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ABSTRACT 
 
To achieve global climate goals, a greater focus needs to be on the energy-efficient conversion of 
the existing building stock in industrialized countries. To prioritize the retrofitting scenarios of 
large stocks of existing buildings, holistic life cycle assessments (LCA) help to consider the 
environmental impacts in the decision-making. To enable the effortless creation of large building 
stock information, we propose a methodology to automatically create semantically rich 3D models 
for calculating the LCA of retrofitting variants. Robustness is achieved by providing flexibility 
towards input data, e.g., geometric reconstruction based on different point clouds, such as laser 
scans, drone-based photogrammetry, or derived from Google Maps. Similarly, various image 
sources are used for the semantic enrichment of windows, such as from hand-held devices or 
Google Street View. Using a case study, we compare the performance of the geometric 
reconstruction, test window detection, and calculate first LCA results.  
 
INTRODUCTION 
 
The current situation in the construction industry is characterized by the scarcity of building 
materials and energy sources, as well as increasing requirements related to climate targets. This 
creates strong incentives to increase the construction volume of existing building renovations. 
Since it is difficult to make reliable statements about the renovation potential of existing buildings, 
especially in the early planning stages, it’s currently not economical to make a comprehensive 
assessment for prioritizing specific projects in large building stocks. This increasing demand 
represents great potential for automated digital workflows in the construction industry. Therefore, 
we propose a method that enables building engineers in early project phases to efficiently capture 
the building stock using point clouds, transfer it into digital, semantically rich models, and then 
automatically calculate retrofitting scenarios using Life Cycle Assessments (LCA) for decision-
making. In this way, various professional groups, e.g., building owners and valuers or project 
acquisition managers, are supported in creating retrofitting scenarios for existing buildings in semi-
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automated steps. While most of the current approaches are based on manual modeling of existing 
buildings, e.g., using Building Information Modelling (BIM), our approach is using more 
automated processing steps. There are two levels of input data types, which require different efforts 
in acquisition. On the one hand, point clouds based on airborne or mobile laser scans (ALS/ MLS) 
or photogrammetry of Unmanned Aircraft Vehicle (UAV) have high accuracy, if available, but 
take some time for acquisition. On the other hand, Google Maps and Street View are less accurate 
but often available in dense urban areas. We want to investigate the performances of these different 
input data and compare the LCA results to determine if they are sufficiently accurate. 
 
BACKGROUND AND RELATED WORKS 
 
Geometric Reconstruction. In this paper, we show current concepts of geometric reconstruction 
of buildings for 3D surface models, focusing on building envelopes based on different point 
clouds. Nan and Wonka published a framework for Polygonal Surface Reconstruction from Point 
Clouds called PolyFit (Nan and Wonka 2017). It consists of generating a set of face candidates, 
selecting a subset of these by optimization based on y binary linear programming formulation, and 
finally reconstructing a watertight surface model. Chen et al. recently proposed a new approach 
for the geometric reconstruction of watertight building models based on point clouds, which has 
better performance results than the PolyFit approach (Chen et al. 2022). Bruno and Roncella 
investigated the accuracy and reliability of 3D models obtained from Google Street View 
panoramas (Bruno and Roncella 2019). In the domain of Geoinformatics, other approaches in the 
field of automated generation of LOD3 building models already combine semantic segmentation 
and geometric reconstruction. Hoegner and Gleixner automatically extracted facades and windows 
from MLS point clouds (Hoegner and Gleixner 2022). Pantoja-Rosero et al. use the PolyFit 
approach and a trained deep learning model of a segmented façade and openings for LOD3 city 
models (Pantoja-Rosero et al. 2022). 
 
Semantic segmentation of façade Windows. Liu et al. introduce a novel translational symmetry-
based approach to façade parsing in order to geometrically reconstruct buildings (Liu et al. 2022), 
further refining their previous DeepFacade approach (Liu et al. 2017). Also, Ma et al. improve the 
pixel-wise classification of DeepFacade by proposing an end-to-end deep network for façade 
parsing using occlusion reasoning (Ma et al. 2022). Also, Zhang et al. improved the accuracy of 
their deep learning approach for detecting building façade elements compared to DeepFacade by 
considering prior knowledge (Zhang et al. 2022). Dai et al. use street-view building façade image 
datasets of residential buildings as input for training their building façade semantic segmentation 
model (Dai et al. 2021). Nordmark and Ayenew propose an approach to window detection in 
façade imagery using Mask R-CNN (Nordmark and Ayenew 2021). Although they only focus on 
windows, their approach using instance segmentation produces a bounding box and segmentation 
mask for each window instance. More recently, Sun et al. also proposed an improved Mask R-
CNN network using spatial attention and relation modules for windows instance segmentation, 
called “DeepWindows” (Sun et al. 2022). 
 
Scan-to-BIM approaches for sustainability assessments of existing buildings. Honic et al. 
developed a methodology that generates Material-Passports for existing buildings based on laser 
scans and modeling as-built BIM models for further assessment (Honic et al. 2020). Nevertheless, 
the modeling process was conducted semi-automatically to integrate material information. Benz 
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et al. introduced a framework for assessing energy performances of existing buildings based on an 
Unmanned Aircraft System (UAS) (Benz et al. 2021). Besides their photogrammetric 3D 
reconstruction, they included thermographic images to detect the U-Values and performed energy 
simulations using TRNSYS translating the surface model to IDF. A similar approach was 
introduced by Valero et al. using an integrated Scan-to-BIM approach for energy performance 
evaluation but also focusing on retrofitting existing buildings (Valero et al. 2021). They also 
combined processed point cloud information with object detection methods of images for semantic 
enrichment of MEP objects in the IFC model. 
 
PROPOSED METHODOLOGY 
 
In this Section, we propose a methodology for creating semantically rich 3D models for LCA-
calculation of retrofitting scenarios for building envelopes. In previous research, we demonstrated 
a step-wise approach using laser scan point clouds with some further manual input (Selimovic et 
al. 2022). This paper aims for a more robust and holistic approach using point clouds and images 
based on different, broadly available data sources, which are suitable for calculating sufficient 
accuracy of LCA results. After describing the overall framework, we focus on the steps of 
geometric reconstruction and semantic enrichment in the following. 
 

 
Figure 1. Workflow of design decision support for retrofitting variants in early design 

stages using point cloud-based geometric reconstruction and semantic enrichment. 
 
Overview of the General Workflow. The general idea is to use different data sources to process 
point clouds, as shown in Figure 1 (1.a-1.d). Ideally, the point clouds are getting pre-processed by 
UAV images (1.a). If these are not available, it can be checked if airborne laser scans (ALS) in 
combination with mobile laser scans (MLS) are available (1.b). If none of these input data is 
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available, Google Maps meshes are used to create a point cloud (1.c), for which the location or 
address is needed as an input (2.a).  
After the pre-processing and, if necessary, merging and alignment of different point clouds (1.d), 
including adjusting the density of points and deleting unnecessary points, the point cloud is used 
for geometric reconstruction (3). First (3.a), different planes are detected, and surfaces are 
reconstructed. A closed surface model is reconstructed in the next step (3.b).  
This output is used to generally classify the surface according to its location and orientation to 
different building envelope classes (4.a), e.g., vertical surfaces are exterior walls. The invisible 
ground floor slab is assumed to be a “floor to unheated cellar,” as the basements are considered to 
be not heated in older buildings.  
In the next step, the vertical façade surfaces are specified in more detail to detect the window areas 
for semantic enrichment (4.b) based on different image input, either from Google Streetview (2.b) 
or additional images, e.g., from smartphones (2.c). Additionally, the surface material shall be 
classified according to 2D images (4.c), as proved by (Raghu et al. 2022). In the following step, 
the building type and age shall be predicted by using computer vision methods based on the 
location coordinates and the related Google Street View images (4.d). According to the “Typology 
Approach for Building Stock Energy Assessment “(TABULA) and its database (Loga et al. 2012), 
the missing element layers can be assumed by this information, e.g., surface material, building age 
and type, thermal class, or environmental impacts.  
In the next step, all geometric models need to be merged and aligned (5.a), and all additional 
information shall be processed to a useful input format for LCA calculation (5.b). For this purpose, 
a suitable LCA data schema is used, which needs minimum geometric and semantic data to be still 
able to conduct LCA calculations also for existing buildings (6.a). In the LCA software, different 
variants shall be analyzed for retrofitting potentials (6.b). 
 
Geometric Reconstruction. All different input sources, such as meshed surfaces from Google 
Maps, ALS and MLS, and Photogrammetry, are processed into point clouds. To reconstruct a 
“watertight” geometric building model, the building’s envelope surfaces, such as walls or roofs, 
are detected in the point cloud. In the first step, individual planes are identified based on the points 
and their normals using RANSAC (Schnabel et al. 2007), which results in several face candidates. 
In the next step, these face candidates are joined into a combined surface model using the 
optimization solver of PolyFit (Nan and Wonka 2017). Finally, the watertight building model is 
exported as an OBJ file for further semantic enrichment.  
 
Semantic Enrichment. In this paper, we put the focus of semantic enrichment on window 
segmentation to identify the window-to-wall ratio. We enrich building element and material layers 
manually by assigning components to thermal layers based on the TABULA database (Loga et al. 
2012). As we want to identify the window-to-wall ratio for every facade, several images need to 
be processed and evaluated. As input, we either use manually taken images or images queried from 
Google Street View (Google 2023). These differ from the image quality by the focal length of the 
used camera, so the results might differ in the evaluation. As we need information on the number 
of windows and the surface, we use instance segmentation. Sun et al. trained a Mask RNN called 
“DeepWindows,” using Detectron2 (Sun et al. 2022), which we used for identifying the windows. 
Nevertheless, the assignment of windows to the reconstructed 3D surface is here done manually, 
however, as a temporary solution only. Finally, all semantic information and the assigned 
geometric model are exported into a gbXML file (Green Building XML 2023). 
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CASE STUDY & RESULTS 
 
Case study. As a first case study, a university building of the Technical University of Munich, 
located in Munich, Germany, is selected to indicate feasibility. The building is of solid construction 
with an internal skeleton and reinforced concrete ribbed ceiling. The space usage mainly includes 
researchers’ offices, meeting rooms, lecture rooms, computer and server rooms, postal offices, and 
sanitary facilities. The building was initially built in 1926 and rebuilt after heavy war damages in 
1946. 
 

 
Figure 2. Case study results of different workflow steps: Different point cloud data sources, 

such as UAV/ Photogrammetry, ALS & MLS, Google Maps (1.a-1.c, left), geometric 
reconstruction (3.a-3.c, middle left), semantic segmentation of Google Stree view (4.a, right) 
& smartphone images (4.b, right), and semantically enriched 3D model (5.a-5.c, mid right). 
 
Comparison of different geometric input sources. In this Section, we discuss the results of the 
geometric reconstruction of the three input sources and compare the surface areas of roofs, ground 
floor, and exterior walls with CityGML models (LOD2) and a manually created BIM model using 
Industry Foundation Class (IFC) based on technical drawings. Figure 2 also shows the geometric 
reconstructed surface models, and Table 1 compares the total surface area for the different data 
sources. The results show that the CityGML model provides a simplified geometry. 
 

Table 1. Overview of the surfaces of the geometric model reconstruction in [sqm]. 

 a. GM b. ALS-MLS c. UAV. d. CityGML e. IFC 

Ground slab surface 2.048,46 2.015,78 2.046,84 2.110,48 2.113,89 

Roof Surface 2.254,35 2.099,32 2.264,75 2.280,97 2.316,33 

Exterior Wall surface 3.490,62 3.991,59 3.442,44 4.409,56 4.031,95 
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Results of instance segmentation and model enrichment of windows. As shown in Figure 2, 
instance segmentation of windows using the DeepWindows network by (Sun et al. 2022) provide 
sufficient results for both types of input data, Google Street View images as well as Smartphone 
images. For the further enrichment of the geometric model, we are manually assigning the detected 
windows in the images to the related façade surfaces. The final energy model encoded as gbXML 
is shown in Figure 2 (5.a-5.c), which was further enriched by manually adjusting thermal and 
material properties in the LCA software CAALA (CAALA 2023). 
 
LCA results. In Figure 3, the results of the life cycle assessment are shown for three different 
input data sources and the existing and retrofitted buildings. As the building is located in Germany, 
the German LCA database ÖKOBAUDAT (BBSR 2021) and the German standard for LCA were 
used with a life span of 50 years, LCA modules A1-A3, B4, B6, and C3-C4. For the retrofitting 
scenario, the external walls and roofs are insulated with wood fiber, the ground floor is insulated 
using XPS, and the windows are exchanged with triple-glazed windows and wooden frames. As 
the results of the total GWP in Figure 3 show, the input data sources for calculating the LCA of 
the existing building have similar results and differ only a little (1,3% between UAV and ALS-
MLS, and 5,1% between UAV and GM). For the retrofitting scenario, the GWP result has even 
the same value over the whole life cycle, 37 [kg CO2-eq./ sqm*a]. This shows that the proposed 
methodology is robust for different input data, such as Google Maps meshes (GM), point clouds 
based on mobile and airborne laser scans (ALS-MLS) or based on photogrammetric images of 
unmanned aerial vehicles (UAV), and the LCA results hardly differ. 
 

 
Figure 3. Total GWP results over the whole life cycle of existing and retrofitted scenarios 

and different input sources (Google Maps, ALS & MLS, UAV) 
 
CONCLUSION  
 
In this paper, we propose a holistic framework for calculating embodied and operational emissions 
of retrofitting scenarios of existing buildings based on a variety of input data. To achieve a robust 
and scalable workflow, different input data for the point cloud sources, such as those with high 
accuracy based on UAV photogrammetry and laser scans or lower accuracy based on Google Maps 
meshes, proved to be feasible for geometric reconstruction. For semantic model enrichment, 
different image sources are used, such as images based on Google Streetview and smartphones. 
We test the approach of geometric reconstruction using PolyFit based on a real-world case study 
of a university building. For semantic enrichment, only the façade segmentation is considered at 
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this stage. The implementation and application of the case study prove that the suggested workflow 
leads to comparable LCA results with only minor deviations. To verify the robustness of and 
validate the proposed methodology, we will test it on a more extensive set of buildings, but the 
results of the shown case study indicate feasibility. 
In our future research work, an automated assignment of windows to the reconstructed 3D surface 
step is planned. For the step of model fusion of 3D point clouds and 2D images, an initial approach 
based on indoor geometries (Pan et al. 2022) shall be further extended for outdoor geometries. 
Furthermore, we want to extend the validation of the proposed approach considering automated 
semantic segmentation of façade surface materials and identification of building class to enrich 
element layers using TABULA. Additionally, for the building age detection part, the data sets of 
the project “ENOB:NWGdata,” which consist of 100.000 buildings and classification information, 
such as age, retrofitting state, etc. (Busch and Spars 2022). In the final step, the extracted semantic 
information shall be automatically merged into the geometric model. 
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