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Abstract

X-ray computed tomography is used in science, medicine, and other fields to obtain
three-dimensional absorption information about an object with a transmission-
based imaging modality. A three-dimensional image is obtained using multiple two-
dimensional absorption images of the object under study with known geometries,
also called image reconstruction in a process called computed tomography.

One key parameter of image reconstruction quality is the diversity of the geometries
at which the objects are exposed to the X-rays. The limitations of static sample
mounting mechanisms can be overcome by introducing flexible actuators. For
example, robotic c-arms for patient scans allow the acquisition of images from more
diverse geometries in medical applications.

Industrial robotic arms offer a more comprehensive range of movements than con-
ventional mechanisms. They have become more affordable for a broader audience
with the mass production of electrical and mechanical components. At the same
time, their control and software integration has become more feasible with the
emergence of open-source software initiatives that aim to standardize and simplify
the use of such robotic arms.

In this thesis, we explore using a robotic arm as a sample holder for X-ray computed
tomography for its superior flexibility without sacrificing image quality. The meth-
ods and algorithms introduced herein tackle the challenges of this novel holding
mechanism.

In the first part of this thesis, we develop a calibration procedure that tackles the
most fundamental limitation of the robotic arm: repeated placement accuracy. We
introduce an intermediate sample holder item design connected to the robotic arm
acting as a calibration target.

In the second part, we analyze and improve the system’s ability to execute more
advanced trajectories. We maximize the robotic arm’s reach with new designs
of the previously introduced sample holder item. The advantage of advanced
geometries, such as spherical trajectories over circular geometries in image quality,
is demonstrated.
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In the third part, we develop routines and algorithms that reduce acquisition times
and radiation dose by generating optimized acquisition geometries for the given
sample without prior knowledge. We introduce a more advanced, runtime-optimized
acquisition strategy, where we analyze the acquired absorption images while the
robotic arm executes the trajectory. We modify the current trajectory based on the
analysis of these images.

The proposed system is a step towards higher image reconstruction quality in X-ray
CT systems. The system allows flexible sample placement with advanced acquisition
trajectories. Additionally, it reduces acquisition times and radiation dose exposure
with sample-specific trajectories.
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Zusammenfassung

Die Röntgen Computertomographie wird in der Wissenschaft, Medizin und an-
deren Anwendungsgebieten für die Berechnung des drei-dimensionalen Absorption-
smodells eines Messobjekts (Probe) mittels einer transmissions-basierten Bildge-
bungsmodalität verwendet. Das drei-dimensionale Absorptionsmodell wird aus einer
Reihe von zwei-dimensionalen Aufnahmen der untersuchten Probe aus verschiede-
nen Aufnahmewinkeln ermittelt; Diesen Prozess der Rekonstruktion bezeichnet man
als Computertomographie.

Ein entscheidender Parameter für die Qualität der resultierenden Rekonstruktion ist
die Zusammensetzung der Aufnahmen: Die Bildqualität wird durch die vielfältige
Auswahl von Aufnahmewinkeln sichtbar verbessert. Die Beschränkungen statischer
Mechanismen für die Befestigung von Proben können durch den Einsatz flexibler
Aktuatoren überwunden werden. Der Einsatz robotischer C-Arme für die Patien-
tenuntersuchung in der Medizin ermöglicht beispielsweise Aufnahmen aus einer
großen Anzahl unterschiedlicher Winkel.

Industrielle Roboterarme zeichnen sich im Vergleich zu konventionellen Bewe-
gungsmechanismen durch eine umfassendere Bewegungsfreiheit aus. Ferner wurde
die Anschaffung von Roboterarmen durch die industrielle Produktion elektrischer
und mechanischer Komponenten erschwinglicher für die breite Mehrheit. Zugleich
wurde ihre Softwareintegration und Regelung praktikabler durch neue Initiativen
für freie Software in diesem Bereich. Diese Initiativen beabsichtigen den einfachen
und standardisierten Einsatz der eben genannten Roboterarme.

In dieser Arbeit setzen wir uns mit der Nutzung eines Roboterarms als Probenhalter
für Röntgen Computertomographie auseinander. Die Flexibilität des Roboterarms
soll genutzt werden, ohne die Bildqualität zu beeinträchtigen. Die Algorithmen
und Methoden in dieser Arbeit lösen die Probleme und Herausforderungen dieses
neuartigen Probenhalters.

Im ersten Teil dieser Arbeit entwickeln wir einen Kalibrierungsalgorithmus, der ein
fundamentales Problem des robotischen Probenhalters löst: Die wiederholte, unge-
naue Platzierung von Proben durch den Roboterarm. Für diesen Algorithmus führen
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wir ein Zwischenstück als Kalibrierungsziel zwischen dem Greifer des Roboterarms
und der Probe ein.

Im zweiten Teil dieser Arbeit analysieren und verbessern wir die Ausführung fort-
geschrittener Trajektorien mit dem robotischen Probenhalter. Wir optimieren die
Fähigkeit des Roboterarms, einen Großteil der möglichen Rotationen im drei-
dimensionalen Raum auszuführen. Hierfür führen wir verschiedene Prototypen
und Formen des vorhin erwähnten Zwischenstücks ein, das als Kalibrierungsziel
dient. Wir legen den Vorteil von fortgeschrittenen Trajektorien im Vergleich zu
Kreistrajektorien dar und untermauern dies mit den erzielten Messergebnissen und
Unterschieden in deren Bildqualität.

Im dritten und letzten Teil entwicklen wir einen Algorithmus zur Reduzierung
der Aufnahmezeit und zur Minimierung der Strahlendosis bei der Nutzung des
robotischen Probenhalters. Unser System erreicht dieses Ziel durch den Einsatz
optimierter Aufnahmetrajektorien. Wir führen in diesem Teil der Arbeit eine Methode
ein, die noch während der Probenmessung einzelne Aufnahmen analysiert und die
zukünftige Trajektorie der Aufnahme basierend auf dieser Analyse anpasst. Unser
System nimmt die Anpassung der Trajektorie ohne Vorwissen über die Probe vor.

Unser System trägt zur Verbesserung der Bildqualität in Systemen der Röntgen Com-
putertomographie bei. Das System ermöglicht die flexible Platzierung von Proben
mit fortgeschrittenen Aufnahme-Trajektorien. Zudem verkürzt es Aufnahmezeiten
und mindert die Strahlendosis durch den Einsatz von optimierten Trajektorien.
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Introduction 1
1.1 Motivation

Robotic manipulators are getting increasingly popular in tomographic imaging
setups. The industrial, off-the-shelve robotic arms market is very competitive, and
manufacturers offer a wide range of configurations for arms. The customer can
decide on the overall size of the robotic arm, its maximum reach, degrees of freedom,
gripper type, and other criteria. On the other hand, custom robotic arms are more
expensive than off-the-shelve parts, and it takes a significant amount of research
time and other customer and use-case-specific considerations until they reach the
market.

Some critical considerations exist for tomographic systems and X-ray computed
tomographic (CT) systems specifically. For example, the size and type of the sample
to be measured will influence the typical radiation dose, allowed measurement time,
and physical size of the CT setup. For medical systems, the radiation dose is a critical
measure, and the physical setup and measurement process need to account for the
dose limits that ensure a healthy experience for the patient. The measurement time
is also critical in a medical setting, as the patient becomes uncomfortable over time.
The physical size of the setup largely depends on the sample size and the type of
source that produces the rays. The sample type is also a critical consideration as
undesired material compositions and sample structure can lead to effects like beam-
hardening on the measurement images and poor reconstruction image quality.

Robotic manipulators offer numerous benefits for tomographic systems. The ma-
nipulator’s flexibility enables more complex trajectories, e.g., spherical, helical, and
sample-specific. Additionally, advanced mounting mechanisms and gripper types
can reduce occlusions with the sample. Robotic arms offer these benefits without im-
posing restrictions on the sample’s size and weight, as with the correct configuration,
the arm can move samples of various sizes and shapes.

The introduction of robotic manipulators in tomographic imaging systems can also
lead to difficulties in the measurement process. The repeated placement accuracy
of robotic arms increases with increasing flexibility. With every added degree of
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freedom, the number of potential configurations for the robotic arm to reach a
specific goal increases. At the same time, the accumulated error of the individual
joints also increases. The problem we described here necessitates the introduction
of geometric calibration algorithms for identifying the exact position and orientation
of the sample for tomographic imaging purposes.

There are numerous ways to introduce robotic manipulators in tomographic imaging
systems. C-arms are one way to add flexibility to patient scans in a medical envi-
ronment. For industrial robotic arms specifically, two types of setups are possible.
The robotic arm can move the sample between the statically mounted source and
detector (see Fig. 1.1 (a)). This type of setup is economically more feasible than
using two arms since only a single robotic arm is needed. However, it is more prone
to occlusions on the measurements since individual arm links can interfere with the
X-ray beam. Moreover, it doesn’t allow non-rigid samples as the sample’s internal
structure would change with the arm’s movements. Another possibility is to move
the source and detector with one robotic arm each and mount the sample statically
between them (see Fig. 1.1 (b)). This setup is more expensive since two robotics
arms are needed instead of one, but it is required for heavy samples or samples that
cannot be moved in the given setup because of the restricted room or other reasons.
Additionally, the setup with two arms enables measurements for moving samples
(e.g., a sample sitting in liquid). The internal structure of moving samples changes
with the single-arm setup as the sample moves with the arm. With the two-arm
setup, the sample is mounted statically and does not move.

This work integrates a flexible robotic arm with seven degrees of freedom as a
sample holder within a laboratory X-ray Computed Tomography (CT) setup with a
suitable calibration mechanism. The arm adds flexibility to the setup as a sample
holder by enabling arbitrary rotation and placement of the sample. The subjects of
this work are the methods and algorithms required to execute various trajectories
safely. Integrating a robotic arm in X-ray CT systems is a step towards improved
image quality, reduced radiation dose and scan times, and more flexible acquisition
schemes.

The safe execution of advanced trajectories with the robotic arm for lab-sized samples
is the primary subject of this thesis. Advanced trajectories include circular, spherical,
and optimized, sample-specific trajectories. With sample-specific trajectories, we
offer an operating mode that optimizes the acquisition trajectory depending on the
structure and absorption characteristics of the given sample. We aim to improve
reconstruction image quality for complex samples and reduce scan times.
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(a)

(b)

Fig. 1.1.: Robotic computed tomography setups. We illustrate two different kinds of
robotic computed tomography setups. In (a), the robotic arm acts as a sample
holder by holding and manipulating the sample. In (b), two robotic arms move
around the sample, one holding and manipulating the source and the other
moving the detector.

1.2 State of the Art

Robotic arms were also used in the past in computed tomography systems [Zie+20;
LHH19; @Hea21; Her+21]. The main difference to our work is the kind of robotic
arm used. It offers a higher flexibility than the robotic arms used in related work
due to its seven degrees of freedom and two fingers, making chained pick-and-place
tasks possible without user intervention.

Integrating a robotic arm with high degrees of freedom is a challenging task, as
with every added degree of freedom, the placement accuracy of the arm at the end-
effector decreases. The electrical motors at the arm’s joints operate within a specified
accuracy range. The placement error at each joint adds up to 0.1 mm in total with the
robotic arm that we use [@EMI20]. The placement error increases on the detector
image due to the magnification effect with projective imaging geometry.
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The insufficient placement accuracy of the robotic arm can be fixed with a suitable
calibration mechanism. Many methods exist in the literature for the general geomet-
ric calibration problem [LZL10; Cho+05; Rob+09]. In our work, we introduce a
new method, as existing approaches do not apply to a robotic arm like ours or are
limited to specific acquisition geometries.

1.3 Thesis Outline

In this thesis, we succeed in three steps.

In the first step, we integrate the robotic arm into an existing laboratory X-ray CT
environment for the execution of conventional circular trajectories. At the end of
this stage, we aim to match the reconstruction image quality of a conventional,
electrical rotating stage. We design and manufacture a purpose-built sample holder
part with an embedded geometric structure to calibrate the position and orientation
of the sample for later use in the reconstruction step. We also implement a collision
detection mechanism to prevent the arm from colliding with the equipment in its
environment.

In the second step, we optimize our software implementation and algorithms for the
seamless execution of spherical trajectories. We show the system’s ability to cover a
high percentage of all possible sample rotations on the sphere with a suitable sample
holder part design and fine-tuning of the motion planning pipeline. We execute
spherical trajectories without causing occlusions of the sample with the robotic arm’s
links on the detector images.

In the third and final step, we optimize the spherical acquisition scheme from step
two for the given sample when no information is provided about it in advance. We
optimize the trajectory at run-time without introducing additional measurement
time compared to conventional spherical trajectories.
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Fundamentals of Industrial
Robotics

2
This chapter will introduce the most fundamental concepts of industrial robotics.
We will begin with the configuration space, the underlying concept for solving the
motion planning problem. Next, we will discuss how the motion planning problem
is solved based on the configuration space. In the last two sections, we provide a
brief outline of the forward and inverse kinematics problems essential to the robot’s
interaction with its operating environment.

2.1 Configuration Space

The content of this section is based on the corresponding chapters in [LaV06].

In robotic applications, one of the fundamental concepts is the configuration space.
It provides a mathematical tool for the motion planning problem responsible for
calculating feasible and safe paths for the robot. This section’s mathematical concepts
and assumptions are fundamental to solving the motion planning problem.

The configuration space is constructed by considering all possible transformations
from the robot’s state space. The types of joints of the robot define the state space.
An example is displayed in figure 2.1. The 2R robotic arm in this figure has two
rotational joints in an open-loop kinematic chain.

2.1.1 Task-space and Work-space

Two important concepts that come up very often when operating a robot are the
task-space and the workspace.

The task-space defines the space in which the robot operates naturally. This space
is defined independently from the robot and solely dependent on the operator’s
perspective. In Euclidean space, the operator could point at any spot in his operating
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(a) 2R Robotic arm with two rotational joints (b) Torus: T = S1 × S1

Fig. 2.1.: Configuration space. We illustrate the configuration space concept with a robotic
arm and a visualization of the corresponding space. In (a), a robotic arm with
two rotational joints is illustrated. In (b), the configuration space (Torus) of the
robotic arm in (a) is visualized.

room and define the set of all such points as task-space without ever relating to a
robot.

The workspace defines the configurations the robot’s end-effector can reach. It is
typically defined and constrained by the robot’s number and type of joints. The
physical properties of the robot are fixed in its design process. For example, a proper
choice for the workspace of a seven degrees-of-freedom (DoF) industrial robotic arm
is all positions and orientations that the tip of the end-effector can reach.

There is a clear distinction between the task-space, workspace, and configuration
space: A specific point in the task or workspace might be reachable by multiple robot
joint configurations; this is easily possible with high DoF robotic arms, as they are
more flexible and hence can provide multiple distinct configurations of their joints
to reach the same goal.

2.1.2 Topology

The configuration space’s topology maps the robotic arm’s physical properties to a
mathematical space with well-defined operations. The notion of topology is essential
for defining a smooth mapping between the task- and workspace of the robot.
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The properties of the robot’s joints determine the topology. There are six types of
joints: rotational, prismatic, screw, cylindrical, spherical, and planar. This work
focuses on rotational and prismatic joints, the most common types of joints in
industrial robotic arms. For rotational joints, a range of angle values specifies the
configuration; for prismatic joints, a range of real values specifies the maximum
distance the joint can move.

The configuration space is modeled as a manifold to behave like a surface at any
configuration point. Manifolds are general enough to represent the transformations
that result from all joint types mentioned above while providing nice mathematical
properties for the motion planning step that we will discuss later. The cartesian
product of the individual manifolds of the joints represents the combination of a
chain of links connected by joints. For rotational joints, the possible configurations
lie on the 1d manifold, which is the unit circle defined by

S1 = {(x, y) ∈ R2|x2 + y2 = 1}. (2.1)

For every x and y, the circle defines a rotation angle θ. The manifold that describes
the possible transformations for prismatic joints is R.

The last concept we will introduce before defining the manifold of our example
robotic arm is manifold identification. With manifold identification, we can reduce
the dimensions of a manifold for better visualization and more straightforward
motion planning in later steps. For example, the unit circle S1 introduced in eq.
2.1 can be simplified to the value range [0, 2π] where the start and end values of
the closed set are set to be identical. This identification simplifies the configuration
space topology as it reduces to a small value range, where values exceeding 2π are
mapped back to continue at the starting point of the identification point, 0.

For the 2R robotic arm in Fig. 2.1a with two rotational joints, the configuration
space can be defined as a Torus:

T2 = S1 × S1. (2.2)

The Torus in eq. 2.2 is defined by the cartesian product of two unit circle manifolds
with identifications at 0 and 2π, which restricts the configuration space to the carte-
sian product of the two sets [0, 2π] and reduces the size of the manifold compared to
the cartesian product of two unit circles defined by S1 × S1. For S, angles exceeding
2π increase the area of the manifold.
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2.1.3 Obstacles

An important observation is that obstacles must be added to the configuration
space. Obstacle regions are necessary for two reasons: collisions of the robot’s
links with each other are possible, and external objects might be located inside
the robot’s reachable region. Obstacles are encoded inside the configuration space
with approximations of their actual shapes. While different methods for modeling
the obstacles in the configuration space exist, it is essential to understand that this
task is not trivial. Different types of obstacles cause varying deformations in the
configuration space when in motion. Additionally, the topology of the configuration
space needs to be factored in, as different topological spaces allow for different
deformations of bodies and obstacles.

While the different combinations of obstacle types and their modeling in different
topological spaces are outside this work’s scope, we will introduce critical mathe-
matical notation that will be used in the upcoming sections for configuration space
obstacles. Let C be the set of all possible configurations of the robot and let W be
the workspace, where O ⊂W are the set of obstacles contained therein and A ⊂W

is the robot. The obstacle region is defined as all configurations of the robot A that
intersect with the obstacles O in the task-space W . The configurations that do not
fall into this space are called free space: Cfree = C \ Cobs.

2.2 Motion Planning

The content of this section is based on the corresponding chapters in [LaV06].

The critical idea of motion planning is determining if a robot configuration is
reachable from another configuration. Two configurations are connected by a
continuous path. A path on a topological space M is defined as τ : [0, 1] 7→ M ,
which ensures that all elements on the path are in the configuration space. If the
topological space M is a manifold, we can assume that it is path connected, hence
that there exists a path between two configurations m1, m2 ∈M .

While there are different types of connectedness, each restricting the types of paths
that are allowed for connecting two configurations, we will restrict ourselves to
simply connected paths. Enforcing paths to be simply connected ensures that two
different paths connecting the same start and end configurations can be warped into
one another continuously, meaning that no "jumps" occur during this process. This
property is also called homotopy. The assumption of simply connected paths on

10 Chapter 2 Fundamentals of Industrial Robotics



our topological space results in nice properties for the control and motion planning
process in later steps.

There are many approaches to solving the motion planning problem, but we will treat
sampling-based planning in this work. Sampling-based planning is the most widely
adopted approach, as it does not require explicitly constructing obstacles in the
configuration space. Instead, it checks after sampling a configuration if it is inside the
obstacle space before connecting it to a path. The omission of obstacle construction
is a considerable advantage in algorithm implementation and complexity. However,
it cannot provide the same guarantees for finding a solution as the combinatorial
planning approach, which we will not treat in this thesis.

2.2.1 Sampling-based Motion Planning

Sampling-based motion planning is performed in three steps. In the first step, a
suitable algorithm samples points in the configuration space for a fixed amount of
time. Secondly, the points are connected to each other without passing obstacles to
create a graph. Finally, the desired start and end configurations are connected with
each other if there is a path on the graph. While there are slight variations to step
two, the general scheme of the algorithm remains similar. In the following, we will
discuss the key concepts for each phase.

The configuration space should be sampled based on different criteria in the sampling
step. A critical criterion is the denseness of the sampling sequence. It reflects the
desirable property that the sampled sequence of points gets arbitrarily close to every
element in the space over which it samples. With uniform random sampling, the
denseness of the sample depends on the quality of the pseudo-random number
generator. Pseudo-random number generation introduces deterministic behavior
that hinders uniform sampling over the configuration space. An alternative to
random sampling is low-dispersion sampling. Here, the sampling algorithm chooses
samples to minimize the largest empty area in the configuration space. When
sampled on a grid, the samples align with the coordinate system axis. An alternative
sampling scheme exists if the alignment of the samples with the coordinate axis is
not desired: low-discrepancy sampling. With this technique, the samples are sampled
uniformly over the configuration space while avoiding alignments of the samples.
An appropriate measure for determining the discrepancy of a set of samples is
to check the area they cover compared to the entirety of the configuration space.
If the covered area ratio aligns with the sample ratio over all possible areas, the
discrepancy is considered desirable.
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The second and third steps of sampling-based motion planning are discussed in
detail in the following sections.

2.2.2 Collision Detection

We have stated earlier that sampling-based motion planning depends on a separate
collision detection algorithm. The sampled points need to be checked individually
for collisions with the collision space Cobs. We will cover the hierarchical collision
detection algorithm as an example.

In hierarchical collision detection, the body checked for the collision is split into
smaller bodies with a tree structure consisting of groups of individual vertices,
determining dependencies of parts with each other. In the next step, the vertices are
grouped into bounding regions approximated by appropriate geometrical shapes.
Increasing the number of splits in the tree also increases the number of geometric
shapes and the computational complexity. Examples of suitable geometric bounding
regions are spheres, bounding boxes, or convex hulls. The tree structure is the key
ingredient for the two-phase collision-checking process: In the first broad phase, the
bounding regions for the root nodes of the trees are checked for collisions. If there
is no collision, further collision checks on child nodes are unnecessary, as the root
node covers the child nodes, and a collision can be ruled out. However, if the check
on the root node detects a collision, the child nodes must be checked to determine if
there is a collision. The checks are carried out recursively for the next tree level if
one of the nodes in the upper level detects a collision.

Until now, we discussed if specific configurations are inside the free space Cfree

avoiding collisions, but not if the entire path connecting these configurations is also
in Cfree. The path connecting two intermediate configurations along a complete
path is called path segment. A path segment is checked for collisions by sampling
individual configurations on the segment and checking those for collisions. The
sampling frequency ∆q on the path segment is a hyper-parameter that should be
chosen carefully. An obstacle could be missed if the parameter is too big; if it is too
small, more time is used for unnecessary computation. One empirical method is to
set ∆q to a value smaller than the resolution of the configuration space, ensuring
that the chosen configuration is not further away than two arbitrary samples in
the configuration space. There are also algorithmic approaches for determining
∆q: these rely on the robot’s rigid body’s geometric properties and upper bounds
for their traveled distance for small movements in the configuration space. These
bounds are dependent on the type of the manifold, as the movement characteristics
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are different for translations (f.e. in R2) than for rotations (f.e. in SO(2)). Another
critical decision is the order chosen for collision checks for the samples on the path
segment. While the details are out of the scope of this work, it is essential to state
that a sampling sequence with alternating order (e.g., van der Corput sequence) might
detect collision on the path segment faster as it "jumps" back and forth between the
start and end configurations at the beginning of its sampling phase.

We have outlined the foundations for understanding motion planning algorithms by
explaining the essential concepts in the previous sections. In the following, we will
shortly discuss two different sampling-based approaches for planning a path from
start to end to complete the big picture. Path planning is sampling-based motion
planning algorithms’ third and last step, as stated in section 2.2.1.

2.2.3 Single versus Multiple-query methods

Single-query and multiple-query planning algorithms are two different approaches
for motion planning with random sampling. The single-query algorithm assumes
the pair (qstart, qend) of the robot to be given only once per robot and obstacle set,
which means that no results from prior requests with start and pairs are assumed for
the computations. This assumption means that the search graph is built from the
ground up and exclusively for (qstart, qend).

In contrast, the multiple-query model allows pre-computation and reuse of a search
graph that can be used for new requests with pairs of robot start and end configura-
tions.

2.2.3.1. Single-query motion planning

Single-query motion planning is executed by constructing an undirected search
graph incrementally for a given configuration pair (qstart, qend). The algorithm runs
iteratively until it finds a collision-free path between qstart and qend. The search graph
can be started from either qstart or qend or from both qstart and qend simultaneously.
Simultaneously constructing two search graphs is advantageous for situations where
qstart or qend are trapped within a cavity spot and hard to reach, a common issue for
high-dimensional configuration spaces. Two cases where the construction of two
graphs is beneficial are illustrated in Fig. 2.2. In Fig. 2.2 (a) the so-called bug-trap
is illustrated. Here, a small opening needs to be passed to connect the two points.
In Fig. 2.2 (b) the so-called corridor is illustrated. Here, the two points can only be
connected by creating a search graph along the narrow corridor.
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(a) bug-trap (b) corridor

Fig. 2.2.: Edge cases with exploration algorithms. In (a), a bug-trap is illustrated. Bug
traps cause problems with unidirectional single-query methods where a single
search tree is constructed from the start or end configuration. In (b), a corridor
is illustrated. Corridors are hard to leave for multiple-query roadmap methods
because the sampled configurations must all lie along the narrow corridor and be
connected.

A critical step in the iterative process is the local planning method (LPM): It tries
constructing a path segment from the existing search graph to a newly sampled
configuration qnew without causing a collision by employing the checks mentioned
in section 2.2.2. The search graph is only extended if the sampled configuration is
in the free space Cfree and all points on the path segment from the search graph to
the new point are collision-free, hence contained in Cfree.

Several approaches exist for solving the graph extension problem (LPM). However,
we will focus on a widely used method implemented in a variant of single-query
motion planning methods called rapidly exploring dense trees (RRT). The graph
extension in the LPM step is done by connecting the newly sampled point qnew to
the nearest point qn on the graph (see Fig. 2.3 (a)). The nearest point qn might not
be an existing vertex but could lie on an existing edge. In this case, qn is inserted
into the graph by splitting the edge and inserting qn as a new vertex on the splitting
location in an intermediate step before finally connecting qnew with it (see Fig. 2.3
(b)). Another issue that can arise during the LPM phase is that the newly sampled
configuration may lie on an obstacle (qnew ∈ Cobs). In this case, the graph extension
method mentioned above can be applied, but the new path segment from qn to qnew

should stop at the boundary of the collision object. A new vertex qb can be inserted
into the search graph as an endpoint for the new path segment at the stopping
location instead of qnew (see Fig. 2.3 (c)). The newly sampled configuration qnew

may also not be added to the search graph. The algorithm fails to add the new
sample when qnew lies behind an obstacle that prevents a connection to the graph
with a straight line (see Fig. 2.3 (d)).
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(a) RRT exploration algorithm, no obstacle,
nearest point is vertex

(b) RRT exploration algorithm, no obstacle,
nearest point is edge, new vertex qn is cre-
ated

(c) RRT exploration algorithm, qnew hits obsta-
cle

(d) RRT exploration algorithm, qnew hits obsta-
cle

Fig. 2.3.: RRT exploration algorithm. The exploration algorithm extends the existing
search graph with new collision-free samples in Cfree. The search graph is used
for single-query motion planning. The new configuration and the path segment
connecting it to the nearest point on the search graph are checked for collisions
with obstacles. Different cases for the exploration are illustrated.

The single-query planning approach attempts the actual path search for a given
pair (qstart, qend) by initializing the graph with qstart and incrementally expanding
it with the previously mentioned exploration algorithm. Since qend was not added
to the graph in the initialization phase, the algorithm needs to periodically attempt
a connection between qend and the expanding search graph. The exploration algo-
rithm could, for example, introduce a sampling bias towards qend every n sampling
iterations. After this attempt, the algorithm attempts a path search from qstart to qend.
If a path is found, the search succeeds, and no further exploration is necessary.
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2.2.3.2. Multiple-query motion planning

The multiple-query motion planning algorithm expects the construction of an undi-
rected search graph in advance before it can handle a planning request for a given
configuration pair (qstart, qend). The advantage of this approach is that the graph can
be used for multiple requests once it is available. A trivial approach to building an
initial search graph is constructing a grid with fixed resolution in the configuration
space where each vertex is connected to its adjacent neighboring vertices. Vertices
that would lie in the obstacle space Cobs are discarded. qstart and qend are connected
to the closest vertices on the grid. Depending on the size and location of the obstacles
in Cobs, the graph might be sparse, but it can be extended during search requests.
The grid resolution is a hyper-parameter that can be adjusted during the search: if a
search attempt fails, the algorithm can double the grid resolution and reattempt the
path search. These graphs are also called roadmaps in the robotics literature. In the
following, we will discuss a more generic and flexible roadmap method that can be
used in a broader range of applications, the sampling-based roadmaps.

Sampling-based roadmaps are constructed with sampling methods similar to the
exploration algorithm described in section 2.2.3.1. In contrast to the previously
mentioned grid structure, the sampling-based roadmap relies on a dense sequence
that creates new configurations qnew. The algorithm checks qnew for collisions and
adds it to the search graph. In the next step, a neighbor selecting scheme is applied
to create path segments for increasing the number of neighbors of qnew. Various
schemes are available, e.g., radius-based, nearest-k points, and visibility. In Fig. 2.4,
the radius-based scheme tries to connect all vertices within a ball of the given radius
to qnew.

A very efficient version of sampling-based roadmaps is the visibility roadmap. This
variation tries to connect a newly sampled configuration qnew to all vertices in the
search graph without prior filtering. However, it only keeps qnew if it is connected to
two unconnected graph components. Because only then is it assumed that the new
configuration increases the visibility of the existing search graph. In Fig. 2.5, the
visibility concept is displayed for a single node in the presence of a single obstacle.

2.3 Forward Kinematics

In this section, we will introduce the forward kinematics (FK) function for mapping
a given configuration of the robot to the task-space. In contrast to the inverse
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Fig. 2.4.: Sampling-based roadmap. Construction. The roadmap is constructed by
sampling configurations qnew from a dense sequence. After performing collision
checks for each segment, the new configuration is connected to its neighbors with
new path segments. The neighbor selection scheme in this illustration is based on
a fixed distance threshold from qnew.

Fig. 2.5.: Sampling-based roadmap. Visibility. The green area visualizes the visible part
of the configuration space from the sampled configuration q’s perspective. Visible
in this context means that any point in the green area can be connected with a
path segment to q without hitting the obstacle Cobs.

kinematics function, which will be introduced in section 2.4, the FK is well-defined
for all types of joints mentioned above and delivers a unique, exact, and correct
output for the provided input configuration.

In the big-picture of robot motion planning, several use cases exist for the FK
function. For example, iterative methods for inverse kinematics utilize the FK for
iteratively calculating task-space positions for intermediate solutions and comparing
them to the input of the IK, which is the desired position of the end-effector. This
work will focus on defining the FK for open-loop kinematic chains. In the following,
we will briefly introduce the kinematics problem based on the detailed study of this
problem in [Cra05, p.62-75].
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The study of kinematics encompasses all geometric and time-based motion properties
without notice to the forces that cause the motion. In this brief introduction to
kinematics, we restrict ourselves to determining the position and orientation of
robotic manipulator linkages in static situations. To achieve this goal, we fix frames
to mechanical parts and describe the relationship between frames and how they
change with the robot’s motion. More specifically, we narrow this problem down
to ultimately finding the position and orientation of the robotic arm’s end-effector
relative to the base as a function of its joint angles.

Linkages (links) in a robotic setting describe a rigid body that defines a relation-
ship between two neighboring joint axes of a manipulator. We will introduce the
Denavit-Hartenberg (DH) method for describing the kinematic relationship between
linkages. The DH convention can describe this kinematic relationship with only four
parameters, reducing the six degrees of freedom (three axes of rotation, three axes
of translation) without introducing restrictions.

The four parameters that describe the kinematic relationship for a link between two
joints with the DH convention are:

• a: link length,

• α: link twist,

• d: link offset, and

• θ: joint angle.

Fig. 2.6 illustrates these parameters on two revolute joint axes i and i + 1 that are
connected by the link i− 1.

The difference in these four parameters for revolute and prismatic joints is that for
revolute joints, d is fixed, and θ is variable, whereas for a prismatic joint, θ is fixed,
and d is variable. We will attach a frame to each link of the robotic manipulator:

• Zi is coincident with joint axis i,

• Xi is the perpendicular axis lying on the shortest path between the joint axes
Zi and Zi−1,

• Yi is inferred with the right-hand rule for coordinate axes, and

• the origin of frame i is located at the intersection of Xi with Zi.
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Fig. 2.6.: Link Frames in Denavit-Hartenberg convention. We illustrate the Denavit-
Hartenberg (DH) convention for attaching frames to a robotic manipulator’s
links. The DH convention is a widely used method for calculating the forward
kinematics of a robotic arm.

We can now derive the link transformations from frame i to i− 1 and from n to 0
(end-effector to base). The link transformations are a function of one variable since
the other three variables of the DH convention are fixed by the mechanical design of
the link. The transformation i−1

iT from link frame i to i− 1 is a subproblem in the
big picture, where we want to calculate the end-effector’s position and orientation
relative to the base. The subproblem i−1

iT can be broken down into four separate
subproblems given the DH parameters of the robotic manipulator, one for each DH
parameter:

• R: rotation about Xi−1 by αi−1,

• Q: translation along XR by ai−1,

• P: rotation about ZQ by θi, and

• i: translation along ZP by di.
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The resulting transformation matrix from link i to i− 1 is denoted in equations 2.3
to 2.5, where Da stands for a translation along axis a and Ra for a rotation about
a.

i−1
iT = i−1

RT R
QT Q

P T P
iT (2.3)

i−1
iT = Rx(αi−1)Dx(ai−1)Rz(θi)Dz(di) (2.4)

i−1
iT =


cos(θi) − sin(θi) 0 ai−1

sin(θi) cos(αi−1) cos(θi) cos(αi−1) − sin(αi−1) − sin(αi−1)di

sin(θi) sin(αi−1) cos(θi) sin(αi−1) cos(αi−1) cos(αi−1)di

0 0 0 1


(2.5)

The transformation from the end-effector (n) to the base (0) of the robotic arm can
be calculated by concatenating the transformation matrices between neighboring
links beginning with the last link:

0
N T = 0

1T 1
2T 2

3T . . . N−1
N T (2.6)

Equation 2.6 will be a function of all n variables, one joint angle per revolute joint.

2.4 Inverse Kinematics

In the following, we will briefly introduce the inverse kinematics problem based on
the detailed study of this problem in [Cra05, p.102-128].

The inverse kinematics (IK) of a robotic manipulator calculates the set of joint angles
that achieve the desired position and orientation of the end-effector. The IK has
a non-linear solution since we are trying to solve for the joint angles in equation
2.5, which are inside the non-linear trigonometric sine and cosine functions. For
example, the link transformation equation (see eq. 2.5) of a six DoF robotic arm
has 12 variable numeric values (the last row is fixed), which would result in 12
equations and six unknowns (6 joints angles). The rotational entries in eq. 2.5,
however, are not independent; they correspond to only three independent equations
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(rotation about three axes). The dependence of the rotational entries leaves us with
six equations and six unknowns, where the equations are non-linear.

We need to check the non-linear system of equations for

• the existence of solutions,

• the uniqueness of solutions, and

• an appropriate solution method.

2.4.1 Existence of solutions

The solution for the inverse kinematics problem of a robotic manipulator lies in
its workspace. The workspace of a robotic arm can be categorized into two types:
the dextrous and the reachable workspace. The dextrous workspace contains all
points in the reachable space of the end-effector that the arm can reach with all
possible rotations. The reachable workspace contains all points in the reachable
space of the end-effector that the arm can reach with at least one rotation. The
definitions show that the dextrous workspace has stricter requirements than the
reachable workspace.

(a) 2R robot (b) 3R robot - multiple solutions (c) 3R robot - multiple solutions
and obstacle

Fig. 2.7.: Inverse kinematics robot schematics. We illustrate robotic manipulators and
possible scenarios for their inverse kinematics. A robotic manipulator with two
rotational joints is illustrated in (a). In (b), two solutions are illustrated for a
robotic manipulator with three rotational joints. In (c), two solutions G1 and G2
are illustrated for a robotic manipulator with three rotational joints. Solution G1
is invalid as it collides with an obstacle encoded in the configuration space.

For the 2R robotic arm in Fig. 2.7 (a), when l1 == l2, the dextrous workspace only
contains the frame origin of the base joint as only that point can be reached by the
end-effector with all possible rotations. In contrast, the reachable workspace is a disk
of radius 2l with its center at the base joint. However, when l1 ̸= l2, the dextrous
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workspace is empty, and the reachable workspace is a ring with outer radius (l1 + l2)
and inner radius |l1 − l2|.

When a manipulator has less than six degrees of freedom (DoF), it cannot reach
general goal positions and orientations in 3D space, as the system of equations for
the IK becomes underdetermined. For manipulators with less than six DoF, the IK
should try to determine the nearest reachable goal instead of the desired goal.

2.4.2 Multiple solutions

When solving the inverse kinematics of a robotic manipulator, multiple solutions
are possible in specific scenarios. The critical question is, which solution should the
IK choose? For example, the 3R robotic arm in Fig. 2.7 (b) has multiple solutions
for the same goal in its operating plane. The system has to choose from multiple
solutions. One strategy is to choose the closest solution to the current configuration
of the arm in the configuration space. Considering the link lengths for this approach
with a suitable weighting scheme is essential, as moving smaller links costs less
execution time. Farther solutions might still be selected when the closest solution
interferes with obstacles in the configuration space. We illustrated this situation in
Fig. 2.7 (c) where moving from goal G 1 to G 2 with the closest solution interferes
with an obstacle. For this reason, calculating all solutions must be possible with the
IK in the presence of obstacles.

In general, the number of solutions depends on the DoF count of the manipulator,
the number of fixed DH parameters, and the allowed (rotation) limit for the joints.
More non-zero DH link parameters lead to more solutions as, for example setting
the link length a ̸= 0 moves the neighboring joint axis out of the plane of the
previous joint axis. The combination of a non-zero offset a and non-zero link twist α

allows the manipulator to reach a greater volume by moving "out of the plane" and
therefore attain more solutions for a particular goal.

2.4.3 Method of solution

There is no general solution algorithm for the non-linear IK equations. The solution
to the IK problem is to find all joint angles that reach a given goal with the given
position and orientation. The solution can be calculated with numerical iterative
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solution methods or closed-form expressions. Iterative solvers are slower than closed-
form solution approaches. In contrast, closed-form expressions are only possible for
manipulators with specific mechanical properties.

Closed-form approaches can be subdivided into algebraic and geometric methods.
Algebraic solutions rearrange the given equations to a form where a solution for
the joint angles exists. In contrast, geometric methods decompose the arm’s spatial
geometry into several plane-geometry subproblems. These subproblems can be
solved for the joint angles with tools of plane geometry. For example, a 3R robotic
arm that operates in a single plane has its angle twist DH parameter α set to 0. The
planar operation allows us to solve for the joint angles with analytical expressions
more easily.
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Fundamentals of X-ray
Computed Tomography

3
In this chapter, we will first introduce the fundamental concepts of X-rays and
explain the effects that lead to their formation. Subsequently, we will introduce the
fundamental acquisition geometries for X-ray imaging. Finally, we will provide a
problem statement for the computed tomography problem.

3.1 Fundamental concepts of X-rays

X-rays are electromagnetic radiation ranging from 3 × 1016 to 3 × 1019 Hz. The
frequency specifies the number of vibrations of the electromagnetic wave per second.
For reference: the frequency of light that is visible to the human eye ranges from
420× 1012 to 750× 1012 Hz, and radio waves that are transmitted for FM and AM
radio stations range from 300× 106 to 300× 109 Hz.

X-rays can be produced with an X-ray source that emits electrons by heating up
a thin wire coil that acts as a cathode. The released electrons hit an anode that
absorbs their kinetic energy. In electron absorption, two effects produce X-rays:
Bremsstrahlung and characteristic radiation. [HJL21]

Bremsstrahlung X-rays are emitted as Bremsstrahlung when the negatively charged
electron passes through the nucleus of an atom at the anode and gets deflected
and decelerated by the positively charged nucleus. The emitted X-ray’s energy
corresponds to the incoming electron’s kinetic energy loss.

Characteristic radiation X-rays are emitted in the nucleus of the atoms at the anode
when the incoming electron hits an electron located in the atom’s inner shell. The
collision ejects the hit electron from the atom’s shell, and the free slot is occupied by
an electron from the outer shell of the atom nucleus. X-ray radiation is produced by
the electron moving from an outer shell to the free spot at the atom’s inner shell.
The number of traversed shells determines the energy of the emitted X-ray.
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In the following, we will briefly outline three essential concepts for the interaction
of X-rays with matter. These concepts are essential, as they affect the measurement
process: X-ray photons that do not hit the detector do not appear on the resulting
detector image.

Photoelectric effect The photoelectric effect is caused by X-rays hitting matter (e.g.,
the measured sample) and ejecting electrons bound in the matter’s atomic nuclei.
The probability of this interaction increases when the binding energy of the electrons
in the atomic shell is slightly above the interacting X-ray photon’s energy. This
relationship also means that materials with a low atomic number are practically
transparent to X-rays as the difference between their electron’s binding energy and
the energy range of typical X-rays is too high. The high gap between these energies
omits the photoelectric effect.

Rayleigh scattering For atoms with high atomic numbers, the incoming X-ray
photon cannot eject the electron sitting in the atom’s shell due to the high binding
energy of the atomic nucleus. The X-ray photon is scattered after hitting the electron
without losing kinetic energy and continues on a different path.

Compton scattering Compton scattering describes the combination of the photo-
electric effect and Rayleigh scattering: The incoming X-ray can eject an electron
from an atom’s shell after hitting it. Releasing the electron causes the emission of a
new X-ray through characteristic radiation. In contrast to the photoelectric effect,
the X-ray photon continues along a different path since its kinetic energy was not
fully absorbed by the electron it hit.

3.2 Fundamentals of X-ray Acquisition Geometries

This section will introduce the most important X-ray acquisition geometries and the
underlying concepts based on [HJL21]. The actual signal measurement process at
the detector is outside this thesis’s scope.
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Lambert-Beer Law The Lambert-Beer law models the interaction of X-rays with
the matter by modeling the attenuation of rays passing through matter. The law
states that the change in the ray’s intensity is proportional to the thickness and
the concentration of the material it passes through. More specifically, the X-ray’s
intensity will decay exponentially, which will depend on its incident intensity and
the material’s attenuation coefficient. For inhomogeneous matter, the attenuation of
a ray is position dependent since the attenuation coefficient depends on the material
composition and will be different at different positions.

One fundamental assumption of the Lambert-Beer law is that the X-ray source and
the detector elements that convert the measurement to digital signals are infinitely
thin in their dimensions. This assumption does not hold in practice; hence, we must
introduce discrete measurement geometries. In the following, we will introduce the
most common types of acquisition geometries.

Radon transform The Radon transform is a fundamental concept for reconstructing
a sample from measurements with X-rays. The Radon transform states that perfectly
reconstructing the scanned sample is possible when it is measured from a complete
set of line integrals over all angles. At each angle θ, a set of parallel line integrals
passes through the sample and hits the detector. The resulting set of line integrals is
called the projection of the sample at angle θ.

Parallel-beam geometry The parallel-beam geometry setup consists of an X-ray
source and a detector that can be translated and rotated. In the measurement
process, a single line integral can be measured at the detector before the source-
detector pair needs to be translated to measure a line integral parallel to the previous
one. This process is repeated after rotating the source-detector pair for additional
line integrals. The parallel-beam geometry is illustrated in Fig. 3.1 (a), where
multiple line integrals are depicted at once. The measurement process is very
time-consuming, so new methods were developed for more efficient acquisition of
samples.

Fan-beam geometry The fan-beam geometry consists of an X-ray source and a
detector, but in contrast to the parallel-beam setup, the detector is arranged with a
curved array of elements, and the source emits a divergent beam of X-rays (see Fig.
3.1 (b)). This arrangement allows data acquisition from multiple line integrals in a
single position of the source-detector pair. Hence, the introduction of the fan-beam
allowed for improvements in measurement time.
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Cone-beam geometry The cone-beam geometry improves measurement times even
further compared to fan-beam setups by replacing the single-dimensional detector
with a curved or planar two-dimensional detector (see Fig. 3.1 (c)). The 2D detector
allows the acquisition of multiple rows of line integrals at once, eliminating the need
for translating the source-detector pair in the object’s z-direction.

(a) Parallel-beam (b) Fan-beam (c) Cone-beam

Fig. 3.1.: X-ray acquisition geometries. We illustrate three acquisition geometries for
X-ray computed tomography. The parallel-beam (a) and fan-beam (b) setups
acquire measurements row by row. With the cone-beam setup (c), the entire
sample volume can be measured at once at the detector.

3.3 Fundamentals of CT Reconstruction

In the computed tomography (CT) problem, we try to recover a function f : V → R.
The function f assigns a real-valued absorption coefficient to every point in a volume
V ⊂ Rn. For X-ray CT specifically, this real value is the X-ray attenuation coefficient
of the measured sample at the given point. This section will outline a solution
approach for solving this problem, the series expansion approach.

In the series expansion approach, we solve for the function f with the following
three steps.

Discretization First, we discretize f by choosing a finite set of basis functions
bi : V → R, i ∈ I. Strictly speaking, bi are not basis functions of f since their linear
combination is not guaranteed to represent every possible f exactly. To approximate
f on a computer with reasonable visual quality, we can assume that bi does not need
to be real basis functions. We define

f̂(·) =
∑
i∈I

xibi(·), {xi}i∈I ⊂ R, (3.1)
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such that ||f − f̂ || < ε, where ε > 0 small. The xi represent the attenuation coeffi-
cients of the discretized volume. If the two-dimensional volume is approximated on
a k × k grid with I = {1, ..., k2}, we can choose the following basis functions

bi(c1, c2) :=

1 if (c1, c2) is inside i–th pixel

0 else.
(3.2)

Measurement model The measurement model describes how the signals m =
(mj)j∈J ⊂ R on the detector could be generated by the measurement process that
sends X-rays through the volume f with

Mj :
(
f : V → R) −→ R, (3.3)

whereMjf = mj for all j ∈ J . If we assume thatMj is linear, we can apply it to
the individual "basis functions" in the sum inside f̂ :

Mjf ≈Mj f̂ =Mj

(∑
i∈I

xibi

)
=
∑
i∈I

xi Mjbi (3.4)

For X-ray CT, the modelMj could be a line integral along the ray beginning from
the X-ray source traversing the volume f and hitting the detector pixel j.

We can form the system of equations

Ax = m, (3.5)

where the entries aji in the system matrix A represent the application of the measure-
ment model on the individual "basis functions" bi inside the approximated volume f̂ :
aji =Mjbi. In other words, the rows of matrix A represent individual rays passing
the volume defined by x, and each entry mj on the right-hand side represents the
measurement of a particular pixel on the detector.
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Solution We can now compute an approximate solution for x̂ such that

f̂∗ =
∑
i∈I

x̂ibi (3.6)

and f̂∗ is the desired reconstruction of the measured volume f that contains the
sample.

For the image reconstructions of our experiments in chapters 5, 6, and 7, we always
used iterative methods. Other alternatives as analytical solutions or filtered back-
projection (FBP), were not viable for our scenario. We never considered analytical
solutions as the system of equations is under-determined, and the problem is ill-
posed in general, meaning that a slight variance in the detector measurements might
lead to a significant change in the solution for analytical approaches. FBP was not
a viable option as it requires measurements from the entire angular range, which
is against the nature of installing the robotic arm in a restrictive environment (see
unsampled spots in chapter 6, Fig. 6.2) and also against our problem statement of
sparsely sampling "valuable" spots on the spherical trajectory (see chapter 7).

We used the iterative conjugate gradient solver for the image reconstructions in
chapters 5, 6, and 7. We fixed the number of iterations to 30, as more iterations did
not improve the cost function. The solver ran on a Tikhonov regularized weighted
least squares problem [Wil79] with the Josephs method for discretizing the X-ray
transform [Jos82] and cone-beam geometry. We used our C++ reconstruction
framework elsa [LHF19] to perform the reconstructions. The reconstruction volume
consisted of 720 × 720 × 720 isotropic voxels with a 38 µm spacing for all our
experiments.
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Part II

X-ray Computed Tomography with a
Robotic Sample Holder





Introduction to Lab Setup with
Robotic Sample Holder

4

4.1 Hardware Setup

4.1.1 X-ray Laboratory Overview

The X-ray laboratory is an experimental setup for research purposes divided into two
areas: a safety enclosure and the operator’s desks outside. The following paragraphs
are an adapted excerpt from our publication [Pek+22b] about the hardware setup
in our X-ray CT laboratory. We added information about the changes we made for
our subsequent publication [Pek+23a].

The system’s hardware components are displayed in Fig. 4.1. The main difference to
a conventional X-ray CT setup is the seven degrees of freedom robotic arm Panda
from the manufacturer FRANKA EMIKA [@EMI20]. It has a maximum reach of 855
mm and a repeatability of 0.1 mm when repeatedly moved from a specific starting
pose to a goal pose. It has two fingers that can move on a fixed axis and grasp objects.
The maximum allowed payload is 3 kg. The robotic arm and the depth cameras are
connected directly to a computer, while the detector is accessible through a network
interface. The robotic arm can be turned off in case of emergency from outside of
the safety enclosure with a power switch (see fig. 4.1b).

Two Intel Realsense D435 depth cameras capture the robot’s movements and provide
3D information about the surroundings as a point cloud. The cameras are connected
directly to the workstation and are used for the collision detection mechanism
described in section 4.2.3.2.

The robotic arm is mounted on a table inside a safety enclosure for X-ray CT, which
houses the X-ray source and the detector (see fig. 4.1a). The detector has a maximum
resolution of 2880x2880 and is connected to a different workstation on the network,
which provides a network interface for triggering image capturing. Our workstation
retrieves the raw 16-bit grayscale image over the network.
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We moved the robotic arm further away from the X-ray source and closer to the
detector for the experiments in our second submitted manuscript [Pek+23b] (see Fig.
6.1a). Changing the arm’s position increased the field of view for the experiments
and allowed the use of a sample holder with greater dimensions and different gripper
shapes for added flexibility.

(a) Lab photo (b) Hardware schematics

Fig. 4.1.: Hardware setup. In Fig. 4.1a, the robotic arm is mounted on a table with the
source and the detector inside a safety hutch. The source-to-robot distance is 40
cm, and the robot-to-detector distance is 176 cm. Two depth cameras monitor the
movement of the robot and send a stop signal to the robot controller when the
executed trajectory interferes with obstacles. The robotic arm can also be stopped
by a manual power switch routed to the operator table outside the hutch (see fig.
4.1b). The relevant coordinate systems are visualized in red in Fig. 4.1a. The x
and y-axis are determined by the right-hand rule.[Pekel_2021]

4.1.2 Robotic Arm

Throughout this Ph.D. project, we exclusively used the FRANKA EMIKA Panda robotic
arm in both the laboratory and the simulation environment (see figures 4.1 (a) and
4.6). Panda is offered at an attractive price (below 30.000 EUR), provides easy
integration with the ROS development environment, and the manufacturer provides
the 3D designs of the individual links of the robotic arm as CAD files. We used the
CAD files for the active collision detection algorithm (see sec. 4.2.3.2). However,
they can also be included in the simulated measurements with the tomographic
imaging library for more realistic measurements.

The kinematic properties and dimensions of the Panda arm are illustrated in the
figures 4.2 (a) - (c). We extracted the data for the figures from the official specifica-
tion document for Panda [@EMI20] and the franka_ros documentation [FRA23].
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(a) Panda - model (b) Panda - reach (side view) (c) Panda - reach (top view)

Fig. 4.2.: FRANKA EMIKA Panda robotic arm. (a) depicts the dimensions of the FRANKA
EMIKA Panda robot. (b) and (c) depict the arm’s reach from the side and top
view.

The arm has seven degrees of freedom (DoF) with seven rotational joints. In Fig.
4.2 (a), we can see the dimensions and composition of Panda’s links. Its compact
dimensions (0.384 m max. link length) make it ideal for use in a space-restricted
environment, like the safety enclosure in our X-ray CT laboratory. In Fig. 4.2 (c), we
can see that the arm can reach all points within its maximum reach of 855 mm to its
sides with at least one rotation. Fig. 4.2 (b) displays Panda’s sideway reach for a
static configuration. We can see that it can not cover the area in its rear, which can
be better reached by rotating the arm at its first joint attached to the base.

4.1.3 Sample Holder

In this section, we will discuss the sample holder part and the ideas that lead to the
final design in our publications [Pek+22b; Pek+23b].

The necessity for introducing a sample holder part originated from the repeatable
placement error of the FRANKA EMIKA Panda robotic arm in our laboratory setup.
We intended to calibrate the exact position and orientation of the sample on the
detector images with a suitable calibration structure. Another reason for introducing
an intermediate item between the arm’s end-effector and the sample is the added
flexibility for sample mounting. Without the intermediate sample holder item, the
robotic arm needs to pick the sample up with its two fingers.

We decided on the calibration structure in the initial design and prototyping phase
of the sample holder item. After initial attempts with non-parametric arrangements
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Fig. 4.3.: Sample holder parts. We illustrate the most important sample holder parts we
designed throughout this Ph.D. project from the first (left) to the last (right). We
used part no. 1 for the experiments in our first publication [Pek+22b] and part
no. 2 for the experiments in our second publication [Pek+23b]. The cylindrical
body houses a helical calibration structure that is used to calibrate the orientation
and position of the sample on the individual acquisition images.

of spheres on a cylinder, we have decided to use a helix structure with a well-defined
parametric equation. The helix structure can be calibrated on the 2D detector images
given the X-ray acquisition geometry and the helix’s equation. We placed aluminum
spheres with high absorption coefficients into the holes and used a suitable circle
segmentation algorithm. The parametric equation can be used throughout the
calibration pipeline, beginning with the design process where the helix is modeled
on a cylinder in our design software. The modeling process is followed by the
manufacturing procedure, where a suitable machining process needs to place the
holes in the cylinder without violating the parametric equation of the helix. In
early iterations of our prototyping process for the sample holder item, we used a
3D printer. However, the holes in the resulting part were placed inaccurately. The
holes on the helix deviated by up to 0.1 mm from their intended position, affecting
calibration results [Pek+22b]. For our final design, we cut the holder from a solid
piece of PVC and drilled the calibration holes with a precision cutter (CNC) machine.
The machine received the exact locations of the holes as 3D coordinates and cut
them individually into the cylinder that resulted from the first cutting step. We
illustrated the unique calibration structure designs introduced throughout this Ph.D.
project in Fig. 4.3.

In subsequent iterations of our sample holder item designs, we split the structure
into the calibration and gripper parts for more time and cost-effective prototyping.
With the introduction of different gripper shapes, we maximized the potential reach
of the robotic arm: in [Pek+23b], we demonstrated that up to 99.1% of all possible
rotations can be reached by the robotic arm when using the l-shaped gripper and
removing the restrictions introduced by installing the arm in the restrictive safety
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Fig. 4.4.: Sample holder part grippers. We illustrate the unique gripper designs for the
sample holder part that we designed throughout this Ph.D. project from the first
(left) to the last (right). We used gripper no. 1 for the experiments in our first
publication [Pek+22b] and the two grippers labeled no. 2 for the experiments
in our second publication [Pek+23b]. The l-shaped gripper part allows maximal
coverage of all sample orientation (99.1%, no obstacles encoded) when attached
to the sample holder part no. 2 from Fig. 4.3.

enclosure. The most unique gripper shape designs introduced throughout this Ph.D.
project are illustrated in Fig. 4.4.

4.1.4 Depth Cameras

We have used two Intel Realsense depth cameras (see Fig. 4.5) for the active collision
detection algorithm outlined in section 4.2.3.2. The Realsense camera combines
data from two RGB sensors and an infrared projector to capture depth information
about a scene. An additional RGB sensor is provided for colored pictures and videos
of the captured scene. The maximum resolution of the depth stream is 1280× 720 at
90 frames per second (fps). The colored video stream has a 1920× 1080 resolution
at 30 fps [@Int23a]. The advantage of the Intel Realsense platform is the smooth
integration within the ROS ecosystem. We used the realsense-ros ROS packages
[@Int23b] that Intel provides to read the point clouds through an abstract interface
and with ROS-native data types.
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Fig. 4.5.: Intel Realsense depth camera. We used two Realsense cameras for the active
collision detection algorithm described in section 4.2.3.2. The maximum resolu-
tion of the depth stream is 1280× 720 at 90 fps and the colored video stream has
a 1920× 1080 resolution at 30 fps.[@Int23a]

4.2 Software Components

4.2.1 Simulation Environment

The simulation environment served two primary purposes during this Ph.D. project.
First, it was a testing environment for new algorithms and the robotic arm’s control
routines. We validated the critical safety components of our software package with
the simulation environment, where we could simulate the FRANKA EMIKA Panda
robotic arm. Second, we saved measurement time for our experiments, as it was
possible to simulate measurements with the simulation environment as we mirrored
the robotic arm’s environment in the laboratory within the simulation. We could
also plan trajectories in the simulation environment before they were executed in
the laboratory, saving us up to 45 minutes of planning time.

The simulation environment is based on Gazebo [KH04] and is depicted in Fig. 4.6.
The robotic arm is placed on a table captured by two depth cameras from the top and
one RGB camera from the side. The depth cameras are used for testing the active
collision detection algorithm described in section 4.2.3.2. The RGB camera was used
in the early stages of the project for prototyping different calibration algorithms
based on camera images but was later replaced by the tomographic imaging library
elsa [LHF19]. For visualization, a sample holder is attached to the robotic arm’s
end-effector (blue cuboid) in Fig. 4.6.
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Fig. 4.6.: Simulation environment. Our Gazebo [KH04] simulation environment includes
the robotic arm, two depth cameras, and one RGB camera. The depth cameras
are used for testing the active collision detection algorithm. The RGB camera was
used for testing new calibration algorithms in the early phases of this project. We
use Gazebo for simulating the dynamics of the robotic arm.

4.2.2 System Architecture

In this section, we will outline the system architecture of our software project for
the robotic sample holder [Pek21]. The project is organized into the packages core,
utilities, computed tomography, safety, messages, and web.

In the following sections, we will outline the functionality provided by each package
in detail. In Fig. 4.7, we provide an overview of all packages and their components.

4.2.2.1. Core

We implement the most important functionality in the core folder. In the following,
we provide an exhaustive list of the core components and their functionality:

Experiment The experiment component is the entry point to starting new exper-
iments or resuming interrupted experiments. This process includes sample acqui-
sition, image segmentation, calibration, and computing a reconstruction volume.
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These individual steps of the experiment pipeline can be run independently when
the experiment identifier (ID) is provided.

OnlineExperiment The online experiment component differs from the experiment
component in its operating mode: It generates and executes the acquisition trajectory
one way-point at a time. Hence, it cannot perform the segmentation and calibration
steps independently, except for the final reconstruction volume. We implemented
this component for the trajectory optimization algorithm described in chapter 7.

TrajectoryGenerator The trajectory generator can generate two types of trajectories
(circular and spherical) starting from the current configuration of the robotic arm.
The trajectory is generated based on the parameters provided by the user on the
user interface.

TrajectoryManager The trajectory manager is responsible for the efficient reuse
of calculated trajectories. It calculates a unique identifier for every trajectory that
is requested by the user and checks if the trajectory exists on the file system. For
spherical trajectories with 900 way-points, this component can save up to 45 minutes
of waiting time by persisting trajectories on the file system.

Calibration The calibration component calculates the exact position and orientation
of the calibration structure on the acquired image. It uses information about the
system, such as the X-ray setup’s geometry or the sample holder. The optimal
parameters are calculated with the Levenberg-Marquardt non-linear optimization
algorithm and the robotic arm’s sensor readings as the initial solution.

RobotControl The robot control component interfaces the MoveIt! motion planning
pipeline. It provides an abstraction layer for the remaining components for critical
tasks such as moving the robotic arm to a given pose or stopping it.

ImageSegmentation The image segmentation component processes the acquired
images (contrast enhancement) and segments the circles on the calibration structure.
We use the circle Hough transform algorithm for segmentation.
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ExperimentPreparation The experiment preparation component creates the re-
quired directory structure for the requested experiment.

SampleAcquisition The sample acquisition component executes a given trajectory
and acquires an image. It interacts with the detector in the laboratory environment
to retrieve the image and applying the flat-field correction. In the simulation
environment, it requests simulated measurement.

SampleHolderManager The sample holder manager component manages the sam-
ples and sample holders available to our system on the file system. The user’s sample
and sample holder choices are communicated with the remaining components in
our system via the sample holder manager. This communication includes updating
the coordinate transforms for the sample and sample holder depending on their size.
Another example is updating the sample volume for the simulated CT measurements
in the simulation environment.

ImageRetriever The image retriever component provides the experiment images
to the web user interface. The component fetches the requested image when the
experiment identifier and image type are provided. The returned image is resized to
700× 700 pixels for reduced network traffic.

VolumeSegmentation The volume segmentation component is only used within
the trajectory optimization pipeline. This component is responsible for segmenting
the highly absorbing parts of the intermediate reconstructions.

SampleHolderStatePublisher The sample holder state publisher component pub-
lishes information about the geometry of the currently mounted sample holder part.
The geometry information is published to the tf component. Information about the
sample holder geometry is critical, as it influences the correct positioning of the
sample into the X-ray beam.

CameraStatePublisher The camera state publisher component publishes informa-
tion about the X-ray acquisition geometry and the position and orientation of the
depth cameras. The active collision detection algorithm uses the published informa-
tion about the depth cameras.
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RobotEnvironmentManager The robot environment manager component imple-
ments the passive collision detection mechanism. The implementation manages
the existing environment of the robotic arm and modifies the arm’s configuration
space when the user interacts with the user interface. The user can, for example,
modify the environment of the robotic arm by choosing a sample holder from the
user interface. The existing environment includes the fixed surroundings of the
arm and a cubic collision object that models the X-ray beam. The cubic object for
the X-ray beam prevents the arm from placing its links into the beam, preventing
occlusions in the acquired images.

SphereSampler The sphere sampler component provides an abstract interface for
search patterns on a discretized sphere surface. This component is only used within
the trajectory optimization pipeline.

SphereListVisualizer The sphere list visualizer component provides an interface
for visualizing a set of sphere markers in RViz. This component is currently only
used by the active collision detection algorithm. The markers are displayed along
with the robotic arm and its environment to debug the collision detection algorithm
and visualize the currently detected collision.

TrajectoryPlotter The trajectory plotter component can plot circular and spherical
trajectories on a spherical surface that is projected into two dimensions with the
Mollweide projection. In the conventional experiment execution, the trajectory is
planned and saved to the file system before it is executed. The trajectory plotter
component listens for changes in the corresponding directory and saves a plot of the
new trajectory in the same directory. In the online trajectory optimization pipeline,
the plotter is called explicitly, and the plot is saved to the corresponding experiment’s
directory, as the trajectory is unique in this execution mode.

VolumeUtils The volume utilities component implements two methods that provide
correct usage of the samples and sample holders in the simulation environment. The
first method places spheres inside the holes of the currently selected sample holder
for calibration purposes. The second method concatenates multiple volumes into a
single volume so that (multiple) samples can be combined with the chosen sample
holder for simulating measurements.
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RobotStateReset The robot state reset component checks for invalid configuration
of the robotic arm’s joints directly after the arm is spawned in the simulation
environment. The component fixes the invalid configuration by switching the arm’s
controllers and moving the joints to a predefined valid configuration.

FlatFieldCorrection The flat field correction component applies flat field correc-
tion on the acquired images immediately after image acquisition. The correction
operation is only required and used in the laboratory environment. The correction
operation is applied based on the most recent empty and dark measurements on the
file system.

Gripper The gripper component provides grasp and release functionality for the
gripper of the FRANKA EMIKA Panda robotic arm in the laboratory environment.

DetectorManager The detector manager component is responsible for acquiring
the required images for the flat field correction in the laboratory environment. The
component acquires a predefined number of images and saves their mean to the file
system for later use during sample acquisition.

DetectorClient The detector client component receives the raw 16-bit gray-scale
image from the workstation directly connected to the detector in the laboratory
environment. The image is subsequently converted into a suitable format for com-
munication between ROS nodes and returned to the caller.

RobotStateManager The robot state manager component listens for hardware
reflexes of the robotic arm during trajectory execution in the laboratory environment.
When it detects a reflex, it initiates the error recovery routine provided by the
manufacturer.

4.2.2.2. Utilities

We implement the reusable functionality of our project in the utilities folder. The
code in this package is not directly tied to a specific component. In the following,
we provide an exhaustive list of the core namespaces and their functionality:
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ROSUtils The ROS utilities namespace provides common conversions from foreign
types (e.g., json, Eigen) to ROS-compatible types. This namespace also provides
conversions for ROS internal types.

SampleHolderUtils The sample holder utilities namespace provides an abstract
interface for reading the sample holder and sample metadata from the file system.

SphericalDataUtils The spherical data utilities namespace provides valuable meth-
ods for the trajectory optimization pipeline’s score initialization and score update
steps.

TrajectoryUtils The trajectory utilities namespace handles trajectory serialization
on the file system with the JSON data format. Additionally, the namespace provides
methods for sphere surface discretization and pose sampling on the discretized
surface. These methods are critical for generating spherical trajectories.

Constants The constants namespace defines important constants for the robotic
sample holder project components. These constants include all service and action
endpoints defined by our components, specific constants for the FRANKA EMIKA
Panda robotic arm, string keys for important parameters saved on the ROS parameter
server, and miscellaneous other constants.

Configuration The configuration namespace provides an abstract interface for
reading configuration parameters from the ROS parameter server. Our components
request the parameters by their keys defined in the constants namespace (see sec.
4.2.2.2).

ExperimentUtils The experiment utilities namespace handles experiment serializa-
tion on the file system with the JSON data format. Additionally, the namespace
provides methods for calculating cryptographic hash values of the robotic arm’s
surroundings (configuration space) for the secure execution of existing trajectories
in the arm’s current environment.

FilesystemOperations The file-system operations namespace provides an abstract
interface for file-system operations to our components and utility namespaces.
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MeshUtils The mesh utilities namespace provides methods for reading the mesh
files provided by the manufacturer of the robotic arm’s links. Information about the
mesh structure is converted to suitable data structures for later use in the active
collision detection algorithm. The mesh utilities namespace also provides methods
for manipulating and preparing the mesh structures.

MoveItUtils The MoveIt utilities namespace provides forward and inverse kine-
matics methods with the robotic arm in its current environment. Additionally, the
namespace implements methods for executing existing trajectories with the arm.

RobotGeometry The robot geometry namespace provides a method for modifying
a given pose such that the output pose shifts the goal position from the center of
the robotic arm’s two fingers to the sample holder’s sample plate. This method is
essential for precisely placing and intersecting the sample holder and the sample in
the central X-ray.

4.2.2.3. Computed tomography

The computed tomography package implements two necessary components to simu-
late tomographic measurements in the simulation environment.

ComputedTomography The computed tomography component implements the to-
mographic imaging functionality for the simulation environment. This functionality
includes forward and back-projection of samples and image reconstruction. The
forward projection relies on a volume that includes the currently used sample holder
and sample. This component manages a 3D volume that contains the user’s sample
and sample holder choice. The component also implements a weight calculation
routine for the online trajectory optimization pipeline.

MeshReader The mesh reader component converts 3D mesh structures represent-
ing surfaces into 3D volumes. The conversion is handled by the VTK library, and the
user can specify the desired resolution and spacing for the resulting volume.
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4.2.2.4. Safety

The safety package implements the active collision detection algorithm mentioned
in section 4.2.3.2. The package also includes components that can create and
execute integration tests for the collision detection algorithm within the simulation
environment.

CollisionDetector The collision detector component implements the host part of the
active collision detection algorithm described in section 4.2.3.2. The responsibilities
of the host code include

• subscribing to a depth camera point cloud,

• compiling the device (GPU) OpenCL code,

• subscribing to the current state of the robot,

• subscribing to the trajectory topic of the robotic arm,

• visualizing the detected collision points,

and miscellaneous other tasks. This component will only be compiled and usable
if a valid OpenCL runtime (version 2.0) is detected on the system. We describe
implementation details for this component in section 4.2.3.2.

OpenCLUtils The OpenCL utilities namespace provides methods for compiling and
executing device code with the OpenCL runtime.

TrajectoryRecorder The trajectory recorder component is part of the integration
testing functionality for the active collision detection algorithm. This component
listens for incoming trajectories and saves the trajectory to the file system for later
use in test cases.

CollisionDetectorTest The collision detector test component executes integration
tests for the active collision detection algorithm. The component reads trajectories
and predefined environments of the robotic arm from the file system and executes
the trajectory in the simulation environment.
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4.2.2.5. Messages

In ROS, the system architecture requires each component to run in its independent
process. Therefore, inter-process procedure calls and data exchange relies on
serialized messages sent over the network to predefined topics. The messages
package contains all the message definitions of our project.

This package can be subdivided into action, service, and message types. Action types
are defined for tasks with expected long execution time (> 5 seconds). Service types,
in contrast, are defined for tasks with shorter execution times than actions (< 5
seconds). Message types extend the capabilities of simple service and action message
definitions with custom data types. Without custom message types, only primitive
data types can be used for procedure calls.

4.2.2.6. Web

The web package is implemented as a ReactJS project and was bootstrapped with
the create-react-app script. We use the Javascript library roslib to communicate
with the ROS nodes implemented in our project. The rosbridge component acts as
a WebSocket. It allows us to receive the service and action messages encoded as
JSON messages and serialize them so that the ROS Master can handle the request.
We implement two very similar so-called React components as a graphical user
interface to interact with our experiment ROS nodes: ExperimentForm.js interacts
with Experiment.cpp and OnlineExperimentForm.js with OnlineExperiment.cpp.

The user can start and resume an interrupted experiment from these web interfaces.
Different steps of the pipeline can be run independently, and the progress of each
step is displayed on the user interface with a progress bar and the resulting image
of the given step (e.g., sample acquisition, circle segmentation, calibration). The
detector images for the flat-field correction of the measurements can also be acquired
from this interface.

The web user interface works without restrictions in the simulation and the labora-
tory environment.

4.2.3 Collision Detection

We implement two kinds of collision detection in our system: passive and active
collision detection. Both mechanisms aim to provide safe operation of the robotic

4.2 Software Components 47



arm by the operator. The critical difference between these mechanisms is the point
in time when they are invoked.

Passive collision detection is a crucial ingredient to the motion planning problem, as
it changes the composition of the configuration space. This modification happens
when the trajectory is generated and is therefore done before the robotic arm
moves.

The active collision algorithm starts in parallel to the trajectory execution, and the
trajectory is passed to this algorithm as input. The process that implements this
algorithm can interrupt the robotic arm and the trajectory execution.

In summary, passive collision detection is a proactive measure that helps to generate
a safe trajectory for the robotic arm. In contrast, active collision detection actively
checks for collisions while the arm moves by analyzing input data from the depth
cameras.

In the following, we provide a detailed outline of both methods and point to their
location in our project implementation.

4.2.3.1. Passive collision detection

The passive collision detection reads user-defined configuration files containing
information about nearby objects from the filesystem at system startup and forwards
them to the manipulation framework. The framework passes these objects on to the
inverse kinematics, so they are considered obstacles in the configuration space when
planning the trajectories. We have provided more details about the management of
obstacles in the configuration space of the robotic arm in section 4.2.4.

4.2.3.2. Active collision detection

The following paragraphs contain excerpts from the methods section of our first
journal publication [Pek+22b], where we also outlined our active collision detection
algorithm.

Active collision detection is a process that retrieves the currently executed trajectory
and a point cloud from the depth cameras. It then checks if there are potential
collisions in the retrieved point cloud with the current trajectory of the robotic arm.
If collisions are detected, the arm is stopped immediately.
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A similar collision detection mechanism for robotic arms was already implemented
in [Her+14]. While the concepts are similar to our implementation, we decided to
implement our algorithm for easier integration with our robotic arm and software
package.

The process that handles the collision detection loads the 3D structure of the robotic
arm’s links from the filesystem, which will be used together with the current joint
angles of the arm to calculate the approximate position of the robotic arm’s links.

The active collision detection mechanism is triggered when a trajectory is received,
and the robotic arm starts to move. The trajectory consists of a set of joint angles
for each of the seven joints of the robotic arm and is transferred to a GPU together
with the point cloud from the depth cameras and the 3D structure information of
the robot’s links.

We remove all points from the point cloud resembling the robotic arm; otherwise,
the robot would be registered as a colliding object. The point removal is done by a
self-filter that calculates the distance of each point in the point cloud to individual
points on each link of the robotic arm and removes all points from the point cloud
that fall below a certain threshold. Afterward, we calculate the arm’s movement in
3D space while executing the current trajectory. This movement profile is compared
to the current point cloud input from the depth cameras and checked for collisions.

In an additional verification step, the algorithm checks if the reported collision points
from the point cloud are not the result of a noisy measurement by checking that the
27 neighbors in discretized 3D space are also collision points. Finally, the points that
fulfill this criterion are reported as actual collision points.

If there are collision points after the noise filtering step, we stop the trajectory
execution by the robotic arm.

In the remainder of this section, we will outline the specific components of our
implementation and their interaction with each other. The explanations and figures
provided here were also partly published on my personal blog [Pek].

Implementation. The algorithm consists of various components that fulfill different
tasks:

• CollisionDetector: Host / CPU code written in C++ as a ROS node. This node
coordinates the communication with the rest of the components. It is also
responsible for managing the device / GPU interaction and resources.
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• MeshReader: ROS node written in C++. This node is responsible for convert-
ing the mesh surface data of the robotic arm’s link into 3D volumes.

• SphereVisualizer: ROS node written in C++. This node is solely responsible
for visualizing points in the robot’s surroundings in RViz.

• detection.cl: Device / GPU code for determining which points in the point
cloud are a potential collision.

• verification.cl: Device / GPU code for deciding if a point in the point cloud
marked as a collision is a collision or just noise resulting from poor measure-
ment accuracy of the depth camera.

In Fig. 4.9, you can find a sequence diagram showing how the components inter-
act.

In the following, we will discuss the collision detection procedure in detail.

The procedure starts with the init() method in the CollisionDetector ROS node. It
consists of the following steps:

• A set of configuration parameters are read from the ROS master

• The private node parameters that were passed to the node at its launch are
read into variables

• The robotic arm’s mesh surface files are converted into volume files. These
volume points are filtered/reduced to the essential points to reduce the algo-
rithm’s runtime.

• The kinematics model of the robotic arm is read from the ROS master

• The Denavit-Hartenberg parameters of Panda are set as compile time parame-
ters to the detection OpenCL kernel

• Essential coordinate transforms are retrieved

• Static data is sent to the GPU device by allocating a buffer for each variable. A
particular case here is the 3D OpenCL image that discretizes the surroundings
of the robotic arm into a 3D volume.

• The robotic arm’s link volume points are sent to SphereListVisualizer for
visualization in RViz (see Fig. 4.10 (a)). The visualization is helpful because
we can check the mesh surfaces for proper conversion and placement into the
right coordinate frame in the visualization. Otherwise, the visualization will
not show the green markers in the correct shape or position.
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joint states callback. The joint states callback captures the current state of the
robotic arm. In our implementation, it sends the state of the arm to the GPU
whenever an update is received. In the simulation, the joint state topic publishes at
a rate of 30 Hz, which means that the GPU receives an update 30 times per second.
The update is written asynchronously to a device buffer. However, we should only
use the state of the arm before the point cloud was captured. If we use a state of
the arm that was captured after the point cloud measurement was received, the
filter will try to remove the robotic arm from the point cloud at a position that will
be captured in the future. Here, the word future stands for the next frame of the
depth camera. The time lag mentioned above means we should store joint states
in advance and use the state received just before the point cloud was captured.
For this reason, we are using a std::deque and a std::map for storing a set of joint
states in the correct order. The deque data structure provides efficient push and pop
operations with the First-In-First-Out (FIFO) principle. With this data structure, we
can store and delete joint states in the correct order: The state of the arm that first
entered the deque will also be the first state that leaves the deque when a specific
capacity is reached. The robotic arm’s current state is sent to the GPU as actual
transforms for each link in 4× 4 matrices (rotation and translation).

trajectory callback. The trajectory consists of multiple way-points, each consisting
of 7 angles: one angle for each rotational joint of the robotic arm. As we did above
with the joint states, we could calculate each link’s transform matrix at each way-
point. These transform matrices would consume considerable bandwidth on the GPU
when accessing the device buffer in the kernel code. We will see later that we have
to reduce the amount of data stored in the local memory of the execution units as
much as possible. For this reason, we employ the Denavit-Hartenberg parameters to
parametrize the robot states on the trajectory way-points. The Denavit-Hartenberg
parameters for each link are set as compile-time parameters for the OpenCL kernel
except for the parameter theta, which describes the angles of the rotational joints at
the way-points is written to the device buffer when the trajectory is received in the
respective callback method.

point cloud callback. The point cloud callback is executed every time a point
cloud frame is captured and published by the depth camera in the simulation. The
callback checks if a trajectory was received beforehand because otherwise, the robot
will stand still, and processing the point cloud is unnecessary. If a trajectory was
received and written to the GPU, the received point cloud is written to the GPU
buffer, followed by a series of data transfer calls. The selection mentioned above of
the correct state of the robotic arm is also handled in this callback. After pushing all
of the necessary arguments to the GPU, the computation on the device is started by
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launching a thread (also called a work item) for each point in the point cloud. The
first kernel running on the GPU is the detection.cl kernel. This kernel decides which
points in the point cloud are a potential collision. In order to do that reliably, the
robot’s surroundings are discretized in a 3D volume. The discretization means that
every measurement in meters near the robotic arm is mapped to a voxel in a volume
with predefined dimensions (in our case, 512×512×512). When a point in the point
cloud is reported as a potential collision for the currently executed trajectory, we
determine its coordinates in the aforementioned discretized volume. This volume
coordinate is marked as a potential collision candidate and will be further checked
later. This kind of discretization has the advantage that no magic threshold for the
number of potential collision points has to be selected, after which we can state that
a collision would occur. There might be noisy measurements in the point cloud, after
all. This threshold would be set to distinguish between sensor noise and a definitive
collision point.

The second kernel is invoked after receiving the results from the first one. It applies
simple neighborhood checking on the discretized volume and returns a definitive
statement on whether a collision is present on the trajectory. The number of collision
points is printed on the console. In case of a collision, a stop message is sent to the
robot control node to interrupt the trajectory execution. The collision points are
converted from the discretized volume coordinates to their original coordinate frame
with a meter representation. We send these coordinates to the SphereVisualizer
node, which publishes them to RViz as 3D markers. The user can see the location of
the collision points in RViz.

detection kernel. The detection kernel has two tasks: Filtering the robotic arm
from the given point cloud and checking the remaining points in the point cloud for
a collision with the trajectory that is currently being executed.

robot self-filter. In order to filter the robotic arm from the given point cloud, we
check the distance of a point from the point cloud to each of the volume points
of the robotic arm. The volume points were transferred to the GPU in the point
cloud callback. If the distance of the point falls below a given threshold (10 cm)
for all of the link volume points, we exit the kernel without further computation.
The volume points are placed at the correct positions using the link transforms that
were transferred to the GPU whenever a new update of the robotic arm’s joints was
received from the simulation.

collision detection. If the point does not lie within the robotic arm’s estimated
position, we check if it lies on the trajectory the robotic arm is executing. This
collision check is done with the following steps:
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1. Loop over all trajectory way-points

2. For every point in the robotic arm’s volume, determine its position in the
current and the next way-point of the trajectory

3. Check the distance of the given point from the point cloud to the volume
point’s location on the current way-point

4. Check the distance of the given point from the point cloud to the volume
point’s location on the next way-point

5. Check the distance of the given point from the point cloud to a line that
connects the volume point’s location on the current and next way-point

6. If one of these three distances is below a predefined threshold (3 cm), we
assume a collision

The third collision check (5.) constructs a cylinder from the volume point’s current
and next location on the trajectory. This check ensures that the point from the point
cloud does not lie within this cylinder. We estimate the motion of this part of the
robotic arm in a given time frame as a linear motion from one point to the other.

If a collision is detected, the coordinates of the given point from the point cloud are
converted to its index in a predefined discretized volume. This volume encompasses
the robotic arm’s reachable area. We maintain the discretized volume as an OpenCL
3D image on the device; hence, we set the value at the index we calculated earlier
to 1 to indicate that this part of the volume contains a collision.

verification kernel. The verification kernel ensures that the reported collisions in
the discretized volume are not just noisy measurements but actual collisions. If and
only if all neighbors of a given collision voxel are also collision voxels, it confirms
that there is a collision. The result is written to a flat array with the discretized
volume’s size.

Performance evaluation. The collision nodes can be started with the visualize flag
to get more debugging information on the console and in RViz. When this feature is
enabled, the collision detection runs slower as more data is transmitted between
the CPU and the GPU for visualization purposes. Each frame of the point cloud
is processed in 150 milliseconds on average. When the visualization is disabled,
we have an average processing time of 35 milliseconds per camera frame. These
numbers were measured on a workstation with a compatible AMD Radeon VII GPU
running two independent collision detection processes simultaneously, one per depth
camera.
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4.2.4 Path Planning

With the path planning procedure, our system exposes an abstract interface to the
user for planning and executing advanced trajectories. A detailed description of the
path planning process can be found in our publications [Pek+22b; Pek+23b] and
sections 5.2.2 and 6.2.2. In section 5.2.2, we describe the fundamental problem of
path planning with the robotic sample holder and our solution approach to centering
the sample’s center at the central X-ray. In section 6.2.2, we describe our approach
to planning and executing more complex trajectories, including the ability to recover
from hardware reflexes that can arise in practice.

In this section, we will briefly overview two components in our software package
and their implementation details that are critical to our path planning pipeline.

The passive collision detection mechanism is a vital component of the MoveIt path
planning pipeline. We have implemented an abstraction layer for managing the
environment of the robotic arm, the RobotEnvironmentManager component described
in section 4.2.2.1. It reads the potential collision objects of the robotic arm from
the file system and adds them to the so-called planning_scene, a topic that MoveIt
maintains for updates in the robot’s environment. Our component also offers an
interface for adding and removing samples and sample holders to the planning scene,
which is needed because the user can swap samples and sample holders at runtime
through the user interface. Additionally, our component adds a cubic collision object
for the X-ray beam to the planning scene and manages which samples, sample
holders, and the robotic arm’s links are allowed to enter the field of view of the
beam. We have visualized an exemplary collision environment in Fig. 4.11.

The coordinate transformations for the samples and sample holders are other vital
ingredients to the motion planning pipeline. We manage these transformations with
the SampleHolderStatePublisher component described in section 4.2.2.1. When the
user selects a new sample or sample holder from the user interface (see Fig. 4.8),
the sample holder state publisher component is updated. The SampleHolderManager
component validates the user’s choice in an intermediate step. The connection to the
motion planning pipeline occurs when the user requests a trajectory: The coordinate
frame for the trajectory way-points’ goal poses is the sample’s center. Every sample
has different dimensions and can be attached to one of many sample holders that
differ in dimensions and shape. The SampleHolderStatePublisher component is
responsible for publishing the coordinate transformations for the selected sample
with the correct position and orientation to the tf component of the core ROS
infrastructure.
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4.2.5 Software Stack

The central part of our software stack is the Robot Operating System (ROS) [Qui+09],
which is a middleware for the communication of independent processes across a
network. We accomplish robot manipulation with the MoveIt! framework [Col+14;
SC] and the franka_ros configuration package [FRA21]. For image processing tasks
and the circle segmentation, we use OpenCV [Bra00], for multithreading on the
CPU OpenMP [DM98] and on the GPU OpenCL [SGS10] and for the tomographic
reconstruction elsa [LHF19]. The scientific calculations in section 6.2.4 are imple-
mented with scipy [Vir+20]. We read the 3D mesh files of the robotic arm with
OpenMesh [Bot+02]. The sphere discretization in section 6.2.3 was implemented
with the HEALPix C++ and Python interfaces [Gor+05; Zon+19]. For calculat-
ing sha256 sums of the configuration spaces mentioned in section 6.2.2, we use
crypto++ [@Dai22]. The 2D reachability maps in section 6.3.1 were generated
using matplotlib and basemap [Hun07].
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Fig. 4.7.: System architecture. We illustrate the system architecture and different com-
ponents within the sub-folders of our software project. The packages core, ct,
web, and safety contain code that interacts directly with the ROS master. The
utils package provides important utility classes and methods. The msgs package
defines common message types for the interaction of the components with each
other.
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Fig. 4.8.: Web user interface for the robotic sample holder. The user interface is acces-
sible from the web browser in the simulation and laboratory environment and
provides controls for defining essential experiment parameters like trajectory type.
The interface also shows intermediate measurement results.
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Fig. 4.9.: Active collision detection. Sequence diagram.[Pek] The sequence diagram
illustrates the active collision detection components’ interaction.

(a) Pointcloud initialization. (b) Collision points.

Fig. 4.10.: Active collision detection. Visualizations. [Pek] In (a), our active collision
detection algorithm’s internal representation of the robotic arm’s current state
is visualized. This visualization is a debugging feature, and it is essential for
verifying that the arm’s 3D mesh files were read in and fused with current joint
angles correctly. In (b), we visualized an exemplary collision of the robotic arm
with a telephone pole in the simulation environment.
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(a) Robot environment far (b) Robot environment close up

Fig. 4.11.: Passive collision detection. Visualizations. Figures (a) and (b) depict the
objects that are encoded in the robotic arm’s configuration space for the passive
collision detection mechanism described in sections 4.2.3.1 and 4.2.4. Our
software package places the green objects at system startup while it swaps the
violet objects at runtime, depending on the user’s choices.
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X-ray Computed Tomography
with seven degree of freedom
Robotic Sample Holder

5

5.1 Introduction

In chapters 1 and 4 of this dissertation thesis, we have pointed out that industrial
robotic arms’ repeated placement accuracy is insufficient for tomographic imaging
purposes. We have identified that a geometric calibration procedure is necessary for
determining the exact position and orientation of the sample on the detector images.
In this chapter, we will present our study on the repeated placement accuracy of
the FRANKA EMIKA Panda robotic arm and our calibration algorithm for identifying
the exact position and orientation of the sample. We will introduce an intermediate
sample holder part that will serve as a calibration target between the arm and the
sample.

This chapter is an adapted version of a peer-reviewed manuscript [Pek+22b] and a
conference publication [Pek+22a] published during my Ph.D.

In the following sections, we present an X-ray Computed Tomography setup that
integrates a seven degrees of freedom robotic arm as a sample holder within an
existing laboratory X-ray computed tomography setup. We aim to provide a flexible
sample holder that is able to execute non-standard and task-specific trajectories for
complex samples. The robotic arm is integrated with a unified software package
that allows for path planning, collision detection, geometric calibration and recon-
struction of the sample. The calibration is necessary to identify the accurate pose
of the sample which deviates from the expected pose due to inaccurate placement
of the robotic arm. With our software the user is able to command the robotic arm
to execute arbitrary trajectories for a given sample in a safe manner and output its
reconstruction to the user. We present experimental results with a circular trajectory
where the robotic sample holder achieves identical visual quality compared to a
conventional sample holder.
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The system can easily execute specific trajectories that can overcome the limitations
of fixed trajectories. Arbitrary rotations can be reached with the robotic arm’s seven
degrees of freedom (seven rotational joints). This will enable imaging modalities
that require non-standard acquisition sequences in the future, such as Anisotropic X-
ray Dark-field Tomography (AXDT). AXDT is a novel imaging technique that allows
the extraction of X-ray scattering and phase contrast information by employing
grating interferometers [Wie+16; Wie+18]. The robotic sample holder will enable
arbitrary rotations covering the full sphere and hence expose the 3D structures of
the target object by measuring the full dark-field contrast from all possible angles.
Conventional sample holders pose a significant challenge when the acquisition
trajectory is required to cover the full sphere of rotations, as more intervention by
the user is required and it may not be possible to measure the sample from certain
angles.

In the remainder of this section, we will provide an overview of related work on
imaging with robotic arms and geometric calibration mechanisms for X-ray CT.

5.1.1 Related work on X-ray CT with Robotic arms

Robotic arms were also used in the past in computed tomography systems [Zie+20;
LHH19; @Hea21]. The main difference to our work is the kind of robotic arm that
is used. It offers a higher flexibility than the robotic arms that were used in related
work due to its seven degrees of freedom and it has two fingers that make chained
pick-and-place tasks possible without user intervention.

In [Zie+20] the source and detector are mounted on robotic arms and the sample is
centered between the source and the detector by the arms. The main difference to
our work is that this is not a laboratory scale setup but assembly line scale and that
the sample does not move but the source and detector. Therefore it is not directly
comparable to our setup. The detector pixel size (100µm theirs vs 150µm ours) and
the voxel resolution of the reconstructions (70µm vs 100µm) is very similar to our
work. The authors do not specify the exact models of the robotic arms, but from the
figure it can be seen that they have four degrees of freedom (compared to seven
with our robotic arm). The reduced degrees of freedom count means the robot is
less flexible and it has difficulties reaching certain acquisition angles.

In [LHH19] the authors demonstrate the advantage of non-circular CT scanning
trajectories. The experiments are conducted in a simulation using a 3D model
of the specimen. With a circular scanning trajectory the specimen absorbs X-rays
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when spheres are added to it and reconstruction quality is impacted resulting in
streak artifacts. It is demonstrated that by using a simulated six DoF robotic arm a
simulated non-circular trajectory that almost covers the full rotational sphere would
be possible and result in a reconstruction with no artifacts.

The Siemens Healthineers Artis zeego eco angiography platform [@Hea21] consists
of a single five DoF robotic arm which is moving the detector and source with a fixed
distance between each other. The main differences to our work are that the detector
and source are both mounted to the robotic arm and hence are moving parts. Also
the sample in this case is a living patient. The robotic arm is positioned such that
the body part of the patient which is of interest lies exactly between the source and
detector.

In [Her+21], the authors present an X-ray tomography system with two robotic
arms. The X-ray source and the detector can be moved independently from each
other by the two arms, and the sample is mounted statically between them. There
are two key differences to the system that we propose. The first is that we are
moving the sample, and thus our system only requires one robotic arm instead of
two. Furthermore, moving the sample does not restrict the system to movable X-ray
sources and detectors; hence, it is more flexible. On the other hand, this means that
we restrict the samples in our system in size and weight, and the sample should
not deform or otherwise change when moved. The second key difference is that
our robotic arm is significantly smaller and thus fits into an existing X-ray CT setup.
In contrast, the robotic arms used in [Her+21] can reach up to 3 meters of height
(compared to 1.2 meters with our arm), which might not even fit into an existing
laboratory [@KUK21; @EMI20]. Furthermore, the smaller robotic arm in our system
is more affordable. The most significant technical differences are that our robot has
an additional degree of freedom (ours seven vs. theirs six) but worse repeatability
when the identical trajectory is executed repeatedly (ours 0.1 mm vs. theirs 0.04
mm). The higher degree number increases the probability of our system reaching
positions on complex trajectories. In contrast, our system tackles its more inaccurate
repeatability with the calibration procedure described in this chapter.

5.1.2 Related work on geometric calibration in X-ray CT

The seven joints of our robotic arm imply seven degrees of freedom but a higher
number of joints also introduces a higher error on the placement of the sample. A
calibration mechanism is needed for determining the projection parameters of the
sample. The projection parameters can be split into the external and internal camera
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parameters. The external parameters are the rotation and position of the camera
relative to the sample (or vice versa). The internal parameters concern the camera
system itself. In our imaging system the internal parameters are fixed and they are
determined beforehand.

In [LZL10] the authors propose a generic calibration method for tomographic
imaging systems with flat-panel detectors. A flat calibration phantom with 44 spheres
in total on two parallel planes is used for calibration. Both sets of camera parameters
(internal and external) are extracted from the images in a direct computation step.

In [Cho+05] the authors propose a calibration method based on a cylindrical cali-
bration phantom similar to what we will use here. At least two sets of spheres in
a circular arrangement are needed in order for this approach to work because this
allows the extraction of the center of the calibration phantom’s coordinate system.
The geometric parameters are computed directly with a closed analytical expression
for each image. The parametrization of the geometry only permits rotational acqui-
sition trajectories, whereas our calibration method works with arbitrary placements
of the sample and hence any kind of trajectory.

In [Rob+09] the authors propose a method similar to [Cho+05]. A calibration
phantom with two sets of spheres that are arranged in an ellipse is used. The
difference to [Cho+05] is that the geometric parameters are not calculated directly
but an optimization step is introduced for computing the rotation parameters. Addi-
tionally, this method is valid for arbitrary geometries, not just rotational trajectories
compared to [Cho+05]. The main difference to our method is that two ellipses are
used for calibration instead of a helix.

In summary when compared to [LZL10] our method offers more flexibility in terms
of the constraints on the calibration phantom because we do not restrict the arrange-
ment of the markers to obtain a certain 3D coverage. When compared to [Cho+05]
and [Rob+09] our approach is much simpler in terms of the analytical expressions
that are needed and it is decoupled from the specific geometrical structure on the
calibration phantom. And in general, our approach is more suitable for robotic
arms with higher degrees of freedom because it is valid for arbitrary geometries as
opposed to the methods in [LZL10] and [Cho+05] which are restricted to rotational
acquisition trajectories.
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5.2 Methods

In this section the methods for operating the robotic arm as a sample holder in a lab
X-ray CT setup are discussed in detail. After introducing the hardware components
and software architecture of the system more specific parts like path planning,
collision detection, calibration and reconstruction are described.

5.2.1 Sample Holder

The sample holder is a critical component of the system as it allows the robotic arm
to grasp samples of arbitrary shape and is a fundamental part of the calibration
process where the position and orientation of the sample is identified. The 3D
models of the sample holder and the rail component are visualized in figure 5.1. The
sample holder consists of two parts. The bottom part is where the robot’s fingers
can grasp the holder steadily. The upper part fulfills the actual purpose of placing a
geometric structure around the sample on a cylinder. Prior to attaching the sample
holder to the robotic arm’s fingers the sample needs to be glued to the mounting
plate which is inserted into the cylinder from the top at the intended position. There
is no need to screw the mounting plate, as there is enough friction with the cylinder
to hold the plate in place (see fig. 5.1).

The cylinder is 5.6 cm tall and 3.5 cm in diameter inside. The sample holder was
designed with a 3D modeling software and printed using a 3D printer with accuracy
of 0.08 to 0.2 mm on all three axes. The printing accuracy is important as the local
coordinates of the spheres in the 3D model are used as reference points in the
calibration algorithm.

The geometric structure embedded in the sample holder is a helix which is made
up of 50 embedded aluminium spheres of 0.678 mm diameter. These spheres were
fixed by hand on notches that were included in the design process of the holder.
The spheres appear as circles on the detector images that will be segmented during
calibration.

The helix can be parametrized by the following 3D parametric curve:

h(τ) =


u(τ)
v(τ)
w(τ)

 =


r ∗ cos(ρ ∗ τ + ϕ)
r ∗ sin(ρ ∗ τ + ϕ)

τ


τ, r, ρ, ϕ ∈ R

(5.1)
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Fig. 5.1.: Sample holder. a) The robot can grasp the sample holder with its two fingers by
sliding into a conically shaped gap for easier engagement of the fingers. b) The
middle part of the holder houses a helix structure that is used in the calibration
step. The aluminium spheres are glued into holes and can then be segmented in
the acquired images. c) The sample is fixed on the mounting rail which is inserted
from the top of the holder into the hollow cylindrical structure (d).[Pek+22b]

τ runs between the local w coordinates of the first sphere and the last sphere of the
helix: wmin < τ < wmax where wmin, wmax ∈ R.

The parameters r (radius), ρ (frequency) and ϕ (phase shift) parametrize the helix.
They can be determined by fitting the sphere coordinates from the 3D model of the
sample holder to eq. (5.1) with a least-squares term. The source code of this process
can be found in the file helix_fitter.py in our repository [Pek21].

The helix can be discretized by choosing a fixed number H ∈ N of points {τi}i=1,...,H ∈
[wmin, wmax] for the free parameter τ :

hi =
(
u(τi) v(τi) w(τi)

)⊤
. (5.2)

5.2.2 Path Planning

In this section, we are going to outline the important aspects of controlling the robot
for use as a sample holder in X-ray CT setups. The main component is task planning
which includes all steps that are necessary to place the sample at the correct place.
We have provided additional implementation details in section 4.2.4.

Task planning consists of multiple steps. The first step is determining the acquisition
trajectory for the given tomographic task. The acquisition trajectory consists of a
set of N poses (positions and orientations) for the center of the sample holder that
is currently attached to the robot. The acquisition poses are expected to lie on the
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intersection of the central ray of the X-ray source with the vertical operating plane of
the robotic arm in order to fit the sample (holder) in the limited field-of-view of the
imaging system. The poses are targeted at the center of the sample holder because
our goal is to image the sample that is contained inside the sample holder. These
poses can be generated from the user interface of our software package.

In the second step of task planning information on which particular link of the
robotic arm should reach the given pose is added. The kinematic representation (a
chain) of the robotic arm is extended by a virtual link that starts at the arm’s last link
and points to the center of the current sample holder. The path planning algorithm
can now place the tail of this virtual link at the goal position. This will ensure that
the goal pose, which serves as input to the next step, is exactly at the center of the
current sample holder. Without this modification to the kinematic chain instead of
the sample holder’s center the robotic arm’s last link would be placed at the goal
pose.

In the third and last step, the inverse kinematics for the given poses are calculated.
It calculates the angles at the joints that are required to reach the given goal pose
and calculates a series of angles from the given starting position to reach the goal.
The resulting inverse kinematics is a series of angles and timestamps (also called
trajectory in the robotics literature, different than the acquisition trajectory from step
one) where the first set of angles matches the current state of the robot.

We swapped the default inverse kinematics backend for this task in the franka_ros
package provided by the manufacturer with the TRAC-IK library which has a higher
solving rate and a shorter runtime for inverse kinematics tasks on robotic arms with
high degrees of freedom like ours [BA15].

5.2.3 Calibration

The calibration procedure tackles the issue that the robotic arm does not sufficiently
accurately place the sample at the desired position due to inaccurate path planning
and inaccurate electrical motors at its joints. Reading the sensors of the robotic
arm and deducing the samples current position is also insufficient to determine the
correct position as inaccurate values are reported. However the exact position of
the sample at each view is required for the reconstruction. With the calibration
procedure we are able to identify the actual positions and orientations of the sample
for the reconstruction step. For the calibration a sample holder with an embedded
geometric structure that can be detected on the detector images is necessary. A
suitable sample holder was introduced in section 5.2.1.
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The calibration is implemented in multiple steps (see fig. 5.2). The first step is
the post-processing of the detector image. Its contrast is enhanced and a median
filter with kernel size 5 is applied to reduce noise and improve the segmentation
results. The calibration circles on the image are detected in the next step with the
circle Hough transform algorithm [Bal81]. The result is a set of 2D circle center

coordinates m̂j =
(
dx,j dy,j

)⊤
on the detector.

Eq. (5.1) and the current position of the robotic arm are now used to project a
set of helix points hi (eq. (5.2)) onto the detector image for comparison with the
segmented points m̂j and determining the geometry of the sample.

For this projection the intrinsic camera matrix K and the external parameters R and
t are needed. K is fixed for the current X-ray CT setup and R, t are determined by
the robotic arm’s current position.

In the following we will provide an overview of the equations that will lead to the
final least-squares term that includes the aforementioned comparison algorithm.
This least-squares term is used for determining the actual pose of the sample by
utilizing an optimisation algorithm.

There are three critical coordinate systems in our setup (see fig. 4.1a). The first is
fixed to the X-ray source with x, y and z-axis. The second is fixed to the center of the
sample holder with u,v and w-axis and moves with the robotic arm as it is attached
to the arm’s fingers. The third is fixed to the detector with dx and dy axis.

The rotation R of the sample holder relative to the source can be parametrized
w.l.o.g. by consecutive rotations about the z, y and x-axis:

R(α, β, γ) = Rz(α)Ry(β)Rx(γ) (5.3)

t is the offset of the source center to the sample holder’s center:

t =
(
x y z

)
(5.4)

K is fixed and can be calculated with the parameters sdd (source to detector
distance), dx,p, dy,p (principal points on dx and dy-axis) and dw, dh (detector pixel
width and height):
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K =


sdd
dw

0 dx,p

0 sdd
dh

dy,p

0 0 1

 (5.5)

These parameters are fixed for the current setup and can be determined before-
hand.

We introduce the short notation ζ = (α, β, γ, x, y, z) for the free parameters. The
camera projection matrix P can now be calculated:

P (ζ) = K
(
R(α, β, γ) | t

)
∈ R3×4. (5.6)

The projection matrix is now used to project a set of H ∈ N fixed points hi ∈ R4 on
the discretized helix from eq. 5.2 onto the detector:


d

′
x,i(ζ)

d
′
y,i(ζ)

d
′
z,i(ζ)

 = P (ζ)hi (5.7)

mi(ζ) =
(

dx,i(ζ)
dy,i(ζ)

)
=
(

d
′
x,i(ζ)/d

′
z,i(ζ)

d
′
y,i(ζ)/d

′
z,i(ζ)

)
(5.8)

d
′
i are the homogeneous detector pixel coordinates and mi are the projected ana-

lytical helix points on the detector. These points resemble the expected position of
the helix structure and they will be used for constructing an error term in the 2D
detector image domain.

An appropriate cost function for comparing the error between the current and
expected position of a measured circle center m̂j and a projected point on the helix
mi is the reprojection error:

E(ζ, m̂j , mi) = m̂j −mi(ζ) ∈ R2 (5.9)

Eq. (5.9) will only measure the error for a specific pair of points. In our case there
are

• c (detected) circles on the current image,

• s spheres glued onto the holder and
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• H projected points on the helix from eq. (5.1).

It is important to note that c ≤ s because the segmentation algorithm might fail to
detect all circles.

We now compare each of the c detected circle centers m̂j to all H sampled and
projected points mi and choose the pair with the smallest distance (see algorithm
1).

Algorithm 1 Calibration algorithm: cost function

Require: ζstep, circles, helix_points
Ensure: residuals_min

residuals_min← []
for j ← 1 to size(circles) do

m̂j ← circles[j]
residuals← []

for i← 1 to size(helix_points) do
mi ← helix_points[i]
residuals[i]← E(ζstep, m̂j , mi)

end for

residuals_min[j]← min(residuals)
end for

We can formulate this algorithm as a least-squares problem:

arg minζ=(α,β,γ,x,y,z)

c∑
j=1

min
1≤i≤H

E(ζ, m̂j , mi) (5.10)

The optimization problem is nonlinear due to the sine and cosine terms in the
rotation parametrization. In our implementation we use the Levenberg Marquardt
algorithm. The Jacobian matrix with the partial derivatives of the cost function with
respect to the free geometry parameters is not computed directly, but the 2-point
finite difference scheme is used for numerical estimation.

The resulting parameters α, β, γ, x, y, z can be used for the reconstruction as the
geometry of the given acquisition.

5.2.4 Reconstruction

For tomographic reconstruction, the sinogram contained 1000 equidistant X-ray
projections along a circular trajectory sized 720×720 pixels with a spacing of 600µm.
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Fig. 5.2.: Calibration procedure. In a) the flat-field corrected detector image is displayed.
This image is contrast-enhanced and subsequently a circle detection algorithm
is executed. The resulting image where the detected circle centers are marked
with red crosses is displayed in b). Given the geometry of the sample holder and
the robot’s sensor readings when acquiring the image, an initial guess of the helix
location (blue crosses) is projected onto the image plane (c). The parameters that
define the rotation and translation of the helix are optimized in a least-squares
problem in the 2D image domain. The resulting parameters are used to project
the helix again to the image domain to display the final outcome of the calibration
(d).[Pek+22b]

The reconstruction volume was sized 720× 720× 720 with isotropic voxel spacing
of 100µm. The remaining parameters of the reconstruction were as mentioned in
section 3.3.

5.3 Experiments and Results

Before running the main experiments, an experiment for determining the accuracy
of the robotic arm was conducted. The sample holder from section 5.2.1 was used
for all experiments for the purpose of geometric calibration. The collision detection
algorithm was running in the background throughout these experiments.

5.3.1 Robot placement error

The robotic arm does not accurately place the sample at the desired goal position and
it is also not able to report the current position of the sample accurately. This hinders
the reconstruction of the sample. In the following we quantitatively demonstrated
the need for a calibration mechanism.

We moved the robot from different starting positions to a predefined identical
target pose. The starting positions were sampled on a horizontal circle with radius
180 mm and the center at our default acquisition goal position along the central
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X-ray (see fig. 5.3a). The resulting positions were determined by running the
calibration algorithm on the acquired images. Deviations from the desired goal
position therefore demonstrate the need for a calibration mechanism.

(a) (b)

Fig. 5.3.: Robot calibration experiment. a) Robot placement precision from different
starting positions from the top perspective. Starting positions sampled on a circle
parallel to the base of the robot with radius of 18 cm and the default goal position
for the sample holder as center point. The goal position (cross) and orientation
was identical for all measurements. The resulting images were calibrated with the
calibration procedure in fig. 5.2. b) The centers of the calibrated helix structures
are plotted with circles. The z-axis is omitted for illustration purposes. The
expected location of the circles is outlined by the red cross, which lies on the
center ray of the source. The distance of the actual position of the calibration
structure (circles) to the central ray (red cross) demonstrates that a calibration
procedure is needed.[Pek+22b]

5.3.2 Calibration parameters

In this section we are going to state our choices for the three parameters of the
calibration method in section (5.2.3):

• a rejection threshold on the reprojection error

• the number of spheres on the holder

• the sampling rate on the helix structure.

The threshold on the reprojection error determines when a calibration result for a
given image is not accepted as valid and hence not used for the reconstruction of the
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sample. We chose 2.5 pixels distance between each detected circle m̂j to smallest
mi as threshold. With this threshold the rejection rate of the calibration algorithm
was 0.8% with 8 out of 1000 for the example walnut dataset (with H = 10.000). All
rejections originated from false positives in the segmentation step when random
points on the image were detected as circles.

The remaining parameters for the calibration algorithm are the number of spheres
and the sampling rate on the helix structure. We have altered one of these parameters
while fixing the other one for our walnut dataset and analysed the change in the
reprojection error. Our choice for the helix sampling rate ranged from 500 to 30.000.
For the number of spheres we sampled a different set of n random spheres from the
detected spheres without replacement for each individual image, where 10 ≤ n ≤ 50.
The results are plotted in fig. 5.4.

For our experiments we fixed H to 10.000.

5.3.3 CT measurements

We conducted four experiments in total: two samples (walnut and pistachio) were
each measured with the robotic arm and a conventional rotational stage.

For each CT measurement, 1000 images were acquired with a source voltage of 30
kV, source power of 1445µA, and exposure time of 1s.

In fig. 5.5 a) the reconstruction of the walnut with the rotational stage is compared
to the robotic arm as the sample holder. The two volumes were registered manually
as we found automatic registration of the two discretized volumes to be unreliable.
The slices were chosen manually for illustration purposes. The center slices of the
volume from the top and the front view were extracted and cropped to the region of
interest.

5.4 Discussion

5.4.1 Robot placement error

We can see in fig. 5.3b that there are two issues: The mean of all points is shifted by
more than 1 mm in both directions and the final positions vary significantly from
the mean position.
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The goal position lies on the intersection of the central ray of the X-ray source with
the vertical operating plane of the robotic arm. This means that the goal position
depends on the relative distance between the X-ray source and the robotic arm’s
base. From the shifted mean in figure 5.3b we can conclude that our assumption
of the goal position is not correct. This systematic error likely is the result of an
inaccurate measure of the relative distance between the source and robotic arm.

The second issue arises from the inaccuracy of the inverse kinematics and the limita-
tions of the electrical motors at the joints. In the ideal case all of the colored points
would lie on the same spot. However, the final positions for all measurements form
two clusters, without a correlation to the starting point. From the random distri-
bution of the colored points we cannot determine a systematic pattern and hence
no clear reason for these positions on the graph can be deduced for the starting
angles. There is also no obvious reason for the partitioning of the points in two
clusters. From these observations we conclude that a calibration procedure is neces-
sary for determining the position and orientation of the sample and subsequently
reconstructing the sample accurately.

5.4.2 Calibration parameters

In section 5.3.2 we have stated our choices for the calibration parameters used in
section 5.2.3. For the rejection threshold on the reprojection error of the calibrated
images we observed in fig. 5.4b that the lowest mean error per circle is 1.77. This
value could serve as a lower bound for the threshold that we are trying to determine
because for the given number of spheres this is the lowest achievable reprojection
error on the given dataset. However, when applied to the walnut dataset the 1.77
threshold resulted in a rejection rate of 62.3%. For this reason a higher threshold
with a lower rejection rate on the walnut dataset is preferred. We have chosen 2.5
pixels as a threshold because when applied to the walnut dataset the rejection rate is
very low with 0.8% and the reconstruction results are visually identical to the results
of the experiment with the rotational stage as discussed in section 5.4.4.

For the helix sampling rate H (fig. 5.4a) we observed that from 500 to 10.000 the
improvement of 111.6 to 88.7 in the mean reprojection error is significant, while the
runtime of the calibration per image increases from 0.15 to 4.0 seconds.

Simulating a reduction in the number of spheres on the sample holder (by random
sampling without replacement) has the expected consequence of worse reprojection
error (see fig. 5.4b). There is no significant difference between 46, 48 and 50 circles
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because on most images between 46 and 50 out of 50 circles are detected by the
segmentation algorithm.

In fig. 5.4 in the bottom row the calibration algorithm was run with different
combinations of both hyperparameters. Blue crosses resemble the calibration result
of the helix and red crosses are the detected circles. We can observe that reducing
the number of spheres to 10 makes the calibration unusable and increasing it to
more than 50 was physically not possible as the circles would start to overlap on the
images, especially on the curves of the helix.

5.4.3 Calibration

A calibration procedure example is displayed in fig. 5.2. Fig. 5.2 a) is post-processed
and the circles are detected. Three circles were not detected. In c) the current
estimate for the external parameters were used to project H = 10.000 helix points
(blue crosses) onto the image. To improve its overlap with the detected circles (red
crosses) the parameters are optimized with the above problem statement. Finally
the helix is projected onto the image with the improved parameters (see fig. 5.2 d).
We can see that the overlap has improved substantially.

5.4.4 CT measurements

Our observation from fig. 5.5 is that there is no qualitative difference between
the results of the robotic sample holder and a conventional rotational stage as a
reference. As the volumes could only be registered manually, we perform only a
qualitative assessment. Two samples of different size and internal structure were
measured, a walnut and a pistachio. We can see in fig. 5.5a that the internal
structure of the walnut was mapped as accurately for the reconstruction of the
measurement with the robotic arm as with the reference experiment. The pistachio
in fig. 5.5b has a simpler structure compared to the walnut, but we can assess the
slit in the kernel and the sharpness of the shell. When comparing the reconstruction
of the measurement with the robotic arm to the reference reconstruction, we can
see that there is no loss in the visual quality of the slit in the pistachio’s kernel and
its shell in both the top- and front-view.
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5.5 Conclusion

In this chapter, we have studied the repeated placement accuracy of the FRANKA
EMIKA Panda robotic arm and we have introduced a calibration procedure for
solving its accuracy issue. Our intermediate sample holder part houses a helix as
calibration structure and it is able to calibrate the position and orientation of the
sample sufficiently accurately on the detector images. In the following chapters, we
will use the results from this chapter to study the use of the Panda robotic arm for
more advanced trajectories (e.g., spherical and runtime optimized trajectories).
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(a) Helix sampling rate (b) Number of spheres

(c) 10 spheres - 500 helix
points

(d) 50 spheres - 500 helix
points

(e) 10 spheres - 30000 he-
lix points

(f) 50 spheres - 30000 he-
lix points

Fig. 5.4.: Calibration parameters. The calibration is influenced by two parameters: The
number of points that are sampled on the helix structure for the distance mea-
surements and the number of spheres on the sample holder. Calibration results
were evaluated based on different choices for the two different parameters. The
geometric error between the sampled helix structure and the detected spheres was
used as error metric. A higher sampling rate on the continuous helix structure
leads to a lower error but increases the runtime linearly (a). A higher number of
spheres decreases the error but physical constraint do not allow to increase this
number as there is limited space on the sample holder (b). Calibration results
for different combinations of the parameters are displayed for a region of the
helix structure (c to f). Decreasing the number of spheres severely affects the
calibration results.[Pek+22b]

5.5 Conclusion 77



(a) Walnut experiment (b) Pistachio experiment

Fig. 5.5.: Experimental results. A walnut and a pistachio were measured and reconstructed
in order to compare the conventional rotational stage (reference) with the robotic
sample holder (robot). The reconstruction volumes were registered and aligned
but small differences are still visible. The detector images were binned with 4 ∗ 4
and the reconstruction volume has dimensions 7203. The front slice is from the
perspective of the x-ray source. The top slice is from the bird’s eye view. A zoom
factor of 2x was applied to the slices to crop the region of interest. Our observation
is that the reconstruction quality is identical despite the fact that the volumes are
not aligned perfectly and hence the contrast does not match.[Pek+22b]
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Spherical acquisition
trajectories for X-ray
computed tomography with a
robotic sample holder

6

6.1 Introduction

In this chapter, we study the challenges of executing spherical acquisition trajectories
for X-ray CT with the robotic sample holder introduced in chapters 4 and 5. We
use the calibration procedure introduced in chapter 5 and adapt the intermediate
sample holder part for seamless execution of spherical trajectories in the laboratory
environment.

This chapter is an adapted version of a peer-reviewed manuscript [Pek+23b] and a
conference publication [Pek+23a] published during my Ph.D.

In our previous publication, we introduced a flexible robotic arm with seven degrees
of freedom (DoF) as a sample holder within a laboratory X-ray computed tomography
(CT) setup [Pek+22b]. The arm adds flexibility to the setup as a sample holder
by enabling arbitrary rotations and placement of the sample. Hence, it allows
non-standard trajectories, as opposed to conventional circular or helical trajectories,
that are not restricted in their sequence. We also introduced a suitable calibration
mechanism to determine the exact positioning of the sample from the image, as
the values reported by the sensors of the robotic arm are not precise enough for
reconstruction purposes. The calibration mechanism requires a sample holder part
attached to the robotic arm, which was also introduced in [Pek+22b].

In the following, we present our work on optimizing various aspects of the robotic
sample holder for the seamless execution of spherical trajectories. We modified the
sample holder part attached to the robotic arm to improve coverage of spherical
trajectories. We provide a detailed analysis of the different shapes of this sample
holder part and their effect on the execution of different types of trajectories. We also
present experimental results demonstrating the improved performance of spherical
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trajectories our system can execute. We provide a quantitative comparison of
reconstruction results to conventional trajectories.

In the remainder of this section, we will provide an overview of related work on
trajectory optimization methods for imaging systems.

Our sample holder is designed and optimized for executing task-specific trajectories.
The authors of [Her+21] use their system to present a trajectory optimization
approach that optimizes image quality. Existing work on trajectory optimization
relies heavily on simulations of X-ray projections with models of known samples
(see [Hat+22]) because of a lack of sample holders that can place the sample at
arbitrary rotations. When employing robotic systems that tackle this limitation, the
placement accuracy of the robotic arm is not high enough for CT purposes. For the
reconstruction of the measurements, we need a suitable calibration mechanism that
extracts the geometry of the sample [Pek+22b]. However, the systems mentioned
above lack this feature. Our system solves this issue and hence can execute arbitrary
trajectory types in practice.

In general, adding non-standard trajectories is advantageous for the measurement
results. Using cone-beam geometry for X-ray CT delivers acceptable results but can
still arise; for instance, samples with highly absorbing parts will introduce artifacts
in the reconstruction. Non-standard trajectories reduce acquisition times or deliver
better image quality for an equal number of projections with added information from
new acquisition angles. Stayman et al. have shown the advantages of non-standard
trajectories extensively in their studies [GSS20b; Rey+23; Ma+22].

In this chapter, we will outline our approach toward executing task-specific tra-
jectories by investigating the challenges of executing non-standard trajectories for
spherical trajectories. We will conclude the feasibility of using a robotic arm as
a sample holder for arbitrarily complex trajectories and the limitations we must
tackle.

6.2 Methods

In this section, we discuss the methods for executing spherical trajectories with the
robotic arm as a sample holder in a laboratory X-ray CT setup. After introducing the
system’s hardware components, we describe more specific aspects like path planning,
sphere sampling, and reconstruction. We also refer interested readers to [Pek+22b]
for a more detailed introduction to the robotic sample holder for X-ray CT.
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6.2.1 Sample holder part

The sample holder part is a critical component of the system as it allows the robotic
arm to grasp samples of arbitrary shape and is a fundamental part of the calibration
process that identifies the position and orientation of the sample. The sample holder
part and the gripper components are visualized in Figures 6.1b, 6.1c, and 6.1d. It
consists of two parts. The gripper part is where the robot’s fingers can grasp the
holder steadily. The cylinder part fulfills the purpose of placing a helix of fiducial
markers on a cylinder next to the sample. The lower part is called gripper part
throughout this paper, and it mounts directly to the last link of the robotic arm
after unmounting the hand from the arm. We will discuss reasons for using the arm
without the hand in section 6.2.2. Before attaching the sample holder part to the
robotic arm, the sample needs to be glued to the mounting plate, which is inserted
into the cylinder from the top at the intended position (see Fig. 6.1c).

The cylinder is 118 mm tall and 50 mm in diameter inside. The sample holder part
was designed with the 3D modeling software Autodesk Inventor and manufactured
by a cutting machine from a solid piece of polyoxymethylene (POM).

The reference structure used for calibration is embedded in the sample holder and
is a helix comprising 50 embedded aluminum spheres of 2 mm diameter. These
spheres were fixed manually in notches included in the holder’s design process. The
spheres appear as circles on the detector images we segment during calibration.

Compared to our previous work[Pek+22b], we modified the sample holder part by
introducing a gripper part that connects the robotic arm’s last link with the holder’s
cylindrical part. This new part enables the use of different gripper shapes (straight,
curved) in varying lengths, which enables the robotic arm to reach different areas of
more specific trajectories, for example, spherical trajectories. We mount the gripper
part to the cylinder with a screwing mechanism.

6.2.2 Path planning and robot control

With the path planning procedure, our system exposes an abstract interface to the
user for planning and executing advanced trajectories. A detailed description of the
path planning process can be found in our previous publication [Pek+22b]. We have
also provided additional implementation details in section 4.2.4.

A trajectory comprises a series of way-points that the robotic arm approaches in the
given order. The arm stops at each way-point, triggering the detector to capture
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an image. After successful image acquisition, the robotic arm continues trajectory
execution. The user specifies the parameters for sampling the way-points on the
trajectory from the user interface. Given these parameters, the system first samples
the way-points depending on the trajectory type. Subsequently, the underlying
motion planning pipeline plans a path from each way-point to its successor. If
the arm cannot reach way-point i + 1 from way-point i, e.g., because there is no
collision-free path, we plan a path from i to way-point i + 2, and i + 1 is marked
as not reachable. The unsuccessful planning means that we know that no detector
image will be captured later for way-point i + 1 before executing the trajectory.
Finally, we connect these paths, and the output is a trajectory that starts at the
robotic arm’s current position and passes all way-points in the given order.

Problems can still arise while executing the successfully planned trajectory. The
motion planning pipeline plans the paths between the way-points based on an
internal model that the manufacturer provides. This model includes the kinematic
and collision model of the robotic arm.

The kinematic model defines the arm’s link lengths, joint types, and joint limits.
The manipulation software constructs a configuration space from this model with
n-dimensions, where n is the number of joints. The software samples this space at a
fixed density and connects the sampled points with an exploration algorithm. The
result is a graph where each vertex represents a collision-free and valid configuration
for the robotic arm.

The collision model marks specific areas of the configuration space as colliding
configurations of the arm, which protects the arm from colliding with itself in
specific configurations. These collisions are possible because driving the joints
within their valid ranges can easily result in a configuration where certain links
collide with each other; for example, the last link can easily reach the first link. The
surroundings of the robotic arm are also added to the configuration space (e.g., the
detector and the table) as collision objects, invalidating possible configurations of
the robotic arm in which it would collide with these objects. We discussed this in
our previous work under passive collision detection [Pek+22b].

Incorporating these two models into our path-planning process should be enough to
plan safe trajectories. In practice, issues arise because the controller box only receives
part of the planned trajectory in advance from beginning to end. It sequentially
receives joint commands of the current trajectory one by one. As a result, there
is uncertainty in the control box about the upcoming commands for the joints, as
they might trigger a collision. For this reason, the control box that receives the joint
commands one by one interpolates the upcoming command by combining the latest
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commands and the current state to check if the arm’s links will collide in the next
instant. If this check is positive, an internal collision avoidance reflex is triggered,
and the control box stops the robotic arm. We trigger the error recovery routine
provided by the manufacturer in order to recover from this state. The links are
moved slightly out of our planned trajectory for this purpose. We have increased the
sizes of the robotic arm’s links in the internal collision model of the robotic arm in
order to reduce the number of these reflexes.

The error recovery routine mentioned above leads to an undefined state in our
planned trajectory because the resulting position of the arm is unexpected, as it lies
outside of the planned trajectory. We have implemented an error recovery routine
for our trajectory that will plan to a fixed intermediate way-point (homing state)
and set a flag to ensure we do not use the image recorded there in later steps of our
pipeline. Afterward, we plan from the homing state to the next scheduled way-point,
where the handover to the initially planned trajectory will occur.

Our software package calculates a unique identifier for the current state of the
robotic arm’s environment, the configuration space. It also calculates a unique
identifier for the trajectory that the user requested. Both identifiers are calculated
with a sha256 hash of the requested parameters (trajectory) and contained elements
(configuration space). This calculation is an additional safety measure as it maps
different compositions of the robotic arm’s environment to a unique identifier. We can
save a planned trajectory to the file system for repeated use in the same environment
with a unique ID for the trajectory. When the user requests a trajectory with the
same parameters as before, we check for the file on disk and send the trajectory
directly to the robotic arm for execution. Additionally, the trajectory ID ensures
that in combination with the environment ID, we only execute a trajectory from the
filesystem when it suits the current environment, including the surroundings of the
robotic arm, the sample holder, and the attached sample.

6.2.3 Sphere sampling

In order to generate a spherical trajectory, we need to sample points covering the
surface of a sphere. Each point represents a rotation of the sample.

Sampling a fixed number of n points on the sphere is a well-studied problem [SK97;
Raf19; KKM14; HS95]. The goal is to distribute the points uniformly on the sphere’s
surface. Trivial approaches like sampling on the two polar axes independently and
combining the samples to get 3D coordinates do not lead to a uniform sampling on
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the sphere surface. In this work, we utilized the Hierarchical Equal Area isoLatitude
Pixelization (HEALPix) for this purpose [Gor+05].

HEALPix partitions the sphere’s surface into a fixed number of areas of equal size.
The centers of these areas are the sampled points on the sphere. The discretization
number Npix determines the number of points on the sphere. In HEALPix, the grid
resolution parameter Nside determines the number of pixels and hence the number
of points sampled on the sphere: Npix = 12 · N2

side, where Nside ∈ N. The user
chooses Nside, and Npix is calculated from that parameter.

If the user needs a specific number of points on the sphere, we can choose a higher
grid resolution parameter Nside in the first step, and a smaller number of points can
be sampled from the resulting grid in a later step. For our experiments, this did not
present a problem as we chose Nside = 10, which results in Npix = 12 · 102 = 1200
pixels on the grid and hence 1200 potential way-points on the spherical trajectory.

6.2.4 Calibration

The calibration procedure tackles the issue that the robotic arm does not sufficiently
accurately place the sample at the desired position due to inaccurate path planning
and inaccurate electrical motors at its joints. Reading the sensors of the robotic
arm and deducing the sample’s current position is also insufficient to determine the
correct position, as the sensors report inaccurate values. However, the reconstruction
step requires the exact position of the sample at each view. With the calibration
procedure, we can identify the actual positions and orientations of the sample from
the detector images. For the calibration, a sample holder part with an embedded
geometric reference structure we can identify on the detector images was necessary
and introduced in section 6.2.1.

The sample holder houses a helix structure with known parameters. A set of points
was sampled on this continuous structure to place calibration spheres at known
locations (drilled holes on the cylinder part), which we will later segment on the
detector images. We determine the expected location of the helix structure on the
detector images with a priori information about the system: the camera matrix,
the robotic arm’s location in the setup, and the values reported by the sensors at
the arm’s joints. We can project the continuous helix structure onto the image and
use a suitable cost function to determine the error between our guess for the helix
structure and its actual position on the image by comparing it to the segmented
circles. We optimize the parameters for the translation and rotation of the geometric
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structure and the sample on a given image with the Levenberg-Marquardt non-linear
optimization algorithm. The sensor values from the robotic arm serve as an initial
guess for the optimization. A more detailed description of the calibration procedure
is available in [Pek+22b].

We have improved the calibration procedure by checking the segmented circles
for false positives. While testing the system with different samples in our lab, we
experienced that the segmentation algorithm detected circles falsely on the screw
heads and the samples. We solved this issue by checking the distance (L2-Norm on
2D image) between the segmented circle centers and our guess for each calibration
circle. Suppose the distance of the given segmented circle’s center is below a certain
threshold for one of the guessed calibration circles. In that case, we interrupt the
checks and assume that the segmented circle is a calibration circle. Suppose the
calculated distance is above the fixed threshold for all calibration circles. In that
case, we assume that this specific circle is a false positive, which we do not consider
in the later steps of the calibration procedure. For example, for the experiment
with the curved sample holder part on the spherical trajectory, identifying the false
positives improved the number of successfully calibrated images from 912 to 946
out of 965.

6.2.5 Reconstruction

We used around 900 equidistant X-ray projections for the tomographic reconstruction
along a circular or spherical trajectory sized 720×720 pixels with a spacing of 600µm.
For the spherical trajectory, the number of projections varied by ±8% (see Table
6.1a). The remaining parameters of the reconstruction were as mentioned in section
3.3.

6.3 Experiments and results

When running the main experiments, we designed two different gripper parts for the
sample holder part and analyzed their coverage (reachability) for different trajectory
types with the robotic arm. Additionally, we modified the mounting mechanism of
the robotic arm by removing the hand and gripper from the arm and mounting the
sample holder part directly to the last link. The cylindrical sample holder part from
section 6.2.1 was used for all experiments for geometric calibration. The collision
detection algorithm was running in the background throughout these experiments.
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6.3.1 Reachability analysis

The term reachability describes the percentage of target way-points that the robotic
arm can reach from all target way-points. For example, for a spherical trajectory
with a fixed number of uniformly sampled points on the sphere, the reachability
states the percentage of points that the robotic arm can reach, meaning that the
motion planning pipeline could find a valid and collision-free configuration for the
arm for that specific point and a path to that configuration.

We have conducted experiments with two types of trajectories: circular and spherical.
We have used two different grippers for each trajectory type, resulting in four
experiments with an identical sample. Our goal with these experiments was to
analyze the impact of the gripper types on the reachability of the two trajectory
types.

6.3.1.1. Sample holder gripper type

We manufactured and used two different types of gripper parts for the sample
holder part mentioned in section 6.2.1: straight and curved (l-shaped, 90◦). Figures
6.1b and 6.1d show the grippers. The straight gripper differs from the sample
holder part used in our previous publication because it introduces an additional
distance between the grippers and the cylindrical part of the sample holder. When
we neglect the gripping cave, the length of the straight part amounts to 70 mm.
We expected improved reachability of spherical trajectories by introducing extra
distance between the robotic arm’s last link and the sample mounted on top of
the cylindrical part and positioned at the central X-ray. The extra distance would
increase the distance between the individual links of the arm when approaching a
goal for specific configurations, which helps avoid collision reflexes of the arm.

6.3.1.2. Trajectory type

We executed our experiments on circular and spherical trajectories. We aimed
to compare the proposed robotic system’s performance on these trajectory types
for reachability. For the spherical trajectories, the sphere discretization parameter
Nside was set to 10, which resulted in 1200 points on the sphere. For the circular
trajectories, we sampled 900 points on the circle in order to match the number of
reachable points on the spherical trajectory for better comparability of our results, as
the robotic arm can reach almost all way-points on the circular trajectory compared
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Tab. 6.1.: Trajectory poses statistics

circular spherical
straight 900 / 900 (100 %) 909 / 1200 (75.6 %)
curved 835 / 900 (92.8 %) 979 / 1200 (81.6 %)

(a) Reachability statistics: Way-points with successful motion planning / potential way-points.

circular spherical
straight 900 / 900 (100.0 %) 867 / 909 (95.4 %)
curved 835 / 835 (100.0 %) 965 / 979 (98.6 %)

(b) Trajectory execution statistics: Successful execution by robotic arm / way-points with successful
motion planning.

circular spherical
straight 896 / 900 (99.6 %) 860 / 867 (99.2 %)
curved 833 / 835 (99.8 %) 946 / 965 (98.0 %)

(c) Calibration statistics. Successful calibration / successful execution by the robotic arm.

to the spherical trajectory where the robotic arm cannot reach approximately a
quarter of the way-points.

We have created detailed statistics on the failure rates of all experiments during each
stage of our pipeline. The most common issue is that the motion planning pipeline
can not find a valid configuration for a way-point on the trajectory. Other issues that
can reduce the number of usable images for the reconstruction are collision reflexes
triggered by the robotic arm (section 6.2.2) and erroneous calibration (section
6.2.4).

We have created tables with detailed statistics on the three types of errors. The
number of reached way-points compared to the potential number of way-points are
listed in table 6.1a. The number of way-points the arm could reach without triggering
reflexes during execution is listed in table 6.1b. The number of acquired images
for each successfully calibrated experiment is listed in table 6.1c. For example, for
the measurement with the straight gripper part and spherical trajectory, the system
acquired and calibrated 860 images out of 1200 potential way-points.

In Fig. 6.2, we plotted each experiment’s reachability as a two-dimensional coverage
map. The trajectory way-points represent rotations of the sample as 3D points on
the sphere surface. We projected these points to 2D with the cartographic Mollweide
projection [snyder1997flattening] for improved visualization of the coverage of
the surface area.
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We differentiate the two trajectory types, circular and spherical. The maps visualize
coverage maps on the rows for the two gripper types (straight and curved). While
the interior of the projected sphere surface includes all possible rotations in 3D
and hence all rotations of the sample, only those rotations where the robotic arm
has a valid and collision-free configuration are plotted with cross markers. The
empty (white) spots resemble rotations the arm cannot reach. It is important to note
that the circular trajectory only attempted a fraction of the rotations on the sphere
surface because of the trajectory type.

We have also plotted two additional reachability maps where we simulated two
scenarios only possible in the simulation (see Fig. 6.3). For the first plot, we
removed all obstacles from the configuration space except for the table, which
should represent the ideal situation where a hutch is constructed specifically for the
robotic sample holder. For the second plot, we also removed the X-ray beam collision
object from the configuration space to calculate the highest possible coverage for the
robotic arm. The X-ray beam is modeled as a collision because it avoids occlusions
of the arm with the sample on detector images by invalidating such configurations
of the robotic arm.

6.3.2 CT measurements

We conducted four experiments: one sample was measured with two different
gripper parts (straight and curved) for the sample holder on two trajectories (circular
and spherical).

The sample we used for all experiments is displayed from two perspectives in Fig.
6.4. It consists of two separate parts: a bunny toy brick (Fig. 6.4b, left) and a solid
piece of polyvinyl chloride (PVC) with a thickness of 4 mm (Fig. 6.4b, right). We
chose this composition because these two parts differ significantly in their absorption
rate, which helps compare circular and spherical trajectories in their reconstruction
performance for image quality. We have cut the absorber plate in a non-orthogonal
shape relative to the mounting plate and arranged it next to the toy brick to cause
beam-hardening artifacts in the reconstructions of our experiments with this sample.
One can execute the circular trajectory with conventional methods like a rotational
stage, but a flexible sample holder like ours is necessary to execute the spherical
trajectory. We aim to demonstrate the superiority of spherical trajectories for complex
samples.

For each CT measurement, we acquired the images with a source voltage of 45 kV,
source power of 1445µA, and exposure time of 1s. In Fig. 6.5a, the reconstruction of
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our sample is shown from three different perspectives (YX, YZ, and ZX) for the two
trajectory types and the straight gripper part. All volumes are registered with each
other due to the calibration process[Pek+22b], as the center of the helix structure
serves as the coordinate system’s origin. We plotted line profiles in Fig. 6.5a for
three different cross-sections of the central YX slice of the sample.

6.4 Discussion

In this section, we will discuss the results of our experiments from section 6.3,
where we aimed to measure our system’s performance for trajectory reachability
and reconstruction image quality. We categorized the experiments by trajectory and
gripper part type. The trajectory type affects the reconstruction image quality and
completeness. The choice of gripper part type affects the system’s ability to reach
specific goals and the probability of triggering collision reflexes of the robotic arm’s
control box.

6.4.1 Reachability analysis

In Fig. 6.2, we plotted each experiment’s reachability as a two-dimensional coverage
map. Additionally, we have listed the absolute and relative reachability and trajectory
execution success numbers in tables 6.1a and 6.1b.

6.4.1.1. Sample holder gripper type

Choosing different types of grippers results in different unreachable regions of the
sphere. For both gripper types, we have an explanation for the two blind spots
near the equator: We have modeled the X-ray beam as a cubic collision object
in the configuration space of the robotic arm in our motion planning pipeline.
This modeling means that unless contact of a specific link with the X-ray beam is
explicitly allowed as an exception, all configurations of the arm that place one of the
links into the X-ray beam are marked as a potential collision and hence as invalid
configurations. At these rotations, one of the links would cover the sample on the
detector image if an image was acquired.

Two additional issues arise more often with the straight sample holder gripper. The
first one is that collision reflexes are triggered more often when approaching spots
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on the bottom of the sphere because the last link of the arm has to approach the
way-point at a spot close to the first link. With the curved gripper, we can increase
the distance between the first and last link and limit this behavior. The second issue
is that way-points that lie at the opposite end of the arm’s mounting position are
harder to reach for the arm with increasing sample size as the maximum reach of
the arm is physically limited by the link lengths. The dependence on the sample size
occurs since we center the sample at the central X-ray, which puts the last link of the
arm further away from the central X-ray.

6.4.1.2. Trajectory type

We can see that the robotic arm has no difficulties reaching every single point on
the circle with the straight gripper part for the circular trajectory. The circle is
parallel to the table where the arm is also mounted. With the curved gripper, the
arm cannot reach a fraction of the circular trajectory (7.2%, see table 6.1a) as
the links collide with the X-ray beam collision object (see section 6.4.1.1) which
would result in occlusions on the detector images. In contrast, we can see that the
robotic arm cannot reach way-points in some areas of the sphere for the spherical
trajectory, meaning that the reconstruction will lack images from specific rotations
of the sample. The unreachable region’s location and size depend on the gripper’s
choice. The potential coverage rate lies between 75.6% and 81.6% out of 1200
potential way-points.

Furthermore, we can conclude from the numbers in tables 6.1a and 6.1b that with
the right choice of sample holder gripper type, the actual coverage of the sphere
surface can be further increased when considering issues that arise during trajectory
execution (see section 6.2.2). The coverage rates of 75.6% and 81.6% mentioned
above decrease further while the robotic arm executes the planned trajectory: The
arm only reaches 95.4% and 98.6% of the given coverage rates due to collision
reflexes of the robotic arm explained in section 6.2.2. However, we can see that the
gripper type affects the error rate during execution significantly, as with the curved
gripper, the robotic arm only misses out 1.4% of the trajectory.

In Fig. 6.3, we have plotted theoretical reachability maps that are only possible in
simulation. We can conclude from Fig. 6.3a that the reachability could be increased
from 81.6% to 84.2% by installing the robotic arm in an extensive safety hutch
with more space inside. Furthermore, Fig. 6.3b shows that the given robotic arm
can reach 99.1% of the sphere surface with the curved gripper type if we tolerate
occlusions of the sample by the links on the detector images. In our experiments,
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we do not, because occlusions with the cylindrical part of the sample holder would
prevent successful calibration and occlusions with the sample would cause artifacts
in the reconstruction.

6.4.2 CT measurements

From a qualitative and quantitative perspective, we can discuss our system’s perfor-
mance by examining the results in Figure 6.5.

Qualitatively, we can see in Fig. 6.5a that the slices depicted in the top row (spherical
trajectory, straight gripper) are sharper overall when compared to the slices in the
bottom row (circular trajectory, straight gripper). When examining the region
between the absorber at the top and the toy brick in the middle (YX-slices), we can
see that the slice of the experiment with the spherical trajectory does not cause
artifacts. Hence this area is genuinely black compared to the slice on the bottom,
where we can spot white traces. We can also spot significant differences for the
slices in the center and right columns of Fig. 6.5a, for example, on the right column,
the inner structure of the toy brick is much sharper for the spherical trajectory (top
right) when compared to the circular trajectory (lower right).

For a more quantitative comparison of the reconstructions, we have plotted line
profiles at three different locations of the YX-slices in Fig. 6.5b. The first line profile
crosses the absorber, the toy brick, and one of the screws used for mounting the
sample plate to the cylinder. The second line crosses the absorber and the toy brick,
and the third line only crosses the toy brick.

For line profiles one and two, we can see that the red line (spherical trajectory) has
a steeper curve and hence a higher derivative for the absorber compared to the blue
line (circular trajectory), which means that the image is sharper with the spherical
trajectory. Additionally, we can see that at the end of the first line profile plot, the
red line can reflect the screw head in contrast to the blue line, where the screw head
does not have a notch. We verified the visual increase in sharpness by measuring
the gradient magnitude of the line profiles in Fig. 6.5b. The gradient magnitudes of
the line profiles 1,2 and 3 improved by 50%, 58% and 80% respectively with the
spherical reconstruction compared to the circular.

Another critical observation is that the absorber causes artifacts with two different
trajectory types in two orthogonal directions. In the case of the circular trajectory,
the artifacts are parallel to X-ray beams. The artifacts are parallel to the absorber
and orthogonal to the X-ray beams for the spherical trajectory.
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Furthermore, in table 6.1c, we can see that the calibration success numbers are
between 98.0% and 99.8% for all experiments. Achieving a high success rate in the
calibration is crucial, as only those images with a successful calibration are usable
in the reconstruction step. Hence, the calibration influences the reconstruction
image quality and completeness. In this case, we can see that the calibration success
rates are close to 100%, and in absolute numbers, we missed the highest number
of images in the case of the spherical trajectory and the curved gripper part with
19 out of 965 images. 10 out of 19 images capture poses that place the cylindrical
part of the sample holder part containing the helix structure parallel to the X-ray
beam, where calibration becomes very difficult because the spheres overlap with
each other on the image and cannot be segmented. The curved gripper makes these
poses easier to reach as they would otherwise cause occlusions by placing the arm’s
links into the picture. Our motion planning pipeline avoids these poses, especially
for the straight gripper, by modeling the X-ray beam as a cubic collision object (see
section 6.2.2). Hence the inferior calibration statistics with the curved gripper.

6.5 Conclusion

In this chapter, we have studied the execution of spherical trajectories with the
robotic sample holder extensively. To achieve this goal, we have adapted the
intermediate sample holder part and different parts of our software package (e.g.,
motion planning and trajectory serialization). In the next chapter, we will use
the ability of our robotic sample holder to sparsely sample the spherical trajectory
at runtime based on the absorption characteristics of the given sample without
prior knowledge. The sparse sampling will enable runtime optimized acquisition
trajectories and improved reconstruction image quality.
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(a) Lab setup (b) Straight gripper

(c) Cylinder part with calibration structure (helix) (d) Curved gripper

Fig. 6.1.: Hardware setup. In (a), the robotic arm is mounted on a table with the source
and the detector inside a safety hutch. The source-to-robot distance is 136 cm,
and the robot-to-detector distance is 79 cm. Two depth cameras monitor the
robot’s movement and stop the robot controller when the executed trajectory
interferes with obstacles. A power switch can also stop the robotic arm. It
routes to the operator’s table outside of the hutch. In (b), (c), and (d), the
different parts of the sample holder part are displayed. (b) and (d) depict the
two gripper types, and (c) depicts the cylinder part, which houses the geometric
structure for calibration. The gripper part is mounted to the cylinder part for
experiments.[Pek+23b; Pek+23a]
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(a) Straight gripper - circular trajectory (b) Straight gripper - spherical trajectory

(c) Curved gripper - circular trajectory (d) Curved gripper - spherical trajectory

Fig. 6.2.: Reachability. Reachability maps are plotted for each trajectory type (circular
vs. spherical, columns) and each gripper type (straight vs. curved, rows). The
plots resemble a 2D cartographic projection (Mollweide projection) of the 3D
sphere surface. The circular trajectories cover a fraction of the sphere surface,
representing all possible sample rotations. The robotic arm can reach all points on
the circle (left column). For the spherical trajectory, the robotic arm cannot reach
all way-points, hence the blind spots on the maps (right column). The red points
indicate way-points with successful motion planning but failure during execution
(see section 6.2.2 for details). We achieved the best coverage of the sphere (81.6
%) with a curved gripper for the sample holder (lower right).[Pek+23b]

(a) Spherical trajectory, curved gripper - no ob-
stacles

(b) Spherical trajectory, curved gripper - occlu-
sions of sample by arm allowed

Fig. 6.3.: Theoretical Reachability. We plotted theoretical reachability maps for spherical
trajectories for two situations only possible in the simulation. On the left, we
removed all obstacles surrounding the robotic arm in the laboratory setup from
the configuration space except for the table. On the right, in addition to removing
all collision objects, we removed the x-ray beam encoded as a cubic collision object
between the source and the detector. This collision object prevents occlusions of
the sample by the robotic arm on the detector images. On the left, we achieved
a successful planning rate of 84.2% (1010/1200), and on the right, 99.1%
(1189/1200). The reachability number 99.1% proves the flexibility of the given
robotic arm in combination with the curved gripper.[Pek+23b]
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(a) Sample side (b) Sample front

Fig. 6.4.: Sample. The sample consists of the object of interest (a toy brick) and an absorber
(polyvinyl chloride plate), which were manually glued to a Plexiglass mounting
plate. The toy brick has dimensions 31 x 21 x 31 mm, and the absorber has a
thickness of 4 mm. The absorber plate has a significantly higher X-ray contrast
absorption rate than the toy brick. We aim to introduce beam hardening artifacts
with this property in the reconstructions and evaluate the performance of different
trajectory types in tackling this issue.[Pek+23b; Pek+23a]
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(a) Reconstruction slices

(b) Reconstruction line profiles

Fig. 6.5.: Experimental Results. A sample was measured and reconstructed with the
robotic arm with the straight gripper part to compare the circular trajectory
(conventional) with the spherical trajectory (advanced). The reconstruction
volumes are registered and aligned with our calibration algorithm (see section
6.2.4). We binned the detector images with 4 ∗ 4, and the reconstruction volume
has dimensions 7203. A zoom factor of 5x was applied to the slices to crop
the region of interest. We plotted line profiles at three different positions for
the YX slices. Our observation is that the reconstruction of the measurements
with the spherical trajectory (top left, red lines) is superior qualitatively and
quantitatively compared to the reconstruction of the circular trajectory (bottom
left, blue lines). Qualitatively, there are fewer artifacts, and the image is sharper
than with the circular trajectory. From a quantitative perspective, the line profiles
for the spherical trajectory (red) are steeper than those for the circular trajectory
(blue), making the image sharper.[Pek+23b]
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Runtime optimization of
acquisition trajectories for
X-ray computed tomography
with a robotic sample holder

7

7.1 Introduction

This chapter studies the runtime optimization of spherical acquisition trajectories for
X-ray CT with the robotic sample holder. We use the methods and algorithms that
we developed in chapters 5 and 6 to develop a new method for sparsely sampling
the "ideal" points on the sphere for the given sample. In the following sections, we
will outline our method for measuring samples without prior knowledge about their
material composition and interior structure.

This chapter is an adapted version of a peer-reviewed manuscript [Pek+23c] pub-
lished during my Ph.D.

Tomographic imaging systems are expected to work with a wide range of samples
that house complex structures and challenging material compositions, which can
influence image quality in a bad way. Complex samples increase total measurement
duration and may introduce beam-hardening artifacts that lead to poor reconstruc-
tion image quality. This work presents an online trajectory optimization method for
an X-ray computed tomography system with a robotic sample holder. The proposed
method reduces measurement time and increases reconstruction image quality by
generating an optimized spherical trajectory for the given sample without prior
knowledge. The trajectory is generated successively at runtime based on intermedi-
ate sample measurements. We present experimental results with the robotic sample
holder where two sample measurements using an optimized spherical trajectory
achieve improved reconstruction quality compared to a conventional spherical tra-
jectory. Our results demonstrate the ability of our system to increase reconstruction
image quality and avoid artifacts at runtime when no prior information about the
sample is provided.
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In the following sections, we use the results from our previous publications (see
[Pek+22b; Pek+23b]) to improve reconstruction image quality further when using
the seven DoF robotic arm as a sample holder by introducing optimized spherical
trajectories. We aim to introduce a method that is easy to use and does not require
prior knowledge about the provided sample. In addition, we aim to provide an
implementation that runs in real-time without affecting the scanning times achieved
when acquiring spherical trajectories with the same robotic sample holder. In the
following, we present our work on trajectory optimization at runtime for unknown
samples with the robotic sample holder. We provide experimental results with two
different samples demonstrating the ability of our system to improve reconstruction
image quality. We also provide a quantitative comparison of reconstruction results
to conventional spherical trajectories.

In the remainder of this section, we will provide an overview of related work on
trajectory optimization methods for imaging systems with and without robotic
arms.

Optimized non-circular orbits with no prior knowledge of the 3D geometry of the
sample were introduced in [Wu+20] for metal artifact avoidance, where the authors
presented a method to obtain optimized orbit trajectories for setups with C-arms.
Their method was based on a coarse back projection obtained from low-dose scout
views and its subsequent segmentation using a U-Net that was trained on simulated
data. After this segmentation, the X-ray spectral shift for all possible views in the
setup was predicted. The orbit in which this spectral shift was minimized was
identified, ensuring the reduction of beam hardening artifacts caused by metal parts.
Our work presents optimized non-circular orbits for a more complex setup with
a seven DoF robotic arm rather than a C-arm. Moreover, the method we present
optimizes the robot’s trajectory during runtime, using a scout scan as initialization
but using all available information after each iteration to improve the optimized
trajectory. Furthermore, our optimization is not based on the X-ray spectral shift,
meaning that no information about the absorption coefficient of the material is
required.

Another approach for non-circular orbits was presented in [GSS20a]. In this case,
the authors used Tuy’s condition for data completeness to design orbits that reduced
metal artifacts. An approximate location of the metal in the sample was needed
to design these orbits. The aspect in which our method differs most is the ability
to create the trajectory at runtime, leading to an optimized trajectory that is more
adjusted to the actual location of the metal parts of the sample.
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In the remainder of this chapter we will outline our approach for executing sample-
specific trajectories without requiring prior knowledge about the sample. We will
demonstrate the ability of our algorithm to avoid unfavorable acquisition angles
when using a robotic arm as a sample holder for arbitrarily complex trajectories.

7.2 Methods

This section discusses the methods for generating optimized trajectories with the
robotic arm as a sample holder. Our system generates the trajectories at runtime
without apriori knowledge about the provided sample. The algorithms implemented
herein can be applied to the laboratory environment or in simulation. After introduc-
ing the simulation environment and an overview of the optimization pipeline, we
describe more specific aspects like reconstruction volume segmentation, score up-
date, and trajectory pose sampling. We also refer interested readers to our previous
publications [Pek+22b; Pek+23b] for a more detailed introduction to the robotic
sample holder for X-ray CT.

7.2.1 Pipeline overview

Figure 7.1 depicts our trajectory optimization procedure. The optimization algorithm
is split into three parts executed in succession.

In the first step (I), the scout scan executes a short spherical trajectory and acquires
and calibrates images (2 and 3) of the reachable poses. This trajectory is generated
based on a sphere sampling pattern with low density (1) to capture the sample from
all possible rotations with a minimal set of acquisitions.

In the second step of our algorithm (II), the calibrated images from step one are
reconstructed (4) with a coarse resolution to obtain an approximate representation
of the sample. We segment (5) this representation for determining highly absorbing
parts of the sample. Lastly, we calculate a score (6) for each successful acquisition
angle a1 to an.

In the last step of our algorithm (III), the pool of successfully acquired images is
initialized with the images from the results of the scout scan (I). The sphere data
structure is initialized with the scores from the results of the score calculations (II).
In contrast to the previous steps (I and II), the sphere data structure is initialized
with a higher density. The increased sphere density samples a higher number of
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Fig. 7.1.: Online trajectory optimization pipeline. In I (1 - 3), the scout scan procedure
starts by generating a spherical trajectory (a1 . . . an) that covers the whole sphere
with a coarse sampling, only including poses that are reachable by the robotic arm.
Measurements of the sample are either measured experimentally or simulated
with our robotic software package, and the resulting sinograms are calibrated,
extracting the exact geometry of the sample on the image. In II (4 - 6), the
pool of images acquired in I is used to reconstruct the sample in a volume with
coarse resolution and to segment highly absorbing regions subsequently. Step II is
completed by computing a score for each of the poses ai on the coarsely sampled
sphere from step I. In step III (7 - 12), we enter the open-ended trajectory
optimization loop where a densely sampled sphere surface is initialized with
the scores from II. Likewise, the acquired image pool is initialized with the
measurements from I. In every iteration of the optimization loop, a new pose
is sampled on the sphere surface for measurement, calibration, and volume
reconstruction and segmentation by our software package. In the final step (12),
a score update is initiated on the sphere for the most recently acquired pose and
its neighbors.

poses for more image acquisitions from similar sample angles. The optimization
loop starts by sampling a pose on the sphere and acquiring a sample measurement
either experimentally or in simulation based on the current coarse reconstruction.
The resulting image is calibrated and added to the existing pool of images. The
images are used to reconstruct the sample with a coarse resolution (10) and segment
highly absorbing parts in the next step (11), like in the score initialization step (II).
Finally, we recalculate the scores based on the new volume segmentation for all
successfully attempted poses up to this point and update the spherical data structure
with the new scores (12). The optimization loop continues by sampling a new pose
for measurement from the updated spherical map.

The upcoming sections provide detailed descriptions of the individual steps of the
online trajectory optimization pipeline.
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7.2.2 Scout scan

With the scout scan procedure, we identify the sample’s highly absorbing regions
on the spherical trajectory before the optimization loop is entered. By coarsely
sampling the sphere surface and generating a short spherical trajectory, we acquire
images from all possible angles of the sample in a concise amount of time. The
main advantage of the scout scan procedure is that highly absorbing regions of the
sample are detected with a minimal number of acquisitions. Information about these
areas is used in later steps of the optimization pipeline to ensure that the available
measurement time is used for less absorbing regions of the sphere. The acquired
images are fed into the trajectory optimization pipeline and serve as an initial set of
images for the optimization process.

A vital parameter of the scout scan procedure is the number of poses sampled on
the sphere. The number of poses determines the scout scan’s trajectory size and
depends on two factors. First, the sphere discretization number determines the
number of equally sized areas into which the sphere surface is cut. The centers of
these areas parametrize the rotations of the target poses, and their sum is the size of
the spherical trajectory. Second, the reachability of the given robotic arm determines
which of the sampled poses can be reached by the given robotic arm. Reachability
is a well-defined but complex metric dependent on a range of factors, such as
the physical properties of the arm and its operating environment. We extensively
study the reachability of the seven DoF robotic arms for a wide range of operating
conditions in our previous work [Pek+23b].

We experimented with different values (12, 48, and 108) and decided to use 108 for
our experiments. The number cannot be chosen freely as it depends on the grid
resolution parameter Nside that is required by the HEALPix library, which we use
for spherical partitioning. Given the reachability score of our robotic arm of 82%
[Pek+23b], the arm would reach 10, 40, and 89 poses. Higher numbers could also
be considered, but they significantly increase the allocated time for the scout scan
procedure; for example, the higher resolution of Nside = 4 results in 192∗0.82 = 157
measurements until the optimization loop is entered.

The spherical trajectory of the scout scan is planned by attempting each of the
sampled poses individually with the motion planning pipeline. If the pipeline cannot
find a valid and collision-free path to a sampled pose, it is discarded and marked
unreachable in the spherical data structure. Once a valid path is found for the next
pose, the robotic arm executes this part of the trajectory. Once the arm reaches
the pose, it stops to acquire an image before attempting to plan a path to the next
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pose on the sphere. The acquired images are segmented and calibrated with the
methods introduced in [Pek+22b] to extract the exact geometry of the sample for
the reconstruction step. The calibrated image is added to the pool of successfully
acquired images.

7.2.3 Score initialization

In the score initialization step, we perform the operations necessary to transfer the
results of the scout scan procedure to the optimization loop.

We reconstruct the sample inside a volume with a coarse resolution with 288 ×
288 × 288, which corresponds to a tenth of the detector’s resolution. Choosing a
small resolution for the reconstruction allows us to perform the following steps
in the pipeline on demand. The volume segmentation and the score update can
be executed in real time when the reconstruction volume has the abovementioned
resolution.

The volume segmentation is applied to the resulting reconstruction volume, which
contains the sample holder and the sample. The segmentation output is a volume
where the sample holder is filtered out, and only the highly absorbing parts of the
sample are visible. The segmentation is described in detail in section 7.2.4.

The score update step is performed on the output of the volume segmentation for all
poses individually. An absorption score is calculated for each pose, and the resulting
score is saved in the spherical data structure for the part of the sphere surface it
represents. The spherical data structure used for this purpose has a low sampling
density. Later, the score will determine the likelihood of the pose’s neighborhood to
be sampled as the next pose. The score update step will be discussed in detail in
section 7.2.5.

In the final step, the scores from the sphere with a low sampling density are trans-
ferred to a new sphere with a higher sampling density. We need the new sphere
for sampling more poses from similar angles. For the score transfer, the score of a
specific pose on the sphere with low sampling density is set for all poses it covers on
the sphere with higher sampling.

The image pool of the optimization loop is initialized with the measurements from
the scout scan procedure. These can provide an initial set of images for the image
reconstructions in the first few iterations of the optimization loop. The reconstruc-
tions in the first iterations would have severe artifacts if the image transfer did not
occur.
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7.2.4 Volume segmentation

In order to optimize the acquisition trajectory based on the absorption characteristics
of the sample, the projections containing a significant area of the high-absorbing
regions of the sample must be avoided. The first step to achieve this is to identify
those areas of the sample in the current reconstruction, which is why volume
segmentation is needed. This segmentation was done by thresholding, aiming to
isolate the sample regions whose absorption coefficient is high enough to cause
artifacts in the final tomographic reconstruction described in section 7.2.7. We
chose the threshold in terms of the values of the sample holder and the calibration
spheres it contains in the reconstructed volume since these components are strictly
necessary for extracting the exact geometry through the calibration process, as
presented in [Pek+22b], and therefore they are always present. Moreover, the
sample holder is made of a low-absorbing material (polyoxymethylene), so it does
not interfere with the reconstruction. At the same time, the spheres are highly
absorbing (aluminum) to ensure calibration success. Both values were extracted
from the current reconstruction, using their known location in the reconstructed
volume and creating an interval from which the threshold will be picked. However, to
ensure the well-functioning of the algorithm in all scenarios, including if the sample
contains parts with higher absorption than the calibration spheres or if the sample
does not contain any high-absorbing material, we redefined the upper limit of this
interval as the maximum between the spheres value and the maximum value within
the sample region in the reconstruction, and the lower limit as the first quartile of
the interval. For the threshold choice, we applied different thresholds within the
interval in a decreasing fashion to the reconstruction, the final one chosen as the first
one leading to a relevant segmented volume (0.0005 % of the total volume) or as
the lower bound of the interval if it was reached. The result of the segmentation was
a volume of the same size as the reconstruction but only containing values higher
than the chosen threshold. Besides, the sample holder region was blacked out in the
segmentation volume to prevent the calibration spheres from being taken as regions
to be avoided.

7.2.5 Score update

In the score update step, we update the surface area parametrized by the given pose
with a score. Ideally, this score should represent the sample’s absorption rate when
captured from the given pose. A higher sample attenuation from the given angle
should result in a higher score. We separated the score update into two parts: in
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the first part, we calculate the score, and in the second part, we find and update the
regions on the spherical data structure corresponding to the pose.

The segmented volume is input to the score calculation procedure, which outputs
an absorption score for a given pose. The score is calculated by applying a forward
projection to the segmented volume with the calibrated geometry of the given pose
and calculating the L0-norm on the resulting sinogram. The L0 norm effectively
calculates the surface area of the non-zero pixels on the detector image. Since we
are applying the forward projection on the segmented volume where solely highly
absorbing parts are non-zero, this surface area will be proportional to the amount of
high absorption captured from the given pose of the sample.

In the optimization loop (step III), the score is recalculated for all poses that were
successfully attempted by our algorithm up to that point. Recalculating the scores for
each pose is necessary as we obtained a new reconstruction volume with the latest
successful image acquisition. The resulting scores are now comparable, and we can
create a probability distribution based on these scores in the next step (see section
7.2.6). We are calculating the scores for the poses efficiently by applying a single
forward projection on the reconstruction volume with the provided set of angles.
The resulting sinogram contains one slice per pose, and the metric mentioned above
(L0-norm) can be calculated on each slice independently.

In the score initialization step, we only set the absorption score of a pose for its
surface area on the sphere with low sampling (see Fig. 7.1 II).

In the trajectory optimization step, we additionally set the scores of all neighbors
(see Fig. 7.1 III, step 12). We determine the neighbors by searching for all poses on
the sphere surface within a predefined distance r radians to the given pose. This
update pattern can be seen on the discretized sphere in Fig. 7.1 for the red cross
in step III, where the immediate spatial neighbors are updated with the light blue
color because they fulfill the distance criterion. Applying the acquired score on the
neighbors is necessary as those scores were initialized in the scout scan with a score
obtained for a comparably large region. For example, when dividing the surface
area of the sphere into 108 and 4032 regions in the scout scan and optimization
loop, respectively, the ratio is 41. This ratio means a score from the sphere with low
sampling density was set for 41 regions on the sphere with high sampling density
in the score initialization step (II). The distance-based update step ensures that
the newly obtained absorption information represented by the new score is spread
on the sphere data structure in every iteration. It is helpful for the pose sampling
step, where the score of a pose determines its probability of being picked for the
subsequent acquisition.
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7.2.6 Pose sampling

The pose sampling procedure chooses the next pose the robotic arm will approach
to acquire a new image. Ideally, the sampled pose has minimal absorption out of all
the remaining poses.

We start with all possible poses on the sphere data structure. We filter out the ones
already attempted in previous runs of the trajectory optimization loop, regardless of
successful execution.

Before introducing the probability distribution, we need to determine those poses on
the sphere, for which we could not assign a score in the previous steps. These poses
will not be considered in the sampling step as candidates. Three cases exist when a
pose on the sphere results in an undefined state. The first case is when the pose lies
in a region the robotic arm cannot reach. The second case is when the pose is inside
the reachable region of the robotic arm, but the trajectory execution failed due to
a hardware error. The third case is when the pose is reachable, and the trajectory
was successfully executed, followed by image acquisition, but the post-processing
steps failed. These steps include segmenting the circles on the image and calibrating
the exact geometry of the sample on the image. Detailed information about the
post-processing steps can be found in [Pek+22b].

We have illustrated the mapping of a given region on two spheres with low and high
sampling in Figures 7.4 (a) and (b). It is worth noting that a pose pi that was not
reachable for the arm in the scout scan procedure is not sampled in the probability
distribution defined in the next section of our implementation. In contrast, if a
pose pi was reachable, we initialize the poses pi1 to pi9 inside pi with the score
computed for pi in the score initialization step (II) as illustrated in Fig. 7.4(b). This
is a reasonable strategy for cases where measurement time is valuable. Another
valid strategy is to initialize pi1 to pi9 with a score greater than zero, assigning
sampling probabilities greater than zero for these poses in the next step. This is a
more time-consuming strategy, but it is also valid as the robotic arm might still be
able to reach the borders of the unreachable area represented by pi.

In the next step, we create a discrete probability distribution where the scores for
each pose are weighted with an inverse weighting scheme: Poses with a higher
absorption score correspond to a lower weight in the probability distribution and
vice versa. Applying an inverted weighting scheme ensures that poses with high
absorption scores are less likely to be drawn from the probability distribution.
Moreover, poses without a score are assigned weight 0, meaning that they will not
be drawn since their probability equals 0. This happens when the neighborhood of
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the pose could not be reached by the robotic arm in the scout scan, when the sphere
was sampled with lower density, summing multiple poses into one pose.

We use the parameter s on the inverted weights to model a penalty on the absorption
scores:

wi = 1
xs

, (7.1)

where s ≥ 1 is the penalty parameters and x is the absorption score. The score is
raised to the power of s to place a sufficiently high penalty on highly absorbing
poses. Different choices for this parameter (s = {5, 10, 30}) are displayed in Figures
7.2 (a to i) for experiments with sample number 1.

The resulting weights are used to create a discrete probability distribution with the
C++ standard library component std::discrete_distribution. The probability of each
weight element wi is calculated with p(i) = wi

S , where S =
∑

i wi is the sum of
all weights. We sample the next valid pose from the discrete distribution with the
high-entropy random number engine std::mt19937 initialized with an entropy-based
seed provided by std::random_device.

7.2.7 Reconstruction

We used around 725 equidistant X-ray projections for the tomographic reconstruction
along three different spherical trajectories sized 720× 720 pixels with a spacing of
600 µm. For the different trajectories, the number of projections varied by +4.8%:
the whole sphere trajectory successfully acquired and calibrated 725 images, the
random trajectory 748, and the optimized trajectory 760. The remaining parameters
of the reconstruction were as mentioned in section 3.3.

7.3 Experiments and results

We designed different experiments to evaluate the performance of our trajectory
optimization algorithm. The first set of experiments analyzes the sensitivity of our
algorithm to the hyperparameters introduced in sections 7.2.5 and 7.2.6. The second
set of experiments comprehensively assesses the reconstruction image quality for
two samples. We also provide a quantitative analysis of the reconstruction images
compared to conventional spherical trajectories. The experiments in this section
were executed in our simulation environment (see section 4.2.1).
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(a) r = 5, s = 5 (b) r = 5, s = 10 (c) r = 5, s = 20

(d) r = 10, s = 5 (e) r = 10, s = 10 (f) r = 10, s = 20

(g) r = 15, s = 5 (h) r = 15, s = 10 (i) r = 15, s = 20

Fig. 7.2.: Trajectory optimization hyperparameters. We executed our trajectory opti-
mization algorithm with different choices for the parameters r and s for sample
number 1 and plotted the resulting spherical trajectories. In the three rows, we
visualized the resulting trajectory when different disk radius parameters (r = 5,
r = 10 and r = 15 radians) are applied for the neighborhood of a given pose.
Poses within this neighborhood were updated with the new score if they were
not yet attempted by the robotic arm. In the three columns, we visualized the
resulting trajectory when different penalty parameters (s = 5, s = 10 and s = 20)
are applied on the absorption score. s penalizes the absorption rate of the sample
from the given angle by decreasing the weight of the given pose in the resulting
probability distribution.

7.3.1 Trajectory optimization parameters

We have conducted experiments for the two hyperparameters of our algorithm
mentioned in section 7.2. The disk radius parameter r mentioned in section 7.2.5
determines the size of the neighborhood that is affected by the new score of the
given pose. A higher choice for r will apply a more significant update on the sphere
surface. The score penalty parameter s mentioned in section 7.2.6 penalizes the
absorption rate of the given pose. A higher choice for s will result in a lower weight
of the pose in the probability distribution and hence a lower probability of being
sampled for image acquisition. We used three values for each hyperparameter:
r = {5, 10, 15} and s = {5, 10, 20}. Our goal with these experiments was to analyze
the sensitivity of our algorithm to different choices for the hyperparameters.
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7.3.1.1. Disk radius r

Our choices for the disk radius parameters {5, 10, 15} correspond to 8, 32, and 78
poses on the sphere with high sampling density. These numbers cover 0.18%, 0.74%,
and 1.8% of the sphere surface. However, more importantly, these numbers cover
19.5%, 78%, and 190% of a single spot on the lower sampled sphere from the scout
scan step. For example, by choosing r = 15, we would overwrite the resulting scores
of two poses from the scout scan with a single measurement in one iteration of the
optimization loop.

7.3.1.2. Score penalty s

The score penalty s penalizes the absorption rate of the sample from the given angle
by decreasing the weight of the given pose in the resulting probability distribution.
For example, our choices for s = {5, 10, 20} decrease the weight of a pose with
score 558 (higher absorption) from 2.11 × 10−1 (s = 1) to 4.23 × 10−4 (s = 5),
1.79× 10−7 (s = 10), and 3.20× 10−14 (s = 20) compared to a pose with score 118
(lower absorption). Considering that p(i) = wi

S where wi is the weight and S is
the sum of all weights, we can see that increasing the penalty parameter s yields a
significant reduction in the pose’s sampling probability. The scores 118 and 558 are
the lowest and highest absorption score of the scout scan for sample Nr. 1. We aim
to study the effect of choosing different penalty parameters s on the resulting pose
distribution and find a suitable range of choices for s.

In Fig. 7.2, we plotted the results of our experiments for the parameters r and s.

7.3.2 Simulated CT measurements

We conducted six experiments in total: two samples were simulated on three
trajectories: whole sphere, random, and optimized.

The three trajectories are visualized in figures 7.4 (c), (d) and (e). We generated
the first trajectory by uniformly sampling poses on the sphere surface with the
HEALPix library with the parameter Nside = 9, which results in 972 poses. The
resulting trajectory contained fewer poses (725) than 972 as not all regions of the
sphere are reachable by the robotic arm (see Fig. 7.4 (c)). We generated the second
trajectory by first sampling poses on the sphere surface uniformly with a higher
density (Nside = 19) and subsequently sampling poses without replacement from the
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uniformly distributed poses. The resulting trajectory contained 748 poses (see Fig.
7.4 (d)). We were not able to match the number of poses in Fig. 7.4 (c) precisely as
the motion planning step is executed after sampling the poses, and not all poses are
reachable as mentioned earlier. The third trajectory is generated with the pipeline
explained in 7.2.1. The resulting trajectory contains 760 poses (see Fig. 7.4 (e)).

The two samples we used for all experiments are displayed in Fig. 7.3. Both samples
consist of objects with an internal structure and an absorber plate. We expect the
absorber plate to affect reconstruction image quality badly in our measurements due
to its higher attenuation coefficient than the sample objects.

The first sample is displayed in Fig. 7.3(a). It combines a cubic and a cylindrical
object stacked vertically and placed next to an absorber plate. The cubic object in
the bottom measures 22 x 18 x 30 mm and contains a cylindrical hole with a 7 mm
diameter. The cylindrical object has a diameter of 32 mm with two cylindrical holes,
with 6 mm diameter each and a height of 30 mm. Both objects total 60 mm in
height. We placed the absorber plate with dimensions 4 x 30 x 50 mm next to the
sample described above.

The second sample is displayed in Fig. 7.3(b). We modeled this sample as an open
box that contains three sample objects, two cylinders with varying heights, and a
cubic object. We placed the absorber plate with dimensions 1 x 12 x 12 mm in the
center of the box. The cubic object at the top left measures 6 x 3 x 10 mm and
contains a cubic hole with 1 mm padding to both sides. The cylindrical object below
it measures 6 x 6 x 15 mm and contains a cylindrical hole with a 2 mm diameter.
The cylindrical object to the right of the absorber measures 3 x 3 x 5 mm, and it
contains a cylindrical hole with a 0.8 mm diameter.

The two samples include absorbers with different dimensions and thicknesses. The
absorber in sample number 1 has a much greater volume of 6000 mm3 compared to
the absorber in sample number 2 with just 144 mm3.

We set the absorption coefficient of the absorber plates in the sample objects to
7.0 and the rest of the samples to 1.5 for realistic modeling of the ratio between
highly absorbing and less absorbing parts of a sample in a laboratory X-ray CT
measurement. For reference: at an X-ray energy of 45 keV and material thickness
of 3 mm, aluminium attenuates 30.63% of the X-rays compared to polyethylene
with 5.87% attenuation [Web]. These values give us a ratio of 5.21 and hence are
comparable to our ratio of 4.67.

For the quantitative analysis of our experiments, we have calculated a metric on
the reconstructions of our experiments from section 7.3. The trajectories for these
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Tab. 7.1.: Reconstruction quality statistics. Quantitative analysis of reconstruction image
quality for two samples. The trajectory optimization parameters r = 5 and
s = 20 were used for the underlying experiments. We calculated the metrics on
the line profiles of the YZ (sample no. 1) and ZX-slices (sample no. 2) of the
reconstructions (see figures 7.5 and 7.6).

whole sphere random optimized
profile 1 0.000991 0.000945 0.002284 (+130.5 %)
profile 2 0.001965 0.002047 0.003631 (+84.8 %)
profile 3 0.002054 0.002099 0.004346 (+111.6 %)

(a) Sample No. 1: Gradient magnitude of line profiles plotted in Fig. 7.5.

whole sphere random optimized
profile 1 0.000213 0.000216 0.000283 (+32.9 %)
profile 2 0.000811 0.000760 0.001466 (+80.8 %)
profile 3 0.000799 0.000766 0.001356 (+69.7 %)

(b) Sample No. 2: Gradient magnitude of line profiles plotted in Fig. 7.6.

experiments are displayed in Fig. 7.4 and the qualitative results are illustrated in
Figures 7.5 and 7.6. In Tables 7.1a and 7.1b, we have provided statistics on the
quantitative difference in the reconstruction images between the three trajectories.
We used the gradient magnitude to measure the sharpness of the line profiles on the
resulting reconstruction slices (see Figures 7.6 and 7.5).

7.4 Discussion

In this section, we will discuss the results of our experiments from section 7.3,
where we aimed to measure our system’s performance for different choices of the
hyperparameters r and s and the reconstruction image quality. We categorized the
first set of experiments by the choices for the parameters r and s and fixed the
sample to sample no. 1. We fixed the parameters r and s for the second set of
experiments and used two different samples to evaluate our algorithm’s performance
on two different sample inputs.

7.4.1 Trajectory optimization parameters

We executed experiments with different choices for the parameters r and s to
determine the effects on the distribution of poses on the sphere. We plotted the
resulting spherical trajectories in figures 7.2 (a) to (i).
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(a) Sample No. 1 (b) Sample No. 2

Fig. 7.3.: Samples. We modeled two samples, each containing an absorber plate that
simulates highly absorbing parts. In (a), the sample is a combination of a cubic
and a cylindrical object stacked vertically (left), placed next to an absorber plate
with dimensions 4 x 30 x 50 mm. In (b), the sample is made up of an open box
containing one cubic and two cylindrical objects separated by a single absorber
plate with dimensions 1 x 12 x 12 mm. For both samples, we modeled holes into
the cubic and cylindrical objects for evaluating reconstruction image quality.

The parameter r is the disk’s radius that contains all poses in the neighborhood that
are updated with the newly calculated score in the update step explained in section
7.2.5. We chose r = {5, 10, 15} radians as update radiuses in our experiments. In
section 7.3.1.1, we have mentioned that these parameters will update 0.18%, 0.74%,
and 1.8% of the entire sphere surface. We can see in the rows of Fig. 7.2 that our
choices for r are visible on the trajectories when fixing s by choosing a column and
examining different rows for varying r. However, the difference caused by different
r will not impact the reconstruction image as the distribution of points only differs
in a small neighborhood when s is fixed. The re-distribution of points in a small
neighborhood on a sphere does not cause significantly different angles with higher
absorption.

We apply the parameter s as a penalty on the absorption score of a given pose
to decrease its weight in the probability distribution. We chose s = {5, 10, 20} as
penalty parameters in our experiments. We can see in the columns of Fig. 7.2 that
with increasing s, the poses on the spherical trajectory concentrate in four regions of
the sphere surface. The remaining regions are sparsely populated, and poses in these
regions are less likely to be sampled with increasing s. The concentration of sampled
poses in particular highly absorbing regions of the sphere surface, matches our initial
goal of avoiding images with high absorption. If the parameter s is chosen too
high, information about certain angles of the sample will be incomplete or missing
for the image reconstruction step. The information loss will lead to worse image
reconstruction quality.
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(a) Spherical mapping, low density,
specific pose highlighted

(b) Spherical mapping, high den-
sity, corresponding poses high-
lighted

(c) Spherical trajectory, poses
covering whole sphere

(d) Spherical trajectory, random
poses

(e) Spherical trajectory, optimial
poses,
r = 5, s = 20

Fig. 7.4.: Spherical trajectories. In (a) and (b), we visualized the mapping of specific
regions between sphere surfaces with low and high sampling density. In (c), (d)
and (e), we plotted the spherical trajectories for the three different strategies of
choosing poses on the sphere for sample no. 2: Whole sphere coverage (c), ran-
dom sampling (d) and online optimization based on absorption score of previous
measurements (e). In (c), (d) the spots on the sphere are colored uniformly as no
score was calculated in these cases. The resulting image reconstructions for the
three trajectories are displayed in Fig. 7.6.

7.4.2 Simulated CT measurements

We fixed the trajectory optimization parameters for the CT measurements to r = 5
and s = 20. These parameters improve image reconstruction quality as discussed
in section 7.4.1. We used two samples (see Fig. 7.3) to evaluate the reconstruction
images for image quality and sharpness.

7.4.2.1. Image quality

We can discuss our system’s performance from a qualitative and quantitative per-
spective by examining the results in Figures 7.5 and 7.6 and Tables 7.1a and 7.1b.

We can divide our observations on the reconstruction image quality into two parts:
the region around the absorber and the rest of the sample. We expect as few artifacts
as possible for the region around the absorber. We expect the internal structures to
be clearly visible for the remaining parts of the sample and the outer edges to be
sharp.
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First, we will analyze the region around the absorber. For sample no. 1, we can see in
Fig. 7.5 in the first row that the optimized trajectory can avoid most of the artifacts
that would otherwise be present in the ZX-slices of the reconstruction. Compared
to the first row, the artifacts are not avoided as well in the YZ-slice (second row)
with the optimized trajectory. However, there is still a visible difference compared
to the other two trajectories. With the whole sphere (left column) and random
(center column) trajectory types, the region around the absorber has artifacts in
all directions. For sample no. 2, the region around the absorber has significantly
fewer artifacts for the optimized trajectory (right column) than the whole sphere
and random trajectory, which have artifacts in all directions. In contrast to sample
no. 1, the difference in quality is significant in both slices instead of just one slice.

We will examine the outer edges and internal structures of the cylindrical and cubic
objects for the remaining parts of the samples. For sample no. 1, the optimized
trajectory can partly visualize the internal structure of the stacked objects next to the
absorber. The other two trajectory types (left and middle column) can not visualize
the internal structure in the stacked object; the object’s interior is uniformly white.

For samples no. 1 and 2, we can not observe a difference in quality between the
whole sphere and random trajectory for the region around the absorber and the
remaining sample parts.

7.4.2.2. Image sharpness

We will evaluate reconstruction image sharpness for samples no. 1 and 2 by in-
terpreting the line profiles plotted in Figures 7.5 and 7.6 and the corresponding
statistics in Tables 7.1a and 7.1b.

In general, when looking at the line profiles for both samples, the apparent spikes
are steeper and have a higher amplitude with the optimized trajectory (green lines)
than the profiles of the other two trajectories (red and blue lines). There is an
exception to this statement when the line profiles pass the area above the absorber
on the YZ-slices for sample no. 1. Here we can see slight artifacts for the optimized
trajectory when there are no visible artifacts for the other two trajectories. We
suspect that acquisition angles parallel to the absorber are causing these, which is
expected because these angles have a minor absorption score with the L0-norm. The
minor score comes from the fact that the projected area of the absorber is smaller
on the sinogram compared to an angle that captures the absorber head-on. This
behavior can be fine-tuned by decreasing the penalty parameter s.
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Another critical observation on the line profiles is the appearance of the samples’
smaller inner structures in the optimized trajectory profiles. The profiles of the
whole sphere and random trajectories do not correctly capture these regions. For
example, on the overlapping plot for line profile 2 of sample no. 2 (green line),
we can see the correct representation of the cylindrical hole inside the cylindrical
part to the left of the absorber and the wall structure next to the sample. The
whole sphere and random trajectories (blue and red lines) cannot represent this
information accurately.

We can see in Tables 7.1a and 7.1b that with the optimized trajectory, our gradient
magnitude metric is improved by up to 130.5% and 80.8% on the image reconstruc-
tions for sample no. 1 and 2.

In our previous publication, we used the same metric for comparing the difference
in sharpness between the image reconstructions of measurements on a circular
and spherical trajectory in a laboratory X-ray environment [Pek+23b]. There, the
gradient magnitude improved by 50% to 80% with a spherical trajectory that covers
the whole sphere as illustrated in Fig. 7.4c. This improvement was since the circular
trajectory only covered a fraction of the sphere surface compared to the newly
introduced spherical trajectory. With the algorithm introduced in this paper, we
are optimizing the spherical trajectory from [Pek+23b]. We can conclude from the
numbers in Tables 7.1a and 7.1b that with an optimized trajectory, we can improve
the reconstruction image sharpness even further (up to 130.5% with sample no. 1,
profile 1).

7.5 Conclusion

In this chapter, we have extensively studied the runtime optimization of spherical
trajectories with the robotic sample holder, where no prior knowledge about the
sample is provided. The optimization algorithm is based on an intermediate recon-
struction of the measured sample. We have conducted experiments in our simulation
environment with two different samples and have seen promising results. This
online trajectory optimization algorithm is a promising step towards time-efficient
and radiation-dose-reduced acquisitions with X-ray CT systems.
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Fig. 7.5.: Experimental results. Sample No. 1. The first sample (see Fig. 7.3a) was
measured on three different types of trajectories (similar to Fig. 7.4 ((c), (d) and
(e))) and reconstructed with the robotic arm in the simulation environment of
our robotic software package [Pek+23b]. The optimized trajectory was generated
with the hyperparameters r = 5 and s = 20. The reconstruction volumes are
registered and aligned with our calibration algorithm [Pek+22b]. We binned the
detector images with 4 ∗ 4, and the reconstruction volume has dimensions 7203.
A zoom factor of 4.8x was applied to the slices to crop the region of interest. We
plotted line profiles at three different positions for the YZ slices.
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Fig. 7.6.: Experimental results. Sample No. 2. The second sample (see Fig. 7.3b) was
measured on the three trajectories displayed in Fig. 7.4 ((c), (d) and (e)) and
reconstructed with the robotic arm in the simulation environment of our robotic
software package [Pek+23b]. The optimized trajectory was generated with the
hyperparameters r = 5 and s = 20. The reconstruction volumes are registered
and aligned with our calibration algorithm [Pek+22b]. We binned the detector
images with 4 ∗ 4, and the reconstruction volume has dimensions 7203. A zoom
factor of 4.8x was applied to the slices to crop the region of interest. We plotted
line profiles at three different positions for the ZX slices.
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Conclusion 8
I have split the conclusion into three logical parts. I will start by providing my own
view on the project with its ups and downs over the last four and a half years. Next,
I will talk about what is still possible, the potential of this project. Finally, I will
finish this thesis with a summary and concluding words.

8.1 Personal Conclusion

We started to work on this project in October 2018, beginning with my master’s
thesis, where our first goal was to create a working simulation environment for
the FRANKA EMIKA Panda robotic arm. We intended to build a collision detection
algorithm based on the simulation environment and implement our first software
components for the motion planning pipeline in the ROS ecosystem. With the
installation of the robotic arm in the X-ray CT laboratory environment and the
installation and configuration of the hardware sensors, the system was ready for
the first experiments. At this point, we discovered the issues of accurate sample
placement with the robotic arm while executing our first experiments. Identifying
the placement error and developing ideas to fix it was the first serious challenge
of integrating the robotic arm as a sample holder in the laboratory since image
reconstruction was unattainable without extracting the sample’s exact geometry
on the detector images. In the following months, we put a significant effort into
designing and 3D printing an intermediate sample holder part with an embedded
calibration structure that we could detect on the detector images. In my opinion,
this was the most challenging part of this dissertation as we tried to fix a problem
with a solution approach (sample holder and calibration structure) that allowed
us to tune more than one parameter simultaneously (e.g., X-ray setup geometry,
arrangement and size of calibration markers, type of calibration structure, choice of
optimization algorithm). In our first journal publication, we presented our approach
for the geometric calibration of the robotic sample holder [Pek+22b].

In the next step, we decided to investigate the robotic sample holder’s ability to
reach all possible rotations in three dimensions and hence to execute spherical
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trajectories. First, we conducted literature research and encountered the various
approaches to sample points on the sphere’s surface uniformly. After an initial
testing phase, we decided on the well-documented HEALPix library, given that it
provides Python and C++ packages, and we integrated it into our software package.
Second, we planned the first trajectories that covered the whole sphere with the
robotic arm, and we discovered that we could not reach almost 40% of all possible
rotations with the current design of the sample holder part. We also discovered that
spherical trajectories were causing more occlusions with the sample on the detector
images. Third, we executed the initial spherical trajectories in the laboratory, and we
discovered that moving to some regions of the sphere’s surface will trigger hardware
reflexes of the robotic arm, interrupting trajectory execution. We designed and
tested numerous gripper types with varying shapes and lengths for the intermediate
sample holder part. This design process was another critical and time-consuming
project phase, as many designs were possible for the gripper part. Testing these
parts in the simulation environment was straightforward. However, the reduction
in hardware reflexes could only be tested once we manufactured the mechanical
gripper part and executed the trajectory in the laboratory. In our second journal
submission, we presented our approach for maximizing the reach of the robotic
sample holder while executing spherical trajectories [Pek+23b].

In this dissertation’s third and last phase, we aimed to sparsely sample "valuable"
spots on the spherical trajectory at runtime without prior knowledge about the
sample. In the first weeks of this research phase, we invested significant time
into planning a pipeline that we could implement in the remaining months of this
dissertation. At the same time, the pipeline should be able to deal with complex
samples and detect highly absorbing regions in it. Our initial implementation of the
trajectory optimization pipeline worked with minor modifications, and we were able
to submit a manuscript to the journal Engineering Research Express. The challenging
part of the implementation was that each step of the pipeline expected the output of
the preceding step as input, and hence tracking down issues in the individual steps
was very challenging at the beginning.

Looking back, having a simulation environment that can handle the various samples
and sample holders and that can calibrate the detector images was immensely
helpful. We used the simulation intensely to implement and test the software and
algorithms of the second and third manuscripts.
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8.2 Future Work

In the preceding chapters, we have outlined the abilities and restrictions of the
proposed system in great detail. This section will briefly discuss ideas that could
improve the proposed system and algorithms.

The proposed system is currently prone to the movement of the sample and the
robotic arm. For rigid samples, the movement is not an issue with this system as it
is mounted to the rigid intermediate sample holder part. However, this setup can
not be used for non-rigid samples as the arm moves the sample with the arm. In
a new iteration of this setup, two robotics arms could be used to move the X-ray
source, and the detector and the sample could be mounted statically. The vibrations
caused by the robotic arm’s movement in our current setup are dealt with by waiting
a second after reaching a way-point on the trajectory.

New designs for the gripper types that were introduced in chapter 6 could further
maximize the coverage of the sphere surface. The cylinder part of the sample holder
could also be improved with a new sample mounting mechanism for mounting
bigger and heavier samples.

The trajectory optimization algorithm proposed in chapter 7 could be improved in
two ways. First, the existing implementation could be parallelized so that our opti-
mization pipeline’s score update and pose sampling steps are executed based on the
image reconstruction and segmentation of the previous iteration. This improvement
could lead to savings in execution time for the reconstruction and segmentation
step and, more importantly, increased resolution of the intermediate reconstruc-
tion. Second, the pose sampling procedure could be adapted for better coverage of
areas marked as unreachable when the scout scan trajectory was generated. The
current strategy omits comparably large regions on the sphere surface because an
unreachable pose of the sphere with low density and hence large regions covers
them. With the new sampling approach, we can explore parts of these regions
(e.g., borders of the unreachable poses) and increase image quality by potentially
acquiring additional favorable angles in the optimization loop.

8.3 Summary

In summary, we have introduced a robotic sample holder with seven degrees of
freedom for X-ray computed tomography in this dissertation. We have explored
the abilities and restrictions of the given robotic arm when used in a laboratory
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environment. With our unified software package, the user can efficiently simulate
measurements and prototype algorithms for the robotic sample holder without
entering the laboratory. Our software package also allows the execution and man-
agement of experiments safely in the laboratory environment without restricting
the user to a specific hardware configuration, as it can be extended and modified
with minimal effort. In our closing words, we can state that we have provided a
working prototype for the robotic sample holder, that can be optimized in the future
for general availability.
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1.1 Robotic computed tomography setups. We illustrate two different
kinds of robotic computed tomography setups. In (a), the robotic
arm acts as a sample holder by holding and manipulating the sample.
In (b), two robotic arms move around the sample, one holding and
manipulating the source and the other moving the detector. . . . . . . 5

2.1 Configuration space. We illustrate the configuration space concept
with a robotic arm and a visualization of the corresponding space. In
(a), a robotic arm with two rotational joints is illustrated. In (b), the
configuration space (Torus) of the robotic arm in (a) is visualized. . . 8

2.2 Edge cases with exploration algorithms. In (a), a bug-trap is il-
lustrated. Bug traps cause problems with unidirectional single-query
methods where a single search tree is constructed from the start or
end configuration. In (b), a corridor is illustrated. Corridors are hard
to leave for multiple-query roadmap methods because the sampled
configurations must all lie along the narrow corridor and be connected. 14

2.3 RRT exploration algorithm. The exploration algorithm extends the ex-
isting search graph with new collision-free samples in Cfree. The search
graph is used for single-query motion planning. The new configuration
and the path segment connecting it to the nearest point on the search
graph are checked for collisions with obstacles. Different cases for the
exploration are illustrated. . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Sampling-based roadmap. Construction. The roadmap is constructed
by sampling configurations qnew from a dense sequence. After per-
forming collision checks for each segment, the new configuration is
connected to its neighbors with new path segments. The neighbor se-
lection scheme in this illustration is based on a fixed distance threshold
from qnew. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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2.5 Sampling-based roadmap. Visibility. The green area visualizes the
visible part of the configuration space from the sampled configuration
q’s perspective. Visible in this context means that any point in the green
area can be connected with a path segment to q without hitting the
obstacle Cobs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Link Frames in Denavit-Hartenberg convention. We illustrate the
Denavit-Hartenberg (DH) convention for attaching frames to a robotic
manipulator’s links. The DH convention is a widely used method for
calculating the forward kinematics of a robotic arm. . . . . . . . . . . 19

2.7 Inverse kinematics robot schematics. We illustrate robotic manip-
ulators and possible scenarios for their inverse kinematics. A robotic
manipulator with two rotational joints is illustrated in (a). In (b), two
solutions are illustrated for a robotic manipulator with three rotational
joints. In (c), two solutions G1 and G2 are illustrated for a robotic
manipulator with three rotational joints. Solution G1 is invalid as it
collides with an obstacle encoded in the configuration space. . . . . . 21

3.1 X-ray acquisition geometries. We illustrate three acquisition geome-
tries for X-ray computed tomography. The parallel-beam (a) and fan-
beam (b) setups acquire measurements row by row. With the cone-beam
setup (c), the entire sample volume can be measured at once at the
detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Hardware setup. In Fig. 4.1a, the robotic arm is mounted on a table
with the source and the detector inside a safety hutch. The source-to-
robot distance is 40 cm, and the robot-to-detector distance is 176 cm.
Two depth cameras monitor the movement of the robot and send a stop
signal to the robot controller when the executed trajectory interferes
with obstacles. The robotic arm can also be stopped by a manual power
switch routed to the operator table outside the hutch (see fig. 4.1b).
The relevant coordinate systems are visualized in red in Fig. 4.1a. The
x and y-axis are determined by the right-hand rule.[Pekel_2021] . . . 34

4.2 FRANKA EMIKA Panda robotic arm. (a) depicts the dimensions of the
FRANKA EMIKA Panda robot. (b) and (c) depict the arm’s reach from
the side and top view. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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4.3 Sample holder parts. We illustrate the most important sample holder
parts we designed throughout this Ph.D. project from the first (left)
to the last (right). We used part no. 1 for the experiments in our
first publication [Pek+22b] and part no. 2 for the experiments in
our second publication [Pek+23b]. The cylindrical body houses a
helical calibration structure that is used to calibrate the orientation and
position of the sample on the individual acquisition images. . . . . . . 36

4.4 Sample holder part grippers. We illustrate the unique gripper designs
for the sample holder part that we designed throughout this Ph.D.
project from the first (left) to the last (right). We used gripper no. 1
for the experiments in our first publication [Pek+22b] and the two
grippers labeled no. 2 for the experiments in our second publication
[Pek+23b]. The l-shaped gripper part allows maximal coverage of all
sample orientation (99.1%, no obstacles encoded) when attached to the
sample holder part no. 2 from Fig. 4.3. . . . . . . . . . . . . . . . . . 37

4.5 Intel Realsense depth camera. We used two Realsense cameras for the
active collision detection algorithm described in section 4.2.3.2. The
maximum resolution of the depth stream is 1280×720 at 90 fps and the
colored video stream has a 1920× 1080 resolution at 30 fps.[@Int23a] 38

4.6 Simulation environment. Our Gazebo [KH04] simulation environment
includes the robotic arm, two depth cameras, and one RGB camera.
The depth cameras are used for testing the active collision detection
algorithm. The RGB camera was used for testing new calibration
algorithms in the early phases of this project. We use Gazebo for
simulating the dynamics of the robotic arm. . . . . . . . . . . . . . . . 39

4.7 System architecture. We illustrate the system architecture and differ-
ent components within the sub-folders of our software project. The
packages core, ct, web, and safety contain code that interacts directly
with the ROS master. The utils package provides important utility
classes and methods. The msgs package defines common message
types for the interaction of the components with each other. . . . . . . 56

4.8 Web user interface for the robotic sample holder. The user interface
is accessible from the web browser in the simulation and laboratory
environment and provides controls for defining essential experiment
parameters like trajectory type. The interface also shows intermediate
measurement results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.9 Active collision detection. Sequence diagram.[Pek] The sequence di-
agram illustrates the active collision detection components’ interaction.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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4.10 Active collision detection. Visualizations. [Pek] In (a), our active
collision detection algorithm’s internal representation of the robotic
arm’s current state is visualized. This visualization is a debugging
feature, and it is essential for verifying that the arm’s 3D mesh files
were read in and fused with current joint angles correctly. In (b), we
visualized an exemplary collision of the robotic arm with a telephone
pole in the simulation environment. . . . . . . . . . . . . . . . . . . . 58

4.11 Passive collision detection. Visualizations. Figures (a) and (b) depict
the objects that are encoded in the robotic arm’s configuration space for
the passive collision detection mechanism described in sections 4.2.3.1
and 4.2.4. Our software package places the green objects at system
startup while it swaps the violet objects at runtime, depending on the
user’s choices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Sample holder. a) The robot can grasp the sample holder with its two
fingers by sliding into a conically shaped gap for easier engagement of
the fingers. b) The middle part of the holder houses a helix structure
that is used in the calibration step. The aluminium spheres are glued
into holes and can then be segmented in the acquired images. c) The
sample is fixed on the mounting rail which is inserted from the top of
the holder into the hollow cylindrical structure (d).[Pek+22b] . . . . 66

5.2 Calibration procedure. In a) the flat-field corrected detector image is
displayed. This image is contrast-enhanced and subsequently a circle
detection algorithm is executed. The resulting image where the detected
circle centers are marked with red crosses is displayed in b). Given the
geometry of the sample holder and the robot’s sensor readings when
acquiring the image, an initial guess of the helix location (blue crosses)
is projected onto the image plane (c). The parameters that define the
rotation and translation of the helix are optimized in a least-squares
problem in the 2D image domain. The resulting parameters are used to
project the helix again to the image domain to display the final outcome
of the calibration (d).[Pek+22b] . . . . . . . . . . . . . . . . . . . . . 71
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5.3 Robot calibration experiment. a) Robot placement precision from
different starting positions from the top perspective. Starting positions
sampled on a circle parallel to the base of the robot with radius of 18 cm
and the default goal position for the sample holder as center point. The
goal position (cross) and orientation was identical for all measurements.
The resulting images were calibrated with the calibration procedure in
fig. 5.2. b) The centers of the calibrated helix structures are plotted with
circles. The z-axis is omitted for illustration purposes. The expected
location of the circles is outlined by the red cross, which lies on the
center ray of the source. The distance of the actual position of the
calibration structure (circles) to the central ray (red cross) demonstrates
that a calibration procedure is needed.[Pek+22b] . . . . . . . . . . . 72

5.4 Calibration parameters. The calibration is influenced by two parame-
ters: The number of points that are sampled on the helix structure for
the distance measurements and the number of spheres on the sample
holder. Calibration results were evaluated based on different choices for
the two different parameters. The geometric error between the sampled
helix structure and the detected spheres was used as error metric. A
higher sampling rate on the continuous helix structure leads to a lower
error but increases the runtime linearly (a). A higher number of spheres
decreases the error but physical constraint do not allow to increase this
number as there is limited space on the sample holder (b). Calibration
results for different combinations of the parameters are displayed for a
region of the helix structure (c to f). Decreasing the number of spheres
severely affects the calibration results.[Pek+22b] . . . . . . . . . . . . 77

5.5 Experimental results. A walnut and a pistachio were measured and
reconstructed in order to compare the conventional rotational stage
(reference) with the robotic sample holder (robot). The reconstruction
volumes were registered and aligned but small differences are still visi-
ble. The detector images were binned with 4 ∗ 4 and the reconstruction
volume has dimensions 7203. The front slice is from the perspective
of the x-ray source. The top slice is from the bird’s eye view. A zoom
factor of 2x was applied to the slices to crop the region of interest. Our
observation is that the reconstruction quality is identical despite the
fact that the volumes are not aligned perfectly and hence the contrast
does not match.[Pek+22b] . . . . . . . . . . . . . . . . . . . . . . . . 78
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6.1 Hardware setup. In (a), the robotic arm is mounted on a table with
the source and the detector inside a safety hutch. The source-to-robot
distance is 136 cm, and the robot-to-detector distance is 79 cm. Two
depth cameras monitor the robot’s movement and stop the robot con-
troller when the executed trajectory interferes with obstacles. A power
switch can also stop the robotic arm. It routes to the operator’s table
outside of the hutch. In (b), (c), and (d), the different parts of the
sample holder part are displayed. (b) and (d) depict the two gripper
types, and (c) depicts the cylinder part, which houses the geometric
structure for calibration. The gripper part is mounted to the cylinder
part for experiments.[Pek+23b; Pek+23a] . . . . . . . . . . . . . . . 93

6.2 Reachability. Reachability maps are plotted for each trajectory type
(circular vs. spherical, columns) and each gripper type (straight vs.
curved, rows). The plots resemble a 2D cartographic projection (Moll-
weide projection) of the 3D sphere surface. The circular trajectories
cover a fraction of the sphere surface, representing all possible sam-
ple rotations. The robotic arm can reach all points on the circle (left
column). For the spherical trajectory, the robotic arm cannot reach all
way-points, hence the blind spots on the maps (right column). The red
points indicate way-points with successful motion planning but failure
during execution (see section 6.2.2 for details). We achieved the best
coverage of the sphere (81.6 %) with a curved gripper for the sample
holder (lower right).[Pek+23b] . . . . . . . . . . . . . . . . . . . . . 94

6.3 Theoretical Reachability. We plotted theoretical reachability maps for
spherical trajectories for two situations only possible in the simulation.
On the left, we removed all obstacles surrounding the robotic arm
in the laboratory setup from the configuration space except for the
table. On the right, in addition to removing all collision objects, we
removed the x-ray beam encoded as a cubic collision object between
the source and the detector. This collision object prevents occlusions
of the sample by the robotic arm on the detector images. On the left,
we achieved a successful planning rate of 84.2% (1010/1200), and on
the right, 99.1% (1189/1200). The reachability number 99.1% proves
the flexibility of the given robotic arm in combination with the curved
gripper.[Pek+23b] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
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6.4 Sample. The sample consists of the object of interest (a toy brick) and
an absorber (polyvinyl chloride plate), which were manually glued to a
Plexiglass mounting plate. The toy brick has dimensions 31 x 21 x 31
mm, and the absorber has a thickness of 4 mm. The absorber plate has
a significantly higher X-ray contrast absorption rate than the toy brick.
We aim to introduce beam hardening artifacts with this property in the
reconstructions and evaluate the performance of different trajectory
types in tackling this issue.[Pek+23b; Pek+23a] . . . . . . . . . . . . 95

6.5 Experimental Results. A sample was measured and reconstructed with
the robotic arm with the straight gripper part to compare the circular
trajectory (conventional) with the spherical trajectory (advanced). The
reconstruction volumes are registered and aligned with our calibration
algorithm (see section 6.2.4). We binned the detector images with
4 ∗ 4, and the reconstruction volume has dimensions 7203. A zoom
factor of 5x was applied to the slices to crop the region of interest. We
plotted line profiles at three different positions for the YX slices. Our
observation is that the reconstruction of the measurements with the
spherical trajectory (top left, red lines) is superior qualitatively and
quantitatively compared to the reconstruction of the circular trajectory
(bottom left, blue lines). Qualitatively, there are fewer artifacts, and
the image is sharper than with the circular trajectory. From a quantita-
tive perspective, the line profiles for the spherical trajectory (red) are
steeper than those for the circular trajectory (blue), making the image
sharper.[Pek+23b] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
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7.1 Online trajectory optimization pipeline. In I (1 - 3), the scout scan
procedure starts by generating a spherical trajectory (a1 . . . an) that
covers the whole sphere with a coarse sampling, only including poses
that are reachable by the robotic arm. Measurements of the sample are
either measured experimentally or simulated with our robotic software
package, and the resulting sinograms are calibrated, extracting the
exact geometry of the sample on the image. In II (4 - 6), the pool of
images acquired in I is used to reconstruct the sample in a volume with
coarse resolution and to segment highly absorbing regions subsequently.
Step II is completed by computing a score for each of the poses ai

on the coarsely sampled sphere from step I. In step III (7 - 12), we
enter the open-ended trajectory optimization loop where a densely
sampled sphere surface is initialized with the scores from II. Likewise,
the acquired image pool is initialized with the measurements from I. In
every iteration of the optimization loop, a new pose is sampled on the
sphere surface for measurement, calibration, and volume reconstruction
and segmentation by our software package. In the final step (12), a
score update is initiated on the sphere for the most recently acquired
pose and its neighbors. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 Trajectory optimization hyperparameters. We executed our trajectory
optimization algorithm with different choices for the parameters r and
s for sample number 1 and plotted the resulting spherical trajectories.
In the three rows, we visualized the resulting trajectory when different
disk radius parameters (r = 5, r = 10 and r = 15 radians) are applied
for the neighborhood of a given pose. Poses within this neighborhood
were updated with the new score if they were not yet attempted by the
robotic arm. In the three columns, we visualized the resulting trajectory
when different penalty parameters (s = 5, s = 10 and s = 20) are
applied on the absorption score. s penalizes the absorption rate of the
sample from the given angle by decreasing the weight of the given pose
in the resulting probability distribution. . . . . . . . . . . . . . . . . . 107

7.3 Samples. We modeled two samples, each containing an absorber
plate that simulates highly absorbing parts. In (a), the sample is a
combination of a cubic and a cylindrical object stacked vertically (left),
placed next to an absorber plate with dimensions 4 x 30 x 50 mm. In
(b), the sample is made up of an open box containing one cubic and two
cylindrical objects separated by a single absorber plate with dimensions
1 x 12 x 12 mm. For both samples, we modeled holes into the cubic
and cylindrical objects for evaluating reconstruction image quality. . . 111
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7.4 Spherical trajectories. In (a) and (b), we visualized the mapping of
specific regions between sphere surfaces with low and high sampling
density. In (c), (d) and (e), we plotted the spherical trajectories for the
three different strategies of choosing poses on the sphere for sample
no. 2: Whole sphere coverage (c), random sampling (d) and online
optimization based on absorption score of previous measurements (e).
In (c), (d) the spots on the sphere are colored uniformly as no score
was calculated in these cases. The resulting image reconstructions for
the three trajectories are displayed in Fig. 7.6. . . . . . . . . . . . . . 112

7.5 Experimental results. Sample No. 1. The first sample (see Fig. 7.3a)
was measured on three different types of trajectories (similar to Fig.
7.4 ((c), (d) and (e))) and reconstructed with the robotic arm in the
simulation environment of our robotic software package [Pek+23b].
The optimized trajectory was generated with the hyperparameters r = 5
and s = 20. The reconstruction volumes are registered and aligned with
our calibration algorithm [Pek+22b]. We binned the detector images
with 4 ∗ 4, and the reconstruction volume has dimensions 7203. A zoom
factor of 4.8x was applied to the slices to crop the region of interest.
We plotted line profiles at three different positions for the YZ slices. . 115

7.6 Experimental results. Sample No. 2. The second sample (see Fig.
7.3b) was measured on the three trajectories displayed in Fig. 7.4 ((c),
(d) and (e)) and reconstructed with the robotic arm in the simulation
environment of our robotic software package [Pek+23b]. The opti-
mized trajectory was generated with the hyperparameters r = 5 and
s = 20. The reconstruction volumes are registered and aligned with
our calibration algorithm [Pek+22b]. We binned the detector images
with 4 ∗ 4, and the reconstruction volume has dimensions 7203. A zoom
factor of 4.8x was applied to the slices to crop the region of interest.
We plotted line profiles at three different positions for the ZX slices. . 116
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