position (X⃗(ti)). Station positions with regular variations are known as regularized (X⃗R(ti))

and can be obtained from the mean station position and velocity (X⃗ITRF ,
⃗̇XITRF ) at an epoch ti
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2.4 Force model

with respect to a reference epoch t0 (Bloßfeld, 2015),

X⃗R(ti) = X⃗ITRF + (ti − t0)
⃗̇XITRF , (2.3)

then, (X⃗(ti)) is obtained by adding n correction parameters ∆X⃗n(ti)

X⃗(ti) = X⃗R(ti) +
∑
n

∆X⃗n(ti). (2.4)

The correction parameters are modeled using geophysical tidal and non-tidal loading models, such

as solid Earth tides, ocean tides, atmospheric pressure loading, ocean pole tidal loading, and mean

pole motion predefined by the IERS conventions (Bloßfeld, 2015). The loading models were not

applied to ITRF2008 because the models were not sufficiently examined, and full-time span data

was not available (Seitz et al., 2012). The reference frames are recomputed every 3 to 5 years by

3 IERS Combination Centers: the Institute Nationale de l’Information Géographique et Forestière

(IGN) in Paris, the DGFI-TUM in Munich, and the Jet Propulsion Laboratory (JPL) in Pasadena.

Each Combination Center uses a different combination strategy, resulting in slightly different real-

izations.

As discussed before, POD comprises observations from SLR retroreflectors, DORIS, and GNSS

receivers mounted on the satellite. Therefore, up-to-date station positions are crucial to obtain

the desired accuracy, and hence, the most recent ITRS realization has to be used as a reference

frame for the orbit determination solution. Furthermore, stability in the reference frame solutions in

measuring the mean sea level change should be within 0.1 mm/y. It has been demonstrated that

any shift in the Z component of the reference frame affects the satellite orbits (mean orbit error in

Z component DZ) and the global mean sea level (GMSL). This is formulated by the function as in

Couhert et al. (2015),

GMSL error = −0.16 ·DZ. (2.5)

Rudenko et al. (2018) studied the impact of the recent 3 different ITRS realizations on satellite

orbits by computing SLR observation residuals. They found an improvement in the mean Root

Mean Square (RMS) fit of SLR observations of up to 8.1% when using ITRS realizations in 2014

with Non-Tidal Loading (NTL), instead of realization for SLR stations in 2008 (SLRF2008). This can

affect the global inter-annual mean sea level up to 4% of the sea level signal from satellite altimetry

within a timescale of 3 to 8 years (Rudenko et al., 2019).

2.4. Force model

The general form of the differential equation of motion of a satellite orbiting the Earth can be ex-

pressed by Newton’s law of gravity
⃗̈r =

−GM
r3

r⃗, (2.6)
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where ⃗̈r is the acceleration vector of the satellite, GM is the product of the gravitational constant

and the mass of the Earth, r is the geocentric distance of the satellite, and r⃗ is the geocentric

position vector of the satellite. The previous equation is only valid theoretically, where the Earth is

a homogeneous spherical object, and only the central gravitational force is acting on the satellite.

Generally, this term is known as the two-body term. In real life, many perturbing forces affect the

satellite motion and should be added as an acceleration to the differential equation above.

⃗̈r = ⃗̈rE + ⃗̈rS + ⃗̈rM + ⃗̈re + ⃗̈ro + ⃗̈rD + ⃗̈rSP + ⃗̈ra + ⃗̈rr + ⃗̈rothers (2.7)

These are accelerations caused by

– Geopotential coefficients of the mass distribution within the Earth (⃗̈rE).

– Surrounding celestial bodies, such as, Moon ⃗̈rM , Sun (⃗̈rS), and major planets of the solar sys-

tem.

– Solid Earth tides (⃗̈re) and ocean tides (⃗̈ro).

– Atmospheric drag (⃗̈rD).

– Solar radiation pressure (⃗̈rSP ).

– Earth’s albedo and Earth’s infra-red radiation (⃗̈ra).

– Relativistic effects (⃗̈rr).

– To absorb unmodeled parameters, empirical parameters (⃗̈rothers) are introduced and estimated.

Perturbing forces are classified into gravitational and non-gravitational forces. In the following sub-

sections, each of the above-mentioned forces will be described briefly.

2.4.1. Gravitational forces
2.4.1.1 Acceleration due to geopotential

In celestial mechanics, the acceleration can be expressed by the gradient of the potential U (Mon-

tenbruck and Gill, 2000),
⃗̈r = ∇U. (2.8)

As the Earth is non-spherical, the mass distribution is non-homogeneous. Hence, the point mass

distribution within the Earth should be considered when studying the gravitational potential. The ac-

celeration due to gravitational potential is represented in terms of the spherical harmonic expansion

of Earth’s gravity field,

⃗̈r = ∇GM

r

inf∑
n=0

n∑
m=0

Rn

rn
P̄nm(sinϕ)(C̄nm cosmλ+ S̄nm sinmλ), (2.9)
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where R is the radius of the Earth, P̄nm is the normalized Legendre polynomial, C̄nm and S̄nm

are normalized spherical harmonic coefficients with n and m being the degree and order, and ϕ

and λ are the geocentric latitude and longitude of the satellite, (cf. Hofmann-Wellenhof and Moritz

(2006)). It is worth noting that each degree and order of spherical harmonic coefficients have a

physical representation. The coefficient of degree 2 and order 0 is the commonly known Earth’s

oblateness. It has a major impact on the satellite orbits, which can reach up to kilometer level.

Higher order terms have less influence on high-altitude satellites. However, they still have a high

impact on LEO satellites.

Kaula (1966) first developed the perturbation theory of satellites orbiting the Earth and formu-

lated the equation that relates between orbital Keplerian’s elements and the perturbing parame-

ters. Rosborough and Tapley (1987) presented the geopotential perturbations for the radial, trans-

verse, and normal components of a satellite. An important milestone in developing the geopotential

models was using a combination of terrestrial observations with laser and Doppler tracking and

altimetry measurements, such as the model GEM-T3 (Lerch et al., 1992). After the launch of

TOPEX/Poseidon satellite, an improved geopotential model based on tracking of the satellite by

SLR, DORIS, and GPS systems was developed. This model is known as the JGM-3, and it was

proven to have improved the accuracy of the TOPEX/Poseidon orbit (Tapley et al., 1996). In 2000,

the Challenging Minisatellite Payload (CHAMP) satellite was launched. The mission aimed at mag-

netic field and static and temporal global gravity field recovery by having an accelerometer onboard

to measure non-gravitational acceleration. In addition, the Earth’s gravity field can be determined

from a pure perturbation due to gravity by using satellite to satellite tracking technique (GPS-SST)1.

With data from CHAMP, LAser GEOdynamic Satellite (LAGEOS), and the french Satellite de Taille

Adaptée avec Réflecteurs Laser pour les Études de la Terre (STARLETTE), the European Improved

Gravity model of the Earth by New techniques (EIGEN) model was generated (Reigber et al., 2002).

Afterwards, in 2002, the Gravity Recovery and Climate Experiment mission (GRACE) was launched

(Tapley et al., 2004). This mission was dedicated solely to gravity field recovery by measuring the

range rate with the K-band ranging system between the twin satellites. Higher resolution gravity

field models were developed in addition to the 10-day time-variable gravity field models (Bruinsma

et al., 2010). Another worth mentioning mission, which was launched in 2009, is the Gravity field

and Ocean Circulation Explorer (GOCE) (Floberghagen et al., 2011). GOCE is the first mission

which applied gravity recovery by gradiometric measurements. With GOCE, very high accurate

geoid determination was achieved (1 cm geoid from global models) (Gruber and Willberg, 2019).

It has been found that time-variable gravity models have a significant role when studying the error

budget of the radial component fit between CNES and JPL’s GPS reduced-dynamic orbits (Cerri

et al., 2010). In a later study, the impact of the geopotential models on orbits of satellite altime-

try has been studied with a comparison of static and time-variable gravity models (Rudenko et al.,

2014). The study addressed the challenge of modeling the time variable gravity field in the period

before GRACE mission, i.e. from 1985 to 2003. In conclusion, the EIGEN-6S2 model provided

a lower SLR RMS of fits among other models in comparison (2.022 cm for TOPEX/Poseidon).

1 https://www.eoportal.org/satellite-missions/champstar-space-three-axis-accelerometer-for-research-mission
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Another study suggested that, in order to overcome the uncertainties and improve the extrapola-

tion at the pre-GRACE era, a combination of cannon-ball satellites SLR measurements, together

with DORIS measurements should be done (Esselborn et al., 2018). The recent releases of the

EIGEN gravity field model, EIGEN-GRGS.RL04 and CNES_GRGS.RL05MF_combined_GRACE_-

SLR_DORIS, both include SLR measurements for extrapolating at the pre-GRACE era. The newest

model, CNES_GRGS.RL05MF_combined_GRACE_SLR_DORIS, also includes DORIS observa-

tions (Lemoine et al., 2023). These 2 models will be compared in terms of their impact on the orbits

of altimetry satellites in Section 5.3.

2.4.1.2 Acceleration due to other celestial objects (Sun and Moon)

The Sun and Moon cause a third-body gravitational perturbation in the satellite orbit. In an inertial

system, the equation of motion is written as in Montenbruck and Gill (2000):

⃗̈r = GMs
s⃗− r⃗

|s⃗− r⃗|3
, (2.10)

where Ms is the mass of the perturbing body, r⃗ is the geocentric position of the satellite, and s⃗ is

the geocentric position of the body. The equation of motion in an Earth fixed frame reads

⃗̈r = GMs

(
s⃗− r⃗

|s⃗− r⃗|3
− s⃗

|s⃗|3

)
. (2.11)

Since the distance between the satellite and other celestial bodies is very large, the following ap-

proximation can be applied,

1

|s⃗− r⃗|3
= (

1

s2 + r2 − 2rs cosψ
)
3
2 ≈ 1

s3
(1 + 3

r

s
cosψ) +O(

r2

s2
), (2.12)

with ψ is the angle between r⃗ and s⃗.

The acceleration then reads,
⃗̈r ≈ −GMs

r

s3
(
r⃗

r
− 3

s⃗

s
cosψ), (2.13)

having r
s3

as the tidal acceleration.

Depending on where the satellite is located, either r⃗ is parallel or perpendicular to s⃗, the acceleration

then simplifies to, respectively:

⃗̈r ≈ +2GMs
r⃗

s3
and ⃗̈r ≈ −GMs

r⃗

s3
. (2.14)

As seen in Figure 2, if the satellite, the Earth, and a celestial body are all on the same line, a

repulsive force applies (satellite moves away from Earth), which is explained by the positive sign of

the acceleration in Eq. 2.14. On the contrary, when the satellite is in a perpendicular position with

respect to the Earth and the celestial body, it moves towards the Earth.

9
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Figure 2: Satellite orbit and forces (f1) due to a perturbing body (Figure from Hugentobler 2020).

2.4.1.3 Acceleration due to solid Earth tides and ocean tides

The Sun and Moon indirectly impact the Earth, since it is not a rigid body. These are called indirect

gravitational perturbations. Although the impact of these perturbations on the satellite orbits is not

as prominent as other perturbations (Seeber, 2003), mismodeling of Earth and ocean tides can

result in an error of 3 cm as estimated for the error budget of the orbit of TOPEX/Poseidon satellite

(Nerem et al., 1993). Recent models contribute to the radial error budget by around 2 mm when

compared to orbits computed with other models (Cerri et al., 2010).

The acceleration due to a permanent solid Earth tide can be given by the following equation of

motion:
⃗̈r =

k2
2

GMs

s3
R5

r4
(3− 15 cos2 ψ)

r⃗

r
+ 6 cosψ

s⃗

s
, (2.15)

with k2 being the Love number introduced last century by Love (1909) to describe the elasticity of

the Earth. Ms is the mass of the body causing the tidal force (e.g., the Sun or the Moon). R is the

radius of the Earth. And ψ is the angle between r⃗ and s⃗. Solid Earth tide models are usually used in

POD, such as the models defined by the International Earth Rotation Service (IERS), where more

detailed equations with spherical harmonic expansions can be found (Petit and Luzum, 2010).

Ocean tides have a lower impact on the POD (Montenbruck and Gill, 2000). However, there are

still some improvements of the SLR RMS of fits by around 0.14% when applying new models for

ENVISAT, for example Rudenko et al. (2017). The following equation represents the geopotential

variations due to ocean tides (Seeber, 2003). As with the solid Earth tide equation, the full expan-

sion of the equation can be found in Montenbruck and Gill (2000).

∆U =
Gρ0h(P, t)dσ

R

∑
n

(1 + k′n)Pn0 cos θ, (2.16)

where ρ0 is the average density of water at a height h at a surface point P and time t. k′n are

the deformation coefficients and Pn0 are the Legendre polynomials, and θ is the geocentric angle

between the initial point and the surface point P .
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2.4.2. Non-gravitational forces
Non-gravitational forces are surface forces, i.e. they act on the surface of the satellite and are

directly proportional to the area-to-mass ratio. Accurate knowledge of the surface properties of the

satellite as well as its attitude is of utmost importance for precise modeling of the non-gravitational

forces and hence the orbit.

2.4.2.1 Acceleration due to atmospheric drag

The force due to atmospheric drag acts in the opposite direction to the direction of motion. There-

fore, it decelerates the satellite and causes a decay in the orbit. An important contributing factor

is the air density. Other factors, such as the shape, size, and orientation of the satellite, also have

an impact on the modeling of the drag. The equation of motion can be expressed as follows (Mon-

tenbruck and Gill, 2000),
⃗̈r = −1

2
Cd

A

m
ρv2r e⃗v, (2.17)

where A
m is the area-to-mass ratio of the satellite. Cd is the drag coefficient, it is the air resistance

factor that usually can be considered as a constant between 1.5 and 2 (where 2 is for a spherical

satellite). ρ is the density of the air. vr is the velocity of the atmosphere relative to the satellite body.

And e⃗v is the unit vector of the relative velocity. The perpendicular forces (e.g., due to lift) have

less impact than the forces in the along-track direction, and hence can be neglected (Doornbos,

2011).

The velocity of the atmosphere is generally defined with the cross product of Earth’s rotation rate

(ω⃗e) and the position of the satellite. However, a precise model of the velocity would take into

account the wind velocity (v⃗w), which varies depending on the location (maximum at the equator,

minimum at the poles) (Panzetta et al., 2019). The following expression is given for the relative

velocity,

v⃗r = v⃗sat − (ω⃗e × r⃗sat + R⃗EIR⃗LE v⃗w), (2.18)

where R⃗LE and R⃗EI are the rotation matrices from local coordinates to the Earth fixed system and

from the Earth fixed system to the inertial system, respectively.

Considering the importance of the density, the height of the satellite plays a significant role since

both the density and the temperature change with height. Other factors, such as solar activity, time

of the day, and geomagnetism should also be considered. There are specific models developed

for forecasting the thermospheric density in the atmosphere and can be used in POD. According

to Doornbos (2011), there are 2 types of thermosphere models: physical models and empirical

models. Physical models, as the name suggests, are based on physical equations. These are

computationally highly intensive, and they require experts to interpret the output. Therefore, they are

not used in applications such as orbit determination. Empirical models are based on a predefined

database parameters that consists of parameters fitted to observations. When input parameters are

defined, interpolation and extrapolation of the database parameters are performed. Then the model

provides the total density and temperature (Doornbos, 2011). Thermosphere density models used
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in POD are: Jacchia-Bowman model (Bowman et al., 2008), Drag Temperature Model (DTM) series

(Bruinsma, 2015), and Mass Spectrometer Incoherent Scatter (MSIS) series (Hedin, 1991). The

recent models from the MSIS series, namely, NRLMSISE-00 and NRLMSIS 2.0, will be discussed

and evaluated in terms of their impact on the orbits of altimetry satellites in Section 5.2.

2.4.2.2 Acceleration due to radiation pressure

There are direct and indirect radiation pressures. Direct radiation pressure, also known as solar

radiation pressure, is the most prominent radiation pressure. The solar radiation pressure is directly

proportional to the solar flux. The total force experienced by the satellite is then directly proportional

to the solar flux and the surface area.

Since the solar flux is not constant throughout the year and depends on the distance from the

sun, the solar radiation pressure (P⊙) is also not constant and varies by around ±3.3%. Another

important factor is the reflectivity of the surface, and it can be expressed as ϵ (Montenbruck and

Gill, 2000).

The following acceleration expression can be obtained:

⃗̈r = −P⊙
1AU2

r2⊙

A

m
cos θ[(1− ε)e⃗⊙ + 2ε cos θn⃗] (2.19)

The solar radiation pressure is scaled to
(
AU
r⊙

)2
due to the elliptic orbit of the Earth, where AU

stands for Astronomical Unit and r⊙ is the actual distance between the center of the Earth and the

Sun. θ is the incidence angle computed from: cos θ = n⃗T e⃗⊙. n⃗ and e⃗⊙ are unit vectors pointing into

the direction of the Sun.

This equation is valid if the satellite is always in the sunlight. However, the satellite will have an

eclipse period, and this should be considered by multiplying the equation with a factor of 1 if it is in

the sunlight, 0 if it is in umbra (eclipse), and between 0 and 1 if it is in penumbra, see Figure 3 for

the geometry. As in the case of air drag models, due to the complexity of the physical properties

and the extensive computation of physical models, empirical models are preferred. The modeled

acceleration also depends on the orientation angle of the satellite with respect to the Sun as well

as to the Earth to ensure that the antenna of the satellite is pointing towards the Earth and the solar

panels are pointing towards the sun.

The indirect radiation pressure is known as the albedo radiation, which is the sunlight radiation

reflected from the Earth, and the thermal radiation pressure, which is the push caused by the

internal heating of the satellite when it is emitted. The acceleration function due to the Earth’s

albedo radiation is as follows, in which the visible part of the Earth to the satellite is partitioned into
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Figure 3: The geometry of satellite in shadow (Figure from Montenbruck and Gill 2000).

j = 1, ..., N segments or surface elements:

⃗̈r =
N∑
j=1

CR(vjaj cos θ
E
j +

1

4
ϵj)P⊙

A

m
cos θsj

dAj

πr2j
e⃗j , (2.20)

with j as the number of surface elements. CR is the solar radiation coefficient. vj is the Earth

element shadow function. dAj is the Earth area elements. θEj and θsj are the angles of Earth and

satellite surfaces normal to the incident radiation. e⃗j is the unit vector pointing from the Earth surface

element to the satellite and the distance is rj . aj and ϵj are albedo and emissivity, respectively.

These 2 terms vary with latitude. As discussed in Knocke et al. (1988), they can be modeled with

0th, 1st, and 2nd zonal harmonic. The given model is used in recent studies addressing POD, such

as in Zeitlhöfler et al. (2023).

2.4.3. Relativistic effects and other perturbations
The relativistic effects are modeled by Petit and Luzum (2010). They are caused by space-time

dragging due to the mass and the rotation of the Earth. As described in Seeber (2003), they

have less influence on the orbits compared to other perturbations, with an order of 10−8 m/s2 for

TOPEX/Poseidon satellite. Other perturbations which may have been mismodeled or unmodeled

forces can be represented with empirical acceleration.
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3. Investigation on the optimal method for satellite
coordinate interpolation

Satellite orbit solutions may be given in different time systems and with different step sizes. This

yields up to 30 seconds of time shift in one orbit product with respect to another. A comparison

of such orbits requires an interpolation method with an accuracy of a sub-millimeter level in order

to be able to make a proper judgment on the orbit product quality. The choice of the interpolation

method depends on several factors, such as the required level of accuracy, the difference between

the orbit step sizes, and the desired speed of computation. In the literature, investigations of various

interpolation methods were carried out on GPS satellite orbits and ephemerides, of which the step

size is 15 minutes. Zheng and Zhang (2020) carried out a comparative analysis of the commonly

used methods, i.e. Lagrange, Neville-Aitken, Newton, and Hermite interpolation algorithms with

respect to their accuracy and efficiency. Further, they developed a new strategy in which they

achieved a sub-millimeter accuracy by using Hermite interpolation with what they called a “sliding

window” (cf. Section 3.1.6). Yousif and El-Rabbany (2007) tested the performance of Lagrange,

Newton divided difference, cubic spline, and trigonometric interpolation. They found that the cubic

spline method had the worst accuracy, while Newton and Lagrange interpolation methods provided

identical results, and the trigonometric interpolation method resulted in the best accuracy. Wang

et al. (2018) conducted a similar comparison between Lagrange, Newton, Chebyshev, Hermite,

and cubic spline interpolation methods on a GPS satellite orbit over a period of 6.5 hours. They

concluded that Newton interpolation is the optimal method for interpolating a 30-minute step size

GPS orbit to every 15 minutes. In the following, a detailed description of the 5 most commonly used

interpolation methods is given.

3.1. Numerical interpolation methods

3.1.1. Lagrange interpolation
At a specific time point ti, there exists a unique polynomial function

p(ti) = f(ti), (3.1)

where p(ti) is the approximated value at time ti and the given value f(ti). For a polynomial of order

n, the following function is evaluated:

p(t) =

n∑
i=0

f(ti)li(t), (3.2)

with

li(t) =
(t− t0)(t− t1) · · · (t− ti−1)

(ti − t0)(ti − t1) · · · (ti − ti−1)
· (t− ti+1) · · · (t− tn)

(ti − ti+1) · · · (ti − tn)
. (3.3)
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3.1 Numerical interpolation methods

For order n, n + 1 number of points should be available to be used in the computation of the poly-

nomial (Eq. 3.1, Eq. 3.3). For orbit interpolation, polynomial orders of 8 to 11 are used (Feng and

Zheng, 2005). Neta et al. (1996) compared several polynomial interpolation methods for ephemeris

data of GPS, of which the data is provided every 15 minutes. They suggested using a short-arc poly-

nomial method, in other words, applying a sliding window approach with an 11th order (of 12 points)

since longer arcs result in errors larger than 1 cm. In the investigation done by Wang et al. (2018),

the accuracy of the Lagrange method reached 10−4 m for each component (East, North, and Up).

However, this might change by changing the interpolation order. One disadvantage of Lagrange

interpolation is that when adding a new point, the whole function must be recalculated, and hence,

it is inefficient in terms of computation time (Zheng and Zhang, 2020).

3.1.2. Newton interpolation
Newton’s divided difference method is considered more efficient than the Lagrange method, since

it does not perform recurrent calculations of the polynomial when new points are considered. One

can only add a new term for each new point (Neta et al., 1996).

p(t) = a0 + (t− t0)a1 + (t− t0)(t− t1)a2 + · · ·+ (t− t0)(t− t1) · · · (t− tn−1)an, (3.4)

where an is the polynomial coefficient of order n, as simplified by Yousif and El-Rabbany (2007):

a0 = p(t0)

a1 =
p(t1)− a0
(t− t0)

a2 =
p(t2)− a0 − a1(t2 − t0)

(t2 − t0)(t2 − t1)

...

an =
p(tn)− a0 − a1(tn − t0)− a2(tn − t0)(tn − t1)− · · ·

(tn − t0)(tn − t1)(tn − t2) · · · (tn − tn−1)
.

(3.5)

The shift between the 2 orbit solutions is usually equally spaced,

tk = t0 + kh, (3.6)

where t0 is the reference time for the interval, h is a constant step size, and k is a positive integer

value. For this specific case, the Newton divided difference method takes a specific form, known as

Newton’s forward difference (∆f )

∆f(ti) = f(ti+1)− f(ti) = f(ti + h)− f(ti), (3.7)

of which we can compute the power of differences iteratively:

∆kf(ti) = ∆(∆k−1f(ti)) = ∆k−1f(ti+1)−∆k−1f(ti). (3.8)
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3.1 Numerical interpolation methods

Finally, the polynomial can be derived from:

p(t) = f0 +
(t− t0)

h
∆f0 +

(t− t0)(t− t1)

2h2
∆2f0 + · · ·+ (t− t0)(t− t1) · · · (t− tn−1)

n!hn
∆nf0. (3.9)

Wang et al. (2018) obtained identical accuracy of the Newton method compared to the Lagrange

method. However, the processing of Newton method is much faster.

3.1.3. Trigonometric interpolation
Neta et al. (1996) and Schenewerk (2003) observed that the orbits of GPS satellites are very close

to periodic in inertial coordinates. Therefore, they suggested that it is possible to use trigonometric

functions to interpolate such orbits. The trigonometric function is of the form

p(t) = a0 +
n∑

k=1

(ak cos kt+ bk sin kt), (3.10)

where k here is the characteristic frequency, and ak and bk are polynomial coefficients. The interval

of the recreated orbit should be over the exact interval of the original orbit, i.e. over a single period.

In the case of GPS data, it is 24 hours. In this method, the number of fitted points and the number

of coefficients to be estimated (the order of the method) can be different. As stated by Feng and

Zheng (2005), for a better result, the number of points can be larger than the order of the method.

The authors found that the trigonometric interpolation method delivered an RMS error of 0.3 cm for

an interval of 15-minute data interpolated at step size of 30 seconds.

3.1.4. Hermite interpolation
This method is known for its capability to use the 1st order and higher order derivatives of the data.

An advantage compared to other methods is that it requires less number of points to compute the

function of the same order (Zheng and Zhang, 2020). A polynomial fn at any time of interest t can

be computed using n− 1 points, with the 1st derivative f ′:

fn(t) =
n−1∑
i=0

[f(ti) + (t− ti)(f
′(ti)− 2f(ti)l

′
i(ti))]l

2
i (ti), (3.11)

with the basic function li and its derivative l′i:

li(t) =

n−1∏
j=0,j ̸=i

(t− tj)

ti − tj
, (3.12)

l′i(t) =
n−1∑

j=0,j ̸=i

1

ti − tj
, (3.13)

having ti and tj to be 2 separate time instants.

Zheng and Zhang (2020) used the position and velocity values assuming that the acceleration does

not change rapidly in the studied time span, they computed an accuracy in satellite position of the
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3.1 Numerical interpolation methods

order of 10−4 m. Another study by Wang et al. (2018) obtained an accuracy of the order of 10−3 m

and found that the Hermite method is faster than the Newton method. According to a test study

carried out by Karepova and Kornienko (2019), in order to take full advantage of the method, the

first and second derivatives should be available. However, in most cases, the accelerations are not

provided with the orbit solutions. Therefore, only the 1st derivative, i.e. the velocity is used in this

study.

3.1.5. Spline interpolation
The above-mentioned methods interpolate over the specified time interval using a high order poly-

nomial. Another method is to calculate the polynomial over several small intervals using the walk-

along interpolation. However, this does not fully overcome the Runge phenomenon and results in

a non-smooth orbit (cf. Section 3.1.6). The spline method calculates the polynomial of all small

intervals at once, and the polynomial is continuous at its first (f ′(t)) and second derivative (f ′′(t)).

The spline method usually uses 3rd order polynomial, i.e. cubic spline interpolation between 2

successive points. In the following, the general formula is shown for each ephemeris value:

pi(t) = Ai(t)f(ti) +Bi(t)f(ti+1) + Ci(t)f
′′(ti) +Di(t)f

′′(ti+1), i = 0, . . . , n− 1 (3.14)

where n is the number of ephemeris values and the functions Ai, Bi, Ci, and Di read:

Ai(t) =
ti+1 − t

ti+1 − ti

Bi(t) =
t− ti
ti+1 − ti

Ci(t) =
1

6
(A3

i −Ai)(ti+1 − ti)
2

Di(t) =
1

6
(B3

i −Bi)(ti+1 − ti)
2.

(3.15)

To solve the n + 1 value problem, the function values and the values of the first derivative at the

boundaries, i.e. at t0 and tn, should be known (Neta et al., 1996). This method is much faster

compared to the other methods. However, even with the absence of the Runge phenomenon, the

accuracy is lower than that of the high order polynomial methods (Lagrange, Hermite, or Newton),

which reached up to 6 m in the East, 9 m in the North, and 31 m in the Up directions. The results

are obtained for interpolating a GPS satellite orbit with a step size of 30 minutes, which explains the

large values of the errors, and a time interval of 6.5 hours as given by Wang et al. (2018).

3.1.6. Runge phenomenon
One common drawback in high order polynomial methods is that the function starts to oscillate,

and the error grows largely at both ends of the interval. This phenomenon is known as “Runge

phenomenon”. Studies in the literature suggest strategies to overcome this phenomenon, such

as sliding window method, also known as the walk-along interpolation (Feng and Zheng, 2005;

Yousif and El-Rabbany, 2007; Zheng and Zhang, 2020; Song et al., 2021). In this approach, the

interpolated point shall be at the center of the data points (cf. Section 3.2.2.1). Finding an optimal

order of polynomials to fit the interpolation will depend on the data type, the step size, and the
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3.2 Interpolation methods analysis

applied method. Feng and Zheng (2005) found that trigonometric interpolation performed better

than Lagrange interpolation when using lower order for the interpolation of orbits of GPS satellites.

With the same strategy implemented on Hermite interpolation, Zheng and Zhang (2020) found

that the Runge phenomenon will stay in an acceptable range of accuracy, although the oscillating

behavior is still observed in the interpolated data.

3.2. Interpolation methods analysis

As discussed in Section 3.1, various interpolation methods can be used for different scenarios.

This thesis studies the interpolation methods for orbit interpolation of altimetry satellites which are

generally provided with a step size of 10, 30, and 60 seconds. In the scope of this study, the inter-

polation methods have been applied using MATLAB functions for Lagrange1 interpolation method,

Newton2 interpolation method with additional enhancement to meet the described functionality as

in Section 3.1.2, Hermite interpolation method as a transformed version of an internal DGFI-TUM

Fortran routine to a MATLAB function, and the spline interpolation method that is a built-in function3

in MATLAB.

For the sake of the comparison between 2 orbit solutions, one solution should be fixed to be used

as a reference for interpolation, and the other solution(s), called non-reference solution(s), should

be interpolated to the time instants of the reference solution. Several tests have been done in

order to analyze the behavior of the methods in terms of accuracy and time efficiency. In the

following, a description of the conducted tests and the approaches used is given, as well as the

results obtained.

3.2.1. 1-second orbit interpolation
The 1-second orbit is a TOPEX/Poseidon satellite orbit computed with DOGS-OC specifically for

determining the accuracy of the interpolation methods. The arc length is 3.5 days with a 1-second

step size (YYYY-MM-DD hh:mm:ss) (from 2004-07-18 00:00:00 to 2004-07-21 12:00:00). The test

discussed in this section has been performed using Newton interpolation method. The reference

orbit with a step size of 1-second is used with, depending on the order, one non-reference orbit

of 30 (scenario 1), 60 (scenario 2), and 120 (scenario 3) second step size. All 3 orbit solutions

are generated out of the 1-second orbit to assess the accuracy of the interpolation method. In this

test, interpolation orders from 5 to 9 have been tested. To differentiate between the points to be

interpolated to (points of the reference solution) and the input points for the interpolation (points

of non-reference solution), the input points are called nodes. That means 6 nodes are input for

order 5, 7 nodes are input for order 6, and so on.

1 https://de.mathworks.com/matlabcentral/fileexchange/66906-lagrange-x-y-x_inter
2 https://de.mathworks.com/matlabcentral/fileexchange/7405-newton-s-interpolation
3 https://de.mathworks.com/help/matlab/ref/interp1.html
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3.2 Interpolation methods analysis

3.2.1.1 Scenario 1: step size of 30 seconds

The reference orbit is of a 1-second step size, whereas the non-reference orbit is of a 30-second

step size. The differences between the reference and the interpolated non-reference orbits are

computed and shown in the following figures, with the means and standard deviations (STD) of the

differences.

Firstly, the 5th order interpolation is tested. 6 nodes are taken from the 30-second solution, namely,

2004-07-18 00:00:00, 2004-07-18 00:00:30, 2004-07-18 00:01:00, 2004-07-18 00:01:30, 2004-07-

18 00:02:00, and 2004-07-18 00:02:30, in the Coordinated Universal Time (UTC) system. The

nodes are used to interpolate an orbit position at each second in between. The obtained coordi-

nates are compared with the coordinates of the reference solution and the differences in XYZ are

transformed to the radial, transverse, and normal (RTN) system. The RTN orbit differences are

shown in Figure 4 (left panels) in the International Atomic Time (TAI) system. The panels on the

right-hand are a zoomed-in version to the middle of the interval of one-minute length, i.e. 30 seconds

to the left of the middle point and 30 seconds to the right of the middle point of the interval. This is

done to see how the accuracy changes over 60 seconds when considering the middle interval since

most altimetry satellite orbits are of 30 or 60 seconds step size and thus, the interpolation range

can reach up to 60 seconds. The standard deviation in the radial direction has slightly improved

for the case of the middle interval, as compared to the case of the full interval (from 0.309 mm to

0.285 mm). Whereas, the absolute mean value has increased from 0.126 mm to 0.206 mm.
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Figure 4: Orbit differences when interpolating a 30-second solution to a 1-second solution using
Newton interpolation method of order 5 (left: full interval, right: middle interval) in the TAI

system.

Next, the number of nodes is increased accordingly for interpolations of order 6 (Figure 5), 7 (Figure

6), 8 (Figure 7), and 9 (Figure 8).

The difference in the standard deviation of the middle interval and the full interval is larger for higher
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3.2 Interpolation methods analysis

orders (7, 8, and 9). In this scenario, order 6 provides the lowest standard deviation of 0.274 mm

in the middle interval, and 0.306 mm in the full interval of 7 nodes. Runge phenomenon (Section

3.1.6) is not clearly seen in the figures of the full interval because of the relatively small step size

(30-second) and low polynomial order. The effect is larger in order 9. However, the accuracy is still

not largely degraded. Table 1 summarizes the mean and standard deviation values of the tests.
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Figure 5: Orbit differences when interpolating a 30-second solution to a 1-second solution using
Newton interpolation method of order 6 (left: full interval, right: middle interval) in the TAI

system.

Interpolation order: 7
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Figure 6: Orbit differences when interpolating a 30-second solution to a 1-second solution using
Newton interpolation method of order 7 (left: full interval, right: middle interval) in the TAI

system.
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Interpolation order: 8
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Figure 7: Orbit differences when interpolating a 30-second solution to a 1-second solution using
Newton interpolation method of order 8 (left: full interval, right: middle interval) in the TAI

system.

Interpolation order: 9

00:01 00:02 00:03 00:04 00:05

Jul 18, 2004   

-2

0

2

R
 d

if
f 
(m

m
)

Mean: -0.217 mm, std: 0.509 mm

00:01 00:02 00:03 00:04 00:05

Jul 18, 2004   

-2

0

2

T
 d

if
f 

(m
m

)

Mean: -0.024 mm, std: 0.552 mm

00:01 00:02 00:03 00:04 00:05

TIME Jul 18, 2004   

-2

0

2

N
 d

if
f 

(m
m

)

Mean: -0.135 mm, std: 0.617 mm

Interpolation order: 9

00:02:30 00:02:45 00:03:00 00:03:15

Jul 18, 2004   

-1

0

1

R
 d

if
f 

(m
m

)

Mean: -0.109 mm, std: 0.286 mm

00:02:30 00:02:45 00:03:00 00:03:15

Jul 18, 2004   

-1

0

1

T
 d

if
f 

(m
m

)

Mean: -0.063 mm, std: 0.326 mm

00:02:30 00:02:45 00:03:00 00:03:15

TIME Jul 18, 2004   

-1

0

1

N
 d

if
f 

(m
m

)

Mean: -0.156 mm, std: 0.390 mm

Figure 8: Orbit differences when interpolating a 30-second solution to a 1-second solution using
Newton interpolation method of order 9 (left: full interval, right: middle interval) in the TAI

system.

3.2.1.2 Scenario 2: step size of 60 seconds

As in scenario 1, the reference solution is of 1-second step size, the non-reference orbit, how-

ever, is of 60-second step size. In this scenario, the 5th order interpolation has the 6 nodes:

2004-07-18 00:00:00, 2004-07-18 00:01:00, 2004-07-18 00:02:00, 2004-07-18 00:03:00, 2004-07-

18 00:04:00, and 2004-07-18 00:05:00 in the UTC system, and the interpolation is done over each

second in between.

Figure 9 shows the differences of the interpolated orbit to the reference orbit in the RTN system
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3.2 Interpolation methods analysis

using Newton interpolation method of order 5. The differences in the radial direction showed de-

creased accuracy in this scenario (standard deviation in R = 1.845 mm), as compared to the ac-

curacy of the 5th order in scenario 1 (standard deviation in R = 0.309 mm) in the full interval. The

accuracy enhances when taking the middle interval (the right-hand side of Figure 9), however, it

is still relatively low (standard deviation in R = 0.418 mm). The accuracy in the middle interval

increases with increasing the order. The highest accuracy is obtained in order 8 with a standard

deviation of 0.288 mm in the radial component. On the other hand, the highest accuracy in the

full interval is obtained with order 6, where the standard deviation in the radial direction is equal to

0.334 mm (Figure 10). In addition, the Runge phenomenon can be observed at the edges of the

full intervals (left-hand side plots of Figures 9-13).
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Interpolation order: 5
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Figure 9: Orbit differences when interpolating a 60-second solution to a 1-second solution using
Newton interpolation method of order 5 (left: full interval, right: middle interval) in the TAI

system.
Interpolation order: 6
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Figure 10: Orbit differences when interpolating a 60-second solution to a 1-second solution using
Newton interpolation method of order 6 (left: full interval, right: middle interval) in the

TAI system.
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3.2 Interpolation methods analysis

Interpolation order: 7
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Figure 11: Orbit differences when interpolating a 60-second solution to a 1-second solution using
Newton interpolation method of order 7 (left: full interval, right: middle interval) in the

TAI system.

Interpolation order: 8
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Figure 12: Orbit differences when interpolating a 60-second solution to a 1-second solution using
Newton interpolation method of order 8 (left: full interval, right: middle interval) in the

TAI system.
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3.2 Interpolation methods analysis

Interpolation order: 9
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Figure 13: Orbit differences when interpolating a 60-second solution to a 1-second solution using
Newton interpolation method of order 9 (left: full interval, right: middle interval) in the

TAI system.

3.2.1.3 Scenario 3: step size of 120 seconds

In general, most orbits of altimetry satellites are provided with a 60-second step size. However, we

want to investigate the interpolation behavior of the orbits with 120-second step size. The 5th order

in this scenario has the nodes: 2004-07-18 00:00:00, 2004-07-18 00:02:00, 2004-07-18 00:04:00,

2004-07-18 00:06:00, 2004-07-18 00:08:00, and 2004-07-18 00:10:00 in the UTC system. That

means, a larger number of points has to be interpolated between each node. This results in a great

deterioration in the accuracy (standard deviation in R = 116.633 mm in the interpolation of the 5th

order) and larger values at the edges due to the Runge phenomenon (Figures 14-18).

The middle intervals of the orders higher than 6, i.e. orders 7, 8, and 9, keep the accuracy in an

acceptable range (under 0.4 mm in the radial direction). In this scenario, the highest accuracy in

the full and middle intervals is obtained with order 7 with a standard deviation of 0.598 mm and

0.274 mm for the full and middle intervals, respectively (Figure 16).
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3.2 Interpolation methods analysis

Interpolation order: 5
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Figure 14: Orbit differences when interpolating a 120-second solution to a 1-second solution using
Newton interpolation method of order 5 (left: full interval, right: middle interval) in the

TAI system.
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Figure 15: Orbit differences when interpolating a 120-second solution to a 1-second solution using
Newton interpolation method of order 6 (left: full interval, right: middle interval) in the

TAI system.
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Interpolation order: 7
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Figure 16: Orbit differences when interpolating a 120-second solution to a 1-second solution using
Newton interpolation method of order 7 (left: full interval, right: middle interval) in the

TAI system.
Interpolation order: 8
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Figure 17: Orbit differences when interpolating a 120-second solution to a 1-second solution using
Newton interpolation method of order 8 (left: full interval, right: middle interval) in the TAI
system.
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Interpolation order: 9
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Figure 18: Orbit differences when interpolating a 120-second solution to a 1-second solution using
Newton interpolation method of order 9 (left: full interval, right: middle interval) in the

TAI system.

The test discussed the accuracy of the Newton interpolation method when there are 2 solutions,

one solution with a 1-second step size and the other solution with a 30, 60, or 120-second step

size. As a conclusion, the choice of the interpolation order depends on the step size of the orbit

solutions. As the test is conducted on a specific time interval, we can only conclude that higher

order of interpolation, i.e. 6, 7, or 8, can provide the most accurate results within the middle interval

of the window (standard deviation between 0.274 mm and 0.319 mm) (see Table 1). This leads to

the next test, where the sliding window interpolation is implemented in order to take advantage of

the high accuracy in the middle interval while using the full arc length.
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3.2 Interpolation methods analysis

3.2.2. Comparison of interpolation methods
In this test, the Newton, Lagrange, Hermite, and spline methods are compared in terms of accuracy

and time efficiency. Two approaches will be used in this test; the first approach is the sliding win-

dow approach (Section 3.2.2.1), and the second approach is the middle-point approach (Section

3.2.2.2).

3.2.2.1 Sliding window interpolation approach

As mentioned previously, increasing the order and the step size between the two solutions will lead

to a higher deviation of the results from the true value at both ends of the interval (Runge phe-

nomenon, Section 3.1.6). Therefore, the sliding window implementation is an approach to achieve

acceptable accuracy by only taking the point in the center of the window, interpolating to it, and

omitting the points at the edges. Figure 19 illustrates an interpolation of order 5 (6 input nodes),

using 2 solutions with a 60-second step size. The first (reference) orbit solution is shifted by 30 sec-

onds compared to the second (non-reference) orbit solution. The interpolation will be done to the

points of the reference orbit. In the figure, there are two sliding windows. The first one uses the

first 6 nodes in the non-reference solution and interpolates to what is called as the "1st" point at

time 00:02:30. The second sliding window takes the next 6 nodes by moving 1 node forward from

the first sliding window. Then, it interpolates to the "2nd" point at time 00:03:30. The points out-

side the center of the window are omitted since the Runge phenomenon affects and decreases the

interpolation accuracy of these points the most.

At uneven orders, there is an equal number of points to the left and to the right of the interpolation

point. Figure 20 illustrates an example of 6th order interpolation with 7 input nodes. That means,

the interpolated point is no longer exactly at the center of the window, but shifted to the closest point

to the right in the reference solution.

Figure 19: Sliding window approach, 5th order interpolation.

The difference in the accuracy when the number of input nodes (window size) is odd or even is

directly related to the order of the method, as shown in the following tables (Tables 2-4). The test

was done over an extended version of the arcs explained in Figure 19 and Figure 20. Both orbits
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3.2 Interpolation methods analysis

Figure 20: Sliding window approach, 6th order interpolation.

are derived from the same TOPEX/Poseidon 1-second arc. One starts from the 31st epoch and

lasts until the end with a 60 second time step (from 2004-07-18 00:00:30 to 2004-07-21 11:59:30).

The other orbit starts from the 1st epoch and lasts until the end with a 60-second time step (from

2004-07-18 00:00:00 to 2004-07-21 12:00:00). The second orbit is interpolated to the time instants

of the first orbit and will ideally be identical to the first orbit. The difference between the interpolated

orbit and the original orbit will be the interpolation error that will be shown in the figures below.

Table 2 demonstrates the comparison between each order of Lagrange interpolation. It can be

seen that there is no large difference between even and odd orders. However, when we compare

the results for orders 6 to 9, the odd orders (with an even number of input nodes) will have slightly

higher accuracy than the even orders (with an odd number of input nodes). In this case, the best

accuracy with the standard deviation in the radial component of 0.380 mm is achieved with the

interpolation order 7. The results of Newton interpolation are given in Table 3. As obtained by

Yousif and El-Rabbany (2007) and Wang et al. (2018), Newton and Lagrange interpolation methods

show identical results. However, the duration of the computation using the Newton method is slightly

shorter than using the Lagrange method (reduction of between 15% and 20% based on the order).

Table 4 shows the results for the Hermite interpolation. The computation time of the Hermite method

is shorter than that of the Newton method by around 30% and of the Lagrange method by around

50%. Furthermore, the accuracy of all the orders is improved. The best accuracy is achieved for

order 8 with a standard deviation in the radial component of 0.339 mm. Figures 21 and 22 illustrate

the interpolation error of order 8 in the Cartesian (XYZ) coordinates and in the RTN coordinates

compared to the orbit function, respectively.

In all the tested orders, the mean values of the radial component are of the same magnitude,

except for order 5 using the Lagrange and Newton methods (mean = 0.982 mm). In order to know

what could be the reason behind this offset, the behavior of the interpolation over the Cartesian

coordinates system is examined. Since both methods provide identical results, the following figures

are results from the Lagrange interpolation method only. Figures 23 and 24 demonstrate the error

of the interpolation over the full time series, plotted together with the real orbit values of satellite
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3.2 Interpolation methods analysis

X, Y, and Z coordinates and the radial, transverse, and normal coordinate differences, respectively.

It can be seen that the smallest absolute interpolation errors in the Cartesian coordinates occur

when the component is close to 0. Conversely, the largest absolute interpolation errors occur at the

maximum absolute values of X, Y, and Z. This behavior is no longer distinguished for higher orders,

such as order 7 (Figure 25). Furthermore, there is no more an offset in the radial direction for the

order 7 in Figure 26. Therefore, using the 5th order interpolation method is not recommended in the

orbit interpolation application.

A closer look at the behavior of the interpolation errors of Cartesian coordinates, as well as on the

behavior of the orbit function compared to the error in the radial component can be seen in Figure

27, where in both cases the first 100 epochs are taken, i.e. between 2004-07-18 00:00:00 and

2004-07-18 01:41:30 with a 60-second time step. It can be observed that the interpolation error in

the radial direction has peaks that are closer to zero around the strong curvatures in the X and Z

axes and around the slope line in the Y axis. This assumption is also valid when taking another

interval of 100 epochs inside the full orbit arc (Figure 28). However, the correlation between the

curvature of the orbit and the interpolation error cannot be validated.

Table 2: Interpolation statistics using Lagrange interpolation method of different orders with the slid-
ing window approach.

Order time (s) std R (mm) std T (mm) std N (mm) abs. mean

R (mm)

abs. mean

T (mm)

abs. mean

N (mm)

5th 1.384 0.3838 0.3742 0.4898 0.9819 0.099 0.0005

6th 1.445 0.3822 0.3785 0.3805 0.0029 0.0179 0.0022

7th 1.468 0.3801 0.3762 0.3784 0.0028 0.0098 0.0023

8th 1.495 0.3844 0.3807 0.3831 0.0036 0.0098 0.0023

9th 1.536 0.3829 0.3793 0.3815 0.0037 0.0097 0.0023
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3.2 Interpolation methods analysis

Table 3: Interpolation statistics using Newton interpolation method of different orders with the sliding
window approach.

Order time (s) std R (mm) std T (mm) std N (mm) abs. mean

R (mm)

abs. mean

T (mm)

abs. mean

N (mm)

5th 1.279 0.3838 0.3742 0.4898 0.9819 0.0990 0.0005

6th 1.277 0.3822 0.3785 0.3805 0.0029 0.0179 0.0022

7th 1.266 0.3801 0.3762 0.3784 0.0028 0.0098 0.0023

8th 1.276 0.3844 0.3807 0.3831 0.0036 0.0098 0.0023

9th 1.276 0.3829 0.3793 0.3815 0.0037 0.0097 0.0023

Table 4: Interpolation statistics using Hermite interpolation method of different orders with the sliding
window approach.

Order time (s) std R (mm) std T (mm) std N (mm) abs. mean

R (mm)

abs. mean

T (mm)

abs. mean

N (mm)

5th 0.978 0.3430 0.3376 0.3404 0.0037 0.0097 0.0024

6th 0.975 0.3400 0.3347 0.3379 0.0038 0.0121 0.0023

7th 0.983 0.3409 0.3355 0.3383 0.0038 0.0098 0.0023

8th 0.996 0.3388 0.3335 0.3366 0.0039 0.0119 0.0023

9th 0.994 0.3394 0.3341 0.3369 0.0039 0.0098 0.0024
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Interpolation order: 8
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Figure 21: (Left axis) 8th order Hermite interpolation error in the Cartesian coordinates.
(Right axis) TOPEX/Poseidon orbit in the Cartesian coordinates.

Interpolation order: 8
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Figure 22: (Left axis) 8th order Hermite interpolation error in the RTN coordinates.
(Right axis) TOPEX/Poseidon orbit in the Cartesian coordinates.
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Interpolation order: 5
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Figure 23: (Left axis) 5th order Lagrange interpolation error in the Cartesian coordinates.
(Right axis) TOPEX/Poseidon orbit in the Cartesian coordinates.

Interpolation order: 5
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Figure 24: (Left axis) 5th order Lagrange interpolation error in the RTN coordinates.
(Right axis) TOPEX/Poseidon orbit in the Cartesian coordinates.
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Interpolation order: 7
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Figure 25: (Left axis) 7th order Lagrange interpolation error in the Cartesian coordinates.
(Right axis) TOPEX/Poseidon orbit in the Cartesian coordinates.

Interpolation order: 7
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Figure 26: (Left axis) 7th order Lagrange interpolation error in the RTN coordinates.
(Right axis) TOPEX/Poseidon orbit in the Cartesian coordinates.
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Figure 27: Lagrange interpolation of order 5, interpolation error in the radial component with the orbit
function in the Cartesian coordinates (left). Interpolation error in the radial component
with interpolation error in the Cartesian coordinates (right).

Figure 28: Lagrange interpolation of order 5, interpolation error in the radial component with the orbit
function in the Cartesian coordinates (left). Interpolation error in the radial component
with interpolation error in the Cartesian coordinates (right).
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3.2.2.2 Middle-point interpolation approach

The basic idea of the middle-point interpolation is to interpolate both solutions, i.e. the previously

called reference and non-reference solutions, to the points in the middle between the time instants of

both solutions (Figure 29). This helps to reduce the time between the nodes and the interpolation

points, and to eliminate the large interpolation errors when taking the differences between the 2

solutions.

Figure 29 is based on the same orbits as illustrated in Figure 19. However, a new reference orbit

is introduced at the time instants being in the middle between the time instants of the two orbits. In

this test, the 1-second orbit is used as a reference orbit with a 15-second step size (Section 3.2.1.1)

to which the two orbits (1st and 2nd) are interpolated. The difference between the two interpolated

orbits will be the interpolation error. Note that the sliding window is used when using either Newton

or Lagrange interpolation methods in this approach. Hence, in this test, both the sliding window

and the middle-point approaches are combined. The following tables (Table 5, Table 6, and Table

7) show the results obtained when using the 2 approaches together. The results of the Newton

and Lagrange methods are slightly enhanced when using the middle-point approach. Specifically,

in order 5, which now has the best accuracy (standard deviation in R = 0.363 mm) compared to the

other tested orders. As it was also observed in the previous test (Section 3.2.2.1), the orders with

the odd number have better results than the orders with the even number (5th and 7th compared to

6th and 8th). The computation time, however, is significantly longer than in the previous test, where

the program is approximately 34% slower for the Lagrange method and 24% slower for the Newton

method.

The results of the Hermite method are less affected by implementing the middle-point approach.

The best interpolation accuracy is also achieved with order 8. An improvement of 0.7% only (stan-

dard deviation = 0.336 mm) is achieved, which is minimal as opposed to the time difference that is

18% longer compared to when applying the sliding window approach only.

Figure 29: Middle-point interpolation concept.
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Table 5: Interpolation statistics using Lagrange interpolation method of different orders with the slid-
ing window and the middle-point approaches.

Order time (s) std R (mm) std T (mm) std N (mm) abs. mean

R (mm)

abs. mean

T (mm)

abs. mean

N (mm)

5th 2.107 0.3634 0.3625 0.3636 0.0035 0.0073 0.0023

6th 2.154 0.3712 0.3711 0.3720 0.0041 0.0126 0.0023

7th 2.245 0.3706 0.3693 0.3709 0.0036 0.0098 0.0023

8th 2.304 0.3755 0.3751 0.3762 0.0037 0.0098 0.0023

9th 2.368 0.3750 0.3738 0.3755 0.0038 0.0097 0.0023

Table 6: Interpolation statistics using Newton interpolation method of different orders with the sliding
window and the middle-point approaches.

Order time (s) std R (mm) std T (mm) std N (mm) abs. mean

R (mm)

abs. mean

T (mm)

abs. mean

N (mm)

5th 1.687 0.3634 0.3625 0.3636 0.0035 0.0073 0.0023

6th 1.723 0.3712 0.3711 0.3720 0.0041 0.0126 0.0023

7th 1.741 0.3706 0.3693 0.3709 0.0036 0.0098 0.0023

8th 1.694 0.3755 0.3751 0.3762 0.0037 0.0098 0.0023

9th 1.721 0.3750 0.3738 0.3755 0.0038 0.0097 0.0023

So far, the results of the Newton, Lagrange, and Hermite interpolation methods have been dis-

cussed. Table 8 shows the results of the spline method. The spline method is usually of order 3 and

does not require the sliding window, as it is a piece-wise interpolation method (see Section 3.1.5).

In Table 8, the results of the spline interpolation using the middle-point approach are also displayed.

It can be clearly seen that the middle-point approach brings significant improvement in the results

of the spline method for the radial direction. However, the interpolation error in the transverse direc-

tion increases (from 0.01 to 6.06 mm). Additionally, as with the previous methods, the computation

time is longer when using the middle-point approach. However, compared to approximately 90%

enhancement in accuracy and the time when using the other methods, the slower computation time,

in this case, can be overseen. The results shown are computed over the entire arc length, except
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Table 7: Interpolation statistics using Hermite interpolation method of different orders with the sliding
window and the middle-point approaches.

Order time (s) std R (mm) std T (mm) std N (mm) abs. mean

R (mm)

abs. mean

T (mm)

abs. mean

N (mm)

5th 1.201 0.3409 0.3397 0.3424 0.0037 0.0138 0.0022

6th 1.221 0.3371 0.3363 0.3388 0.0038 0.0136 0.0023

7th 1.245 0.3388 0.3377 0.3405 0.0038 0.0139 0.0023

8th 1.220 0.3363 0.3354 0.3381 0.0037 0.0139 0.0024

9th 1.216 0.3373 0.3363 0.3392 0.0038 0.0140 0.0024

for the first 7 and last 7 epochs, which are omitted to avoid the effect of the Runge phenomenon.

Table 8: Interpolation statistics using spline interpolation with and without the middle-point (MP)
approach

Approach time (s) std R (mm) std T (mm) std N (mm) abs.mean

R (mm)

abs.mean

T (mm)

abs.mean

N (mm)

Without MP 0.0092 3.4269 0.6312 38.2162 175.1706 0.0110 0.2809

With MP 0.0155 0.4563 0.3823 1.3770 0.0031 6.0571 0.0008

In conclusion, spline interpolation is the fastest method, followed by Hermite, Newton, then La-

grange methods. The best results are provided by the 8th order Hermite interpolation with and with-

out the middle-point approach. The middle-point approach is quite slow in the cases of Hermite,

Newton, and Lagrange methods, however, it is acceptable in the case of spline interpolation. As a

final recommendation, for highest interpolation accuracy (0.34 mm standard deviation in the radial

direction), it is suggested to use Hermite interpolation of 8th order. Whereas, for fastest interpola-

tion with a reliable accuracy (0.46 mm standard deviation in the radial direction), the middle-point

spline interpolation is recommended.
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4. Analysis of orbit differences

The accuracy of altimetry satellite orbits is crucial for obtaining a high accuracy sea level height.

Orbits of altimetry satellites are computed by different institutions using different observing tech-

niques and various software at different integration time steps. Further improving the orbits is key

to enhancing the overall accuracy of the sea level heights. In this chapter, the program that is used

for orbit comparison, as well as analysis techniques with a focus on spectral analysis approaches,

are discussed.

4.1. Program for orbit comparison of altimetry satellites

The MATLAB program was developed at the DGFI-TUM for the computation of differences of altime-

try satellite orbits, which were derived internally at the DGFI-TUM or externally at other institutes.

The program is capable of reading files in SP1, SP3c, SP3d, and SP4 formats1. To run the program,

the user shall define the satellite name, the institutes that derived the orbits, the solution names,

the time span of the desired computation, the reference time system, and other functionalities to

be used by the program, such as transformation between different coordinates systems, and time

systems.

Orbit interpolation is one of the most important functions that help in making the comparison be-

tween different orbit solutions possible. The user has the possibility to use one of the 4 interpolation

methods, namely, spline, Lagrange, Newton, or Hermite interpolation, as well as to choose whether

to use the middle-point approach or not (cf. Section 3.2.2.2). Besides that, there are many details

that are necessary to consider, such as the handling of orbit maneuvers and gaps. Moreover, in

order to avoid outliers around orbit maneuvers, gaps, and at the edges of the investigation inter-

val due to the Runge phenomenon when using spline interpolation, the exclusion of the epochs at

those events is crucial for precise comparison results. Another important measure with the intention

to reduce interpolation errors is to unify the step sizes of different orbit solutions. This is important,

especially when using the middle-point approach, where common middle points between solutions

are used, and the 2 orbit solutions in comparison shall have equal step sizes (usually 30 seconds

or 60 seconds).

The first orbit solution defined in the input options is going to be the reference solution, all other

orbit solutions will be compared to the reference orbit. The script iterates over each orbit file of

the reference solution and compares it to the overlapping arcs from other orbit solutions. As an

output, for each arc, orbit differences in the Cartesian, ellipsoidal, and RTN coordinate systems, as

well as the ellipsoidal coordinates, are saved in corresponding files. A summary file that contains

a statistical analysis of the differences of each arc is printed, from which it is possible to compute

the overall mean values of the statistics. There is another option to perform the comparison over

the total defined time span. The output file will contain a summary of statistics of the full time span

computation. Other output forms, such as plots of the differences at each arc or over the entire time

1 https://files.igs.org/pub/data/format
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span, can be handled. The options of plotting or printing in any coordinate system can be set by

the user at the main function of the program.

After finalizing the computation of the orbit differences, it is possible to analyze the results with

different techniques, such as studying the geographical distribution and applying a spectral analysis

of the orbit differences. The geographical distribution of the orbit differences is illustrated with either

of the 2 options: 1) to plot the orbit differences of several arcs according to the satellite locations in

latitude and longitude, 2) or to plot an averaged value of overlapping arcs on a 1◦×1◦ grid of latitude

and longitude. Furthermore, a spectral analysis of possible periods in the orbit differences can be

performed. For a reliable analysis, large outliers can be extracted with 2 options. By specifying a

limit for the values not to exceed, e.g., any value that is larger than "10 cm" is extracted. Another

option is to extract the values according to the "sigma rule", where the limit (SigVal) is calculated as

follows:

SigV al = mean(orbit_differences) +multiplier · sigma(orbit_differences), (4.1)

and the multiplier can be any positive value.

In the following, the theory and quality test of possible spectral analysis methods are explained.

4.2. Spectral analysis

One analysis approach for detecting the dominant frequencies and periods of the orbit differences

is spectral analysis. Deciding on which method is appropriate for this aim is not an easy task, since

the orbits are subject to a variety of factors that might affect the results of the analysis, such as orbit

maneuvers, gaps, the time the satellite spends in shadow, and other influences. There exist various

broad categories of spectral analysis methods, such as Fourier methods, phase-folding methods,

least-squares methods, and Bayesian approaches. The focus of this study will be on Fourier-based

methods, with their advantages and disadvantages, which are discussed in the following. For further

details and references on other methods, see VanderPlas (2018).

4.2.1. Fourier transform
As it is defined and derived by VanderPlas (2018), the Fourier transform decomposes complex-

shaped signals to simple sinusoids. To transform a signal from the time domain to the frequency

domain, the function of the continuous Fourier transform reads:

G(f) =

∫ +∞

−∞
g(t)e−2πiftdt, (4.2)

with G(f) and g(t) the signal in the frequency and the time domain, respectively, and i =
√
−1

denoting the imaginary unit. The complex exponential is derived from Euler’s formula:

ei·x = cosx+ i · sinx.

Assuming that the signal is regularly sampled with a step size ∆t, it is possible to write the integral
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in Eq. 4.2 as:

G(f) =
N∑

n=0

g(n∆t)e−2πifn∆tdt. (4.3)

Having n as the current sample and N as the total number of samples, the frequency range ∆f

can be represented as ∆f = 1/(N∆t). With k being the current frequency and gn = g(n∆t), the

equation becomes:

G(f) =
N∑

n=0

gne
−2πikn/Ndt (4.4)

The frequency range is defined as complying with the Nyquist limit, which states that in order for

the information in a regularly sampled signal to be recovered, the total length of the signal shall be

at least twice the longest period. The frequency is computed starting from 0 through the highest

frequency that can be achieved considering the Nyquist limit, having the frequency range ∆f as the

sampling interval. The amplitude, i.e. the height of the peak of a signal, can simply be computed by

taking the magnitude of the Fourier transform.

In order to quantify the contribution of each frequency in a signal, the square of the magnitude of the

Fourier transform is calculated which is known as the power spectral density (VanderPlas, 2018).

For a discrete number of samples, the classical periodogram, which is an estimate of the power

spectral density P (f), can be defined as:

P (f) =
|
∑N

n=0 gne
−2πiftndt|2

N
(4.5)

The Fourier transform is a basic method for detecting the frequencies of a signal. However, this

method is limited to a regularly spaced signal and is dependent on the length of the time series. In

the following, other methods that are able to overcome these limitations are discussed.

4.2.2. Lomb-Scargle periodogram
The advantages of the Lomb-Scargle periodogram are that it is possible to use it for irregularly

sampled data and that it is not majorly affected if the data contains gaps as in Fourier transform

(VanderPlas, 2018).

The Lomb-Scargle periodogram (PLS) is different from the classical periodogram in Eq. 4.5 by

the functions in the denominator. These functions of time and frequency are chosen so that the

distribution of the Lomb-Scargle periodogram can be computed analytically and is independent of

the global time shift of the data (VanderPlas, 2018). This leads to:

PLS(f) =
1

2

(
∑

n gncos(2πf [tn − τ ])dt)2∑
n cos

2(2πf [tn − τ ])
+

1

2

(
∑

n gnsin(2πf [tn − τ ])dt)2∑
n sin

2(2πf [tn − τ ])
, (4.6)

and τ is defined as:

τ =
1

4πf
tan−1

(∑
n sin(4πftn)∑
n cos(4πftn)

)
, (4.7)
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so that it secures the condition of time-shift invariance. In this case, the amplitude of the signal

can be computed by taking the square root of the defined periodogram scaled to the length of the

signal. The frequency is computed starting from the frequency of the sampling interval, since the

Lomb-Scargle periodogram, unlike Fourier transform, cannot carry out a frequency of zero (Trauth,

2020).

With this definition, the solution of PLS will be equal to the least-squares fit of a sinusoidal function

to the data at every frequency, the function is composed of sine and cosine and can be written as

(Trauth, 2020):

y(t) = Acos(2πft) +Bsin(2πft). (4.8)

However, Zechmeister and Kurster (2009) stated that the Lomb-Scargle periodogram assumes that

the data has uncorrelated white noise and that the mean of the data is equal to the mean of the

fitted sinusoid. To overcome these assumptions, different techniques shall be considered. There-

fore, the authors introduced the generalized Lomb-Scargle periodogram, in which they resolved the

problem of equal means by adding an offset "c" to the Eq. 4.8. This method is also known as the

"floating-mean periodogram". The mean and the data are weighted to the inverse of the squared

of the measurement’s uncertainty, and then, they are subtracted from each other. The authors also

suggested normalization techniques to calculate the false alarm probability so that any trend that

is only related to statistical errors and not due to a real period is discarded from the periodicity

detection.

Another assumption of the Lomb-Scargle periodogram is that the frequency of the data is stationary

or non-evolutionary throughout the time series and in the presence of time-varying frequency, it will

result in a mean state of the signal (Kalicinsky et al., 2020). The authors present a solution to the

problem arising from this assumption by using a sliding window, in which the same procedure of

calculating the periodogram is applied to the parts of the time series that are inside the window.

This will enable the detection of amplitudes and frequencies that are varying with time. However,

this approach becomes inefficient if the length of the time series is very long and inaccurate, if the

high or low-frequency range is not contained inside the window.

4.2.3. Wavelet analysis
Another alternative for detecting evolutionary frequencies is to apply wavelet analysis. It is an

efficient method for detecting and resolving time-varying frequencies with high accuracy. This is

possible due to the fact that the wavelet, from its name, decomposes the signal into small waves

ψa,b(t) from a mother wavelet ψ(t) under 2 conditions: the wavelet function should have a zero

mean and should be localized in time and space. Eq. 4.9 shows the wavelet derived by defining the

scale (a) as a dilation and the position in time (b) as a translation of the mother wavelet (Torrence

and Compo, 1998; Trauth, 2020).

ψa,b(t) =
1

a1/2
ψ

(
t− b

a

)
(4.9)
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The so-called wavelet transforms W (b, a) of a signal is obtained by taking the integral of the convo-

lution of the signal y(t) with the mother wavelet ψ(t):

W (b, a) =
1

a1/2

∫
ψ ∗

(
t− b

a

)
y(t)dt (4.10)

There exist different mother wavelets in the literature, a commonly used mother wavelet is "Morlet

wavelet" and is defined as (Torrence and Compo, 1998; Trauth, 2020):

ψ0(η) = π−1/4eiω0ηe−η2/2, (4.11)

where η is the non-dimensional time and ω0 is defined as the number of oscillations within the

wavelet (the wave number).

As the wavelet is dependent on the scale and not on the frequency, one should be careful when

converting from the scale to the frequency. In the simplest case, the "Morlet wavelet" is almost

equivalent to the inverse of the frequency, i.e. the period, for more details please refer to Torrence

and Compo (1998). The signal’s peak at a time instant is equal to the amplitude of the wavelet

transform. The disadvantage of the wavelet analysis is that it requires uniformly sampled data, and

hence, it cannot perform as intended in case of the existence of gaps in the data (Trauth, 2020).

Another disadvantage is that it is computationally extensive.

4.2.4. Testing the methods on an artificial signal
As discussed in Sections 4.2.1-4.2.3, each method has its advantages and disadvantages. Deciding

on which method to use depends on the data and the goal of the analysis. In this section, a test is

conducted on an artificial sine signal by defining different periods and amplitudes. The test is set up

in a way to resemble the time series of the orbit, such that it has a step size of 60 seconds, the length

of the time span might reach up to 14 years, and the periods are defined to be similar to the known

periods of the orbit. The 3 main periods are: 1) the half of the draconitic period (T = 58.765 days),

the draconitic period (T = 117.53 days) is the period of the sun’s elevation angle with respect to the

orbit plane to control the satellite’s orientation in order to maintain the nadir-pointing attitude and

the sun-pointing of the solar arrays, 2) the repeat cycle (T = 9.9156 days), which is the time that the

satellite takes to revisit the same ground track, and 3) the nodal period (T = 112.4267 minutes), also

known as the revolution period, which is the time needed by an altimetry satellite to orbit around

the Earth. Other details, such as the white noise and data gaps, are included, and the Nyquist

limit of having the length of the signal at least 2 times the maximum period is also secured in this

test. However, the number of full oscillations covered in the signal should be larger than 2 for better

analysis results.

For each of the discussed methods, MATLAB has its built-in functions, namely ’fft’1 for fast Fourier

transform, ’plomb’2 for Lomb-Scargle periodogram, and ’cwt’3 for the continuous wavelet transform.

1 https://de.mathworks.com/help/matlab/ref/fft.html
2 https://de.mathworks.com/help/signal/ref/plomb.html
3 https://de.mathworks.com/help/wavelet/ref/cwt.html
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The input to the functions is a signal with one (or more) of the periods mentioned above. There are

also other input options, such as the length of the signal, the sampling rate, or the time instants. The

output of the ’fft’ function is the Fourier transform of the signal, whereas the outputs of the ’plomb’

function are the power spectral density as well as the frequency. In the case of the function ’cwt’,

the outputs are the wavelet transform, the period or the frequency, and the cone of influence, where

the information might be inaccurate due to being at the edges1. There is an option to increase

the resolution of the fast Fourier transform and the Lomb-Scargle periodogram, as stated in the

MATLAB documentation of both methods, by increasing the length of the signal. The fast Fourier

transform can make use of the so-called "zero-padding" method, in which the signal is filled with

zeros at the end to make the length of the signal in the power of 2, at which the ’fft’ function

performs even faster. On the other hand, the option for the Lomb-Scargle periodogram is similar

but not exactly the same as the zero-padding method. In this case, an oversampling factor can be

fixed "to interpolate or smooth a spectrum" as defined in the MATLAB documentation2. However,

the oversampling method requires large memory for the processing of a long time series, therefore,

it is disregarded for this test. Since both methods, the Fourier transform and the Lomb-Scargle

methods, are dependent on the length of the time span, the following test is performed using these

2 methods.

The test is done over artificial "sine" signals with a randomly set amplitude, and the periods are one

of the periods discussed in the beginning of this section. The first scenario is done over gap-free

and noise-free signals. The power spectral density and the frequencies of the signals are computed

iteratively. For the repeat cycle (9.9156 days) and the nodal period (112.4267 minutes, used as

0.0781 days from now on), the test is initiated with a time series of 240 days (24 times the repeat

cycle (around 10 days) in order to secure the full recovery of the signal). The length of the time

series increases per iteration by 2 days until reaching a total length of 2 years. These 2 signals

are studied in 2 cases, individually and in the case when they are combined together. The third

signal, which is half of the draconitic period (58.765 days), is only studied individually starting from

a length of time series of around 3.8 years. The length of the time series increases cumulatively

every 20 days until reaching 14 years from the starting point, which is around the maximum length

of time that an altimetry satellite can be in function. Tables 9, 10 and Figures 30-35 show the results

of the periods and amplitudes reconstructed in the gap-free and noise-free scenario, where the first

column includes the signal number, "T" denotes the period, "composed" means that the signal is

reconstructed from a combination of 2 signals, and "Relative Diff. %" is calculated as:

RelativeDiff.% =
obtained− original

original
· 100. (4.12)

From Table 9 and Figures 30, 32, and 34, all 3 methods provide very small relative differences

varying for each signal from 0.00 to 0.16% in the absolute form. The smallest relative differences

are obtained when using the zero-padding fast Fourier transform. The values obtained when im-

plementing the Lomb-Scargle method have a periodic behavior over time, which implies that the

function might stabilize and the error will be minimum at infinity. The zero-padding fast Fourier

1 https://de.mathworks.com/help/wavelet/ref/cwt.html
2 https://de.mathworks.com/help/signal/ref/plomb.html
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transform results in periods in the form of a straight line, as shown in Figures 30 and 34. Table 10

and Figures 31, 33, and 35 show the results for the amplitude reconstruction. The relative differ-

ences are in favor of the zero-padding fast Fourier transform with a maximum of 0.3%, whereas the

Lomb-Scargle method results in a maximum relative difference of around 3%. On the other hand,

the periodic behavior of the Lomb-Scargle method can also be observed in the amplitude obtained

using the zero-padding fast Fourier transform, which also includes a drift from the real value toward

the end of the tested time series. The standard Fourier transform shows large deviations from the

original values that can reach up to 36%.

In summary of the gap-free and noise-free scenario, the maximum deviation of the Lomb-Scargle

method can reach up to around 0.5% in the period and to about 3% in the amplitude reconstruc-

tion. The standard Fourier transform results in maximum period variations of 1.7% and amplitude

variations of 36%. The zero-padding fast Fourier transform variations can reach up to around 0.2%

in the period reconstruction and around 0.4% in the amplitude reconstruction, making it the most

accurate method when the signal is gap-free and noise-free.

Table 9: Detection accuracy of specific periods in a gap-free and noise-free sine signal depending
on the signal lengths in days. In bold are the values of minimum absolute relative differ-
ences.

Signal number Original T (days)

Plomb Standard FFT Zero-padding FFT

T (days)

Absolute max. relative difference

1
58.765 59.0515 59.7334 58.6725

Relative Diff. (%) 0.4876 1.6479 0.1574

2
9.9156 9.9623 10.0834 9.9123

Relative Diff. (%) 0.4708 1.6919 0.0329

2 composed with 3
9.9156 9.9623 10.0834 9.9123

Relative Diff. (%) 0.4708 1.6919 0.0329

3
0.0781 0.0780 0.0781 0.0781

Relative Diff. (%) 0.0621 0.0149 0.0000

3 composed with 2
0.0781 0.0781 0.0781 0.0781

Relative Diff. (%) 0.0035 0.0150 0.0002
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Table 10: Detection accuracy of specific amplitudes in a gap-free and noise-free sine signal de-
pending on the signal lengths in days. In bold are the values of minimum absolute relative
differences.

Signal number Original amplitude

Plomb Standard FFT Zero-padding FFT

Amplitude

Absolute max. relative difference

1
10 9.7375 6.3851 9.9663

Relative Diff. (%) 2.6249 36.1495 0.3373

2
50 48.6373 31.8390 49.8291

Relative Diff. (%) 2.7254 36.3220 0.3417

2 composed with 3
50 48.6374 31.8388 49.8293

Relative Diff. (%) 2.7253 36.3223 0.3415

3
5 4.8732 3.1922 4.9991

Relative Diff. (%) 2.5353 36.1552 0.0174

3 composed with 2
5 4.8728 3.1923 4.9949

Relative Diff. (%) 2.5447 36.1547 0.1023

Figure 30: Detection accuracy of a period of 58.765 days in a gap-free and noise-free sine signal
depending on the signal lengths in days using Lomb-Scargle method (plomb on the left),
standard fast Fourier transform (middle), and zero-padding fast Fourier transform (right).
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Figure 31: Detection accuracy of an amplitude of 10 in a gap-free and noise-free sine signal de-
pending on the signal lengths in days using Lomb-Scargle method (left), standard fast
Fourier transform (middle), and zero-padding fast Fourier transform (right).

Figure 32: Detection accuracy of a period of 9,9156 days in a gap-free and noise-free sine signal
depending on the signal lengths in days using Lomb-Scargle method (left), standard fast
Fourier transform (middle), and zero-padding fast Fourier transform (right).

Figure 33: Detection accuracy of an amplitude of 50 in a gap-free and noise-free sine signal de-
pending on the signal lengths in days using Lomb-Scargle method (left), standard fast
Fourier transform (middle), and zero-padding fast Fourier transform (right).
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Figure 34: Detection accuracy of a period of 0.078075 days in a gap-free and noise-free sine signal
depending on the signal lengths in days using Lomb-Scargle method (left), standard fast
Fourier transform (middle), and zero-padding fast Fourier transform (right).

Figure 35: Detection accuracy of an amplitude of 5 in a gap-free and noise-free sine signal depend-
ing on the signal lengths in days using Lomb-Scargle method (left), standard fast Fourier
transform (middle), and zero-padding fast Fourier transform (right).

The second scenario is when the signal contains gaps and Gaussian white noise. The gaps of the

length of 0.4 days, 3.5 days, and 72 days are introduced to the signal at 3 days, 3 months, and

6 months from the beginning of the signal, respectively. Gaussian white noise is generated based

on a predefined signal-to-noise ratio that is assumed to be 10 dB, this is done using the built-in

MATLAB function ’awgn’1. Similarly to the first scenario, Tables 11 and 12 and Figures from 36

to 41 show the results for this scenario. The results of the periods’ reconstruction are displayed

in Table 11, in which all the methods still have relatively small differences, however, in this case,

the Lomb-Scargle method outperforms the zero-padding fast Fourier transform. In the figures, e.g.,

Figures 38 and 40, the effect of the gap on the fast Fourier transform method is well visible, whereas

it is not observable in the Lomb-Scargle figure. The amplitude reconstruction is more challenging

for these cases. In all 3 signals, the amplitude is best recovered by the Lomb-Scargle method,

as seen in Table 12. The gaps-effect, specifically the 72-day-long gap is also distinguished in the

amplitude figures, such as in Figure 39 and Figure 41. The reason for not detecting the influence of

the gap on the signal of the 58.765 days period is that time is accumulated to a length of 14 years,

and the gap is added only at the end of the first year. Therefore, it is possible for the signal to

recover from the gap effect after a certain time. In summary, the Lomb-Scargle method outperforms

1 https://de.mathworks.com/help/comm/ref/awgn.html
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the standard and the zero-padding fast Fourier transform, when the signal contains gaps and noise.

The maximum deviation of the Lomb-Scargle method can reach up to 0.5% in the period, and up to

4% in the amplitude reconstruction. On the other hand, the standard fast Fourier transform method

results in maximum variations of the reconstructed periods of around 7% and amplitudes of around

53%. The zero-padding fast Fourier transform can reach up to 5% in the period and 41% in the

amplitude reconstruction.

To conclude, the Lomb-Scargle method produces more stable results than the fast Fourier transform

methods. This is specifically true when the signal contains gaps and noise, which is mostly the

case in orbit solutions. Therefore, the Lomb-Scargle method is used for spectral analysis of orbit

differences.

Table 11: Detection accuracy of specific periods in a sine signal with gaps and noise depending on
the signal lengths in days. In bold are the values of minimum absolute relative differences.

Signal number Original T (days)

Plomb Standard FFT Zero-padding FFT

T (days)

Absolute max. relative difference

1
58.765 59.0515 57.3012 58.2878

Relative Diff. (%) 0.4876 2.4910 0.8121

2
9.9156 9.9623 9.2614 9.4764

Relative Diff. (%) 0.4709 6.5978 4.4291

2 composed with 3
9.9156 9.9623 9.2614 9.4790

Relative Diff. (%) 0.4709 6.5978 4.4036

3
0.0781 0.0781 0.0781 0.0781

Relative Diff. (%) 0.0036 0.0505 0.0367

3 composed with 2
0.0781 0.0781 0.0781 0.0781

Relative Diff. (%) 0.0037 0.0505 0.0367
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Table 12: Detection accuracy of specific amplitudes in a sine signal with gaps and noise depend-
ing on the signal lengths in days. In bold are the values of minimum absolute relative
differences.

Signal number Original amplitude

Plomb Standard FFT Zero-padding FFT

Amplitude

Absolute max. relative difference

1
10 9.7316 6.2119 9.0381

Relative Diff. (%) 2.6842 37.8813 9.6191

2
50 48.0893 23.2822 29.5438

Relative Diff. (%) 3.8214 53.4355 40.9123

2 composed with 3
50 48.1404 23.2958 29.5626

Relative Diff. (%) 3.7191 53.4083 40.8748

3
5 4.8434 2.4486 3.2083

Relative Diff. (%) 3.1324 51.0290 35.8348

3 composed with 2
5 4.8181 2.4577 3.1864

Relative Diff. (%) 3.6376 50.8464 36.2728

Figure 36: Detection accuracy of a period of 58.765 days in a sine signal with gaps and noise
depending on the signal lengths in days using Lomb-Scargle method (left), standard fast
Fourier transform (middle), and zero-padding fast Fourier transform (right).
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Figure 37: Detection accuracy of an amplitude of 10 in a sine signal with gaps and noise depending
on the signal lengths in days using Lomb-Scargle method (left), standard fast Fourier
transform (middle), and zero-padding fast Fourier transform (right).

Figure 38: Detection accuracy of a period of 9.9156 days in a sine signal with gaps and noise
depending on the signal lengths in days using Lomb-Scargle method (left), standard fast
Fourier transform (middle), and zero-padding fast Fourier transform (right).

Figure 39: Detection accuracy of an amplitude of 50 in a sine signal with gaps and noise depending
on the signal lengths in days using Lomb-Scargle method (left), standard fast Fourier
transform (middle), and zero-padding fast Fourier transform (right).

53



4.2 Spectral analysis

Figure 40: Detection accuracy of a period of 0.078075 days in a sine signal with gaps and noise
depending on the signal lengths in days using Lomb-Scargle method (left), standard fast
Fourier transform (middle), and zero-padding fast Fourier transform (right).

Figure 41: Detection accuracy of an amplitude of 5 in a sine signal with gaps and noise depending
on the signal lengths in days using Lomb-Scargle method (plomb on the left), standard
fast Fourier transform (middle), and zero-padding fast Fourier transform (right).

So far, the signal that is being tested contained frequencies that are stable or vary in period through-

out the time series. However, the signals might change with time, increase or decrease in amplitude.

For this kind of signal, other methods shall be used, such as the wavelet transform. In the following,

a frequency that starts from day 100 and lasts for 250 days is added. The comparison is made

between the wavelet transform method and the Lomb-Scargle periodogram. Table 13 shows the

comparison results between the 2 methods modeling similar frequencies as the test before in addi-

tion to the new frequency with a period of 8 hours (0.3 days). The test is done over a 3-year-long

signal, with 2 cases, noise-free and gap-free case (in the table NF/GF) and noise and gaps in-

cluded case (in the table N/G) containing 0.4, 3.5, and 72 days data gaps and white-noise. Since

the first few days of the signal fall inside the cone of influence (Figure 42), for this test, the 0.4 days

gap is added at the end of the second year of the tested signal, as opposed to the previous test,

where the gap was added 3 days after the start of the signal. The evolutionary period and its am-

plitude are detected when using the wavelet transform method with a relative accuracy of 2.4% and

2%, respectively, as compared to 0.0001% for the period and 80% for the amplitude when using

the Lomb-Scargle method. Hence, the wavelet transform provides a better amplitude detection

accuracy in this case. The reduced accuracy of the Lomb-Scargle method when computing the

amplitude is due to the fact that the amplitude computation is dependent on the length of the time
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series. Since the additional signal only lasts for about 20% of the total time length, the recovered

amplitude will be 20% of the real amplitude, that is, proportional to the length of the signal.

The effect of the gaps on the results from the wavelet transform method is noticeable in Figure

42. This effect is considered the biggest disadvantage beside the computation time and resource

requirement of this method. However, since the exact time of the gaps is already known in this

test and in the orbit differences signal, the times of the gaps can be excluded. Therefore, the

values of the amplitudes of the wavelet transform are computed by taking the mean over the time

series and excluding the time points where there exist gaps and edge effects (cone of influence).

Another disadvantage of the wavelet transform method is that it requires large memory to be used

when dealing with signals longer than 3 years, whereas the Lomb-Scargle method can deal with

10-year-long signals, taking into account that the processing time is long. Therefore, when it comes

to efficiency, the Fourier transform method is the most efficient method (1.15 seconds for a 3-year-

long signal), then the Lomb-Scargle periodogram (4.15 seconds), then the wavelet transform (41.18

seconds). The Lomb-Scargle method’s detection of the periods and amplitudes is very slightly

influenced by the data gaps, unlike the other 2 methods. The wavelet transform can detect the non-

stable periods with their amplitudes, whereas the Lomb-Scargle method may not be able to detect

amplitudes of frequencies that vary in time.

In conclusion, one should carefully decide on which method to use. In the orbit analysis application,

the signal might not be stable due to factors such as attitude variations, hence, the wavelet transform

is the optimal method for detecting the periods and amplitudes of such a signal. Since the wavelet

transform can provide results over short time series, it is suggested to use it for shorter time spans

before using the Lomb-Scargle periodogram over the entire time span of the mission. This can help

in understanding the behavior of the signal over the time series, then making exact conclusions

from the Lomb-Scargle method.

Table 13: Comparison of the Lomb-Scargle method (Plomb) with the wavelet transform method,
detecting 4 different frequencies on a 3-year-long signal.

Original
Case

Plomb Abs. diff. Plomb Wavelet Abs. diff. Wavelet

T Amplitude T (days) Amplitude dT % dAmplitude % T (days) Amplitude dT % dAmplitude %

58.7650 days 10
NF/GF 59.2432 9.6034 0.8138 3.9663 57.6509 9.9259 1.8959 0.7408

N/G 58.4533 9.4723 0.5304 5.2772 57.6509 9.7736 1.8959 2.2640

10 days 50
NF/GF 9.9186 49.8775 0.0298 0.2450 10.1913 49.3087 2.7808 1.3827

N/G 9.9186 49.7755 0.0298 0.4489 10.1913 49.2630 2.7808 1.4740

0.0781 days

(112.4278 mins)

5
NF/GF 0.0781 4.9784 0.0004 0.4311 0.0796 4.9656 1.9779 0.6877

N/G 0.0781 5.0077 0.0004 0.1530 0.0796 5.0302 1.9779 0.6040

0.3333 days 30
NF/GF 0.3333 7.6060 0.0001 74.6467 0.3413 29.3823 2.4013 2.0589

N/G 0.3333 6.0378 0.0001 79.8739 0.3413 29.6505 2.4013 1.1650

Note: N/G = the signal contains noise and gaps, NF/GF = the signal is noise-free and gap-free.
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Figure 42: 3-year-long signal containing gaps and noise, with frequencies detected using wavelet
transform illustrated along the time series (Note: magnitude = amplitude in this context).
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5. The impact of new background models on POD

5.1. The DGFI Orbit and Geodetic Parameter Estimation Software -
Orbit Computation library

The orbits at the DGFI-TUM are computed using DOGS-OC, a library in the DGFI Orbit and Geode-

tic Parameter Estimation Software (DOGS) which has been developed at the DGFI-TUM since 1980.

DOGS is capable of processing various geodetic observation techniques and computing satellite or-

bits, as well as combining normal equation systems at the 3 different levels of the Gauss-Markov

model, namely, the observation equation level, the normal equation level, and the parameter level

(Bloßfeld, 2015). The DOGS-OC library is able to process orbits with the observation techniques

DORIS and SLR. There are 4 execution modes that can be defined in the program:

MODUS = 0: numerical integration of orbits, including selected perturbing forces and recording of

the position vector of the satellite (positions and velocities).

MODUS = 1: numerical integration of orbits with a simulation of the satellite’s observations from

stations.

MODUS = 2: numerical integration of orbits and formulating the normal equations for parameter

estimations based on given observations.

MODUS = 3: numerical integration of orbits and using the least squares adjustment iteratively for

fitting the orbit parameters based on given observations.

Table 14 lists the orbit parameters that are estimated within the orbit determination process, where

the length of an arc is generally 3.5 days. More details on the parameters are discussed in Section

5.2.2. DOGS-OC is capable of treating non-spherical satellites, including the surface model and the

satellite’s attitude (orientation of the solar panels and the satellite in space). The attitude is realized

based on predefined nominal models or based on quaternions that are computed using observa-

tions of star cameras (Zeitlhöfler, 2019). For the purpose of this study, the observation technique

used is SLR, the execution mode, MODUS, is set to 3, and the observation-based quaternions are

used for attitude realization.

5.2. Thermospheric density models

As discussed in Section 2.4.2.1, the acceleration due to drag is linearly proportional to the density

(Eq. 2.17). Therefore, the accuracy of the thermospheric density models is crucial for a precise

orbit. In this section, the new empirical model NRLMSIS 2.0 (Emmert et al., 2021) is compared

to the older version NRLMSISE-00 (Picone et al., 2002) in terms of how accurately they fit to the

SLR observations used in the orbit determination of altimetry satellites, namely, Jason-1, Jason-2,

and Jason-3. The investigation is done using background models defined in the orbit determination

program DOGS-OC with the only difference being the thermospheric density models used (cf. Table

15). The background models are used as in (Rudenko et al., 2023).
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Table 14: Estimated orbit parameters

Parameter Estimating period

Keplerian elements Once per arc

Solar radiation pressure scale factor Once per arc

Earth albedo scale factor Once per arc

Atmospheric drag scale factor Once per 12 hours

Empirical accelerations in the transverse and normal di-

rections (sine and cosine)

Once per revolution

Empirical accelerations in the transverse and normal di-

rections (polygon terms)

Once per 12 hours

SLR station range biases Once per station per arc

First, overviews on the 2 models and on the estimated orbit parameters are given (Section 5.2.1

and Section 5.2.2), then, 2 main questions are investigated:

1) Since the impact of atmospheric drag is the largest in the transverse direction, does the estima-

tion of the empirical acceleration in the transverse component increase or decrease the accuracy

of the comparison? (Section 5.2.3).

2) Which model produces a better orbit arc RMS fit of the SLR observations? (Section 5.2.4).

5.2.1. Overview on the NRLMSISE-00 and NRLMSIS 2.0 thermospheric density
models

The 2 models are part of the MSIS radar family, which aims to represent the atmospheric behav-

ior (temperature and mass density) and the number densities of 8 species from space-based and

ground-based measurements of incoherent scatter radar (ISR).

NRLMSISE-00 provides the mass densities from orbit determination due to drag and accelerom-

eters mounted on satellites. Measurements from the Solar Maximum Mission of solar ultraviolet

occultation provided molecular number density of O2 in the middle thermosphere. In addition, new

temperature measurements from the ISR, which covered the period from 1981 to 1997, were added.

Lastly, the anomalous oxygen component was introduced in NRLMSISE-00, which allowed for ad-

ditional mass in higher altitudes of the thermosphere. For more detailed properties, cf. Picone et al.

(2002).

On the other hand, NRLMSIS 2.0 majorly focuses on lower altitudes. The oxygen density is ex-

tended with cubic splines between 50 and 85 km. New temperature measurements over the tropo-

sphere, stratosphere, and mesosphere between 2002 and 2018 were assimilated. A vital difference
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is the introduction of an effective mass profile which helps in the approximation of the transition be-

tween the fully mixed region (below 70 km) and the diffusive separate region (above 200 km), where

the densities of the species are coupled to the entire column, i.e. the species densities are influ-

enced by the temperature variations through the column. Different data types were incorporated,

such as infrared passive remote sensing, numerical weather prediction reanalysis, solar occulta-

tion, and ground-based observations of Light Detection and Ranging (LIDAR). Further details can

be found in Emmert et al. (2021).

5.2.2. Overview on estimated orbit parameters
Besides the SLR RMS fits, the comparison is made over Jason-2 orbit parameters that were esti-

mated within the orbit determination process and can be found in Table 14. In order to understand

the correlation between each parameter, the mean of absolute values of the correlation matrices of

343 arcs (around 4 years between 2008 and 2011.8) is computed. As can be seen in Figure 43,

there are 46 parameters. This number may vary depending on the number of stations observed

at each arc. Firstly, there exists a very high correlation between the argument of perigee and the

mean anomaly. This is due to the fact that Jason satellite’s orbits are nearly circular, which does

not allow a clear separation of both parameters. Secondly, there is a high correlation between the

Earth’s albedo scale factor and the semimajor axis since the Earth’s albedo radiation affects the

orbit’s radial direction, i.e. can change the semimajor axis. On the other hand, there is a high

correlation between the sine and cosine terms of the empirical accelerations since both terms can

absorb similar mismodeled forces. Lastly, a very high correlation is between the polygon terms of

atmospheric drag scale factor and the polygon terms of empirical acceleration in the along-track

(transverse) direction since the force of atmospheric drag acts most in the along-track direction.

Figure 43: Mean of the absolute values of the correlation coefficients over 343 arcs.
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Table 15: Force models used for POD

Force component Model description

Earth gravity field EIGEN-GRGS.RL04.MEAN-FIELD (Lemoine et al., 2019)

Static part: up to degree/order 120

Time variable part: up to degree/order 90

Mean pole: linear mean pole convention (up-

dated IERS 2010 Conventions; https://iers-

conventions.obspm.fr/content/chapter7/icc7.pdf)

Lunar gravity field Up to degree/order 50 (Konopliv et al., 2001)

Third body gravity effect DE-421: Moon, Sun, Mercury, Venus, Mars, Jupiter, Saturn

Solid Earth tides IERS Conventions 2010 (Petit and Luzum, 2010)

Permanent tide Conventional model (IERS Conventions, 2010)

Ocean tides EOT11a (Savcenko and Bosch, 2012) up to degree/order 30 +

62 admittance waves (Petit and Luzum, 2010)

Atmospheric tides Biancale and Bode 2003 (Biancale and Bode, 2006)

Solid Earth pole tide IERS Conventions, 2010

Ocean pole tide (Desai, 2002)

Non-tidal perturbations (atmospheric, oceanic, hydrological) Not applied

Solar radiation pressure Constant radiation with eclipse modeling

Thermal radiation Applied from: ftp://ftp.ids-

doris.org/pub/ids/satellites/DORISSatelliteModels.pdf

Earth radiation pressure Albedo and infrared (Knocke et al., 1988)

Atmospheric drag NRLMSISE-00 (Picone et al., 2002) or NRLMSIS 2.0 (Emmert

et al., 2021) with GFZ geomagnetic storm and solar flux indices

(Matzka et al., 2021)

General relativistic correction Schwarzschild, de Sitter, Lense-Thirring (IERS Conventions

2010)
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5.2.3. Investigation on the estimation of empirical accelerations in the transverse
component

Empirical accelerations are introduced to the orbit determination process to overcome uncertainties

of the force models and to absorb unmodeled or mismodeled forces. In the course of this study, the

effects on orbit parameters are investigated when estimating empirical accelerations in the trans-

verse (T) direction besides atmospheric drag scale factors. By estimating the empirical acceleration

in the transverse direction, the uncertainty of the models might be absorbed, and the outcome of the

investigation might not be accurate. Hence, in order to avoid miscellaneous judgment, 4 Jason-2

orbits are computed over the full-time span of the mission from July 2008 to October 2019. Each of

these orbits has a different parametrization in terms of the estimation of the empirical accelerations

in the transverse component, and all are based on the NRLMSISE-00 thermospheric density model.

As in Table 14, the empirical acceleration is divided into 2 categories, periodic and polygon terms.

Therefore, one orbit includes the estimation of all the terms, a second orbit includes the estimation

of the periodic terms, another orbit includes the estimation of the polygons, and the last orbit com-

pletely excludes the estimation of the empirical acceleration in the transverse component. Results

of the comparison can be found in Table 16. Firstly, the percentage of observations used in the 4

cases. The comparison is possible since the 4 orbits used an almost equal number of observations

(96.2%).

In Figure 44, the SLR RMS fit is significantly larger when not computing the empirical accelera-

tion in the transverse direction compared to when estimating the polygon terms, the periodic terms

and/or estimating all the terms (1.9568 cm compared to 1.6819 cm, 1.4235 cm, and 1.3499 cm,

respectively). The reason is that the empirical acceleration that absorbs the mismodeled forces is

excluded, and hence the differences between the dynamic orbit and observations are contained

in the residuals, which are represented by the SLR RMS fit. Figures 45-49 contain plots of the

estimated parameters derived with and without the estimation of empirical acceleration in the trans-

verse direction (upper plots) and the a posteriori standard deviation of the respective parameter

(Sigma value in the lower plots). Furthermore, as the most affected force when investigating the

thermospheric models is the atmospheric drag, Figure 45 illustrates the scale factors of the atmo-

spheric drag from the 4 orbits in comparison. The scale factor is a measure of how the model fits to

the observations. The ideal case is when the scale factor is equal to 1. It can be seen that the mean

of the scale factor when estimating the empirical acceleration in the transverse direction is closer to

1 (1.01) compared to when excluding it completely (1.28), estimating only the periodic terms (1.22),

or estimating only the polygons (1.41). On the other hand, the a posteriori standard deviation of

the atmospheric drag scale factor is smallest when estimating the periodic terms, i.e. the estimated

parameters are better determined. A clear increase in the a posteriori standard deviation occurs

when estimating polygon terms since these are highly correlated to the atmospheric drag. Other

parameters, such as the Earth’s albedo and the solar radiation scale factors, show a smaller stan-

dard deviation (scatter) in the case of the estimation of all terms (Figure 46 and Figure 47), whereas

the a posteriori standard deviations are smaller when estimating only the polygon terms. Finally,

the comparison of the empirical acceleration in the normal direction is shown in Figures 48 and 49,

where the scattering is higher in the cases when not estimating the periodic terms.
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As a final test, the impact on the orbit is studied. Figure 50 shows the standard deviations of orbit

differences between estimating the empirical acceleration in the transverse direction (t-all-estim)

and excluding it (no-t-estim), estimating only the polygon terms (t-pol-estim), and estimating only

the periodic terms (t-sin-cos-estim) plotted over the whole time span of the mission. The case

of excluding the T component (no-t-estim) produces a larger standard deviation of the orbit in all

3 components, where the mean of the standard deviations reaches up to 4 cm in the transverse

direction. It is clear that the highest deviations are in the transverse direction since the test is

conducted over this component. The values of the differences in the radial and the normal directions

are close to each other, with the maximum of the mean reaching around 2 cm in the radial direction

and 1.5 cm in the normal direction.

In conclusion, 1) if the goal is to assess the impact on the atmospheric drag scale factor, it is

better not to estimate the polygon terms of empirical acceleration in the transverse direction and

only estimate its periodic terms for 2 reasons. First, since there is a high correlation between the

polygons of the atmospheric drag scale factor and the empirical acceleration in the T component,

and second, since the uncertainty of the atmospheric drag scale factor is lowest when estimating

only the periodic terms. 2) If the goal is to assess the impact on the solar radiation scale factor

and Earth albedo scale factor, only estimating the polygon terms is suggested since there is a

high correlation between the solar radiation scale factor and the periodic terms. Moreover, the

uncertainty of the solar radiation scale factor and Earth albedo scale factor is the lowest when only

estimating the polygon terms. Finally, if the goal is to obtain a better orbit, one should estimate all

the parameters. Therefore, since the goal is to evaluate the impact of the models on the accuracy

of the orbits, the comparison in the next section is based on orbits obtained with the estimation of

all empirical parameters.
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5.2 Thermospheric density models

Figure 44: SLR RMS fit of Jason-2 orbit solutions computed using the models and SLR observa-
tions.

Figure 45: Atmospheric drag scale factor and its a posteriori standard deviation (Sigma) for Jason-2
orbit solutions.
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Figure 46: Earth albedo scale factor and its a posteriori standard deviation (Sigma) for Jason-2 orbit
solutions.

Figure 47: Solar radiation scale factor and its a posteriori standard deviation (Sigma) for Jason-2
orbit solutions.
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Figure 48: The amplitude of the cosine term of empirical acceleration in the normal direction and its
a posteriori standard deviation (Sigma) for Jason-2 orbit solutions.

Figure 49: Empirical acceleration polygon terms in the normal direction and their a posteriori stan-
dard deviations (Sigma) for Jason-2 orbit solutions.
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Figure 50: Standard deviations of orbit differences of the 3 cases of not estimating the transverse
component against estimating it over the whole time span of the mission. (Top) The
impact on the radial component, (middle) the impact on the transverse component,

(bottom) the impact on the normal component.

5.2.4. Comparison of the NRLMSISE-00 and NRLMSIS 2.0 thermospheric density
models

The total atmospheric densities derived using these 2 models at the positions of Jason-2 and the

density differences are shown in Figure 51. In the figure, it is seen that the densities go in line with

the solar activity, in other words, differences in thermospheric density are larger during the periods
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of high solar activity. Furthermore, there is a 10% difference between the densities of the 2 models.

In this section, the impact of this difference on altimetry satellite orbits is investigated.

Figure 51: Atmospheric densities obtained from NRLMSISE-00 and NRLMSIS 2.0 thermospheric
density models overlayed with solar flux index (top) and their differences (bottom).

For the sake of the comparison, 2 orbits are derived using similar parametrization and the same

background models except for the thermospheric density models (cf. Table 15). Results of the

estimated orbit parameters of TOPEX/Poseidon and the 3 Jason satellites can be found in Table

17 (TOPEX/Poseidon mission time span: from late September 1992 to October 2005), Table 18

(Jason-1 mission time span: from January 2002 to June 2013), Table 19 (Jason-2 mission time

span: from July 2008 to October 2019), and Table 20 (Jason-3 mission time span: from February

2016 to October 2021). The "best" among 2 models values of the mean and standard deviation are

marked bold in Tables 17-20. The results from the 2 models are very similar, the SLR RMS fit when

using NRLMSISE-00 is better by 0.1% to 0.4% for the 4 satellites. The SLR RMS fit of Jason-2

can be seen in Figure 52, where the differences between the 2 models are shown in the plot on the

right-hand side with a standard deviation of only 0.025 cm. Figure 53 and Figure 54 illustrate the

values and their differences of the atmospheric drag scale factor and Mount Stromlo SLR station

range biases, computed for Jason-2, respectively. Similarly to the SLR RMS, the values do not

have a distinguishable difference. The absolute mean difference between both atmospheric drag

scale factor time series is 0.006, and the difference between the 2 range bias time series is in the

sub-millimeter level. Other orbit parameters, such as the solar radiation pressure scale factor, the

Earth albedo scale factor, and the different terms of the empirical acceleration have comparable

behavior as the atmospheric drag scale factor and the range biases.

Studying the Keplerian elements is the final step to drawing a conclusion on the 2 models. Fig-

ures 55-60 analyze the Keplerian elements computed using the 2 models. Before studying the

impact of the models, it is worth looking at the behavior of the elements throughout the orbit time
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span. Figure 55 shows the semimajor axis of the Jason-2 satellite. There exists a shift of the value

at the end of 2017 due to an orbit maneuver performed at the end of the mission, which was done

for safety reasons. The orbit after this maneuver is called the geodetic orbit1. Another worth men-

tioning behavior is the linear increase in the oscillation amplitude of the inclination. This happens

because of perturbations acting in the cross-track direction. An increase in the inclination means a

recession of the node.

Looking back at the impact of the thermospheric density models on the Keplerian elements, the

largest differences appear when there is high solar activity (in the middle of the time series). How-

ever, the magnitude of the scattering and the mean values of the differences are insignificant.

Namely, the mean value of the differences in the semimajor axis is in the sub-millimeter level, and

the standard deviation is 5 mm. Other Keplerian elements have very small standard deviations with

the highest magnitude of 10−5 (degrees) in the mean anomaly and the lowest of 10−10 (-) in the

eccentricity. In addition, the differences in the orbits computed using the 2 models produce a mean

of standard deviation between 0.5 mm and 1 mm in the radial direction of the 4 satellites.

In general, all orbit parameters from the 2 models show relatively similar differences. This might be

explained by the fact that the satellites are orbiting at an altitude around 1300 km and the NRLM-

SIS 2.0 model is extensively focused for lower altitudes (Emmert et al., 2021), which means that

the 10% difference between the 2 atmospheric densities in Figure 51 does not significantly impact

the orbit parameters. As a conclusion, both models can be used for POD of altimetry satellites and

produce similar accuracy.

Figure 52: SLR RMS fit of Jason-2 orbits (left) and their differences (right) derived using the
NRLMSISE-00 and NRLMSIS 2.0 thermospheric density models.

1 https://www.eoportal.org/satellite-missions/jason-2mission-status
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Table 17: Comparison of POD parameters of 2 TOPEX/Poseidon orbits computed for NRLMSISE-
00 versus NRLMSIS 2.0.

Parameter
mean standard deviation

NRLMSISE-00 NRLMSIS 2.0 NRLMSISE-00 NRLMSIS 2.0

Observations used (%) 95.0511 95.0514 – –

Mission SLR RMS fits (cm) 2.5642 2.5688 0.9601 0.9595

Mission mean of SLR fits (cm) -4.1385E-06 -1.3922E-06 2.2044E-04 2.2567E-04

Atmospheric drag scale factor (-) 1.0076 1.0002 0.4859 0.4899

Solar radiation pressure scale factor (-) 0.9773 0.9769 0.0877 0.0879

Earth’s albedo scale factor (-) 0.8857 0.8871 0.5766 0.5710

Cos. term of empirical acc. in N (m/s2) -3.2246E-11 -2.9521E-11 1.0369E-09 1.0419E-09

Sin. term of empirical acc. in N (m/s2) -9.0429E-10 -9.0311E-10 1.9507E-09 1.9513E-09

Empirical acc. in N, polygon terms (m/s2) -4.5519E-10 -4.4274E-10 6.2282E-09 6.2366E-09

Cos. term of empirical acc. in T (m/s2) 2.1710E-10 2.1332E-10 1.7960E-09 1.8047E-09

Sin. term of empirical acc. in T (m/s2) -8.7183E-11 -9.0488E-11 4.5590E-09 4.5823E-09

Empirical acc. in T, polygon terms (m/s2) 1.9482E-11 8.9765E-12 7.6461E-10 7.7643E-10

Figure 53: Atmospheric drag scale factor and its a posteriori standard deviation (Sigma) for Jason-2
orbits (left) and their differences (right) derived using the NRLMSISE-00 and NRLMSIS
2.0 thermospheric density models.
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Table 18: Comparison of POD parameters of 2 Jason-1 orbits computed for NRLMSISE-00 versus
NRLMSIS 2.0.

mean standard deviation

Parameter NRLMSISE-00 NRLMSIS 2.0 NRLMSISE-00 NRLMSIS 2.0

Observations used (%) 95.2028 95.2031 – –

Mission SLR RMS fits (cm) 1.3626 1.3686 0.4102 0.41396

Mission mean of SLR fits (cm) 2.2337-05 2.6498E-05 7.3903E-04 7.3759E-04

Atmospheric drag scale factor (-) 0.9892 0.9874 0.4284 0.4250

Solar radiation pressure scale factor (-) 0.9491 0.9489 0.0462 0.04635

Earth’s albedo scale factor (-) 1.0268 1.0224 0.7192 0.7230

Cos. term of empirical acc. in N (m/s2) -2.9305E-11 -3.5960E-11 1.4870E-09 1.4957E-09

Sin. term of empirical acc. in N (m/s2) -5.5079E-10 -5.5383E-10 1.8734E-09 1.8761E-09

Empirical acc. in N, polygon terms (m/s2) 8.6640E-11 8.6586E-11 3.8605E-09 3.8722E-09

Cos. term of empirical acc. in T (m/s2) -6.0396E-11 -6.6057E-11 1.9254E-09 1.9363E-09

Sin. term of empirical acc. in T (m/s2) 2.8737E-10 3.1821E-10 5.9009E-09 5.9089E-09

Empirical acc. in T, polygon terms (m/s2) -7.6297E-12 -1.4254E-11 7.4038E-10 7.6566E-10

Figure 54: Mount Stromlo SLR station range biases (left) and their differences (right) derived for
Jason-2 orbits using the NRLMSISE-00 and NRLMSIS 2.0 thermospheric density mod-
els.
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Table 19: Comparison of POD parameters of 2 Jason-2 orbit solutions computed for NRLMSISE-00
versus NRLMSIS 2.0.

mean standard deviation

Parameter NRLMSISE-00 NRLMSIS 2.0 NRLMSISE-00 NRLMSIS 2.0

Observations used (%) 96.1994 96.1995 – –

Mission SLR RMS fits (cm) 1.3499 1.3554 0.3656 0.3667

Mission mean of SLR fits (cm) -1.3331E-05 -6.1957E-06 2.3135E-04 2.3374E-04

Atmospheric drag scale factor (-) 1.0075 1.0012 0.3538 0.3502

Solar radiation pressure scale factor (-) 0.9922 0.9924 0.0371 0.0371

Earth’s albedo scale factor (-) 1.2798 1.2790 0.6396 0.6383

Cos. term of empirical acc. in N (m/s2) -6.5815E-11 -6.9301E-11 1.5138E-09 1.5117E-09

Sin. term of empirical acc. in N (m/s2) -6.9024E-10 -6.9026E-10 1.9222E-09 1.9214E-09

Empirical acc. in N, polygon terms (m/s2) 2.1367E-10 2.1113E-10 3.9234E-09 3.9284E-09

Cos. term of empirical acc. in T (m/s2) -3.2901E-11 -3.0983E-11 1.6472E-09 1.6489E-09

Sin. term of empirical acc. in T (m/s2) -3.0346E-10 -3.1296E-10 3.8672E-09 3.8628E-09

Empirical acc. in T, polygon terms (m/s2) -1.0575E-10 -1.0775E-10 5.6914E-10 5.7190E-10

Figure 55: Semimajor axis of Jason-2 orbits computed using the NRLMSISE-00 and NRLMSIS 2.0
thermospheric density models (left) and their differences (right).
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Table 20: Comparison of POD parameters of the 2 Jason-3 orbit solutions computed for NRLMSISE-
00 versus NRLMSIS 2.0.

mean standard deviation

Parameter NRLMSISE-00 NRLMSIS 2.0 NRLMSISE-00 NRLMSIS 2.0

Observations used (%) 98.8388 98.8387 – –

Mission SLR RMS fits (cm) 1.3838 1.3857 0.4041 0.4031

Mission mean of SLR fits (cm) -5.1935E-05 -4.2911E-05 1.8646E-04 1.8682E-04

Atmospheric drag scale factor (-) 1.0001 1.0018 0.2704 0.2655

Solar radiation pressure scale factor (-) 0.9885 0.9885 0.0274 0.0274

Earth’s albedo scale factor (-) 1.3026 1.3028 0.5755 0.5769

Cos. term of empirical acc. in N (m/s2) -1.6744E-11 -1.9200E-11 1.3469E-09 1.3457E-09

Sin. term of empirical acc. in N (m/s2) -6.2628E-10 -6.2652E-10 1.7663E-09 1.7651E-09

Empirical acc. in N, polygon terms (m/s2) 4.6412E-10 4.6662E-10 4.0235E-09 4.0256E-09

Cos. term of empirical acc. in T (m/s2) 1.3318E-10 1.3364E-10 1.3245E-09 1.3285E-09

Sin. term of empirical acc. in T (m/s2) -1.4244E-12 8.4487E-12 3.1785E-09 3.1792E-09

Empirical acc. in T, polygon terms (m/s2) -8.7121E-11 -8.0827E-11 4.2512E-10 4.2439E-10

Figure 56: Eccentricity of Jason-2 orbits computed using the NRLMSISE-00 and NRLMSIS 2.0 ther-
mospheric density models (left) and their differences (right).
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Figure 57: Inclination of Jason-2 orbits computed using the NRLMSISE-00 and NRLMSIS 2.0 ther-
mospheric density models (left) and their differences (right).

Figure 58: Argument of perigee of Jason-2 orbits computed using the NRLMSISE-00 and NRLM-
SIS 2.0 thermospheric density models (left) and their differences (right).

Figure 59: Longitude of ascending node of Jason-2 orbits computed using the NRLMSISE-00 and
NRLMSIS 2.0 thermospheric density models (left) and their differences (right).
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Figure 60: Mean anomaly of Jason-2 orbits computed using the NRLMSISE-00 and NRLMSIS 2.0
thermospheric density models (left) and their differences (right).

75



5.3 Earth’s gravity field models

5.3. Earth’s gravity field models

The relationship between the acceleration of the satellite and Earth’s gravity field is described in

Eq. 2.9 in Section 2.4.1.1. The perturbations due to the gravitational force and Earth’s oblateness

(spherical harmonic degree 2) are the major sources acting on LEO satellites. Higher degree and

order coefficients also play an important role in precise orbit determination. Developments in es-

timating the spherical harmonic coefficients and deriving Earth’s gravity field models have been in

progress in the recent decades. In the previous section and as in Rudenko et al. (2023), the EIGEN-

GRGS.RL04.MEAN-FIELD model developed by Lemoine et al. (2018) has been used. Recently,

a new release of the model has been developed at CNES named CNES_GRGS.RL05MF_com-

bined_GRACE_SLR_DORIS (Lemoine et al., 2023).

In this section, the new Earth’s gravity field model CNES_GRGS.RL05MF_combined_GRACE_-

SLR_DORIS is tested as compared to the older version EIGEN-GRGS.RL04.MEAN-FIELD (will be

called RL05 and RL04 henceforward, respectively) in terms of how accurate the orbits of altimetry

satellites derived by implementing those models fit the SLR observations. A similar procedure is

used as in the previous section. We use the same background models defined in Table 15, with the

thermospheric model NRLMSISE-00. First, an overview of the 2 models is given, then, an investi-

gation on the differences between the 2 models and their impact on the orbits of altimetry satellites

is done.

5.3.1. Overview on the EIGEN-GRGS.RL04.MEAN-FIELD and
CNES_GRGS.RL05MF_combined_GRACE_SLR_DORIS gravity field models

The 2 models were derived at CNES based on satellite-only observations, namely, from GRACE,

GOCE, and SLR and DORIS satellites. Both models contain time-variable and static parts, the

time-variable part is up to degree and order 90, and the static part is for the degree and order

from 90 until 300. In this investigation, the models are taken up to degree and order 120, and

the degree 1 terms (representing the center of the Earth) are set to 0 (in the geocenter). The

time variable gravity field part is a mean model from monthly GRACE data, composed of a bias, a

linear drift, and semi-annual and annual components that were modeled for each year between late

2002 and mid-2016 for RL04 (Lemoine et al., 2018), and between April 2002 and October 2021 for

RL05 (Lemoine et al., 2023). The static part is based on GOCE-derived GOCE-DIR5 gravity model

(Bruinsma et al., 2013). The treatment of the period before and after the GRACE era differs for each

model. For RL04, the data was extrapolated using SLR observations from 1985 until 2002 for the

low degree and order coefficients (degree 2) before 2002. For estimating other degree components

before or after GRACE period, the periodic terms are based on extrapolation of 14 years GRACE

data of monthly global fits coefficients. On the other hand, RL05 makes use of "super mascons",

the spatial representation of the gravity field using SLR+DORIS observations. The extrapolation

beyond 2022 is based on 20 years of GRACE and GRACE-FO (GRACE Follow On) data. The SLR

as well as the DORIS observations were introduced from 1993 to 2023, including observations from

LAGEOS-1 and LAGEOS-2, STARLETTE, Ajisai, Stella, and Lares SLR satellites, and all DORIS

missions1 except for Cryosat-2 due to an oscillation at 482 days (Lemoine et al., 2023). In addition

1 https://ids-doris.org/doris-system/satellites.html
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to GRACE-FO and DORIS data, new ocean tide, and atmospheric pressure dealiasing models are

implemented in RL051. Other differences, such as making use of the latest version of accelerometer

measurements, orbits, and clock corrections of GPS satellites, were used from the International

GNSS Service (IGS) instead of orbit products from GRGS, in addition to the implementation of data

loss minimization strategy in case of data gaps. Furthermore, in RL04, only the monthly solution

of the GRACE data was used, whereas, in RL05, the monthly and 10-day solutions were added2.

In the following, a detailed analysis of orbit parameters is performed, similar to the analysis of the

thermospheric density models.

5.3.2. Comparison of orbit parameters obtained using
EIGEN-GRGS.RL04.MEAN-FIELD and
CNES_GRGS.RL05MF_combined_GRACE_SLR_DORIS gravity field models

As in the case of Section 5.2.4, the same orbit parametrization and background models are used

to compute 2 orbits solutions, one with the RL04 and the other with the RL05 model. The 4 satel-

lite orbits, TOPEX/Poseidon, and the 3 Jason missions covering a time span from 1992 to 2021

are processed. The results of the orbit parameters by the 2 models are listed in Table 21 for

TOPEX/Poseidon, Table 22 for Jason-1, Table 23 for Jason-2, and Table 24 for Jason-3. The "best"

values of the mean and standard deviation among the 2 models are marked in bold in Tables 21-

24/. The results in Tables 21, 22, and 23 are comparable, with ±0.2% differences in the SLR RMS

fit. For the case of Jason-3, the SLR RMS fit is 2% better (lower) with the RL05 model (1.35 cm)

as compared to the RL04 model (1.38 cm). The mean of SLR fits in all 4 cases has relatively

small values (around 10−5 cm) since the SLR station range biases are estimated. Other parame-

ters, namely, the atmospheric drag scale factor, the solar radiation pressure scale factor, the Earth

albedo scale factor, and empirical accelerations in the transverse and the normal components, all

show quite similar results. Therefore, only the figures of relevant differences are presented.

Figures 61, 62, 63, and 64 show the arc-wise SLR RMS fits and their differences of the 2 orbits

of TOPEX/Poseidon, Jason-1, Jason-2, and Jason-3, respectively, computed with the RL04 and

RL05 models. In Figure 61, the differences on the right-hand side show an improvement (in blue)

for TOPEX/Poseidon in the period between 1992 and 1998 with the RL05 model, besides a slightly

increased scatter between 2002 and 2004 that is also seen in Figure 62 for Jason-1. Furthermore,

an enhanced behavior with the RL05 model is observed around 2012 for Jason-1 (Figure 62) and

Jason-2 (Figure 63). Along the Jason-2 time span, the RL05 model shows an enhancement (in

blue) in SLR RMS fits except for the period between 2016.5 and 2018.5, the period where there

was a gap between GRACE and GRACE-FO data. The same behavior is observed for Jason-3

in Figure 64, where the improvement is over the mission time span except for the period 2016.5-

2018.5. Another worth-noting behavior is distinguished in the sine term of the empirical acceleration

in the normal direction of TOPEX/Poseidon and Jason-1 satellite orbits. In Figure 65, the amplitude

of the mean value when using the RL05 model is lower than the mean value computed when using

the RL04 model. In contrast, the standard deviation with the RL05 model is slightly greater than

1 https://grace.obs-mip.fr/variable-models-grace-lageos/introduction-grace-solutions/
2 https://grace.obs-mip.fr/variable-models-grace-lageos/grace-solutions-release-05/rl05-products-description/GRACE_-

data
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with the RL04 model since the scatter in the periods 1992.0-1998.0 and 2002.0-2004.0 is larger.

Table 21: Comparison of POD parameters of 2 TOPEX/Poseidon orbit solutions computed using
EIGEN-GRGS.RL04 vs CNES_GRGS.RL05

mean standard deviation

Parameter RL04 RL05 RL04 RL05

Observations used (%) 95.0511 95.0505 – –

Mission SLR RMS fits (cm) 2.5642 2.5595 0.9601 0.9580

Mission mean of SLR fits (cm) -4.1385E-06 5.3885E-07 0.0002 0.0002

Atmospheric drag scale factor (-) 1.0076 1.0099 0.4859 0.4848

Solar radiation pressure scale factor (-) 0.9773 0.9768 0.0877 0.0877

Earth’s albedo scale factor (-) 0.8857 0.8897 0.5766 0.5749

Cos. term of empirical acc. in N (m/s2) -3.2246E-11 -4.0663E-11 1.0369E-09 1.0348E-09

Sin. term of empirical acc. in N (m/s2) -9.0429E-10 -2.3766E-10 1.9507E-09 2.0513E-09

Empirical acc. in N, polygon terms (m/s2) -4.5519E-10 -6.3331E-10 6.2282E-09 6.2298E-09

Cos. term of empirical acc. in T (m/s2) 2.1710E-10 1.6361E-10 1.7960E-09 1.8134E-09

Sin. term of empirical acc. in T (m/s2) -8.7183E-11 -1.86012E-10 4.5590E-09 4.5882E-09

Empirical acc. in T, polygon terms (m/s2) 1.9482E-11 2.1985E-11 7.6461E-10 7.6227E-10

Figure 61: SLR RMS fits of TOPEX/Poseidon orbits (left) and their differences (right) derived using
the EIGEN-GRGS.RL04 and CNES_GRGS.RL05 gravity field models.
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Table 22: Comparison of POD parameters of 2 Jason-1 orbit solutions computed using EIGEN-
GRGS.RL04 vs CNES_GRGS.RL05

mean standard deviation
Parameter

RL04 RL05 RL04 RL05

Observations used (%) 95.1382 95.1391 – –

SLR RMS fit (cm) 1.3626 1.3654 0.4102 0.4093

Mission mean of SLR fits (cm) 2.3369E-05 2.3296E-05 0.0007 0.0007

Atmospheric drag scale factor (-) 0.9892 0.9899 0.4284 0.4285

Solar radiation pressure scale factor (-) 0.9491 0.9490 0.0462 0.0462

Earth’s albedo scale factor (-) 1.0268 1.0304 0.7192 0.7144

Cos. term of empirical acc. in N (m/s2) -2.9305E-11 -2.9943E-11 1.4870E-09 1.4756E-09

Sin. term of empirical acc. in N (m/s2) -5.5079E-10 -3.2216E-10 1.8734E-09 1.9641E-09

Empirical acc. in N, polygon terms (m/s2) 8.6640E-11 5.8940E-11 3.8605E-09 3.8602E-09

Cos. term of empirical acc. in T (m/s2) -6.0396E-11 -1.0133E-10 1.9254E-09 1.9340E-09

Sin. term of empirical acc. in T (m/s2) 2.8737E-10 3.0072E-10 5.9009E-09 5.9159E-09

Empirical acc. in T, polygon terms (m/s2) -7.6297E-12 -6.9075E-12 7.4038E-10 7.3494E-10

Figure 62: SLR RMS fits of Jason-1 orbits (left) and their differences (right) derived using the
EIGEN-GRGS.RL04 and CNES_GRGS.RL05 gravity field models.
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Table 23: Comparison of POD parameters of 2 Jason-2 orbit solutions computed using EIGEN-
GRGS.RL04 vs CNES_GRGS.RL05

mean standard deviation
Parameter

RL04 RL05 RL04 RL05

Observations used (%) 96.1994 96.19941 – –

Mission SLR RMS fits (cm) 1.3499 1.3477 0.3656 0.3637

Mission mean of SLR fits (cm) -1.3331E-05 -6.6641E-06 0.0002 0.0002

Atmospheric drag scale factor (-) 1.0075 1.0063 0.3538 0.3524

Solar radiation pressure scale factor (-) 0.9922 0.9922 0.0371 0.0372

Earth’s albedo scale factor (-) 1.2798 1.2888 0.6396 0.6407

Cos. term of empirical acc. in N (m/s2) -6.5815E-11 -6.5819E-11 1.5138E-09 1.5094E-09

Sin. term of empirical acc. in N (m/s2) -6.9024E-10 -6.9741E-10 1.9222E-09 1.9327E-09

Empirical acc. in N, polygon terms (m/s2) 2.1367E-10 8.1761E-11 3.9239E-09 3.9192E-09

Cos. term of empirical acc. in T (m/s2) -3.2901E-11 -2.7951E-11 1.6472E-09 1.6583E-09

Sin. term of empirical acc. in T (m/s2) 3.0346E-10 3.2551E-10 3.8671E-09 3.9060E-09

Empirical acc. in T, polygon terms (m/s2) -1.0575E-10 -1.0716E-10 5.6914E-10 5.6885E-10

Figure 63: SLR RMS fits of Jason-2 orbits (left) and their differences (right) derived using the
EIGEN-GRGS.RL04 and CNES_GRGS.RL05 gravity field models.
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Table 24: Comparison of POD parameters of 2 Jason-3 orbit solutions computed using EIGEN-
GRGS.RL04 vs CNES_GRGS.RL05

mean standard deviation
Parameter

RL04 RL05 RL04 RL05

Observations used (%) 98.8388 98.8358 – –

Mission SLR RMS fits (cm) 1.3838 1.3541 0.4041 0.4051

Mission mean of SLR fits (cm) -5.1935E-05 -3.6179E-05 0.0002 0.0002

Atmospheric drag scale factor (-) 1.0001 0.9925 0.2704 0.2701

Solar radiation pressure scale factor (-) 0.9885 0.9892 0.0274 0.0263

Earth’s albedo scale factor (-) 1.3026 1.3505 0.5755 0.5608

Cos. term of empirical acc. in N (m/s2) -1.6744E-11 -3.3681E-11 1.3469E-09 1.3103E-09

Sin. term of empirical acc. in N (m/s2) -6.2628E-10 -5.4413E-10 1.7663E-09 1.7624E-09

Empirical acc. in N, polygon terms (m/s2) 4.6412E-10 1.2642E-10 4.0235E-09 3.9931E-09

Cos. term of empirical acc. in T (m/s2) 1.3318E-10 1.0417E-10 1.3245E-09 1.2746E-09

Sin. term of empirical acc. in T (m/s2) -1.4244E-12 3.4939E-11 3.1785E-09 3.0494E-09

Empirical acc. in T, polygon terms (m/s2) -8.7121E-11 -9.1348E-11 4.2512E-10 4.0733E-10

Figure 64: SLR RMS fits of Jason-3 orbits (left) and their differences (right) derived using the
EIGEN-GRGS.RL04 and CNES_GRGS.RL05 gravity field models.
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Figure 65: Empirical acceleration: amplitude of the normal sine term and its a posteriori stan-
dard deviation of TOPEX/Poseidon orbit (left) and Jason-1 orbit (right) derived using
the EIGEN-GRGS.RL04 and CNES_GRGS.RL05 gravity field models.

The observed behavior in the periods 2002.0-2004.0 and 2016.5-2018.5 is also reflected in the

SLR station range biases obtained with the 2 models. Figures 66 through 69 show the Yarragadee

station range biases and the differences of the range biases estimated for the 4 satellites using the

2 gravity field models. For the case of TOPEX/Poseidon (Figure 66) and Jason-1 (Figure 67), an

increased scatter of the range bias differences is observed between 2002 and 2004. The amplitude

of the mean of the range biases for TOPEX/Poseidon is larger with RL05 than with RL04, whereas

the mean is equal for the case of Jason-1. Figure 68 illustrates the largest deviations when using

the 2 gravity field models for the period 2016.5-2018.5, where the RL05 model provides a lower

amplitude of the mean value. Finally, for Jason-3 (Figure 69), a reduction of 3 mm in the SLR

station range biases is clearly visible when using RL05 as compared to RL04.

Figure 66: Yarragadee SLR station range biases (left) and their differences (right) derived for
TOPEX/Poseidon orbits using the EIGEN-GRGS.RL04 and CNES_GRGS.RL05 gravity
field models.

82



5.3 Earth’s gravity field models

Figure 67: Yarragadee SLR station range biases (left) and their differences (right) derived for
Jason-1 orbits using the EIGEN-GRGS.RL04 and CNES_GRGS.RL05 gravity field mod-
els.

Figure 68: Yarragadee SLR station range biases (left) and their differences (right) derived for
Jason-2 orbits using the EIGEN-GRGS.RL04 and CNES_GRGS.RL05 gravity field mod-
els.

Figure 69: Yarragadee SLR station range biases (left) and their differences (right) derived for
Jason-3 orbits using the EIGEN-GRGS.RL04 and CNES_GRGS.RL05 gravity field mod-
els.

The impact of the 2 models on the orbits of altimetry satellites can also be assessed by computing

the orbit differences, specifically in the radial direction. Hence, the 2 orbits computed with the 2

models are compared using the MATLAB orbit comparison script (cf. Section 4.1). Figures 70

and 71 illustrate arc-wise standard deviations of the orbit differences in the radial direction for all 4
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satellites. The mean of the standard deviations is around 0.4 cm for TOPEX/Poseidon, 0.2 cm for

Jason-1, 0.3 cm for Jason-2, and 0.7 cm for Jason-3. The figures show a noticeable behavior in the

periods discussed earlier. In Figure 70, an offset at 2004.0 is distinguished, this is the time when the

data from GRACE satellites started to be derived accurately after the start of the mission in 2002.

Similarly, Figure 71 shows an increase in the orbit differences after the retirement of the GRACE

satellite mission in mid-2016. In addition, a linear trend is detected after mid-2016 for Jason-3 due

to employing GRACE-FO data after 2018.5 in the derivation of the new model (RL05), whereas

using extrapolation techniques during this period for the derivation of the old model (RL04).

Figure 70: Standard deviations of orbit differences in the radial direction of TOPEX/Poseidon (left)
and Jason-1 (right) satellites.

Figure 71: Standard deviations of orbit differences in the radial direction of Jason-2 (left) and Jason-
3 (right) satellites.

Another study is performed on the orbit differences in terms of their geographical distribution and

spectral behavior. Figures 72 and 73 illustrate the geographical distribution of the radial orbit differ-

ences of TOPEX/Poseidon and Jason satellites over a 1◦ × 1◦ grid of latitude and longitude along

the entire mission time spans. The range of the differences is between -1.5 and 1.5 cm, where it is

seen that it reaches the maximum values in the case of Jason-3. This is explained by the fact that

the largest differences are in the period of Jason-3 (between 2016.5 and 2021.8). Furthermore, a

dipole behavior is observed between the east and the west of the world map, this is also observed

in the assessment of the radial drift of TOPEX/Poseidon by the developing group (Lemoine et al.,

2023).
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Figure 72: Geographical distribution of orbit differences in the radial direction of TOPEX/Poseidon
(left) and Jason-1 (right) satellites averaged over a 1◦ × 1◦ grid of latitude and longitude.

Figure 73: Geographical distribution of orbit differences in the radial direction of Jason-2 (left) and
Jason-3 (right) satellites averaged over a 1◦ × 1◦ grid of latitude and longitude.

In order to learn about the prominent periods and the amplitudes of the orbit differences, a spectral

analysis is performed as discussed in Section 4.2. For this aim, outliers larger than the 5 sigma

value are excluded, where the limit is defined as in Eq. 4.1. The wavelet transform is used to detect

the periods arising in the problematic time spans discussed earlier, specifically between 2002.0

and 2004.0 and between 2016.5 and 2018.5. Figures 74 and 75 visualize the results of the wavelet

transform of the radial orbit differences for all 4 satellites. In Figure 74, the time span between

2002.7 and 2005.8 is studied for TOPEX/Poseidon and Jason-1. The magnitude of the differences

at around the revolution period (112.54 minutes) is approximately 1 cm and lasts for 400 days

and continues in a lower magnitude until 800 days, then starts to disappear by 1000 days, that is by

2005. Another period that appears to be only in the time between 2002 and 2004 is at approximately

6 hours with a magnitude of around 0.4 cm. This period might be due to the combination of the

revolution periods of the SLR and DORIS satellites that are used in the processing of the gravity

field model. In Figure 75, the time span between 2016.5 and 2019.8 is studied for Jason-2 and

Jason-3. The most prominent period is, as with the other satellites, at around 112.54 minutes. The

magnitude of the orbit differences reaches 1 cm at this period which starts to increase after the

day 200, that is at the end of 2016, and continues until the end of the tested time series.
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Figure 74: Magnitude scalogram of the wavelet transform over the time span between 2002.7 and
2005.8 of the TOPEX/Poseidon (left) and Jason-1 (right) orbit differences.

Figure 75: Magnitude scalogram of the wavelet transform over the time span between 2016.5 and
2019.8 of the Jason-2 (left) and Jason-3 (right) orbit differences.

As a final study, the Lomb-Scargle periodogram (Section 4.2.2) is used for the spectral analysis of

the entire time spans of the 4 missions. Figures 76 and 77 visualize the radial orbit differences

(on the top) and their spectral behavior in the logarithmic timescale. The highest amplitudes of the

orbit differences in the radial direction can be observed clearly in the figures. These are 0.14 cm

for TOPEX/Poseidon, 0.05 cm for Jason-1, 0.06 cm for Jason-2, and 0.41 cm for Jason-3. These

maximum amplitudes are recovered at the period of approximately 100 minutes, which is close to

112.54 minutes of the orbital revolution period. The maximum amplitude obtained over the whole

mission using the Lomb-Scargle periodogram is lower as compared to the amplitude (magnitude)

obtained over the studied time span with the wavelet transform, which reaches up to 1.4 cm for

86



5.3 Earth’s gravity field models

TOPEX/Poseidon and 2 cm for the 3 Jason missions. Other periods, such as 6 hours and half of

the draconitic period 58 days are also detected with the Lomb-Scargle periodogram and can be

distinguished in the figures as small peaks with amplitudes lower than 0.3 mm. The reason behind

the difference between the recovered amplitudes from the 2 methods is that the Lomb-Scargle

periodogram does not take into account the evolutionary signal, as it was proven in Section 4.2,

and averages the amplitude over the whole time series, which results in smaller amplitudes than

the real value.

Figure 76: Radial orbit differences (top) of TOPEX/Poseidon (left) and Jason-1 (right) and their spec-
tral analysis results using the Lomb-Scargle periodogram (bottom).

Figure 77: Radial orbit differences (top) of Jason-2 (left) and Jason-3 (right) and their spectral anal-
ysis results using the Lomb-Scargle periodogram (bottom).

In conclusion, the new Earth’s mean gravity field model (RL05) provides improved performance

over the older version (RL04) between 1992 and 1998, between 2011 and 2016.5, and between
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2018.5 and 2021.8. There are 2 main problematic periods where the scatter of the SLR RMS fit and

also the empirical acceleration in the normal direction is increased, which are between 2002.0 and

2004.0 and between 2016.5 and 2018.5. Other parameters, such as the atmospheric drag, the solar

radiation pressure, and the Earth’s albedo scale factors do not show significant differences when

changing the gravity field model. Some SLR station range biases are impacted at the millimeter level

due to the replacement of the gravity model, such as the Yarragadee station. The impact on orbit

differences in the radial direction reaches up to 0.7 cm on average for the Jason-3 satellite. However,

for the defined problematic periods, it reaches up to 1 cm for all 4 satellites. The most prominent

period with the maximum amplitude of the orbit differences is the revolution period, detected at

around 100 minutes. Another period of 6 hours appeared in the time span between 2002 and

2004, which might be due to the combination of SLR and DORIS measurements in the derivation

of the new gravity field model. Therefore, careful revision of the combination of SLR and DORIS

measurements used in the derivation of the new gravity model and the extrapolation methods used

in the period between 2016.5 and 2018.5 when there was no GRACE and GRACE-FO data is

suggested.
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6. Conclusions

This thesis is divided into 3 main tasks that aim to enhance the current analysis techniques of the

altimetry satellite orbits and to investigate the impact of the new background models on the orbits

of these satellites. The analysis of the altimetry satellite orbits has an important role in improving

the orbit accuracy since it allows a validation of the orbit solutions and provides feedback on where

improvements can be made. In most cases, the compared orbit solutions derived by external institu-

tions do not have common time instants and step sizes. Therefore, an essential step in the analysis

of these orbit solutions is the interpolation of the satellite positions at the desired time instants.

The thesis explored 4 different interpolation methods, namely, the Lagrange, Newton, Hermite, and

spline methods. First, the choice of the interpolation order is examined on the Newton method. For

the orbit differences application, the order depends on the step sizes of the solutions. Higher order

of interpolation, i.e. 6, 7, or 8, can provide the most accurate results within the middle interval of the

tested time window. The standard deviation is used as a measure of the accuracy of the interpola-

tion method. In the radial direction, the accuracy is found to be between 0.27 mm and 0.32 mm for a

window size of 7 to 9 points. Over the entire orbit interval, the best interpolation results are provided

by the 8th order Hermite interpolation with an accuracy of 0.34 mm in the radial direction using the

sliding window approach and the middle-point approach. However, although Hermite interpolation

proved to be faster than the Lagrange and Newton methods, the spline interpolation method is the

fastest among all the other tested methods. Therefore, if the speed of the computation is more im-

portant than the accuracy, it is recommended to use the middle-point spline interpolation with unified

step sizes. The standard deviation in the radial direction by the middle-point spline interpolation is

0.46 mm.

The second task is to investigate the spectral analysis methods for detecting dominant frequencies

and periodicities and estimating the amplitudes of the orbit differences. Since the orbits are sub-

ject to orbit maneuvers, gaps, and other influences, the choice of the spectral analysis method is

crucial. The standard fast Fourier transform, the zero-padding fast Fourier transform, the Lomb-

Scargle periodogram, and the wavelet transform are studied. An artificial "sine" signal is used for

the purpose of testing the methods. Since the Lomb-Scargle method is designed for non-uniformly

sampled data, it outperforms the standard and the zero-padding fast Fourier transform when the

signal contains gaps and noise, which is mostly the case in the orbit analysis application. The max-

imum deviation from the intended values using the Lomb-Scargle method can reach up to 0.5%

in the period and up to 4% in the amplitude reconstruction. The zero-padding and the standard

fast Fourier transform methods show variations of the reconstructed periods of 5% and 7% and

amplitudes of 41% and 53%, respectively. Therefore, for the spectral analysis of orbit differences,

the Lomb-Scargle method is recommended. On the other hand, when the orbit differences signal is

not stable over time due to factors such as attitude variations, the wavelet transform is the optimal

method for detecting periods and amplitudes in such a signal. When excluding the time series of

the signal that include gaps, the relative accuracy of 2.4% of the period and 2% of the amplitude

reconstruction is obtained. However, the wavelet transform is time and memory-consuming, there-
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fore, it is suggested to use it for shorter time spans then using the Lomb-Scargle periodogram over

the entire time span of the mission. This can help to understand the behavior of the signal over the

time series, then make exact conclusions from the Lomb-Scargle method.

The final task is to study the impact of the new thermospheric density model (NRLMSIS 2.0)

compared to the older version (NRLMSISE-00) and the new Earth’s mean gravity field (CNES_-

GRGS.RL05MF_combined_GRACE_SLR_DORIS) compared to the older release (EIGEN-GRGS.-

RL04.MEANFIELD) on the orbits of altimetry satellites. Orbits of TOPEX/Poseidon and the first

3 missions of the Jason series are computed with DOGS-OC program in order to have a full

picture of the impact of the new models over the time series between September 1992 (when

TOPEX/Poseidon mission began) and October 2021 (until the availability of Jason-3 solutions).

Similar parametrization is defined, and the same background models are used except for the mod-

els in comparison.

Within the investigation on the thermospheric density models, one should be careful in the choice

of the orbit parameters to be estimated. Since the impact of the atmospheric drag is the largest

in the transverse direction, the following question was posed: does the estimation of the empirical

acceleration in the transverse component increase or decrease the accuracy of the comparison?

The answer depends on the goal of the study. If the goal is to assess the impact on the atmospheric

drag scale factor, it is better not to estimate the polygon terms and only the periodic terms of the

empirical acceleration in the transverse direction for 2 reasons. First, a high correlation between

the polygons of the atmospheric drag scale factor and the empirical acceleration in the transverse

component is found. Second, the uncertainty of the atmospheric drag scale factor is lowest when

estimating only the periodic terms. On the other hand, if the goal is to assess the impact on the

solar radiation scale factor and Earth’s albedo scale factor, only estimating the polygon terms is

suggested, as there is a high correlation between the solar radiation scale factor and the periodic

terms, and the uncertainty for the cases in the solar radiation scale factor and Earth’s albedo scale

factor is the lowest when only estimating the polygon terms of the empirical acceleration in the

transverse direction.

Finally, since the basic goal of the thesis is to study the impact on the final accuracy of the orbits, it

is proven that one should estimate all the parameters in order to obtain the highest orbit accuracy.

When comparing the 2 thermospheric density models based on their impact on the orbit parame-

ters, the 2 models produced relatively similar results with a maximum relative difference of 0.4%

of the mission SLR RMS fits. The impact on the orbit differences in the radial direction does not

exceed 1 mm. The similar behavior of the 2 models might be explained by the fact that the satellites

are orbiting in altitudes around 1300 km and NRLMSIS 2.0 is extensively focused for lower altitudes

(Emmert et al., 2021). In conclusion, both models can be used for POD of altimetry satellites and

produce similar accuracy.

The last investigation is on the new CNES/GRGS release of the Earth’s mean gravity field (RL05).

An improved performance is found for the new release (RL05) over the older version (RL04) be-

tween 1992 and 1998, between 2011 and 2016.5, and between 2018.5 and 2021.8. There are 2

main problematic periods where the scatter of the SLR RMS fit and also the empirical acceleration
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in the normal direction is increased, which are between 2002.0 and 2004.0 and between 2016.5

and 2018.5. This might be explained by the different extrapolation methods that were implemented

in the 2 models when no GRACE and GRACE-FO data was available and due to using the SLR

and DORIS data together in the new release. Other orbit parameters are not significantly affected

by the replacement of the model. However, some SLR station range biases are impacted at the

millimeter level due to the replacement of the gravity model, such as of the Yarragadee station. In

addition, the impact on orbit differences in the radial direction can reach up to 0.7 cm on average

for the Jason-3 satellite. It can reach up to 1 cm for all 4 satellites for the defined problematic pe-

riods. Lomb-Scargle periodogram and wavelet transform are applied to the orbit differences. The

revolution period is the most prominent period with the maximum amplitude of the orbit differences.

Another period of 6 hours appeared in the time span between 2002 and 2004. As a conclusion

of this investigation, careful revision of the combination of SLR and DORIS measurements used in

the derivation of the new gravity model and the extrapolation methods used in the period between

2016.5 and 2018.5 when there was no GRACE data is suggested.

All in all, the outcomes of the thesis are as follows:

1. The 8th order Hermite or the middle-point spline interpolation methods are suggested to be used

for the interpolation of the satellite coordinates of the orbit solutions, according to the speed and

accuracy requirement.

2. For the spectral analysis of the orbit differences, the Lomb-Scargle periodogram and wavelet

transform can be used by taking care of the length of the time span when using the wavelet trans-

form method.

3. The 2 thermospheric density models (NRLMSISE-00 and NRLMSIS 2.0) provide similar orbit

accuracy.

4. The new CNES/GRGS release of Earth’s mean gravity field model (RL05) brings a 2% im-

provement of RMS fits of SLR observations of the Jason-3 orbit as compared to RL04. However,

further investigation on the extrapolation methods used at the periods without data from GRACE

and GRACE-FO satellites is suggested.
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