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Zusammenfassung

Diese Dissertation entwickelt stoch. Darstellungen für upper semilinear Copulas und extendible Marshall-
Olkin-Verteilungen, was probabilistische Ansätze und Simulationsalgorithmen ermöglicht. Sie leitet die
stoch. Darstellungen von drei USL Copula–Unterklassen her, entwickelt einen effizienten, numerisch
stabilen Simulationsalgorithmus für hochdimensionale extendible MO Verteilungen und charakterisiert
Survival-Funktionen und de Finetti Darstellungen für generalized MO Verteilungen.

Abstract

This dissertation develops stochastic representations for upper semilinear copulas and extendible Marshall-
Olkin distributions, enabling probabilistic approaches and simulation algorithms. It derives three upper
semilinear copula subclasses’ stochastic representations, proposes an efficient, numerically stable simula-
tion algorithm for high-dimensional extendible Marshall–Olkin, and characterizes survival functions and de
Finetti representations for generalized Marshall-Olkin distributions.
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1 Introduction

This thesis investigates various aspects of modeling multivariate random vectors with parametric distributions.
High-dimensional parametric models are at the core of many real-world applications, for example, portfolio
credit risk management. Practitioners and researchers have the challenging task of finding suitable models
that are well understood while meeting the requirements of their applications. A good understanding of the
used distributions is paramount, as even those with similar margins and pairwise correlation coefficients can
be very different in nature. Additionally, distributions are not equally tractable. For example, Monte-Carlo
simulations require an efficient simulation strategy or at least a known stochastic representation. This
thesis provides novel stochastic representations, efficient simulation strategies, and theoretical advances
of three classes of high-dimensional families of distributions: Marshall–Olkin distributions, generalized
Marshall–Olkin distributions, and upper semilinear copulas.

Multivariate stochastic modeling often relies on the copula approach motivated by Sklar’s copula sep-
aration theorem suggested in [6]. This approach separates a multivariate distribution function into its
marginal distribution functions and a copula; the latter is a distribution function with standard uniform
margins comprising dependence information, see [7–11]. Analytically, a d-variate copula is a function with
the uniform margins, groundedness, and d-increasingness properties. Furthermore, there exists an analog
separation for multivariate survival functions into marginal survival functions and a survival copula, which is
itself a copula and is uniquely linked to a copula of the distribution; see [11, Chp. 1]. The copula approach
is popular, as it separates margins and dependency for methodological aspects, estimation, and simulation.
Hence, one can recombine margins and copulas and employ principles and theory derived from studying
univariate distributions. Moreover, the approach is closely linked to rank-based dependence measures such
as Spearman’s Rho, Kendall’s Tau, or Blomqvist’s Beta. However, the approach has limits, e.g., when using
discontinuous margins or copulas that suggest specific margins, see [12, 13].

Parametric modeling often requires balancing flexibility and structure by choosing a model with appropriate
degrees of freedom. For this, classes of distributions are often segmented into nested structures of
subclasses characterized by increasingly specialized assumptions. A typical structure encloses extendible
subclasses by exchangeable subclasses and these exchangeable subclasses by hierarchical factor classes.
Exchangeability requires distributional stability under arbitrary permutations of components, and extendibility
requires a stochastic representation as a finite-dimensional margin of an exchangeable sequence. A useful
caveat is that exchangeable sequences of random variables are conditionally iid and define an almost surely
unique random distribution function via a so-called de Finetti representation; see [14]. For nonnegative
sequences, this random distribution function is associated with a subordinator, a nondecreasing stochastic
process starting in zero and tending to infinity while having a.s. càdlàg path’, which has the interpretation of
a prior cumulative hazard rate of an iid sequence. Hierarchical factor classes require the exchangeability
of margins with identical characteristics of the factors. This structure is helpful to multivariate normal
and exponential distributions, see [15], as it allows leveraging many results about the extendible and
exchangeable subclasses for more general hierarchical subclasses.

The first research focus of this dissertation concerns Marshall–Olkin distributions, as introduced in [16].
These distributions of nonnegative random vectors are associated with so-called exogenous shock models
with exponential arrival times. Exogenous shock models represent each component of a random vector
as the minimum of independent exponentially distributed shock-arrival times associated with subsets of
elements, destroying all components in that subset not already destroyed by that time. A series of related
works on Marshall–Olkin distributions [15, 17–19], build on each other, cumulate in a framework to build
flexible high-dimensional hierarchical Marshall–Olkin distributions based on low-parametric extendible
submodels; see also [11, Chp. 3]. However, existing simulation strategies for extendible Marshall–Olkin
distributions, see [16, 17, 19–21], suffer from the curse of dimensionality, have numerical issues, or require
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substantial restrictions such that a general, numerically stable and efficient end-to-end simulation algorithm
for extendible Marshall–Olkin distributions was missing in the literature. Such an algorithm is provided in the
contributed core article [2].

The second research focus of this dissertation concerns generalized Marshall–Olkin distributions in-
troduced in [22, 23]. They are associated with a generalized exogenous shock model allowing arbitrary
shock-arrival-time distributions, sometimes restricted to those with continuous survival functions. As a
proper superclass of Marshall–Olkin distributions, a question standing to reason is which results about
Marshall–Olkin distributions can be generalized to this superclass. This question was explored in multiple
articles [12, 22–26]. However, the following two questions remained open: Can an analytical character-
ization for the entire class’s survival functions, similar to that of the exchangeable subclass in [25], be
established, and are the de Finetti representations of the extendible subclass always associated with additive
subordinators? The contributed articles [3, 4] show that the answer to both questions is yes and provide the
analytical characterization of the entire class’s survival functions and the de Finetti representation of the
extendible subclass.

The third research focus of this dissertation concerns upper semilinear copulas introduced in [27, 28].
These are exchangeable copulas whose margins are linear on segments with a constant lowest component
connecting the diagonal and a marginal-boundary hyperplane. In the bivariate case, they constitute the
copulas of exchangeable generalized Marshall–Olkin distributions. However, in higher dimensions, the
following two questions remained open: What is their relationship to generalized Marshall–Olkin distributions,
and how can they be represented stochastically? The contributed core article [1] derives the intersection of
both classes and provides stochastic models for other subclasses of semilinear copulas.

The thesis is structured as follows: Chapter 2 discusses multivariate lack of memory properties, Sklar’s
copula separation, multivariate exponential distributions, and their relevance to portfolio credit risk manage-
ment. Chapter 3 surveys existing research on Marshall–Olkin distributions and summarizes the findings
from the contributed core article [2]. Chapter 4 explores existing research on generalized Marshall–Olkin dis-
tributions and summarizes the findings from the contributed articles [3, 4]. Chapter 5 examines existing
research on upper semilinear copulas and summarizes the findings from the contributed core article [1].
Finally, Chapter 6 provides an outlook and suggests further research opportunities in the presented fields.
The contributed articles are attached in Appendices A to C.
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2 Multivariate lack of memory properties

This chapter provides a general overview of univariate and multivariate representations of random variables
and vectors, focusing on modeling nonnegative, unbounded, and continuous random vectors, subsequently
called multivariate lifetimes. The term multivariate lifetimes may represent the lifetime of mortal beings,
defaultable companies, components in a technical system, or other entities to which a death analogy
applies. The primary application of multivariate lifetimes considered in this thesis is modeling defaultable
companies, although many of the concepts and techniques discussed also apply to other entities. This
section discusses univariate lack of memory properties, Sklar’s copula separation, multivariate exponential
distributions derived from multivariate lack of memory properties, and the latter’s relevance to portfolio
credit risk management. This chapter presumes a knowledgeable reader to retain readability and will
introduce concepts and terms formally only if it serves a purpose for this chapter. For concepts and
terms not formally introduced here, the reader is referred to the provided references, respectively, and for
Marshall–Olkin distributions to Chapter 3.

2.1 The univariate lack of memory property

Exponential distributions are central to univariate distributions for nonnegative, unbounded, and continuous
lifetimes as an objective base model. For this, recall that the class of exponential distributions has one scale
parameter to reproduce all nonnegative expectations and satisfies the characterizing lack of memory (LOM)
property; see [29, Theorem 1]:

P(τ > s+ t | τ > t) = P(τ > s), s, t ≥ 0. (2.1)

Hence, without prior knowledge about changing death probabilities upon survival over time, it is a canonical
choice. Furthermore, nonnegative, unbounded, and continuous random variables τ with survival function F̄
have the following representation in terms of their (cumulative) hazard function H :

τ = inf {t ≥ 0 : H(t) ≥ E} a.s., (2.2a)

F̄ (t) = exp {−H(t)} = exp
{

−
∫ t

0
λ(s) ds

}
, t ≥ 0, (2.2b)

where E is a unit exponential random variable.1 Thus, every nonnegative, unbounded, and continuous
lifetime model has the interpretation of a time-changed unit exponential model with accumulated time H in
the latter model.

This representation can be rewritten such that nonnegative, unbounded, and continuous lifetimes are the
first jump times of Poisson processes. For this, write

τ = inf {t ≥ 0 : Zt > 0} , (2.3a)

Zt = 1 ∧NH(t) a.s., t ≥ 0, (2.3b)

where N is a (homogeneous) Poisson process, with the Lebesgue intensity measure having E from
Eq. (2.2a) as its first waiting time, and Z is the death-indicator process of τ ; see Fig. 2.1.2 This representation

1The representation in Eq. (2.2a) is due to the general distributional transform. Furthermore, the integral representation
in Eq. (2.2b) requires the existence of a density f such that the (infinitesimal) hazard rate is λ = f/F̄ .

2The representation in Eq. (2.3) is due to the canonical representation of Poisson point processes via exponentially distributed
waiting times and transformed points; see [30, Ex. 3.3.7, Prop. 3.7]. It potentially requires extending the probability space to
support additional independent unit exponential random variables.
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is beneficial for applications that require the death indicator’s simulation alongside a discretized grid: if H
and its generalized inverse H← can be evaluated, the memorylessness of the exponentially distributed first
jump time of N allows simulating τ given its survival until t ≥ 0 by H←(H(t) +H(τ̃)) with an independent
copy τ̃ of τ . Using Cauchy’s functional equation, this implies that the exponential distributions’ LOM property
in Eq. (2.1) is equivalent to the death-indicator process being Markov.

0

1

2

E = E1

E1
+ E2

E1
+ E2

+ E3

t

Nt

0

1

2

τ = H
−1 (E1)

H
−1 (E1

+ E2)

H
−1 (E1

+ E2
+ E3)

t

NH(t)

Figure 2.1 A visualization of the representations in Eq. (2.2) and Eq. (2.3) with τ having a Gompertz distribution with
scale parameter 1 and shape parameter 1/10 and a (homogeneous) Poisson process Nt =

∑
j∈N 1{E1+···+Ej≤t}.

An alternative interpretation of the hazard time-change, proposed in [24, Prop. 1], accumulates time with
an associative binary operator linked to the hazard function, such that the distribution fulfills a generalized
LOM property. For this, consider a strictly increasing, continuous hazard function H and its inverse H−1 and
define the binary operation ∗ : R+ ×R+, (x, y) 7→ H−1(H(x) +H(y)) with neutral element H−1(0). Then,
distributions with hazard functions λ ·H , λ ≥ 0, are uniquely characterized among continuous distributions
by the following modified LOM property:

P(τ > s ∗ t | τ > t) = P(τ > s), s, t ≥ 0. (2.4)

To make this concept more tangible, consider the following example: Suppose you are describing the waiting
time to be called into a doctor’s office. In a queue system that calls patients in the order of their arrival, it is
intuitive that the likelihood for waiting at least another five minutes is different whether you just arrived or
waited already for an hour. In this concept, the effect of time-passed on the waiting-time probabilities can
be expressed as follows:

P(τ > t+ s | τ > t) = P
(
τ > H−1(H(t+ s) −H(t)

))
, s, t ≥ 0.

Finally, the classes with proportional hazard functions are closed under taking minima of independent
random variables: Consider the hazard rate function H and independent τi ∼ λi ·H , λi > 0, i ∈ [d].3 Then,

min
i∈[d]

τi ∼ [λ1 + · · · + λd] ·H. (2.5)

In conclusion, the hazard function representation of Eq. (2.2) and the first jump time representation
of Eq. (2.3) allow for building intuitive and vividly interpretable subjective univariate lifetimes models,
incorporating available data, from a unit exponential objective base model, considering only application
constraints. Furthermore, the hazard representation is natural for many applications. For example, actuarial
life tables are based on estimated yearly mortality rates among a surviving population; see [31]. In practice,
this representation motivates the following approach: estimate discretized hazard rates from data, identify
parametric classes of distributions with suitable hazard rate shapes, e.g., exponentially increasing rates,
estimate the distribution parameters, and perform a model selection. Consequently, it is natural to lift this
concept into higher dimensions and seek multivariate objective base models to build subjective models
from them in intuitive and vividly interpretable ways.

3Consider the notation [n] := {1, . . . , n} and [n]0 := [n] ∪ {0} for n ∈ N.
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2.2 The copula separation

The most comprehensive concept to represent multivariate random vectors is Sklar’s copula separation,
which originated from [6]; see also [7–11] for the following details. A copula is the distribution function of a
random vector with continuous uniform margins. Sklar’s theorem allows separating a distribution function
F (survival function F̄ ) into its marginal distribution functions Fi (survival functions F̄i) and a copula C
(survival copula Ĉ) as follows:

F (x) = C
(
F1(x1), . . . , Fd(xd)

)
, x ∈ Rd, and (2.6a)

F̄ (x) = Ĉ
(
F̄1(x1), . . . , F̄d(xd)

)
, x ∈ Rd, (2.6b)

where C and Ĉ are both copulas. They are determined uniquely for a distribution if and only if the marginal
distribution functions are continuous. In particular, since a copula’s margins are continuous, each copula
has a uniquely linked survival copula.

Sklar’s copula separation allows extending common distribution classes to include their meta-distributions
associated with the copulas from this class, see [32, Sec. 7.1.3]. For example, a meta-Gaussian distribution
has the copula of a multivariate normal distribution in combination with arbitrary marginal distributions.
Meta-distribution classes allow the coupling of known and well-tested dependence structures with arbitrary
margins. Furthermore, limiting the model scope from arbitrary distributions to meta-distribution classes may
improve comparability between distributions, as it is often considerably easier to compare distributions in
such a meta-distribution class than across different meta-classes; see Section 2.3 and Fig. 2.2.

A d-variate random vector τ = (τ1, . . . , τd) can be standardized using the general distributional transform
of [33, Prop. 2.1] to obtain

Ui := Fi(τi−) + Vi ·
[
Fi(τi) − Fi(τi−)

]
, i ∈ [d], (2.7a)

Ei := − log (1 − Ui), i ∈ [d], (2.7b)

where Vi, i ∈ [d], are additional iid uniform random variables used to interpolate jumps of the marginal
distribution functions uniformly at random.4 The marginal distributions of the vectors U = (U1, . . . , Ud) and
1 − U are unit uniform, and those of the vector E = (E1, . . . , Ed) are unit exponential. Furthermore, the
(multivariate) distribution function of U is a copula of τ , and that of 1 − U is the corresponding survival
copula of τ .5 Moreover, this transformation is almost surely reversible:

τi = F←i (Ui) a.s., i ∈ [d], (2.8a)

τi = F̄←i (1 − Ui) a.s., i ∈ [d], (2.8b)

τi = H←i (Ei) a.s., i ∈ [d] (2.8c)

Conversely, it is also possible to define a random vector τ with distribution function F and copula C directly
via Eq. (2.8) given a random vector U with unit uniform margins and distribution function C.

The copula separation allows separating marginal and dependence aspects for modeling, inference, and
simulation. In particular, it permits using existing knowledge and techniques for the margins and dealing
with the dependence separately. Overall, as all multivariate models have a copula separation as in Eqs. (2.6)
to (2.8), the copula separation helps to understand multivariate distributions in general.

2.3 The copula model building approach

The copula separation motivates a popular methodological approach to build multivariate models by
coupling marginal distributions with a copula selected from a diverse pool of candidates from different

4For a function f with left limits, denote the left limit of f at x by f(x−).
5The standardization in Eq. (2.7) allows almost surely representing τ via Eq. (2.8). However, if margins are discontinuous there

are infinitely many alternative copulas C and associated survival copulas allowing stochastic representation of τ ’s distribution
via Eq. (2.8) from samples U ∼ C.
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families. To differentiate this concept from the copula separation, applicable to all multivariate models
independent of their primary specification, this is called the copula approach. The characteristic of
this approach is its agnosticism towards specific meta–distributions, as the model’s scope is essentially
limited only by awareness of copulas and their applicability to the problem at hand, e.g., using maximum
likelihood estimators requires a known density. A review of popular textbooks [7–11] yields the common
families of elliptical copulas, including the popular Gaussian copulas, Archimedean copulas, extreme-value
(EV) copulas, including Marshall–Olkin (MO) copulas, Vine copulas, and copulas obtained via recombination
techniques of those.6

The most popular Gaussian copulas allow vivid interpretations of their dependence structures by stochas-
tically representing them as linear transformations of iid standard normal random variables. In addition,
unlike most other copula models, they are fully characterized by pair-correlation matrices. Similarly, model
building often relies on stochastic representations to interpret the nature of the built distribution. However,
these stochastic models and their parametrization are often considerably more complex than those of
Gaussian copulas. Examples 2.1 to 2.5 present selected popular copula families and their stochastic
representations.

Example 2.1 ([11, Exp. 1.17]). One-factor extendible Gaussian copulas arise as the copulas of the ex-
changeable multivariate normal distributions with Pearson correlation coefficients ρ ∈ [0, 1]. They have the
unique stochastic representation

Ui := F
(√

1 − ρZi + √
ρZG

)
, i ∈ [d],

where ZG, Z1, . . . , Zd are iid standard normally distributed, and F is the standard normal distribution
function.7 There are simple one-to-one mappings from associated normal distributions’ Pearson correlations
to the popular dependence coefficients Kendall’s τ and Spearman’s ρ; see [32, Thm. 7.42].

Example 2.2 ([32, Chp. 6 and 7]). Elliptical copulas arise as the copulas of multivariate elliptical distributions
with characteristic generator ψ and dispersion matrix Σ. They have the canonical stochastic representation

Ui := Fi
(
a⊤i R · Z/∥Z∥2

)
, i ∈ [d],

where A = (a1, . . . , ad)⊤ ∈ Rd×k is a matrix with AA⊤ = Σ, Z = (Z1, . . . , Zk) is a vector of iid standard
normally distributed random variables, R is a random radial variable whose distribution is associated with ψ,
independent of Z/∥Z∥2, and Fi ≡ Fψ,∥ai∥2

2
, i ∈ [d], are the associated marginal distribution functions. The

stochastic representation is unique up to the factorization of Σ and a deterministic scaling of ai and R.

Example 2.3 ([34]). Archimedean copulas arise as the survival copulas of so-called ℓ1-norm symmetric
distributions without an atom in 0. They have the stochastic representation

Ui := F̄
(
R · Ei/∥E∥1

)
, i ∈ [d],

where E = (E1, . . . , Ed) is a vector of iid unit exponential random variables, and R is a radial random
variable independent of E/∥E∥1. The stochastic representation is unique up to a deterministic scaling of
R. The associated Archimedean generator φR,d = F̄ is the so-called Williamson d-transform of the radial
variable R. There exists an integral formula to calculate Kendall’s rank correlation coefficient τ from given
generators; see [8, Cor. 5.1.4].

Example 2.4 ([30, Prop. 5.11]). Extreme-value copulas arise as the copulas of extreme-value distributions
with standard Fréchet margins. They have the unique stochastic representation

Ui := F

η ·
∨
j∈N

(Sj)i
E1 + · · · + Ej

, i ∈ [d],

6The copula approach is not to be confused with the approach of choosing a distribution from a distinct meta–distribution class,
which would require a deliberate restriction of the model’s scope to this class.

7In this context, unique means that the representation is unambiguous in this particular model. However, it does not mean no
other stochastic representations from different models exist.
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for η > 0, independent sequences E1, E2, . . . iid unit exponential and S1,S2, . . . iid on the unit simplex with
a suitable distribution fulfilling E[S1] = 1/η, and the standard Fréchet distribution function F . EV copulas
are also known as the possible limit copulas of individually linearly transformed component-wise maxima of
iid sequences of random vectors, and if an EV copula CEV is the limit copula of such a sequence originating
from the copula C, we say C is in the maximum domain of attraction of CEV and write C ∈ MDA(CEV);
see [11, Sec. 1.2.5]. In particular, C is an extreme-value copula if and only if it fulfills the property

C(ut) = C(u)t, ∀t ≥ 0, u ∈ [0,1].

Example 2.5 ([14] and [4, Apndx. A]). Extendible copulas (from arbitrary families) arise as the copulas of
conditionally iid distributions. They have the stochastic de Finetti representation

Ui := F̄
(
Ψ←(Vi)

)
, i ∈ [d],

where Ψ is a random distribution function with F (x) := E[Ψ(x)], x ∈ R, and V1, . . . , Vd is a sequence of iid
uniformly distributed random variables. If Ψ has almost surely nonnegative real support, this representation
can be rewritten to standardized first-jump times of a random subordinator over independent iid unit
exponential barriers:

Ui := F̄
(
inf {t ≥ 0 : Λt ≥ Ei}

)
, i ∈ [d],

where Λ := − log (1 − Ψ) is a subordinator and E := − log (1 − V ) is a vector of iid unit exponential
random variables. Selected examples are: Extendible Archimedean copulas are associated with random
conditionally linear maps; see [35]. Extendible Marshall–Olkin survival copulas are associated with Lévy
subordinators; see [17]. Extendible generalized Marshall–Olkin survival copulas are associated with additive
subordinators, explored in the contributed article [4]; see also Chapter 4 and [25]. Extendible extreme-value
copulas and survival copulas of extendible exponential minima distributions are associated with so-called
strong and weak infinitely divisible w.r.t. time subordinators; see [36]. Finally, extendible min–infinitely
divisible survival copulas are associated with so-called infinitely divisible subordinators; see [37].

The copula approach is appropriate for many applications but also promotes an inherently atomistic view
of the model, which leads to considerations and limitations discussed in the following. The first three are
relevant for all margin-transforming approaches.

• Discontinuous margins (see [12, 13]): Coupling copulas with discontinuous marginal distributions
implies that other copulas are also associated with the obtained full distribution, resulting in ambi-
guity about a distribution’s dependence without considering its margins. Furthermore, probabilistic
definitions of Spearman’s ρ and Kendall’s τ become margin-dependent for discontinuous margins.
[12, Exp. 2.8] couples a specific bivariate copula with two appropriately selected sets of marginal
distributions such that those full distributions may also be associated with the comonotonicity and
independence copula, respectively.

• Margin-dependent properties (see [12]): Some copulas suggest specific margins, and coupling them
with other margins results in losing specific properties. A slightly modified and condensed version
of an example given in [38, Exp. 2.3] is this:8 Consider a bivariate MO-distributed random vector
τ , scaling factors α1 > α2 > 0, and define η = α · τ . Then, η still has exponential margins and a
survival copula of MO-kind, but is not MO-distributed itself. In particular, the singular component will
not be on the diagonal section anymore, implying some conditional previsibility of its death-indicator
process, as P(η1 = η2 · (α1/α2)) > 0.

• Simulation incompatibilities: The natural approach to simulate a distribution specified with the copula
approach is to first simulate U ∼ C and then to apply the distribution transform in Eq. (2.8a). However,
this requires a simulation algorithm for C and the distribution transform simulation method being

8This example anticipates basic knowledge about the bivariate MO distribution and their singular components, which will both be
discussed in greater detail in Chapter 3.



8

appropriate for all marginal distributions. For example, this method produces bounded samples for
Poisson distributions with linear congruential random number generators (RNGs), see [39, Chp. 2],
due to the RNG’s inability to produce arbitrarily small numbers. However, there are also less
pathological examples for which other methods are preferred over the distribution transform simulation
because calculating (or approximating) the generalized inverse of the distribution function is difficult,
for example, for Beta distributions; see [39, Exp. 2.2.6].

• Limits of interpretability and comparability : Many applications require an intuitive interpretation of the
composed model, proven robustness of the fitting procedure, and comprehensible comparisons to
alternative models. This is a requirement, in particular, of regulated financial companies’ production
models, which must be justified to internal validation units, management, and regulators. However,
many multivariate lifetime applications lack data for sole statistical model selection and parameter
estimation. They require expert judgements and manual modeling decisions about the copulas and
margins considered, carefully balancing model structure and flexibility, and suitability assessments.
This requires a reasonable understanding of the composed distributions, with their particular spe-
cialties and limitations. For example, Gaussian copulas lack tail dependence, and Archimedean
copulas are always exchangeable; see [11, Chp. 2 and 4]. Stochastic representations could help
make knowledgeable modeling decisions. However, as outlined in the following and highlighted
in Fig. 2.2, the stochastic representations of different multivariate distributions are rarely compatible.

– In simple meta-distribution classes such as the meta–extendible Gaussian class, distributions
can be interpreted and compared fully and vividly via the stochastic representation in Exp. 2.1.

– In complex meta–distribution classes, such as the meta-Archimedean class, some distributions
are difficult to interpret or compare via the stochastic representation in Exp. 2.3. In the case
of meta-Archimedean distributions, there exists some intuitions about how properties of the
radial distribution relate to specific properties of the copula, e.g., (possible) singular components,
see [34, Sec. 4.1], or extremal behavior, see [40]. However, these relationships are highly
complex and require specialized knowledge about the radial distribution. Note that alternative
stochastic representations not involving the radial variable explicitly require thinking differently
about distribution properties; see [41] for an approach to investigate bivariate Archimedean
copulas via their Markov kernels, which are regular conditional distributions. Moreover, multiple
Archimedean copulas may have equal dependence coefficients, and choosing between those
copulas is rarely straightforward.

– Different meta–distribution classes, such as meta–extreme-value and meta-elliptical distributions,
often have entirely different stochastic representations, making it infeasible to vividly compare
two copulas from these classes via their stochastic representations in Exps. 2.2 and 2.4. In the
particular example, both meta-distribution classes have infinitely many candidates sharing a
particular dependence coefficient value, e.g., a specific value for Kendall’s τ . It would be very
challenging to manually choose the most suitable candidate if this decision cannot be solely
data-based.

2.4 Multivariate lack of memory properties

The copula approach naturally suggests an atomistic view of the model by separating it into its margins and
copula. However, a holistic approach with strong model assumptions is needed when margins and copula
cannot be selected and estimated individually with sufficient confidence due to little available data. The
lack of available data is a problem of many multivariate lifetime applications due to the nonrecurrent and
sometimes unprecedented nature of (individual) death events.

An alternative to the copula approach for multivariate lifetimes is using an objective multivariate base
model that serves as a root for more subjective, interpretable models obtained by intuitive, vivid transforma-
tions, similar to unit exponential distributions in the univariate case. Labeling a model objective means that
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Figure 2.2 A hypothetical, exemplary projection of copulas into the unit disk, mapping the radius to a dependence
coefficient and the angular coordinate suitably to preserve copula-class cohesion. The selection is not exhaustive,
and the areas do not represent the classes’ sizes. The figure indicates the seamlessness to transition in a stochastic
representation by deterministic, meaningful parameter transformations to change the copula from one to another,
thereby obtaining a vivid comparison of both. The dashed lines represent low-parametric families with stochastic
representations allowing seamless transitions. The opaque areas represent larger families with stochastic representa-
tions allowing transitions, sometimes only with increased complexity. Transitions between opaque areas are often
difficult or impossible in the currently known representation without explicit model switching.
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it reflects (stylized) facts, e.g., nonnegative, unbounded, and continuous marginal lifetimes, and that it is a
sensible base model easily and intuitively configurable with little to no margin or dependency information.9

This approach addresses the copula approaches interpretability and comparability issues, mentioned in
the last section, by giving up some of its flexibility by restricting the model’s scope to a meaningful class of
distributions.

It seems natural to search objective base models for multivariate lifetime modeling in multivariate
generalizations of univariate exponential distributions’ characterizing properties. Recall that exponential
distributions are characterized by the LOM property in Eq. (2.1) or, equivalently, by their death-indicator
processes being Markov. The following is a brief excerpt from the survey in the contributed article [5] about
existing multivariate generalizations of LOM properties. Let τ be a d-variate nonnegative, unbounded, and
continuous random vector, s, t ≥ 0 be d-variate nonnegative vectors, and s, t, c ≥ 0 nonnegative values;
and consider the following properties:

• τ has the multivariate independent exponential lack of memory (MIELOM) property if

P(τ I > sI + tI | τ I > tI) = P(τ I > sI) ∀∅ ≠ I ⊆ [d], s, t ≥ 0. (2.9)

• τ has the Marshall–Olkin lack of memory (MOLOM) property if

P(τ I > sI + t | τ I > t) = P(τ I > sI) ∀∅ ≠ I ⊆ [d], s ≥ 0, t ≥ 0. (2.10)

• τ has the min-stable multivariate exponential (MSMVE) LOM property if

P(τ I > cI(s+ t) | τ I > cIt) = P(τ I > cIs) ∀∅ ≠ I ⊆ [d], c ≥ 0, s, t ≥ 0. (2.11)

• τ has the exponential minima (EM) LOM property if

P(τ I > s+ t | τ I > t) = P(τ I > s) ∀∅ ≠ I ⊆ [d], s, t ≥ 0. (2.12)

The MIELOM and MOLOM properties in Eqs. (2.9) and (2.10) were first discussed in [16]. This article
proved that MIELOM implies independent and exponential margins, and it introduced the class of Marshall–
Olkin distributions, which will be discussed in Chapter 3, that fulfill the MOLOM property. As in the univariate
case, the MOLOM property can be rewritten as a Markov property, as it is equivalent to all marginal death-
indicator processes being Markov, see [21]. The MSMVE LOM property characterizes MSMVE distributions,
which are equivalent to compositions of EV–survival copulas and exponential margins, see [42, Lem. 2.44].

These multivariate LOM properties in Eqs. (2.9) to (2.12) and the related distributions were investigated
in [38] with the following findings:

• MIELOM implies MOLOM, MOLOM implies MSMVE, and MSMVE implies EM; in particular, MOLOM
is the strongest generalization that does not imply independence. Conversely, the article also proves
by providing counterexamples that the converse does not always hold. In a similar spirit, we provide
two examples in the contributed article [5] showing that the weak version of EM, fulfilling Eq. (2.12) for
I = [d], does not always imply EM.

• Random vectors τ having one of these multivariate LOM properties have a positive dependence in
the following sense; see [38, Sec. 5]:

– If τ has the MOLOM property, it is also associated, i.e., for all nondecreasing real-valued
functions f, g for which the following expression is well-defined, it holds that

Cov[f(τ ), g(τ )] ≥ 0.

9The objective base model’s choice is subjective in the literal sense and should be understood axiomatically.
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– If τ has the MSMVE property, it is also positively left and right quadrant dependent, i.e.,

F (t) ≥
d∏
i=1

Fi(ti), ∀t ≥ 0, and F̄ (t) ≥
d∏
i=1

F̄i(ti), ∀t ≥ 0.

– If τ has the EM property, it also holds that

F (t1) ≥
d∏
i=1

Fi(t), ∀t ≥ 0, and F̄ (t1) ≥
d∏
i=1

F̄i(t), ∀t ≥ 0.

• A coherent life function α maps a random vector of lifetimes τ to an overall system lifetime α(τ ) that
takes the form

α(τ ) = max
j∈[n]

min
i∈Ij

τi,

for sets I1, . . . , In ⊆ [d]. Consider τ having an EM distribution, then there exists an MO-distributed

random vector τ̃ that is marginally equivalent in coherent life functions, i.e., α(τ ) d= α(τ̃ ) for all
coherent life functions α.

The suitability of MO distributions for real-world applications that do not involve concurrent deaths, such
as credit modeling, may not be initially apparent. Whether this limitation excludes MO distributions from
possible choices depends on the modeling decision. However, the finding about marginal equivalence in
coherent life functions suggests that MO distributions might still be appropriate for many applications where
EM distributions, which do not always have singular components, are suitable. In particular, this is the case
when the quantity of interest can be simplified to the overall system lifetime. Additionally, another argument
against excluding MO distributions arises when time is discretized.

From a modeling perspective, MO distributions are particularly interesting candidates for objective base
models since they allow generalizations of the exponential distributions’ hazard and Markov representations.

• Any MO distribution has the representation

τi = inf {t ≥ 0 : Zt ∋ i}, i ∈ [d],

for a Markovian death-indicator process Z on the power-set of [d]; see [21].

• Any exchangeable Marshall–Olkin (exMO) distribution has the stochastic representation

τi := inf {t ≥ 0 : Z∗t ≥ Π(i)}, i ∈ [d],

for a Markovian death-counting process Z∗ on [d]0 and a uniformly random permutation Π, indepen-
dent of Z∗; this is proven in the contributed core article [2].

• Any extendible Marshall–Olkin (extMO) distribution has the stochastic representation

τi := inf {t ≥ 0 : Λi ≥ Ei}, i ∈ [d],

for a Lévy subordinator Λ and iid unit exponential random variables E1, . . . , Ed, independent of Λ;
see [17].

These stochastic representations are easily identified as natural multivariate generalizations of the first-
jump-time representation in Eq. (2.3) or the hazard representation in Eq. (2.2) for the extendible case.
Furthermore, the hazard-time-change, associated with replacing the standard addition with a binary operator
linked to an invertible hazard function, may also be used in this multivariate generalization to obtain flexible
meta–distribution classes that remain interpretable for multivariate lifetime applications. However, note
that, albeit being interpretable, the class of MO distributions also has issues with over-parametrization
and parameter-robustness in higher dimensions, since it has 2d − 1 parameters. Consequently, practical
applications benefit from using structured low-parametric subclasses that are meaningful in the used context.
Examples of such approaches can be found in [43–47] and the contributed article [5] as summarized in the
following subsection.
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2.5 Applications to portfolio credit risk

The following section summarizes key findings from the contributed further article [5], which critically
investigates the common industry practice of iteratively simulating default indicators over discretized time
grids. It highlights the relevance of LOM properties to portfolio credit risk management. First, it outlines that
investigating the terminal dependence for survival-of-all events is similar to finding the maximum domain of
attraction to which the inter-period distribution’s survival copula belongs. In particular, it demonstrates that
popular choices for survival copulas for the inter-period distribution may result in unexpected and unintended
vanishing terminal dependence. Second, it suggests using hierarchical Marshall–Olkin (hMO) distributions
to address a bouquet of methodological challenges of this industry practice.

Practitioners often model default by iteratively simulating inter-period default-indicators Y (∆)
k over a

discretized time grid T := (0,∆, . . . , n∆) for some fixed time increment ∆ > 0 and terminal time horizon
T = n∆ alongside other risk factors, i.e., a default-indicator process Z(∆) on T is defined by

Z(∆) : T → P([d]), t 7→
t/∆⋃
k=1

Y
(∆)
k ,

where the inter-period default-indicators are usually implicitly defined by an inter-period law ζ(∆) with

Y
(∆)
k

d=
{
i ∈ [d] : ζ(∆)

i,k ≤ ∆
}
, k ∈ [n].

The inter-period law, if defined, is either modeled explicitly or is defined implicitly by a desired terminal law
τ (∆) fulfilling {

Z
(∆)
t : t ∈ T

}
d=
{{
i ∈ [d] : τ (∆)

i ≤ t
}

: t ∈ T
}
.

In both cases, the inter-period and terminal distributions and their relationship must be feasible and well-
understood. In particular, sampling the inter-period indicators and assessing the terminal distribution’s
suitability must be feasible. Hence, while the inter-period default-indicators may depend on previous
timesteps and external risk factors, practical constraints often exclude complex inter-period dependence.
Moreover, to retain tractability, they suggest Markovian default-indicator chains, conditioned on external risk
factors, or, stronger, embeddability in a continuous model with a Markovian default indicator process.

First, the contributed article [5] outlines this approach’s fallacy that terminal dependence can be inadver-
tently significantly less pronounced than inter-period dependence. For demonstration, it assumes a random
walk–type default indicator chain with iid inter-period indicators, independent of other risk-factors, based
on an exchangeable distribution with exponential marginal survival function F̄ ζ and exchangeable survival
copula Ĉζ , not dependent on the chosen time increment:

F̄ (ζ) = Ĉ(ζ) ⊕ (F̄ (ζ), . . . , F̄ (ζ)).

Now, the article observes that if Ĉ(ζ) ∈ MDA(Ĉ) for an extreme-value (survival) copula Ĉ, then

P
(
Z

(T/n)
t = ∅

)
= P

(
τ (T/n) > t

)
= P(ζ > T/n)⌊n·(t/T )⌋

= Ĉ(ζ)
(
F̄ (ζ)(t)1/(t/T )/n, . . . , F̄ (ζ)(t)1/(t/T )/n

)⌊n·(t/T )⌋

n→∞−→ Ĉ
(
F̄ (ζ)(t), . . . , F̄ (ζ)(t)

)
, ∀0 ≤ t ≤ T.

Hence, for many survival copulas in the independence copula’s maximum domain of attraction, e.g.,
Gaussian copulas, Clayton copulas, and Frank copulas, inter-period dependence is not carried over to
terminal dependence for survival-of-all events.

Second, the contributed article [5] suggests that low-parametric hMO distributions, as described in Rmk. 2.6,
have valuable properties as inter-period distributions for iteratively simulating default-indicators over dis-
cretized time grids:
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• The factor model structure facilitates building low-parametric, high-dimensional factor models that
allow adding or removing entities without changing parameters associated with other entities.

• The discrete-time default-indicator chains may be embedded in a universal continuous-time default
indicator process, allowing arbitrary time discretizations and horizons.

• The marginal default-indicator chains for arbitrary time discretizations are homogenous Markov chains,
which allows simulating subportfolios on arbitrary time discretizations.

• Matching inter-period and terminal distributions simplify reasoning about terminal probabilities.

It is noteworthy that compared to the proposed models in [43, 44], which assume factors with individual and
global shocks resulting in individual-, global-, and sector-killing events, this hierarchical model permits a
broader range of shocks, as [45], while retaining the low-parametric factor model structure.

Remark 2.6 (Low-parametric hMO iterating default model, see [2, 5]). Suppose d ≥ 2 and a sector-
associated partition of defaultable entities J1 ∪̇ · · · ∪̇ Jn = [d]. Consider a global factor and sector factors
associated with extMO distributions via Bernstein functions ψ(0), ψ(1), . . . , ψ(n), which may be chosen from
suitable low-parametric families of Bernstein functions.10 The corresponding hMO distribution has the
survival function

F̄ (t) = F̄ψ
(0)(t) ·

n∏
k=1

F̄ψ
(k)(tJk

), t ≥ 0,

and can be sampled as the component-wise minimum of two independent random vectors: a d-variate
extMO distributed random vector associated with ψ(0), and a vector of concatenated independent |Jk|-
variate extMO distributed random vectors associated with ψ(k), respectively, appropriately re-ordered;
see [48, Sec. 4.2] and the contributed core article [2] about how to simulate extMO distributions. As a
consequence of the Arnold model (AM) representation, see [20] and [2, Sec. 3], the iterating death-indicator
model associated with this inter-period distribution fulfills the property that a terminal distribution exists and
matches the inter-period distribution for arbitrary time discretizations; see the addendum to the contributed
article [5].

This model implies exponential margins and exchangeable sector components. However, when non-
exponential margins are required, many of these model’s features can be lifted into a meta–distribution
class that is obtained by a simple time and time-step-size transformation as described in Section 2.1.

10Bernstein functions and their relationship to extMO distributions is discussed in Chapter 3. For now, consider them as parameters
for extMO distributions.
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3 Marshall–Olkin distributions

This chapter primarily discusses the contribution of the core article [2] about implementing simulation
algorithms for extendible Marshall–Olkin distributions. The core article also contains detailed introductions
to the necessary background theory. The interested reader is referred to the article for all topics only
broached in this chapter.

3.1 Marshall–Olkin distributions

Marshall–Olkin (MO) distributions were introduced in [16] as the continuous distributions characterized by
the generalized multivariate lack of memory (LOM) property in Eq. (2.10), and they are shown to have the
survival function

F̄ (t) = exp

−
∑
∅̸=I⊆[d]

λI max
i∈I

ti

, t ≥ 0,

for so-called shock-arrival intensities λI , ∅ ≠ I ⊆ [d], fulfilling the marginal finiteness condition∑
I∋i

λI > 0, ∀i ∈ [d].

These distributions do not have a multivariate Lebesgue density because of the maximum operation in the
survival function. Consequently, they have so-called singular components, i.e., lower-dimensional subsets
with positive probability, on (marginal) diagonal sections.

MO distributions have been researched extensively over the past decades, also w.r.t. aspects not primarily
discussed in this thesis. The interested reader is referred to an extensive survey in [11, Chp. 3]; for the
exchangeable subclass, see also [49]. In addition, the following list contains notable works about MO distri-
butions that are not discussed elsewhere in the thesis: Maximum Likelihood estimation w.r.t. a dominating
measure was established in [50, 51]. A moment-based estimation approach for the extendible subclass
was researched in [52]. The survival copula of MO distributions was derived in [53], and its Pickands
representation was derived in [54]. Finally, [55] calculated the distributions of MO-distributed random
vectors’ means for lower dimensions explicitly and for extendible random vectors in higher dimensions
asymptotically.

MO distributions have several general, i.e., non-specialized, stochastic representations (see contributed
core article [2, Sec. 2.2] for more details):

• The exogenous shock model (ESM); see [16]: The original stochastic representation of MO distribu-
tions assumes independent exponential shock-arrival times EI with rates equal to the distributions’
shock-arrival intensities λI . These are associated with nonempty subsets of components ∅ ≠ I ⊆ [d].
A component i’s death time τi is defined as the first shock-arrival time associated with a subset
containing that component:

τi := min {EI : I ∋ i}, i ∈ [d].

• The Arnold model (AM); see [20]: Assume iid set-valued shocks Y1, Y2, . . . ⊆ [d] with probabilities
pI , ∅ ≠ I ⊆ [d], proportional to the shock-arrival intensities. They arrive after iid exponential waiting
times W1,W2, . . ., independent of the shocks, with an intensity equal to the sum of all shock-arrival
intensities λ. A component i’s death time τi is triggered by the first shock-set containing it:

τi := min {W1 + · · · +Wj : Yj ∋ i}, i ∈ [d].
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• The Markov representation, subsequently called the Markov death-set model (MDSM): see [21]: The
death-indicator processes of MO distributions are Markov processes. Furthermore, given a sample
path of the death-indicator process Z, a component i’s death time is defined as the first time its death
is indicated:

τi := inf {t ≥ 0 : Zt ∋ i}, i ∈ [d].

• Another stochastic representation was proposed in [56, Thm. 3] for a subclass fulfilling the hierarchy
condition λI = 0 ⇒ λJ = 0 ∀I ⊆ J . Those MO distributions arise as the first surpassing-times of
d-dimensional Lévy subordinators components’ Λi over iid unit exponential barrier values E1, . . . , Ed,
independent of the Lévy subordinator, i.e.,

τi := inf
{
t ≥ 0 : Λit ≥ Ei

}
, i ∈ [d].

Furthermore, [56, Lem. 3] shows that such a d-dimensional Lévy subordinator can be constructed
from independent compound Poisson processes with exponential jumps with common rate: There
exists αI ≥ 0, ∅ ̸= I ⊆ [d], and η > 0, fulfilling a known recursion, such that we can define
independent compound Poisson processes ΥI with intensity αI and exponential jumps with rate η:

Λi :=
∑
I∋i

ΥI , i ∈ [d].

The core article [2] contributes the following novel results about general stochastic representations of
MO distributions to the scientific literature:

• [2, Sec. 3] rewrites the death-indicator process Z of an MO-distributed random vector τ represented
by the AM as a random walk Z̃ on the semigroup of [d]’s power-set with the union as a conjunction
subordinated by a Poisson process N with intensity λ, associated with the AM’s waiting times, i.e.,

Zt =
Nt⋃
j=1

Yj = Z̃N(t), t ≥ 0.

The separation Z = Z̃ ◦N extends the result from [21, p. 62], which previously derived the first part
of the equation above, by emphasizing this Markov process being a Poisson process–subordinated
Markov chain.

• [2, Thm. 3.1] uses the AM’s new death-indicator processes representation as a Poisson pro-
cess–subordinated Markov chain to calculate the first explicit representation of its infinitesimal
Markov generator Q = (qI,J : I, J ⊆ [d]):

qI,J =


−
∑
I⊊K⊆[d]

∑
L⊆I λL∪(K\I) , I = J,∑

L⊆I λL∪(J\I) , I ⊊ J,

0 , else.

Specialized representations of Q for MO subclasses are also provided in [2, Rmk. A.1–A.5].

3.2 Exchangeable Marshall–Olkin distributions

Exchangeable Marshall–Olkin (exMO) distributions are characterized by shock-arrival intensities being
equal for shock-sets having the same cardinalities, see [49, Lem. 3.1.1], i.e.,

|I| = |J | ⇔ λI = λJ ∀∅ ≠ I, J ⊆ [d].

Consequently, exMO distributions allow the following three reparametrizations, which all require only d
instead of 2d − 1 parameters:
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• As shock-arrival intensities are equal for matching cardinalities, the exchangeable shock-arrival
intensities λi, i ∈ [d] are indexed by the cardinality of the associated sets.

• Later, the exchangeable shock-size-arrival intensities ηi =
(d
i

)
λi, i ∈ [d], equal to the accumulated

shock-arrival intensities of sets with specific cardinalities, become a helpful reparametrization.

• [18] showed that each sequence of exchangeable shock-arrival intensities λ1, . . . , λd has a unique
link to a so-called d-monotone sequence a0, a1, . . . , ad−1, i.e., having nonnegative alternating discrete
forward differences (−1)jak ≥ 0, 0 ≤ j + k < d; see also [11, 49, 57]:

ai−1 =
d−i∑
j=0

(
d− i

j

)
λj+1, i ∈ [d], and

λi = (−1)i−1∆i−1ad−i, i ∈ [d].

This reparametrization allows characterizing exMO distributions’ survival functions as the reciprocal
exponential transformations of a linear combination of the nonincreasingly ordered arguments:

F̄ (t) = exp
{

−
d∑
i=1

ai−1t[i]

}
, t ≥ 0 with t[1] ≥ · · · ≥ t[d].

In addition, it allows seamlessly obtaining margin-parametrizations, since the k-marginal distribution
has the reparametrization a0, a1, . . . , ak−1.

A specialized stochastic representation for exMO distributions was introduced in [19], which models the
order statistic of an exMO-distributed random vector τ recursively and performs a uniformly-at-random
shuffling at the end: Given the first k elements of the order statistic, simulate the first shock size and arrival
time with the AM of the MO distribution’s d−k marginal distribution. For a shock size j, set the next j values
of the order statistic to the sum of the obtained shock-arrival time and the largest of the order statistic’s first
k elements. Repeat this procedure recursively until having the entire order statistic, and shuffle the order
statistic uniformly at random to obtain a random vector having the desired exMO distribution.

The core article [2] contributed the following results about stochastic representations of exMO distributions
to the scientific literature:

• [2, Thm. 4.1 (a)] shows that the death-counting process Z∗ of an exMO-distributed random vector τ
is Markov with infinitesimal generator matrix Q∗ = (q∗i,j : 0 ≤ i, j ≤ d):

q∗i,j =


−
∑d−i
l=1

(d−i
l

)∑i
k=0

( i
k

)
λk+l , i = j,(d−i

j−i
)∑i

k=0
( i
k

)
λk+(j−i) , i < j,

0 , else.

The first row’s off-diagonal values are the exchangeable shock-size-arrival intensities introduced
above, constituting an equivalent reparametrization of exMO distributions. Specialized representations
of Q∗ for exMO subclasses or reparametrizations are also provided in [2, Rmk. B.1–B.3].

• [2, Thm. 4.1 (b)] proposed the Markov death-counting model (MDCM) by showing that, given a sample
of the death-counting process Z∗, a component i’s death time may be defined as the earliest time by
which the death count exceeds Π(i), for a uniformly-at-random permutation Π independent of Z∗:

τi := inf {t ≥ 0 : Z∗t ≥ Π(i)}, i ∈ [d].

As pointed out in the contributed core article, if standard simulation techniques for Markov processes
are used to represent Z∗, the resulting stochastic representation is virtually identical to the one
proposed in [19]. However, for sampling, using the Markov representation suggests calculating all
transition probabilities upfront for all samples, while using the recursive representation from [19]
suggests calculating them on-the-fly for each sample. Moreover, having a Markov representation
allows using the rich and established theory of Markov processes for further investigations, such as,
e.g., in [2, Apndx. C].
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3.3 Extendible Marshall–Olkin distributions

Extendible Marshall–Olkin (extMO) distributions are characterized by their stochastic representation as finite
margins of an exchangeable sequence with exMO-margins.1 Consequently, they have two reparametriza-
tions, which, as outlined later, correspond essentially to two sides of the same coin:

• As a consequence of the exchangeable reparametrization a0, . . . , ad−1, there exists a sequence
a0, a1, . . . that is completely monotone, i.e., the first k elements are k-monotone for each k ∈ N,
which parametrizes a particular extension of the extMO distribution.

• De Finetti’s theorem implies that every exchangeable sequence of nonnegative random variables
τ1, τ2, . . . defines an a.s. unique subordinator Λ; see [14, Chp. 3] and the contributed article [4,
Apndx. A]. Hence, every extMO distribution may be parametrized by a particular subordinator
distribution.

In this case, [17] showed that both approaches lead to the same reparametrization: First, a completely
monotone sequence uniquely defines a so-called Bernstein function; see [58, Cor. 4.2]. A Bernstein function
is a nonnegative, nondecreasing, infinitely differentiable function on the positive halfline whose derivatives
have alternating signs, extended to the nonnegative halfline by introducing a fixpoint in zero. Second,
the subordinators defined by exMO sequences are precisely Lévy subordinators, which are characterized
by Bernstein functions through their Laplace functionals; see also [17, 49, 57, 59–61]. Specifically, an
extMO distribution may be parametrized by a Bernstein function ψ such that

ai−1 = ψ(i) − ψ(i− 1), i ∈ [d], and

λi = (−1)i−1∆iψ(d− i), i ∈ [d],

and they have the so-called Lévy frailty model (LFM) stochastic representation

τi := inf {t ≥ 0 : Λt ≥ Ei}, i ∈ [d],

for a Lévy subordinator Λ associated with ψ and iid unit exponential random variables E1, . . . , Ed indepen-
dent of Λ. Note that the LFM is a special case of the de Finetti representation for nonnegative exchangeable
random sequences from Exp. 2.5.

The LFM allows thinking about extMO distributions in terms of an associated Lévy subordinator that
consists of a killing, a drift, and a pure-jump component; see also the contributed core article [2, Sec. 2.3]:
The death times are the subordinator’s surpassing times over iid unit exponential barrier values independent
of the subordinator. The first extreme example, corresponding to comonotonicity, is the subordinator
remaining at zero until jumping to the absorbing state infinity, after an exponential waiting time, such that all
barriers are surpassed simultaneously. The second extreme example, corresponding to independence, is
the subordinator drifting deterministically at a constant rate without any random jump, such that all barriers
are surpassed individually. Otherwise, the likelihood of a joint barrier surpassing depends on the pure-jump
component, which is a compound Poisson subordinator or has a stochastic representation as the limit
of compound Poisson subordinators. It is noteworthy that unbiased simulation via the LFM requires the
pure-jump component to be a compound Poisson process with a suitable jump distribution that can be
simulated efficiently; see [11, Sec. 3.3.3]. Finally, associating extMO distributions with Lévy subordinators
allows the definition of low-parametric families spanning the dependence range between independence and
comonotonicity. See the contributed core article [2, Sec. 2.4] for a curated list of popular examples.

The core article [2] contributes the following to the scientific literature:

1Note that extendible random vectors might be stochastically represented as margins of multiple exchangeable sequences with
different distributions.
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• [2, Sec. 5] outlines that the Bernstein function parametrization implies the following representation of
the MDCM’s Markov generator matrix Q∗ of the default-counting process Z∗:

q∗i,j =
(
d− i

j − i

)
·


−ψ(d− i) , i = j,

(−1)j−i−1∆j−iψ(d− j) , i < j,

0 , else.

• Furthermore, [2, Sec. 5] contributes an approximation of Q∗ using integral representations of the
Bernstein function ψ. This approach exploits that applying alternating difference operators to an
integrand of Lévy-Khintchine or Stieltjes representations of Bernstein functions yields a convenient
closed-form, nonnegative integrand (in the respective integral).2 Consequently, Q∗ can be approxi-
mated with numerical integration techniques after switching the order of integrating and applying the
alternating difference operator and multiplying the binomial coefficient. In addition, given the inner
values of the Q∗’s first row, the article provides a recursive scheme in [2, Thm. 5.10] and boundary
conditions to approximate the remaining entries; see [2, Rmk. 5.11].

• For this, [2, Sec. 5] demonstrates in a numerical study that the naïve alternative of calculating Q∗ by
recursively applying the alternating difference operator is not numerically stable in higher dimensions
due to loss of significant digits. In contrast, a repetition of this study demonstrates for the suggested
approach above a numerically stable approximation of the Markov generator matrix for a wide range
of test cases. These results are supported by the theoretical results [2, Lem. 5.8 and 5.9] showing
that integrands corresponding to the inner values of Q∗’s first row, which are relevant for the numerical
integration, are continuous and bounded under mild assumptions. In conclusion, this demonstrates
that the novel approach to approximate the Markov generator Q∗, and implicitly the exchangeable
shock-size-arrival intensities, provides the first broadly applicable option to use any of the presented
models for MO or exMO distributions for simulating extMO distributions specified via low-parametric
Bernstein functions in high dimensions.

• Finally, [2, Sec. 6] provides a benchmark study that compares the existing simulation algorithms
ESM, AM, LFM, and MDCM, primarily for their speed and setup activities’ proportions of runtime. All
algorithms were implemented in C++, wrapped in R. They were compared for several selected families
using comparable configurations; the article shows only results about the exponential family explicitly.3

The high-level summary of the study’s findings is as follows: First, the specialized algorithms based
on the LFM and MDCM are significantly faster than the general algorithms based on the ESM and
AM, and they do not suffer from parameter storage issues. Second, the MDCM was slower than the
LFM for most tested configurations. However, the gap in the runtime of both algorithms is expected to
shrink for an increasing number of samples due to the MDCM’s comparatively high setup costs. Third,
the MDCM is more broadly applicable than the LFM, which requires a suitable compound Poisson
representation of the subordinator’s pure-jump component. Finally, the MDCM’s runtime is bounded,
while the LFM’s runtime may explode towards specific configurations; see [2, Apndx. C].

Overall, [2, Sec. 5] derives a numerically stable approximation of the MDCM infinitesimal Markov generator
matrix for extMO distributions and proposes a specialized simulation algorithm for extMO distributions. This
algorithm is shown to be competitive compared to alternative algorithms through a benchmark study in [2,
Sec. 6].

2Every Bernstein function has a Lévy–Khintchine representation, and every complete Bernstein functions has a Stieltjes
representation; see [60].

3The exponential family corresponds to a Lévy subordinator with possible killing and drift components and pure-jump component
that is a compound Poisson subordinator with exponential jumps.
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3.4 Hierarchical Marshall–Olkin distributions

In light of Chapter 2, the novel simulation algorithm for extMO distributions opens possibilities to implement
large-scale factor models for portfolio credit risk modeling with hierarchical Marshall–Olkin (hMO)-distributed
default times. There are multiple approaches to defining hMO-distributed random vectors based on extMO-
associated factors. For example, [49, Sec. 5.2] defines an hMO distribution by replacing the (global)
subordinator in the LFM stochastic representation with individual subordinators that sum independent
time-changed global and sector-dependent subordinators. In another example, [48, Sec. 4.2] defines an
hMO distribution using a stochastic representation via a minima construction with independent extMO dis-
tributed random vectors for global and sector-based factors. HMO distributions are not a primary topic of
this thesis, but it is noteworthy that many hierarchical constructions have stochastic representations as
refactorings of extMO distributed random vectors. Consequently, simulation algorithms for hMO distributions
may be derived from simulation algorithms for extMO distributions; see also the contributed core article [2,
Sec. 2.5].
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4 Generalized Marshall–Olkin distributions

This chapter primarily discusses the contribution of the further articles [3, 4] that characterize the survival
functions of generalized Marshall–Olkin (gMO) distributions and derive the implied de Finetti representation
of extendible generalized Marshall–Olkin (extgMO) sequences. The chapter briefly introduces the topic and
necessary background theory to discuss the contributed articles’ contribution. For detailed introductions, the
interested reader is referred to the articles, the provided references, and comprehensive monographs [11,
62, 63].

4.1 Generalized Marshall–Olkin distributions

Marshall–Olkin (MO) distributions, having stochastic representations via the exogenous shock model (ESM)
with exponentially distributed shock-arrival times, can be generalized to gMO distributions by allowing
nonnegative, unbounded, and continuous shock-arrival times in a generalized exogenous shock model
(gESM). Formally, the class of admissible hazard functions H is

H :=
{
H : [0,∞) → [0,∞) : H ∈ C(0), ∆H ≥ 0, H(0) = 0

}
.

Additionally, for a.s. finite margins, the class of admissible marginal hazard functions H0 is

H0 := {H ∈ H : H(∞−) = ∞}.

Finally, the survival functions of gMO distributions are

F̄ (t) = exp

−
∑
∅≠I⊆[d]

HI

(
max
i∈I

ti

), t ≥ 0,

for HI ∈ H with
∑
I∋iHI ∈ H0, ∀i ∈ [d]. It is readily observable that random vectors with this survival

function F̄ have a stochastic representation as a gESM such that for independent random variables
ZI ∼ HI , ∅ ≠ I ⊆ [d], the following random vector τ has survival function F̄ :

τi := min {ZI : I ∋ i}, i ∈ [d].

Generalizing MO distributions by allowing nonnegative, unbounded, and continuous shock-arrival times
in the associated gESM has been suggested in multiple articles. For example, the special case with
proportional hazard functions was suggested in [24] to solve a modified Marshall–Olkin lack of memory
(MOLOM) property with other binary operators for time accumulation; see Section 2.1. For the bivariate case,
the gESM was suggested and analyzed in [12, 22]. The multivariate case is discussed in [23]. Furthermore,
the associated survival copulas were investigated for the bivariate case in [27], for the exchangeable
Armageddon case, which only allows individual and global shocks, in [64], and for the exchangeable case
in [25]; an exhaustive treatment of the exchangeable case can be found in [62]. Finally, the contributed
articles [3, 4] consider a slightly restricted class with shock-arrival hazard functions in H and marginal
hazard functions in H0. The shock-arrival hazard functions’ finiteness, continuity, fixpoints in zero, and the
overarching marginal finiteness condition restrict the class to nonnegative, unbounded, and continuous
random vectors.

There are multiple noteworthy alternatives or broader approaches to generalize classical MO distributions,
which are not discussed in detail in this thesis or the contributed articles but are noteworthy; see also [65].
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For example, [66, 67] discuss Archimax copulas that enclose extreme-value (EV) copulas and Archimedean
copulas, which implies they also enclose MO survival copulas. A particular subclass of Archimax copulas
arises as the survival copulas of (classical) ESM’s whose (exponential) shock-arrival times are scaled by an
independent positive random variable; see [67, Prop. 3.1 and Alg. 4.1]. This subclass can be embedded in
a class proposed in [68] called mixed (multivariate) gMO distributions whose members have a stochastic
representation as a gESM-represented, gMO-distributed random vector scaled by an independent positive
random variable. Moreover, a broad approach allowing arbitrary dependency between the random shock-
arrival times of the gESM and alternative aggregations is proposed in [69]. Alternative generalizations of
extendible Marshall–Olkin (extMO) distributions that replace the Lévy subordinator in the Lévy frailty model
(LFM) by subordinators that are strongly or weakly infinitely divisible w.r.t. time or, more general, infinitely
divisible (ID) were discussed in [36, 37], respectively, and correspond to min-stable multivariate exponential
(MSMVE), exponential minima (EM), and min–infinitely divisible (min-ID) distributions, respectively; see
also [63]. Finally, other alternative approaches that generalize the ESM by associating each shock-arrival
time with a realized shock triggered by an event-related Poisson process and replacing these Poisson
processes with Cox processes are proposed in [45–47].

4.2 Exchangeable generalized Marshall–Olkin distributions

Analogous to classical exchangeable Marshall–Olkin (exMO) distributions, exchangeable generalized
Marshall–Olkin (exgMO) distributions are characterized by the property that their associated shock-arrival
distributions are equal for shock-sets with matching cardinalities, see [62, Prop. 3.1.2]., i.e.,

|I| = |J | ⇔ HI = HJ ∀∅ ≠ I, J ⊆ [d].

Consequently, exgMO distributions can also be reparametrized to d exchangeable shock-arrival hazard
functions Hi, i ∈ [d]. The reparametrization was first investigated on the survival copula level in [25,
Thm. 1.1] and translated to the level of survival functions in the contributed article [4, Lem. 1]. The
exchangeable hazard functions are uniquely linked to a sequence of hazard functions A0, . . . Ad−1 ∈ H
with A0 ∈ H0 that is pointwise d-monotone:

Ai−1(t) =
d−i∑
j=0

(
d− i

j

)
Hj+1(t), t ≥ 0, i ∈ [d], and,

Hi(t) = (−1)i−1∆i−1Ad−i(t), t ≥ 0, i ∈ [d].

The reparametrization characterizes exgMO distributions’ survival functions as the reciprocal exponentials
of sums of nonincreasingly ordered, individually transformed arguments, with order-independent hazard-
function-transformation fulfilling specific and monotonicity requirements:

F̄ (t) = exp
{

−
d∑
i=1

Ai−1(t[i])
}
, t ≥ 0 with t[1] ≥ · · · ≥ t[d].

This reparametrization of exgMO distributions is significant for several reasons:

• It allows the identification of distributions by their survival functions as exgMO distributions. For
example, [25, Prop. 3.1] shows that the additive frailty model (AFM), a generalization of the LFM,
see Chapter 3, with additive subordinators instead of Lévy subordinators, implies exgMO distributed
random vectors.

• It allows the investigation of properties of exgMO distributions. For example, [25, Prop. 2.2] determines
that exgMO survival copulas have the extreme-value property if and only if they are exMO survival cop-
ulas, and [62, Thm. 3.4.2] identifies the radial symmetric subclass of exgMO survival copulas.
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The contributed article [3] generalized this characterization for non-exchangeable gMO distributions. [3,
Thm. 1] shows that a continuous survival function of a nonnegative random vector is that of a gMO distribution
if and only if it is the reciprocal exponential function of sums of nonincreasingly ordered, individually
transformed arguments, with order-dependent hazard-function-transformations fulfilling certain monotonicity
and continuity requirements:1

F̄ (t) = exp
{

−
d∑
i=1

Aπi−1(tπ(i))
}
, t ≥ 0, π ∈ Sd, tπ(1) ≥ · · · ≥ tπ(d),

with

Aπi−1(t) =
∑

I:π(i)∈I⊆π(i,...,d)
HI(t), t ≥ 0, i ∈ [d], π ∈ Sd,

and

HI(t) =
∑

J :m∈J⊆I
(−1)|J |−1AπJ

d−|I|+|J |−1(t), t ≥ 0, ∅ ≠ I ⊆ [d], m ∈ I,

where {πJ : m ∈ J ⊆ I} is an arbitrary family of permutations with πJ(1, . . . , |J ∪ ([d] \ I)|) = J ∪ ([d] \ I)
and πJ(|J ∪ ([d] \ I)|) = m.

The article provides applications of this characterization result in [3, Sec. 3]:

• The AFM can be generalized to a hierarchical framework in the spirit of the hierarchical mod-
els suggested in [48, Sec. 4.2] by considering component-specific additive trigger subordinators
Λ1, . . . ,Λd that are linear recombinations of a shared pool of independent additive subordinators
Υ = (Υ1, . . . ,Υd) with parametrizing Bernstein function families ψ1, . . . , ψn, and coefficient matrix
Θ = (θ1, . . . ,θn)⊤:

Λi,t = θ⊤i Υt, i ∈ [d].

Using the characterization theorem, one can easily determine that the following obtained survival
function is gMO:

F̄ (t) = exp

−
d∑
i=1

n∑
k=1

ψk,tπ(i)

 i∑
j=1

Θπ(i),k

− ψk,tπ(i)

i−1∑
j=1

Θπ(i),k

,
t ≥ 0, π ∈ Sd : tπ(1) ≥ · · · ≥ tπ(d).

Following, [3, Sec. 3] demonstrates how to use the characterization theorem to calculate the global
shock event’s probability from the additive subordinators’ characterizing Bernstein function families.

• [70] discusses so-called regenerative composition structures. These are Markovian sequences
of compositions of positive integers fulfilling specific consistency and stationarity properties. [70,
Thm. 5.2] proves that they are uniquely linked to extMO sequences generated via the LFM as follows:
Traverse the increasingly ordered unit exponential barrier values and recursively count until the range
between two adjacent (ordered) barrier values contains an element of the subordinator path’s closure.
Regenerative composition structures can be described by so-called decrement matrices representing
the Arnold model (AM)’s first-shock probabilities for all margins. As the characterization theorem’s
specialization for MO distributions implicitly links Lévy subordinators and decrement matrices, it can
be used to generalize the theory of regenerative composition structures.

1The stated result in [3, Thm. 1] is in terms of survival functions, but a translation in terms of hazard function follows as in [4,
Lem. 1].
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4.3 Extendible generalized Marshall–Olkin distributions

ExtgMO distributions have a stochastic representation as the margin of an exchangeable sequence with
exgMO distributed margins. Recall that, as outlined in Chapter 3, exMO sequences’ distributions are
uniquely linked to Lévy subordinators’ distributions and their characterizing Bernstein functions via the LFM.
Furthermore, [25, Prop. 3.1] proved that extending the LFM to the AFM by using additive subordinators
produces exgMO sequences.

The contributed article [4] contributed the following to the scientific literature: [4, Thm. 1] shows that every
exgMO sequence τ1, τ2, . . . uniquely defines an additive subordinator Λ on the same probability space
characterized by a family of Bernstein functions {ψt : t ≥ 0} with specific consistency properties:2

τi = inf {t ≥ 0 : Λt ≥ Ei} a.s., i ∈ N,

for an implicitly defined sequence of iid unit exponential random variables E1, E2, . . . independent of Λ.3

Furthermore, using [25, Prop. 3.1], the associated survival function takes the form

F̄ (t) = exp
{

−
d∑
i=1

ψt[i](i) − ψt[i](i− 1)
}
, t ≥ 0, t[1] ≥ · · · ≥ t[d].

This contribution’s significance is twofold: First, it answers an open research question from [62, p. 147].
Second, it was a stepping stone toward subsequent generalizations using nonnegative, nondecreasing, and
ID càdlàg subordinators to obtain min-ID sequences in [37].

In addition, [4, Sec. 3] demonstrates for an exemplary extgMO distribution how to determine an exgMO se-
quence’s subordinator distribution and how to recover the subordinator explicitly.

2A family of Bernstein functions {ψt : t ≥ 0} parametrizes an additive subordinator’s distribution if and only if ψ0 ≡ 0, ψs − ψt is
a Bernstein function for all s > t ≥ 0, and the mapping t 7→ ψt(x) is continuous for all x ≥ 0; see [4, Eq. 12].

3Technically, obtaining the iid sequence of unit exponential random variables requires introducing an independent sequences
of unit uniform random variables to uniformly-at-random interpolate jumps of the subordinator’s reciprocal exponential when
transforming the sequence to iid unit uniform random variables; see [4, Cor. 2].
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5 Upper semilinear copulas

This chapter primarily discusses the contribution of the core article [1] that derives stochastic representations
for multiple subclasses of upper semilinear (USL) copulas. Necessary background information is briefly
discussed. For a detailed introduction, the reader is referred to [7–11], [28], and the article itself.

5.1 Copula compatibility problems

Recall that copulas are standardized distribution functions with continuous uniform margins. However,
they are also functions and have a purely analytical characterization with applications outside classical
probability theory: A copula is a d-variate function that is grounded, has the uniform margin property, and is
d-increasing.1 Moreover, bivariate copulas as functions are also conjunctors or t-seminorms, and extendible
copulas give rise to conjunctive aggregation operations.2 For this reason, many copulas were first derived
and studied as analytical functions without knowing any stochastic representation. A well-known example is
the class of Archimedean copulas proposed in the field of probabilistic metric spaces without a stochastic
representation, see [72, 73], and for which a comprehensive stochastic representation was derived decades
later in [34]. However, knowing a stochastic representation is useful even without interest in sampling, since
it can be used to analyze the function and derive properties.

There exists a rich body of literature that, among interesting candidate functions, derives copulas exhibiting
specific geometrical features or characterizes copulas as solutions to compatibility problems. The classical
compatibility problem asks under which circumstances

(d
k

)
k-copulas can be embedded as k-margins into a

d-copula, see [8, p. 107]. However, more generally, a compatibility problem asks under which circumstances
certain marginal probabilities can be embedded into a d-copula with specific features; see [74, Sec. 1.8].
An extensive compilation of works about copulas solving geometric compatibility problems, e.g., having
a given support or given marginal horizontal, vertical, diagonal, or affine sections, is [74, Sec. 1.7.3]; see
also [8, Chp. 3]. [75] outlines that marginal diagonal sections comprise many interesting quantities, e.g.,
tail-dependence coefficients. Consequently, compatibility problems for given marginal diagonal sections are
frequently studied; see [75–83]. For example, [82] derives conditions on a diagonal such that the pointwise
infimum over all copulas with this diagonal, the Bertino quasi-copula, is itself a copula.

5.2 Upper semilinear copulas

Bivariate lower semilinear (LSL) and USL copulas were first discussed in [27]. The underlying question was:
given a bivariate copula’s diagonal, can an exchangeable copula be constructed that is linear on all sections
parallel to one axis that connect a point on a lower (LSL) or upper (USL) marginal-boundary hyperplane,

1A function C : [0, 1]d → [0, 1] is called grounded if ui = 0 implies C(u) = 0, has the uniform-margin property if uj = 1∀j ̸= i
implies C(u) = ui, and is d-increasing if the associated volume of arbitrary d-boxes, calculated with the inclusion-exclusion
formula pretending C would be a distribution function, is nonnegative; see [8, Def. 2.10.5]

2A conjunctor is a monotone binary operator on the the unit interval whose binary restriction is the boolean conjuction, a
t-seminorm is a conjunctor with neutral element 1, a t-norm is an associative and commutative t-seminorm, and a conjunctive
aggregation operation is a variadic operator on unit intervals that maps zero-vectors to zero and one-vectors to one, has the
uniform margin property, is component-wise nondecreasing, and bounded by the Fréchet–Hoeffding upper bound ; see [64, 71].
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respectively, to a point on the diagonal section; see Fig. 5.1. [27, Lems. 2 and 3] showed that semilinearity
allows a recursive diagonal-based deconstruction leading to copulas of the form:

CLSL(u) = u(1) ·
δCLSL(u(2))

u(2)
, u ∈ [0, 1]2, u(1) ≤ u(2), and

CUSL(u) = u(1) − (1 − u(2))
u(1) − δCUSL(u(1))

1 − u(1)
, u ∈ [0, 1]2, u(1) ≤ u(2).

In addition, bivariate USL copulas are the survival copulas of LSL copulas. Moreover, [27, Thm. 4] derived
conditions for bivariate copula diagonals to admit a lower semilinear copula. Finally, the authors show in [27,
Sec. 4] that lower semilinear copulas are symmetric Marshall copulas defined in [12]. Subsequently, they
are the survival copulas of bivariate exchangeable generalized Marshall–Olkins (exgMOs) distributions and
have a stochastic representation via bivariate generalized exogenous shock models (gESMs).

(0, 0) (1, 0)

(0, 1) (1, 1)

(a) lower semilinear

(0, 0) (1, 0)

(0, 1) (1, 1)

(b) upper semilinear

Figure 5.1 Illustration of “linear segments” (dashed lines) of bivariate LSL and USL copulas; from [1, p. 266], cf. [27,
p. 65].

A multivariate extension of USL copulas was defined and characterized in [28]. A USL copula must
be exchangeable and linear on all segments connecting the diagonal to an upper marginal-boundary
hyperplane with a constant lower component. Formally, these segments are for the permutations of
segments of the form

Sd,v =
{(

u
1

)
∈ [0, 1]j+(d−j) : ui = λv1 + (1 − λ)vi, i ∈ {1, . . . , j}, λ ∈ [0, 1]

}
,

for an ordered vector v ∈ [0, 1]j with v1 ≤ · · · ≤ vj = 1. [28] showed that semilinearity allows a recursive
diagonal-based deconstruction of USL copulas C with marginal diagonals δ2, . . . , δd:3

C(u) =
1 − u(d)
1 − u(1)

· δd−1 +
u(d) − u(1)

1 − u(1)
Cd−1

(
u(1) +

1 − u(1)
u(d) − u(1)

(
u − u(1)1

))

=
∑d
i=1 (u(i+1) − u(i))δi(u(1))

1 − u(1)
, u ∈ [0, 1], u(1) ≤ · · · ≤ u(d).

This representation of USL copulas highlights two significant, interesting properties: First, they are fully
specified by their diagonals. Second, they have a simple closed-form expression, given that the diagonal

3The following formula uses the convention u(d+1) := 1.
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functions are not complicated. [28, Thm. 1] provides a characterization of USL copulas in the form of
specific necessary and sufficient coefficients to marginal diagonal functions δ2, . . . , δd to define a USL
copula, which is equivalent to the d-increasingness property under the exchangeability and semilinearity
assumption. Finally, the corresponding proof showed that realizations of USL copulas must be concentrated
on at most two distinct random values, e.g., if C is a USL copula and U ∼ C, then

P(U1 ̸= U2, U2 ̸= U3, U1 ̸= U3) = 0.

On a macro level, the core article [1] contributed the following findings to the scientific literature:

• Recall that bivariate USL copulas are the survival copulas of bivariate LSL copulas. As bivariate
LSL copulas are survival copulas of bivariate exgMO distributions, bivariate USL copulas can also
be generalized into higher dimensions as copulas of exgMO distributions. Consequently, it was an
open question if those two generalizations intersect and if USL copulas have a stochastic gESM
representation. [1, Sec. 5] investigates this question and determines the intersection between both
generalizations; see Section 5.3.

• Except for trivial cases or the bivariate subclass, no explicit stochastic representations for USL copulas
have been proposed. As stochastic representations are frequently used to derive properties of copulas,
they are helpful even if one is not primarily interested in using the copula in a stochastic context. [1]
provides stochastic representations for the intersecting subclass with exgMO copulas in [1, Thm. 3],
see Section 5.3, the subclass with identical marginal diagonal functions suggested in [28, Cor. 1],
see Section 5.4, and an extendible subclass in [1, Cor. 6], see Section 5.5, which highlights the
usefulness of stochastic representations by using it to show this subclass is radially symmetric.

5.3 Upper semilinear copulas and exchangeable generalized MO
distributions

Recall that bivariate USL copulas are copulas of bivariate exgMO distributions. Furthermore, each
exgMO distribution has a stochastic representation via an exchangeable gESM. Hence, the corresponding
survival copula has a representation via a dual gESM as featured in [25]: Let Ĉ be an exgMO survival copula,
then there exists a stochastic realization U ∼ Ĉ with

Ui := max {ZI : I ∋ i}, i ∈ [d],

for independent, [0, 1]-valued ZI ∼ FI , ∅ ≠ I ⊆ [d] with specific distribution functions; shocks that are
almost surely equal to zero are ineffective and may be omitted. A natural question is which multivariate
USL copulas are the copulas of exgMO distributions and, by extension, have a stochastic exgMO represen-
tation.

The core article [1, Sec. 5] contributed the following to the scientific literature:

• [1, Thm. 3] shows that a USL copula is an exgMO copula if and only if the associated dual gESM has
no effective shocks with associated sets missing more than one component. This result implies that
at most one component may deviate from the joint minimum.

• [1, Cors. 3 and 4] derive simplified characterizations for this subclass, equivalent to recovering valid
distribution functions for an associated gESM.

5.4 Upper semilinear copulas with identical marginal diagonal functions

[28, Sec. 3] investigated a subclass of USL copulas for which all marginal diagonals are identical, i.e.,
δ2 = · · · = δd ≡ δ. In particular, they provide a simplified characterization theorem [28, Cor. 3] and several
examples in [28, Sec. 4].

The core article [1, Sec. 6] contributed the following to the scientific literature:
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• [1, Lem. 8] uses that this particular subclass permits only realizations for which at most one component
deviates from the joint maximum to derive a conditional sampling approach based on conditional
sampling of bivariate copulas; see [11, Alg. 1.2]. Moreover, it also derives the required probabilities
and (conditional) distribution functions. The sampling algorithm is summarized in Alg. 1.

• [1, Cor. 5] uses the novel stochastic representation to derive another simplified characterization
theorem for this subclass, equivalent to recovering proper probabilities and distribution functions
required for Alg. 1. This results is also an example of how to use stochastic representations to derive
properties of copulas.

Algorithm 1 Sampling algorithm for an USL copula C with equal multivariate diagonals δj ≡ δ, j ∈ {2, . . . , d}, see [1,
Alg. 1].

input An admissible d-diagonal δ.
output A sample from the USL copula with identical marginal diagonal δ.
function SAMPLEUSLC( δ )

Draw I ∼ Bernoulli(p) with p = d
∫ 1

0
x−δ(x)

1−x dx.
if I = 0 then

Draw U∧ ∼
(
δ(u) − d

∫ u
0
x−δ(x)

1−x dx
)
/(1 − p).

Set U1 = · · · = Ud = U∧.
else

Draw U∧ ∼ d
(
(u− δ(u)) +

∫ u
0
x−δ(x)

1−x dx
)
/p.

Draw U∨ ∼ U[U∧,1].
Draw K uniform from the set {1, . . . , d}.
Set UK := U∧ and Uj := U∨, j ̸= K.

end if
return U = (U1, . . . , Ud)′.

end function

5.5 An extendible family of upper semilinear copulas

Extendible subfamilies are an essential cornerstone of every copula family. They are interesting for many
reasons, for example, they imply a stochastic de Finetti representation, a conditionally iid representation of
the random vector, which is both simple and natural to many applications, see [63, Sec. 1.2]. In addition,
specific features of copula classes sometimes allow a guess-and-verify approach to finding the de Finetti
representation. Hence, for instances without known stochastic representations or few known examples,
finding the extendible subclass can be a promising approach to finding new stochastic representations and
interesting exemplary members of this class.

The core article [1, Sec. 7] contributes the following to the scientific literature:

• [1, Cor. 6] derives an extendible subclass corresponding to the following stochastic representation:
Draw an random probability in [1/2, 1], draw a bivariate sample from the independence copula, and
independently conduct for each component a Bernoulli experiment conditioned on the sampled
success probability to decide whether to set the component to the first or second bivariate sample.
For a random probability Q, the corresponding copula C is

Cd(u) = u(1)

E[Qd] + E
[
(1 −Q)d

]
+

d∑
j=2

u(j)
(
E
[
Q(1 −Q)j−1

]
+ E

[
(1 −Q)Qj−1

]).
This subclass extends the bivariate Dirichlet copulas from [62, Theorem 3.5.3].
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• [1, Cor. 7] uses this stochastic representation to show that the corresponding extendible subclass is
radially symmetric. First, this is an excellent example of how stochastic representations may be used
to derive properties of copulas as analytical functions. Second, this highlights that this extendible
subclass is a meaningful multivariate extension of the bivariate Dirichlet copula, since it also extends
the radial symmetric property.
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6 Outlook

This section aims to identify open questions and potential further research topics arising from the contributed
articles [1–5].

Simulation of high-dimensional, non-trivial Marshall–Olkin (MO) distributions is furthered by the simulation
algorithm for extendible Marshall–Olkin (extMO) distributions in the contributed core article [2]. However,
there remain plenty of research questions and open problems involving the simulation of MO distributions:

• The stochastic representations for the Markovian default-indicator processes of exchangeable Mar-
shall–Olkin (exMO) distributions proposed in [2] is not unique. In particular, possibly looping stochastic
representations can be derived from the Arnold model (AM) by splitting the shock-set-sampling into
two parts: First, sample the shock size with appropriate probabilities. Second, sample the concrete
shock set uniformly at random. For simulating the default-counting process, we do not need to know
the concrete shock sets immediately. However, we need to be able to sample the actual size of
newly dead components given the original shock size and the number of already dead components,
which can be done using the hypergeometric distribution.1 While a simulation algorithm based on
this stochastic representation certainly requires on average more iterations to reach the absorbing
state, it also requires only calculating the first row of the exMO Markov generator matrix and allows for
simpler parameter representations. However, implementing this algorithm has challenges: Sampling
algorithms for hypergeometric distributions are not part of the standard repertoire of all programming
languages. In addition, there are multiple options to sample from hypergeometric distributions, includ-
ing elaborate acceptance/rejection schemes and alias sampling; see [84]. In this particular instance,
it would be interesting to explore this simulation algorithm with all its various implementation options
and compare it to the suggested extMO simulation algorithm from [2].

• [85] develops a simulation algorithm for continuous max-id processes, and exchangeable max-id
sequences in particular, which implies a simulation algorithm for MO distributions as a special case.
However, the details for this particular example need to be worked out. In particular, how to map
the distribution parameter to the algorithm parameter, and how it compares to the other existing
simulation algorithms.

• A promising idea for future research is using the novel Markov representation or the simulation
algorithm of extMO distributions for applied problems. The following straightforward corollary shows
that the Markov representation of extMO distributions’ death-counting processes implies that non-
path-dependent derivatives on portfolio loss processes of extMO-distributed default times can be
priced almost in closed form, requiring only approximations to calculate the Markov generators and
matrix exponentials.

Corollary 6.1. Consider d-variate extMO-distributed multivariate default times with infinitesimal
Markov generator Q∗ for the death-counting process Z∗. Then, for a deterministic recovery fraction
δ ∈ [0, 1], the associated portfolio loss process L = (1 − δ)/d · Z∗ is Markov with

P(Lt = i/d · (1 − δ)) = δ0
⊤ etQ∗

δi, t ≥ 0, i ∈ [d]0,

where (δi)j = 1{i=j}, ∀i, j ∈ [d]0.

1The hypergeometric distribution describes the number of red balls drawn among a number of draws without replacement from a
bowl with specific amounts red and black balls.
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Furthermore, a significant achievement of [2] is making the simulation of high-dimensional extMO dis-
tribution or derived hierarchical Marshall–Olkin (hMO) distributions feasible. Hence, an application
that stands to reason is the calibration and pricing of portfolio credit derivatives with Cor. 6.1 or
Monte-Carlo simulations.

• The practical application of the simulation algorithm involves writing statistical software, which is
ideally thoroughly tested. Besides possible implementation errors, implementing simulation algorithms
requires avoiding non-obvious pitfalls which the implementers may not be aware of. An example that
stands to reason is that some implementations require approximations whose stability needs to be
assessed. Less intuitive examples are related to the nature of random number generators, e.g., linear
congruential random number generators (RNGs) can theoretically iterate through their periods and
produce ties — which is considerably more likely for multivariate random vector simulation algorithms
that increment the underlying bit-sequence multiple times per sample. Bottom line, implementations of
simulation algorithms should be tested statistically for the samples’ independence and their distribution
assumptions, see [2, Apndx. D]. The tight constant for the multivariate Dvoretzky–Kiefer–Wolfowitz
(DKW) inequality derived in [86] is an interesting option to test distributional assumptions. On the
face of it, using the DKW inequality does not require additional theory. However, if used in many
tests concurrently, how to choose the appropriate thresholds should be explored. Additionally, as the
optimal constant is valid asymptotically, optimal sample sizes for testing should be explored.

• It is an open question if and how the AM and the Markov death-set model (MDSM) for MO distributions
can be generalized for generalized Marshall–Olkin (gMO) distributions, and if and how the Markov
death-counting model (MDCM) for exMO distributions can be generalized to exchangeable generalized
Marshall–Olkin (exgMO) distributions. For this, consider the following conjecture:

Conjecture 6.2. Consider a gMO distribution with infinitesimal hazard shock-arrival rates λI(t), t ≥ 0,
∅ ≠ I ⊆ [d] and λ =

∑
∅̸=I⊆[d] λI . Then, the following random vector τ has the desired distribution:

τi = min {W1 + · · · +Wj : Yj ∋ i}, i ∈ [d],

where {(W1 + · · · +Wj , Yj) : j ∈ N} are points of a Poisson random measure (PRM) with intensity
measure

µ(ds× dy) = λ(s)ds×

 ∑
∅≠I⊆[d]:I∈dy

λI(s)
λ(s)

.
If this conjecture is true, this would also open the door to generalizing the MDSM for gMO and the
MDCM for exgMO distributions. However, it also would raise the question for which gMO distributions
those representations could feasibly be used for sampling. From the second part of the PRM’s
intensity measure, it is apparent that proportional hazard rates would be more straightforward.

The contributed article [3] generalized a characterization for exgMO survival copula from [25] to gMO distri-
butions. [25, Prop. 2.2] used the characterization for exgMO survival copulas to show that their extreme-value
(EV) subclass is precisely the class of exMO survival copulas. Consequently, it would be interesting to
generalize this result and determine whether the EV subclass of gMO survival copulas is also the class of
MO survival copulas.

The contributed core article [1] provided several stochastic representations of multivariate upper semilinear
(USL) copulas. These representations allow using probabilistic means to reason about these copulas and to
use stochastic representations to derive analytical properties. Moreover, the extendible class also provided
a large class of nontrivial USL copulas. The article leaves the following possible avenues to continue
research:

• The extendible subclass described in [1] describes a model which draws with replacement from
a bivariate independent sample with a possibly random probability. However, it remains an open
question of how the entire extendible subclass looks and whether the semilinearity can be linked
explicitly to a property of the de Finetti representation. To this end, consider the following conjecture:



31

Conjecture 6.3. Let F be a distribution function on [1/2, 1], let C̃2 be a bivariate USL copula, and
consider the following stochastic model. Let Q ∼ F , V ∼ C̃2, and {Ji}i∈N a family of conditionally iid
Bernoulli distributed random variables with random success parameter Q. Define

Ui := JiV1 + (1 − Ji)V2, i ∈ N.

Then, for each d ≥ 2, the random vector U = (U1, . . . , Ud) has for u ∈ [0, 1]d with u(1) ≤ · · · ≤ u(d)
the following distribution function that is a USL copula:

Cd(u) = u(1)E[Qd] + u(1)E[(1 −Q)d] +
d∑
j=2

C̃2(u(1), u(j))
(
E
[
Q(1 −Q)j−1

]
+ E

[
(1 −Q)Qj−1

])
.

• The stochastic conditional sampling representation of the subclass with equal multivariate diagonals
uses this subclass’s distinct distribution of values onto the random vector’s components. An interesting
question is if this conditional sampling approach is feasible for other subclasses of semilinear copulas
with similarly limited options to distribute minimum and maximum onto the vector’s components.



32

Bibliography

[1] H. Sloot and M. Scherer. “A probabilistic view on semilinear copulas”. In: Information Sciences 512
(2020), pp. 258–276. DOI: 10.1016/j.ins.2019.09.069.

[2] H. Sloot. “Implementing Markovian models for extendible Marshall–Olkin distributions”. In: Depen-
dence Modeling 10.1 (2022), pp. 308–343. DOI: 10.1515/demo-2022-0151.

[3] M. Scherer and H. Sloot. “Exogenous shock models: analytical characterization and probabilistic
construction”. In: Metrika 82.8 (2019), pp. 931–959. DOI: 10.1007/s00184-019-00715-8.

[4] H. Sloot. “The deFinetti representation of generalised Marshall–Olkin sequences”. In: Dependence
Modeling 8.1 (2020), pp. 107–118. DOI: 10.1515/demo-2020-0006.

[5] D. Brigo et al. “Consistent iterated simulation of multivariate defaults: Markov indicators, lack of
memory, extreme-value copulas, and the Marshall–Olkin distribution”. In: Innovations in Insurance,
Risk- and Asset Management. Ed. by K. Glau et al. Conference at the Technical University of Munich,
5–7 April 2017. Singapore: World Scientific, 2018, pp. 47–93. DOI: 10.1142/9789813272569_
0003.

[6] A. Sklar. “Fonctions de répartition a n dimensions et leurs marges”. In: Publications de l’Institut de
statistique de l’Université de Paris 8 (1959), pp. 229–231.

[7] H. Joe. Multivariate models and multivariate dependence concepts. New York, NY: Chapman and
Hall/CRC, 1997. DOI: 10.1201/b13150.

[8] R. B. Nelsen. An introduction to copulas. 2nd ed. New York, NY: Springer, 2006. DOI: 10.1007/0-
387-28678-0.

[9] H. Joe. Dependence modeling with copulas. New York, NY: Chapman and Hall/CRC, 2014. DOI:
10.1201/b17116.

[10] F. Durante and C. Sempi. Principles of copula theory. New York, NY: Chapman and Hall/CRC, 2015.
DOI: 10.1201/b18674.

[11] J.-F. Mai and M. Scherer. Simulating copulas: stochastic models, sampling algorithms and applications.
2nd ed. Singapore: World Scientific, 2017. DOI: 10.1142/10265.

[12] A. W. Marshall. “Copulas, marginals, and joint distributions”. In: Distributions with fixed marginals
and related topics. Ed. by L. Rüschendorf, B. Schweizer, and M. D. Taylor. Vol. 28. Lecture Notes–
Monograph Series. Hayward, CA: Institute of Mathematical Statistics, 1996, pp. 213–222. DOI:
10.1214/lnms/1215452620.

[13] C. Genest and J. Nešlehová. “A primer on copulas for count data”. In: Astin Bulletin 37.2 (2007),
pp. 475–515. DOI: 10.2143/AST.37.2.2024077.

[14] D. J. Aldous. “Exchangeability and related topics”. In: École d’Été de probabilités de Saint-Flour XIII —
1983. Ed. by P. L. Hennequin. Vol. 1117. Lecture Notes in Mathematics. Berlin, Heidelberg: Springer,
1985, pp. 1–198. DOI: 10.1007/BFb0099421.

[15] J.-F. Mai and M. Scherer. “H-extendible copulas”. In: Journal of Multivariate Analysis 110 (2012),
pp. 151–160. DOI: 10.1016/j.jmva.2012.03.011.

[16] A. W. Marshall and I. Olkin. “A multivariate exponential distribution”. In: Journal of the American
Statistical Association 62.317 (1967), pp. 30–44. DOI: 10.2307/2282907.

[17] J.-F. Mai and M. Scherer. “Lévy-frailty copulas”. In: Journal of Multivariate Analysis 100.7 (2009),
pp. 1567–1585. DOI: 10.1016/j.jmva.2009.01.010.

https://doi.org/10.1016/j.ins.2019.09.069
https://doi.org/10.1515/demo-2022-0151
https://doi.org/10.1007/s00184-019-00715-8
https://doi.org/10.1515/demo-2020-0006
https://doi.org/10.1142/9789813272569_0003
https://doi.org/10.1142/9789813272569_0003
https://doi.org/10.1201/b13150
https://doi.org/10.1007/0-387-28678-0
https://doi.org/10.1007/0-387-28678-0
https://doi.org/10.1201/b17116
https://doi.org/10.1201/b18674
https://doi.org/10.1142/10265
https://doi.org/10.1214/lnms/1215452620
https://doi.org/10.2143/AST.37.2.2024077
https://doi.org/10.1007/BFb0099421
https://doi.org/10.1016/j.jmva.2012.03.011
https://doi.org/10.2307/2282907
https://doi.org/10.1016/j.jmva.2009.01.010


33

[18] J.-F. Mai and M. Scherer. “Reparameterizing Marshall–Olkin copulas with applications to sampling”.
In: Journal of Statistical Computation and Simulation 81.1 (2011), pp. 59–78. DOI: 10.1080/
00949650903185961.

[19] J.-F. Mai and M. Scherer. “Sampling exchangeable and hierarchical Marshall-Olkin distributions”.
In: Communications in Statistics. Theory and Methods 42.4 (2013), pp. 619–632. DOI: 10.1080/
03610926.2011.615437.

[20] B. C. Arnold. “A characterization of the exponential distribution by multivariate geometric com-
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A probabilistic view on semilinear copulas

Matthias Scherer and Henrik Sloot

The article [1] develops novel stochastic representations of upper semilinear copulas. These are
exchangeable copulas whose margins are linear on segments with a constant lowest component connecting
the diagonal and an upper marginal-boundary hyperplane. Consequently, they are fully characterized
by their marginal diagonal functions. This article answers how the correspondence between bivariate
upper semilinear copulas and exchangeable exogenous shock models carries over to higher dimensions.
Furthermore, it provides stochastic models for several subclasses, which previously had no probabilistic
interpretation and were studied as analytical objects only.

The introduction recalls copulas and upper semilinear copulas. We point out that many copulas, including
some discussed in this article, were described as analytical functions and have no known stochastic
representations. We introduce upper semilinear copulas and preview our new stochastic representations:
The first uses reflections from exogenous shock models for sampling the subclass intersecting with survival
copulas of exchangeable generalized Marshall–Olkin survival copulas. The second uses conditional
sampling for the subclass having equal diagonal functions for all multivariate margins. The third is a
de Finetti representation for an extendible subclass.

Sections 2 to 4 recall background on copulas, semilinear copulas, and exchangeable generalized
Marshall–Olkin survival copulas, respectively. In particular, we examine a characterization theorem,
proving that the d-increasingness property reduces for upper semilinear copula candidate functions to the
verification of non-negativity of squares [a, b]d and rectangles of the form [a1, b1]d−m × [a2, b2]m, b1 ≤ a2
on the diagonal section. Furthermore, it provides equivalent monotonicity conditions for three univariate
functions. Subsequently, we extract from the theorem’s proof that upper semilinear copulas’ stochastic
realizations concentrate almost surely on at most two values. Also, we prove that the independence copula
is not upper semilinear from dimension three onwards.

Section 5 investigates upper semilinear copulas’ connection to exchangeable generalized Marshall–Olkin
copulas and their exogenous shock models. We show that a copula is simultaneously upper semilinear
and the copula of an exchangeable generalized Marshall–Olkin distribution if and only if solely shocks
corresponding to sets missing at most one element are non-degenerate. This fact implies that at most one
component of a realization differs from its joint minimum. Furthermore, we show that this is equivalent to
constant incremental differences between marginal diagonal functions.

Section 6 focuses on the case that all diagonal functions of multivariate margins are equal. We prove that
this is equivalent to the case where at most one component of a realization differs from its joint maximum.
Following, we develop a multi-step simulation algorithm, each step conditioning on the outcomes of previous
steps: First, determine in a Bernoulli trial whether the minimum equals the maximum. Second, sample
the joint minimum. Third, if the minimum does not equal the maximal, sample the joint maximum and pick
the component taking the minimum uniformly at random. We also calculate all involved probabilities and
conditional distribution functions.

Section 7 looks at an extendible subclass of upper semilinear copulas. This subclass corresponds to the
following stochastic model: First, draw a sample from the bivariate independence copula. Second, conduct
independent Bernoulli trials for each component to decide whether it takes the first or second value of the
previous step’s sample. Optionally, the success probability of these trials can be randomized. We show
that the realizations are from an upper semilinear copula and derive its explicit form and that of its marginal
diagonal functions. In contrast to the subclasses above, this model allows arbitrary concentrations of a
realization’s components on its joint minimum and maximum. Finally, we also conclude from the stochastic
model that these copulas are radially symmetric.
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Statement of individual contribution

I, Henrik Sloot, am the primary author of this article. I am responsible for the conceptualization, the proofs,
the software, the analysis, the visualization, and the writing. The role of Matthias Scherer was that of a
supervisor, giving feedback on results, the written drafts, related literature, and double-checking results.

Addendum about the notation

To avoid confusion about the notation, I want to highlight that the following article [1] called the survival
copulas of exchangeable generalized Marshall–Olkin (exgMO) distributions “exgMO copulas” while this
thesis and the preceding summary calls them “survival exgMO copulas”, “exgMO survival copulas”, or
“survival copulas of exgMO copulas” for consistency reasons. In particular, note that the copulas in class
(A) of the article are called “exgMO copulas” in this thesis.

Erratum

The original publication contained a minor error. The copula in Corollary 6 should read

Cd(u) = u(1)

E[Qd] + E
[
(1 −Q)d

]
+

d∑
j=2

u(j)
(
E
[
Q(1 −Q)j−1

]
+ E

[
(1 −Q)Qj−1

]).
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a b s t r a c t 

This article advances the theory on multivariate upper semilinear copulas. Probabilistic 

features of this class are discussed and three subclasses are investigated in detail. The 

first subclass consists of upper semilinear copulas whose survival copulas are generalised 

Marshall–Olkin copulas. The second subclass is defined in that they possess identical mul- 

tivariate diagonals. The third subclass is a family of extendible upper semilinear copulas. 

Stochastic models and analytical characterisation theorems are derived for each of these 

subclasses. 

© 2019 Elsevier Inc. All rights reserved. 

1. Introduction 

Sklar’s theorem , see [26] , allows the decomposition of a multivariate distribution function F into a copula C and marginal 

distribution functions F 1 , . . . , F d via: 

F ( x ) = C 
(
F 1 (x 1 ) , . . . , F d (x d ) 

)
, x = (x 1 , . . . , x d ) ∈ R 

d . (1) 

The copula C is itself a multivariate distribution function whose marginal distribution functions are standardised to the 

uniform distribution function on [0, 1]. 

The analytical decomposition in Eq. (1) is useful for stochastic modelling as well as statistical inference. As a result, cop- 

ulas have been intensively studied over the recent decades in analysis, probability theory, and statistics, see [6,11,16,19,25] . 

Furthermore, they are used in practical applications, e.g. in quantitative risk management, credit risk, and insurance mathe- 

matics, see [7,9] . 

Copulas can be equivalently characterised by analytical properties involving the notion of d -monotonicity, groundedness, 

and the uniform margin property, see Eqs. (3a) –(3c) . Consequently, in spite of their probabilistic nature, they are also studied 

as purely analytical objects in other mathematical fields, e.g. in fuzzy set theory. Two examples thereof are illustrated by 

the following: 

• Bivariate copulas have uniform margins and are 2-increasing. In particular, the latter property implies that they are 

non-decreasing in each component. Therefore, they belong to the classes of conjunctors and semicopulas (sometimes 

also called t-seminorms ). 1 

∗ Corresponding author. 

E-mail addresses: henrik.sloot@tum.de (H. Sloot), scherer@tum.de (M. Scherer). 
1 A conjunctor is a monotone non-decreasing extension of the boolean conjunction from {0, 1} to the interval [0, 1] and a semicopula is a conjunction 

with neutral element 1, see [3] . 
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• Copulas of higher dimensions also possess the same aforementioned properties. Particularly, this implies that the 

distribution functions of countable infinite exchangeable sequences of random variables with uniform margins form a 

subclass of conjuctive aggregation operations , see [5] . 

As copulas can be treated and analysed as purely analytical objects, there are various families of copulas that have not 

historically originated from a stochastic model, but have been identified by their analytical properties from a broader class 

of functions. It is usually a difficult undertaking to link the analytical properties of a copula to a stochastic model. However, 

a stochastic representation is required for applications, e.g. for simulation and model construction. Additionally, stochastic 

representations can yield valuable analytical insights as, for example, analytical characterisations or proof of certain charac- 

teristics. A well-known example is the class of Archimedean copulas, see [23,24] . These originally emerged in the field of 

probabilistic metric spaces as a subclass of so-called t-norms . A complete characterisation of this class has been presented 

only recently in [18] by means of a unified stochastic representation. Another example is presented in Section 7 , in which 

radial symmetry follows in a natural way from the stochastic model whereas an analytical proof would require tedious 

calculations. 

In this article, we discuss d -variate upper semilinear copulas (abbr. as USL d for d ≥ 2). These were introduced in [2] as 

the solution to the following compatibility problem: given copula diagonals δj , j ∈ { 2 , . . . , d} , what are the necessary and 

sufficient conditions for these to be the j -dimensional marginal diagonals of an exchangeable d -variate copula C that is linear 

on the segments 

S v ,d := 

{(
u 

1 

)
∈ [0 , 1] j +(d − j ) : u i = λv 1 + (1 − λ) v i , i ∈ { 1 , . . . , j} , λ ∈ [0 , 1] 

}
, (2) 

where j ∈ { 1 , . . . , d} and v ∈ [0, 1] j with v 1 ≤ . . . ≤ v j = 1 ? These copulas are an extension of bivariate upper semilinear copu- 

las, which were proposed in [4] . [2] describes the following recursive construction for C . In this case, denote for k ∈ { 1 , . . . , d} 
the k -margins of C by C k and denote for u = (u 1 , . . . , u k ) ∈ [0 , 1] k its ordered version by u (1) ≤ . . . ≤ u (k ) . Furthermore, rep- 

resent u as the linear combination 

2 

u = λ(u (1) · 1 ) + (1 − λ) u 

� , 

where λ = (1 − u (k ) ) / (1 − u (1) ) and 

u 

� 
( j) := u (1) + 

1 

1 − λ
(u ( j) − u (1) ) , j ∈ { 1 , . . . , k } . 

In particular, u (1) · 1 is a value on the (marginal) diagonal and u 

� is a value on the (marginal) boundary. Consequently, 

the fact that C is linear on the segments in Eq. (2) implies for k ∈ { 2 , . . . , d} the following recursion 

C k ( u ) = λ · C k (u (1) · 1 ) + (1 − λ) · C k ( u 

� ) 

= λ · δk (u (1) ) + (1 − λ) · C k −1 (u 

� 
1 , . . . , u 

� 
k −1 ) . 

To the best of our knowledge, the class of multivariate upper semilinear copulas has only been investigated analytically 

for d > 2 . Furthermore, apart from the special case of comonotonicity, we are not aware of any stochastic representation for 

a multivariate upper semilinear copula with d > 2. We intend to fill this gap by investigating the subclasses (A), (B), and (C) 

introduced below. 3 For all families, we provide a stochastic representation and a characterisation theorem. 

(A) One subclass of upper semilinear copulas can be linked to so-called exchangeable exogenous shock models . Note that 

the survival copula ˆ C 2 of a bivariate upper semilinear copula C 2 is called a lower semilinear copula , see [4] . A bivariate 

lower semilinear copula has the form 

ˆ C 2 ( u ) = u (1) ·
δL 

2 (u (2) ) 

u (2) 

, u ∈ [0 , 1] 2 . 

These copulas are also known as bivariate exchangeable generalised Marshall–Olkin copulas ( exGMO 2 ) , see [12,13] . Fur- 

thermore, they have a multivariate extension with a stochastic representation which is called the exchangeable exoge- 

nous shock model, see [15] . The question that arises is: What is the intersection between the classes survival exGMO and 

USL for d > 2 ? In Section 5 , we provide an answer to this question by deriving the necessary and sufficient conditions 

for a copula to be in the intersection of both of these classes. 

(B) One example, which is presented and discussed in [2] , is that of identical multivariate diagonals. We show that a 

realisation U ~ C of an upper semilinear copula C with identical multivariate diagonals can have at most one compo- 

nent that differs from the joint maximum. This implies that the ordered version of U is determined by the minimum 

component U ∧ , the maximum component U ∨ , and the event { U ∧ � = U ∨ }. In Section 6 , we use this observation to derive 

a stochastic model, which is based on conditional sampling. We also provide a novel characterisation theorem for this 

subclass. 

2 Note, that we have made a small correction to the representation of u � compared to the original reference [2] . 
3 For the purpose of readability, we refer to these three subclasses in the remainder of this introduction as (A), (B), and (C). 
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Fig. 1. A Venn diagram of the subclasses of upper semilinear copulas and survival exchangeable generalised Marshall–Olkin copulas. For the sake of com- 

pleteness, the class of survival exchangeable Marshall–Olkin copulas is included. M d and �d are the Fréchet–Hoeffding upper bound and the independence 

copula for dimension d , respectively. 

Fig. 2. Three scatterplots for 3-margins of 5-dimensional realisations of members of the subclasses (A), (B), and (C) (left to right). All three copulas were 

calibrated to the same multivariate lower tail-dependence parameter. 

(C) In Section 7 , we present a subclass which is extendible in the class of upper semilinear copulas 4 and provide its 

explicit deFinetti representation. A deFinetti representation is a two-step model where in the first step a random 

distribution function is sampled, from which — in the second step — an iid sample is drawn, see [ 1 , Chapters 2 and 

3]. This particular subclass extends the bivariate Dirichlet copula, see [ 22 , Theorem 3.5.3], and is radially symmetric. 

Furthermore, members of this subclass are conjunctive aggregation operations. 

The extension of the first two subclasses to higher dimensions is illustrated in Fig. 1 . 5 We observe the following: in the 

bivariate case, both subclasses (A) and (B) coincide with the entire class of upper semilinear copulas. In the case d > 2, the 

only copula in the intersection of the subclasses (A) and (B) is the comonotonicity copula. 6 Furthermore, the independence 

copula is not upper semilinear if d > 2. Fig. 2 shows exemplary scatterplots for all three subclasses, (A), (B), and (C). 

The remaining paper is organised as follows: we briefly introduce the necessary key concepts from copula theory 

in Section 2 as well as the classes of upper semilinear copulas and exchangeable generalised Marshall–Olkin copulas in 

Section 3 and Section 4 , respectively. In Sections 5, 6, 7 , we discuss the subclasses (A), (B), and (C), while we offer a con- 

clusion in Section 8 . 

2. Notation and mathematical background 

In this section, we introduce copulas from an analytical and probabilistic point of view, summarise relevant results, and 

establish the notation which is used throughout this article. 

4 We call a copula C d ∈ USL d extendible in the class of upper semilinear copulas if a sequence of random variables { U i } i ∈ N exists such that each finite 

margin is upper semilinear and the d -margin is C d . 
5 The illustration in Fig. 1 anticipates a few minor results which will be proven in the later sections. 
6 This statement can be extended as follows: in the case d > 2, the only copula in at least two of the subclasses (A), (B), or (C) is the comonotonicity 

copula. 
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We use the following conventions for a concise notation. We use bold letters for vectors and capital letters for random 

variables and vectors. We apply operators component-wise, i.e. U ≤ u means U i ≤ u i for all i . For a vector u ∈ [0, 1] d , we 

denote its ordered version by u (1) ≤ . . . ≤ u (d) . For a (multivariate) distribution function F , we use the notation X ~ F if the 

random vector X has the distribution function F . Furthermore, for two random vectors X and Y , we denote X 

d = Y if X and Y 

have the same distribution function. If not stated otherwise, d ∈ N denotes the dimension. Finally, we define [ n ] := { 1 , . . . , n } 
for n ∈ N . 

We use mathematical expressions involving vectors u ∈ [0, 1] k , resp. their ordered versions 0 ≤ u (1) ≤ . . . ≤ u (k ) ≤ 1 , and 

diagonal functions which may contain fractions having a numerator and denominator equal to zero for some specific values 

on the boundary of [0, 1] k . For readability, we omit the treatment of these special cases in the following as the existence of 

an analytical continuation can, in all involved cases, easily be inferred from the properties of a diagonal function and/or the 

fact that 0 ≤ u (1) ≤ . . . ≤ u (k ) . 

2.1. Copulas, symmetry, and diagonal functions 

Below, we summarise the most important definitions and results from the theory on copulas. 

We call a function C : [0, 1] d → [0, 1] copula if it fulfills the following conditions. 

C( u ) = 0 for all u ∈ [0 , 1] d with u i = 0 for some i ∈ [ d] . (3a) 

C( u ) = u i for all u ∈ [0 , 1] d with u j = 1 ∀ j � = i. (3b) 

V C ([ a , b ]) := 

∑ 

γ∈×i =1 
d { a i ,b i } 

(−1) |{ i : a i = γi }| C( γ ) ≥ 0 for all [ a , b ] ⊆ [0 , 1] d . (3c) 

Furthermore, we call V C ([ a , b ]) the C -volume of the rectangle [ a , b ], a ≤ b , and we call the properties in Eqs. (3a) –(3c) 

groundedness, uniform margin property , and d-increasingness . 

Given a set of functions from [0, 1] d to [0, 1], an interesting problem is to determine the copula subclass, i.e. the functions 

that fulfill Eqs. (3a) –(3c) . To emphasise that we often discuss potential copulas, we call arbitrary functions C : [0, 1] d → [0, 

1] copula candidate functions . There is a second equivalent definition for copulas that characterises copulas as probabilistic 

objects. 

Lemma 1 [ 20 , Theorem 8] . A function C : [0, 1] d → [0, 1] is a copula if and only if a random vector U on a probability space 

(�, A , P ) exists with 

P (U i ≤ u ) = u, ∀ u ∈ [0 , 1] , i ∈ [ d] , 

P ( U ≤ u ) = C( u ) , ∀ u ∈ [0 , 1] d . 

Hence, we can identify a copula with a probability measure on [0, 1] d . 

We define the survival copula ˆ C of a copula C by 

ˆ C ( u ) := V C ([ 1 − u , 1 ]) , u ∈ [0 , 1] d . 

A simple calculation shows that if U ~ C , we have 1 − U ∼ ˆ C . In particular, this implies that ˆ C is itself a copula. Further- 

more, note that ˆ ˆ C = C. We call a copula radially symmetric if C = 

ˆ C . In the language of probability theory, this is equivalent 

to U 

d = 1 − U for U ~ C . 

We call a copula (candidate function) C exchangeable if 

C( u ) = C(u π(1) , . . . , u π(d) ) , ∀ u ∈ [0 , 1] d 

and for all permutations π on the index set [ d ]. For a random vector U ~ C , the corresponding probabilistic interpretation is 

that a permutation of the components of U does not change its distribution function. 

We call a copula C extendible (in a class C) if an exchangeable sequence { U i } i ∈ N exists such that (U 1 , . . . , U d ) 
′ ∼ C (and each 

finite margin is from the class C). 7 Note that this implies that an extendible copula is always exchangeable. The converse, 

however, is not true as one can construct simple examples of exchangeable copulas that are not extendible (e.g. the bivariate 

counter-monotonicity copula, see [ 16 , Remark 1.4]). 

For an exchangeable copula (candidate function) C and k ∈ [ d ], we define the k-margin C k and the k-diagonal δk of C by 

C k : [0 , 1] k → [0 , 1] , u �→ C( u , 1 , . . . , 1) , 

δk : [0 , 1] → [0 , 1] , u �→ C k (u, . . . , u ) . 

7 Note that our definition of extendibility in a class C is stricter than the common definition of extendibility, see, e.g. [16, p. 43] , where it is usually not 

required that each finite margin is in the prespecified class C. 
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In a probabilistic setting, C k is the distribution function of a k -dimensional marginal vector, e.g. (U 1 , . . . , U k ) , and δk is 

the distribution of the minimum of k components, e.g. min i ∈ [ k ] U i . 

Given the k -margin of a copula candidate function C , one can use the copula definition or Lemma 1 to check if C k is a 

proper copula. Similarly, there are conditions to verify whether a function δ: [0, 1] → [0, 1] is the diagonal of a d -dimensional 

copula. We call such a function a d-diagonal . Note that we can determine if a function δ is a d -diagonal with the following 

lemma. 

Lemma 2 [10] or [21] . A function δ: [0, 1] → [0, 1] is a d-diagonal, i.e. the diagonal of a d-dimensional copula, if and only if the 

following conditions are fulfilled: 

δ(1) = 1 . (4a) 

δ(u ) ≤ u, ∀ u ∈ [0 , 1] . (4b) 

0 ≤ δ(v ) − δ(u ) ≤ d(v − u ) , ∀ u, v ∈ [0 , 1] with u < v . (4c) 

3. Semilinear copulas 

In this section, we introduce the class of upper semilinear copulas. Traditionally, this class is not defined by a stochastic 

model, but by an analytic, recursive construction principle. This recursive construction allows the specification of an upper 

semilinear copula solely by its diagonal functions. A concise overview of various approaches to specifying a copula via given 

diagonal functions can be found in [ 2 , Section 1]. 

We placed a special emphasis on the characteristics and peculiarities of this class. One noteworthy property is that a 

realisation from such a copula has at most two distinct components. With the following sections of this article in mind, this 

property is crucial for the derivation of stochastic models and characterisation theorems. 

Definition 1. We call a d -variate copula candidate function C : [0, 1] d → [0, 1] (upper) semilinear if C is exchangeable and if C 

is linear on the sections 

S v ,d := 

⎧ ⎨ 

⎩ 

(
u 

1 

)
∈ [0 , 1] j +(d − j ) : u = λ ·

⎛ 

⎝ 

v 1 
. . . 

v 1 

⎞ 

⎠ + (1 − λ) ·

⎛ 

⎝ 

v 1 
. . . 

v j 

⎞ 

⎠ , λ ∈ [0 , 1] 

⎫ ⎬ 

⎭ 

, 

where j ∈ { 1 , . . . , d} and v ∈ [0, 1] j with v 1 ≤ . . . ≤ v j = 1 . 

This property has three important implications, which can be derived by straightforward calculations, see [2] . For this, 

let u = (u 1 , . . . , u k ) 
′ ∈ [0 , 1] k with ordered version u (1) ≤ . . . ≤ u (k ) . 

(a) The k -margins C k of C are upper semilinear copulas (resp. copula candidate functions). 

(b) The following recursion holds: 

C k ( u ) = 

1 − u (k ) 

1 − u (1) 

· δk (u (1) ) + 

u (k ) − u (1) 

1 − u (1) 

· C k −1 ( u 

� ) , (5a) 

where u 

� ∈ [0 , 1] k −1 with 

u 

� 
(i ) := u (1) + 

(u (i ) − u (1) ) · (1 − u (1) ) 

u (k ) − u (1) 

, i ∈ { 1 , . . . , k − 1 } . (5b) 

(c) Using the convention that u (k +1) = 1 , we can write the k -margin C k as 

C k ( u ) = 

∑ k 
i =1 (u (i +1) − u (i ) ) · δi (u (1) ) 

1 − u (1) 

. (6) 

[2] provides the following characterisation theorem for determining if an upper semilinear copula candidate function C 

is a proper copula. 

Theorem 1 (Characterisation, see [ 2 , Theorem 1]) . Let C be an upper semilinear copula candidate function such that the corre- 

sponding diagonal sections δ2 , . . . , δd are proper diagonals. C is a copula if and only if the following three conditions hold: 

(a) For any m ∈ { 1 , . . . , d − 1 } , the function ν(m ) 
d 

: [0 , 1) → [0 , ∞ ) , defined by 

ν(m ) 
d 

(u ) := 

1 

1 − u 

·
m ∑ 

j=0 

( −1) j 
(

m 

j 

)
δd−m + j ( u ) , 

is non-decreasing. The C-volume of [0 , u ] d−m × [ u, 1] m is (1 − u ) · ν(m ) 
d 

(u ) . 
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(b) The function ζ d : [0, 1] → [0, 1], defined by 

ζd (u ) := 1 + 

d ∑ 

j=1 

(−1) j 
(

d 

j 

)
δ j (u ) , 

is non-increasing. The C-volume of [ u , 1] d is ζ d ( u ) . 

(c) The inequality (
δd (u ) 

1 − u 

)′ 
≥ 1 − ζd (u ) 

(1 − u ) 2 
(7) 

holds almost everywhere with respect to the Lebesgue measure on (0, 1) . 

The proof of this theorem, see [ 2 , p. 293–296], shows that the three conditions from Theorem 1 are equivalent to C being 

d -increasing. 8 This proof utilises some properties of semilinear copulas (resp. copula candidate functions) which we will use 

in subsequent sections. Therefore, we outline the proof and highlight important intermediate results. For the complete proof, 

we refer the interested reader to the aforementioned reference. 

In the proof, it is first observed that each d-box [ a , b ] ⊆[0, 1] d can be decomposed into d -boxes, with disjoint interiors, of 

the form 

d ⨉
i =1 

[ u i , v i ] , 

such that for all i � = j either u j ≥ v i , u i ≥ v j , or [ u i , v i ] = [ u j , v j ] . Thus, due to the exchangeability of C , it suffices to check the 

d -increasingness property on d -boxes of the form 

r ⨉
j=1 

[ u j , v j ] m j , 

with m 1 + . . . + m r = d and 

0 ≤ u 1 < v 1 ≤ u 2 < v 2 ≤ . . . ≤ u r < v r ≤ 1 . 

The remaining proof is split into three parts for the cases r = 1 , r = 2 , and r > 2 and the following is shown: the d- 

increasingness property is equivalent to condition a) or conditions b) and c) for r = 1 or r = 2 , respectively. In the case r > 2, 

the C -volume of the d -box is equal to zero. The last statement is summarised in the following lemma. 

Lemma 3 [ 2 , Proof of Theorem 1] . Let C be an upper semilinear copula candidate function and r > 2, 
∑ r 

j=1 m j = d, and 

u i > v j ∀ i > j. Then 

V C 

(
r ⨉

j=1 

[ u j , v j ] m j 

)
= 0 . (8) 

Lemma 3 highlights a significant characteristic of upper semilinear copulas, since Eq. (8) implies that a realisation U ~ C 

must be concentrated on at most two distinct (random) values. More formally, let C be an upper semilinear copula and 

U ~ C . Then we can conclude with a simple probabilistic argument that 

P 

(
U 1 � = U 2 , U 1 � = U 3 , U 2 � = U 3 

)
= 0 . 

This implies a very strong, albeit unusual, dependence structure between the components of U . 

Another important corollary from the proof of Theorem 1 is the following collection of closed-form expressions for C - 

volumes. 

Corollary 1 [ 2 , Proof of Theorem 1] . Let C be an upper semilinear copula. Then for 0 ≤ u < v ≤ 1 and 0 ≤ u 1 < v 1 ≤ u 2 < v 2 ≤ 1, 

we have 

V C ([ u, v ] d ) = δd (v ) −
(

1 − v 
1 − u 

· δd (u ) + 

v − u 

1 − u 

· (1 − ζd (u )) 
)
, 

V C 

(
[ u 1 , v 1 ] d−m × [ u 2 , v 2 ] m 

)
= (v 2 − u 2 ) ·

(
ν(m ) 

d 
(v 1 ) − ν(m ) 

d 
(u 1 ) 

)
, 

V C 

(
[0 , v ] d \ ([0 , u ] d ∪ [ u, v ] d ) 

)
= 

v − u 

1 − u 

· ( 1 − ζd (u ) − δd (u ) ) 

= 

v − u 

1 − u 

· V C 

(
[0 , 1] d \ ([0 , u ] d ∪ [ u, 1] d ) 

)
. 

8 It follows directly from Eq. (6) that C is also grounded and possesses the uniform margin property. 
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Proof. For the first identity, see [2, p. 296] , and for the second identity, see [2, p. 294] . We obtain the third identity with 

the following calculation: 

V C 

(
[0 , v ] d \ ([0 , u ] d ∪ [ u, v ] d ) 

)
= V C 

(
[0 , v ] d ) − V C ([0 , u ] d ) − V C ([ u, v ] d 

)
= δd (v ) − δd (u ) − δd (v ) + 

(
1 − v 
1 − u 

· δd (u ) + 

v − u 

1 − u 

· (1 − ζd (u )) 
)

= 

v − u 

1 − u 

· ( 1 − ζd (u ) − δd (u ) ) 

= 

v − u 

1 − u 

· V C 

(
[0 , 1] d \ ([0 , u ] d ) ∪ [ u, 1] d 

)
. 

�

We conclude this section with an interesting finding: while the independence copula �d is upper semilinear for d = 2 , 

we show in the following corollary that this is not the case for d > 2. 

Corollary 2. Let d > 2 and C be an upper semilinear copula candidate function with δ j (u ) = u j , j ≥ 2 . Then C is not a proper 

copula. 

Proof. We check this claim by contradiction. Let C be an upper semilinear copula candidate function with d > 2 and diagonal 

functions δ j (u ) = u j , j ≥ 2. Assume that C is a proper copula. This implies that the 3-margin C 3 is also a proper copula. A 

simple calculation shows that ζ3 (u ) = (1 − u ) 3 . Hence, we find that the third condition of the characterisation theorem, 

(δ3 (u ) / (1 − u )) ′ ≥ (1 − ζ3 (u )) / (1 − u ) 2 for almost every u ∈ [0, 1], is equivalent to 

3 u 

2 (1 − u ) + u 

3 ≥ 1 − (1 − u ) 3 . 

This implies for u = 1 / 2 that 4 / 8 ≥ 1 − 1 / 8 or 5/8 ≥ 1, which is a contradiction. �

4. Exchangeable generalised Marshall–Olkin copulas 

Upper semilinear copulas are connected to exchangeable Marshall–Olkin distributions. These were introduced in the sem- 

inal paper [17] , which also showed that they are uniquely linked to so-called exogenous shock models with independent, 

exponentially distributed shocks . The aforementioned connection emerges in the bivariate case, where the survival copula of 

a bivariate upper semilinear copula is an exchangeable generalised Marshall–Olkin copula and vice versa. One of the initial 

questions leading to this article was under which circumstances this relationship holds in higher dimensions. To answer this 

question, we briefly discuss exchangeable generalised Marshall–Olkin distributions and the exogenous shock model. 

Definition 2 (Exchangeable generalised Marshall–Olkin copula) . We call a d -variate copula candidate function C : [0, 1] d → [0, 

1] exchangeable and of generalised Marshall–Olkin type if there are functions g 2 , . . . , g d such that 

C( u ) = u (1) · g 2 (u (2) ) · . . . · g d (u (d) ) , u = (u 1 , . . . , u d ) 
′ ∈ [0 , 1] d . (9) 

Furthermore, we call a proper copula of that form exchangeable generalised Marshall–Olkin copula (abbr. as exGMO d ). 

An extensive monograph on these copulas is [22] ; [15] is a concise article, containing all results presented in this section. 

Classical exchangeable Marshall–Olkin copulas arise as a special case if the functions g i , i ≥ 2, are power functions. They 

obtain their name from the eponymous multivariate exponential distribution which was proposed in [17] and whose survival 

copulas are of this form. An extensive monograph on exchangeable Marshall–Olkin copulas is [14] . 

[22] provides three equivalent characterising conditions for an exchangeable copula candidate function of generalised 

Marshall–Olkin type to be a proper copula. However, for our purposes, we only require the one presented below. For this, 

let D be the set of continuous distribution functions on [0, 1] which are positive on (0, 1], i.e. 

D := 

{ 

F ∈ C (0) ([0 , 1]) : �F ≥ 0 , 0 �∈ F ((0 , 1]) , F (1) = 1 

} 

. 

Theorem 2 (Characterisation, see [ 22 , Theorem 3.3.1]) . Let C be an exchangeable copula candidate function of Marshall–Olkin 

type having a representation as in Eq. (9) for functions g 2 , . . . , g d with g i (1) = 1 , i ≥ 2 . Then C is a proper copula if and only if 

H i ∈ D for all i ∈ { 1 , . . . , d} , where 

H i (u ) := 

{ ∏ i −1 
j=0 

(
g d−i +1+ j (u ) 

)
(−1) j ( i −1 

j ) u ∈ (0 , 1] 

lim v ↘ 0 H i (v ) u = 0 . 
(10) 

The functions H i in Eq. (10) can be used to define a stochastic representation called exchangeable exogenous shock model , 

see [ 22 , p. 61 sqq.]. For this purpose, consider a proper copula C ∈ exGMO d with a representation as in Eq. (9) for functions 

g 2 , . . . , g d . Let { Z I } ∅� = I⊆{ 1 , ... ,d} be a family of independent random variables with 

Z I ∼ H | I| , ∅ � = I ⊆ { 1 , . . . , d} . 
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Then it is the case that U ~ C , where U is defined by 

U i = max 

{ 

Z I : i ∈ I 

} 

, i ∈ { 1 , . . . , d} . (11) 

Note that the prefix exchangeable highlights that the resulting vector U is exchangeable. Furthermore, it can be shown 

that U is exchangeable if and only if the shock distribution functions H I depend only on the cardinality of the corresponding 

set I , see [ 22 , Propostion 3.1.2]. 

The following lemma shows that every exchangeable exogenous shock model also implies an exGMO copula. For this 

reason, C ~ exGMO d is sometimes called exchangeable exogenous shock model copula . 

Lemma 4 [ 22 , p. 61 sq.] . Let H I ∈ D, ∅ � = I ⊆[ d ], such that 

d ∏ 

j=1 

H 

( d−1 
j−1 ) 

j 
(u ) = u, ∀ u ∈ [0 , 1] . 

Furthermore, let { Z I } ∅ � = I ⊆[ d ] be a family of independent random variables with Z I ~ H I . Define U by Eq. (11) . Then the distribu- 

tion function of U is an exGMO copula with 

g i (u ) = 

d+1 −i ∏ 

j=1 

H 

( d−i 
j−1 ) 

j 
(u ) , ∀ u ∈ [0 , 1] , i ∈ { 2 , . . . , d} . 

5. Upper semilinear and exchangeable GMO copulas 

The classes of survival exGMO copulas and upper semilinear copulas are two multivariate generalisations of the same 

bivariate copula family. The former is attained as survival copulas in the generalisation of the bivariate exogenous shock 

model. In contrast, the latter is a result of a generalisation of the recursive construction principle for the copula function. 

Thus, both class are obtained by lifting different features of the same bivariate class to higher dimensions. However, to the 

best of our knowledge, the similarities and differences between these two generalisations have not been investigated in the 

scientific literature, yet. 

A natural problem is the identification of conditions that allow a copula to be both survival exGMO and upper semilinear. 

It should be noted that a natural stochastic model for upper semilinear copulas, or at least a subclass thereof, has yet to be 

proposed. Thus, this problem is related to the problem of finding stochastic representations for upper semilinear copulas. 

In the remainder of this section, we present such conditions. These correspond to strong restrictions on the shock model 

representation as well as a strong restriction on the possible choices of diagonal functions in the recursive construction 

principle for upper semilinear copulas. 

5.1. Bivariate semilinear copulas 

We start by proving for the bivariate case that the classes of survival exGMO copulas and upper semilinear copulas are 

identical. In order to observe this, we recall results on bivariate semilinear copulas from [4] . In the bivariate case, an upper 

semilinear copula candidate function has the form 

C( u ) = 

(1 − u (2) ) · δ2 (u (1) ) + (u (2) − u (1) ) · u (1) 

1 − u (1) 

, u ∈ [0 , 1] 2 . 

A simple calculation shows that the survival counterpart, ˆ C , of C is defined by the following equations. 

ˆ C ( u ) = V C ([ 1 − u , 1 ]) = u (1) ·
δL 

2 (u (2) ) 

u (2) 

, u ∈ [0 , 1] 2 . (12a) 

δL 
2 (u ) = 2 u − 1 + δ2 (1 − u ) , u ∈ [0 , 1] . (12b) 

A copula of this form is called (bivariate) lower semilinear copula (abbr. as LSL 2 ). We define g 2 (u ) := δL 
2 (u ) /u, u ∈ [0, 1], 

and we prove the claim by comparing Eq. (12a) with Eq. (9) . The linear segments of bivariate lower and upper semilinear 

copulas are illustrated in Fig. 3 a. 

5.2. Characterisation of USL d ∩ surv. exGMO d for d > 2 

Note that there are simple examples for copulas which are survival exGMO but not upper semilinear (e.g. the indepen- 

dence copula for d > 2) as well as for copulas which are survival exGMO and upper semilinear (e.g. the comonotonicity 

copula). Another example, which is more complicated, is that of a copula which is upper semilinear but not survival exGMO 

(non-comonotonic with identical multivariate diagonal functions), see Section 6 . As a result, we have already established 

that neither the discussed intersection of copula classes is empty nor is one class a subclass of the other. 
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Fig. 3. Illustration of “linear segments” (dashed lines) of lower and upper semilinear copulas for d = 2 , cf. [4, p. 65] . 

Below, we present necessary and sufficient conditions for a copula to be both survival exGMO and upper semilinear. 

Theorem 3. Let d > 2 and consider the notation of Theorem 2 . A d-variate exGMO copula C is the survival copula of an upper 

semilinear copula ˆ C , if and only if 

H I ≡ 1 [0 , ∞ ) , ∀ I : | I| < d − 1 . (13) 

Remark. The condition in Eq. (13) has the following intuitive interpretation. For this purpose, consider the stochastic repre- 

sentation in Eq. (11) , i.e. Z I ~ H I , ∅ � = I ⊆[ d ], are independent random variables and U ~ C is defined by 

U i := max 

{ 

Z I : i ∈ I 

} 

, i ∈ { 1 , . . . , d} . (11 rev . ) 

Thus, Eq. (13) becomes equivalent to 

Z I = 0 a.s. ∀ I : | I| < d − 1 

and the shock model simplifies considerably 

U i := max 

{ 

Z I : i ∈ I , | I | ∈ { d − 1 , d} 
} 

, i ∈ { 1 , . . . , d} . 
This imposes a strong constraint on the original exchangeable exogenous shock model definition. In this regard, these 

copulas constitute a rather small subclass of all survival exGMO copulas. 

Proof of Theorem 3. Firstly, we prove by contradiction that the exchangeable exogenous shock model of an exGMO copula 

whose survival copula is upper semilinear fulfills Eq. (13) . Therefore, assume that C is a d -variate exGMO copula and that its 

survival copula ˆ C is upper semilinear. Furthermore, assume that there exists i < d − 1 such that H i �≡ 1 [0 , ∞ ) . Exchangeability 

of the shock model implies the existence of sets ∅ � = I 1 , I 2 , I 3 ⊆[ d ] with | I j | = i, 

I j ∩ { 1 , 2 , 3 } = { j} , j ∈ { 1 , 2 , 3 } 
and 0 < ε1 < ε2 < ε3 < ε4 ≤ 1 such that 

P ( U 1 � = U 2 , U 2 � = U 3 , U 1 � = U 3 ) ≥ P 

⎛ 

⎝ 

(
max 

∅� = I⊆{ 1 , ... ,d} 
I j � = I , { 1 , 2 , 3 }∩ I � = ∅ 

Z I 

)
< Z I 1 < Z I 2 < Z I 3 

⎞ 

⎠ 

≥
[ ∏ 

∅� = I ⊆[ d] ,I j � = I , { 1 , 2 , 3 }∩ I � = ∅ 
H | I| (ε1 ) 

] 

· [ H i (ε2 ) − H i (ε1 )] × [ H i (ε3 ) − H i (ε2 )] · [ H i (ε4 ) − H i (ε3 )] 
(∗) 
> 0 . 

Here, ( ∗) holds because the assumptions imply the existence of an interval ( a, b ] ⊆[0, 1] on which the functions H I j 
are 

strictly monotone. Consequently, ( ∗) holds for arbitrary ε j ∈ ( a, b ] with ε1 < . . . < ε4 , see Fig. 4 . This contradicts the result of 

Lemma 3 , i.e. that all components of 1 − U are concentrated on at most two distinct points. 

Secondly, we prove that Eq. (13) is a sufficient qualification such that the survival copula of an exGMO copula is upper 

semilinear. Therefore, assume that C is a d -variate exGMO copula such that Eq. (13) holds. Lemma 4 implies that g i ≡ 1 [0, ∞ ) 

for i > 2 and 

C( u ) = u (1) · g 2 (u (2) ) , u ∈ [0 , 1] d , 
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Fig. 4. A stylised strictly monotone section of H i and a possible choice for ε1 , . . . , ε4 . 

g 2 (u ) = H d−1 (u ) , u ∈ [0 , 1] . 

Subsequently, we obtain for u ∈ [0, 1] d 

ˆ C ( u ) = 1 + 

d ∑ 

k =1 

(−1) k 
∑ 

1 ≤i 1 < ... <i k ≤d 

C k (1 − u (i 1 ) , . . . , 1 − u (i k ) 
) 

= 1 −
d ∑ 

i =1 

(1 − u (i ) ) + 

d ∑ 

k =2 

(−1) k 
∑ 

1 ≤i 1 < ... <i k ≤d 

(1 − u (i k ) 
) · g 2 (1 − u (i k −1 ) 

) 

= 1 −
d ∑ 

i =1 

(1 − u (i ) ) + 

d−1 ∑ 

k =1 

d ∑ 

j= k +1 

(1 − u ( j) ) · g 2 (1 − u (k ) ) 
k −1 ∑ 

i =0 

(−1) i +2 

(
k − 1 

i 

)

= 1 −
d ∑ 

i =1 

(1 − u (i ) ) + g 2 (1 − u (1) ) 
d ∑ 

i =2 

(1 − u (i ) ) . 

Here, we used the equation 

∑ k −1 
i =0 (−1) i 

(
k −1 

i 

)
= 1 { k =1 } . We conclude that the k -diagonal of ˆ C equals δk (u ) = u − (k −

1)(1 − u )(1 − g 2 (1 − u )) and that 

g 2 (1 − u ) = 1 + 

δk (u ) − δk −1 (u ) 

1 − u 

, k ∈ { 2 , . . . , d} , u ∈ [0 , 1] . 

Finally, we plug this identity into the last equation for ˆ C and can ascertain after a lengthy but straightforward calculation 

that 

ˆ C ( u ) = 

∑ d 
i =1 (u (i +1) − u (i ) ) · δi (u (1) ) 

1 − u (1) 

, u ∈ [0 , 1] d . 

Here, we use the convention u (d+1) ≡ 1 . This shows that ˆ C is an upper semilinear copula. �

Remark. Recall that one property of upper semilinear copulas is that all components of a realisation are concentrated on 

at most two distinct (random) values. Theorem 3 implies that, if we additionally assume that its survival copula is exGMO, 

at most one component of a realisation may differ from the joint minimum. Furthermore, it follows that for d > 2, the only 

extendible copula of this subclass is the comonotonicity copula. 

We can combine Theorem 3 with Theorem 2 to obtain the following analytical characterisation for an upper semilinear 

copula with a survival exGMO copula. 

Corollary 3. Let δk , k ∈ { 2 , . . . , d} , be k-diagonals and let C be the corresponding upper semilinear copula candidate function 

defined by Eq. (6) . C is a copula and has an exGMO survival copula if and only if 

δk (u ) − δk −1 (u ) = δ j (u ) − δ j−1 (u ) , ∀ k � = j, u ∈ [0 , 1] , 

and the functions g 2 and u/g 2 (u ) d−1 are non-decreasing on [0, 1] with g 2 (1) = 1 , where g 2 is (for some k ≥ 2 ) defined by 

g 2 (u ) = 1 + 

δk (1 − u ) − δk −1 (1 − u ) 

u 

, u ∈ [0 , 1] . 

The second condition, namely g 2 and u/g 2 (u ) d−1 being non-decreasing on [0, 1], can be replaced such that we attain the 

following characterisation, cf. [ 4 , Corollary 5]. 

Corollary 4. Let δk , k ∈ { 2 , . . . , d} , be k-diagonals and let C be the corresponding upper semilinear copula candidate function 

defined by Eq. (6) . Assume that 

δk (u ) − δk −1 (u ) = δ j (u ) − δ j−1 (u ) , ∀ k � = j, u ∈ [0 , 1] , 
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and define for some k ≥ 2 

g 2 (u ) = 1 + 

δk (1 − u ) − δk −1 (1 − u ) 

u 

, u ∈ [0 , 1] . 

Furthermore, assume that g 2 is absolutely continuous and g 2 ( u ) > 0, ∀ u > 0 . Then, C is a copula if and only if 

0 ≤ u · (d − 1) · g ′ 2 (u ) ≤ g 2 (u ) , 

for all u ∈ (0, 1) where g ′ 
2 
(u ) exists. 

Proof. Corollary 3 implies that C is a copula if and only if g 2 ( u ) and u/ ( g 2 (u ) ) 
d−1 

are non-decreasing in u . The claim of this 

corollary follows, since g 2 is absolutely continuous and it holds that 

g 2 (u ) and 

u 

( g 2 (u ) ) 
d−1 

non-decreasing 

⇔ g ′ 2 (u ) ≥ 0 and 

(
log 

u 

( g 2 (u ) ) 
d−1 

)′ 
≥ 0 a . e . 

⇔ g 2 (u ) ≥ u · (d − 1) · g ′ 2 (u ) ≥ 0 a . e . 

�

Remark. Adapting the notation of Theorem 1 , we can show for C ∈ USL d ∩ surv. exGMO d that (
δd (u ) 

1 − u 

)′ 
≥ 1 − ζd (u ) 

(1 − u ) 2 
, ∀ u ∈ [0 , 1] 

⇔ u · (d − 1) · g ′ 2 (u ) ≤ g 2 (u ) , ∀ u ∈ [0 , 1] . 

Furthermore, we can show that the non-decreasingness of g 2 is equivalent to the non-decreasingness of ν(m ) 
d 

or the 

non-increasingness of ζ d , respectively. 

6. Identical multivariate diagonals 

In this section, we explore the special case in which all multivariate diagonals are identical. In particular, throughout this 

section we assume that C is an upper semilinear copula (candidate function) with diagonals δj ≡ δ, j ≥ 2, for a d -diagonal 

function δ. 

This assumption implies for a realisation U ~ C and distinct i, j, k that 

P 

(
U i ≤ u, U j ≤ u, U k > u 

)
= 0 , ∀ u ∈ [0 , 1] . 

Thus, at most one component U i , i ∈ [ d ], of U may differ from the joint maximum max i ∈ [ d ] U i . Consequently, and because 

U is exchangeable, we can reduce sampling U ~ C to sampling the first two components of the ordered version of U and a 

random shuffling. All bivariate random vectors have a stochastic model, which is based on conditional sampling, see, e.g., 

[ 16 , Algorithm 1.2]. We will use this to construct a stochastic model for U ~ C . 

The subclass in question has already been discussed and characterised in [2] . Therein, the authors established that the 

copula (candidate function) simplifies to 

C( u ) = 

(1 − u (2) ) · δ(u (1) ) + (u (2) − u (1) ) · u (1) 

1 − u (1) 

, u ∈ [0 , 1] d . 

Furthermore, they present the following theorem, which is a refinement of their general characterisation theorem, see 

Theorem 1 . 

Theorem 4 (Characterisation, see [ 2 , Corollary 1]) . Let C be an upper semilinear copula candidate function such that δj ≡ δ, 

j ∈ { 2 , . . . , d} . C is a copula if and only if the function ζ is non-increasing and the functions φ and ν are non-decreasing, where 

ζ : [0 , 1] → [0 , 1] , u �→ 1 − du + (d − 1) δ(u ) , 

φ : [0 , 1) → R , u �→ 

1 − du + (d − 1) δ(u ) 

(1 − u ) d 
, 

ν : [0 , 1) → R , u �→ 

u − δ(u ) 

1 − u 

. 

The assumption of identical multivariate diagonals allows us to simplify several expressions. We use these simplifications, 

which are summarised in the following two lemmas, to derive the probability distributions for the conditional sampling of 

( U (1) , U (2) ). 
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Lemma 5. Let C be an upper semilinear copula candidate function with equal diagonals δj ≡ δ, j ∈ { 2 , . . . , d} . Then, for u > 0, we 

have 

ν(m ) 
d 

(u ) = 

{
u −δ(u ) 

1 −u 
m = d − 1 , 

0 else 
and 

ζd (u ) = 1 − du + (d − 1) δ(u ) . 

Proof. Firstly, note that the binomial formula implies for m ≥ 1 the identity 
∑ m 

j=0 (−1) j 
(

m 

j 

)
= 0 . Hence, we have 

ν(m ) 
d 

(u ) = 

1 

1 − u 

m ∑ 

j=0 

(−1) j 
(

m 

j 

)
δd−m + j (u ) 

= 

{
(u − δ(u )) / (1 − u ) , m = d − 1 , 

0 , else , 

where we use the assumption that all multivariate diagonals are identical, i.e. δd−m + j = δ, d − m + j > 1 . Similarly, we can 

obtain the second identity with 

ζd (u ) = 1 + 

d ∑ 

j=1 

(−1) j 
(

d 

j 

)
δ j (u ) = 1 − du + dδ(u ) − δ(u ) . 

�

Lemma 6. Let C be an upper semilinear copula with equal diagonals δj ≡ δ, j ∈ { 2 , . . . , d} . Then, for 0 ≤ u < v ≤ 1 and 

0 ≤ u 1 < v 1 ≤ u 2 < v 2 ≤ 1, we have 

V C ((u, v ] d ) = δ(v ) − δ(u ) − d 
v − u 

1 − u 

(u − δ(u )) and 

V C 

(
(u 1 , v 1 ] × (u 2 , v 2 ] d−1 

)
= (v 2 − u 2 ) ·

[
v 1 − δ(v 1 ) 

1 − v 1 
− u 1 − δ(u 1 ) 

1 − u 1 

]
. 

Proof. We use Corollary 1 and Lemma 5 to prove the claim. Particularly, we have 

V C ((u, v ] d ) = δ(v ) −
(

1 − v 
1 − u 

· δ(u ) + 

v − u 

1 − u 

· (1 − ζd (u )) 
)

= δ(v ) −
(

1 − v 
1 − u 

· δ(u ) + 

v − u 

1 − u 

· (1 − 1 + du − (d − 1) · δ(u )) 
)

= δ(v ) − δ(u ) − d 
v − u 

1 − u 

(u − δ(u )) 

and 

V C 

(
(u 1 , v 1 ] × (u 2 , v 2 ] d−1 

)
= (v 2 − u 2 ) ·

(
ν(d−1) 

d 
(v 1 ) − ν(d−1) 

d 
(u 1 ) 

)
= (v 2 − u 2 ) ·

(
v 1 − δ(v 1 ) 

1 − v 1 
− v 1 − δ(u 1 ) 

1 − u 1 

)
. 

�

6.1. Conditional sampling approach 

The fundamental idea behind the conditional sampling approach for bivariate random vectors is to perform a separation 

of the joint probability distribution. In our case, we can write this separation as (for 0 ≤ u < v ≤ 1) 

P 

(
U (1) ≤ u, U (2) ≤ v 

)
= P 

(
U (1) = U (2) 

)
· P 

(
U (1) ≤ u 

∣∣ U (1) = U (2) 

)
+ P 

(
U (1) � = U (2) 

)
·∫ 

P 

(
U (2) ∈ d v 

∣∣ U (1) = u, U (1) � = U (2) 

)
· P 

(
U (1) ∈ d u 

∣∣ U (1) � = U (2) 

)
. 

We calculate the involved probabilities and (conditional) probability functions in the following two lemmas. 

Lemma 7. Let C be an upper semilinear copula with equal diagonals δj ≡ δ, j ∈ { 2 , . . . , d} . Furthermore, let U ~ C and define the 

corresponding order-statistic by U (1) ≤ . . . ≤ U (d) . Then, for u, v ∈ [0, 1] with u < v, we have 

P 

(
U (1) ≤ u, U (1) = U (2) 

)
= δ(u ) − d 

∫ u 

0 

x − δ(x ) 

1 − x 
dx , 
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P 

(
U (1) ≤ u, U (2) ≤ v , U (1) � = U (2) 

)
= d 

(
v − u 

1 − u 

(
u − δ(u ) 

)
+ 

∫ u 

0 

x − δ(x ) 

1 − x 
dx 

)
. 

Proof. We prove the two identities with results from measure theory. In particular, we use additivity and σ -continuity of 

the corresponding probability measure. For both identities, let u > 0 and let {Z n } n ∈ N be a refining partition of [0, u ] defined 

by 

Z n := { 0 = x 1 ,n < x 2 ,n < . . . < x n −1 ,n < x n,n = u } 
such that Mesh (Z n ) := max k ≤n | x k,n − x k −1 ,n | → 0 for n → ∞ . 

For the first identity, consider that 

n ⊍ 

k =1 

(x k −1 ,n , x k,n ] 
d ↓ 

{
x ∈ [0 , u ] d : x 1 = . . . = x d 

}
. 

Then, we use additivity and σ -continuity as well as exchangeability and the identities from Lemma 6 to establish 

P 

(
U (1) ≤ u, U (1) = U (2) 

)
= lim 

n →∞ 

n ∑ 

k =1 

δ(x k,n ) − δ(x k −1 ,n ) − d 
x k,n − x k −1 ,n 

1 − x k −1 ,n 

· (x k −1 ,n − δ(x k −1 ,n )) 

= δ(u ) − d 

∫ u 

0 

x − δ(x ) 

1 − x 
dx . 

For the second identity, consider that it holds for all v ≥ u that 

n ⊍ 

k =1 

d ⊍ 

i =1 

(x k,n , v ] i −1 × (x k −1 ,n , x k,n ] × (x k,n , v ] d−i 

↑ 

{
x ∈ [0 , 1] d : ∃ i s . t . x i ≤ u, x j ∈ (x i , v ] ∀ j � = i 

}
. 

Thus, we use the same techniques as in the previous identity and integration-by-parts to show 

P 

(
U (1) ≤ u, U (2) ≤ v , U (1) � = U (2) 

)
= d lim 

n →∞ 

n ∑ 

k =1 

(v − x k,n ) 

(
x k,n − δ(x k,n ) 

1 − x k,n 

− x k −1 ,n − δ(x k −1 ,n ) 

1 − x k −1 ,n 

)

= d 

∫ u 

0 

(v − x ) d 

(
x − δ(x ) 

1 − x 

)

= d 

(
v − u 

1 − u 

· (u − δ(u )) + 

∫ u 

0 

x − δ(x ) 

1 − x 
dx 

)
. 

Note that we require ν(u ) = (u − δ(u )) / (1 − u ) to be of bounded variation, which is fulfilled if ν is non-decreasing, such 

that this limit can be interpreted as a Riemann–Stieltjes Integral. �

Lemma 8. Let C be an upper semilinear copula with equal diagonals δj ≡ δ, j ∈ { 2 , . . . , d} . Define p := d 
∫ 1 

0 

(
x − δ(x ) 

)
/ (1 − x ) dx . 

Furthermore, let U ~ C and define the corresponding order-statistic by U (1) ≤ . . . ≤ U (d) . Then, for u, v ∈ [0, 1] with u < v, we have 

P 

(
U (1) � = U (2) 

)
= p = d 

∫ 1 

0 

x − δ(x ) 

1 − x 
dx . 

If p � = 1 , we have 

P 

(
U (1) ≤ u | U (1) = U (2) 

)
= 

1 

1 − p 

(
δ(u ) − d 

∫ u 

0 

x − δ(x ) 

1 − x 
dx 

)
. 

Furthermore, if C is not equal to the comonotonicity copula, i.e. p � = 0, we furthermore have 

P 

(
U (1) ≤ u, U (2) ≤ v | U (1) � = U (2) 

)
= 

d 

p 

(
v − u 

1 − u 

(
u − δ(u ) 

)
+ 

∫ u 

0 

x − δ(x ) 

1 − x 
dx 

)
, 

P 

(
U (2) ≤ v | U (1) = u, U (1) � = U (2) 

)
= 

v − u 

1 − u 

. 

Proof. The first three identities follow directly from Lemma 7 , where we use the fact that p � = 1 in the second equation and 

that p � = 0 in the third equation. 
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For the remaining identity, consider the following argument. Let U be defined on the probability space (�, F , P ) . Let 

�′ := { ω ∈ �: U (1) ( ω) � = U (2) ( ω)}, P �′ := P (· ∩ �′ ) / P (�′ ) , and consider the probability space (�, F , P �′ ) . Consequently, it suf- 

fices to show that 

P �′ 
(
U (2) ≤ v 

∣∣U (1) = u 

)
= 

v − u 

1 − u 

, ∀ u, v ∈ [0 , 1] , u < v . 

From the third identity of this lemma, we conclude that the push-forward measure of U with respect to P �′ is absolutely 

continuous with respect to the Lebesgue measure with density 

f U (1) ,U (2) 
(u, v ) = 

d 

p 

(
1 − δ′ (u ) 

)
(1 − u ) + 

(
u − δ(u ) 

)
(1 − u ) 2 

· 1 (u, 1] (v ) , u, v ∈ [0 , 1] . 

Here, we use that δ is Lipschitz continuous and therefore, according to Rademacher’s theorem, δ is differentiable with 

derivative δ′ almost everywhere (with respect to the Lebesgue measure). Finally, we conclude that the desired conditional 

density and conditional distribution function can be written for u, v ∈ [0, 1] as 

f 
U (2) 

∣∣U (1) = u 
(v ) = 

f U (1) ,U (2) 
(u, v ) ∫ 1 

0 f U (1) ,U (2) 
(u, v ) d v 

= 

1 

1 − u 

1 (u, 1] (v ) , 

F 
U (2) 

∣∣U (1) = u 
(v ) = 

∫ v 

0 

1 

1 − u 

1 (u, 1] (v ) d x = 

max { v − u, 0 } 
1 − u 

. 

This proves the claim. �

Note that the (conditional) distribution function of [ U (2) | U (1) � = U (2) , U (1) = u ] corresponds to the uniform distribution on 

[ u , 1]. 

In conclusion, we have obtained the desired stochastic model for arbitrary upper semilinear copulas C with equal multi- 

variate diagonals, see Algorithm 1 . 

Algorithm 1 Sampling algorithm for an upper semilinear copula C with equal multivariate diagonals δj ≡ δ, j ∈ { 2 , . . . , d} . 
input An admissible d-diagonal δ. 

output A sample from the upper semilinear copula with diagonal δ. 

function USLC ( δ) 

Draw I ∼ Bernoulli (p) with p = d 
∫ 1 

0 
x −δ(x ) 

1 −x dx . 

if I = 0 then 

Draw U ∧ ∼
(
δ(u ) − d 

∫ u 
0 

x −δ(x ) 
1 −x dx 

)
/ (1 − p) . 

Set U 1 = . . . = U d = U ∧ . 
else 

Draw U ∧ ∼ d 

(
(u − δ(u )) + 

∫ u 
0 

x −δ(x ) 
1 −x dx 

)
/p. 

Draw U ∨ ∼ U [ U ∧ , 1] . 

Draw K uniform from the set { 1 , . . . , d} . 
Set U K := U ∧ and U j := U ∨ , j � = K. 

end if 

return U = (U 1 , . . . , U d ) 
′ . 

end function 

Besides the possibility of sampling from those copulas, we can use these results to simplify the conditions from 

Theorem 4 . 

Corollary 5. Let C be an upper semilinear copula candidate function with equal diagonals δj ≡ δ, j ∈ { 2 , . . . , d} . Then, C is a 

copula if and only if ν is non-decreasing and bounded by δ′ ( x )/ d almost everywhere (with respect to the Lebesgue measure), 

where 

ν : [0 , 1) → [0 , ∞ ) , x �→ 

x − δ(x ) 

1 − x 
. 

Proof. Note that (
δ(u ) − d 

∫ u 

0 

x − δ(x ) 

1 − x 
dx 

)′ 
= δ′ (u ) − d 

u − δ(u ) 

1 − u 

≥ 0 a.e. 

is equivalent to 

u − δ(u ) 

1 − u 

≤ 1 

d 
δ′ (u ) a.e. 
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For the forward direction, assume that C is a copula. The non-decreasingness of ν follows from Theorem 4 . With 

Lemma 7 , we conclude that δ(u ) − d 
∫ u 

0 ν(x ) d x is non-decreasing as well, which implies ν( u ) ≤ δ′ ( u )/ d a.e. 

For the reverse direction, assume that ν is non-decreasing and that ν( u ) ≤ δ′ ( u )/ d holds a.e. Combined with the diagonal 

properties, this implies that u �→ δ(u ) − d 
∫ u 

0 ν(x ) d x is non-decreasing as well as bounded from below by zero and from 

above by δ( u ). In particular, p (as defined in the previous lemmas) fulfills 0 ≤ p ≤ 1. With integration-by-parts, we obtain 

(
u − δ(u ) 

)
+ 

∫ u 

0 

x − δ(x ) 

1 − x 
dx = 

∫ u 

0 

(
x − δ(x ) 

1 − x 

)′ 
· (1 − x ) dx . 

The non-decreasingness of ν implies that this function is also non-decreasing. Furthermore, this implies that it is 

bounded from below by zero and from above by p . Moreover, due to the continuity of the Riemann-integral as well as 

the continuity of the diagonals δ, both functions are continuous. In conclusion, we attain that the functions 

u �→ 

1 

1 − p 

(
δ(u ) − d 

∫ u 

0 

x − δ(x ) 

1 − x 
d x 

)
, 

u �→ 

d 

p 

((
u − δ(u ) 

)
+ 

∫ u 

0 

x − δ(x ) 

1 − x 
d x 

)
are continuous distribution functions on [0, 1] and p = d 

∫ 1 
0 ν(x ) d x is a probability, i.e. p ∈ [0, 1]. Consequently, we can 

apply Algorithm 1 . Therefore, let U be a realisation of Algorithm 1 and let u ∈ [0, 1]. Since the corresponding copula is 

exchangeable, we can restrict our proof w.l.o.g. to the special case u 1 ≤ . . . ≤ u d . We have 

P ( U 1 ≤ u 1 , . . . , U d ≤ u d ) 

= P 

(
U (1) = U (2) 

)
· P 

(
U (1) ≤ u 1 

∣∣U (1) = U (2) 

)
+ P 

(
U (1) � = U (2) 

)[
P 

(
K = 1 

∣∣U (1) � = U (2) 

)
· P 

(
U 1 ≤ u 1 , U 2 ≤ u 2 

∣∣U (1) � = U (2) , K = 1 

)︸ ︷︷ ︸ 
= P 

(
U (1) ≤u 1 ,U (2) ≤u 2 

∣∣U (1) � = U (2) 

)

+ 

d ∑ 

k =2 

P 

(
K = k 

∣∣U (1) � = U (2) 

)
· P 

(
U k ≤ u 1 , U 1 ≤ u 1 

∣∣U (1) � = U (2) , K = k 
)︸ ︷︷ ︸ 

= P 
(

U (1) ≤u 1 

∣∣U (1) � = U (2) 

)
]

= (1 − p) · 1 

1 − p 

(
δ(u 1 ) − d 

∫ u 1 

0 

x − δ(x ) 

1 − x 
dx 

)

+ p · 1 

d 
·
[ 

d 

p 

(
u 2 − u 1 

1 − u 1 

(u 1 − δ(u 1 )) + 

∫ u 1 

0 

x − δ(x ) 

1 − x 
d x 

)
+ 

d ∑ 

k =2 

d 

p 

(∫ u 1 

0 

x − δ(x ) 

1 − x 
d x 

)] 

= δ(u 1 ) + 

u 2 − u 1 

1 − u 1 

(u 1 − δ(u 1 )) 

= 

δ(u 1 ) − u 1 δ(u 1 ) + (u 2 − u 1 ) u 1 − δ(u 1 ) u 2 + δ(u 1 ) u 1 

1 − u 1 

= 

(1 − u 2 ) · δ(u 1 ) + (u 2 − u 1 ) · u 1 

1 − u 1 

= C( u ) . 

�

6.2. Examples 

We conclude this section with two examples. Firstly, in light of Corollary 5 , we call a d -diagonal C d -admissible if ν is 

non-decreasing and almost everywhere bounded by δ′ ( u )/ d . It is highly evident that the class of C d -admissible diagonals is 

closed under point-wise limits and convex combinations. 

Example 1. In [2] , it was shown that for fixed d ≥ 2 the lowest C d -admissible d -diagonal is 

δ(u ) = 

(1 − u ) d + du − 1 

d − 1 

, u ∈ [0 , 1] . 

Then 

δ′ (u ) = d/ (d − 1) 
(

− (1 − u ) d−1 + 1 

)
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and simple calculations show that p = 1 , 

ν(u ) = 

u − δ(u ) 

1 − u 

= 

1 

d − 1 

− (1 − u ) d−1 

d − 1 

, 

F U ∧ | U ∧ � = U ∨ (u ) = 1 − (1 − u ) d and 

F U ∨ | U ∧ = u,U ∧ � = U ∨ (v ) = 

1 − v 
1 − u 

. 

Note that in this case, since δ is assumed to be minimal among all C d -admissible diagonals, we have δ′ /d = ν . 

Example 2. We can consider convex combinations between the lowest C d -admissible diagonal and the comonotonicity di- 

agonal (which is the highest C d -admissible diagonal), i.e. 

δ(u ) = λ
(1 − u ) d + du − 1 

d − 1 

+ (1 − λ) u, u ∈ [0 , 1] . 

Again, simple calculations show that p = λ, 

F U ∧ | U ∧ = U ∨ (u ) = u, 

F U ∧ | U ∧ � = U ∨ (u ) = 1 − (1 − u ) d and 

F U ∨ | U ∧ = u,U ∧ � = U ∨ (v ) = 

1 − v 
1 − u 

. 

7. An extendible subclass 

In this section, we present a subclass of extendible upper semilinear copulas. Bear in mind that an upper semilinear 

copula is extendible (in the class of upper semilinear copulas) if an exchangeable sequence { U i } i ∈ N exists such that each 

finite margin is upper semilinear and (U 1 , . . . , U d ) 
′ ∼ C. 

Extendible subclasses are interesting, because they admit a so-called deFinetti representation, see [ 1 , Chapters 2 and 3]. 

That means a realisation U ~ C can be represented as 

U = (F ← ( ̃  U 1 ) , . . . , F 
← ( ̃  U d )) 

′ 

for a random distribution function F with generalised inverse F ← and iid uniform random variables ˜ U i , i ∈ [ d ], independent 

of F . 9 Models of deFinetti’s kind are interesting, as they can easily be generalised in an efficient way to higher dimensions 

by considering an iid uniform family { ̃  U i } i ∈ N instead of ˜ U i , i ∈ [ d ]. 

We construct the extendible subclass directly by its deFinetti representation. For this representation, the idea is to dis- 

tribute two independent uniform random variables to a vector by iid Bernoulli experiments. 

Theorem 5. Let q ∈ [1/2, 1] and consider the following stochastic model: Let V ~ �2 and { J i } i ∈ N an iid family of Bernoulli dis- 

tributed random variables with success parameter q. Define 

U i := J i V 1 + (1 − J i ) V 2 = 

{
V 1 , if J i = 1 , 

V 2 , if J i = 0 , 
i ∈ N . 

Then for each d ≥ 2, the random vector U = (U 1 , . . . , U d ) 
′ has the distribution function 

C d ( u ) = u (1) 

( 

q d + (1 − q ) d + 

d ∑ 

j=2 

u ( j) 

[
q (1 − q ) j−1 + (1 − q ) q j−1 

]) 

, u ∈ [0 , 1] d . 

Furthermore, C d is an upper semilinear copula as a distribution function and the corresponding diagonal functions are 

δk (u ) = u 

( 

q k + (1 − q ) k + u 

k ∑ 

j=2 

[
q (1 − q ) j−1 + (1 − q ) q j−1 

]) 

, u ∈ [0 , 1] . 

Proof. Firstly, we calculate the distribution function of U . Therefore, let d ≥ 2 and u ∈ [0, 1] d and assume w.l.o.g. that u 1 ≤
. . . ≤ u d . Then, with the convention min ∅ = 1 , we use the tower property to conclude 

C d ( u ) = 

∑ 

∅⊆L ⊆{ 1 , ... ,d} 
�2 

(
min 

i ∈ L 
u i , min 

i �∈ L 
u i 

)
· q | L | (1 − q ) d−| L | 

9 For a distribution function F , we define the generalised inverse F ← by F ← (y ) = inf { x ∈ R : F (x ) ≥ y } , where we use the convention inf ∅ = sup { ran F } , 
see [8] . 
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= u 1 

⎛ 

⎜ ⎝ 

∑ 

∅⊆L ⊆{ 1 , ... ,d} 
1 ∈ L 

min 

i �∈ L 
u i · q | L | (1 − q ) d−| L | + 

∑ 

∅⊆L ⊆{ 1 , ... ,d} 
1 �∈ L 

min 

i ∈ L 
u i · q | L | (1 − q ) d−| L | 

⎞ 

⎟ ⎠ 

= u 1 

( 

q d + (1 − q ) d + 

d ∑ 

j=2 

u j 

d− j ∑ 

l=0 

(
d − j 

l 

)
q l+1 (1 − q ) d−l−1 + 

d ∑ 

j=2 

u j 

d− j ∑ 

l=0 

(
d − j 

l 

)
q d−l−1 (1 − q ) l+1 

) 

= u 1 

( 

q d + (1 − q ) d + 

d ∑ 

j=2 

u j 

[
q (1 − q ) j−1 + (1 − q ) q j−1 

]) 

. 

Furthermore, this implies that the corresponding k -diagonal is 

δk (u ) = u 

( 

q k + (1 − q ) k + u 

k ∑ 

j=2 

[
q (1 − q ) j−1 + (1 − q ) q j−1 

]) 

. 

Secondly, we prove that C d is upper semilinear. Therefore, let v ∈ [0, 1] k with v (k ) = 1 and λ∈ (0, 1) and assume w.l.o.g. 

that v 1 ≤ . . . ≤ v k . Then 

C k ( λv 1 1 + (1 − λ) v ) 

= v 1 

( 

q k + (1 − q ) k + 

k ∑ 

j=2 

[ λv 1 + (1 − λ) v i ] 
[
q (1 − q ) j−1 + (1 − q ) q j−1 

]) 

= λv 1 

( 

q k + (1 − q ) k + 

k ∑ 

j=2 

v 1 
[
q (1 − q ) j−1 + (1 − q ) q j−1 

]) 

+ (1 − λ) v 1 

( 

q k + (1 − q ) k + 

k ∑ 

j=2 

v i 
[
q (1 − q ) j−1 + (1 − q ) q j−1 

]) 

= λδk (v 1 ) + (1 − λ) C k ( v ) . 

�

The class of upper semilinear copulas is closed under convex combinations and point-wise limits. This implies for this 

example, that we can randomise the success parameter q in the previous model and stay in the class of upper semilinear 

copulas. 

Corollary 6. Let F be a distribution function on [1/2, 1] and consider the following stochastic model. Let Q ~ F, V ~ �2 , and { J i } i ∈ N 
a conditionally iid family of Bernoulli distributed random variables with random success parameter Q. Define 

U i := J i V 1 + (1 − J i ) V 2 , i ∈ N . 

Then, for each d ≥ 2, the random vector U = (U 1 , . . . , U d ) 
′ has the distribution function (for u ∈ [0, 1] d ) 

C d ( u ) = u (1) 

( 

E [ Q 

d ] + E [(1 − Q ) d ] + 

d ∑ 

j=2 

u ( j) E [ Q(1 − Q ) j−1 ] + E [(1 − Q ) Q 

j−1 ] 

) 

. 

Furthermore, C d is an upper semilinear copula and the corresponding diagonal functions are (for u ∈ [0, 1] ) 

δk (u ) = u 

( 

E [ Q 

d ] + E [(1 − Q ) d ] + u 

d ∑ 

j=2 

E [ Q(1 − Q ) j−1 ] + E [(1 − Q ) Q 

j−1 ] 

) 

. (14) 

Remark. In the previous sections, we discussed the two subclasses where either the survival copula is exGMO or all mul- 

tivariate diagonals are identical. For the former subclass, at most one component of a realisation may differ from the joint 

minimum. In contrast, for the latter subclass, at most one component of a realisation may differ from the joint maximum. 

In a way, these subclasses are diametrically opposed to each other in the class of upper semilinear copulas. However, both 

subclasses are similarly restricted, since their realisations can have at most one component differing from all other ones. 

With regard to this aspect, the subclass presented in this section is very different. If q � = 1 (resp. F � = 1 [1, ∞ ) ), all splits of the 

components have a positive probability. 

We conclude this section by exploiting the stochastic representation to derive some of the properties of this class. 

Corollary 7. The copula C d from Colollary 6 is radially symmetric, has a lower and upper multivariate tail dependence coefficient 

of E [ Q 

d + (1 − Q ) d ] , and is positively orthant dependent. 
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Proof. Firstly, we obtain radial symmetry from the stochastic representation and the radial symmetry of �2 . Secondly, we 

use Eq. (14) to show that lim u → 0 δk (u ) /u = E [ Q 

d + (1 − Q ) d ] . Consequently, the statement for the upper tail dependence 

coefficient is implied by the radial symmetry of C d . Finally, with the following calculation, we prove that C d is positively 

orthant dependent: 

C d ( u ) = 

∑ 

∅⊆L ⊆{ 1 , ... ,d} 
�2 

(
min 

i ∈ L 
u i , min 

i �∈ L 
u i 

)
︸ ︷︷ ︸ 

≥∏ d 
i =1 u i 

·E [ Q 

| L | (1 − Q ) d−| L | ] 

≥ �d ( u ) , ∀ u ∈ [0 , 1] d . 

�

8. Conclusion 

We provided necessary and sufficient conditions for a copula to be in the intersection of the families of upper semilinear 

and survival exchangeable generalised Marshall–Olkin copulas. More precisely, the shocks in the corresponding exchange- 

able exogenous shock model must be almost surely equal to zero for all index sets missing more than one component. This 

finding has important consequences. In particular, this implies for d ≥ 3 that the independence copula is not upper semi- 

linear and that the only copula which is upper semilinear, survival exGMO, and admits a deFinetti representation is the 

comonotonicity copula. 

We derived a sampling algorithm based on conditional sampling for the subclass of upper semilinear copulas with iden- 

tical multivariate diagonals. Firstly, a Bernoulli experiment determines whether all components are identical. Secondly, the 

minimum U ∧ and maximum U ∨ are sampled conditionally, based on the outcome of the Bernoulli experiment. In the last 

step, the position of U ∧ is drawn with a uniform distribution on the set { 1 , . . . , d} . This corresponds to shuffling the ordered 

components (U ∧ , U ∨ , . . . , U ∨ ) with a uniform distribution on the set of permutations. 

For both aforementioned subclasses, we utilised the stochastic representations to derive simplified characterisation the- 

orems. 

Finally, we presented a novel subclass of upper semilinear copulas which are radially symmetric and admit a deFinetti 

representation. In particular, these copulas are conjunctive aggregation operations. 

For the special case of equal multivariate diagonals, it remains an open question as to whether the sampling algorithm 

can be generalised for a larger subclass of upper semilinear copulas. 
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Implementing Markovian models for extendible Marshall–Olkin
distributions

Henrik Sloot

The article [2] derives a novel stochastic representation for exchangeable Marshall–Olkin distributions:
they correspond to ordered death times associated with certain Markovian death-counting processes, shuf-
fled uniformly at random. Furthermore, it provides a numerically stable approximation of the corresponding
Markov generators for the extendible subclass. In summary, it proposes a simulation algorithm for extendible
Marshall–Olkin distributions, provides detailed implementation instructions, and analyzes its efficiency.

The introduction outlines the research gap and the article’s contribution. For this, I highlight the challenges
of simulating multivariate random vectors, particularly in higher dimensions. Following, I summarize existing
simulation algorithms for extendible Marshall–Olkin distributions and work out their shortcomings regarding
the simulation in higher dimensions. These range from inefficiency due to the curse of dimensionality to
lack of coverage of all extendible Marshall–Olkin distributions. I conclude with the research question: Can
we find low-parametric Markov-based models for extendible Marshall–Olkin distributions with a numerically
stable implementation?

Section 2 recalls background on Marshall–Olkin distributions, the exchangeable and extendible sub-
classes, Bernstein functions, and the Lévy-frailty model. In particular, I present several parametric sub-
classes of extendible Marshall–Olkin distributions and hint at how Marshall–Olkin distributions can be
constructed using hierarchical models.

Section 3 investigates death-set processes of Marshall–Olkin distributions to derive their infinitesimal
Markov generator matrices. For this, I extend an existing proof of their Markov property and show that
they can be represented stochastically as random walks on the semigroup ({1, . . . , d},∪) subordinated by
Poisson processes.

Section 4 proves that exchangeable Marshall–Olkin distributions’ death-counting processes are Markov,
and it derives their generator matrices. For the proof, I rely on the previous section’s separation of transitions
and transition times, and I use exchangeability to aggregate transition probabilities of events with matching
death counts. Afterward, I obtain a simulation algorithm for exchangeable Marshall–Olkin distributions:
simulate their death-counting processes and subsequently shuffle the ordered death times uniformly at
random.

Section 5 derives a numerically stable approximation of extendible Marshall–Olkin distribution’s generator
matrices. This approximation is integral for implementing the previous section’s simulation algorithm. First,
in a numerical study, I demonstrate that calculating those generator matrices naïvely produces sizeable
distortions resulting from loss of significant digits. Second, I derive two integral representations allowing
the approximation of generator matrices using numerical integration. Third, I show that the integrands
are well-suited for numerical integration except for two boundary cases, for which I provide alternative
approximations. Fourth, I obtain a recursion allowing the row-wise calculation of the generator matrices.
Finally, I repeat the case study, showing that the proposed approximation works sufficiently well for all cases
considered.

Section 6 benchmarks the new simulation algorithm against existing ones. From this, I conclude the
following about the new simulation algorithm: First, it is significantly faster and requires less memory than
algorithms based on the exogenous shock model and the Arnold model. Second, it is slower than the
Lévy-frailty model algorithm for most cases. However, the latter requires tailor-made algorithms for the jump
distributions. Moreover, I show that the latter algorithm’s runtime explodes for asymptotically increasing
probabilities of small jumps. The new algorithm is a generic, reliable simulation algorithm with broad
coverage of the extendible subclass.

The article contains appendices on the death-set and death-counting processes’ generator matrices
for selected subclasses, theoretical runtime boundaries for our simulation algorithm and the Lévy-frailty
algorithm, background on statistical testing of implemented simulation algorithms, and Walker’s algorithm
for sampling discrete random variables.
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Abstract: We derive a novel stochastic representation of exchangeable Marshall–Olkin distributions based
on their death-counting processes. We show that these processes are Markov. Furthermore, we provide a
numerically stable approximation of their infinitesimal generator matrices in the extendible case. This
approach uses integral representations of Bernstein functions to calculate the generator’s first row, and
then uses a recursion to calculate the remaining rows. Combining the Markov representation with the
numerically stable approximation of corresponding generators allows us to sample extendible Marshall–
Olkin distributions with a flexible simulation algorithm derived from known Markov sampling strategies.
Finally, we benchmark an implementation of this Markov-based simulation algorithm against alternative
simulation algorithms based on the Lévy frailty model, the Arnold model, and the exogenous shock model.

Keywords: Marshall–Olkin distribution, sampling algorithm, Markov processes, exchangeability, lack of
memory, multivariate survival analysis

MSC 2020: 60G09, 60J28, 62-08, 62H05

1 Introduction

Simulating a multivariate distribution can be complex: even if a stochastic model is known, implementing a
model into a simulation algorithm requires considering and overcoming numerical problems, methodolo-
gical challenges, and efficiency obstacles. A typical numerical problem is aggregation operations over large
or infinite sets, requiring approximations and introducing a bias. A methodological challenge is choosing
between general algorithms covering a large family of distributions or specialized algorithms targeting
smaller subfamilies. General algorithms can be valuable for a general-purpose application or cover cases for
which a specialized simulation algorithm does not exist. However, specialized simulation algorithms can be
less complex, faster, or have a smaller memory footprint. Examples of this are the canonical implementa-
tions of the natural models for independent and comonotonic multivariate distributions. An efficiency
obstacle often arises from implementation details, e.g., storage requirements and limitations or algorithm
choices for subtasks. Thus, developing, selecting, and implementing general or specialized simulation
algorithms for a multivariate distribution is an intriguing and challenging research area.

The Marshall–Olkin distribution is a multivariate exponential distribution. It was identified in [19] as
the unique class of multivariate distributions whose margins possess the following multivariate general-
ization of the lack of memory property: given joint survival up to a particular time, the excess-time
distribution equals the original distribution. A familiar characterizing property was derived in [5]: the
Marshall–Olkin distribution is the unique class of multivariate distributions whose margins’ death-set
processes have the (homogeneous) Markov property.
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The Markov representation allows using simulation algorithms for Markov processes, for example, as
described in [4, p. 493], to simulate Marshall–Olkin distributions, given the corresponding Markov gen-
erator. However, general models for the entire family of Marshall–Olkin distribution share the curse of
dimensionality, meaning that the number of parameters grows exponentially with the dimension. Even for
low-parametric subclasses, the first row of the Markov generator has −2 1d off-diagonal parameters, and a
simple calculation shows that the generator matrix has up to −3 1d nonzero parameters. Considering that
the maximum index value for implementations of statically typed programming languages is often one of
the large unsigned integer values −2 116 , −2 132 , or −2 164 , the difficulties of implementing such a model in
high dimensions become evident.

A large number of parameters also poses a methodological issue, reducing model interpretability
and risking over-parametrization. A specialized simulation algorithm for exchangeable Marshall–Olkin
distributions, introduced in [15], addresses this problem by reducing the number of parameters to the
dimension. Another specialized simulation algorithm for certain low-parametric subclasses of exchange-
able Marshall–Olkin distributions was suggested in [13]. The focus on exchangeable distributions is sup-
ported by the hierarchical models presented in [14, Sec. 5.2] and [16, Sec. 4.2], which use the exchangeable
subclass as building blocks. However, [15] and [13] leave significant practical issues unaddressed. The first
algorithm requires the on-the-fly calculation of submodel parameters, having numerical issues in higher
dimensions similar to those discussed in Section 5. The second algorithm requires the simulation of Lévy
processes; this can only be done without bias for the compound Poisson case and requires specialized
sampling algorithms for the corresponding jump distribution. In particular, both algorithms have limited
applicability to extendible Marshall–Olkin distributions in higher dimensions without further research or
specialized implementations of the Lévy processes’ jump distributions.

We asked ourselves: Can we find low-parametric Markov-based models for extendible Marshall–Olkin
distributions with a numerically stable implementation?

This article is structured as follows: Section 2 recalls prerequisites about the Marshall–Olkin, exchange-
able Marshall–Olkin, and extendible Marshall–Olkin distributions, including Bernstein functions. In parti-
cular, we present existing simulation algorithms and provide several extendible parametric subfamilies.
Following, we provide an alternative proof that the death-set process of Marshall–Olkin distributed random
vectors is Markov in Section 3, which allows identifying the corresponding Markov generator matrix. In
Section 4, we derive the first primary result of this article. It proves that the death-counting process of
exchangeable Marshall–Olkin distributed random vectors is Markov. Furthermore, it shows that we can
construct an exchangeable Marshall–Olkin distributed random vector from a sample of the corresponding
death-counting process by applying an independent random shuffling. Section 5 discusses the second
primary result, a numerically stable calculation of the death-counting process’ Markov generator Matrix
of extendible Marshall–Olkin distributions using integral representations. Finally, before concluding this
article, Section 6 benchmarks the runtime of various simulation algorithms for extendible Marshall–Olkin
distributions against the algorithm using our new Markov death-counting model.

2 Background

This section recalls the required background information on the Marshall–Olkin distribution. In particular,
we discuss the exchangeable and extendible subclass and compare existing stochastic models.

We assume the reader is familiar with stochastic vectors and processes, particularly exchangeability
and Markov processes. We also presume some familiarity with the Marshall–Olkin distribution, and we will
only discuss the material required in later sections for deriving further results in the following. For the
interested reader, we refer to [17] for a detailed discussion of random vectors and Marshall–Olkin distribu-
tions, [4] for Markov processes, and [1] for exchangeable random variables. For Poisson and Lévy processes,
we refer to [25] and [27], respectively. Finally, we refer to [9] for numerical mathematics and numerical
integration. Throughout this article, we use Δ to denote the (finite) forward difference on a sequence or a
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function, i.e., ≔ −

+

x x xΔ n n n1 and ( ) ( ) ( )= + −f x f x f xΔ 1 , and Δi to denote the (finite) forward differences of
the order i.

2.1 Marshall–Olkin distributions

The exponential distribution takes a central position among positive, continuous univariate distributions
due to its lack of memory (LOM) property: As a consequence of Cauchy’s exponential functional equation,
the exponential distribution is the unique continuous distribution on the nonnegative half-line for which
knowledge of survival up to a given time does not change the law of the excess time distribution. In
mathematical notation, we write:

� �( ∣ ) ( )> + > = > ≥τ t s τ t τ s t s, , 0. (1)

This property has a fundamental parallel: the death-indicator process, defined by �[ ) { }∈ ∞ ↦

≤

t 0, τ t , is a
(homogeneous) Markov process in the finite state space { }0, 1 . Hence, the LOM property corresponds to the
distribution of the time-to-death being independent of the already elapsed time.

The Marshall–Olkin (MO) distribution was introduced in [19] as the unique multivariate exponential
distribution whose margins fulfill the following generalization of the univariate LOM property: Given the
joint survival until a particular time, the excess time distribution equals the original distribution. In
mathematical notation, we write

� �( ∣ ) ( ) ( ) [ ] { }> + > = > ≔ ∈ ≥ ⊆ ≔ …τ s τ τ s st t s i I t I d d, : , 0, 1, , .I I I I I I i (2)

It was shown in [5] that this property also has a parallel: the marginal death-set processes of MO distributed
random vectors τ , defined for [ ]∅ ≠ ⊆I d by [ ) { }∈ ∞ ↦ ∈ ≤t i I τ t0, : i , are (homogeneous) Markov
processes.

MO distributions have for −2 1d nonnegative parameters { [ ]}= ∅ ≠ ⊆λ λ I d:I , subsequently called
shock-arrival intensities, the survival function

�( ) ⎧⎨⎩ ⎫⎬⎭[ ]∑

> = − ⋅ ≥

∅≠ ⊆

∈

τ t tλ texp max , 0,
I d

I
i I

i

where [ ]∑ > ∀ ∈

∋

λ i d0I I i I: . The latter condition ensures that all components of τ are almost surely finite and
can be relaxed if this is not required.

In the following, we present three stochastic models for MO distributions. Our intention for this is
twofold: First, we want to use these representations to derive different results and properties. Second, we
want to implement these models for the runtime comparison in Section 6.

The exogenous shock model

A natural stochastic model for MO distributions known as the exogenous shock model (ESM) was proposed
in [19]. It assumes independent exponential random variables, called shock-arrival times, with respective
shock-arrival intensities. Subsequently, it defines the elements of the random vector as the respective
minima of component-related shock-arrival times.

Theorem 2.1. [19] Let { [ ]}∅ ≠ ⊆E I d:I be independent exponential random variables with nonnegative rates{ [ ]}= ∅ ≠ ⊆λ λ I d:I and define the vector τ by { } [ ]≔ ∋ ∈τ E I i i dmin : , .i I (3)

Then, τ has an MO distribution with shock-arrival intensities λ.
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The ESM is a straightforward stochastic model; theoretical aspects of its implementation are discussed
in [17, Algo. 3.1]. The aforementioned reference makes two critical findings: First, the index sets [ ]∅ ≠ ⊆I d
have the binary representation equal to �( [ ]) { }{ } ∈ ∈

∈

i d, 0, 1i I
d. Second, the total number of shock-arrival

times, equal to the number of parameters −2 1d , grows exponentially and quickly becomes an issue for
every implementation.

The Arnold model

Another stochastic model for MO distributions, subsequently called the Arnold model (AM), was derived in
[2]. It defines the random vector τ as first hitting times onto the components of a sequence of iid set-valued
random variables with iid exponentially distributed inter-arrival times. The shock-arrival probabilities are
proportional to the shock-arrival intensities, and the inter-arrival rate equals the sum over all shock-arrival
intensities.

Theorem 2.2. [2, Sec. 4] and [17, Lem. 3.4] Let �{ }∈W j:j be iid exponential random variables with rate
>λ 0 and, independent thereof, �{ }∈Y j:j be iid discrete random variables with values in the power set of [ ]d

and probability vector { [ ]}= ∅ ≠ ⊆p p I d:I . Furthermore, define the vector τ by

� [ ]{ }
∑

≔ ∈

=

∈ ∋

τ W i d, .i
j

k Y i

j
1

min : k

(4)

Then, τ has an MO distribution with shock-arrival intensities ≔ ⋅λ pλ .

An interesting aspect of this model proven in [2, Sec. 4] is that the ESM is recovered as follows: Assume
that τ has the representation in Eq. (4) and define

� [ ]{ }
∑

≔ ∅ ≠ ⊆

=

∈ =

E W I d, .I
j

k I Y

j
1

min : k

Then, { [ ]}∅ ≠ ⊆E I d:I are independent with rates { [ ]}∅ ≠ ⊆λ I d:I and τ has the ESM representation from
Eq. (3). Thus, the AM samples the shock-arrival times of the ESM in ascending order by sampling their inter-
arrival times and corresponding affected components until all components are dead. However, two dis-
tinctions between both models are crucial for their comparison: First, the AM allows us to ignore all shocks
arriving after the time when all components are dead, requiring potentially considerably less than −2 1d

shocks. Second, the AM can have looping steps, whose shocks Yj contain only already dead elements. The
looping steps have no counterpart in the ESM.

Theoretical aspects of this model’s implementation are discussed in [17, Algo. 3.3]. A nontrivial choice
of any implementation is the sampling method for iid sequences of discrete laws. The aforementioned
reference proposes a version of the probability integral transform for discrete random variables with a
divide-and-conquer search for the (left) inversion of the probability distribution function. We suggest
considering the alias method proposed by [31] since, after an initial parameter transformation, it only
requires a uniform discrete sample, a uniform real sample, two reference operations, and a comparison
per sample; see also Appendix E.

The Markov death-set model

Finally, a last stochastic model for MO distributions is the Markov death-set model (MDSM). For every
death-set process [ ) { [ ] }∈ ∞ ↦ ≔ ∈ ≤t Z i d τ t0, :t i , we have{ } [ ]= ≥ ∈ ∈τ t i Z i dinf 0 : , .i t
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Recall that the death-set process of an MO distributed random vector is Markov. Consequently, given the
Markov generator matrix �∈

×Q 2 2d d
of Z , where the row indices correspond to the binary representation of

the states, we can directly sample Z using models for finite-state Markov processes as follows.

Theorem 2.3. [4, p. 493] Let �( ) [ ]= ∈

∈

×Q qij i j n
n n

, be a Markov generator matrix and let ≔ −q qi ii for [ ]∈i n .
Define the transition matrix ( ) [ ]=

∈

K kij i j n, as follows:⎧⎨⎪⎩⎪=

≠

= >

k

q
q

i j

i j and q
else

,

0 0,
1 .

ij

ij

i

i

Let Z̃ be a discrete Markov chain with transition matrix K and the inter-arrival times of the transitions

�{ }∈W k:k , conditioned on Z̃ , be independent exponentially distributed with rates �
{ }

∈

−

q k:Z̃k 1 . Then, Z ,
defined in the following, is a continuous Markov process with generator matrix Q:

�
[ )⎧⎨⎩ ⎫⎬⎭= ∈ ∞

∑

∈ ≤

=

Z Z t˜ , 0, .t k W tmax :
l

k

l0
1

We call Z̃ the embedded Markov chain of Z .

Given death-set process Z has the representation from Theorem 2.3 with =n 2d, we conclude that,

�{ } [ ]{ }
∑

= ≥ ∈ = ∈

=

∈ ∋

τ t i Z W i dinf 0 : , .i t
j

k Z i

j
1

min : ˜k

However, to use this algorithm to sample from MO distributions, we require the mapping →λ Q, which
is not described in the literature to the best of our knowledge.

2.2 Exchangeable Marshall–Olkin distributions

The general MO distribution, as previously discussed, has the problem of an exponentially increasing
number of parameters. We can alleviate the issue by restricting ourselves to elements of the exchangeable
subclass, whose number of parameters is equal to the dimension. An MO distribution is exchangeable if and
only if its shock-arrival intensities are equal among those that represent shocks of the same cardinality, see
[14, Lem. 3.1.1], i.e., ∣ ∣ ∣ ∣ [ ]= ⇔ = ∀∅ ≠ ⊆I J λ λ I J d, .I J

For exchangeable Marshall–Olkin (exMO) distributions, we write for their exchangeable shock-arrival
intensities ≡λ λi I, ∣ ∣=i I , and define the exchangeable shock-size-arrival intensities { [ ]}

( )

= ∈η λ i d:d
i i , i.e.,[ ][ ] ∣ ∣∑

= ∈

∅≠ ⊆ =

η λ i d, ,i
I d I i

I
:

is the rate of { ∣ ∣ }=E I imin :I , the smallest shock-arrival time EI of all shocks I with cardinality i.

2.3 Extendible Marshall–Olkin distributions

A restriction to the exchangeable subclass dramatically reduces the number of parameters from −2 1d to d.
However, the number is still sizeable for higher dimensions. For this reason, many examples of high-
dimensional MO distributions are based on low-parametric, extendible subfamilies. Extendible subfamilies
of the MO distribution have a stochastic representation as the finite margin of a countably infinite
exchangeable sequence with MO-distributed margins. We will not discuss the details of extendible
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Marshall–Olkin (extMO) distributions and exchangeable sequences in this article and refer to [14] and [1]
for the details on these; however, we require some results and will recall them in the following.

Before discussing extMO distributions, we have to make a short excursus into Bernstein functions. A
Bernstein function is a nonnegative, nondecreasing function [ ) [ )∞ → ∞ψ : 0, 0, that has infinitely many
derivatives with alternating signs. An extensive monograph on those functions is [28]. We highlight four
important properties:
– Every Bernstein function ψ is uniquely linked to a Lévy–Khintchine triplet ( )a b ν, , such that

( ) ( ) ( )
∫

= + + − ≥

∞

−ψ x a bx e ν u x1 d , 0,ux

0

(5)

where ≥a b, 0 and ν is a Lévy measure on ( )∞0, , i.e., ( )
∫

∧ < ∞

∞

u u1 d
0

, see [28, Thm. 3.2].
– In combination with [3, Prop. 6.12], the previous property implies that a nonnegative function[ ) [ )∞ → ∞ψ : 0, 0, is a Bernstein function if and only if it is nondecreasing and the (negative) finite

forward differences are of alternating signs, i.e.,

�( ) ( )− ≥ ∀ ≥ ∈

− ψ x x i1 Δ 0 0, .i i1

– A Bernstein function whose Lévy measure has a completely monotone density with respect to Lebesgue
measure, i.e., the density is nonnegative, nonincreasing with infinitely many derivatives of alternating
sign, is called a complete Bernstein function. Every complete Bernstein function ψ is uniquely linked to a
Stieltjes triplet ( )a b σ, , such that

( ) ( )
∫

= + +

+

≥

∞

ψ x a bx x
x u

σ u xd , 0,
0

(6)

where ≥a b, 0 and σ is a Stieltjes measure on ( )∞0, , i.e., ( ) ( )
∫

+ < ∞

∞

−u σ u1 d
0

1 , see [28, Thm. 6.2].
– Bernstein functions are the Laplace exponents of (killed) Lévy subordinators, see [28, Chp. 5]: For each

Bernstein functionψ, we can create a probability space supporting a nonnegative, nondecreasing (killed)
Lévy process Λ on [ ]∞0, such that

�[ ] ( )
= ≥

− −e e x t, , 0.x tψ xΛt (7)

Conversely, if Λ is a nonnegative, nondecreasing Lévy process, we can find a Bernstein function ψ such
that Eq. (7) holds. Recall that Lévy subordinators are nondecreasing, stochastically continuous, càdlàg
processes that start in zero and have stationary and independent increments. For more details, we refer
to [27].

Remark. [27, cf. Chp. 4] and [28, Chp. 5] For a Lévy–Khintchine triplet ( )a b ν, , , we have the representation

� { }= ∞ ⋅ + ⋅ +

≤ ⋅

b t JΛ ,t ε a t t

where ε is a unit exponential random variable and J is a pure-jump Lévy process, independent of ε, with
Lévy measure ν. If ν is finite, J is a compound Poisson process with intensity (( ))∞ν 0, and jump distribu-
tion ( ) (( ))↦ / ∞B ν B ν 0, . Hence, we call a the killing rate, b the drift, and, if ν is finite, (( ))∞ν 0, the jump
rate, and ( ) (( ))↦ / ∞B ν B ν 0, the jump distribution.

The following stochastic model for extMO distributions, called the Lévy frailty model (LFM), outlines
the relationship between extMO distributions and Bernstein functions:

Theorem 2.4. [13, Thm. 3.3] and [14, Thm. 3.4.1] There exists a bijection between the distributions of extMO
sequences and Bernstein functions. Moreover, given a Lévy subordinator Λ with Bernstein function ψ and,
independent thereof, unit exponential barrier values { [ ]}∈E i d:i , we can define{ } [ ]≔ ≥ ≥ ∈τ t E i dinf 0 : Λ , .i t i (8)
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Then, ( )…

⊤τ τ, , d1 has an extMO distribution with exchangeable shock-arrival intensities( ) ( ) [ ]= − − ∈

−λ ψ d i i d1 Δ , .i
i i1 (9)

The nontrivial mapping from Bernstein functions to exchangeable shock-arrival intensities in Eq. (9)
already indicates that the parametrization via Bernstein functions, albeit methodologically convenient,
imposes challenges on the implementation.

2.4 Examples of parametrized families

This section introduces selected Bernstein function families that we implemented for our simulation stu-
dies. An extensive list of additional Bernstein functions is compiled in [28, Chp. 16]; whenever possible, we
provide the corresponding number of Bernstein functions in that list.
– Armageddon shock: Let ≥α β, 0 and consider the Lévy triplet ( )β α, , 0 corresponding to the Bernstein

function ( ) = +ψ x β αx, ≥x 0. The name reflects that the corresponding ESM representation has only
individual shocks, arriving with rate α, and a global shock, killing all components, arriving with rate β.

– Poisson: Let >η 0 and consider the Lévy triplet ( )δ0, 0, η corresponding to the Bernstein function( ) ( )= −

−ψ x e1 ηx , ≥x 0, where ( )↦B δ Bη is the Dirac measure. This family corresponds to Lévy sub-
ordinators that are compound Poisson processes with intensity 1 and deterministic jump size η.

– Exponential ([28, Chp. 16, No. 4]): Let >η 0 and consider the Lévy triplet ( )ν0, 0, with a completely
monotone Lévy density ( ) = ⋅

−ν u η e ud dηu and Stieltjes measure =σ δη corresponding to the Bernstein

function ( ) =

+

ψ x x
x η, ≥x 0. This family corresponds to Lévy subordinators that are compound Poisson

processes with intensity 1 and exponential jumps with rate η.
– Pareto: Let ( )∈α 0, 1 , >x 00 andconsider theLévy triplet( )ν0, 0, withLévydensity �( ) { }= ⋅

− −

>

ν u αx u ud dα α
u x0

1
0 .

This family corresponds to compound Poisson processes with intensity 1 and jumps from a Pareto distribution. The
Pareto family is used in [7, Sec. 5.3] to approximate the subsequently defined Alpha-stable family.

– Alpha-stable ([28, Chp. 16, No. 1]): Let ( )∈α 0, 1 and consider the Lévy triplet ( )ν0, 0, with a completely
monotone Lévy density ( ) [ ( )]= − ⋅

− − −ν u α α u ud Γ 1 dα1 1 and Stieltjes density ( ) ( )= ⋅

− −σ u π απ u ud sin dα1 1

corresponding to the Bernstein function ( ) =ψ x xα, ≥x 0. This family corresponds to Lévy subordinators
with infinite activity.

– Gamma ([28, Chp. 16, No. 26]): Let >a 0 and consider the Lévy triplet ( )ν0, 0, with a completely
monotone Lévy density ( ) =

− −ν u e u ud dau 1 and Stieltjes density �( ) ( )( )=

−

∞

σ u u u ud da
1

, corresponding to

the Bernstein function ( ) ( )= + /ψ x x alog 1 , ≥x 0. This family corresponds to Lévy subordinators with
infinite activity.

– Inverse Gaussian ([17, p. 309] and [28, Chp. 16, No. 2]): Let ≥η 0 and consider the Lévy triplet( )ν0, 0, with a completely monotone Lévy density ( ) [ ]=

− −ν u πu e ud 2 dη u3 1 1
2

2
and Stieltjes density

�( ) ( )[ ] ( )( )= / −

−

/ ∞

σ u π πu u η u ud sin 2 2 dη
1 2

2,2 corresponding to the Bernstein function ( ) =ψ x

+ −x η η2 2 , ≥x 0. This family corresponds to Lévy subordinators with infinite activity.

It can be practical to normalize a Bernstein function ψ to ∗ψ such that ( ) =

∗ψ 1 1: we can do that in
multiple ways, for example, by
– adding a constant part with ( ) [ ( )] ( )= − +

∗ψ x ψ ψ x1 1 , >x 0,
– adding a linear part with ( ) [ ( )] ( )= − +

∗ψ x ψ x ψ x1 1 , >x 0, or
– scaling with ( ) ( ) ( )= ⋅

∗ −ψ x ψ ψ x1 1 , >x 0.

Note that the first two normalization methods require ( ) ≤ψ 1 1.
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2.5 Hierarchical Marshall–Olkin distributions

We want to conclude the background section with a short note on hierarchical Marshall–Olkin (hMO)
distributions. There are multiple approaches to define nonexchangeable hMO distributions with exMO
distributions as building blocks, e.g., [14, Sec. 5.2] or [16, Sec. 4.2]. An approach similar to the latter has
been proposed in [30, Sec. 4.1]. We do not discuss these representations further in this article. Still, we want
to highlight a consequence of their existence: efficient sampling algorithms for hMO distributions can be built
using efficient sampling algorithms for extMO distributions as building blocks. For this reason, we decided to
place our primary focus on the development of such an algorithm for the extendible subclass.

3 The Markovian MO death-set model

Similar to [5], the following section proves that the death-set processes Z of MO distributions are Marko-
vian. In addition, we also provide a formula for the infinitesimal generator matrixQ. This explicit formula is
used to analyze the slightly more complicated death-counting process of the exchangeable subclass in
Section 4.

Theorem 3.1. Let ≥d 2.
(a) Let Z be the death-set process of a d-dimensional MO-distributed random vector τ with shock-arrival

intensities λ. Then, Z is a continuous-time, homogeneous Markov process on the power set of [ ]d with
infinitesimal generator matrix ( [ ])= ⊆Q q I J d: ,IJ defined by⎧

⎨⎪⎪⎩⎪⎪
[ ] ( )

( )
∑ ∑

∑

≔

− =

⊊

⊊ ⊆ ⊆

∪ ⧹

⊆

∪ ⧹

q

λ I J

λ I J

else

,

,

0 .

IJ

I K d L I
L K I

L I
L J I

(10)

(b) Let Z be a continuous-time, homogeneous Markov process on the power set of [ ]d with infinitesimal
generator matrix Q as in Eq. (10) and define the random vector τ as follows:{ } [ ]≔ > ∈ ∈τ t i Z i dinf 0 : , .i t (11)

Then, τ is MO distributed with shock-arrival intensities λ, and Z is the death-set process of τ .

The infinitesimal generator matrix Q in Eq. (10) often takes a simpler form for MO distribution sub-
classes. Appendix A simplifies the infinitesimal generator Eq. (10) for exMO distributions, extMO distribu-
tions, and the Armageddon-shock family.

Nevertheless, the representation in Eq. (10) imposes enormous challenges for possible implementations
of the MDSM: the implementation either stores the generator matrix in memory or calculates its entries on-
the-fly during the simulation. We argue that both options are hardly feasible in higher dimensions: On the
one hand, a straightforward but tedious calculation yields up to −3 1d nonzero entries of Q. Consequently,
storing this matrix is nontrivial for larger d, even using sparse matrix designs. On the other hand, using on-
the-fly calculations requires repeatedly populating large vectors and prevents utilizing optimizations for
discrete sampling that require nontrivial setup activities.

Before proving the result, we highlight that the MDSM does not translate well into a simulation algo-
rithm in higher dimensions for two reasons: First, implementing the model becomes challenging because of
the exponentially growing number of parameters. Second, nontrivial MO distributions are often specified
via a Bernstein function, using Eq. (9), often from a low-parametric family. Consequently, higher-order
iterated differences and large sums make calculating the generator matrix numerically challenging, com-
pared with Section 5.
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The proof of Theorem 3.1 is separated into three steps: First, we identify the shock-arrival times of the
AM with a Poisson process. Second, we show that the sequence of cumulative unions of shock sets from the
AM is a random walk on the semigroup of the power set of [ ]d with the union as a conjunction. Third, we
conclude that this makes the death-set indicator process a randomwalk subordinated by a Poisson process;
hence, it is also a Markov process. This representation makes it simple to derive the corresponding infini-
tesimal generator and embedded transition matrix.

Lemma 3.2. [25, Ex. 3.3.7] Let …W W, ,1 2 be iid exponentially distributed with rate >λ 0. Then, the set of their
cumulative sums …Γ , Γ ,1 2 , defined by

�
∑

≔ ∈

=

W jΓ , ,j
k

j

k
1

is a (homogeneous) Poisson point process with intensity λ and defines the (homogeneous) Poisson process N
with intensity λ by

� �[ ) { }∑

∞ → ↦

=

∞

≤

N t: 0, , .
j

t0
1

Γj

Lemma 3.3. Let ≥d 2, { [ ]}= ⊆p p I d:I be a probability vector for the iid sequence …Y Y, ,1 2 on the power set
of [ ]d , and define the discrete-time process

� ([ ]) { [ ]}→ ≔ ⊆ ↦ ⋃

=

�Z d I I d n Y˜ : : , ,
j

n
j0

1

where ⋃ ≔ ∅

=

Yj j1
0 . Then, Z̃ is a discrete-time Markov chain with transition matrix ( [ ])= ⊆K k I J d: ,IJ

defined by ⎧⎨⎩ ( )∑

≔

⊆

⊆

∪ ⧹

k
p I J

else

,

0 .
IJ L I

L J I
(12)

Proof. Note that Z̃ is a random walk on the finite semigroup ( ([ ]) )∪� d , and consequently also a Markov

chain. Let �∈k and [ ]⊆I J d, . First, since …Z Z˜ , ˜ ,0 1 is a nondecreasing sequence of (random) sets, we have

�( ∣ )= = =

+

Z J Z I˜ ˜ 0,k k1

whenever ∩ ≠I J I . Second, we have for ⊆I J that

� � �( ∣ ) ( ) ( ) [ ] ( )∑ ∑

= = = ⧹ = ⧹ = ⧹ = ⧹ = =

+ +

⊆ ⧹ = ⧹ ⊆

∪ ⧹

Z J Z I Y I J I Y I J I p p˜ ˜ . □k k k
L d L I J I

L
L I

L J I1 1 1
:

Lemma 3.4. Let ≥d 2, N be a (homogeneous) Poisson process with intensity >λ 0 and, independent thereof,

let Z̃ be the Markov chain from Lemma 3.3 for probability vector p. Define the continuous-time process[ ) ([ ])∞ → ↦ ⋃

=

�Z d t Y: 0, , .
j

N
j

1

t

Then, Z is a continuous-time Markov process with infinitesimal generator matrix ( [ ])= ⊆Q q I J d: ,IJ as in
Eq. (10) with = ⋅λ pλ .

Proof. Note that, due to Lemma 3.3, Z̃ is a Markov chain with transition matrix ( [ ])= ⊆K k I J d: ,IJ defined
in Eq. (12). Hence, Z represents a discrete-time Markov chain with transition matrix K , subordinated by a
homogeneous Poisson process with intensity λ. We conclude with [4, Expl. 13.2.8] that Z is a Markov
process with the infinitesimal generator matrix �( )= ⋅ −Q λ K , where � is the suitable matrix identity. While
the second and third cases of Eq. (10) follow trivially, we obtain the first case from the following calculation:
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( ) ( ) ⎡⎣⎢ ⎤⎦⎥[ ] [ ] [ ] ( )∑ ∑ ∑ ∑

= ⋅ − = − ⋅ − = − ⋅ − = − ⋅ = −

⊆ ⊆ ⊊ ⊆ ⊊ ⊆ ⊆

∪ ⧹

q λ k λ k λ k k λ k λ1 1 . □II II II
I L d

IL II
I L d

IL
I K d L I

L K I

Proof of Theorem 3.1.We can assume for both parts without loss of generality that τ and Z are defined by
the AM, compared with Theorem 2.2.

First, for Theorem 3.1(a), the claim becomes a trivial corollary of Lemma 3.4 after considering the AM
representation of τ and subsequently Z .

Second, for Theorem 3.1(b), also considering the AM representation of Z , we have the following
calculation:

�

�

� �

{ } ⎧⎨⎩ ⎫⎬⎭ ⎧⎨⎩ ⎫⎬⎭⎧⎨⎩ ⎫⎬⎭ ⎧⎨⎩ ⎫⎬⎭
{ }

{ } { } { }
∑

∑ ∑ ∑

= > ∈ = > ∈ ⋃ = > >

= > > = > ≤ =

=

=

∈

=

∞

∈ +⋯+ ≤

=

∈ ∈

=

∈ ∈

τ t i Z t i Y t

t t W t W

inf 0 : inf 0 : inf 0 : 0

inf 0 : 0 inf 0 : .

i t
j

N
j

j

N

i Y

j
i Y W W t

j

k i Y

j
j

k i Y

j

1 1

1
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1
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1

min :

t t

j

j j

k k

1

We obtain the claim by comparing the aforementioned equation with Eq. (4). □

4 The Markovian exMO death-counting model

This section shows that the death-counting process of exMO distributions inherits the Markov property from
the death-set process introduced in Section 3. Furthermore, we derive the Markov death-counting model
(MDCM) for exMO distributions. This model requires significantly fewer parameters than the MDSM.

We define the death-counting process of a d-variate random vector τ with death-set process Z by[ ) [ ] [ ] { } ∣ ∣ ∣{ }∣∞ → ≔ ∪ ↦ = ≤

∗Z d d t Z i τ t: 0, 0 , : .t i0

In the case of MO distributions, we again assume an AM representation. Hence, we have

= ⋃ ≥

∗

=

Z Y t, 0.t
j

N
j

1

t

The following result shows that the death-counting process of exMO distributions is Markov. Moreover,
it shows that exMO distributions are represented by shuffled transition times of suitable Markovian death-
counting processes.

Theorem 4.1. Let ≥d 2.
(a) Let ∗Z be the death-counting process of a d-dimensional exMO distributed random vector with exchange-

able shock-arrival intensities λ. Then, ∗Z is a continuous-time, homogeneous Markov process on [ ]d 0 with
infinitesimal generator matrix ( [ ] )= ∈

∗

∗Q q i j d: ,ij 0 defined by

⎜ ⎟

⎧
⎨⎪⎪
⎩⎪⎪

⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠ ( )
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∑

=

−

−

=

−

−

<

∗

=
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=

+

=

+ −

q

d i
l

i
k

λ i j

d i
j i

i
k

λ i j

else

,

,

0 .

ij

l

d i

k

i

k l

k

i

k j i

1 0

0

(13)

(b) Let ∗Z be a continuous-time, homogeneous Markov process on [ ]d 0 with infinitesimal generator matrix ∗Q
as in Eq. (13). Furthermore, letΠ, independent thereof, be a uniform random permutation on [ ]d and define
the random vector τ by { ( ) } [ ]≔ > ≤ ∈

∗τ t i Z i dinf 0 : Π , .i t (14)

Then, τ has an exMO distribution with exchangeable shock-arrival intensities λ.
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Again, the infinitesimal generator matrix ∗Q in Eq. (13) often takes a simpler form for exMO distribution
subclasses. Appendix B simplifies the infinitesimal generator ∗Q for a reparametrization of exMO distribu-
tions, extMO distributions, and the Armageddon shock family.

The MDSM’s generator matrix has 4d entries and up to −3 1d nonzero entries. In contrast, the MDCM has
only ( )+d 1 2 entries and up to [ ]+ / +d d d1 2 nonzero entries. Two immediate consequences of this reduc-
tion of model parameters are as follows: First, the parameter number grows only quadratically instead of
exponentially with the dimension. Second, the parameter number does not exceed technical maximums of
integer binary representations for reasonable dimension sizes.

We also separate the proof of Theorem 4.1 into several incremental steps: First, we show that the
sequence of death-count transitions from the AM is a discrete-time Markov chain. Second, we conclude
that the death-count process is Markov and calculate its infinitesimal generator. Third, we use that the law
of exchangeable random vector remains the same after ordering and subsequently shuffling its components
uniform at random. Therefore, while we cannot recover the original random vector from the death-counting
process alone, we can construct another random vector with the same law by applying a uniform random
permutation.

Lemma 4.2. Let ≥d 2, { [ ]}= ⊆p p I d:I be an exchangeable probability vector for the exchangeable iid
sequence …Y Y, ,1 2 on the power set of [ ]d , and define the discrete-time process

� [ ] ∣ ∣→ ↦ = ⋃

∗

=

Z d n Z Y˜ : , ˜ .n
j

n
j0 0

1

Then, ∗Z̃ is a discrete-time Markov chain with transition matrix ( [ ] )= ∈

∗

∗K k i j d: ,ij 0 defined by

⎜ ⎟⎛⎝ ⎞⎠ ⎧⎨⎩
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l j i
0

(15)

Proof.We know from Lemma 3.3 that Z̃ is a Markov chain with transition matrix K from Eq. (12). We perform
a simple calculation using exchangeability, grouping shock-arrival intensities associated with the same
cardinality, to obtain
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where we write ≡p pi I and denote ≡k kij IJ for ∣ ∣ =I i and ∣ ∣ =J j.
First, since …

∗ ∗Z Z˜ , ˜ ,0 1 is a nondecreasing sequence of integer-valued random variables, we have for all
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Lemma 4.3. Let ≥d 2, N be a (homogeneous) Poisson process with intensity >λ 0 and, independent thereof,

let ∗Z̃ be the Markov chain from Lemma 4.2 for an exchangeable probability vector p. Define the continuous-
time processes

[ ) [ ]∞ → ↦ = ⋃

∗

∗

=

Z d t Z Y: 0, , ˜ .N
j

N
j0

1
t

t

Then, ∗Z is a continuous-time Markov process with infinitesimal generator matrix ( [ ] )= ∈

∗

∗Q q i j d: ,ij 0 defined

by Eq. (13) with = ⋅λ pλ .

Proof. We know from Lemma 4.2 that ∗Z̃ is a Markov chain with transition matrix ∗K from Eq. (15). ∗Z thus
represents a discrete-time Markov chain with transition matrix ∗K , subordinated by a Poisson process with
intensity λ. As in the proof of Lemma 3.4, we use [4, Expl. 13.2.8] to conclude that ∗Z is a continuous-time
Markov process with infinitesimal generator �( )= ⋅ −

∗ ∗Q λ K , where � is the suitable matrix identity. While
the second and third cases of Eq. (13) follow trivially, we obtain the first case using the following
calculation:

( ) ⎡⎣⎢ ⎤⎦⎥ ⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠∑ ∑ ∑
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l i
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il ii
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d i

r

i

r l
1 0

Proof of Theorem 4.1. We assume without loss of generality that ∗Z has a representation of the death-
counting process for an exMO distributed random vector τ , which is generated by the AM (see Theorem 2.2).
The corresponding death-set process is denoted by Z .

First, for Theorem 4.1(a), the claim becomes a trivial corollary of Lemma 4.3 after considering the AM
representation of τ , Z , and ∗Z .

Second, for Theorem 4.1(b), let Π̂ be the (random) permutation of [ ]d such that

( ) ( )≤⋯≤τ τ .dΠ̂ 1 Π̂

Then, by using Theorem 3.1, we have { ( ) }{ { ( ) } }{ } [ ]
( ) = > ∈

= > ≤ ⊆

= > ≤ ∈

∗

τ t i Z

t j j i Z
t i Z i d

inf 0 : Π̂

inf 0 : Π̂ :
inf 0 : , .

i t

t

t

Π̂

Consequently, we obtain the claim with [17, Lem. 3.8]; the result used states that the law of an exchangeable
random vector does not change under a (possibly dependent) reordering (in this case Π̂) and a subsequent
reordering according to an independent uniform permutation (e.g., Π). □

Finally, based on Theorem 4.1, we can sketch a simple simulation algorithm for exMO distributions
using the Markov process representation from Theorem 2.3, see Algorithm 1. The algorithm requires simu-
lation algorithms for exponential and (finite-spaced) discrete random variables and a random permutator.

Algorithm 1. Sample from exMO distributions with the MDCM (see Theorem 2.3 and 4.1).

Require: (Vector) arguments rates and probs with state-dependent parameters for the sampling algo-
rithms sample_exponential and sample_discrete, which sample from an exponential or discrete distri-
bution (taking values … −k0, 1, , 1 for probabilities …

−

p p p, , , k0 1 1 and some �∈k ). Additionally, a method
shuffle, which permutates vectors uniform at random.
1 : procedure SAMPLE_MDCM(d, rates, probs)
2 : time = 0

3 : i = 0

4 : x = zeros(d)
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5 : while i < d do
6 : i0 = i

7 : time += sample_exponential(rates[i]) ⊳ waiting time
8 : i += 1 + sample_discrete(probs[i]) ⊳ additional default-count
9 : for i0 ≤ j < d do
10: x[j] = time

11: end for
12: end while
13: shuffle(x)
14: return x

15: end procedure

Remark. [15, Algo. 1] proposed a similar model: First, sample the order-statistic of τ by recursively sam-
pling shock sizes of marginal models using the representation from Theorem 2.2. Second, apply a permuta-
tion that is uniform at random. A close inspection yields that both representations’ transition rates and
probabilities are equal. From an implementation point of view, corresponding algorithms of both models
differ in whether transition rates and probabilities are calculated once or repeatedly on-the-fly during
simulation. Note, in particular, that this representation shares all numerical issues of the MDCM regarding
mapping the input parameters to simulation parameters, which is discussed in Section 5.

5 Numerically stable approximation of extMO generators

Section 4 derived a novel stochastic representation for exMO distributions based on shuffling Markovian
death-counting processes’ transition times uniformly at random. However, for high-dimensional applica-
tions, the possible distributions are often restricted to one or a combination of multiple families of extMO
distributions. Hence, we need to calculate the infinitesimal generator matrices of extMO distributions’
death-counting processes, denoted by ∗Q , to use the aforementioned representation for high-dimensional
sampling. This section aims to answer the following question: How can we approximate ∗Q efficiently and
numerically stable for a given Bernstein function ψ and dimension ≥d 2 to a satisfying accuracy?

Consider an extMO distribution with Bernstein function ψ and dimension ≥d 2. Recall that the
exchangeable shock-arrival intensities fulfill( ) ( ) [ ]= − − ∈

−λ ψ d i i d1 Δ , .i
i i1 (9 revisited)

Furthermore, we can deduce from Eq. (13) by a tedious but straightforward calculation, see Remark B.2, that

⎜ ⎟⎛⎝ ⎞⎠ ⎧⎨⎩
( )( ) ( )=

−

−

⋅

− − =

− − <

∗

− − −q d i
j i

ψ d i i j
ψ d j i j

,
1 Δ ,

0 else .
ij j i j i1 (16)

Hence, a natural, naïve method to calculate ∗Q is recursively calculating finite forward differences and
appropriately changing the signs of the results.

This section shows in a numerical study that this naïve numerical computation of the infinitesimal
generator matrix ∗Q using Eq. (16) leads to sizeable distortions of transition intensities and probabilities.
Subsequently, we propose an improved, staged numerical approximation of ∗Q : First, approximate its first
row, i.e., the shock-size-arrival intensities, with a numerical integration routine using one of two integral
representations of ∗Q with nonnegative integrands. Using these representations ensures nonnegativity and
allows us to control the approximation’s accuracy using a suitable numerical integration method with error
bounds. Under weak additional assumptions, these integrals are well suited for numerical integration since
their integrands are bounded, except for boundary cases. For the exceptions, we provide suitable alter-
natives. Second, calculate the remaining rows of ∗Q using a simple recursion. Finally, we repeat our study
for our proposed approach and demonstrate that it does not suffer from similar distortions as the naïve
method.
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Special cases with closed-form formulas for ∗Q

Before discussing the naïve approach, we present two special cases with a closed-form representation of the
death-counting process’ infinitesimal generator matrix ∗Q . We call a representation closed form if it can be
evaluated quickly with high accuracy, e.g., if it involves only simple algebraic expressions and standard
functions such as the exponential, gamma, or beta function. We will use these special cases for the
validation of approximations of ∗Q .

The first special case is the Poisson family and requires the following auxiliary result, which can be
verified via induction.

Lemma 5.1. [3, pp. 92 and 130] Let ( ) { }= − −ψ x ηx1 exp , ≥x 0, >η 0, then

�( ) ( ) [ ]− = − ≥ ∈

− − −ψ x e e x i1 Δ 1 , 0, .i i ηx η i1

By using this result and Eq. (13), we obtain a closed-form expression of ∗Q for the Poisson family:

Proposition 5.2. Consider an extMO distribution from the Poisson family with Bernstein function( ) [ { }]= − −ψ x ηx1 exp , ≥x 0, >η 0. Then,

⎜ ⎟⎛⎝ ⎞⎠ ⎧⎨⎩
[ ][ ]( )( )

=

−

−

⋅

− − =

− <

∗

− −

− − − −q d i
j i

e i j
e e i j

else

1 ,
1 ,

0 .
ij

η d i

η d j η j i

The second special case is the Armageddon family, i.e., (almost) affine-linear Bernstein functions with a
possible jump after zero. Their generators can be represented in closed form after a straightforward calcu-
lation since the second-order finite forward differences of corresponding Bernstein functions are zero,
except in zero, see Remark B.3.

Proposition 5.3. Consider an extMO distribution from the Armageddon family with Beinstein function
�( ) { }= +

>

ψ x β αxx 0 , ≥x 0, for ≥α β, 0 with + >α β 0. Then,

⎜ ⎟⎛⎝ ⎞⎠
⎧
⎨⎪⎪⎩⎪⎪

( )
=

−

−

⋅

− − − = <

+ = <

+ + = =

+ < =

∗q d i
j i

β d i α i j d
α i j d
α β i j d
β i j d

else

,
1 ,
1 ,
1 ,

0 .

ij

A simple calculation shows that the mapping ( ) ↦

∗ψ d Q, is linear in ψ, particularly, the infinitesimal
generator of a convex combination of Bernstein functions is the convex combination of the corresponding
infinitesimal generators. Hence, we can separately calculate the infinitesimal generator of the killing and
drift part and the infinitesimal generator of the pure-jump part and aggregate them afterward.

Validation of numerical approximations of ∗Q

For the cases without a closed form, numerically stable representation of ∗Q , any nontrivial approximation
for the mapping ( ) ↦

∗ψ d Q, , especially in higher dimensions d, must be evaluated on its numerical
stability. Therefore, we propose two validation criteria:
– A fundamental property of Markov generator matrices is that row sums are equal to zero. Furthermore,

the diagonal entries ( )= − −

∗q ψ d iii , [ ]∈i d , can be calculated with the same accuracy as ψ. Hence, we
can measure the total error of transition intensities by comparing the relative differences of the approx-
imations of − ∗qii and ∑

>

∗qj i ij, [ ]∈i d 0: for a numerical approximation Q† of ∗Q , define
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( ) [ ]≔

∑
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ii
1

1

†

†
0

– For families with closed-form formulas, we can calculate ∗Q with high accuracy. Consequently, we can
compare two numerically approximated versions of ∗Q , approximated with the method in question and
its closed-form counterpart, respectively, using the subsequently defined metric. For each row i, calcu-
late the total variation distance (TVD) between the approximated transition distributions based on the
weights

(

∑

)

⋅

>

∗

−

∗q qk i ik ij
1 , >j i. In particular, for numerical approximationsQ† andQ‡ of ∗Q , where the latter

is calculated with the closed-form representation, define
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1
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Remark. (Calculating the TVD). Our subsequent numerical studies in R use the TotalVarDist method for
DiscreteDistribution classes from the packages distr and distrEx, see [26], for calculating the TVDs
between transition distributions.

The two validation criteria measure the distortions of waiting times and transition distributions. While
the second validation criterion is only applicable for those families for which ∗Q can be calculated with high
accuracy using another method, e.g., the Poisson or Armageddon family, the first validation criterion is
applicable for every family.

A critical validation aspect is the choice of test cases. Unfortunately, it is impossible to validate a
method for every Bernstein function. Therefore, we need to choose a small subset that is large enough to
allow meaningful conclusions about a method’s numerical stability for all Bernstein functions. In the
following, we outline the reasoning for our subjective selection.
– We consider four families, which can be viewed as extreme points of important (convex) subclasses: The

Armageddon family, representing all (almost) affine-linear Bernstein functions; the Poisson family,
extreme points of the entire Bernstein function class, see Eq. (5) and [28, Chp. 3]; the Exponential family,
extreme points of complete Bernstein functions, see Eq. (6) and [28, Chp. 6]; and the α-stable family,
extreme points of Laplace exponents of completely self-decomposable laws, see [28, Chp. 5].

– Using normalization by adding a linear part such that ( ) =ψ 1 1, see page 314, all involved families have a
unique mapping to (bivariate) lower-tail dependence coefficients (LTDCs) in ( )0, 1 . In particular, the
LTDC of the bivariate margins is ( ) ( )= − /ψ ψLTDC 2 2 1 , see [22, Example 5.21]. Thus, to cover a broad
spectrum of each family, we choose the members corresponding to low, mid, and high bivariate lower-
tail dependence parameters: { }∈LTDC 0.05, 0.5, 0.95 .

Naïve numerical calculation of ∗Q

Equation (16) suggests a naïve numerical calculation of ∗Q . For this, set lower-triangular values of ∗Q to
zero, set the diagonal values to ( )− −ψ d i , [ ]∈i d 0, and calculate the upper-triangular values for >j i in
three steps: First, recursively apply finite forward differences and appropriately change the result’s sign to
calculate ( ) ( )− −

− − − ψ d j1 Δj i j i1 numerically. Second, set these values to zero if they are negative. This
modification is necessary because these numerical calculations can be negative, albeit theoretically being

nonnegative. Third, multiply the result with the binomial coefficient
( )

−

−

d i
j i .

Remark. (Binomial coefficients in R, see [24]) Binomial coefficients
( )

n
k , for nonnegative integers ≤ ≤k n0 ,

have exact representations as 64-bit double-precision binary floating-point numbers, in the following
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called binary64 numbers, see [12], for ≤n 50. In R, the method base::choose calculates binomial coeffi-
cients as a binary64 number via

⎛⎝ ⎞⎠
⎧
⎨
⎪⎪⎪
⎩⎪⎪⎪ { ( ) ( )}

∏

∏

=

=
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− +
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− +

− < ≥

− + − − + +

=

=

−

n
k

n k

n n j
j

k

n n j
j

n k k

n n k k

1 ,
1 30,

1 30 and 30,

exp log 1 logBeta 1, 1 else .

j
k

j
n k

2

2

Expressions are evaluated from left to right and from inner to outer, and logBeta, the logarithm of the beta
function, is evaluated using the dedicated numerical routine lbeta. The latter case uses the Beta function’s
binomial coefficient representation⎛⎝ ⎞⎠ ( )( ) ( ) ( ) ( )=

+

+ − +

=

+ ⋅ − + +

n
k

n
k n k n B n k k

Γ 1
Γ 1 Γ 1

1
1 1, 1

.

The results in Figures 1 and 2 show that the naïve approach produces significant differences for low
double-digit dimensions and distorts waiting time intensities and transition distributions beyond recogni-
tion for mid double-digit dimensions. More precisely, we observe the following:
– The maximum relative error ε1 for the sum of transition intensities increases exponentially with the

dimension once intensities are floored to zero. The range of dimensions requiring no flooring depends
on the specific Bernstein function and parameter choice.

– The maximum TVD ε2 also increases exponentially with the dimension until the maximum TVD, which
is 1.

– Note that for the Armageddon family and =LTDC 50%, all values of ψ on [ ]d 0 have an exact representa-
tion as binary64 numbers. Hence, the naïve method calculates ∗Q exactly for this exceptional circumstance.

�a0 � 1� & �LTDC � 5% �a0 � 1� & �LTDC � 50% �a0 � 1� & �LTDC � 95%

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

10−11
10−5
101
107

10−10
10−5
100
105

10−11
10−5
101
107

10−11
10−5
101
107

Arm
ageddon

Poisson
Exponential

AlphaStable

Figure 1: The maximum relative differences ( )ε d1 of the off-diagonal row sums for the naïve approximation of ∗Q for ≤ ≤d2 50;
yellow coloring and triangle shape indicate whether flooring was required.
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Integral representations of ∗Q

Our proposed approximation of ∗Q uses two integral representations for the exchangeable shock-size-arrival
intensities, which will be derived in the following. The idea is simple: Consider a Bernstein function with the
representation ( ) ( ) ( )

∫

= ≥ψ x ψ x μ u x˜ d , 0,
I

u

where μ is a measure on a set I and { }∈ψ u I˜ :u is a family of Bernstein functions for which the (negative)
alternating finite forward differences have a simple, closed-form representation. Note that such a repre-
sentation exists for every Bernstein function with a drift and killing rate equal to zero due to the
Lévy–Khintchine representation from Eq. (5) and Lemma 5.1. Then, by using the linearity of the integral,
we obtain

   �( ) ( ) ( ) ( ) ( )
∫

− = − ≥ ∈

− −

≥

ψ x ψ x μ u x i1 Δ 1 Δ ˜ d , 0, .i i

I

i i
u

1 1

0

Assuming this integral can be numerically approximated, e.g., because μ is a discrete measure with
finite support or if μ has a suitable density with respect to the Lebesgue measure, this representation has the
advantage that the approximation is always nonnegative. Furthermore, numerical integration methods,
such as Gauss–Kronrod quadrature, allow utilizing error estimates. Consequently, we deem it preferable to
approximate directly the integrals
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The first integral representation for ∗Q uses the Lévy–Khintchine representation from Eq. (5) and holds
for all Bernstein functions:

Theorem 5.4. Let ≥d 2 and consider a d-variate extMO distribution with Bernstein functionψ and Lévy triplet( )a b ν, , such that Eq. (5) is fulfilled. Then, for ≤ < ≤i j d0 , we have

� � [ ] ( ){ } { } ( )
∫

= + + −

= =

∞

− − −λ a b e e ν u1 di i d i
u d i u i

1

0

(17a)

and
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Figure 2: The maximum total variation distance ( )ε d2 of the transition distributions of naïve approximation and high-precision
calculation of ∗Q for ≤ ≤d2 50; yellow coloring and triangle shape indicate whether flooring was required.
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Proof. The result is a direct corollary of Eq. (9), Eq. (16), Lemma 5.1, and Proposition 5.3. Note that the
formula for the exchangeable shock-arrival intensities in Eq. (17a) had previously been stated in [17, p. 149].

□

The second integral representation for ∗Q uses the Stieltjes representation from Eq. (6), which exists for
all complete Bernstein functions.

Lemma 5.5. Let ψ be a complete Bernstein function with Stieltjes triplet ( )σ0, 0, such that Eq. (6) is fulfilled.
Then,

�( ) ( ) ( ) ( )
∫

− = ⋅ + + ≥ ∈

−

∞

ψ x u B i x u σ u x i1 Δ 1 , d , 0, ,i i1

0

where ( ) ( ) ( ) ( )= / + >B x y x y x y x y, Γ Γ Γ , , 0, is the Beta function.

Proof. Due to the linearity of the integral, it suffices to show that
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We prove this by induction. For this, note that we have( )( )( ) ( )( ) ( ) ( ) ( )( )( )+
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Now, assume that the claim is true for −i 1. Then,( ) ⎡⎣( ) ⎤⎦ [ ( )]
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Theorem 5.6. Let ≥d 2 and consider a d-variate extMO distribution with complete Bernstein function ψ and
Stieltjes triplet ( )a b σ, , such that Eq. (6) is fulfilled. Then, for ≤ < ≤i j d0 ,
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(18a)

and
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where B is the Beta function.
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Proof. The result is a direct corollary of Eq. (9), Eq. (16), Lemma 5.5, and Proposition 5.3. □

Numerical approximation of ∗Q based on integral representations

We want to use the integral representations from Eqs. (17) and (18) to approximate ∗Q . However, even if
integrals are finite in theory, numerical integration routines can fail for various reasons. In the following,
we provide further insight into using numerical integration methods for the two representations.

Remark 5.7. (Numerical integration in R with QUADPACK algorithms). We can perform numerical integration
in R with the stats::integrate routine. The method uses the well-known QUADPACK algorithms QAGI
(indefinite integrals) and QAGS (definite integrals), see [23,24]. These algorithms are also used in the GNU
scientific library (GSL), see [8]. They are adaptive numerical integration algorithms based on a 15-point and
21-point Gauss–Kronrod quadrature with the convergence acceleration technique Wynn’s ε-algorithm for a
limit extrapolation, respectively. The former method transforms indefinite integrals with lower bound �∈a
as follows:

⎜ ⎟( ) ⎛⎝ ⎞⎠∫ ∫

= +

−

∞

−f x x f a y
y

y yd 1 d .
a 0

1

2

Theoretically, the limit of the m-panel, n-point Gauss–Kronrod quadrature, which applies the n-point
quadrature to m equidistant subintervals of the integration domain, converges to the integral for → ∞m if
f is bounded and Riemann-integrable, see [23, Thm. 2.6]. This approximation also converges for some
functions with singularities, e.g., ( ) =f x xβ, > −β 1 for ( )∈x 0, 1 ; however, the convergence is very slow in
this case if <β 0, see [23, p. 42]. A low convergence rate can mislead implementations to falsely detect
divergence.

First, note that the integral is the inner product of weights and integrand values if the Lévy measure, or
Stieltjes measure, is discrete with finite support.

In the remainder of this subsection, assume that the Lévy measure, or Stieltjes measure, has a con-
tinuous density with respect to the Lebesgue measure on ( )∞0, . While there are examples for which this is
not the case, e.g., the Stieltjes density of no. 5 in [28, p. 304], it is fulfilled for all examples with nondiscrete
representation measures discussed in this article.

The following boundary conditions for continuous Lévy and Stieltjes densities allow identifying the
cases for which numerical representations of ∗qij have singularities.

Lemma 5.8. Let f be a continuous Lévy density, i.e., a continuous function on ( )∞0, such that( ) ( )
∫

∧ < ∞

∞

u f u u1 d
0

. Then, ( ) =

→

x f xlim 0
x 0

2 (19a)

and ( ) =

→∞

xf xlim 0.
x (19b)

Proof. First, for Eq. (19a), note that ( ) ( )
∫

∧ < ∞

∞

u f u u1 d
0

implies by

( ) ( ) ( ( )) ( )
∫

= = ⋅ ≥ ≥

→ ↘ ↘

uf u u y ζ y f ζ y x f x0 lim d lim lim 0,
y

y

y x0
0

0 0
2

where ( ) [ ]∈ζ y y0, are determined by themean value theorem for integration using continuity of f . Second,
for Eq. (19b), using the substitution ( )= −

−u t t1 1, we have
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where ( ) [ ]∈ζ z z0, are again determined by the mean value theorem for integration. □

Lemma 5.9. Let f be a continuous Stieltjes density, i.e., a continuous function on ( )∞0, such that( ) ( )
∫
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−u g u u1 d
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Proof. First, for Eq. (20a), note that ( ) ( )
∫
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where ( ) [ ]∈ζ y y0, are determined by themean value theorem for integration using continuity of g . Second,
for Eq. (20b), consider that, using the substitution ( )= −

−u t t1 1, we have
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where ( ) [ ]∈ζ z z0, are again determined by the mean value theorem for integration. □

By using the boundary results from Lemma 5.8, we obtain for a continuous Lévy density f and numbers
>γ 0, ≥x 0, and �∈k
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Furthermore, by using the boundary results from Lemma 5.9, we obtain for a continuous Stieltjes
density g and numbers >γ 0, ≥x 0, and �∈k
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Thus, for a continuous Lévy density, or Stieltjes density, the integrand in Eq. (17), or Eq. (18), after a
substitution ( )= −

−u t t1 1, tends to zero at both ends whenever <j d and − >j i 1. Consequently, under these
assumptions, the QUADPACK algorithms are well suited for approximating the integral Eq. (17), or Eq. (18),
if <j d and − >j i 1.

Improved numerical approximation of ∗Q

The previous subsection outlined that, given a continuous Lévy density, or Stieltjes density, we can expect
QUADPACK algorithms to work well for the respective integral representations of ∗qij whenever − >j i 1 and
<j d. That does not imply that they will fail if − =j i 1 or =j d. However, if they do, we can use that these

exceptions are boundary cases:
– For − =j i 1, we have ( ) [ ( ) ( )]= − ⋅ − − − −

+

∗q d i ψ d i ψ d i 1 .i i, 1

Hence, we can calculate
+

∗qi i, 1 with the naïve approach as the result of a single finite forward difference.
This calculation is sufficiently exact and does not suffer from the numerical issues of recursively calcu-
lating finite differences.

– For =j d, we have multiple options. Here, the problem is a possible singularity for the integrand. The
first option is to use the continuity of the integrand by replacing the expression −d j iteratively with an
increasing sequence of real numbers − +d j εk, �∈k , until the numerical integration succeeds. The
second option is to use that row sums of ∗Q have to be equal to zero. Thus, this condition implicitly
defines an approximation of ∗qid, given approximations of all other values, flooring it to zero if the
resulting approximation is negative. Of both approaches, we suggest using the latter over the former
since it is not iterative and flooring should only be necessary if the value is already close to zero, given
that the remaining values are sufficiently accurate.

To avoid rounding issues, we also suggest using the following recursive representation for products
with binomial coefficients for ≤ ≤k n0 :
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The following result allows using a recursion for numerically calculating the remaining rows from the
first row of ∗Q . Consequently, it is sufficient to approximate only the first row with numerical integration.

Theorem 5.10. Let ≥d 2 and consider a d-variate extMO distribution with Bernstein function ψ and infini-
tesimal generator matrix ∗Q for the corresponding law of the death-counting process. Then, for <i j,

=
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−

⋅ +

+ −

−

⋅

+ +
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+

∗q d j
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q1 .i j i j i j1, 1 , , 1
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The following remark summarizes the proposed approximation of ∗Q .

Remark 5.11. Assuming a continuous Lévy density, or Stieltjes density, we can approximate ∗Q as follows:
(1) Set all of the lower-triangular values to zero.
(2) Numerically calculate the diagonal values as ( )− −ψ d i , [ ]∈i d 0.
(3) Approximate ∗q j0, , < <j d1 , using numerical integration, e.g., with the QUADPACK algorithms, based on

one of the integral representations Eqs. (17) and (18).
(4) For =j 1, calculate ∗q0,1 as [ ( ) ( )]− −d ψ d ψ d 1 numerically.

(5) For =j d, set ∗q d0, to the value, equating the first-row sum of ∗Q to zero, and then floor this value by zero.

(6) Calculate the remaining rows of ∗Q numerically using the recursion from Theorem 5.10.

We repeated the previous numerical studies for the proposed approach using the relative tolerance
≈ ×

−ε 1.490116 10 8 for the accuracy of the numerical integration, where =

−ε 2 52 is themachine epsilon for
a binary64 number. We can see in Figures 3 and 4 that ( )ε d1 and ( )ε d2 stay below or around ε up to =d 125.

6 Benchmarks of extMO simulation algorithms

Previously, we derived the Markov death-counting model (MDCM) for exMO distributions in Section 4.
Furthermore, we have shown how their inputs, the infinitesimal Markov generators of their death-counting
processes, can be approximated in a numerically stable way from Bernstein functions, parametrizing extMO
distributions, in Section 5. In combination with Algorithm 1, we obtain a novel simulation algorithm for
high-dimensional extMO distributions. This section aims to compare the runtime of this algorithm with that
of alternative sampling algorithms for extMO distributions, summarized in Table 1. We also investigate the
algorithm’s setup activities’ proportion of the overall runtime.

We performed the presented benchmarks on aWindows consumer laptop. In addition, we also repeated
them on other devices and operating systems. If not mentioned otherwise, the presented findings were
representative of all machines. However, we want to stress that our intention with the subsequent analysis
is merely to indicate how the runtimes compare; hardware and software changes can significantly impact
such measurements.

The following is a high-level summary of our key findings from theoretical considerations and sub-
sequent benchmarks.
– The general MO simulation algorithms ESM and AM appear ill suited for simulating extMO distributions

in higher dimensions without tweaking the algorithms to special cases. In particular, both have relatively
large memory requirements for ≈d 30, and the former shows significantly larger runtimes up from ≈d 8
than all other benchmarked algorithms.

– The MDCMwas slower than the LFM for most tested configurations. However, the former required a large
proportion of its runtime for the initial setup. Consequently, the gaps between both algorithms’ runtimes
decreased when increasing the sample size. In addition, we found a way to choose the parameters so that
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the LFM’s (expected) runtime becomes arbitrarily large— such a scenario does not exist for the MDCM as
its dimension bounds the transition number.

Overall, we conclude that the MDCM is a viable option for simulating extMO distributions in dimensions at
least up to =d 128. The LFM is an alternative for suitable extMO distributions. However, it has issues with
its runtime explosions in corner cases, and it has limited applicability. In particular, exact simulation using
the LFM requires the underlying Lévy subordinator to be a compound Poisson process and being able to
simulate from its jump distribution. In contrast, if the Lévy subordinator is not compound Poisson, the
corresponding extMO distribution cannot be sampled exactly with the LFM but requires approximations
similar to those in [7, Sec. 5.3]. The MDCM also relies on numerically integrating ∗Q . However, the corre-
sponding approximation errors can be bound with an appropriate numerical integration method, as

�a0 � 1� and �LTDC � 5% �a0 � 1� and �LTDC � 50% �a0 � 1� and �LTDC � 95%
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Figure 3: The maximum relative differences ( )ε d1 of the off-diagonal row-sums for the proposed calculation of ∗Q for ≤ ≤d2 50;
coloring and shape indicate the used integral representation with none (black, round), i.e., closed-form, Lévy (yellow, triangle),
and Stieltjes (blue, square).
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Figure 4: The maximum total variation distance ( )ε d2 of the transition distributions of the proposed and high-precision
calculation of ∗Q for ≤ ≤d2 50.
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discussed in Section 5. Furthermore, statistical tests did not reject any distributional assumption for our
implementation of the MDCM for any subfamilies discussed in this section; see Appendix D. Finally, we
want to highlight that we can use the MDCM for arbitrary extMO distributions with closed-form, continuous
Lévy or Stieltjes densities without requiring further specialization.

For the ensuing comparisons, we describe extMO distributions by the properties of their subordinators
in the LFM representation from Theorem 2.4, as it is exceptionally well suited for obtaining a basic under-
standing of the probability law. For this, recall that we can characterize every extMO distribution by a
Bernstein function ψ, which defines the law of a (potentially killed) Lévy subordinator. Components
corresponding to the extMO distributed random vector are killed once the subordinator passes their indi-
vidual unit exponential barrier values. For compound Poisson subordinators, we distinguish subordinator
laws by their jump intensity and jump size distribution: The jump intensity translates into the overall speed
with which the subordinator surpasses the barrier values. Thus, it corresponds to the random vector’s
marginal rate. The distribution of jump sizes predefines the chances of the subordinator simultaneously
surpassing multiple barrier values, and therefore, it corresponds to the random vector’s dependence struc-
ture. Simply put, a high probability of larger jumps increases the chance of simultaneous deaths, while a
high probability of smaller jumps increases the likelihood of individual deaths. This logic culminates into
the pure-drift and pure-killing corner cases, corresponding to the independence and comonotonicity,
respectively, pure-jump Lévy subordinators with infinite activity, which can be approximated by compound
Poisson processes, and convex combinations of those above.

We have chosen the exponential family with possible drift and killing as a representative example for
our subsequent benchmarks for two reasons: First, its Bernstein function has a simple form. Second, its LFM
representation requires the simulation of jumps but does not require potentially expensive simulation
techniques such as rejection sampling. However, whenever possible, we performed the following bench-
marks for all other families from Section 2.4 without observing noteworthy structural differences.

Table 1: An overview of our implementations for the runtime comparison; for more details on the software used, see our
statement following the conclusion

Algorithm Inpute Restrictions

Subfamily Max. dimensionf

ESMa { [ ]}⊆λ I d:I MO ( )+nlog 1 − 12 max

AMb { [ ]}⊆λ I d:I MO ( )+nlog 1 − 12 max

MDCMc { [ ]}∈η i d:i exMO nmax

LFMd a, b, ( )ν 0, ∞ , and jump dist. param. extMOd nmax

Mod. ESMa
=α λ1 and =β λd Armageddon nmax

a Optimized implementation of [17, Algo. 3.1], see Section 2.1, skipping a shock at runtime if the shock-arrival intensity is zero
and using bit arithmetics for death verification. We modified the algorithm for the Armageddon family to sampling +d 1
exponential random variables and performing a loop with d bivariate minimum operations.
b Optimized implementation of [17, Algo. 3.3], see Section 2.1, using Walker’s alias algorithm for discrete sampling, see [31],
and bit arithmetics for death verification.
c Implementation of Algorithm 1 using the representation of Theorem 2.3 with Walker’s alias algorithm for discrete sampling.
d The LFM requires the subordinator to be a compound Poisson process with a feasible jump distribution sampling algorithm.
We implemented [17, Algo. 3.7] with deterministic, exponential, and Pareto distributed jumps.
e The input parameters for ESM, AM, and MDCM are calculated in R using the approach from Section 5.
f Our implementation’s (technical)maximum dimension is expressed as a function of the maximum vector size nmax . E.g., in the
case of the vector size being a 32-bit unsigned integer, we have =n 2 − 1max

32 ; R with LongVector-support has a technical
maximum of =n 2max

52, but considering a 230-length binary64 double vector requires roughly GB8.6 memory, we believe that
general MO distributions are infeasible long before that technical maximum is reached. Note that implementations for larger
dimensions are possible but require specialized data structures and could be suboptimal for smaller dimensions. In particular,
optimizations based on bit arithmetics might not be possible anymore.
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We begin by comparing the MDCM’s simulation runtime to that of the LFM, AM, and ESM for the
exponential family, using normalization by adding a linear part, see Section 2.4. Furthermore, we fix the
bivariate margin to an extMO distribution with unit margins and a lower-tail dependence coefficient of 50%,
see [22, Exmpl. 5.21]. We make the following observations from the benchmark results in Figures 5 and 6:
– We conclude that the ESM is ill suited for higher dimensions due to exploding runtimes for increasing

dimensions. In contrast, the AM seems to be less problematic: although it has higher setup requirements
than the ESM, the overall runtime is slightly higher than that of the MDCM and LFM but significantly
smaller than that of the ESM. We attribute this in part to using the highly efficient Walker’s alias method
for discrete sampling and also in part to a binary representation of shock sets, allowing a quick death
verification. However, using a binary representation for shock sets makes it challenging to scale this
particular implementation to higher dimensions, e.g., our implementation is limited to =d 30 with 16 GB
memory. Furthermore, Figure 6 shows that the setup activities’ proportion of the median runtime is
similar for the MDCM and the AM, but diminishes for the ESM with increasing dimensions.

– In this benchmark, the MDCM’s median runtime was measurably slower than that of the LFM. However,
the gap shrinks significantly when increasing the sample size from =n 102 to =n 104.

– In contrast to the LFM, the MDCM requires setup activities, mapping the Bernstein function to the
infinitesimal generator, contributing significantly to the overall runtime. We observe from Figure 6
that while the proportional runtime of setup activities is sizeable for small sample sizes, it becomes
less pronounced for larger sample sizes. In particular, for =d 128, the runtime proportion of the setup
decreases significantly by a factor of approximately 3 when increasing the sample size from =n 102 to

=n 104. Note that the proportional runtime of setup activities could be decreased as, contrary to the
sampling algorithm, we implemented them in R and not C++.

n � 102 n � 103 n � 104

2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128

1ms

100ms

10s

Figure 5: The median runtime of the MDCM (solid, black), LFM (dashed, yellow), AM (dotted, blue), and ESM (dash-dotted,
green) algorithms for an extMO distribution from the exponential family with drift and without killing, calibrated to unit
exponential margins and a bivariate lower-tail dependence coefficient of 50%. We measured the AM’s and ESM’s runtimes
for ≤d 16.

n � 102 n � 103 n � 104

2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128
10%

30%

100%

Figure 6: The setup activities’ proportion of the median runtime of the MDCM (solid, black), AM (dashed, yellow), and ESM
(dotted, blue) algorithms for extMO distributions from the exponential family with drift and without killing, calibrated to unit
exponential margins and a bivariate lower-tail dependence coefficient of 50%. We measured the setup activities’ median
runtime in a separate benchmark. Similar to Figure 5, we measured the AM’s and ESM’s runtimes for ≤d 16.

332  Henrik Sloot



We continue with a short theoretical comparison of the MDCM and LFM for the case without drift or
killing to highlight the possibility of exploding runtimes for the LFM: Both stochastic models have
embedded transition processes counting the number of dead components. For the LFM, the compound
Poisson subordinator can surpass several barrier values and trigger the death of the corresponding com-
ponents with each new increment. The counting process accumulating the death toll over these transitions
has a similar property to the AM: it can loop in the same state for several transitions. In particular, we show
in Appendix C that the number of transitions to surpass the barrier value of the first component, subse-
quently called barrier-exceedance count, has a geometric distribution with success probability ( )= −p κ1 1 ,
where κ is the Laplace transform of the jump distribution. Consequently, the expected number of transitions
for the subordinator surpassing all barrier values is at least [ ( )]/ − κ1 1 1 and can become arbitrarily large
depending on the jump distribution. Conversely, the death counting process of the MDCM cannot loop in
the same state. Thus, the total number of transitions until reaching the absorbing state cannot exceed
dimension d. For more details on the expected number of transitions of the MDCM and LFM, see
Appendix C.

In the second benchmark, we demonstrate the issue of exploding runtimes for the LFM using a special
case of the exponential family: a compound Poisson subordinator with exponentially distributed jumps
without drift or killing. By decreasing p, the success probability of the geometric distribution corresponding
to the barrier-exceedance count from the previous paragraph, we can produce a particularly adverse
parametrization for the LFM. A short calculation yields that =p 50%, =p 10%, and =p 1%, respectively,
correspond to rates =η 1, =η 9, and =η 99 of the jump distribution. We conclude from Figure 7 that the
benchmarks for smaller success probabilities p highlight an advantage of the MDCM over the LFM: The
dimension bounds the number of transitions in the former model. Thus, the median runtime cannot explode
if the success probability approaches zero as in the LFM.

In the previous benchmark, we chose parameters to highlight a disadvantage of the LFM for small
success probabilities of the first component’s barrier-exceedance count distribution. Now, we probe a
parametrization more to the LFM’s advantage and, in particular, to the MDCM’s disadvantage. For this,
note that we can expect the fastest runtime of the LFM for a pure-drift subordinator, corresponding to an
independence distribution: The LFM algorithm samples and sorts the barrier values and iterates over the
barrier values, setting the random variables to the barrier values. In particular, it requires no simulation of
subordinator increments. Conversely, the independence case constitutes the worst case for the MDCM as the
death-counting process will always require d transitions into the absorbing state. Nevertheless, we infer

n � 102 n � 103 n � 104

p
�

50%

(� �
�

1 �)

p
�

10%

(� �
�

9�)

p
�

1%

(� �
�

99� )

2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128

100µs

1ms

10ms

100ms

1ms

10ms

100ms

1ms

10ms

100ms

Figure 7: The median runtime of the MDCM (solid, black) and LFM (dashed, yellow) algorithms for extMO distributions from the
exponential family without drift or killing. We used three configurations for various success probabilities p from the first
component’s (geometric) barrier-exceedance count distribution.
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from the benchmark results in Figure 8 that the LFM algorithm is only approximately twice as fast as the
MDCM algorithm in this parametrization for larger sample sizes.

7 Conclusion

We started this article with the question: “Can we find low-parametric Markov-based models for extendible
Marshall–Olkin distributions with a numerically stable implementation?”

We showed that the death-counting process of exchangeable Marshall–Olkin distributions is Markov.
Furthermore, we proved that its shuffled transition times’ distribution equals the original one. This result
allows us to represent exchangeable Marshall–Olkin distributions directly with Markovian death-counting
processes.

Using this Markov representation requires calculating its infinitesimal generator from the distribution’s
parameters. Many well-known examples of low-parametric subfamilies of extendible Marshall–Olkin dis-
tributions are parametrized via Bernstein functions, the Lévy exponents of the subordinators from the Lévy
frailty model representation. However, we found that naïvely calculating Markov generators from Bernstein
functions is not numerically stable. Therefore, we derived a numerically stable approximation of the
generator’s first row using integral representations of Bernstein functions and summation identities and
calculate its remaining rows using a recursion. We conducted a numerical study to demonstrate this
approach’s numerical stability for various examples up to dimension =d 128.

We proposed a new simulation algorithm by combining extendible Marshall–Olkin distributions’
Markov representations with the numerically stable approximation of their generators. However, this
algorithm necessitates significant setup activities for calculating the generators from Bernstein functions,
requiring numerical integration and recursions. We benchmarked the runtime of our new algorithm to that
of alternative sampling algorithms, corresponding to the Lévy frailty model, the Arnold model, and the
exogenous shock model, and obtained the following findings: First, we found that the setup activities’
proportion of our algorithm’s overall runtime was sizeable for small sample sizes, e.g., 102, but decreased
significantly when moving toward larger sample sizes, e.g., 104. Second, we found that both specialized
algorithms — our algorithm and the algorithm corresponding to the Lévy frailty model — were faster than
the general algorithms, corresponding to the Arnold model and exogenous shock model. Third, we found
that our algorithm was, in many cases, slower than the algorithm corresponding to the Lévy frailty model.
However, the gap between the measured runtimes decreased when increasing the sample size and, in
contrast to its counterpart, our simulation algorithm’s runtime is bounded by the dimension. Finally, we
analyzed worst-case parametrizations for the Markov death-counting model and the Lévy frailty model. We
found that the latter’s runtime explodes for particular parameter asymptotics. In contrast, the former’s
runtime is bound for a fixed dimension.

n � 102 n � 103 n � 104

2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128

100µs

1ms

10ms

100ms

Figure 8: The median runtime of the MDCM (solid, black) and LFM algorithms (dashed, yellow) for the extMO distribution with a
pure-drift subordinator (independence case). We included the optimized ESM algorithm for the Armageddon family (dotted,
blue) as a reference. It hints at the costs of the sorting operation of the LFM algorithm, which is superfluous for a pure-drift
subordinator.
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Apart from runtime differences, the Lévy frailty model and Markov death-counting model have sig-
nificant methodological differences. The Lévy frailty model comprises specialized sampling algorithms,
each depending on a specific jump distribution algorithm. In contrast, the Markov death-counting model is
a general sampling algorithm for all extendible Marshall–Olkin distributions, requiring no specialization if
it has suitable Lévy or Stieltjes density. The Markov death-counting model requires an approximation of the
simulation parameters except for special cases, but the approximation uses numerical integration methods,
which can bound the error. Moreover, the Lévy frailty model also requires approximations if the corre-
sponding Lévy subordinator is not of compound Poisson type.

We conclude that our novel Markov-based simulation algorithm is well suited for simulating extendible
Marshall–Olkin distributions. In contrast to the Lévy frailty model, our Markov representation covers all
extendible Marshall–Olkin distributions and does not require tailored jump distribution algorithms.
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Appendix

A The infinitesimal generator matrix Q for special cases

This appendix contains the MDSM’s generator matrix representations for the exchangeable subclass, the
extendible subclass, and the Armageddon shock subclass. The following derivations constitute mostly
tedious but straightforward calculations. However, we use their results indirectly in the main part of this
article, e.g., to derive Eq. (16) or Proposition 5.3.

Remark A.1. For an exMO distribution with exchangeable shock-arrival intensities = ⋅λ pλ , we have⎧⎨⎪⎩⎪
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Proof. We obtain both results from Eqs. (10) and (12) by using the exchangeability and by grouping all
shock-arrival intensities, or shock-arrival probabilities, belonging to the same cardinalities. □

ExMO distributions are often reparametrized with so-called d-monotone sequences instead of the
exchangeable shock-arrival intensities. The reparametrization was proposed in [13] and extensively studied
by [14, Chp. 3]. The latter serves as a reference for the subsequently summarized results on this reparame-
trization. We define for the exchangeable shock-arrival intensities
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In particular, [14, Chp. 3] shows that ( ) [ ]= − ∈
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λ a i d1 Δ , ,i
i i

d i
1 1 (A.1)

and, moreover, every d-monotone sequence defines an exMO distribution. Furthermore, [14, Chp. 4] shows
that the reparametrization of an extMO distribution with Bernstein function ψ is( ) ( ) [ ]= + − ∈ −a ψ i ψ i i d1 , 1 .i 0 (A.2)

This reparametrization bridges the gap toward the parametrization of extMO distributions via Bernstein
functions and has the following property: the first k sequence elements describe the law of k-margins, i.e.,
the subvector ( )…τ τ, , k1 , [ ]∈k d , has the reparametrization …

−

a a, , k0 1 and the margin τ1 is exponentially
distributed with rate a0. We have the following representation of the MDSM’s Markov generator matrix in
terms of the reparametrization:
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For the proof of Remark A.2, we require the following auxiliary lemma:

Lemma A.3. Let �∈d , …c c c, , , d0 1 be a real sequence, and [ ]∈i j d, 0 with ≤i j. Then,
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Proof. We first proof the claim for − =j i 0, i.e.,⎛⎝ ⎞⎠( )
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For this, we have

  
�

⎛⎝ ⎞⎠( ) ⎛⎝ ⎞⎠ ( ) ⎛⎝ ⎞⎠ ( ) ⎛⎝ ⎞⎠⎛⎝ ⎞⎠( ) [ ] [ ]
( ) { }

∑ ∑ ∑ ∑ ∑

− = − = − = −

=

−

−

∗

= =

−

− +

=

−

∈ ∈

− =

−

= −

−

=

i
k

c i
k

k
l

c c i
k

k
l

c1 Δ 1 1 ,
k

i
k k

d k
k

i

l

k
l

d k l
m

i

d m
k i l k

k l m

l
d i

0

1

0 0

1

0 ,

1

i m

0 0

†

where ( )∗ follows from [14, Lem. 2.5.2] and ( )† follows with

�( ) ⎛⎝ ⎞⎠⎛⎝ ⎞⎠ ( ) ⎛⎝ ⎞⎠⎛⎝ ⎞⎠ ( ) ⎛⎝ ⎞⎠⎛⎝ ⎞⎠[ ] [ ] { }∑ ∑ ∑

− = −

+

+

= −

−

= −

∈ ∈

− =

−

=

−

−

=

−

−

=

i
k

k
l

i
l m

l m
l

i
m

i m
l

1 1 1 .
k i l k

k l m

l

l

i m
l

l

i m
l

i m
,

1

0

1

0

1

0 0

For the general statement, we have⎛⎝ ⎞⎠( ) ⎛⎝ ⎞⎠( ) [( ) ] [( ) ]( ) ( ) ( )
∑ ∑

− = − − = − −

=

+ − − + −

− − −

=

− − −

− − −

− −

−

i
k

c i
k

c c1 Δ 1 Δ 1 Δ 1 Δ .
k

i
k j i k j i

d k j i
k

i
k k j i j i

d k j i
j i j i

d j
0

1

0

1 Eq. A.4

□
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Remark A.4. For an extMO distribution with Bernstein function ψ, we have
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Proof. The claim follows from Remark A.2 with Eq. (A.2). □

Remark A.5. For an extMO distribution from the Armageddon family with parameters ≥α β, 0 with
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B The infinitesimal generator matrix ∗Q for special cases

This appendix contains the MDCM’s generator matrix representations for the exchangeable reparametriza-
tion, the extendible subclass, and the Armageddon shock subclass. The results are all direct corollaries
from Appendix A and Theorem 4.1.
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Remark B.2. For an extMO distribution with Bernstein function ψ, we have
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Remark B.3. For an extMO distribution from the Armageddon family with parameters ≥α β, 0 with
+ >α β 0, we have ⎧
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C Runtime boundaries for the MDCM and LFM

The following section compares the runtime of the MDCM algorithm to that of the LFM algorithm on a
theoretical basis. For this, recall that the MDCM samples discrete transitions with conditionally indepen-
dent exponential waiting times until all components are extinct, determining the order with a random
shuffling afterward, and the LFM samples discrete transitions with exponential waiting times until the
compound Poisson subordinator surpassed all unit exponential barrier values. We provide formulas to
calculate or bound the expected number of sampled waiting times for both models. These confirm that the
expected number of waiting times is bounded for the MDCM but can become arbitrarily large for the LFM.

Proposition C.1. Let ≥d 2 and consider the LFM from Theorem 2.4 for an extMO distribution with Bernstein
function ( ) ( ( ))= −ψ x c κ x1 for >c 0 and a completely monotone function κ, i.e., ψ is the Lévy exponent of a
pure-jump compound Poisson subordinator with intensity c and whose jumps have the Laplace function κ.
Furthermore, let Ki be the number of jumps required for surpassing the ith barrier value and K be the number of
jumps required for surpassing all barrier values. Then, Ki is geometrically distributed with success probability( )− κ1 1 and

�( ) [ ] ( )−

≤ ≤

−κ
K d

κ
1

1 1 1 1
.

Proof. We use the notation from Theorem 2.4, and let Λ be defined by
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for a Poisson process N and, independent thereof, iid jumps �{ }∈X j:j with Laplace function κ, and define
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We can derive with a simple calculation that Ki, [ ]∈i d , have geometric distributions with success
probability ( )− κ1 1 by using the tower property and conditioning on �{ }∈X j:j for the survival function
of Ki. Consequently, we obtain the claim by using { }= …K K Kmax , , d1 and
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Proposition C.2. Let ≥d 2 and consider the MDCM from Theorem 4.1 for an infinitesimal generator matrix ∗Q .
Furthermore, let M be the number of transitions until the Markov chain process is absorbed, i.e., until all
components are dead. Then

�[ ] =

→

⋅ ≤

⊤ 1M e S d,0

where ( ) [ ]=

∈ −

S sij i j d, 1 0 is the fundamental matrix of the embedded Markov chain, (implicitly) defined by
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Proof. First note that the transition matrix ( [ ] )= ∈T t i j d: ,ij 0 of the embedded Markov process if defined by⎧⎨⎪⎩⎪=
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and that d is the only recurrent, absorbing state. By using [4, Thm. 6.2.3], we conclude that [ ]= −

−S TId 1

is the fundamental matrix of the embedded chain and obtain the claim using the arguments from
[4, Sec. 6.2.1]:

� ⎜ ⎟[ ] ( ) ⎛⎝ ⎞⎠∑ ∑ ∑ ∑ ∑

= = =

=

−

=

∞

=

−

=

∞

=

−

M T T s .
j

d

n

n
j

j

d

n

n

j j

d

j
0

1

0
0

0

1

0 0 0

1

0

We obtain the upper bound from the observation that each transition increases the death count by at
least one, limiting the number of transitions until absorption by d. □

We conclude from Propositions C.1 and C.2 that while the MDCM cannot have more than d transitions,
the expected number of transitions in the LFM is not bounded and can be significantly larger when the
probability of small jumps in the corresponding Lévy subordinator is high. We created Figure A1 to demon-
strate these differences for the exponential family. The plot highlights that the MDCM requires significantly
fewer expected transitions than the LFM if the expected jump sizes are tiny.
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D Statistical tests for extMO distributions

A challenge for implementing simulation algorithms is developing statistical tests to verify their goodness-
of-fit. For example, R uses the Dvoretzky–Kiefer–Wolfowitz inequality with the tight constant derived in [20]
for testing their univariate distribution algorithms. Other popular tests include the Kolmogorov–Smirnov
tests and the χ2-test. For multivariate distributions, a recent advance is the derivation of a tight constant for
the multivariate Dvoretzky–Kiefer–Wolfowitz inequality, see [21].

We propose a simple alternative approach using themin-stability of MO distribution: Consider iid d-variate
extMO distributed random vectors ( )= …τ τ τ, ,k k k d,1 , , { }∈ …k n1, , , with corresponding Bernstein function ψ
and define { ( ) } [ ][ ]≔ − − ⋅ ∈

∈

U ψ d τ k n1 exp min , .k
i d

k i,

A straightforward calculation shows that the overall minimum of τ1 has an exponential distribution
with rate ( )ψ d . Hence, …U U, , n1 is an iid standard uniform sequence. Consequently, we can apply
Kolmogorov–Smirnov tests for goodness-of-fit testing, see [18] and [29]. We employed this method to
extensively test all implementations discussed in Section 6 using a p-value threshold of 1% and a Bonferroni
correction for the total number of tests.

E Alias method for sampling on finite-state spaces

The following section shortly sketches the alias method for sampling discrete random variables on finite-
state spaces; see [31] for the details. Let { { }}∈ …p k n: 1, ,k be a probability counting measure for the finite-
state space [ ] { }= …n n1, , . Suppose there exist mappings [ ] [ ]↦f n n: and [ ] [ ]↦q n: 0, 1 such that

�
⎡⎣⎢( ( )) ( ) ⎤⎦⎥[ ] { ( ) }∑

= ⋅ − +

∈

=

p
n

q k q j1 1 .k
j n

f j k (∗)

Consider a probability space supporting the following random variables: a uniform random variable Y
on [ ]n and, independent thereof, a uniform random variableU on [ ]0, 1 . Define I by � { ( )}=

≤

I U q Y such that I
conditioned on Y has a Bernoulli distribution with success probability ( )q Y . Furthermore, define X by⎧⎨⎩ ( )

≔

=

=

X f Y I
Y I

1,
0,

and a straightforward calculation shows that �( )= =X k pk.
Note that the mappings f and q fulfilling condition ( )∗ exist but are not unique. We sketch one

possibility in Algorithm 2 that uses a strategy that recursively moves probability mass from the element

p � 50%�(�� � 1�) p � 10%�(�� � 9�) p � 1%�(�� � 99�)

2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128
100
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Figure A1: The expected number of transitions in the MDCM (solid line) and expected number of transitions in the LFM (gray
area) for the Exponential family; the dotted line marks the identity.
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with the largest mass to that with the least mass until all probabilities are equal. By reflecting these
probability mass transfers adequately in the success probabilities of the second-order Bernoulli experiment
and conditional element-switch, the overall probabilities remain unchanged.

Algorithm 2. Create mappings f and q for the alias method.

Require: (Vector) argument p with probabilities
1: procedure CREATE_ALIAS_MAPPINGS(p)
2: n = size(p)

3: w = p

4: f = sequence(1, n), q = zeros(n)

5: while max(w) > 1. / n do
6: l = argmin(w), k = argmax(w)

7: f[l] = k

8: q[l] = (1. / n - w[l]) * n

9: w[k] -= (1. / n - w[l])

10: w[l] = 1. / n

11: end while
12: return f, q

13: end procedure

The appeal of the alias method is that, given the mappings f and q, it requires at most the generation of
two uniform random variables on { }… n1, , and [ ]0, 1 , at most two reference operations, and a comparison
per sample.
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B Further articles as primary author

B.1 Exogenous shock models: analytical characterization and probabilistic
construction
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Exogenous shock models: analytical characterization and
probabilistic construction

Matthias Scherer and Henrik Sloot

The article [3] provides a characterization theorem for the survival functions of multivariate failure-time
distributions arising from generalized exogenous shock models with independent, nonnegative, unbounded,
and continuous shock-arrival times. Generalized exogenous shock models define a random vector via
independent shock-arrival times for each subset of elements, destroying all components in that subset not
already destroyed by this time. We identify the corresponding survival functions as continuous functions,
which are products of their nonincreasingly ordered and individually transformed arguments with order-
dependent transformations fulfilling specific monotonicity requirements. The characterization theorem
extends an existing result for exchangeable generalized Marshall–Olkin survival copulas. Additionally, we
outline applications of linking generalized Marshall–Olkin distributions to the exogenous shock model.

The introduction recalls the classical exogenous shock model with exponential shock-arrival times and
the associated classical Marshall–Olkin distribution. Following, we outline previous research efforts to
generalize Marshall–Olkin distributions. Finally, we conclude the introduction with the generalization most
relevant for us: allowing independent, nonnegative, unbounded, and continuous shock-arrival times under
an exchangeability assumption. For this, previous research identified the corresponding distributions’
survival functions as continuous functions, which are the products of their nonincreasingly ordered and
individually transformed arguments with order-independent transformations fulfilling specific monotonicity
requirements.

Section 2 contains the characterization theorem. We motivate generalizing exponential by nonnegative,
unbounded, and continuous shock time distributions with the hazard rate analogy: the former corresponds
to a constant hazard rate and the latter virtually to time-dependent hazard rates. A condensed version of
the characterization is the following: A continuous function F̄ : Rd → R of the form

F̄ (t) =
d∏
i=1

gπi (tπ(i)), t ≥ 0, π ∈ Sd, tπ(1) ≥ · · · ≥ tπ(d),

is a d-variate survival function if and only if the order-dependent transformations gπi fulfill specific mono-
tonicity criteria. Moreover, if they do, the survival function corresponds to an generalized exogenous shock
model whose shock-arrival time distributions follow from said monotonicity criteria. We conclude this section
by explaining the more complex expressions involved in the characterization theorem.

Section 3 presents several applications. They share using the explicit formula for shock-arrival time
distributions, allowing to calculate shock-arrival-time-related probabilities for generalized Marshall–Olkin dis-
tributed vectors not explicitly specified via an generalized exogenous shock model. Examples of such an
alternative specification are previous hierarchical factor models based on the additive frailty model construc-
tion. The first application uses partial integration to calculate joint default probabilities. We shortly discuss
this approach’s viability and practical limits by summarizing a numerical study about implementing these
partial integration approaches. The second application links the probability of the first shock’s cardinality to
decrement matrices of regenerative composition structures discussed in [70].

Statement of individual contribution

I, Henrik Sloot, am the primary author of this article. I am responsible for the conceptualization, the proofs,
the software and the analysis for the validation mentioned in Section 3, and the writing. The role of Matthias
Scherer was that of a supervisor, giving feedback on results, the written drafts, related literature, and
double-checking results. He also initially suggested extending [25, Theorem 1.1] for the non-exchangeable
case. The article originated from my master thesis [87], and Theorem 1 of the article and the corresponding
proof, with minor editorial changes, have already been stated therein. However, the applications described
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in Section 3 and the mentioned computations were found after completing my Master’s thesis and were
written specifically for this article. For my doctoral thesis, to explicitly prevent double counting, only those
parts of this article that go beyond my Master’s thesis are to be accredited.

Addendum

For clarity this thesis, including the preceding summary, use the term “generalized exogenous shock model”
while the article uses the term “exogenous shock model”.

Erratum

The original publication contained several minor errors.

• Eq. (6) incorrectly equates F̄ (t) to
∏d
i=1 g̃

π(i,...,d),π(i)(tπ(i)); the correct version of the latter reads∏d
i=1 g̃

π(1,...,i),π(i)(tπ(i)).

• The sentence after Eq. (7) incorrectly requires that “gπ1 and g̃[d],m, respectively, are in the respective
subclass with no atoms at infinity Ḡ1”; the correct version reads “gπ1 and g̃m,m, m ∈ [d], respectively,
are in the respective subclass with no atoms at infinity Ḡ1”.

• Part 3 of Theorem 1 incorrectly requires I1 ∩ I2 ̸= ∅; the correct requirement reads I1 ∩ I2 = ∅.

• The last paragraph of Section 3 incorrectly conflates n and d at several places; the correct version
replaces all all n by d for all but the first occurrences.
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Abstract
A new characterization for survival functions of multivariate failure-times arising in
exogenous shock models with non-negative, continuous, and unbounded shocks is
presented. These survival functions are the product of their ordered and individually
transformed arguments. The involved transformations may depend on the specific
order of the arguments and must fulfill a monotonicity condition. Conversely, every
survival function of that form can be constructed using an exogenous shock model
with independent and non-homogeneous shocks.

Keywords Exogenous shock model · Fatal shock model · Generalized
Marshall–Olkin distribution ·Multivariate survival function

1 Introduction

This work is concerned with the analytical characterization and probabilistic construc-
tion ofmultivariate probability laws of randomvectors (τ1, . . . , τd) onRd+ arising from
a fatal shock construction. The seminal model of this kind was presented in Marshall
and Olkin (1967). Marshall and Olkin’s main objective was to lift the lack-of-memory
property to the d-variate case, an ansatz implying a distinct family of survival func-
tions that can be constructed using a fatal shock model involving 2d − 1 independent
and exponentially distributed shocks. More precisely, the failure time of component
i ∈ {1, . . . , d} =: [d] is defined as

τi := min{Z I : i ∈ I ⊆ [d]}, i ∈ [d], (1)
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1 Lehrstuhl für Finanzmathematik, Technische Universität München, Parkring 11, 85748 Garching,
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932 M. Scherer, H. Sloot

where Z I , ∅ �= I ⊆ [d], are independent exponentially distributed random variables
with rates λI , ∅ �= I ⊆ [d].

Taking the eponymous Marshall–Olkin construction from Eq. (1) as a starting
point, various generalizations are possible.1 Firstly, the operation ‘min’ might be
altered, see Joe (1997, Chp. 4.6) for a general concept for constructing multivariate
distributions based on a convolution-closed, infinitely divisible class of univariate dis-
tributions, which can be used to construct multivariate normal distributions as well as
Marshall–Olkin distributions. Second, the assumption of shocks being independent
can be dropped, leading for instance to the class of Archimax copulas, also called
scale-mixtures of Marshall–Olkin, which assume an Archimedean dependence for the
Z I , see Li (2009). Third, and this is the path we pursue, shock distributions other
than the exponential law can be considered. This has already been considered for
the bivariate case, see Durante et al. (2008) and Li and Pellerey (2011) as well as
for the exchangeable d-variate case, see Durante et al. (2007) and Mai et al. (2016).
An interesting result, that was derived in Muliere and Scarsini (1987), is that the
class of distributions, which is characterized by a modified lack-of-memory property,
where the generic addition is replaced by a reducible and associative binary oper-
ator, is a subgroup of generalized Marshall–Olkin (GMO) distributions with shock
survival functions of the form exp{−λI H(t)}, cf. Eq. (5). In any of the above cases
(or combinations thereof), the price to pay for the additional flexibility is a reduction
in mathematical tractability. Deriving the survival function of a generalized d-variate
fatal shock model and analyzing its properties is a challenging task. Beyond that, the
inverse membership-testing problem, i.e. deciding if a given survival function admits
a shock-model representation, is much harder. Hence, it is not surprising that the
bivariate case was investigated first, see Marshall (1996) and Durante et al. (2008),
followed by cases where the complexity is reduced by a reduction in the amount of
considered shocks, see Durante et al. (2007), or via some symmetry assumption, see
Marshall (1996) and Schenk (2016). In Lin and Li (2014), many properties of gener-
alized Marshall–Olkin distributions, e.g. the corresponding copulae and coefficients
of tail-dependence, are derived.

Themain achievement of the presentmanuscript is Theorem 1. It fully characterizes
the class of survival functions arising as a particular instance of a fatal shock model
with independent shocks. This characterization is analytic on the one hand, translating
the tedious d-increasingness property to a more convenient monotonicity property,
and probabilistic on the other hand, establishing precisely how the 2d − 1 shock
distributions must be selected to ultimately arrive at the model under consideration.

Closest to the presentwork is Schenk (2016),where it is shown that an exchangeable
function C mapping u ∈ [0, 1]d to [0, 1], defined via a permutation π ∈ Sd with
uπ(1) ≤ · · · ≤ uπ(d), of the form

C(u) = uπ(1) · δ2(uπ(2)) · · · · · δd(uπ(d)) (2)

is a copula if and only if the functions {δ2, . . . , δd} fulfill certain monotonicity condi-
tions. This extends the bivariate case treated in Durante et al. (2008). Conversely, all

1 The functional equation of the lack-of-memory property is another starting point for generalizations, see
Muliere and Scarsini (1987).
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copulas of the form Eq. (2) admit a stochastic representation as the survival copula
of an exchangeable exogenous shock model, i.e. the shock distribution is equal for
any two shocks Z I and Z J sharing the cardinality of their referencing sets |I | = |J |.
In our analysis we work with survival functions and restrain ourselves from resorting
to copulas, as Sklar’s separation, see Sklar (1959), is not as natural in the case of
non-exchangeable shock models as it is for exchangeable ones.

To emphasize the relevance of the present study, let us stress that the Marshall–
Olkin distribution, mostly due to its embedded lack-of-memory property, arises like a
focal point of many inner-mathematical problems. Beyond that, it has been applied in
different fields, see Giesecke (2003), Lindskog and McNeil (2003) and Elouerkhaoui
(2007), most of the applications having a survival time interpretation/model. For many
real-world applications, however, the assumption of exponential shocks needs to be
relaxed, see Bielecki et al. (2013) and Klein et al. (1989), and the resulting model is
of the form that we classify with Theorem 1.

2 The generalizedMarshall–Olkin distribution

The classical d-variateMarshall–Olkin distribution is parametrized by 2d−1 constant
hazard rates, λI ≥ 0, ∅ �= I ⊆ [d]. These parameters are used as intensities2 of the
independent exponential shocks in construction Eq. (1), giving rise to the survival
function

P(τ1 > t1, . . . , τd > td) = F̄(t) = exp

⎧
⎨

⎩
−

∑

∅�=I⊆[d]
λI max

i∈I
ti

⎫
⎬

⎭
, ∀t ≥ 0. (4)

Oneway of generalizing theMarshall–Olkin distribution is to consider time-dependent
shock-intensities s 	→ λI (s), i.e.

P (Z I > t) = S̄I (t) = exp

{

−
∫ t

0
λI (s)ds

}

, ∀t ≥ 0,

where s 	→ λI (s) is a non-negative function such that the involved integral is finite for
all t ≥ 0. In the following, this concept is slightly extended by solely demanding that
the cumulative hazard rates HI (t) := − log S̄I (t) are strictly positive, non-decreasing,
zero in t = 0, and continuous. Particularly, atoms at infinity are allowed and the class
of considered survival functions is

Ḡ :=
{

S̄ : R+ → (0, 1] : S̄(0) = 1, S̄ ∈ C(0)(R+), dS̄ ≤ 0
}

.

2 The interpretation λI = 0 ⇔ P(Z I = ∞) = 1 requires the marginal-finiteness condition

∑

I⊇{i}
λI > 0, ∀ i ∈ [d], (3)

to make the resulting vector (τ1, . . . , τd ) well defined.
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934 M. Scherer, H. Sloot

For a set of survival functions S̄I ∈ Ḡ,∅ �= I ⊆ [d], with corresponding
(cumulative) hazard rate functions HI , fulfilling the (generalized) marginal-finiteness
condition

∏

I�i

S̄I ∈ Ḡ1 :=
{

S̄ ∈ Ḡ : lim
t→∞ S̄(t)→ 0

}
, ∀i ∈ [d],

the corresponding survival function of a generalized Marshall–Olkin (GMO) distri-
bution is

F̄(t) =
∏

∅�=I⊆[d]
S̄I

(

max
i∈I

ti

)

= exp

⎧
⎨

⎩
−

∑

∅�=I⊆[d]
HI

(

max
i∈I

ti

)
⎫
⎬

⎭
. (5)

Note, that, with the (generalized) marginal-finiteness condition, the function in Eq. (5)
is indeed the survival function of a real, non-negative random vector; this follows if an
exogenous shock model with shock survival functions S̄I , ∅ �= I ⊆ [d], is considered.

The survival function in Eq. (5) has an alternative, more compact, representation:
Let t ≥ 0 and π ∈ Sd be a permutation such that tπ(1) ≥ · · · ≥ tπ(d); then, by
reordering the factors appropriately, it follows that

F̄(t) =
d∏

i=1
gπ

i (tπ(i)) =
d∏

i=1
g̃π({i,...,d}),π(i)(tπ(i)), (6)

where for i ∈ [d] and π ∈ Sd as well as ∅ �= I ⊆ [d] and m ∈ I

gπ
i (t) :=

∏

I :π(i)∈I⊆π({i,...,d})
S̄I (t) (7a)

and

g̃ I ,m(t) :=
∏

J :I∩J={m}
S̄J (t). (7b)

Furthermore, it follows that the factors gπ
i as well as g̃ I ,m , respectively, are in the class

of admissible survival functions Ḡ and gπ
1 as well as g̃[d],m , respectively, are in the

respective subclass with no atoms at infinity Ḡ1.
The conclusion from the previous paragraph is, that survival functions of GMO-

distributed random vectors are the product of their ordered and individually trans-
formed arguments, i.e. functions of the form as presented in Eq. (6). The following
theorem shows, among other things, that a survival function of this kind implies a
stochastic representation as an exogenous shock model.3

3 For readability, the necessary conditions on the transformations gπ
i are omitted here and the reader is

referred to the full statement in Theorem 1.
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Theorem 1 Let F̄ : Rd+ → R be a continuous function having a representation as in
Eq. (6) for an arbitrary family of functions {gπ

i : i ∈ [d], π ∈ Sd}. If additionally

– gπ
1 ∈ Ḡ1 ∀π ∈ Sd and

– gπ
i (0) = 1 ∀i ∈ [d], π ∈ Sd ,

then the following statements are equivalent:

1. F̄ is the survival function of a multivariate random vector τ ∈ Rd+.
2. For all I1, I2 ⊆ [d] with I1 ∩ I2 = ∅ and I2 �= ∅, let {πJ }J⊆I2 ⊆ Sd be a family

of permutations on [d] which fulfills for each J ⊆ I2 the following conditions

(a) πJ ({1, . . . , |I1|}) = I1 (if I1 �= ∅),
(b) πJ ({|I1| + 1, . . . , |I1 ∪ J |}) = J , and
(c) πJ ({|I1 ∪ J | + 1, . . . , |I1 ∪ I2|}) = I2\J .

Define for s ≥ t ≥ 0

G
{πJ }J⊆I2
I1,I2

(s, t) :=
∑

J⊆I2

(−1)|J |
|J |∏

j=1
gπJ|I1|+ j (s)

|I2\J |∏

j=1
gπJ|I1∪J |+ j (t). (8)

Then G
{πJ } j⊆I2
I1,I2

does not depend on the specific family {πJ }J⊆I2 chosen; therefore,
write G I1,I2 . Furthermore, G I1,I2(s, t) is non-negative and continuous in s and t.

3. For all I1, I2 ⊆ [d] with I1 ∩ I2 �= ∅ and I2 �= ∅ define for m ∈ I2

S̄m
I1,I2(t) :=

|I2|∏

i=1

⎛

⎜
⎜
⎝

∏

J⊆I2|J |=i,m∈J

g̃ J∪I1,m(t)

⎞

⎟
⎟
⎠

(−1)i−1

, t ≥ 0. (9)

Then S̄m
I1,I2

does not depend on the choice of m, i.e. S̄m
I1,I2
≡ S̄I1,I2 , and S̄I1,I2 ∈ Ḡ.

4. For all ∅ �= I ⊆ [d] and m ∈ I define

S̄m
I (t) :=

|I |∏

i=1

⎛

⎜
⎜
⎝

∏

J⊆I
|J |=i,m∈J

g̃ J∪([d]\I ),m(t)

⎞

⎟
⎟
⎠

(−1)i−1

, t ≥ 0. (10)

Then S̄m
I does not depend on the choice of m, i.e. S̄m

I ≡ S̄I , and S̄I ∈ Ḡ.

Remark 1 Let the assumptions of Theorem 1 be fulfilled with F̄ being the survival
function of a random vector τ . Then τ has a stochastic representation as an ESMwith
shock survival functions S̄I , i.e. if the Z I ∼ S̄I , ∅ �= I ⊆ [d], are independent shocks
and τ̃ is defined by Eq. (1), then τ

d= τ̃ .

Due to the length of the required notation and the complexity of the theorem, giving
an intuitive interpretation is appropriate before providing the proof in “Appendix A”.
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936 M. Scherer, H. Sloot

Therefore, the following paragraph provides detailed interpretations for the statements
in Theorem 1. To avoid an overflow of phrases like “let…be” or “If…is fulfilled, then
…,” it is assumed that all objects are used as stated in the theorem and that statement 1.
is fulfilled.

The first part of statement 2. was added to avoid confusion over the choice of
{π j }J⊆I2 . However, as a direct consequence of F̄ having a well-defined representation

as in Eq. (6), it is mathematically redundant. The function G
{πJ }J⊆I2
I1,I2

in Eq. (8) has the
interpretation of

G
{πJ }J⊆I2
I1,I2

(s, t) = P (τi ∈ [t, s) ∀i ∈ I2 | τi > s ∀i ∈ I1) .

As it is well-known, see e.g. Schweizer and Sklar (1983), a multivariate function
F : Rd → [0, 1] is a distribution function if and only if it fulfills the three conditions
of “having”margins, groundedness, and non-negative F-volume for all d-boxes (a, b],
a < b. The last property guarantees, that all (d-dimensional) rectangles have a non-
negative probability, which can be represented with F using the principle of inclusion
and exclusion. Particularly, the property reads

∑

c∈×d
i=1{ai ,bi }

(−1)|ai=ci |F(c) ≥ 0.

Moreover, using the principle of inclusion and exclusion, it follows that a function
F̄ is a (multivariate) survival function if the corresponding (hypothetical) distribution
function, which is defined by

F(x) = 1+
∑

∅�=I⊆[d]
(−1)|I | F̄

(
∑

i∈I

xi �ei

)

,

is a proper multivariate distribution function. In that spirit, the second part of state-
ment 2. has the interpretation of an “F̄-volume”-condition. Due to the specific form
of the survival function, however, it suffices that the F̄-volumes of some special sets
are non-negative. For the exchangeable case, this aspect was further investigated in
Schenk (2016), where an alternative proof of “statement 1.⇔ statement 2.” was shown
on the copula-level: Each rectangle with non-increasing lower boundaries admits a
partition into so called d-boxes of the form ×m−1

i=1 (ti , si ] × (t, s]d−m+1 such that
t1 ≥ · · · ≥ tm−1 ≥ t and tm−1 ≥ s. The special form of the representation in Eq.
(6) allows to expand each F̄-volume of a d-box into the product of the F̄-volume
of×m−1

i=1 (ti , si ] × Rd−m+1+ and G I1,I2(s, t), where I1 and I2 are arbitrary sets with
cardinality m − 1 and d − m + 1,4 respectively:

P(τπ(i) ∈ (ti , si ] ∀i ∈ [m − 1], τπ(i) ∈ (t, s] ∀i ≥ m)

= P(τπ(i) ∈ (ti , si ] ∀i ∈ [m − 1]) · Gπ([m−1]),[d]\π([m−1])(s, t).

4 This reflects the exchangeability of F̄ , which is assumed here.
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(A)
(c)

(B)

Fig. 1 The reduced set of “test-rectangles” for d = 2, which have to be tested for non-negative “2-volume”
to verify the validity of a survival function. The three graphs display the three cases,which can be generalized
to higher dimensions: a squares, which are split in half by the diagonal, b infinitely expanding rectangles
which touch one axis, and c infinitely expanding rectangles which touch the diagonal in one point

Hence, the question of non-negative F̄-volume can be reduced inductively to state-
ment 2. For the bivariate case, the remaining sets, which have to be tested for
non-negativity, are sketched in Fig. 1. The last part in statement 2. merely reflects
the choice of possible shock-distributions, i.e. the class Ḡ.

Evidently, the statements 3. and 4. are closely linked, as the latter is a special case
of the former. The last statement contains the formula, how the survival functions of
the original shocks can be retrieved from the multivariate survival function of a GMO
distribution. Hence, the implication “statement 4.⇒ statement 1.” can be paraphrased
as:

If the formula in Eq. (10), for retrieving the survival functions of the shocks, yields
admissible survival functions of class Ḡ, then F̄ is the survival function of an ESM

with shock survival functions S̄I .

The interpretation of the third statement is a little bit more involved. Given a d-
variate model for an ESM and a resulting random vector τ , an important observation,
which follows directly from the construction via themin-operator, is that (multivariate)
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938 M. Scherer, H. Sloot

margins of τ have a shock model representation, too. Note, that the survival functions
of the shocks, corresponding to the marginal model are different, but can be inferred,
from those of the full (d-variate) model. To see this, let ∅ �= K � [d] be a proper
subset of [d], preferably with a cardinality bigger than one. Then

τi = min {min {SJ : J ∩ K = I } : i ∈ I ⊆ K } , i ∈ K .

A calculation, which is very similar to the one used to prove that “statement 4. ⇒
statement 1.”, yields that

S̄I1,I2(t) =
∏

K⊆{1,...,d}\(I1∪I2)

S̄I2∪K (t),

which is the survival function of min{SJ : J ∩ (I1 ∪ I2) = I2}. Hence, statement 3.
requires that statement 4. is fulfilled for every (theoretical) marginal model.

3 Applications and outlook

An additive subordinator is a stochastic process � = {�(t)}t≥0 on the non-negative
real line [0,∞], which starts at zero, is stochastically continuous, càdlàg, and has
independent non-negative increments.5 Note that this implies that � has a.s. non-
decreasing path. It can be shown, see Mai et al. (2016), that the distribution of an
additive subordinator � can uniquely be identified with a family of Bernstein func-
tions6 {ψt (x)}t≥0 via ψt (x) = − logE[exp{−x�(t)}] and it holds that

(1) ψ0(x) = δ0(x), where δ0 is the Dirac-measure in zero,
(2) x 	→ (ψs(x)− ψt (x)) is a Bernstein function for all s > t ≥ 0,
(3) t 	→ ψt (x) is continuous for all x ≥ 0.

It was shown in Mai et al. (2016) that the random vector τ belongs to the class
of exchangeable generalized Marshall–Olkin distributions which have a stochastic
representation as an exchangeable exogenous shock model, where

τi := inf {t > 0 : �i (t) > Ei } , i ∈ [d], (11)

�i ≡ � is an additive subordinator, and {Ei }i∈[d] are iid unit exponential random
variables independent of �. Furthmore, if ψt (x) = − logE[exp{−x�(t)}], it holds
for t ≥ 0 and π ∈ Sd with tπ(1) ≥ · · · ≥ tπ(d) that

P (τ > t) =
d∏

i=1
exp

{− (ψtπ(i) (i)− ψtπ(i) (i − 1)
)}

. (12)

5 If � has also stationary increments, it is called a Lévy subordinator.
6 A Bernstein function is a non-negative, infinitely often differentiable functionψ : [0,∞)→ [0,∞)with
(−1)n+1ψ(n) ≥ 0. Standard literature, see, e.g., Berg et al. (1984), Schilling et al. (2012), states that the class
of Bernstein functions is represented as {x 	→ a1(0,∞)(x)+ bx + ∫0,∞(1− exp{−xs})ν(ds) : a, b ≥ 0, ν
is a Lévy-measure}.
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This model is called exchangeable additive frailty model (exAFM) and Theorem
1, or its exchangeable version in Mai et al. (2016), implies that τ has an alternative
representation as an exchangeable exogenous shock model. The exAFM can be gen-
eralized to produce non-exchangeable random vectors as the following factor model
construction shows: Assume that τ is defined by Eq. (11), where�i are additive subor-
dinators from the convex conewhich is spanned by independent additive subordinators
ϒ(1), . . . , ϒ(n) (independent of E1, . . . , Ed ), i.e.

�i (t) = θ ′i ϒ, i ∈ [d],

for some n ∈ N and θ i ∈ [0,∞)n\{0}, i ∈ [d]. Let ψ
(k)
t (x)= − logE[exp{−xϒ(k)

(t)}], t ≥ 0. A straightforward calculation, similar to the one in Mai et al. (2016,
Prop. 3.1), shows that for π ∈ Sd with tπ(1) ≥ · · · ≥ tπ(d)

P (τ > t) =
d∏

i=1

n∏

k=1
exp

⎧
⎨

⎩
−
⎡

⎣ψ
(k)
tπ(i)

⎛

⎝
i∑

j=1

π(i),k

⎞

⎠ −ψ
(k)
tπ(i)

⎛

⎝
i−1∑

j=1

π(i),k

⎞

⎠

⎤

⎦

⎫
⎬

⎭
,

(13)

where 
 = (θ1, . . . , θn)′.
This model can be used to define hierarchical models similar to those introduced in

Mai (2014). The same model is also described in Sun et al. (2017, Ex. 2). This article
also discusses applications to portfolio credit risk. It follows with Theorem 1 that τ

has a generalized Marshall–Olkin distribution, i.e. it has an alternative stochastic rep-
resentation as an exogenous shockmodel and the shock distributions can be calculated
from the Bernstein functions using the discrete difference operator: Let s > t ≥ 0 and
∅ �= I ⊆ [d] with I = {i1, . . . , i|I |}; then the shock survival function S̄I fulfills

S̄I (s)

S̄I (t)
= exp

{

(−1)|I |
n∑

k=1
�
i|I |,k . . . �
i1,k

(
ψ(k)

s − ψ
(k)
t

)
⎛

⎝
∑

j∈[d]\I

 j,k

⎞

⎠

⎫
⎬

⎭
.

(14)

This connection between the (hierarchical) additive frailtymodel and exogenous shock
models can be used in multiple ways, e.g., as shown in the following to calculate joint
failure probabilities via numerical integration: Let (t, x) 	→ ψ

(k)
t (x) be differentiable

w.r.t. t and their partial derivatives w.r.t. t be continuous in x and t . Then

P (τ1 = · · · = τd) = P
(

Z[d] < min
∅�=I�[d]

Z I

)

= E
[

P
(

Z[d] < min
∅�=I�[d]

Z I
∣
∣Z[d]

)]

=
∫ ∞

0
F̄(z) · −

∂
∂z S̄[d](z)
S̄[d](z)

d z
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=
∫ ∞

0
exp

⎧
⎨

⎩
−

n∑

k=1
ψ(k)

z

⎛

⎝
d∑

j=1

 jk

⎞

⎠

⎫
⎬

⎭

×
[

(−1)d+1 ∂

∂z

n∑

k=1
�
1,k . . . �
d,k ψ

(k)
z (0)

]

d z, (15)

where {Z I : ∅ �= i ⊆ [d]} are independent shocks of a corresponding exogenous shock
model and the last step follows with Eqs. (13) and (14). One can also use integration
by parts to show that

P (τ1 = · · · = τd)

= F̄(z) · [− log S[d](z)
] ∣∣
∣
∞
0︸ ︷︷ ︸

()=0

+
∫ ∞

0

[
∂

∂z
F̄(z)

]

· log S̄[d](z) d z

=
∫ ∞

0

⎡

⎣
∂

∂z

n∑

k=1
ψ(k)

z

⎛

⎝
d∑

j=1

 jk

⎞

⎠

⎤

⎦ exp

⎧
⎨

⎩
−

n∑

k=1
ψ(k)

z

⎛

⎝
d∑

j=1

 jk

⎞

⎠

⎫
⎬

⎭

×
[

(−1)d+1
n∑

k=1
�
1,k . . . �
d,k ψ

(k)
z (0)

]

d z,

(16)

where () follows with limx→∞ x e−x = 0 and from Eqs. (13) and (14) as well as the
Bernstein property of the functions ψ(k), as these imply for k ∈ [n]

[
(−1)d+1�
1,k . . . �
d,k ψz(0)

]

= (−1)d+1�
1,k . . . �
d−1,k ψz(
d,k)
︸ ︷︷ ︸

≤0
+(−1)d�
1,k . . . �
d−1,k ψz(0)

≤ (−1)d�
1,k . . . �
d−1,k ψz(0) ≤ · · · ≤ �
1,k ψz(0) ≤ ψz
(

1,k

)

≤ ψz

⎛

⎝
d∑

j=1

 j,k

⎞

⎠ .

Note that in case the underlying model is exchangeable and the subordinator is a Lévy
subordinator with ψt ≡ tψ(1)

1 and � = �1, then

P (τ1 = · · · = τd)
Eq. (15)=

∫ ∞

0
e−zψ(d) ·

[
(−1)d+1 �d ψ(0)

]
d z

Eq. (16)=
∫ ∞

0
ψ(d) · e−zψ(d) ·

[
(−1)d+1 z �dψ(d)

]
d z

= (−1)d+1�dψ(0)

ψ(d)
=
∑d

i=0
(d

i

)
(−1)i+1ψ(i)

ψ(d)
.
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Equations (13) and (14) have been tested with a simple implementation for the case
that n = 1, 
 = 1, and ψ = ψ(1) is the Bernstein function of a compound Poisson
subordinator with exponentially distributed jumps, i.e.ψt (x) = μxt+βt ·(1−η/(x+
η)) for (μ, β, η) � 0, where exact formulas of the “combined death”-probability are
known, see Mai (2010, p. 111sq.). The three parameter combinations from Mai and
Scherer (2017, Fig. 3.6, p. 156sq.)7 were used and showed similar results: The exact
formula as well as the formula from Eq. (16) perform equally well up to d ≈ 50 and
the formula from Eq. (15) performs well up to d ≈ 25. The breakdown, which can be
detected using the monotonicity properties of the Bernstein function ψ , is due to loss
of significant digits in the numerical calculation of the discrete differences. Moreover,
for small d the numerical integration formula outperforms a Monte-Carlo estimation
of the probabilities w.r.t. error-size as well as runtime.

In case that n = 1 and 
 = 1, i.e. if the model is exchangeable, and � = ϒ(1)

is a Lévy subordinator, the model can be (uniquely) linked to so called regenerative
composition structures, see Gnedin and Pitman (2005).8 In that case, the correspond-
ing shock model is a classical Marshall–Olkin model and the decrement matrix of
the corresponding regenerative composition model can be expressed in terms of the
exponential rates of the exchangeable MO-distribution {λ(n)

m , 1 ≤ m ≤ n}, i.e.

q(n : m) = P
(

min∅�=I⊆[d]:|I |=m
Z (n)

I < min∅�=I⊆[d]:|I |�=m
Z (n)

I

)

=
(n

m

)
λ

(n)
m

∑n
k=1

(n
k

)
λ

(n)
k

,

where {Z (n)
I }∅�=I⊆[d] are independend exponential random variables with rates λ

(n)
I ≡

λ
(n)
|I | and

λ(n)
m =

m∑

j=0
(−1) j+1

(
m

j

)

ψ(n − m + j), 1 ≤ m ≤ n.

Theorem 1 can subsequently be used to extend some results from Gnedin and Pitman
(2005) for composition structures which fulfill a suitably relaxed notion of regener-
ativity such that the stochastic process representation uses an additive subordinator
instead of a Lévy subordinator.

4 Conclusion

The survival functions of ESM distributions are the product of their ordered and indi-
vidually transformed arguments. The transformations gπ

i are order-dependent if the
ESM distribution is not exchangeable. Conversely, if a function of that form is a con-
tinuous multivariate survival function, the distribution has a stochastic representation

7 These are (0.2995, 1.401, 1), (0.2, 2.4, 2), and (0.0151, 0.994749, 0.01).
8 For a definition of (regenerative) composition structures and an introduction of the notation which is used
hereinafter, the interested reader is referred to Gnedin and Pitman (2005).
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as an exogenous shock model. Formulas for retrieving the shock survival functions
from the transformations gπ

i are given explicitly. Furthermore, the special form of

F̄(t) =∏d
i=1 gπ

i (tπ(i)) implies a simplified d-volume condition. The attained results
generalize the findings from Mai et al. (2016) for the exchangeable subclass.
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A Proof of Theorem 1

The theorem will be proven in four steps. Particularly, it is shown that 3. ⇒ 4. ⇒
1.⇒ 2.⇒ 3. Proofs of used auxiliary results are deferred to “Appendix B”.

Remark 1 Under the assumptions of Theorem 1, particularly the representation of F̄
in Eq. (6), the expression

gπ
i (t) =

∏i
j=1 gπ

j (t)
∏i−1

j=1 gπ
j (t)

is invariant for different permutations with coinciding images of [i − 1] and i . If the
first statement of the theorem is fulfilled, then gπ

i has the interpretation of a conditional
probability, i.e.

gπ
i (t) = P

(
τπ(i) > t | τπ([i−1]) > t

)
.

Hence, the function gπ
i only depends on π([i − 1]) and π(i) and it is justified to work

with g̃π([i]),π(i).

Proof of 3. ⇒ 4. First observe that 4. is a special case of 3., hence 3. ⇒ 4. follows
directly. ��
Proof of 4. ⇒ 1. Let 4. from Theorem 1 be fulfilled and define for independent
random variables Z I ∼ S̄I , ∅ �= I ⊆ [d], the random vector τ by

τi := min {Z I : i ∈ I } , i ∈ [d].

For t ≥ 0 and π ∈ Sd with tπ(1) ≥ · · · ≥ tπ(d), using the independence of the shock
variables and reordering the factors, it holds that

P (τ > t) =
∏

∅�=I⊆[d]
P
(

Z I > max
i∈I

ti

)

=
d∏

i=1

⎛

⎜
⎜
⎝

∏

I⊆π({i,i+1,...,d})
π(i)∈I

P
(
Z I > tπ(i)

)

⎞

⎟
⎟
⎠.
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For i ∈ [d] and π(i) ∈ I ⊆ π({i, . . . , d}), by assumption, the survival function
S̄I ≡ S̄π(i)

I has a representation as in Eq. (10) with m = π(i) and

∏

I⊆π({i,i+1,...,d})
π(i)∈I

P
(
Z I > tπ(i)

) =
∏

I⊆π({i,i+1,...,d})
π(i)∈I

⎛

⎜
⎜
⎝

∏

J⊆I
π(i)∈J

(
g̃ J∪([d]\I ),π(i) (tπ(i)

))(−1)|J |−1
⎞

⎟
⎟
⎠.

Fix K ⊆ [d] with π ([i]) ⊆ K ; then i ≤ |K | = k ≤ d and 1 ≤ j ≤ k − i + 1. The
expression g̃K ,π(i)(tπ(i)) with an exponent of (−1) j−1 appears

(k−i
j−1
)
times, as there

are exactly
(k−i

j−1
)
possible choices for J with π(i) ∈ J ⊆ K\π([i − 1]). Hence, the

overall exponent of the expression g̃K ,π(i)(tπ(i)) is

k−i+1∑

j=1
(−1) j−1

(
k − i

j − 1

)

=
k−i∑

j=0
(−1) j

(
k − i

j

)

= (1− 1)k−i =
{
1, k = i

0, k > i,

where the latter expression follows with the binomial formula. Finally, it follows that

P (τ > t) =
d∏

i=1
g̃π([i]),π(i) (tπ(i)

) =
d∏

i=1
gπ

i

(
tπ(i)

)
.

��
In the following, I1, I2, {πJ }J⊆I2 , s and t (or a subset of these elements) fulfill the

usual conditions if

1. s > t ≥ 0,
2. I1, I2 ⊆ [d] with I1 ∩ I2 = ∅ and I2 �= ∅,
3. for J ⊆ I2 one has

(a) πJ ({1, . . . , |I1|}) = I1 (if I1 �= ∅),
(b) πJ ({|I1| + 1, . . . , |I1 ∪ J |}) = J ,
(c) πJ ({|I1 ∪ J | + 1, . . . , |I2|}) = I2\J .

If only a specific permutation π is used, it is assumed that it fulfills this property for
J = I2.
Proof of 1. ⇒ 2. Let 1. in Theorem 1 be fulfilled and let I1, I2, {πJ }J⊆I2 , s and t
fulfill the usual conditions. First assume that for arbitrary π ∈ Sd and i ∈ [d] the
functions gπ

i are strictly positive on R+. Then

G
{πJ }J⊆I2
I1,I2

(s, t) =
∑

J⊆I2 (−1)|J |∏|I1∪J |
j=1 gπJ

j (s)
∏|I2\J |

j=1 gπJ|I1∪J |+ j (t)
∏|I1|

j=1 gπ∅
j (s)

, (17)
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944 M. Scherer, H. Sloot

where it is used that by 1. the diagonal of marginal survival functions of τ I1 can be
represented with every π fulfilling π({1, . . . , |I1|}) = I1. Particularly, it holds that

P (τi > s, i ∈ I1) =
|I1|∏

j=1
g

πJ1
j (s) =

|I1|∏

j=1
g

πJ2
j (s), J1, J2 ⊆ I2, s ≥ 0.

Subsequently, the numerator of Eq. (17) can be rewritten using the principle of inclu-
sion and exclusion as

|I2|∑

i=0
(−1)i

∑

J⊆I2:|J |=i

|J∪I1|∏

j=1
gπJ

j (s)
|I2\J |∏

j=1
gπJ|I1∪J |+ j (t)

= P
(

AI1,I2
∅

)
−
|I2|∑

i=1
(−1)i+1 ∑

J⊆I2:|J |=i

P

⎛

⎝
⋂

j∈J

AI1,I2
j

⎞

⎠

= P
(

AI1,I2
∅

)
− P

⎛

⎝
⋃

i∈I2

AI1,I2
i

⎞

⎠ = P
(

AI1,I2
)

,

where

AI1,I2 := {τi > s ∀i ∈ I1, τi ∈ (t, s] ∀i ∈ I2} ,
AI1,I2
∅ := {τi > s ∀i ∈ I1, τi > t ∀i ∈ I2} , and

AI1,I2
i :=

⎛

⎝
⋂

j∈I1∪{i}
{τ j > s}

⎞

⎠ ∩
⎛

⎝
⋂

j∈I2\{i}
{τ j > t}

⎞

⎠ , i ∈ I2.

It follows that

G
{πJ }J⊆I2
I1,I2

(s, t) = P (τi ∈ (t, s] ∀i ∈ I2 | τi > s ∀i ∈ I1)

and subsequently that G
{πJ }J⊆I2
I1,I2

(s, t) is non-negative and does not depend on the

specific choice of {πJ }J⊆I2 .
9

Now, by induction over i , the strict positivity, continuity, and non-increasingness of
gπ

i is proven for all π ∈ Sd . This implies that G I1,I2(s, t) is continuous in s and t . For
i = 1 and π ∈ Sd , the assumptions of Theorem 1 imply that gπ

1 is strictly positive,
continuous, and non-increasing. Let the claim be fulfilled for j < i , i.e. gπ

j is strictly
positive, continuous, and non-increasing for j ≤ i − 1 and π ∈ Sd .

9 The independence of the specific choice of {πJ }J⊆I2 can also be derived without resorting to the prob-
abilistic interpretation by using the assumption that F̄ has a well-defined representation as in Eq. (6).
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Exogenous shock models: analytical characterization and… 945

Right-continuity and left-limits It is well known, see, e.g., Schweizer and Sklar
(1983, Chp. 6), that copulae are Lipschitz-continuous with constant one. Hence, by
exploiting the copula/survival function decomposition, it holds that

∣
∣F̄(s1, . . . , sd)− F̄(t1, . . . , td)

∣
∣ ≤

d∑

i=1

∣
∣F̄i (si )− F̄i (ti )

∣
∣, ∀t, s ≥ 0

and right-continuity as well as left-limits of F̄ are inherited from the margins. For
π ∈ Sd the survival function t 	→ P

(
min j≤i τπ( j) > t

)
is right-continuous with

left-limits and with

gπ
i (t) =

∏i
j=1 gπ

j (t)
∏i−1

j=1 gπ
j (t)

= P
(
min j≤i τπ( j) > t

)

∏i−1
j=1 gπ

j (t)
,

right-continuity with left-limits for gπ
i follows with the induction hypothesis.

Non-increasingness For π ∈ Sd and s ≥ t ≥ 0 define the vector u(s, t) by

uπ( j)(s, t) :=

⎧
⎪⎨

⎪⎩

s, ∀ j < i,

t, j = i,

0, ∀ j > i .

Then, by monotonicity of the measure P, one has

P (τ > u(s, s)) ≤ P (τ > u(s, t))

⇔ gπ
i (s)

i−1∏

j=1
gπ

j (s) ≤ gπ
i (t)

i−1∏

j=1
gπ

j (s)

⇔ gπ
i (s) ≤ gπ

i (t),

where the induction hypothesis, i.e. gπ
j is strictly positive for all j < i , is used.

Strict positivity Assume for π ∈ Sd that there exists a finite upper bound s for strict
positivity of gπ

i , i.e. s
 := inf {u > 0 : gπ

i (u) = 0} <∞, and as gπ
i is right-continuous

and non-increasing we have that gπ
i (s) = 0. For t < s, let I1 = π ({1, . . . , i − 2})

and I2 = π({i − 1, i}). Furthermore, let π̃ be the permutation which switches the
positions of i − 1 and i in π , i.e. π̃ = π(i − 1, i). Assume w.l.o.g. that s ≤ u for
u := inf {u > 0 : gπ̃

i (u) = 0} ∈ R̄+ (else switch the roles of π and π̃ and prove the
contradiction for π̃ first). Then, with the induction hypothesis it holds that gπ

j , gπ̃
j >

0 ∀ j < i and, for π∅ ∈ {π, π̃}, that
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946 M. Scherer, H. Sloot

0
IH≤ G I1,I2(s

, t) =
i∏

j=i−1
gπ∅

j (t)− gπ
i−1(s

)gπ
i (t)− gπ̃

i−1(s
)gπ̃

i (t)+
i∏

j=i−1
gπ

j (s)

= gπ∅
i−1(t)g

π∅
i (t)− gπ

i−1(s
)gπ

i (t)− gπ̃
i−1(s

)gπ̃
i (t)

=
{(

gπ
i−1(t)− gπ

i−1(s)
)

gπ
i (t)− gπ̃

i−1(s)gπ̃
i (t), π∅ = π

(
gπ̃

i−1(t)− gπ̃
i−1(s)

)
gπ̃

i (t)− gπ
i−1(s)gπ

i (t), π∅ = π̃ .
(18)

The last expression in Eq. (18) becomes negative if t is sufficiently close to s:

1. If u > s, choose π∅ = π . Then for t ↗ s Eq. (18) approaches
−gπ̃

i−1(s)gπ̃
i (s−).

As gπ̃
i−1(s) > 0 by the induction hypothesis and gπ̃

i (t) > 0 ∀t < u with s < u

by the assumption made above it holds that

0 ≤ −gπ̃
i−1(s

)gπ̃
i (s−) < 0.

2. If s = u and gπ∅
i (s−) > gπ∅

i (s) = 0 for at least one π∅ ∈ {π, π̃}, then for
t ↗ s Eq. (18) approaches −gπ∅

i−1(s)gπ∅
i (s−).

As gπ∅
i−1(s) > 0 by the induction hypothesis and gπ∅

i (s−) > 0 by the assumption
made above it holds that

0 ≤ −gπ∅
i−1(s

)gπ∅
i (s−) < 0.

3. Otherwise, as gπ∅
j for j ∈ {i − 1, i} have left-limits by the induction hypothesis,

for every sequence tk ↗ s with tk �= s, non-negative sequences {aπ∅
j,k}k∈N with

aπ∅
j,k(s

 − tk)→ 0 for k →∞ can be found s.t.

gπ∅
j (tk) = gπ∅

j (s−)+ aπ∅
j,k(s

 − tk), j ∈ {i − 1, i}, k ∈ N.

By the assumption on s, it holds that aπ∅
i,k > 0 for all k ∈ N and π∅ ∈ {π, π̃}. If

s = u and gπ∅
i (s−) = gπ∅

i (s) = 0 for all π∅ ∈ {π, π̃}, it follows from Eq.
(18) and (left-)continuity of gπ∅

i−1 that

0 ≤
{

aπ
i−1,kaπ

i,k(s
 − tk)2 − gπ̃

i−1(s)aπ̃
i,k(s

 − tk), π∅ = π

aπ̃
i−1,kaπ̃

i,k(s
 − tk)2 − gπ

i−1(s)aπ
i,k(s

 − tk), π∅ = π̃

or equivalently

0 ≤

⎧
⎪⎨

⎪⎩

aπ
i−1,k(s − tk)

aπ
i,k

aπ̃
i,k
− gπ̃

i−1(s), π∅ = π

aπ̃
i−1,k(s − tk)

aπ̃
i,k

aπ
i,k
− gπ

i−1(s), π∅ = π̃ .
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Now choose k sufficiently large and π∅ s.t. the fraction appearing in the upper
equation is smaller or equal to 1, then

0 ≤
{

aπ
i−1,k(s − tk)− gπ̃

i−1(s), aπ
i,k ≤ aπ̃

i,k

aπ̃
i−1,k(s − tk)− gπ

i−1(s), aπ
i,k > aπ̃

i,k

< 0,

where it is used that the respective first summand converges for k →∞ to 0 and the
last summand is negative. Hence, a contradiction is found for each case and therefore
gπ

i (t) > 0 ∀t ∈ R+.

Left-continuity Let I1 and I2 as well as π , π̃ , and π∅ be as above. Then, for all
s > t ≥ 0 the function

P (τi ∈ (t, s], i ∈ I2 | τi > s, i ∈ I1) = G I1,I2(s, t)

has left-limits in t . Assume that there exists s† ∈ R×+ with gπ
i (s†−) > gπ

i (s†), then

0
IH≤ lim

t↗s†
G I1,I2(s

†, t)

= lim
t↗s†

⎛

⎝
i∏

j=i−1
gπ∅

j (t)− gπ
i−1(s

†)gπ
i (t)− gπ̃

i−1(s
†)gπ̃

i (t)+
i∏

j=i−1
gπ

j (s†)

⎞

⎠

π∅=π̃ ,()=
(

gπ
i (s†)− gπ

i (s†−)
)

gπ
i−1(s

†) < 0,

where it is used in (), that the first and third summand cancel out, when using that
gπ̃

i−1 is continuous under the induction hypothesis. This is a contradiction—hence gπ
i

is left-continuous. ��
Remark 2 The induction in the second part of the proof can be performed on the basis
of statement 2. (instead of 1.) from Theorem 1 if the parts on right-continuity with
left-limits and non-increasingness are replaced by the following lemma (as they rely
on the survival function assumption of 1.). In particular, 2. implies gπ

i ∈ Ḡ for all
i ∈ [d], π ∈ Sd .

Lemma 1 Let 2. from Theorem 1 be fulfilled and gπ
j be right-continuous with left-

limits, non-increasing, and strictly positive for all j ≤ i − 1 and π ∈ Sd . Then gπ
i is

right-continuous with left-limits and non-increasing for all π ∈ Sd .

Lemma 2 Assume that statement 2. of Theorem 1 is fulfilled and let I1 and I2 fulfill
the usual conditions. Then for each m ∈ I2, S̄m

I1,I2
is an R+-valued, positive, and

continuous function on R+. Furthermore, S̄m
I1,I2

does not depend on m ∈ I2, i.e.

S̄m1
I1,I2

(t) = S̄m2
I1,I2

(t), ∀t ≥ 0, m1, m2 ∈ I2. (19)
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948 M. Scherer, H. Sloot

Lemma 3 Let I1 and I2 fulfill the usual conditions and assume that S̄m1
I1∪I2\J ,J =

S̄m2
I1∪(I2\J ),J ∈ Ḡ for all ∅ �= J ⊆ I2 and m1, m2 ∈ J . Then for s > t ≥ 0

G I1,I2(s, t) = P
(
τ̌i ∈ (t, s] ∀i ∈ I2

)
,

where

τ̌i := min
{

Ž J : i ∈ J ⊆ I2
}
, i ∈ [d]

with independent random shocks Ž J ∼ S̄I1∪I2\J ,J for ∅ �= J ⊆ I2.

The essence of the previous Lemma is the following: Let I1 and I2 fulfill the usual
conditions, Z I ∼ S̄I ∈ Ḡ, ∅ �= I ⊆ [d], τ be defined as in Eq. (1), and τ̌ ∈ R|I2|+ be
defined by

τ̌i := min {min {Z J : J ∩ (I1 ∪ I2) = I } : i ∈ I ⊆ I2} .

Then

P (τi ∈ (t, s] ∀i ∈ I2 | τi > s ∀i ∈ I1) = P
(
τ̌i ∈ (t, s] ∀i ∈ I2

)
, ∀s > t ≥ 0.

Lemma 4 Let I1 and I2 fulfill the usual conditions. Then, for a specific family of

permutions, {πJ }J⊆I2 , the function G
{πJ }J⊆I2
I1,I2

depends on gπJ
i , |I1|+1 ≤ i ≤ |I1∪ I2|,

J ⊆ I2. Therefore, write

G
{πJ }J⊆I2
I1,I2

≡ G

{
g

πJ|I1|+1,g
πJ|I1|+2,...,g

πJ|I1∪I2 |
}

J⊆I2
I1,I2

.

Assume that gπJ
i , |I1| + 1 ≤ i ≤ |I1 ∪ I2|, J ⊆ I2 are positive. Then it holds for all

s ≥ t ≥ 0 that

G

{
g

πJ|I1|+1,...,g
πJ|I1∪I2 |

}

J⊆I2
I1,I2

(s, t) = ĝπ∅
|I1|+1(t) · g

π∅
|I1|+2(t) · · · · · g

π∅
|I1∪I2|(t)

×
(

gπ∅
|I1|+1(t)

ĝπ∅
|I1|+1(t)

− gπ∅
|I1|+1(s)

ĝπ∅
|I1|+1(s)

)

+ gπ∅
|I1|+1(s)

ĝπ∅
|I1|+1(s)

× G

{
ĝ

πJ|I1|+1,g
πJ|I1|+2,...,g

πJ|I1∪I2 |
}

J⊆I2
I1,I2

(s, t)

(20)

for an arbitrary function ĝπ∅
|I1|+1 which is positive on R+, where

ĝπJ|I1|+1(s) :=
gπJ|I1|+1(s)
gπ∅
|I1|+1(s)

ĝπ∅
|I1|+1(s), J ⊆ I2, s ≥ 0,

which are by definition positive functions on R+.
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Lemma 5 For k ∈ N0, j ≥ 2, let the functions F̄1,k, . . . , F̄j,k : [0,∞) → (0, 1]
as well as F̄1,k+1, . . . , F̄j−1,k+1 : [0,∞) → (0, 1] be non-increasing with F̄l,k =

F̄l−1,k
F̄l−1,k+1

for l ∈ {2, . . . , j}. Then it holds that for s ≥ t ≥ 0

0 ≤ F̄j,k(t)− F̄j,k(s) ≤
⎛

⎝
j−1∏

l=1

1

F̄l,k+1(s)

⎞

⎠ · (F̄1,k(t)− F̄1,k(s)
)
.

Proof of 2. ⇒ 3. Let statement 2. in Theorem 1 be fulfilled, then due to Remark 2,
Lemmas 1 and 2:

– For i = 1, . . . , d and π ∈ Sd , it holds that gπ
i ∈ Ḡ.

– For I1 and I2 fulfilling the usual conditions and m ∈ I2, the function S̄m
I1,I2

is
well-defined as well as positive and continuous. Moreover, it does not depend on
the specific m ∈ I2 chosen, hence write S̄I1,I2 .

It is left to prove that S̄I1,I2 is non-increasing for all I1, I2 fulfilling the usual conditions.
The claim is proven by induction over |I2|. For I2 = {m}, let I1 and I2 fulfill the

usual conditions, then S̄I1,I2 = g̃ I1∪I2,m ∈ Ḡ. Now let p > 1 and assume that for all I1
and I2 fulfilling the usual conditions with |I2| < p it holds that S̄I1,I2 ∈ Ḡ. Let I1, I2,
{πJ }J⊆I2 , s, and t fulfill the usual conditions and |I2| = p and define the function
ĝπ∅
|I1|+1 := gπ∅

|I1|+1/S̄I1,I2 , which is continuous and positive. With Lemma 4 it follows
that

0 ≤ G

{
g

πJ|I1|+1,g
πJ|I1|+2,...,g

πJ|I1∪I2 |
}

J∈I2
I1,I2

(s, t)

= ĝπ∅
|I1|+1(t)g

π∅
|I1|+2(t) · · · · · g

π∅
|I1∪I2|(t) ·

(
S̄I1,I2(t)− S̄I1,I2(s)

)+ S̄I1,I2(s)

× G

{
ĝ

πJ|I1|+1,g
πJ|I1|+2,...,g

πJ|I1∪I2 |
}

J∈I2
I1,I2

(s, t),

(21)

where ĝπJ|I1|+1 := gπJ|I1|+1/S̄I1,I2 for J ⊆ I2.
In light of Lemma 3, it makes sense to derive an exogenous shock model from

{
ĝπJ|I1|+1, gπJ|I1|+2, . . . , gπJ|I1∪I2|

}

J∈I2
.

Hence one has to check, that for ∅ �= J ⊆ I2 if
¯̂SI1∪I2\J ,J ∈ Ḡ. Note that

¯̂SI1∪I2\J ,J =
{

S̄I1∪I2\J ,J , ∅ �= J � I2
1, J = I2.

As S̄I1∪I2\J ,J ∈ Ḡ by the induction step for ∅ �= J � I2 and
¯̂SI1,I2 ≡ 1 ∈ Ḡ, Lemma

3 can be used. Write for s > t ≥ 0

G

{
ĝ

πJ|I1|+1,g
πJ|I1|+2,...,g

πJ|I1∪I2 |
}

J∈I2
I1,I2

(s, t) = P
(
τ̂i ∈ (t, s] ∀i ∈ I2

)
,
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where

τ̂i := min
{

Ẑ I : i ∈ I ⊆ I2
}
, i ∈ I2

with independent Ẑ I ∼ ŜI1∪I2\I ,I for ∅ �= I ⊆ I2. Let s > t ≥ 0 and define

ÂI1,I2 :=
{
τ̂i ∈ (t, s] ∀i ∈ I2

}
.

Since Ẑ I2 = ∞, there are at least two different sets ∅ �= I , J � I2 for which the
respective shocks Ẑ I , Ẑ J are minimal for one of their components. Moreover, this
implies

ÂI1,I2 ⊆
⋃

∅�=I ,J�I2:I �=J

{
t < Ẑ I , Ẑ J ≤ s

}
.

From the sub-additivity of the probability measure P, it follows that

P( ÂI1,I2) = G

{
ĝ

πJ|I1|+1,g
πJ|I1|+2,...,g

πJ|I1∪I2 |
}

J∈I2
I1,I2

(s, t)

≤
∑

∅�=I ,J�I2
I �=J

P
(

t < Ẑ I , Ẑ J ≤ s
)

≤
(
2|I2| − 2

2

)

max∅�=I�I2

(
S̄I1∪I2\I ,I (t)− S̄I1∪I2\I ,I (s)

)2
,

where we used that for ∅ �= I � I2

P
(

t < Ẑ I ≤ s
)
= S̄I1∪I2\I ,I (t)− S̄I1∪I2\I ,I (s).

Note that for ∅ �= J ⊆ I � I2 and m, n ∈ J , m �= n

S̄I1∪(I2\I ),J (t) = S̄m
I1∪(I2\I ),J (t)

=
∏

∅�=L⊆J
m∈L

(
g̃L∪I1∪(I2\I ),m(t)

)(−1)|L|−1

=
∏
∅�=L⊆J\{n}

m∈L

(
g̃L∪I1∪(I2\I ),m(t)

)(−1)|L|−1

∏
∅�=K⊆J\{n}

m∈K

(
g̃K∪{n}∪I1∪(I2\I ),m(t)

)(−1)|K |−1

= S̄m
I1∪(I2\I ),J\{n}(t)

S̄m
I1∪(I2\I )∪{n},J\{n}(t)

= S̄I1∪(I2\I ),J\{n}(t)
S̄I1∪(I2\I )∪{n},J\{n}(t)

.
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Writing b := (2|I2 |−22

)
and using Lemma 5 for ascending sequences ∅ �= J1 � · · · �

J|I | = I ⊆ I2 with |JI | = |I | as well as
1. F̄|Jl |,|I1∪(I2\I )| ≡ S̄I1∪(I2\I ),Jl for l ∈ [|I |] and
2. F̄|Jl |,|I1∪(I2\I )∪(Jl+1\Jl )| ≡ S̄I1∪(I2\I )∪(Jl+1\Jl ),Jl for l ∈ [|I | − 1]

it follows that

P( ÂI1,I2) ≤ b max
∅�=I�I2∅�=J1�···�J|I |

J|I |=I

(
S̄I1∪(I2\I ),J1(t)− S̄I1∪(I2\I ),J1(s)
∏|I |−1

l=1 S̄I1∪(I2\I )∪(Jl+1\Jl ),Jl (s)

)2

= b max
∅�=I�I2∅�=J1�···�J|I |=I
J1={m}

(
g̃ I1∪(I2\I )∪J1,m(t)− g̃ I1∪(I2\I )∪J1,m(s)

∏|I |−1
l=1 S̄I1∪(I2\I )∪(Jl+1\Jl ),Jl (s)

)2

.

Now let ∅ �= I � I2, k = |I1 ∪ (I2\I )|, J1 = {m} and π ∈ Sd be a permutation
fulfilling π ({1, . . . , k}) = I1∪(I2\I ), π(k+1) = m. Denote with π̃ the permutation,
which switches the positions of m and π(k), i.e. π̃ = π(k, k + 1). Then

0 ≤ G I1∪(I2\I )\{π(k)},{m,π(k)}(s, t)

=
1∏

j=0
gπ̃

k+ j (t)− gπ
k (s)gπ

k+1(t)− gπ̃
k (s)gπ̃

k+1(t)+
1∏

j=0
gπ

k+ j (s)

= gπ̃
k+1(t)

(
gπ̃

k (t)− gπ̃
k (s)

)
− gπ

k (s)
(
gπ

k+1(t)− gπ
k+1(s)

)
,

which is equivalent to

gπ
k+1(t)− gπ

k+1(s) ≤
gπ̃

k+1(t)
gπ

k (s)

(
gπ̃

k (t)− gπ̃
k (s)

)
.

This yields inductively the following inequality

gπ
k+1(t)− gπ

k+1(s) ≤
k∏

l=1

g̃π({1,...,l})∪{m},m(t)

g̃π({1,...,l}),π(l)(s)
·
(

g̃{m},m(t)− g̃{m},m(s)
)

.

Subsequently,

P( ÂI1,I2) ≤ bpI1,I2(s, t)qI2(s, t)
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with

pI1,I2(s, t) := max
∅�=I�I2∅�=J1�···�J|I |=I

π∈�I1,I2,I
J1={m}

{
1

∏|I |−1
l=1 S̄I1∪(I2\I )∪(Jl+1\Jl ),Jl (s)

×
|I1∪(I2\I )|∏

l=1

g̃π({1,...,l})∪{m},m(t)

g̃π({1,...,l}),π(l)(s)

⎫
⎬

⎭

2

,

where �I1,I2,I is the set of permutations fulfilling the conditions stated above and

qI2(s, t) := max
m∈I2

{
g̃{m},m(t)− g̃{m},m(s)

}2
.

Let s0 ≥ s > t ≥ t0 ≥ 0; the non-increasingness of the involved survival functions
S̄I1∪(I2\I )∪(Jl+1\Jl ),Jl (s), g̃π({[l]})∪{m},m(t), and g̃π({[l]}),π(l)(s) implies

pI1,I2(s, t) ≤ pI1,I2(s0, t0), ∀t < s with t, s ∈ [t0, s0].

Define for s ≥ t ≥ 0

μI2(s, t) =
∑

m∈I2

g̃{m},m(t)− g̃{m},m(s).

As g̃{m},m, m ∈ I2 are non-negative and non-increasing and qI2(s, t) ≥ 0 all sum-
mands are non-negative and

μI2(s, t) ≥ √qI2(s, t) ≥ 0, s ≥ t ≥ 0.

Hence

0 ≤ G

{
ĝ

πJ|I1|+1,g
πJ|I1|+2,...,g

πJ|I1∪I2 |
}

J∈I2
I1,I2

(s, t)

≤ bpI1,I2(s0, t0)qI2(s, t)

≤ bpI1,I2(s0, t0)μI2(s0, t0)
2, ∀t < s with t, s ∈ [t0, s0].

Now, the proof proceeds analogously as for copulas in the exchangeable case (see
Mai et al. 2016, 1296sq.) or bivariate exchangeable case (see Durante et al. 2008, 67).

The function S̄I1,I2 splits in positive and negative powers in the product terms and

123



Exogenous shock models: analytical characterization and… 953

S̄I1,I2(t) =
|I2|∏

i=1

⎛

⎜
⎜
⎝

∏

J⊆I2|J |=i,m∈J

g̃ J∪I1,m(t)

⎞

⎟
⎟
⎠

(−1)i−1

=
∏�(|I2|−1)/2�

i=0
(
∏

J⊆I2|J |=2i+1,m∈J
g̃ J∪I1,m(t)

)

∏�|I2|/2�
i=1

(
∏

J⊆I2|J |=2i,m∈J
g̃ J∪I1,m(t)

)

()≤
∏�(|I2|−1)/2�

i=0
(
∏

J⊆I2|J |=2i+1,m∈J
g̃ J∪I1,m(t0)

)

∏�|I2|/2�
i=1

(
∏

J⊆I2|J |=2i,m∈J
g̃ J∪I1,m(s0)

)

=: pI1,I2
max (s0, t0),

where themonotonicity of g̃ I ,m is used in (). Assume that S̄I1,I2 is not non-increasing,
i.e. there exists s0 > t0 ≥ 0 s.t. S̄I1,I2(s0) > S̄I1,I2(t0).
Case qI1(s0, t0) = 0: From Eq. (21) we get

0 ≤ G

{
g

πJ|I1|+1,g
πJ|I1|+2,...,g

πJ|I1∪I2 |
}

J∈I2
I1,I2

(s0, t0)

= ĝπ∅
|I1|+1(t0)g

π∅
|I1|+2(t0) . . . gπ∅

|I1∪I2|(t0)︸ ︷︷ ︸
>0

(
S̄I1,I2(t0)− S̄I1,I2(s0)

)

︸ ︷︷ ︸
<0

< 0

which is a contradiction.

Case qI1(s0, t0) > 0: Let

a(s0, t0) := S̄I1,I2(s0)− S̄I1,I2(t0)

μI2(s0, t0)
> 0

then we can write

S̄I1,I2(t0)− S̄I1,I2(s0) = −a(s0, t0)μI2(s0, t0).

For all k ≥ 1, one can find sk, tk ∈ [t0, s0] with sk > tk and

μI2(sk, tk) = μI2(s0, t0)

k
(22)

as well as

S̄I1,I2(tk)− S̄I1,I2(sk) ≤ −a(s0, t0)μI2(ss, tk).
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This can be seen by setting t (0,k) := t0, t (k,k) := s0, and

t ( j,k) :=
⎛

⎝
∑

m∈I2

g̃{m},m
⎞

⎠

←
(

x ( j,k)
)

, j ∈ {1, . . . , k − 1},

where← denotes the generalized inverse for non-increasing functions10 and for k ∈
{0, . . . , k}

x ( j,k) := k − j

k

∑

m∈I2

g̃{m},m(t0)+ j

k

∑

m∈I2

g̃{m},m(s0).

As g̃{m},m are continuous and non-decreasing the generalized inverse is a right-
inverse11 and

μI2

(
t ( j,k), t ( j−1,k)

)
=
∑

m∈I2

g̃{m},m
(

t ( j−1,k)
)

︸ ︷︷ ︸
=x ( j−1,k)

−
∑

m∈I2

g̃{m},m
(

t ( j,k)
)

︸ ︷︷ ︸
=x ( j,k)

= 1

k
μI2(s0, t0).

Assume that for all j ∈ {1, . . . , k} the following inequality holds

S̄I1,I2(t
( j−1,k))− S̄I1,I2(t

( j,k)) > −a(s0, t0)μI2(t
( j,k), t ( j−1,k)).

Then,

S̄I1,I2(t0)− S̄I1,I2(s0) =
k∑

j=1
S̄I1,I2(t

( j−1,k))− S̄I1,I2(t
( j,k))

> −a(s0, t0)
k∑

j=1
μI2(t

( j,k), t ( j−1,k)) = −a(s0, t0)μI2(s0, t0),

which is a contradiction. Hence, with tk = t ( j−1,k), sk = t ( j,k) for some j ∈
{1, . . . , k}, Eq. (22) is fulfilled and sk > tk .

Combining Eq. (21) with these results gives for feasible tk , sk (chosen as above)

10 For a non-increasing function f , its generalized inverse is defined by f←(x) := inf{x : f (x) ≤ y} and
for a non-decreasing function f , its generalized inverse is defined by f←(x) := inf{y : f (y) ≥ x}.
11 If g is a continuous and non-increasing function, then g←(x) = (−g)←(−x), where the generalized
inverse on the l.h.s. is for non-increasing and on the r.h.s. for non-decreasing functions. As (−g)← is a
right-inverse of −g, see Embrechts and Hofert (2013, p.425sq., prop. 1 (4)), this implies that g← is a
right-inverse of g.
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0 ≤ G

{
g

πJ|I1|+1,g
πJ|I1|+2,...,g

πJ|I1∪I2 |
}

J∈I2
I1,I2

(sk, tk)

= ĝπ∅
|I1|+1(tk)︸ ︷︷ ︸

=
g
π∅|I1|+1(tk )

S̄I1,I2
(tk )

gπ∅
|I1|+2(tk) · · · · · g

π∅
|I1∪I2|(tk) ·

(
S̄I1,I2(tk)− S̄I1,I2(sk)

)

︸ ︷︷ ︸

≤−a(s0,t0)
μI2

(s0,t0)

k

+ S̄I1,I2(sk)G

{
ĝ

πJ|I1|+1,g
πJ|I1|+2,...,g

πJ|I1∪I2 |
}

J∈I2
I1,I2

(sk, tk)

≤ gπ∅
|I1|+1(s0)

pI1,I2
max (s0, t0)

gπ∅
|I1|+2(s0) · · · · · g

π∅
|I1∪I2|(s0)

×
(

−a(s0, t0)μI2(s0, t0)
1

k

)

+ bpI1,I2
max (s0, t0)pI1,I2(s0, t0)μI2(s0, t0)

2 1

k2
.

In particular, if the latter inequality is multiplied by k and the limit k →∞ is taken,
then

0 ≤ − 1

pI1,I2
max (s0, t0)

︸ ︷︷ ︸
>0

a(s0, t0)︸ ︷︷ ︸
>0

μI1,I2(s0, t0)
︸ ︷︷ ︸

>0

|I2|∏

j=1
gπ∅
|I1|+ j (s0)

︸ ︷︷ ︸
>0

< 0,

which leads to a contradiction. ��

B Proofs of supporting lemmas

Proof of Lemma 1 Let I1, I2, and π fulfill the usual conditions with |I2| = 2 and
|I1| = i − 2 and define π̃ = π(i − 1, i).

Right-continuity Let s + h > s > t ≥ 0. As G I1,I2(s, t) is right-continuous in s it
holds that

0 = lim
h↘0

G I1,I2(s + h, t)− G I1,I2(s, t)
IH= gπ

i−1(s)
︸ ︷︷ ︸

IH
>0

lim
h↘0

(
gπ

i (s + h)− gπ
i (s)

)
,

where it is used that under the induction hypothesis all but two terms cancel out.

Left-limits Let s > s − h > t ≥ 0. As G I1,I2(s, t) and gπ∅
i−1(s), π∅ ∈ {π, π̃} have

left-limits in s and gπ
i−1 is positive by induction hypothesis it follows that gπ

i has
left-limits:
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956 M. Scherer, H. Sloot

lim
h↘0

gπ
i (s − h) = lim

h↘0

(
G I1,I2(s − h, t)− gπ̃

i−1(t)g
π̃
i (t)

gπ
i−1(s − h)

−−gπ
i−1(s − h)gπ

i (t)− gπ̃
i−1(s − h)gπ̃

i (t)

gπ
i−1(s − h)

)

.

Non-increasingness Now, let I1, I2, and π fulfill the usual conditions with I2 =
{π(i)} and I1 = π([i − 1]). As G I1,I2 is non-negative, it holds for all s > t ≥ 0 that

0 ≤ G I1,I2(s, t) = gπ
i (t)− gπ

i (s).

��

Proof of Lemma 2 For π ∈ Sd , due to Remark 2 and Lemma 1, it follows that the
functions gπ

i , i = 1, . . . , d are positive, continuous functions on R+. Hence S̄m
I1,I2

is
an R+-valued, positive, and continuous function for every I1, I2 fulfilling the usual
conditions with m ∈ I2.

In the following, it is proven, by induction over |I2|, that Eq. (19) holds and fur-
thermore, that for all I1 and I2 fulfilling the usual conditions

|I2|∏

i=1
gπ̃
|I1|+i (t) =

|I2|∏

i=1
gπ̂
|I1|+i (t), ∀t ≥ 0 (23)

for all π̃ , π̂ ∈ Sd fulfilling π([|I1|]) = I1 and π([|I1 ∪ I2|]\[|I1|]) = I2 for π ∈
{π̃ , π̂}. For |I2| = 1 both claims are naturally fulfilled. Let both claims be fulfilled for
|I2| < p and let I1, I2 as well as π fulfill the usual conditions with |I2| = p, m ∈ I2
as well as π(|I1| + 1) = m, then for t ≥ 0

∏

∅�=J⊆I2

S̄
π(min j∈J π−1( j))
I1∪(I2\J ),J (t)

()=
|I2|∏

i=1

∏

J⊆π({|I1|+i,...,|I1∪I2|})
π(|I1|+i)∈J

S̄π(|I1|+i)
I1∪(I2\J ),J (t)

=
|I2|∏

i=1

∏

J⊆π({|I1|+i,...,|I1∪I2|})
π(|I1|+i)∈J

×
∏

L⊆J
π(|I1|+i)∈L

(
g̃L∪I1∪(I2\J ),π(|I1|+i)(t)

)(−1)|L|−1
,

where the factors in () are regrouped in a similar sense as for the alternative repre-
sentation for the GMO survival function.

Now for i ∈ [d] fix π({1, . . . , |I1| + i}) ⊆ K ⊆ I1 ∪ I2 and define k = |K | as well
as 1 ≤ l ≤ k − |I1| − i + 1. The expression g̃K ,π(|I1|+i)

k (t) with exponent (−1)l−1
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appears
(k−|I1|−i

l−1
)
times and the overall exponent for g̃K ,π(|I1|+i)

k is

k−i−|I1|+1∑

l=1
(−1)l−1

(
k − i − |I1|

l − 1

)

=
{
1, k = |I1| + i

0, else .

Hence, as it holds for k = |I1| + i that K = π({1, . . . , |I1| + i}) and

∏

∅�=J⊆I2

S̄
π(min j∈J π−1( j))
I1∪(I2\J ),J (t) =

|I2|∏

i=1
gπ
|I1|+i (t)

or equivalently,

S̄m
I1,I2(t) =

∏|I2|
i=1 gπ

|I1|+i (t)
∏
∅�=J�I2 S̄

π(min j∈J π−1( j))
I1∪(I2\J ),J (t)

. (24)

By induction, the factors of the denominator of the r.h.s. in Eq. (24), S̄
π(min j∈J π−1( j))
I1∪(I2\J ),J ,

are independent of π(min j∈J π−1( j)) and subsequently also of m. Moreover, for
arbitrary I1, I2 and {πJ }J⊆I2 fulfilling the usual conditions and s ≥ 0

|I2|∏

j=1
g

πI2|I1|+ j (s) = (−1)|I2|
⎛

⎝G
{πJ }J⊆I2
I1,I2

(s, 0)−
∑

J�I2

(−1)|J |
|J |∏

j=1
gπJ|I1|+ j (s)

⎞

⎠ .

By induction and assumption, the r.h.s. does not depend on the specific family of
permutations, {πJ }J⊆I2 , chosen, therefore Eq. (23) holds for |I2| = p. In conclusion,
the nominator in Eq. (24) does not depend on the specific π , and subsequently m,
chosen and Eq. (19) holds for |I2| = p. ��
Proof of Lemma 3 As in the proof of 4. to 1. one can derive analogously for t ≥ 0
and π ∈ Sd with tπ(1) ≥ · · · ≥ tπ(d) as well as π ({1, . . . , |I1|}) = I1 and
π ({|I1| + 1, . . . , |I1 ∪ I2|}) = I2 that

P
(
τ̌ j > t j ∀ j ∈ I2

) =
|I1∪I2|∏

j=|I1|+1
gπ

j

(
tπ( j)

) =
| Ǐ2|∏

j=1
ǧπ̌

j

(
ťπ̌( j)

)
,

where for Ǐ2 = {1, . . . , |I2|}, π̌ ∈ S|I2| is defined by

π(|I1| + j) = iπ̌( j), ∀ j ∈ Ǐ2, I2 = {i1, . . . , i|I2|}

and ǧπ̌
j := gπ

|I1|+ j as well as ťπ̌( j) := tπ(|I1|+ j). Then, it holds for all 0 ≤ t < s that
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P
(
τ̌ j ∈ (t, s] ∀ j ∈ I2

) = Ǧ∅, Ǐ2
(s, t) = G I1,I2(s, t),

where Ǧ∅, Ǐ2
corresponds to Eq. (8) w.r.t. {ǧπ̌

j } j∈ Ǐ2,π̌∈S|I2 | . ��

Proof of Lemma 4 Every summand corresponding to a non-empty interval ∅ �= J ⊆ I2
contains a term gπJ|I1|+1(s). Therefore the result follows by multiplying G I1,I2 with
g

π∅
|I1|+1(s)

ĝ
π∅
|I1|+1(s)

and its reciprocal, whereas the first summand in Eq. (20) is a correction term

for the summand belonging to J = ∅. ��

Proof of Lemma 5 This is a direct corollary of Mai et al. (2016, lem. B.2 on p.1295).
��

References

BergC, Christensen JPR, Ressel P (1984)Harmonic analysis on semigroups. Graduate texts inmathematics,
vol 100. Springer, New York. https://doi.org/10.1007/978-1-4612-1128-0

Bielecki TR, Cousin A, Crépey S, Herbertsson A (2013) A bottom-up dynamic model of portfolio credit
risk: part II: common-shock interpretation, calibration and hedging issues. available at SSRN: https://
ssrn.com/abstract=2245130 or https://doi.org/10.2139/ssrn.2245130

Durante F, Quesada-Molina JJ, Úbeda Flores M (2007) On a family of multivariate copulas for aggregation
processes. Inf Sci 177(24):5715–5724. https://doi.org/10.1016/j.ins.2007.07.019

Durante F, Kolesárová A, Mesiar R, Sempi C (2008) Semilinear copulas. Fuzzy Sets Syst 159(1):63–76.
https://doi.org/10.1016/j.fss.2007.09.001

ElouerkhaouiY (2007) Pricing andhedging in a dynamic creditmodel. Int JTheorAppl Finance 10(04):703–
731. https://doi.org/10.1142/S0219024907004408

Embrechts P, Hofert M (2013) A note on generalized inverses. Math Methods Oper Res 77(3):423–432
GieseckeK (2003) A simple exponential model for dependent defaults. J Fixed Income 13(3):74–83. https://

doi.org/10.3905/jfi.2003.319362
Gnedin A, Pitman J (2005) Regenerative composition structures. Ann Probab 33(2):445–479. https://doi.

org/10.1214/009117904000000801
Joe H (1997) Multivariate models and multivariate dependence concepts. CRC Press, Boca Raton
Klein JP, Keiding N, Kamby C (1989) Semiparametric Marshall–Olkin models applied to the occurrence

of metastases at multiple sites after breast cancer. Biometrics 45(4):1073–1086
LiH (2009)Orthant tail dependence ofmultivariate extremevalue distributions. JMultivarAnal 100(1):243–

256. https://doi.org/10.1016/j.jmva.2008.04.007
Li X, Pellerey F (2011) Generalized Marshall–Olkin distributions and related bivariate aging properties. J

Multivar Anal 102(10):1399–1409. https://doi.org/10.1016/j.jmva.2011.05.006
Lin J, Li X (2014) Multivariate generalized Marshall–Olkin distributions and copulas. Methodol Comput

Appl Probab 16(1):53–78. https://doi.org/10.1007/s11009-012-9297-4
Lindskog F, McNeil AJ (2003) Common Poisson shock models: applications to insurance and credit risk

modelling. Astin Bull 33(2):209–238. https://doi.org/10.1017/S0515036100013441
Mai JF (2010) Extendibility of Marshall–Olkin distributions via Lévy subordinators and an application

to portfolio credit risk. Dissertation, Technische Universität München. http://nbn-resolving.de/urn/
resolver.pl?urn:nbn:de:bvb:91-diss-20100628-969547-1-8

Mai JF (2014) Multivariate exponential distributions with latent factor structure and related topics. Habili-
tation thesis, Technische Universität München

Mai JF, Scherer M (2017) Simulating copulas: stochastic models, sampling algorithms and applications.
Series in quantitative finance, vol 6, 2nd edn. World Scientific, Singapore

Mai JF, Schenk S, Scherer M (2016) Exchangeable exogenous shock models. Bernoulli 22(2):1278–1299.
https://doi.org/10.3150/14-BEJ693

123



Exogenous shock models: analytical characterization and… 959

MarshallAW(1996)Copulas,marginals, and joint distributions. In:RüschendorfL, SchweizerB,TaylorMD
(eds) Distributions with fixed marginals and related topics. Lecture notes, monograph series, vol 28.
Institute ofMathematical Statistics, Hayward, pp 213–222. https://doi.org/10.1214/lnms/1215452620

Marshall AW, Olkin I (1967) A multivariate exponential distribution. J Am Stat Assoc 62(317):30–44.
https://doi.org/10.2307/2282907

Muliere P, Scarsini M (1987) Characterization of a Marshall–Olkin type class of distributions. Ann Inst Stat
Math 39(1):429–441. https://doi.org/10.1007/BF02491480

Schenk S (2016) Exchangeable exogenous shock models. Dissertation, Technical University of Munich,
Munich. Available at https://mediatum.ub.tum.de/doc/1278138/1278138.pdf

Schilling RL, Song R, Vondracek Z (2012) Bernstein functions. De Gruyter studies in mathematics, vol 37,
2nd edn. De Gruyter, Berlin

Schweizer B, Sklar A (1983) Probabilistic metric spaces. Elsevier/North-Holland, New York
Sklar A (1959) Fonctions de répartition a n dimensions et leurs marges. Publ Inst Stat Univ Paris 8:229–231
Sun Y, Mendoza-Arriaga R, Linetsky V (2017) Marshall–Olkin distributions, subordinators, efficient sim-

ulation, and applications to credit risk. Adv Appl Probab 49(2):481–514

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123



139

B.2 The deFinetti representation of generalized Marshall–Olkin sequences



140

The deFinetti representation of generalized Marshall–Olkin
sequences

Henrik Sloot

The article [4] provides a representation theorem for exchangeable generalized Marshall–Olkin sequences.
According to de Finetti’s theorem, every non-negative, exchangeable sequence τ1, τ2, . . . defines a subordi-
nator Λ associated with its directing measure. I prove that these are precisely additive subordinators for
exchangeable generalized Marshall–Olkin sequences. Additionally, I show how to extend the probability
space to obtain a de Finetti representation of an exchangeable generalized Marshall–Olkin sequence as
follows:

τi = inf
{
t > 0 : Λt ≥ Ei

}
a.s., i ∈ N,

where E1, E2, . . . is an iid unit exponential sequence independent of Λ.
The introduction identifies the research gap by recalling past research on exchangeable Marshall–Olkin

sequences, exchangeable generalized Marshall–Olkin vectors, and the additive-frailty model. Specifically,
the contribution of the article is the backward direction of the main result, abridged as follows: given
an additional independent sequence of iid uniform random variables, an exchangeable sequence has a
de Finetti representation as above with an additive subordinator if and only if each finite margin has a
generalized Marshall–Olkin distribution.

Section 2 introduces the required mathematical background of Bernstein functions, additive subordi-
nators, and used notation. Following, Section 3 motivates the generalized Marshall–Olkin distribution by
allowing non-constant hazard rates for the shock time rates in the exogenous shock model representation.
Furthermore, I recall the required facts about the exchangeable subclass.

Section 4 discusses de Finetti representations of exchangeable sequences of random variables in
general, presents the main result, and proves it. My proof for the backward direction can be sketched as
follows: In the first part, I use de Finetti’s theorem to obtain an almost surely unique random distribution
function such that by conditioning on it, the sequence becomes iid. Afterward, I transform the sequence
by mapping each element uniformly at random to a value in the random preimage of the element under
the corresponding random quantile function. Choosing a value uniformly at random from the random
preimage requires the additional iid sequence of uniform random variables. The transformed sequence is
iid uniform in the unit interval and independent of the random distribution function, and the subordinator
and the iid unit exponential sequence are obtained by simple transformations. In the second part, I use a
uniqueness-in-distribution argument to show that the subordinator is additive. For this, I use a lemma from
the previous section, linking the survival function of d-variate exchangeable generalized Marshall–Olkin
distributions to families of d-monotone sequences. Overall, I can derive a family of Bernstein functions for
which I subsequently show that they are Laplace exponents of an additive subordinator distribution. Finally,
I conclude that, by construction, the distribution of corresponding exchangeable generalized Marshall–Olkin
sequences is identical to the original.

In the remainder of the article, I provide a detailed step-by-step example of how to recover the implied
subordinator for an exchangeable generalized Marshall–Olkin sequence generated by an exogenous shock
model with individual shocks and a global shock. In particular, I outline why the additional, independent
sequence of iid uniform random variables is required to obtain a de Finetti representation if the subordinator
jumps.

The article contains two appendices, one on exchangeable sequences and de Finetti’s theorem and
another on Bernstein functions and completely monotone sequences.

Statement of individual contribution

I, Henrik Sloot, am the sole author of this article. The article originated from my master thesis [87] that
contained a result, abridged as follows: the law of an exchangeable sequence has a stochastic de Finetti
representation with an additive subordinator if and only if each finite margin is an exchangeable generalized
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Marshall–Olkin distribution. This result is solely on the distribution level. In particular, it does not state
that any such sequence defines an additive subordinator in the same probability space. Moreover, it
does not show how a de Finetti representation of an existing sequence can be obtained by extending the
probability space slightly. My main theorem of this article, developed during my doctoral studies, significantly
extends this by working on the probability space level. In particular, I derive that every exchangeable
generalized Marshall–Olkin sequence defines an additive subordinator. Furthermore, I outline how the
probability space needs to be extended to obtain a de Finetti representation. The second part of the proof
of Theorem 1 is conceptually similar to the corresponding proof in my master thesis. However, I rewrote
the proof significantly to be simpler, clearer, and more concise. For my doctoral thesis, to explicitly prevent
double counting, only those parts of this article that go beyond my Master’s thesis are to be accredited.



142

Permission to include
H. Sloot. “The deFinetti representation of generalised Marshall–Olkin sequences”. In: Dependence

Modeling 8.1 (2020), pp. 107–118. DOI: 10.1515/demo-2020-0006

https://doi.org/10.1515/demo-2020-0006


17.09.22, 15:09Creative Commons — Attribution 4.0 International — CC BY 4.0

Seite 1 von 1https://creativecommons.org/licenses/by/4.0/deed.en

This page is available in the following languages: 

This is a human-readable summary of (and not a substitute for) the license.

Under the following terms:

Notices:

Creative Commons License Deed
Attribution 4.0 International (CC BY 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in
any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing
anything the license permits.

You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an
applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other
rights such as publicity, privacy, or moral rights may limit how you use the material.

Reprinted according to the CC BY 4.0 license;2 see human-readable summary included below.

2https://creativecommons.org/licenses/by/4.0/.

https://creativecommons.org/licenses/by/4.0/


Open Access. © 2020 Henrik Sloot, published by De Gruyter. This work is licensed under the Creative Commons Attribution
alone 4.0 License.

Depend. Model. 2020; 8:107–118

Research Article Open Access

Henrik Sloot*

The deFinetti representation of generalised
Marshall–Olkin sequences
https://doi.org/10.1515/demo-2020-0006
Received January 28, 2020; accepted May 22, 2020

Abstract:We show that each in�nite exchangeable sequence τ1, τ2, . . . of randomvariables of the generalised
Marshall–Olkin kind can be uniquely linked to an additive subordinator via its deFinetti representation. This
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1 Introduction
The Marshall–Olkin distribution was introduced by eponymous authors in [21] as the multivariate exponen-
tial distribution satisfying a strong multivariate lack-of-memory property. A random vector τ = (τ1, . . . , τd)′

has aMarshall–Olkin distribution if non-negative parameters λI , ∅ ≠ I ⊆ {1, . . . , d}, exist such that τ has the
survival-function

F̄(t) = exp



−

∑

∅= ̸I⊆{1,...,d}
λI max

i∈I
ti



 , ∀t = (t1, . . . , td)′ ≥ 0, (1)

and the parameters λI , ∅ = ̸ I ⊆ {1, . . . , d}, ful�l the condition
∑

I3i
λI > 0, ∀i ∈ {1, . . . , d}. (2)

A simple calculation shows that the sums in Eq. (2) correspond to the rates of the exponentially distributed
univariate margins τi, i ∈ {1, . . . , d}, respectively. Hence, the condition in Eq. (2) ensures that τi < ∞ a.s. for
all i ∈ {1, . . . , d}.

In [21], the authors proposed the exogenous shock model as a natural stochastic model for the Marshall–
Olkin distribution. Thismodel is based on independent, exponentially distributed random times correspond-
ing to the failure of multiple components of a system at once. In particular, for λI ≥ 0, ∅ = ̸ I ⊆ {1, . . . , d},
ful�lling the condition in Eq. (2), let EI ∼ Exp(λI)be independent exponentially distributed randomvariables
with rates λI , ∅ = ̸ I ⊆ {1, . . . , d}, respectively, where we use the convention that an exponentially distributed
random variable with rate zero is almost surely in�nite. De�ne τ = (τ1, . . . , τd)′ by

τi := min
{
EI : I 3 i

}
, i ∈ {1, . . . , d}. (3)

Then τ has a Marshall–Olkin distribution with parameters λI , ∅ = ̸ I ⊆ {1, . . . , d}.
We are interested in exchangeable random vectors and sequences of (generalised) Marshall–Olkin kind.

These subclasses have been intensively studied in the last decade for the classical Marshall–Olkin distribu-
tion.

*Corresponding Author: Henrik Sloot: Technical University of Munich, Parkring 11, 85748 Garching-Hochbrück,
E-mail: henrik.sloot@tum.de
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• The exchangeable subclass is studied in [11, Chp. 3]. The author has proven that exchangeability corre-
sponds to the property

λI = λJ , ∀∅ = ̸ I, J ⊆ {1, . . . , d} : |I| = |J|.

Furthermore, he has shown that the survival function in Eq. (1) of an exchangeable Marshall–Olkin dis-
tribution can be reparametrised as follows:

F̄(t) = exp
{
−

d∑

i=1
ai−1t[i]

}
, ∀t = (t1, . . . , td)′ ≥ 0, (4)

where t[1] ≥ · · · ≥ t[d] is t in descending order. The sequence a0, a1, . . . ad−1 is de�ned by

ai−1 =
d−i∑

j=0

(
d − i
j

)
λj+1, i ∈ {1, . . . , d},

where λi = λI for i = |I|. Finally, he provides a characterisation theorem that states that a function F̄ of
the form of Eq. (4) is a survival function if, and only if, the sequence a0, a1, . . . , ad−1 is d-monotone. A
sequence a0, a1, . . . , ad−1 is called d-monotone if (−1)i−1

∆i−1ad−i ≥ 0 for i = 1, . . . , d. In this case, the
author shows that λi = (−1)i−1

∆i−1ad−i, i ∈ {1, . . . , d}.
• The extendible subclass is studied in [11, Chp. 4]. A d-variate Marshall–Olkin distributed random vec-

tor τ = (τ1, . . . , τd)′ is called extendible (in the class of Marshall–Olkin distributions) if an exchangeable
sequence of random variables {τ̃i}i∈N exists such that each d-variate subsequence is equal in law to τ
and each �nite subsequence has a Marshall–Olkin distribution. The author of the aforementioned ref-
erence found a unique link between extendible Marshall–Olkin distributions and Lévy subordinators
via a deFinetti representation. In particular, he has shown that an in�nite exchangeable Marshall–Olkin
sequence {τi}i∈N is conditionally iid and can be written as

τi = inf {t > 0 : Λt ≥ Ei}, i ∈ N, (5)

where Ei are iid unit exponential randomvariables independent of a Lévy subordinator {Λt}t≥0 on [0,∞].
This model is also called the Lévy frailty model.

A natural generalisation of the classical Marshall–Olkin distribution is achieved if we allow non-constant
hazard rates in the exogenous shock model construction in Eq. (3), see [10]. This means that we replace λI ·
maxi∈I ti with a cumulative hazard rate function HI(maxi∈I ti) and the exponential shocks EI ∼ Exp(λI)
in Eq. (3) with ZI ∼ 1−exp {−HI}, ∅ ≠ I ⊆ {1, . . . , d}, respectively. A cumulative hazard rate function is a non-
negative, non-decreasing, and continuous function on the non-negative half-line that starts in zero. Previous
works exist on special cases of this generalisation, e.g. [9], which discusses the bivariate case, and [22], which
assumes that HI(t) ≡ λIH(t).
• The exchangeable generalised Marshall–Olkin distribution and the exchangeable exogenous shock

model are studied in [25]. Similar to the classical Marshall–Olkin case, the author has proven that ex-
changeability corresponds to the property

HI(t) = HJ(t), ∀t > 0, ∀∅ = ̸ I, J ⊆ {1, . . . , d} : |I| = |J|.

Furthermore, he has shown that a reparametrisation is possible, similar to the classical Marshall–Olkin
case, by replacing ai−1 · t[i] by Ai−1(t[i]), i ∈ {1, . . . , d}, in Eq. (4). He also provides an analytical charac-
terisation, which is discussed in Section 3.

• The extendible subclass of generalised Marshall–Olkin distributions is studied in [14] and [25, Sec. 3].
In [14, Prop. 3.1], it is shown that if the subordinatorΛ in Eq. (5) is assumed to be an additive subordinator
in [0,∞], then each �nite margin of {τi}i∈N has an extendible generalised Marshall–Olkin distribution.
We call this stochastic model the additive-frailty model.
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Contribution:
This article provides the following novel result, which was posed as an open problem for further research
in [25, p. 147 sq.]: every exchangeable sequence τ1, τ2, . . . with �nite margins of generalised Marshall–Olkin
type has an implicit representation as an additive frailty model. In particular, an additive subordinatorΛ and
an iid sequence of unit exponential random variables E1, E2, . . ., independent of Λ, exist such that Eq. (5)
is ful�lled almost surely. Recall that the converse of this statement was proven in [14, Prop. 3.1]. Conse-
quently, we complete this result and establish a novel one-to-one connection between sequences of gener-
alised Marshall–Olkin type and additive subordinators.

The article is structured as follows:we introduce themathematical background andnotation in Section 2,
we summarise existing results on exchangeable generalised Marshall–Olkin distributions in Section 3, and
we present the main result in Section 4. In Section 5, we conclude the article. The main proof requires some
technical results involving exchangeable sequences and Bernstein functions. For the interested reader, we
summarise the required background in Appendices A and B.

2 Mathematical background and notation
In this section, we give a short overview of the required mathematical background and the used notation.

We assume basic knowledge of the theory on multivariate distribution functions and probability theory.
Furthermore,weassume that the reader is familiarwith theLévy–Khintchine characterisationof additive sub-
ordinators. Additive processes are real-valued, stochastic processes, which are de�ned on the non-negative
half-line, start at zero, have independent increments, andhave càdlàg path. Anadditive subordinator is a non-
decreasing additive process which tends almost surely to in�nity. Excellent books on additive processes and
Lévy processes in particular are [2, 24]. We deviate slightly from the standard theory by allowing the additive
subordinator to jump to an absorbing point associated with∞ at a random time, which is independent from
the subordinator. The corresponding (cumulative) hazard rate is called (cumulative) killing hazard rate and is
equal to the zero function if almost surely no killing occurs. The Lévy–Khintchine characterisation states that
each additive subordinator is uniquely determined in law by its family of Laplace exponents. These Laplace
exponents are from the family ofBernstein functions, hereafter denoted byBF. A functionψ : (0,∞)→ (0,∞)
is a Bernstein function if it is in�nitely often di�erentiable and has the following property

(−1)n−1
ψ(n)(x) ≥ 0, ∀x > 0, n ∈ N.

One can show, see e.g. [3, Prop. 6.12] and [26, Thm. 3.2], that a function ψ : (0,∞) → (0,∞) is a Bernstein
function if, and only if,

(−1)n−1
∆nψ(x) ≥ 0, ∀x > 0, n ∈ N.

Here,∆ is the forward iterated di�erence operator. A Bernstein function ψ is assumed to be extended to the
domain [0,∞) by the convention ψ(0) = 0. Excellent books on Bernstein functions are [3, 26].

We denote random variables with capital or Greek letters, e.g. X or τ , and (random) vectors with bold
letters, e.g. X, τ , or t. We write X ∼ F if X has the distribution function F. We assume that operators are
applied component-wise to vectors. That means τ > t is equivalent to τi > ti for all i ∈ {1, . . . , d}. Finally, we
denote the descending order of a vector t ∈ [0,∞)d by t[1] ≥ · · · ≥ t[d].

We denote the class of continuous, real functions by C(0), we write ∆f ≥ 0 if the function f is non-
decreasing everywhere, and we use the notation f (x−) := limy↗x f (y) as well as f (x+) := limy↘x f (y). Finally,
for a real number x, we denote the smallest integer i with i ≥ x by dxe.

3 Exchangeable generalised Marshall–Olkin distributions
In this section, we give a short introduction into exchangeable generalised Marshall–Olkin distributions. For
a more detailed treatment of the exchangeable subclass, see [14, 25].
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We generalise the classical Marshall–Olkin distribution by allowing arbitrary continuous, cumulative
hazard rate functions in the exogenous shock model. This is equivalent to having continuous, non-negative,
and unbounded shock-times. For this, we de�ne the class of continuous, cumulative hazard rate functionsH
and its unbounded subclassH0 by

H :=
{
H : [0,∞)→ [0,∞) : H ∈ C(0), ∆H ≥ 0, H(0) = 0

}

and

H0 :=
{
H ∈ H : H(∞−) = ∞

}
.

We say that a random vector τ ∈ [0,∞)d has a generalised Marshall–Olkin distribution if functions HI ∈ H,
∅ = ̸ I ⊆ {1, . . . , d}, exist such that τ has survival function

F̄(t) = exp



−

∑

∅= ̸I⊆{1,...,d}
HI

(
max
i∈I

ti
)
, ∀t ≥ 0,

and the hazard rate functions ful�l the condition
∑

I3i
HI ∈ H0, ∀i ∈ {1, . . . , d}.

This condition, which generalises the condition in Eq. (2), is equivalent to the margins being almost surely
�nite, since∑I3i HI are the marginal cumulative hazard rates. With a simple calculation, we can establish
a generalised version of the exogenous shock model in Eq. (3) for generalised Marshall–Olkin distributions
by replacing λI · maxi∈I ti with HI(maxi∈I ti) and EI with ZI ∼ 1 − exp {−HI}, ∅ ≠ I ⊆ {1, . . . , d}, see [14,
Proof of Thm. 1.1 (iv)⇒ (i)].

Below, we present a characterisation of exchangeable generalised Marshall–Olkin distributions. We
know from [14, Prop. 2.1] that, similar to the classical Marshall–Olkin case, exchangeability is equivalent
to the property HI = HJ for all ∅ = ̸ I, J ⊆ {1, . . . , d}with |I| = |J|. Furthermore, the following characterisation
result has been proven in [14]:

Lemma 1 ([14, Thm. 1.1]). Let F̄ : [0,∞)d → [0, 1] be a function such that functions A0, . . . , Ad−1 ∈ H with
A0 ∈ H0 and Ai(0) = 0 with

F̄(t) = exp
{
−

d∑

i=1
Ai−1

(
t[i]
)
}
, ∀t ≥ 0,

exist, where t[1] ≥ · · · ≥ t[d] is t in descending order. Then the following statements are equivalent:
1. F̄ is the survival function of a random vector on [0,∞)d.
2. It holds that Hi : [0,∞)→ [0,∞), t 7→ (−1)i−1

∆i−1Ad−i(t) ∈ H for all i ∈ {1, . . . , d}, where the di�erence
operator is understood to be applied to the (�nite) sequence A0(t), . . . , Ad−1(t) for �xed t ≥ 0.

Finally, we can construct a random vector τ with survival function F̄ via an exogenous shockmodel withHI := Hi
if |I| = i, ∅ ≠ I ⊆ {1, . . . , d}.

Proof of Lemma 1. This is a direct corollary of [14, Thm. 1.1]. However, since we changed the notation, we
will give a short explanation: if we take the standardisation of the margins into account, the aforementioned
result a�rms that the �rst statement of this lemma is equivalent to Hi ∈ H for all i ∈ {1, . . . , d}, where

Hi(t) :=
i−1∑

j=0
(−1)j

(
i − 1
j

)
Ad−i+j(t), ∀t ≥ 0.

Now, we obtain the claim as a corollary from [14, Thm. 1.1] by using [11, Lem. 2.5.2] which implies that

(−1)i−1
∆i−1Ad−i(t) =

i−1∑

j=0
(−1)j

(
i − 1
j

)
Ad−i+j(t), ∀t ≥ 0.
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4 The deFinetti representation of GMO sequences
In this section, we characterise the deFinetti representation of exchangeable generalised Marshall–Olkin se-
quences. We begin with an overview of general deFinetti representations.

We know from deFinetti’s theorem, see [1, Thm. 3.1], that an almost surely unique random distribution
function F exists for each exchangeable sequence τ1, τ2, . . . such that almost surely

P
(
τ1 ≤ x1, . . . , τd ≤ xd

∣∣F
)

=
d∏

i=1
Fxi , ∀x1, . . . , xd ∈ R, d ∈ N. (6)

For a non-decreasing function h, we de�ne its generalised (right) inverse h← by h←(y) := inf {x : h(x) ≥ y}
with inf ∅ = 0, see [7] for a detailed discussion of generalised inverses. If the random distribution function F
has almost surely no jumps, we have that almost surely

τi = F←(Ui) = inf
{
x ∈ R : Fx ≥ Ui

}
, i ∈ N, (7)

for an iid uniform sequenceU1, U2, . . ., independent of F, which is de�nedbyUi := F(τi). If supp(F) ⊆ [0,∞],
we can rewrite Eq. (7) as

τi = Λ←(Ei) = inf
{
t > 0 : Λt ≥ Ei

}
, i ∈ N, (8)

for a (càdlàg) subordinator Λ and a sequence E1, E2, . . . of iid unit exponential random variables, indepen-
dent of Λ. For this, we de�ne Λ = − log (1 − F) and Ei = − log (1 − Ui), i ∈ {1, . . . , d}. Note that we de�ne
a subordinator as a [0,∞]-valued, non-decreasing, càdlàg process on [0,∞) that starts at zero and tends to
in�nity for t → ∞. If the random distribution function F may possibly have jumps, then Eqs. (7) and (8) still
hold if there is an additional iid uniform sequence W1,W2, . . ., which is independent of τ1, τ2, . . ., de�ned
on the probability space. The sequenceW1,W2, . . . is required to modify F(τi) to a uniform random variable
by a random interpolation at its (random) atoms, see [23].

F

τ1
τ2

τ3 . . . τd−2
τd−1

τd

τi := F←(Ui)

(a)With random distribution function

Λ

τ1
τ2

τ3 . . . τd−2
τd−1

τd

τi := Λ←(Ei)

(b) With random hazard rate

Figure 1: A visualisation of both deFinetti representations: (1) Draw F (resp. Λ) (2) For each component i, draw Ui (resp. Ei) and
transform with generalised inverse of F (resp. Λ). We have F = 1 − exp {−Λ} and Ui = 1 − exp {−Ei}.

Before moving on to the main result of this article, we want to outline three applications of the deFinetti
representation:
1. We can use the deFinetti representation to sample from certain distributions e�ciently in high-

dimensions as illustrated in Fig. 1. See, e.g., [11, 16, 19] for applications of this technique.
2. We can build low-parametric, dimensionless families of multivariate distributions from parametrised

subordinators, see, e.g., [4, 15, 17] for examples. We call these families dimensionless, since a random
vector from such a model can be de�ned as the margin of an in�nite sequence. Consequently, these fam-
ilies are not inherently linked to a speci�c dimension.
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3. We can use the deFinetti representation for exchangeable sequences to build hierarchical models for
non-exchangeable sequences. We refer the interested reader to [12, 18, 20].

Below, we state the main result of this article and investigate the subordinator, which is implied by the de-
Finetti representation of generalised Marshall–Olkin sequences. We already know from [11] that Marshall–
Olkin sequences are uniquely linked to Lévy subordinators via Eq. (8). That remains true if we generalise the
Marshall–Olkin de�nition as in Section 3 and generalise the Lévy subordinator to an additive subordinator.

Theorem 1 (Main result). Let τ1, τ2, . . . be an in�nite exchangeable sequence of generalised Marshall–Olkin
kind, i.e. a sequence of functions A0, A1, . . . ∈ H with A0 ∈ H0 and Ai(0) = 0 exists such that for d ≥ 2

P (τ1 > t1, . . . , τd > td) = exp
{
−

d∑

i=1
Ai−1

(
t[i]
)
}
, ∀t ≥ 0. (9)

Furthermore, assume that an iid uniform sequenceW1,W2, . . . which is independent of τ1, τ2, . . . is de�ned on
the probability space. Then, an additive subordinatorΛ and iid unit exponentially distributed random variables
E1, E2, . . ., independent of Λ, exist such that almost surely

τi = inf
{
t > 0 : Λt ≥ Ei

}
, ∀i ∈ N. (10)

Conversely, ifΛ is an additive subordinatorwith Laplace exponents {ψt}t≥0, E1, E2, . . . are iid unit exponentially
distributed random variables, independent of Λ, and τ1, τ2, . . . are constructed according to Eq. (10), then for
all d ≥ 2 the random vector τ d = (τ1, . . . , τd) has an exchangeable generalised Marshall–Olkin distribution
with

Ai(t) = ψt(i + 1) − ψt(i), ∀t ≥ 0, i ∈ N0. (11)

Proof. Firstly, note that the backward direction is a corollary of [14, Prop. 3.1] by considering marginal trans-
formations.

For the forwarddirection,which is themain contribution of this article,weusedeFinetti’s theorem, see [1,
Thm. 3.1], to obtain the existence of a random distribution function F such that the sequence is conditionally
iid given F and Eq. (6) holds. We de�ne

Ui := Fτi + Wi
(
Fτi − Fτi−

)
, i ∈ N.

We use [23, Sec. 2] to obtain that, conditioned on F, U1, U2, . . . are uniform and ful�l almost surely Eq. (6).
In particular, we have that almost surely

P
(
U1 ≤ u1, . . . , Ud ≤ ud

∣∣F
)

=
d∏

i=1
ui , u ∈ [0, 1]d .

In summary, the sequence U1, U2, . . . is iid uniform and independent of F. We use the transformations Λ =
− log (1 − F) and Ei = − log (1 − Ui), i ∈ N and obtain a subordinator Λ and an iid unit exponential sequence
E1, E2, . . ., independent of Λ, such that Eq. (10) holds almost surely.

Now, we have to prove that Λ is an additive subordinator. By a simple uniqueness-in-distribution argu-
ment and [25, p. 41], we determine that this is equivalent to the existence of a family of Bernstein functions
{ψt}t≥0 ⊆ BF, ful�lling the conditions

ψ0 ≡ 0, (12a)
ψs − ψt ∈ BF ∀s > t ≥ 0, (12b)

t 7→ ψt(x) ∈ C(0), ∀x ≥ 0, (12c)

such that Eq. (11) holds. Below, we show that a family of Bernstein functions with these properties exists.
With Lemma 1, we have

H(d)
i := (−1)i−1

∆i−1Ad−i ∈ H, i ∈ {1, . . . , d}.
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Fix s > t ≥ 0. Then, we have for arbitrary d ∈ N

H(d)
i (s) − H(d)

i (t) ≥ 0, ∀i ∈ {1, . . . , d}

⇔ (−1)i−1
∆i−1(Ad−i(s) − Ad−i(t)

)
≥ 0, ∀i ∈ {1, . . . , d}.

This implies that the sequence A0(s)− A0(t), A1(s)− A1(t), . . . is completely monotone, see [11, Lem. 3.3.2]. A
completelymonotone sequence can be uniquely represented by the series of �rst-order iterated di�erences of
a Bernstein function onN0, see [11, Sec. 4.1], [8, Cor. 4.2], and [3, Prop. 6.12]. Therefore,we obtain the existence
of a unique Bernstein function ψs,t with ψs,t(0) = 0 such that

Ai(s) − Ai(t) = ψs,t(i + 1) − ψs,t(i) ∀i ∈ N.

This implies

ψs,t(i + 1) − ψs,t(i) = Ai(s) − Ai(t)
=
[
Ai(s) − Ai(0)

]
−
[
Ai(t) − Ai(0)

]

=
[
ψs,0(i + 1) − ψs,0(i)

]
−
[
ψt,0(i + 1) − ψt,0(i)

]
, ∀i ∈ N.

Thus, if we set ψu = ψu,0 for u ∈ {t, s}, we obtain ψ0 ≡ 0 and

ψt(i) + ψs,t(i) = ψs(i), ∀i ∈ N.

We use the fact that Bernstein functions are determined by their values on N0, see [3, Prop. 6.12] and [26,
Thm. 3.2], and we get ψs − ψt = ψs,t ∈ BF. Finally, we use that a Bernstein function is non-negative and
monotone increasing to obtain the following formula for s > t ≥ 0 and x ≥ 0 that

0 ≤ ψs(x) − ψt(x) = ψs,t(x) ≤ ψs,t(dxe) =
dxe∑

j=1
Aj−1(s) − Aj−1(t).

Hence, the continuity of A0, A1, . . . implies limtk→t ψtk (x) = ψt(x) for all t, x ≥ 0.

Recovery of the subordinator

Theorem 1 motivates the following questions: �rstly, what are non-trivial examples of how the forward direc-
tion of this theorem can be used and secondly, how can we use the theorem to learn more about the implied
subordinator. A non-trivial example is an exchangeable, but not comonotone or independent, generalised
Marshall–Olkin sequence, which is not directly generated by a deFinetti model. Given such a sequence, the
theorem only guarantees the existence of a deFinetti representation, but does not explicitly state the law of
the subordinator or how it can be explicitly recovered. In the following, we use an example adapted from [13,
Expl. 6.3] to demonstrate how the subordinator can be identi�ed and recovered.

We consider an exogenous shockmodel inwhich each component can fail due to independent individual
shocks or a common global shock. For this, let H, HG ∈ H with H + HG ∈ H0 be cumulative hazard rate
functions and de�ne A = H and A0 = H + HG. Furthermore, let ZG ∼ 1 − exp {−HG} and let Z1, Z2, . . . be
an iid sequence with distribution function 1 − exp {−H} that is independent of ZG. We de�ne the random
sequence τ1, τ2, . . . by

τi := min
{
Zi , ZG

}
, i ∈ N.

Recovery of the subordinator law

In the �rst step, we use the generalised version of the exogenous shockmodel representation from Eq. (3) and
the novel result fromTheorem 1 to determine that the subordinator, implied by the deFinetti representation, is
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an additive subordinatorwith cumulative killing hazard rateHG and deterministic partH. Since the sequence
τ1, τ2, . . . is exchangeable and of generalised Marshall–Olkin kind, we know that the random vector τ =
(τ1, . . . , τd) has an exchangeable generalised Marshall–Olkin distribution for each d ∈ N. We use Lemma 1
and determine that the corresponding survival function is

F̄(t) = exp
{
−A0

(
t[1]
)
−

d∑

i=2
A
(
t[i]
)
}
, t = (τ1, . . . , τd) ≥ 0.

Then,we concludewith Theorem 1 that an additive subordinatorΛwith the characterising family of Bernstein
functions {ψt}t≥0 exists such that

Ai(t) = ψt(i + 1) − ψt(i), i ∈ N0 ∀t ≥ 0.

This implies for t ≥ 0 that

A0(t) = ψt(1),
A(t) = ψt(i + 1) − ψt(i), i ∈ N,

ψt(i) =
{
A0(t) + (i − 1)A(t) i ∈ N,
0 i = 0.

As Bernstein functions are uniquely de�ned by their values on N0, we verify that

ψt(x) = (A0(t) − A(t))︸ ︷︷ ︸
=HG(t)

1{x>0} + x A(t)︸︷︷︸
=H(t)

, t, x ≥ 0.

This family of Bernstein functions can be identi�ed with an additive subordinator with (inhomogeneous)
cumulative killing hazard rate HG(t) and deterministic part H(t). In particular, a random variable Z ∼ 1 −
exp {−HG} exists such that

Λt = H(t) +∞ · 1{Z≤t} =
{
H(t) t < Z,
∞ t ≥ Z.

Note that so far, we only know that some random variable Z exists such that this equation holds. A natural
conjecture is that Z = ZG, which is proven in the following.

Explicit recovery of the subordinator

In the second step, to derive the subordinator explicitly, we use that

Ft(ω) = E
[
1{τ1≤t}

∣∣T
]
(ω), ∀ω ∈ Ω \ N

for the tail-σ-algebra T of the sequence τ1, τ2, . . . and a P-nullset N, see [1, Lem. 2.15 and 2.19]. Furthermore,
we use that Zj > t for in�nitely many j and therefore

{
ZG > t

}
=
⋂

i≥1

⋃

j≥i

{
min {Zj , ZG} > t

}
, t ≥ 0.

Consequently, ZG is measurable with respect to T. Moreover, we have for ω ∈ Ω\N

Λt(ω) = − log
(

1 − Ft(ω)
)

= − log
(
E
[
1{τ1>t}

∣∣T
]
(ω)
)

= − log
(
E
[
1{Z1>t}

]
1{ZG(ω)>t}

)

= − log
(
E
[
1{Z1>t}

])
+∞1{ZG(ω)≤t}
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=
{
H(t) t < ZG(ω),
∞ t ≥ ZG(ω),

where we use the convention that 0 ·∞ = 0. Finally, given an iid uniform sequenceW1,W2, . . ., independent
of τ1, τ2, . . ., we can construct the sequence E1, E2, . . . by

Ui :=





(
1 − e−H(Zi)

)
Zi < ZG ,

1 − (1 −Wi) e−H(ZG) Zi ≥ ZG .
i ∈ N

and

Ei := − log(1 − Ui) =
{
H(Zi) Zi < ZG
H(ZG) − log(1 −Wi) Zi ≥ ZG .

i ∈ N.

Now, Theorem 1 implies that the sequence E1, E2, . . . is iid unit exponential, independent of F, and we con-
clude that almost surely

τi = inf
{
t > 0 : Λt ≥ Ei

}
, i ∈ N.

5 Conclusion
We have shown that exchangeable sequences τ1, τ2, . . . of a generalised Marshall–Olkin kind are uniquely
linked to additive subordinators via a deFinetti representation. In particular, in a suitably extended proba-
bility space, we have almost surely that

τi = inf {t > 0 : Λt ≥ Ei}, i ∈ N,

whereΛ is an additive subordinator and the sequence E1, E2, . . . is iid unit exponential and independent ofΛ.

Acknowledgements:Many thanks to Lexuri Fernández, Florian Brück,Matthias Scherer, and the two anony-
mous reviewers for their feedback on this article.

A Exchangeable sequences and DeFinetti’s theorem
In this section, we summarise the background on exchangeable sequences and deFinetti representations.
An extensive reference on the deFinetti representation of exchangeable sequences and exchangeability in
general, which contains all results that are presented in this section, is [1].

We call a sequence τ1, τ2, . . . exchangeable if

(τ1, . . . , τd) d= (τπ(1), . . . , τπ(d)),

for each d ∈ N and permutation π on {1, . . . , d}. A well-known result, �rst established by Bruno deFinetti
in [6], states that sequences τ1, τ2, . . . are exchangeable if, and only if, they are conditionally iid. While this
statement is clear and simple, there are some technical details hidden in the expression conditionally iid. In
our case, since generalised Marshall–Olkin distributions have singular components and additive subordina-
tors have jumps, these details become very important. This is explained in more detail with an example at
the end of this section. For this reason, we outline below how an exchangeable sequence can be represented
by a random distribution function and an iid uniform sequence.

DeFinetti Representation (See [1, Thm. 3.1]). A sequence τ1, τ2, . . . is exchangeable if, and only if, a random
measureα exists such that the product measureα∞ is a regular conditional distribution of τ1, τ2, . . . given σ(α).
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In the following, we show how the directing measure α can be calculated from the sequence τ1, τ2, . . .. For
this, assume that the sequence τ1, τ2, . . . is de�ned in the probability space (Ω,F, P) and let T be its tail-σ-
algebra. On existence, α is a.s. unique, T measurable, and a regular conditional distribution for τ1 given T,
see [1, Lem. 2.15 and 2.19]. Thus, we have

α(ω, A) = P
(
τ1 ∈ A|T

)
(ω), ∀ω ∈ Ω \ N, A ∈ B,

whereN is aP-nullset. In the following,we assumew.l.o.g. thatα(ω, A) = 0 for allω ∈ N, A ∈ B. Finally, since
α(ω, ·) is a (random) probability measure on R, we may identify α(ω, ·) with a random distribution function
F(ω) via

Ft(ω) := α(ω, (−∞, t]), ∀t ∈ R, ω ∈ Ω.

If another sequence of iid uniform random variables W1,W2, . . ., which is independent of τ1, τ2, . . . is
de�ned on the probability space, we can re�ne deFinetti’s theorem:

Corollary 1 (Cf. [1, Thm. 3.1]). Let W1,W2, . . . be an iid uniform sequence and let τ1, τ2, . . . be independent
thereof. The sequence τ1, τ2, . . . is exchangeable if, and only if, a random distribution function F and an iid
uniform sequence U1, U2, . . ., independent of F, exist such that

τi = inf
{
t ∈ R : Ft ≥ Ui

}
a.s., ∀i ∈ N. (13)

Corollary 2 (Cf. [1, Thm. 3.1]). Let W1,W2, . . . be an iid uniform sequence and let τ1, τ2, . . . ≥ 0 be indepen-
dent thereof. The sequence τ1, τ2, . . . is exchangeable if, and only if, a random subordinator Λ and an iid unit
exponential sequence E1, E2, . . ., independent of Λ, exist such that

τi = inf
{
t ≥ 0 : Λt ≥ Ei

}
a.s., ∀i ∈ N.

Proof of Corollaries 1 and 2. Firstly, the claim from Corollary 2 follows directly from Corollary 1 with the trans-
formations Λ = − log(1 − F) and Ei = − log(1 − Ui), i ∈ N. Secondly, we use [23, Prop. 2.1] to ascertain that
U1, U2, . . . are iid uniform conditioned on T and that Eq. (13) holds, where we de�ne

Ui := Fτi− + Wi
(
Fτi − Fτi−

)
, ∀i ∈ N.

Finally, with the de�nition of the regular conditional distribution, we establish that U1, U2, . . . is an iid uni-
form sequence that is independent of T, hence also independent of F.

We conclude this sectionwith an example that explains the need for additional randomness, in form of an iid
uniform sequence W1,W2, . . ., in the two preceding theorems. This example also highlights that not every
conditionally independent sequence has a representation as in Eq. (13) when only the original probability
space is considered. For this, let (Ω,F, P) be the Lebesgue probability space on the interval [0, 1] and de�ne

Ui(ω) := ω, ω ∈ [0, 1], i ∈ N.

Clearly, the sequence U1, U2, . . . is exchangeable and U1 is measurable with respect to the sequences tail-
σ-algebra T. Hence, we can calculate the random distribution function F, corresponding to the sequences
directing measure α, for all ω excluding a Lebesgue-nullset and u ∈ [0, 1] by

Fu(ω) = E
[

1{U1∈[0,u]}
∣∣T
]

(ω) = 1{U1(ω)∈[0,u]}.

Since σ(F) = σ(U1) = F, there is no additional iid sequence independent of F de�ned on this probability
space. If we now consider the enclosing probability product space, on which U1 as well as an iid uniform
sequence W1,W2, . . ., independent of U1, are de�ned, we have

Ui = U1 = inf
{
u ∈ [0, 1] : 1{U1∈[0,u]} ≥ Wi

}

= inf
{
u ∈ [0, 1] : Fu ≥ Wi

}
, i ∈ N.
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B Bernstein functions and completely monotone sequences
The proof of the main theorem relies heavily on the connection between additive and Lévy subordinators,
so-called Bernstein functions, and completely monotone sequences. As the topic cannot be treated in detail
without using deep results of functional analysis and measure theory, we will limit ourselves to presenting
themain results. Extensive references on this topic are [3, 26]. Another excellent reference is [11, Chp. 3 and 4].

A Bernstein function is a function ψ : (0,∞) → [0,∞) that has derivatives of arbitrary order ψ(i), i ∈ N,
and ful�ls

(−1)i−1
ψ(i)(x) ≥ 0, ∀x > 0, i ∈ N.

We denote the set of all Bernstein functions by BF and use the convention that a Bernstein function may be
extended to [0,∞) by setting ψ(0) := 0. It is well-known, see, e.g. [26, Thm. 3.2], that a function ψ : (0,∞)→
[0,∞) is a Bernstein function if, and only if, real numbers a, b ≥ 0 and a Lévy-measure ν on (0,∞) exist such
that

ψ(x) = a + bx +
∫

(0,∞)

(
1 − e−xu

)
ν(du), ∀x > 0,

where we call ameasure ν on (0,∞) a Lévymeasure if
∫

(0,∞)(1∧x) ν(dx) < ∞. In that case (a, b, ν) is uniquely
determined by ψ and is called the Lévy triplet.

Bernstein functionsψwithψ(0) = 0 can be uniquely linked to so-called completelymonotone sequences.
For a (countably in�nite) sequence a0, a1, . . ., let ∆ be the discrete di�erence operator de�ned by ∆ai :=
ai+1 − ai and de�ne recursively∆nai := ∆(∆n−1ai). We call the sequence a0, a1, . . . completely monotone if

(−1)i∆iak ≥ 0, ∀i, k ∈ N0.

We call a �nite sequence a0, . . . , ad−1 d-monotone if

(−1)i∆iak ≥ 0, ∀i, k ∈ N0 : i + k < d. (14)

In particular, a sequence a0, a1, . . . is completely monotone if, and only if, the sequences a0, a1, . . . , ad−1
are d-monotone for all d ∈ N. Furthermore, a sequence a0, a1, . . . , ad−1 is d-monotone if, and only if, Eq. (14)
is ful�lled for i, k ∈ N0 with i + k = d − 1, see [11, Lem. 3.3.2]. Moreover, a sequence a0, a1, . . . is completely
monotone if, and only if, a Bernstein function ψ exists with ai = ψ(i + 1) − ψ(i) for all i ∈ N0, see [11, Sec. 4.1]
and cf. [8, Cor. 4.2] or [3, Prop. 6.12]. Note, that this implies that Bernstein function are uniquely determined
by their values on the natural numbers.

A Bernstein function, and subsequently a completely monotone sequence, can be uniquely linked to
the law of a Lévy subordinator, see [5, Thm. 1.2]. In particular, let ψ be a Bernstein function, then a Lévy
subordinator Λ, uniquely determined in law, exists with Laplace exponent x 7→ tψ(x) for all t ≥ 0, i.e.

E
[

e−xΛt
]

= e−tψ(x), ∀t, x ≥ 0. (15)

Conversely, if Λ is a Lévy subordinator, then a Bernstein function ψ exists such that Eq. (15) holds.
This can be generalised, see, e.g. [25, p. 41]: let {ψt}t≥0 be a family of Bernstein functions ful�lling

ψ0 ≡ 0, (12a rev.)
ψs − ψt ∈ BF ∀s > t ≥ 0, (12b rev.)

t 7→ ψt(x) ∈ C(0), ∀x ≥ 0. (12c rev.)

Then, an additive subordinator, uniquely determined in law, exists with Laplace exponent x 7→ ψt(x) for all
t ≥ 0 and

E
[

e−x(Λs−Λt)
]

= e−(ψs−ψt)(x), ∀s ≥ t, x ≥ 0. (16)

Conversely, if Λ is an additive subordinator, then a family of Bernstein functions {ψt}t≥0 exists ful�ll-
ing Eqs. (12a) to (12c) such that Eq. (16) holds.
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Consistent Iterated Simulation of Multivariate Defaults: Markov
Indicators, Lack of Memory, Extreme-Value Copulas, and the

Marshall–Olkin Distribution
Damiano Brigo, Jan-Frederik Mai, Matthias Scherer, and Henrik Sloot

The review article [5] critically examines the practice of iteratively simulating multivariate credit events
over a discretized time grid. Primarily, we outline the effect of falsely assuming a multivariate lack of
memory property, carrying inter-period to terminal default time dependencies. Secondarily, we propose
using distributions fulfilling a suitable lack of memory property. In particular, we promote using hierarchical
Marshall–Olkin factor models to address a group of modeling issues for credit portfolios.

The introduction summarizes practitioners’ requirements for a joint model for financial risk factors and
credit events: Asset and risk management of path-dependent products often involves the simulation of
financial risk factors, for example, equity returns, over a discretized time grid. In addition, measuring
counterparty credit risk or simulating credit products must include credit events and default probabilities in
these simulations. We illustrate why many practitioners choose increment-driven credit models over directly
simulating default times despite the complexities of their terminal default time probabilities. Reasons are,
for example, their consistency with existing increment-driven models for other risk factors and the natural
consideration of different risk horizons.

A common simplification assumes iid inter-period credit events, discarding already defaulted entities.
The idea for this article originated from the observation of D. Brigo that some practitioners used this iid
assumption while falsely presuming equality, or at least similarity, of the terminal and inter-period default
time dependencies.

Section 2 outlines why assuming the default-indicator process being embeddable in a continuous-time,
(homogeneous) Markov process is reasonable if one desires a feasible and consistent model. Following,
we recall the existing lack of memory (LOM) properties for random vectors: The full lack of memory
property, equivalent to independence; the Marshall–Olkin (MO) lack of memory property, characterizing
the multivariate exponential distribution of the same name and equivalent to Markovian survival indicator
processes; the min-stable multivariate exponential (MSMVE) lack of memory property, equivalent to an
extreme-value survival copula coupled with exponential margins; and the exponential minima (EM) property,
which assumes all minima of components are exponential. All of these properties require margin stability in
the sense that they have to be fulfilled not only for the random vector itself but also for all of its margins.
Subsequently, we coin weak versions of these properties, which do not require this margin stability.

Section 3 investigates survival-of-all events. These events are interesting as they are relevant for the
valuation of first-to-default swaps. Additionally, we can reduce the requirements to obtain consistent
inter-period and terminal distributions to the following discretized version of the weak exponential minima
property:

P(τ > n∆) = P(τ > ∆)n. (C.1)

Inspired by previous work, we label distributions as common ∆-period self-chaining if they fulfill Eq. (C.1)
for all n ∈ N and as self-chaining if they are common ∆-period self-chaining for all ∆ > 0.

We link this property to the previously established lack of memory property by noting that the latter
property is equivalent to the WEM property and provide two examples of WEM distributions. Consequently,
we identify that EM distributions, including MSMVE and MO distributions, allow consistent iterated simulation
of survival of all events. Additionally, we recall that the Clayton, Frank, and Gaussian copula are in the
maximum domain of attraction of the independence copula. Consequently, using them as survival copulas
in the simplified approach above leads to asymptotically vanishing dependence.

In section 4, we finally investigate arbitrary mixed default-survival events. We identify that multivariate
phase-type distributions, characterized by having Markovian default indicator processes, fulfill our desired
consistency requirement. As examples, we discuss the looping default model, an extension of the bivariate
Freund distribution, and the Marshall–Olkin distribution. However, we argue that a feasible model should
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allow dropping or adding entities without losing the consistency property or introducing model ambiguity.
For this, we promote using previous hierarchical Marshall–Olkin factor models, rooted in the Lévy-frailty
representation of extendible MO distributions, and provide ample background information.

To demonstrate issues of vanishing terminal dependence for some instances of the simplified approach
above with selected survival copulas, we included two case studies for survival-of-all and mixed-default-
survival events in Sections 3 and 4. The first case study considers survival copulas of type normal, Frank,
Clayton, Gumbel, and t. The second case study also considers Marshall–Olkin, Freund, and independence
distributions. The results of the case studies are in line with the previously presented theoretical results: only
the Gumbel copula (survival of all) resp. Marshall–Olkin and independent (mixed default-survival) produce
consistent inter-period and terminal probabilities. We created these case studies to warn practitioners
against choosing an inter-period dependence, particularly the normal copula, resulting in asymptotically
vanishing terminal dependence.

Statement of individual contribution

An initial draft of the article was written by D. Brigo, J.-F. Mai, and M. Scherer in a collaborative effort for the
publication in the proceedings of the conference “Innovations in Insurance, Risk- and Asset Management”
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improvements in the preceding conference talk, associated with the working paper [88], on this topic; the
talk coined the properties common period lack of memory and self-chaining, but wrongly equated random
vectors being self-chaining with exponential margins and their survival copula having the extreme-value
property. First, I significantly rewrote the paper, except for the introduction, without changing its general
structure and synopsis. In particular, I aligned it with existing notions of lack of memory properties, such
as min-stable multivariate exponential and exponential minima and weak versions thereof, which do not
require that all margins inherit the property. Second, I improved the second case study in Sec. 4.3 by using
exact probabilities instead of Monte-Carlo estimates and considering additional copulas, specifically, the
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Remarks 3.1 and 4.3, and a significant portion of Section 2. Additionally, I was responsible for performing
the case studies, creating the visualizations, and writing the final draft; my co-authors contributed further by
reviewing and commenting on the final version before submission and during the peer-review process.

Addendum

In a numerical study, Sec. 4 of the article demonstrates that the terminal probabilities of a mixed default-
survival event coincide with those calculated from the inter-period distribution for the considered Marshall–
Olkin (MO) distribution. However, the article misses to investigate whether this is a general property of all
MO distributions for arbitrary mixed default-survival events. That this is true is shown in the following.1

Theorem C.1. Consider a d-variate MO distributed random vector τ , and let the survival indicator chain Z̃(∆)

for the discretization ∆ > 0 and final time horizon T = n∆ be the Markov chain defined by multiplicatively
accumulated survival indicators until the time ∆ of iid copies from τ as described in Sec. 4 of the article.
Then, τ is also the terminal distribution of this survival indicator process, particularly,{

Z̃(∆)(k) : k ∈ {0, . . . , T/∆}
}

d=
{

(1{τi>k∆} : i ∈ [d]) : k ∈ {0, . . . , T/∆}
}
.

Proof. Consider the Arnold model proposed in [20], represented as in the contributed core article [2]. In
particular, for the shock-arrival intensities {λI : ∅ ≠ I ⊆ [d]} of τ , define λ :=

∑
∅≠I⊆[d] λI and pI := λI/λ,

∅ ≠ I ⊆ [d], and let the survival-indicator process Z be defined via

Zt =
Nt∏
j=1

Yj , t ≥ 0,

1The theorem uses the notation of the contributed article and the references of this thesis.
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where N is a Poisson process with intensity λ, and Y1, Y2, . . . is an iid sequence of multivariate binary
random variables with P(Y1 = (1{i ̸∈I} : i ∈ [d])) = pI , ∅ ≠ I ⊆ [d].

Now, the claim follows from

Zt =
t/∆∏
k=1

Nk∆∏
j=N(k−1)∆+1

Yj

︸ ︷︷ ︸
d=Z∆

d=
t/∆∏
k=1

Z
(k)
∆ , ∀t ∈ {0,∆, 2∆, . . . , T},

where Z(k) are iid copies of Z; which uses that increments of N with the same time-step are iid.
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A current market-practice to incorporate multivariate defaults in global risk-
factor simulations is the iteration of (multiplicative) i.i.d. survival indicator in-
crements along a given time-grid, where the indicator distribution is based on a

copula ansatz. The underlying assumption is that the behavior of the resulting
iterated default distribution is similar to the one-shot distribution. It is shown

that in most cases this assumption is not fulfilled and furthermore numerical

analysis is presented that shows sizable differences in probabilities assigned
to both “survival-of-all” and “mixed default/survival” events. Moreover, the

classes of distributions for which probabilities from the “terminal one-shot”

and “terminal iterated” distribution coincide are derived for problems consid-
ering “survival-of-all” events as well as “mixed default/survival” events. For
the former problem, distributions must fulfill a lack-of-memory type property,
which is, e.g., fulfilled by min-stable multivariate exponential distributions.

These correspond in a copula-framework to exponential margins coupled via

extreme-value copulas. For the latter problem, while looping default inspired
multivariate Freund distributions and more generally multivariate phase-type

Open Access chapter published by World Scientific Publishing Company and distributed

under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
(CC BY-NC 4.0) License.
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distributions could be a solution, under practically relevant and reasonable
additional assumptions on portfolio rebalancing and nested distributions, the

unique solution is the Marshall–Olkin class.

Keywords: stepwise default simulation, default dependence, extreme-value cop-
ulas, Marshall–Olkin distribution, nested margining, Freund distribution, loop-

ing default models, multivariate phase-type distribution.

1. Introduction

The increasingly global nature of financial products and risks calls for ad-

equately complex stochastic models and simulation procedures. These are

required for valuation purposes as well as for risk analysis and often involve

thousands of risk factors that can be different in nature. Investment banks

and financial service companies are devoting a sizable effort to design soft-

ware and hardware architectures that support such global simulations effec-

tively, see, e.g. [1]. The path-dependent nature of many risks and the neces-

sity to analyze risks at different time horizons lead to an iterated simulation

of all risk factors across time steps. The consistent statistical representation

of default-times of multiple entities and their inter-dependence-structure is

the main motivation for this paper. For the simulation of default-times, up

to a final horizon, two possible approaches are considered:

(i) Simulate the default-times, at the beginning, once and for all in each

given scenario. The resulting values are stored and the other risk factors

are simulated iteratively up to the final time horizon.

(ii) Alternatively, one simulates in each given scenario for every time-period

a “default/no default” indicator of all non-defaulted entities conditional

on the default history — i.e. the survival of non-defaulted entities up to

the beginning of this period and the default-times of already defaulted

entities.

We anticipate that we will be concerned with the consistency of the two

approaches above under a number of additional specifications. The basic

question is:

When is an iterated default simulation, often done by sampling a given

type of multivariate distribution, equivalent to a one-shot simulation under

essentially the same distribution?

Although this appears to be a simple question, it is in fact rather nuanced.

For this question to fully make sense we need to be a little more precise on
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our definitions and on our problem specification, and it is indeed one of the

main purposes of this paper to fully clarify this question, its implications,

and some possible answers. It is worth putting this pre-question in the

open now, and we would like to mention that the first named author has

witnessed cases in the industry where the two procedures were assumed to

be equivalent when they were not, and this both in the valuation/hedging

space and in the risk measurement space. While the author is not allowed

to provide details on such cases for confidentiality issues, we will see some

numerical examples clarifying this discrepancy in the course of the paper.

Going back to our introduction, the dependence between default-times

and other risk factors has to be introduced on the whole risk factor evolu-

tion in approach (i) and on the period steps in approach (ii), respectively.

In this formulation both approaches are mathematically equivalent — how-

ever, this equivalence is based on conditional probabilities, which can be

arbitrarily complex.1 Consider, for example, the case of wrong way risk for

credit valuation adjustments for credit default swap (CDS) trades under

collateralization in [2], where the first approach is used: even with just

three default times involved, the CDS and the two trading parties, the for-

mulas become very involved and cumbersome. Thus, generally, one either

has a model for the default-times in approach (i) with complex conditional

probabilities, or one has a model for the indicator increment process in

approach (ii) with unknown “terminal iterated” dependence. The mathe-

matical underpinning — if any — for company-wide, global simulation of

defaults is often, or can be translated into, a copula-based ansatz. Such

a model originates from the statistical literature and renders approach (i)

more natural from the company-default perspective. However, when deal-

ing with large portfolios, the literature on financial risk management mostly

prefers models relying on a repeated evolution of risk factors on common

time grids. Approach (ii) is more consistent with this way of thinking and

therefore more desirable both from a theoretical and practical point of view,

for the following reasons:

• Software consistency with “Brownian-driven” asset classes:

Consider a bank that runs a global simulation on a large portfolio, in-

cluding complex products and defaults, in order to obtain a risk measure.

1Contrary to the univariate case, where sampling from conditional probability distribu-
tions can be handled using the distributional transform, even if we can calculate the
probabilities, conditional multivariate probability distributions can be very difficult to
sample from.
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One example would be computing the value-at-risk or the expected short-

fall of CVA, a task that is numerically very intensive, see, e.g. [3]. In

this context, there is need to evolve risk factors according to controlled

time steps that are common to all factors, to have all required variables

at each step of the simulation. While this is relatively natural for asset

models that are driven by Brownian-type processes and even extensions

with jumps, it becomes harder when trying to include defaults of under-

lying entities or counterparties. The reason for this is that default-times,

typically represented through intensity models, should be simulated just

once, being static random variables as opposed to stochastic processes.

Once simulated, there would be nothing left to iterate. However, the

consistency of the global simulation and the desire to have all variables

simulated at every step is prompting the design of iterated survival or

default flags across the time steps that are already used in the simulation

of more traditional assets.

• Basel III requirement for risk horizons: A further motivation for

iterating the global simulation across standard time steps is coming from

the Basel III framework when trying to address liquidity risk. The Bank

of International Settlements (BIS) suggests the following solution, see [4].

“The Committee has agreed that the differentiation of market liquidity

across the trading book will be based on the concept of liquidity hori-

zons. It proposes that banks’ trading book exposures be assigned to a small

number of liquidity horizon categories: [10 days, 1 month, 3 months, 6

months, 1 year]. The shortest liquidity horizon (most liquid exposures)

is in line with the current 10-day VaR treatment in the trading book.

The longest liquidity horizon (least liquid exposures) matches the banking

book horizon at one year. The Committee believes that such a frame-

work will deliver a more graduated treatment of risks across the balance

sheet. Among other benefits, this should also serve to reduce arbitrage

opportunities between the banking and trading books.”

It is clear then that a bank will need to simulate the risk factors of the

portfolio across a grid including the standardized holding periods above.

In this sense it will be practical to simulate all variables, including de-

faults and survivals, in common time steps. Software architecture and the

possibility to effectively decompose the simulation across steps, prompt

to the possibility to iterate the default simulation rather than trying to

simulate random default-times just once.

• General need for dependence modeling in the context of the cur-

rent counterparty credit risk debate: As an example, the current
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debate on valuation adjustments (as the partly overlapping credit CVA,

debit DVA, and funding FVA adjustments, see, e.g., [3]), is forcing fi-

nancial institutions to run global simulations over very large portfolios.

By nature, CVA is an option on a very large portfolio containing the

most disparate risk factors. A key quantity in valuing this option is

the dependence between the default of a counterparty and the value of

the underlying portfolio that is traded with that counterparty. When

such dependence is adverse for the agent making the calculation we have

wrong way risk (WWR), a risk that is at the center of the agenda of the

Bank of International Settlements in reforming current regulation. Mod-

eling the dynamics of dependence is not only essential for the current

emergencies of the industry, such as CVA/DVA/FVA and risk measures

on these quantities, but it is also necessary for the management of pure

credit products, such as, e.g., Collateralized Debt or Loan Obligations

(CDO, CLO).

Before shifting the focus solely to default-times, it is important to consider

not only the distribution of default-times but also the dependence on other

risk factors:

(a) In reality, default risk is correlated with other risk-factors. These can

be risk-factors belonging to other asset classes, e.g. equity, or even

macro-economic risk factors. These dependencies, however, are usually

not considered in model building for the following reasons: It might be

easy to reject the independence-assumption between a default-time and

some other risk-factor with qualitative arguments or statistical tests,

but the determination of a good model for this dependence (or directly

for the joint distribution) is usually far from trivial. Even if one can

formulate a satisfying model for other risk-factors and default-times

— or the survival-indicator increments — the additional complexity

can lead to computational problems (as explained in the following).

Furthermore, the design of such a global model, including dependence

between risk-factor classes, would require different departments of the

financial institution to work together. For most institutions this is

infeasible as business is often separated into different sections, of which

each models their relevant risk factors to their own appropriate level of

complexity.

(b) The computation of transition probabilities, or sampling from these

transition-distributions, for the risk-factor evolution will be very
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difficult and non-trivial in most cases. In particular, if there are

no closed-form expressions, one usually has to rely on numerical-

integration techniques — if available — which becomes time-consuming

and is difficult to implement.

(c) Dependency information requires additional storage — especially if the

dependency is conditional on the full histories of risk-factors, which is

even challenging in low, but especially in high dimensions.

Focussing on the (discrete) survival-indicator process, there are more prob-

lems which have to be considered:

(d) Assume that there are d entities and N simulation steps up to the final

time-horizon. In the worst case of full default-evolution-dependence this

leads to
∑N−1
k=0 (k + 2)d transition-probabilities. In the case of simple

time-dependence, we have N ·3d transition-probabilities. In the case of

complete time-homogeneity, one “only” has 3d transition-probabilities.

For a large number of entities d or/and a large number of simulation

steps N the issue of over-parameterization becomes apparent.

(e) Let T be the final time-horizon. Then the number of time-steps, and

subsequently the number of parameters, depends on the step-size ∆,

i.e. N = T/∆. This can lead to problems if different step-sizes have to

be simulated (e.g. days, weeks, months, ...) as all probabilities should

be consistent.

An additional problem is that the definition of all transition-probabilities

have to be re-assessed in case the composition of the defaultable portfolio

changes.

In summary, approach (i) appears more natural from the perspective of

default modeling itself, however, in a global risk factor model, approach (ii)

might be more desirable and is mostly used in the financial industry. Sum-

ming up, this involves the following questions:

(1) What are convenient conditions on the multivariate distribution of the

default-times such that approach (i) and approach (ii) are consistent

in the sense that if one knows the distribution of default-times for ap-

proach (i), one has a manageable “default/no default” indicator process

for approach (ii) yielding the same results, and vice versa.

(2) What can go wrong, if one uses some indicator evolution which is not

consistent in the sense of (1) — e.g. based on a Gaussian coupling of

exponential random variables?
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The consistency in question (1) can be weakened if the problem only con-

cerns “survival-of-all” events instead of “mixed default/survival” events.

The class of consistent distributions in the sense of question (1) might be

very large — as the requirement of understanding the distribution as a

model in approach (i) and approach (ii) can be fulfilled for many distri-

butions with enough time at hand. However, most of these distributions

are not feasible in practice, as we do not only need a model which is fully

understood, but also feasible for simulation in terms of memory usage and

sampling strategy. Therefore, a convenient assumption, which resolves — or

at least diminishes — problems (a)–(e) from above, is a (continuous-time)

time-homogeneous Markovian survival-indicator process. This is equivalent

to conditional probabilities being determined by the current set of defaulted

entities, but not on their specific default-times. The idea of using Marko-

vian survival-indicator processes (even possibly time-inhomogeneous and

only Markovian conditional on a set of intensity processes) is not new and

has been discussed in [5] and [6]. These papers focus on the issue of pricing

portfolio-credit derivatives. In the following we give a short overview on

the “survival-of-all” and “mixed default/survival” problems.

1.1. Problem one: “Survival-of-all” events

In this special case the underlying problem only concerns the

default/survival-of-all entities up to certain points in time. An example

for such a problem is the valuation of a first-to-default swap on a basket of

entities. Subsequently, one can demand a weaker version of consistency and

feasibility — namely that the “survival-of-all” event and the corresponding

indicator process are consistent and feasible. The class of consistent and

feasible distributions for this problem was first studied in [7] and is related

to a multivariate generalization of the univariate lack-of-memory property.

In particular, a subclass fulfilling this property are min-stable multivari-

ate exponential distributions. These are multivariate distributions with

exponential margins and an extreme-value copula. Fundamental examples

of this subclass, such as the Marshall–Olkin and the Gumbel–Hougaard

distribution, are presented in this paper.

1.2. Problem two: “Mixed default/survival” events

Problems which depend on “mixed default/survival” events — and thus

do not fall in the same category as problem one — require the original

strict version of consistency. This leads (under previously outlined feasibil-

ity conditions) to time-homogeneous Markovian survival-indicators. This

 I
nn

ov
at

io
ns

 in
 I

ns
ur

an
ce

, R
is

k-
 a

nd
 A

ss
et

 M
an

ag
em

en
t D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 9

5.
91

.2
36

.1
75

 o
n 

10
/1

3/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



August 9, 2018 13:1 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch03 page 54

54 Innovations in Insurance, Risk- and Asset Management

general class is already known under the name multivariate phase-type dis-

tributions. This article analyzes further desirable theoretical and practical

conditions on the resulting simulation process and as a result focuses on

the subclasses of Marshall–Olkin distributions as well as a multivariate ex-

tension of the bivariate Freund distribution. In particular, the practically

important requirement of having the Markov property also for sub-vectors

of indicators leads to a new characterization of the Marshall–Olkin law

that has been first discussed in [8] and is recalled here in the context of the

present paper. Our general aim is to increase awareness of the fact that

the stepwise simulation of default indicators (approach (ii) above) is a hard

task in general, and in particular that the practical implementation is not

feasible without huge efforts (both theoretical and computational), and that

sizable errors and undesired effects may occur by iterating under the wrong

conditions.

1.3. Structure of the paper

In Sec. 2 the survival-indicator process is introduced. It is shown that

Markovianity of this process can be identified on a distributional level with

a lack-of-memory type property. Subsequently, multiple lack-of-memory

properties are presented and associated with certain classes of multivari-

ate probability distributions. In particular, the min-stable multivariate

exponential property (MSMVE) is introduced and is related to its charac-

terization via extreme-value copulas and exponential margins.

Section 3 addresses the “survival-of-all” problem. Therefore, the con-

cepts of self-chaining distributions and copulas, which were introduced in

[7], are revisited and advanced. In particular, it is shown that the MSMVE

characterization in terms of extreme-value copulas with exponential mar-

gins solves the problem. Then it is outlined that the widely used Gaussian-

coupled exponential distributions do not fulfill that property. Moreover,

choosing such a distribution for the step-innovations leads asymptotically

to independence of the default-times, completely destroying dependence in

the limit if the step size in time tends to zero.

In Sec. 4 the “mixed default/survival” problem is discussed, for looping

default models, Freund distributions, and multivariate phase-type distribu-

tions. A special focus lies on the Marshall–Olkin class, leveraging its new

characterization in terms of Markov property of vectors and subvectors of

indicators, as in [8], and different simulation strategies as well as a conve-

nient construction through Lévy-frailty models.
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The final section concludes the article.

2. Default-time distributions and survival-indicator

processes

Assume that (Ω,F ,P) is a probability space on which all random objects of

this section are defined. Throughout this article, let τ = (τ1, . . . , τd)
′ be a

(non-negative) random vector of default-times2 for d entities with joint- and

marginal survival function(s) F̄ and F̄i, i ∈ [d] := {1, . . . , d}, respectively3

and Z = Z(t) be the corresponding survival indicator process which is

defined by

Zi(t) := 1{τi>t}, i ∈ [d], t ≥ 0.

In light of the introduction — and particularly as our questions of inter-

est rely on iterating the survival-indicator process over periods with fixed

length ∆ — it may seem more appropriate (and also simpler) to work with

the discretized version of Z, hereby denoted by Z(∆) and defined by

Z
(∆)
i (j) := Zi(j∆), j ∈ {0, . . . , N}, i ∈ [d].

As outlined in the introduction, there are various arguments why it is con-

venient to assume that the underlying continuous-time process Z is also

time-homogeneous Markovian. In the following another technical and a

model building argument for this assumption are presented:

(a) Technical argument: The period-length, ∆ > 0, is usually an externally

given quantity — e.g. set by the regulator as liquidity horizon or it is

implicitly given from the existing IT-infrastructure. Hence, a model

which can only be used consistently and feasible for very specific ∆ is

not desirable, as any (externally driven) change in ∆ might destroy the

models usability.

(b) Model building argument: From a model building perspective it is rea-

sonable to assume that Z(∆) has a representation with an underly-

ing continuous-time process Z. A deviation from the Markovian as-

sumption above implies that the process Z either violates the time-

homogeneity or the Markovian assumption entirely. However, if one

2For consistency, these “event”-times are referred to as default-times throughout this

article, however, other notions such as fatality-, inter-arrival-, or inter-failure-times are

equally applicable.
3For τ and s, t ≥ 0, the multivariate survival function is defined by F̄ (s) := P(τ > s)
and the ith marginal survival function by F̄i(t) := P(τi > t).
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assumes that the time-homogeneous Markovian property of Z(∆) is a

tolerable deviation from reality — one should avoid choosing a model

which violates those very properties on the continuous-time scale.

In summary, one can conclude that assuming an implied continuous-

time, time-homogeneous Markovian survival-indicator process Z is a rea-

sonable assumption, if one wants a feasible and consistent approach. In

particular, this assumption is desirable from a technical aspect and also

from a model building view if the underlying entities do note make the

time-homogeneity assumption in itself unusable. Therefore, it is assumed

throughout this article that, as a feasibility condition, Z is a continuous-

time, time-homogeneous Markovian survival-indicator process.

2.1. Markovian survival indicator-processes

Let I = {0, 1}d and define the auxiliary function h to establish a bijection

between the power set of [d], denoted by P([d]), and I by

h : P([d])→ I, I 7→ (1{1∈I}, . . . , 1{d∈I})
′.

A survival-indicator process is a stochastic process Z = Z(t) on I fulfilling

for all s, t ≥ 0 and J ( I ⊆ [d]

P(Z(t+ s) = h(I) | Z(t) = h(J)) = 0.

This process is Markovian if for all I, J ⊆ [d], A ∈ σ(Z(v) : v ≤ t), and

s, t ≥ 0

P(Z(t+ s) = h(I) | Z(t) = h(J), A)

= P(Z(s+ t) = h(I) | Z(t) = h(J)).

It is furthermore called time-homogeneous if additionally for all s, t, v ≥ 0

P(Z(t+ s+ v) = h(I) | Z(t+ v) = h(J))

= P(Z(t+ s) = h(I) | Z(t) = h(J)).

A time-homogeneous Markovian process satisfies

P(Z(t+ s) = h(I) | Z(t) = h(J)) = (~eh̃(J))
′ exp{Qs}~eh̃(I),

where h̃ : P([d])→ {0, 1}2d is an arbitrary bijection between the power set

of [d] and the set {1, . . . , 2d}, which fulfills h̃(I) < h̃(J) ⇔ |I| > |J | for all

I, J ⊆ [d],4 ~ek, k ∈ [2d], is the canonical basis of R2d , and Q ∈ R2d×2d is an

4This property guarantees, that the resulting intensity matrix Q is an upper-triagonal

matrix.
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intensity matrix.5 As it is assumed that h̃ is chosen such that for two sets

with different cardinality, the one with more elements has the lower index,

the matrix Q is upper trigonal with non-negative off-diagonal values and

rows summing up to zero, i.e.

Q =



q1,1 ?

. . .

0 qd,d


 .

Remark 2.1 (Intensities of a Markovian Process). Let Q ∈ Rn×n
be a (not necessarily upper trigonal) intensity matrix for n states S —

w.l.o.g. assume S = [n]. Then, one can construct a continuous-time, time-

homogeneous Markovian process Z as follows (see [9]):

(i) Let X0 be the (possibly random) initial state, i.e. define Z(0) := X0.

(ii) For k ∈ N0 define the kth jump time of Z by Tk (for k = 0 let T0 := 0).

Furthermore, assume that Z(Tk) = i ∈ S.

(a) Let Ek+1 ∼ Exp(−qii) be an exponential random variable with rate

−qii which is, conditional on Z(Tk), independent of σ({El, Tl, l ≤
k}).

(b) Define Tk+1 := Tk + Ek+1 and define Z(t) = i ∀t ∈ (Tk, Tk+1).

(c) Let Xk+1 be a discrete random variable on S\{i} with probabilities

proportional to the ith row, i.e. P(Xk+1 = j) = −qij/qii. Moreover,

assume that Xk+1 is independent of σ({El, Tl, l ≤ k}) as well as

independent of Tk+1.

(d) Let Z(Tk+1) = Xk+1.

(iii) Repeat (ii) either infinitely often or until an absorbing state is reached,

i.e. a state i with qii = 0. Note that for practical application the algo-

rithm stops if Tk+1 > T for some terminal time-horizon T > 0.

It is useful to know that a time-homogeneous Markovian survival-

indicator process is uniquely defined if for every non-zero transition, i.e.

h(J) → h(I), I ⊆ J , the transition probability for an arbitrary posi-

tive transition-time is known. This will be shown in the sequel. Let

τ be a default-vector with corresponding time-homogeneous Markovian

survival-process Z and intensity-matrix Q. Furthermore, let 1 ≤ K ≤ d,

5For a thorough introduction to continuous-time Markovian processes and a reference

for this result, see [9], Ch. 8 and 9.
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I = {i1, . . . , iK} ⊆ [d], tI ≥ 0, π ∈ Sd be a permutation6 with π([K]) = I

and tπ(1) ≥ . . . ≥ tπ(K), and define Aπ,K as the finite set

Aπ,K := {(I1, . . . , IK) : π([k]) ⊆ Ik, Ik ⊆ Ik+1 ∀k = 1, . . . ,K} ,

where tπ(K+1) = 0 and IK+1 = [d]. Then

P(τ I > tI) =
∑

(I1,...,IK)∈Aπ,K

K∏

k=1

(~eh̃(Ik+1))
′ exp

{
(tπ(k) − tπ(k+1))Q

}
~eh̃(Ik).

The assumption that the survival-indicator process is time-homogeneous

Markovian has an important implication: Let s = (s1, . . . , sd)
′ ≥ 0 be a

deterministic vector of non-negative times and let π ∈ Sd be a permutation

such that sπ(1) ≥ . . . ≥ sπ(d). Then for t ≥ 0, v = s+ t, and vπ(d+1) = 0 as

well as Id+1 = [d]

P(τ > s+ t) =
∑

(I1,...,IK)∈Aπ,d

d∏

k=1

(~eh̃(Ik+1))
′ exp

{
(vπ(k) − vπ(k+1))Q

}
~eh̃(Ik)

= (~eh̃([d]))
′ exp{tQ}~eh̃([d])

×
∑

(I1,...,IK)∈Aπ,d

d∏

k=1

(~eh̃(Ik+1))
′ exp

{
(sπ(k) − sπ(k+1))Q

}
~eh̃(Ik)

= P(τ > s)P(τ > t).

This is equivalent to

P(τ > s+ t | τ > t) = P(τ > s). (1)

Analogously, one can derive for some ∅ 6= I ⊆ J ⊆ [d], and t, v ≥ 0, that

P(τ I > sI + t+ v | τ J > t+ v, τ[d]\J ≤ t+ v)

= P(τ I > sI + t | τ J > t, τ[d]\J ≤ t).

2.2. Lack-of-memory properties

It is not a coincidence that Eq. (1) collapses in the univariate case to the

well-known univariate lack-of-memory property — also known as Cauchy’s

6A permutation on [d] is a bijection from [d] to [d]; the set of all permutations on [d] is

denoted by Sd.
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functional equation — as in that case the time-homogeneity of the survival-

indicator process implies exactly that the probability of a survival-time big-

ger than s+t conditional on a survival-time bigger than s is stationary with

respect to t, i.e.

P(τ > s+ t | τ > t) = P(τ > s). (2)

It is a well-known fact that the class of non-negative distributions ful-

filling Eq. (2) and having at least one continuity point7 are exponential

distributions — see, e.g., [10], p. 190. This property implies a very conve-

nient simulation scheme if one is interested in the exponentially distributed

survival-time of some entity:

1{τ>j∆}
d
=

j∏

k=1

1{τ(k)>∆},

where τ (k) ∼ τ are i.i.d. copies of τ and
d
= denotes equality in distribution.

The univariate lack-of-memory property, Eq. (2), can be extended to a

multivariate property in multiple ways. In the following, a few of these are

presented. Therefore, let τ be a vector of non-negative random default-

times and assume that the following conditions hold for all ∅ 6= I ⊆ [d] and

sI , tI , cI , s, t ≥ 0.

• Multivariate independent exponential lack-of-memory (MIELOM):

P(τ I > sI + tI | τ I > tI) = P(τ I > sI). (3)

• Multivariate Marshall–Olkin lack-of-memory (MMOLOM):

P(τ I > sI + t | τ I > t) = P(τ I > sI). (4)

• Min-stable multivariate exponential lack-of-memory (MSMVE):

P(τ I > cI(s+ t) | τ I > cIt) = P(τ I > cIs). (5)

• Exponential-minima lack-of-memory (EM):

P(τ I > s+ t | τ I > t) = P(τ I > s). (6)

7This condition can be weakened in this context.
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It was shown in [11] that (MIELOM) is equivalent to τ having indepen-

dent exponential components and (MMOLOM) is equivalent to τ having

a Marshall–Olkin distribution, i.e. there exist λI ≥ 0, ∅ 6= I ⊆ [d], with∑
I:i∈I λI > 0 for all i ∈ [d], such that for all t ≥ 0

P(τ > t) = exp



−

∑

I:∅6=I⊆[d]

λI max
i∈I

ti



 . (7)

Furthermore, the authors provided the following stochastic model: Let

EI , ∅ 6= I ⊆ [d], be exponential random variables with rates λI , ∅ 6= I ⊆ [d],

as above. Then the random vector τ has the survival function in Eq. (7),

where τ is defined by

τi := min{EI : i ∈ I}, i ∈ [d]. (8)

Marshall–Olkin distributions and continuous-time, time-homogeneous

Markovian survival-indicator processes are deeply connected. In [8] it

was shown that τ has a Marshall–Olkin distribution if and only if for ev-

ery non-empty subset I the marginal survival-indicator process ZI(t) :=

(1{τi>t}, i ∈ I)′ is time-homogeneous Markovian. The following theorem

shows that every continuous-time, time-homogeneous Markovian survival-

indicator process can be constructed using a finite sequence of Marshall–

Olkin distributed random vectors.

Theorem 2.1. Let Q be an intensity matrix of a time-homogeneous Marko-

vian survival-indicator process. Consider the process Z, which is con-

structed as follows:

(i) Define Z(0) = h([d]) = (1, . . . , 1)′ (All entities are alive at time 0).

(ii) Assume that Z jumped k ∈ N0 times and define the time of the

kth jump by Tk (for k = 0 let T0 := 0). Furthermore, assume that

h−1(Z(Tk)) = I ⊆ [d].

(a) For ∅ 6= J ⊆ I, let EJk+1 ∼ Exp(qh(I),h(I\J)) be independent expo-

nential random variables with rates qh(I),h(I\J), which are, condi-

tional on Z(Tk), also independent of all previously used random

variables.

(b) Define

Tk+1 := Tk + min∅6=J⊆I EJk+1 and Dk+1 := argmin∅6=J⊆I E
J
k+1.

Furthermore, define Z(t) := h(I) ∀t ∈ (Tk, Tk+1) and Z(Tk+1) :=

h(I\Dk+1).
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The resulting process Z is time-homogeneous Markovian with intensity ma-

trix Q. Note how the minimum operation in (b) is related to the Marshall–

Olkin fatal shock model.

Proof. The statement follows directly from Thm. A.1.

It is a well-known fact, see e.g. [12], p. 174, that the class of MSMVE

distributions is characterized by having exponential margins and a survival

copula of extreme-value kind, i.e. a copula Ĉ that satisfies

Ĉ(ut) = Ĉ(u)t, ∀u ∈ [0, 1]d, t ≥ 0. (9)

Furthermore, it holds that (see, e.g., [13])

MIELOM ( MMOLOM ( MSMVE ( EM.

For the purpose of this article, we also define weaker versions of these

properties, where the respective property only has to be fulfilled for I = [d],

and these are then referred to as weak versions of the respective properties,

e.g., weak exponential minima property (WEM).

3. Problem one: Iterating “survival-of-all”

This section addresses problem one, for which only “survival-of-all” events

are relevant. Let the vector of default-times be denoted by τ = (τ1, . . . , τd)
′.

A “survival-of-all” event (similarly for a “first-to-default” event) has the

form
{

min
i∈[d]

τi > s

}
, for some s > 0.

In practical applications, one has the options of either directly model-

ing the joint minimum of all default-times, or modeling the vector of all

default-times and considering its minimum. Note that these approaches

are sometimes called top-down- and bottom-up approach, respectively, not

to be confused with the related but different top-down and bottom-up ap-

proaches for collateralized debt or loan obligations, see for example [14].

The top-down approach has the appealing advantage that everything be-

comes simpler and more advanced models, e.g. with stochastic intensity,

become feasible. On the contrary, the bottom-up approach has the advan-

tage that the default-times themselves are more “natural,” compared to

their joint minimum, as a model. This means in particular that in bottom-

up models:
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• There is usually good knowledge on the single default-times τi through

historic data or CDS-quotes.

• On the contrary, there is comparably little understanding of the “first-

to-default”-time that, barring heroic assumptions on pool homogeneity,

granularity, and dependence, is usually accessed through brute force sim-

ulation methods.

• The dependence of other risk factors, e.g. equity, to the default-times is

usually less complex than their dependence to the “first-to-default” time.

• A dependence-structure between default-times can be found, e.g., by

mixtures of expert-judgment and model calibration to portfolio credit

derivative data (e.g. CDO’s), even though at the moment these markets

are much less liquid than before the 2007-2008 crisis.

For the rest of this section the second option of modeling the default-times

vector, namely the bottom up option, is considered.

The assumption of a continuous-time, time-homogeneous Markovian

survival-indicator process has been motivated with the need to understand

the increment- as well as the “terminal iterated”-distribution and to limit

the data which has to be stored for simulation. For this very problem we can

weaken these requirements by simply asking that the survival-indicator pro-

cess has a time-homogeneous probability to stay in the “no default”-state.

In other words, for this particular problem, the distribution of default-times

is feasible if it fulfills the weak exponential minima (WEM) property:

P(τ > s+ t | τ > t) = P(τ > s). (10)

Another formulation of this class, fulfilling Eq. (10), is the following:

“terminal one-shot survival probability up to t1 + . . .+ tN”

= P(τ > t1 + . . .+ tN ) = P(τ (1) > t1) · . . . · P(τ (N) > tN )

= “terminal iterated survival probability with steps t1, . . . , tN ,”

where τ (k), k ∈ [d], are i.i.d. copies of τ . The class of distributions fulfilling

the WEM-property is potentially large, as the following examples show, and

to the best knowledge of the authors it is not characterized in any other

way.

Example 3.1. Let τ have a bivariate survival function corresponding to an

independence survival-copula and the marginal survival functions F̄1(t) =

(t+1) exp{−t} and F̄2(t) = (1+t)−1, respectively. The functions F̄i, i ∈ [2],

are both proper survival functions as they are decreasing, continuous, and

tend to zero and one for t → 0 and t → ∞, respectively. Then the joint
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minimum, mini∈[2] τi, is exponential, and in particular τ fulfills the WEM-

property, but neither τ1 nor τ2 are exponential,

P
(

min
i∈[2]

τi > t

)
= (t+ 1) exp{−t} · (1 + t)−1 = exp{−t}.

Example 3.2. Let η be a (d−1)-dimensional non-negative random vector,

E an exponential random variable with rate λ > 0, and Π a random variable

on the set of permutations on [d]. Define τ̃ := (E,E + η′)′ and τ by

τ := (τ̃Π(1), . . . , τ̃Π(d))
′.

Then τ has the WEM-property, as by construction mini∈[d] τi = E.

The rest of this section has two purposes:

• The assumption of a time-homogeneous Markovian first-default survival

indicator has strong links to multivariate lack-of-memory properties. It is

shown that, in particular, all MSMVE distributions fulfill this property.

As a well-known representative of this class, the Gumbel–Hougaard cop-

ula and the corresponding Gumbel–Hougaard exponential distribution8

are introduced as an example.

• Showing that the popular approach of (independent in time) Gaussian-

coupled exponential increments does not fulfill the WEM-property. Fur-

thermore, it is shown that this approach kills dependence asymptotically

for N → ∞ — meaning the “terminal iterated” dependence is approxi-

mately that of independent-coupled exponential random variables.

3.1. Lack-of-memory properties revisited

Let ∆ be the period step-size, T the final horizon, and N the number of

periods up to T , i.e. T = N∆.

In [7], in the context of the problem of “survival-of-all”, the authors

tried to bridge the gap between the question

8The Gumbel–Hougaard distribution is the multivariate extension defined later in
Eq. (12). This was originally introduced in [15] for the bivariate case. It is not to

be confused with the two other bivariate exponential distributions introduced in that
very paper that are also named after Emil J. Gumbel. One of those, with the survival

function exp{−λ1t1−λ2t2−θt1t2}, is characterized by a lack-of-memory property called
bivariate remaining life constancy, see, e.g., [16], [17], which has the interpretation that,
conditional on the survival of the respective other component up to an arbitrary time,
both variables are exponential, cf. [18].
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Which distributions have equal “terminal one-shot” and “terminal

iterated” survival probabilities for common step-size ∆?

and properties of survival copulas corresponding to multivariate exponen-

tial distributions. This leads to the definition of so called self-chaining

copulas — or self-chaining distributions.

In the following, this approach will be (broadly) outlined, advanced

and generalized, exploring the full lack-of-memory implications and char-

acterization for the extreme-value copula with exponential margin solution

obtained initially in [7]. We will confirm also the special solutions found in

[7], namely the Gumbel–Hougaard copula and the Marshall–Olkin copula,

further specifying the properties of these solutions, although we will not

address the bivariate Pickands functions solution here. For further details

on Pickands functions see, for example, [19] or [20].

Definition 3.1. The distribution of τ has the weak common ∆-period ex-

ponential minima (WCPEM(∆))-property if for every two natural numbers

j, k ∈ N

P(τ > (j + k)∆ | τ > j∆) = P(τ > k∆).

It has the common ∆-period exponential minima (CPEM (∆))-property if

for all non-empty I ⊆ [d] the vector τ I has the (WCPEM(∆))-property.

It can be easily shown that this property can be rewritten as follows:

Definition 3.2. A random vector τ is ∆-periodic self-chaining if for all

j ∈ N

P(τ > j∆) = P(τ > ∆)j .

For a ∆-periodic self-chaining distribution, the corresponding survival-

copula Ĉ is called N-self-chaining in the point (F̄1(∆), . . . , F̄d(∆))′.

From Def. 3.1 it is visible that a distribution fulfilling the

(W)CPEM(∆)-property for all ∆ > 0 fulfills the (W)EM-property and

vice versa. Therefore, in light of Def. 3.2, the following definition follows.

Definition 3.3. A random vector τ is self-chaining if for all t > 0

P(τ > t) = P(τ > 1)t.

For a self-chaining distribution, the corresponding survival-copula Ĉ is

called R-self-chaining (or self-chaining) in the point (F̄1(1), . . . , F̄d(1))′.
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Let τ have exponential margins and define u := (F̄1(1), . . . , F̄d(1))′.
Then τ is self-chaining if and only if the survival-copula Ĉ fulfills (for the

specific u)

Ĉ(ut) = Ĉ(u)t, ∀t > 0. (11)

Equation (11) is well-known from extreme-value theory, as the class of copu-

las fulfilling Eq. (11) for all u ∈ [0, 1]d, cf. Eq. (9), is that of extreme-value

copulas (EVCs) and furthermore, that the class of min-stable multivari-

ate exponential distributions, cf. Eq. (5), is characterized by a coupling of

EVC’s and exponential margins, see [12], p. 174.

A self-chaining survival-copula in the point u ∈ [0, 1]d can only be

coupled with exponential margins with rates λi = − lnui, i ∈ [d], to a self-

chaining distribution, while an extreme-value copula can be coupled with

any exponential margin to a self-chaining distribution. In general, it should

be noted that almost all lack-of-memory properties get lost if the underlying

survival-copula is re-coupled with different marginal distributions — even

if one stays in the exponential class.

An example for a (survival-)copula which is self-chaining in arbitrary

points u ∈ [0, 1]d is the Gumbel–Hougaard copula, see [15],[16],[21],[22],

which is implicitly defined by the following multivariate exponential distri-

bution (λ > 0, θ ≥ 1)

P(τ > s) = exp



−

(
d∑

i=1

(λisi)
θ

) 1
θ



 , s ≥ 0. (12)

In [22], it was proven that the class of Gumbel–Hougaard copulas are the

only copulas which are both extreme-value- and Archimedean copulas, see

also [7] for an alternative proof.

An example for a distribution with exponential minima, which is not

min-stable multivariate exponential, with a recipe from [13] for the bivariate

case.

(1) Let E
(k)
I be independent exponential random variables with rates

λ
(k)
I , k ∈ [2], ∅ 6= I ⊆ [2].

(2) Let τ̃ (k) = (τ̃
(k)
1 , τ̃

(k)
2 )′, k ∈ [2], be defined by

τ̃
(k)
i := min{E(k)

{i}, E
(k)
[2] }, i, k ∈ [2],

i.e. both τ̃ (1) and τ̃ (2) are Marshall–Olkin distributed.
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(3) Let τ for p ∈ (0, 1) and a
(k)
i , i, k ∈ [2], be defined by

τi = Xa
(1)
i τ̃

(1)
i + (1−X)a

(2)
i τ̃

(2)
i , i ∈ [2],

where X is a Bernoulli variable with “success probability” p.

Choose λ
(1)
{1} = 1/2, λ

(1)
{2} = 1, λ

(1)
[2] = 2, λ

(2)
{1} = 2/3, λ

(2)
{2} = 1/2, λ

(2)
[2] = 1 as

well as a
(1)
1 = 1/2, a

(1)
2 = 1, a

(2)
1 = 1/3, and a

(2)
2 = 1/2; then the attained

distribution has EM but is not MSMVE. The attained distribution is a

mixture of MO-coupled, i.e. having a copula from a Marshall–Olkin survival

copula, exponential random variables. The key for the EM-property to hold

is to make sure that the mixed MO-coupled exponential distributions have

equal diagonal-functions for all margins. This concept can be extended to

arbitrary dimensions for the creation of distributions with EM.

In more basic terms, this discussion highlights a tension between the full

Marshall–Olkin law and the Marshall–Olkin copula with possibly different

exponential margins. The initial results in [7] include the solution given

by the Marshall–Olkin copula with possibly re-scaled exponential margins,

leading to a multivariate distribution that is different from a fully consistent

Marshall–Olkin law. In more intuitive terms, we can say that re-scaling

the margins with new exponentials breaks the natural consistency between

margins and dependence that is a key property of the Marshall–Olkin law.

In general, arbitrarily decoupling the margins and the dependence structure

may result in paradoxical results when analyzing wrong way risk in CDS

trades, see, for example, the low dimensional examples in [23], [3], [2], and

[24].

For the construction of high-dimensional models it might be convenient

to know that there is another recent approach for the generation of (ex-

tendible) EM-distributed random vectors via first hitting times of matrix-

mixtures of subordinators which are weakly infinitely divisible with respect

to time over random exponential barriers, see [25], [26].

3.2. Change in dependence when iterating non-self

chaining copulas

In the following, a standard approach which is widely used in the financial

industry is critically analyzed: The discretely iterated Gaussian-coupled

exponential margins survival-indicator process. Let, as before, T > 0,

N ∈ N, and ∆ := T/N and define for j ∈ N

Z(∆)(j + 1) | {Z(∆)(j) = 1} := 1{ζj+1>∆},
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for independent and identically distributed ζj+1 ∼ CΦ(ρ) ⊕ (F̄1, . . . , F̄d),

where CΦ(ρ) is the Gaussian copula with equi-correlation ρ > 0 and F̄i, i ∈
[d], are exponential survival functions.

Assume first that ζj , j ∈ [N ], are constructed with an arbitrary copula

coupled with exponential margins; then the “terminal iterated” probability

for the “survival-of-all” event is

P
(
Z(T/N)(N) = 1

)
=

(
P
(
ζ >

T

N

))N
. (13)

From multivariate extreme-value theory it is known that for N → ∞ the

expression in Eq. (13) either converges to a min-stable multivariate expo-

nential distribution9 or does not converge at all, see [12].

Definition 3.4. Let Ĉ be an extreme-value copula. Every copula ĈF with

lim
n→∞

ĈF (u1/n)n = Ĉ(u), ∀u ∈ [0, 1]d,

is said to be in the domain of attraction of Ĉ.

Theorem 3.1. Let d = 2, then the Clayton copula, Frank copula, and the

Gaussian copula for ρ < 1 are in the domain of attraction of the indepen-

dence copula.

Proof. See [12],[27]–[29].

This implies in particular for d = 2 and large N that the distribution of τ is

approximately that of independent exponential random variables. Hence,

and this is a word of warning, for large N the Gaussian-coupling kills the

correlation of the “terminal iterated” law.

Remark 3.1. The asymptotic “terminal iterated” dependence can be in-

ferred if the survival-copula of the iterated law lies in the domain of at-

traction of some extreme-value copula, e.g. in Thm. 3.1, it was shown that

the bivariate non-comonotonic Gaussian-, Clayton-, and Frank copulas are

in the domain of attraction of the independence copula, see [12], p. 141

and also [29] for an early account on asymptotic independence of the Gaus-

sian copula. The bivariate exchangeable t-copula lies in the domain of

attraction of the t-EV copula, which is for finite degrees of freedom not the

independence copula and depends on the degrees of freedom as well as the

correlation parameter, see [30]. Furthermore, if ĈF lies in the domain of

9A vector of independent exponentially distributed random variables is also MSMVE.
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attraction of Ĉ, then their upper-tail-dependence coefficient coincides —

in particular, if a copula ĈF incorporates asymptotic independence and

lies in the domain of attraction of an extreme-value copula Ĉ, then Ĉ is

the independence copula, see e.g. [30], pp. 587–588. Moreover, if ĈF is a

d-dimensional copula which lies in the domain of attraction of Ĉ and in-

corporates pairwise asymptotic independence, then Ĉ is the independence

copula, see, e.g., [30], p. 591. This implies in particular that also the d-

dimensional exchangeable Gaussian-copula with ρ < 1 lies in the domain

of attraction of the independence copula.

In the following example, this effect is analyzed numerically for bivariate

Gaussian-coupled exponential distributions with rates λIG = 1% and λSG =

4.5%, corresponding to an investment grade (IG) or speculative grade (SG)

entity. The “terminal one-shot” and “terminal iterated” probability for the

“survival-of-all” event is denoted by

pT := P(ζ > T ) or pN∆ := P(ζ > ∆)N = P(τ > T ).

In Tables 1 and 2, the result of this analysis for two different settings

with different final time-horizons as well as different numbers of iterations

can be observed. The results illustrate the statement from Thm. 3.1, i.e.

that Gaussian-coupled exponential distributions with ρ < 1 do not have

the WEM-property. Moreover, the relative error is sizable and becomes

larger for higher marginal rates and higher correlation, which is especially

undesirable.

Table 1. Comparison of “terminal one-shot”

and “terminal iterated” survival probabilities for

T = 5y and N = 1000.

λ1 λ2 ρ pT pN∆ % Diff.

0.010 0.010 0.25 0.9084 0.9049 0.38%
0.010 0.010 0.50 0.9142 0.9057 0.95%

0.010 0.010 0.75 0.9238 0.9103 1.48%

0.010 0.045 0.25 0.7679 0.7598 1.07%
0.010 0.045 0.50 0.7785 0.7614 2.24%
0.010 0.045 0.75 0.7908 0.7698 2.73%

0.045 0.045 0.25 0.6592 0.6382 3.29%
0.045 0.045 0.50 0.6851 0.6421 6.7%

0.045 0.045 0.75 0.7187 0.6605 8.81%

In Fig. 1, the relative error is visualized for four additional survival-

copulas, i.e. the t-, Clayton-, Frank-, and Gumbel-copula, and multiple
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Table 2. Comparison of “terminal one-shot”

and “terminal iterated” survival probabilities for

T = 30y and N = 1000.

λ1 λ2 ρ pT pN∆ % Diff.

0.010 0.010 0.25 0.5765 0.5496 4.91%
0.010 0.010 0.50 0.6084 0.5545 9.71%

0.010 0.010 0.75 0.6483 0.5766 12.43%

0.010 0.045 0.25 0.2169 0.1929 12.47%
0.010 0.045 0.50 0.2389 0.1974 21.01%

0.010 0.045 0.75 0.2553 0.2142 19.2%

0.045 0.045 0.25 0.0949 0.0682 39.17%
0.045 0.045 0.50 0.1268 0.0728 74.09%

0.045 0.045 0.75 0.1667 0.0899 85.38%

Kendall’s τ , denoted by τK , where the underlying copula parameters are

calibrated such that a certain τK is achieved. One can see that the error

is strongly dependent on the chosen rank correlation. Furthermore, the

Gaussian coupling seems to have the largest errors for τK ≤ 75%, while the

error for the t-coupling is rather small in comparison. An explanation for

the latter observation could be that the bivariate t-copula converges for a

low degree of freedoms comparably fast, see [27], and the t-EV copula still

incorporates information on ν and τK .

In conclusion, these calculations show that a coupling with the

Gaussian-, Frank-, or Clayton copula can lead to sizable differences in the

terminal probabilities. This is not a surprising result, as it was already

shown theoretically that the terminal probabilities can only match if the

iterated distribution has the WEM-property (e.g. an MSMVE-distribution)

and that the iteration of Gaussian-copulas leads asymptotically to indepen-

dence; however, this analysis underscores the severity of the mismatch.

4. Problem two: “Mixed default/survival” events

So far, the problem of finding conditions under which the “survival-of-all”

simulation can be iterated (feasible) in a way that makes it consistent to

a single step simulation was addressed. However, while the “survival-of-

all” may be of interest in situations where one wishes to exclude even a

single default, or for the valuation of a first-to-default CDS, it is more in-

teresting to look at the general problem of iterating in presence of “mixed-

default/survival”-states. This problem, “problem two,” is the topic of the

present section and conditions for the feasible and consistent simulation

of “mixed-default/survival”-indicators up to a terminal time are analyzed.
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Fig. 1. Relative deviation of pT and pN∆ in % vs. Kendalls’s τ for T = 5y, λi = 4.5%, i =

1, 2, N = 10, and 3 degrees of freedom for the t-distribution, see [28].

Finally, examples such as the Marshall–Olkin distribution and a multivari-

ate extension of the Freund distribution are presented.

4.1. The looping default model and the Freund distribution

One of the most intuitive models for contagion effects in portfolio-credit risk

is the so-called “looping default”-model, the terminology being introduced

in one of the first works on counterparty credit risk pricing, see [31]. In the

bivariate case, the model can easily be explained: Let C1 and C2 be two

companies with respective default intensities for t ≥ 0

λ̃1(t) = λ1 + 1{τ2≤t}(η1 − λ1),

λ̃2(t) = λ2 + 1{τ1≤t}(η2 − λ2),

where λ1, λ2, η1, η2 > 0. Loosely speaking, this means that

the default/survival-probabilities of company C1 depend on the de-

fault/survival of company C2 and vice versa. This explains the notion

of a “looping-default” model, as the influence of companies on each-others

default/survival-probabilities can be depicted as a loop. This model formu-

lation can easily be generalized to non-linear or stochastic hazard functions.

Constructing a well-defined probability space, however, supporting such a

multivariate distribution is non-trivial. Therefore, it was initially assumed
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that the set of companies can be divided into two classes A and B, such

that the default of a company from set A can influence the default of a

company from B, but not vice versa. As a consequence the model can be

formulated recursively in the spirit of a classical intensity-based model, see

[31]. The problem of constructing the distribution in the general model

(with hazard-rate functions which are deterministic functions of time and

default history) on a well-defined probability space has been investigated

in subsequent articles and finally was resolved in [32], where the “looping-

default” model is defined using the so-called “total hazard construction,”

which originates from the statistical literature, see [33] and [34]. The total

hazard construction defines a d-dimensional random vector τ of default-

times as a function of d independent unit exponential random variables

E1, . . . , Ed, such that the corresponding default intensities satisfy certain

relations that are specified a priori. This construction algorithm is, how-

ever, rather complicated to implement in practice, and in particular has no

natural coherence with stepwise simulation — rendering it inconvenient for

our purpose. As a first example of the total hazard construction, [32] recon-

siders the “looping default” of [31] in a two-dimensional setup. In [6] and

[5], it was shown that the “looping default” model falls into the class of

default models whose survival indicator process is a Markov chain, which

provides an alternative stochastic construction being naturally consistent

with stepwise simulation. Interestingly, in the bivariate case the probability

law of τ = (τ1, τ2)′ is well-known in the statistical literature as well.

Remark 4.1 (Looping default model/Freund distribution). The

bivariate distribution which is derived in [32] coincides precisely with the so-

called bivariate Freund distribution, which is an “old friend” from reliability

theory, see [35]. In other words, the looping default has incidentally been

known for many years in the statistical literature by the name “Freund

distribution.” The fact that both distributions coincide can be observed by

comparing the bivariate densities derived in [32] and [35], respectively. The

details are provided below.

In the sequel, a new construction for the Freund distribution based on

continuous-time, time-homogeneous Markovian processes is presented. This

construction provides an alternative access to this probability law, which

is in particular based on a stepwise-simulation ansatz. Moreover, it can be

easily generalized to dimensions d > 2 and to extensions with simultaneous

defaults.
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Consider two companies’ default-times τ = (τ1, τ2)′. We construct

the associated survival indicator process Z(t) := (1{τ1>t}, 1{τ2>t})
′ as a

continuous-time, time-homogeneous Markov chain. This process is fully

described by its intensity matrix Q. Let the four states (1, 1), (0, 1), (1, 0),

and (0, 0) be indexed by the numbers 1, 2, 3, and 4 and define the intensity

matrix Q ∈ R4×4 by

Q =




−(λ1 + λ2) λ1 λ2 0

0 −η2 0 η2

0 0 −η1 η1

0 0 0 0


 ,

where the “initial intensities” λi > 0, i ∈ [2], and the “intensities conditional

on second-party default” ηi > 0, i ∈ [2], are positive real numbers. It is easy

to verify that in case the condition ηi 6= λ1+λ2, i ∈ [2], is fulfilled the matrix

Q is diagonalizable,10 i.e. we can find a matrix M such that

M−1QM = diag(−(λ1 + λ2),−η2,−η1, 0),

where the transformation-matrix M has the eigenvectors of Q as column

vectors, i.e.

M =




1 λ1

λ1+λ2−η2
λ2

λ1+λ2−η1 1

0 1 0 1

0 0 1 1

0 0 0 1


 .

This intensity matrix Q can be interpreted as follows (cf. Thm. 2.1):

Being in a certain state corresponds to a certain row of the matrix — e.g.

the process starts in state (1, 1) corresponding to row 1. For each other

state (0, 1), (1, 0), and (0, 0) there are independent latent exponential ran-

dom variables with rates Q(1,1),(0,1), Q(1,1),(1,0), and Q(1,1),(0,0). The process

Z reacts only on the smallest of these random variables and moves to the

corresponding target state. A rate of zero corresponds to the correspond-

ing random variable being “degenerate,” i.e. almost surely equal to infinity.

Therefore, the chain cannot go directly from no default (1, 1) to joint de-

fault (0, 0). Finally, as Q has vanishing row sums, the ith diagonal entry

corresponds to the negative rate of the minimum of all latent exponential

random variables for transition out of i. The same logic applies to the other

rows of Q. In particular, after the default of one company, the hazard rate

10The case ηi = λ1 +λ2 for some i ∈ [2] is still a valid model. However, as the matrix Q
is not diagonalizable, the analytical calculation of probabilities becomes more involved.
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of the remaining company changes from λi to ηi, and the bottom row of

Q is zero because the state of two defaults is an absorbing state. Using

diagonalization, one can show that for t > 0 the entries of the transition

matrix

P [t] := etQ = M−1 exp{tMQM−1}M
are given by

P(1,1),(1,1)[t] = e−(λ1+λ2) t,

P(1,1),(0,1)[t] =
λ1

λ1 + λ2 − η2

(
e−η2 t − e−(λ1+λ2) t

)
,

P(1,1),(1,0)[t] =
λ2

λ1 + λ2 − η1

(
e−η1 t − e−(λ1+λ2) t

)
,

P(1,1),(0,0)[t] = − λ1

λ1 + λ2 − η2
e−η2 t − λ2

λ1 + λ2 − η1
e−η1 t

+ 1 +
( λ1

λ1 + λ2 − η2
+

λ2

λ1 + λ2 − η1
− 1
)
e−(λ1+λ2) t,

P(0,1),(0,1)[t] = e−η2 t, P(0,1),(0,0)(t) = 1− e−η2 t,
P(1,0),(1,0)[t] = e−η1 t, P(1,0),(0,0)(t) = 1− e−η1 t,

and all other entries of P being zero. In particular, we calculate

P(τ1 > t1, τ2 > t2)

=

{
P(1,1),(1,1)(t1)

(
P(1,1),(1,1)(t2 − t1) + P(1,1),(0,1)(t2 − t1)

)
, t2 ≥ t1

P(1,1),(1,1)(t2)
(
P(1,1),(1,1)(t1 − t2) + P(1,1),(1,0)(t1 − t2)

)
, t1 > t2

=

{
λ2−η2

λ1+λ2−η2 e
−(λ1+λ2) t2 + λ1

λ1+λ2−η2 e
−η2 t2−(λ1+λ2−η2) t1 , t2 ≥ t1

λ1−η1
λ1+λ2−η1 e

−(λ1+λ2) t1 + λ2

λ1+λ2−η1 e
−η1 t1−(λ1+λ2−η1) t2 , t1 > t2.

The latter distribution is precisely the Freund distribution, which can be

seen by comparing it to Eq. (47.26) in [16], p. 356. Note additionally, that

the so-called ACBVE(η̃1, η̃2, η̃12)-distribution, defined in [36], arises as the

three-parametric subfamily of the Freund distribution, obtained from the

parameters

λ1 = η̃1 +
η̃12η̃1

η̃1 + η̃2
, λ2 = η̃2 +

η̃12η̃2

η̃1 + η̃2
, η1 = η̃1 + η̃12, η2 = η̃2 + η̃12.

Multivariate extensions of the described Markov chain construction,

leading to the Freund distribution, are now clearly straightforward. One

can simply define the intensity matrix Q as follows: For each set I ⊆ [d] one

has to define exponential rates ηJ for all subsets J ⊆ I with |J | = |I|−1, i.e.

corresponding to exactly one additional default scenario, and write them in
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the respective entry Qh(I),h(J). All other off-diagonal entries of Q are set to

zero, and then the diagonal elements are computed as the negative of the

sum over all previously defined row entries. Similarly, one can generalize

the model to allow for multiple defaults and also assign positive exponential

rates to subsets J ⊆ I with |J | =|I| − k, k ≥ 1.

For stepwise simulation along the ∆-grid, one only requires the matrix

P [∆] = exp{∆Q}, which can be computed easily if Q is diagonalizable or

otherwise numerically (e.g. expm in MATLAB or Matrix::expm in R).

Remark 4.2. The class of distributions attained in continuous-time, time-

homogeneous Markovian survival-indicator processes coincides with the

class of multivariate phase-type distributions which were introduced in [37],

see also [38]. Multivariate phase-type distributed random vectors τ are de-

fined implicitly through a continuous-time, time-homogeneous Markovian

process Z and absorbing sets Ai, i ∈ [d], such that
⋂
i∈dAi is absorbing and

τi := inf{t > 0 : Z(t) ∈ Ai}, i ∈ [d].

In particular, it follows that all resulting marginal distributions of τ are

univariate phase-type distributions.

4.2. Marshall–Olkin distributions

Throughout this section, we denote by ZI the I-margin of the survival-

indicator process Z which only consists of the components indexed by I ⊆
[d]. This section starts with summarizing the findings and results of [8], in

which it is emphasized that for practical applications even the assumption of

a continuous-time, time-homogeneous Markovian survival-indicator process

has serious drawbacks if the corresponding default-times vector τ does not

have a Marshall–Olkin distribution. The findings are:

(a) In general, even if Z is time-homogeneous Markovian the survival-

indicator ZI , corresponding to a subportfolio ∅ 6= I ( [d], might not

fulfill this property. As a result, even if a certain study involves only

the default-times τ I one has to simulate the full survival-indicator pro-

cess Z. This is undesirable for two reasons: Firstly, simulations only

considering subportfolios cannot be performed more efficiently than via

the full portfolio simulation. Second, every restructuring of the credit

portfolio requires a careful adjustment and possibly a reevaluation of

the whole default model (see (b) for a detailed account).

(b) If the underlying credit portfolio is subject to restructuring, the Marko-

vian survival-indicator model is, in general, problematic. This is best
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explained in the case where an additional entity d + 1 is added to the

credit portfolio. Then, each state L splits into two separate states L

and L̃ := L∪ {d+ 1}, and following this logic each “transition-rate” in

the intensity matrix has the interpretation

Ph(I),h(J)[∆] = P
(
Z((k + 1)∆) ∈ h({J, J̃}) | Z(k∆) ∈ h({I, Ĩ})

)
,

with an extended version of h. Hence, to be consistent with the model

before restructuring, generally all transition probabilities have to be

carefully translated into a new model. Therefore, models which have

a “dimension-less” specification are very popular in the industry — an

example for such a model, which particularly does not correspond to a

Markovian survival-indicator, is the Gaussian one-factor model.

(c) A general drawback of all Markovian survival-indicator models is that

one-dimensional marginals are heavily dependent on the specification

of Q. Moreover, given an intensity-matrix Q, the construction of finite

state space Markovian processes, cf. Rmk. 2.1 or Thm. 2.1, gives a par-

ticular interpretation of the joint behavior, which is lost after applying

arbitrary marginal transformation. Finally, if there exists a positive

rate qh(I),h(J) for two sets with |J | ≤ |I| − 2, the default-time distri-

bution has a singular component, i.e. joint defaults are possible. As a

result, marginal transformation is even more difficult and can introduce

undesired effects if performed without care, see e.g. [39], Sec. 5.

A Markovian characterization of the Marshall–Olkin law

The problem described in (a) can easily be resolved by requiring that also

all marginal survival-indicator processes ZI have to be time-homogeneous

Markovian. The main result of [8] is the following theorem.

Theorem 4.1. (Markovian characterization of MO). The |I|-
dimensional survival indicator processes ZI are time-homogeneous Marko-

vian for all subsets ∅ 6= I ⊆ [d] if and only if τ = (τ1, . . . , τd)
′ has a

Marshall–Olkin distribution.

Simulation and Application

There are multiple stochastic models that produce Marshall–Olkin dis-

tributed random vectors, which can be used for model specification and

simulation. We will consider three models. The seminal interpretation is
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an exogenous shock model representation with 2d − 1 independent expo-

nential shock arrival-times, one for each subset of components, cf. Eq. (8),

see also [11]. An alternative model, in the following denoted as the Arnold

model, was introduced in [40] and is based on compound sums of expo-

nential random variables. The model can be summarized as follows: Let

{Ei}i∈N be an i.i.d. family of exponential random variables with a rate

c =
∑
∅6=I⊆[d] λI and {Xi}i∈N a discrete Markov-chain on {I : ∅ 6= I ⊆ [d]},

which has a probability of λI/c for a transition from an arbitrary state each

into I. Then, the random vector τ is defined by

τi := inf{t > 0 : i ∈ XN(t)},
where N(t) :=

∑∞
i=1 1{E1+...+Ei≤t}. The latter is closely linked to the clas-

sical model for the underlying Markovian survival-indicator as introduced

in the previous sections, which is the third model.

Remark 4.3 (Comparison of MO-models). All three models require a

full model specification, i.e. 2d−1 parameters, one for every non-empty set

of components. The original model has the advantage of being very simple

and easy to implement, however, for large dimensions d one has to sample

2d−1 exponential shocks — therefore the simulation of n independent sam-

ples has a runtime of the order O(n2d), see [41]. The Arnold-model is a

little more difficult to implement efficiently, see [41], Alg. 3.3 and Alg. 3.4

for details, however the sampling of n independent samples has an expected

runtime of the order O(2d + nd3). The classical Markov simulation is

very similar to the Arnold model, with two important differences, which

make this approach either more or less desirable. The Arnold model has

the property that the distributions of waiting times to the next “event” as

well as the random set-variable of “killed” components corresponding to

that event are i.i.d. However, if all set-components have already defaulted

nothing happens. In the classical Markovian setup the exponential-rates of

the waiting times as well as the (random) new state depend on the current

state. As a result the initial setup and storage for transition probabilities of

the Arnold model is less costly. The price to pay is that not every “event”

corresponds to an action. In summary, which of these models is most ap-

propriate depends on the dimension d, the number of simulations n, and

the computational capabilities.

A possible way to reduce the number of model parameters as well as the

computational effort for simulation (with all models) is to assume that all,

but a few selected shock-rates equal zero: In [42] the shock model is defined
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using only idiosyncratic shocks, a global shock, and a few additional shocks

which are chosen on some classification, e.g. industry segment, country,

etc., see also [43] for a similar approach.

Considering default modeling, the dynamic properties of the aggregated

default counting process and the related loss process have been studied in

[44] and [45] under pool homogeneity assumptions and time-inhomogeneous

cluster default-intensities11 in dimensions up to d = 125. These authors

build on the framework of [43], one of the few frameworks allowing for an

explicit joint bottom-up and top-down approach, where a Marshall–Olkin

bottom up setting corresponds to a generalized Poisson process top-down

setup. The GPL model in [44] is one of the first pre-crisis arbitrage-free

aggregate loss model to be consistently calibrated to the whole panel of

different CDO tranches and maturities for the iTraxx (or CDX) portfolio,

including a discussion on tranchelets. For a summary of related models

and a calibration study ranging from 2005 to 2009 iTraxx tranches data

see [14]. For an example of the calibration of a (time-inhomogeneous)

Markovian model to market data, see [46] and [47].

Marshall–Olkin one-factor models

While survival-indicator processes defined on a latent Marshall–Olkin dis-

tribution solve the problem described in (a), it is still a model with a large

number of parameters, which is in general inefficient to sample. Further-

more, the problem described in (b) is not resolved, as a Marshall–Olkin

distributed vector τ attained with the classical shock model representation

as a model tied to a specific dimension d, and certain objects indexed by

{1, . . . , d}. Assume, that a d + 1 dimensional Marshall–Olkin distribution

τ̃ exists with τ̃ [d]
d
= τ . Then, for i ∈ [d], it holds that (cf. Eq. (8))

τ̃i = min{ẼI : i ∈ I}
= min{min{ẼI , ẼI∪{d+1}} : i ∈ I ⊆ [d]},

where ẼI , ∅ 6= I ⊆ [d+ 1], are the independent exponential random shocks

from the shock model representation of τ̃ . In particular, it follows for the

rates of τ that

λI = λ̃I + λ̃I∪{d+1}, ∅ 6= I ⊆ [d],

11In this model, all defaults are triggered by independent, time-inhomogeneous Poisson

processes for subsets (clusters) of entities.
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which shows that there are infinitely many possibilities to embed a

Marshall–Olkin distribution into a higher dimensional Marshall–Olkin dis-

tribution. Summarizing, one can conclude that, in general, for large d the

Marshall–Olkin distribution has too many parameters and has no direct

intuition for the extension into higher dimensions.

The simplest way to circumvent this issue is to assume that there exists

an exchangeable sequence τ̃i, i ∈ N, such that for every finite ∅ 6= I ⊆ N the

random vector τ̃ I := (τ̃i)i∈I has a Marshall–Olkin distribution. Random

vectors τ which have such a construction are said to have an extendible

Marshall–Olkin distribution. A thorough treatment of these distributions

can be found in [20], which also shows that an extendible Marshall–Olkin

distribution can be characterized and constructed by a Lévy-subordinator

Λ.

Theorem 4.2 (Lévy-frailty construction). Let {τi}i∈N be an ex-

changeable sequence on some probability space, such that each finite margin

has a Marshall–Olkin distribution. Denote by H =
⋂
n≥1 σ(τn, τn+1, . . .)

the tail-σ-field of {τi}i∈N.

(a) The stochastic process Λ(t) := − logP(τ1 > t | H), t ≥ 0, is a (possibly

killed) Lévy subordinator.

(b) There exists a sequence of i.i.d. unit exponential random variables

{Ei}i∈N, independent of Λ, such that almost surely

τi = inf{t > 0 : Λ(t) > Ei}, i ∈ N.

(c) Denote by x 7→ ψ(x) the associated Bernstein function,12 i.e.

exp{−tψ(x)} = E[exp{−xΛ(t)}], then

P(τ > t) =

d∏

i=1

e−tπ(i)(ψ(i)−ψ(i−1))

for each d ≥ 1 and τ = (τ1, . . . , τd)
′, t ∈ Rd+ and a permutation π on

[d] with tπ(1) ≥ . . . ≥ tπ(d).

Proof. By De Finetti’s Theorem, conditional on H the sequence {τi}i∈N
is i.i.d., with distribution function 1− exp{−Λ(t)} for Λ(t) := − logP(τ1 >

t | H), see [50]. The claim on the variables {Ei}i∈N can be established

12A Bernstein function ψ is characterized by a Lévy-triplet (a, b, ν) for a, b ≥ 0 and a
Lévy-measure ν on (0,∞) fulfilling the integrability condition

∫
(0,∞) 1 ∧ vν(dv) < ∞,

where ψ(x) = a1(0,∞)(x) + bx+
∫
(0,∞)(1− e−xv)ν(dv), x ≥ 0, see [48], [49].
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with a modified distribution function, see [51], Prop. 2.1. Furthermore,

the law of {Λ(t)}t≥0 is almost surely uniquely determined by H, and by

[41], Chapter 3.3, it is a (possibly killed) Lévy subordinator with the claimed

properties.

The alternative stochastic model of extendible Marshall–Olkin distribu-

tions via the so-called Lévy-frailty construction in Thm. 4.2 has the advan-

tage of being a De Finetti model for extendible sequences, which renders

the approach independent of the dimension d. This solves not only the

problem described in (b), but also provides an alternative simulation strat-

egy, see [8] for a detailed account. The alternative simulation strategy has

the advantage that its runtime scales linearly with increasing dimension,

which makes it particularly interesting for large d. The approach comes

with the drawback that a simulation bias is introduced as we can only sam-

ple the random walk corresponding to some embedding of Λ on a discrete

time-grid. This bias, however, can be controlled through the step size of

the discrete time-grid.

In the following we present five examples of Lévy-subordinators which

can be used to define parametric one-factor Marshall–Olkin distributions.

Example 4.1 (Linear drift). Let Λ(t) = bt, t ≥ 0 for some b > 0, then

τ corresponds to d independent exponentially distributed random variables

with common rate b. A simple extension can be attained assuming a “global

shock” E ∼ Exp(a), a > 0, which “kills” all entities. This corresponds to a

(killed) Lévy-subordinator Λ(t) = bt+∞· 1{E≤t}, t ≥ 0 with the convention

0 ·∞ = 0. The corresponding Bernstein-function is ψ(x) = a1(0,∞)(x)+bx.

This model is, e.g., implicitly used in [52]. A “global shock” can anal-

ogously be introduced in every Lévy-frailty model by assuming that Λ is

“killed” — that is, sent to the absorbing state ∞ — at a rate a > 0, i.e.

there exists an independent exponential random variable E with rate a and

we assume that Λ(t) = ∞ for t > E. The corresponding new Bernstein-

function can be attained by adding the term a1(0,∞)(x) to the old one.

Example 4.2 (Compound Poisson subordinator). Let Λ(t) = bt +∑N(t)
k=1 Jk for independent N and {Jk}k∈N, where the former is a clas-

sical Poisson-process with rate λ > 0 and the latter an i.i.d. family

of random variables on (0,∞). The corresponding Bernstein-function is

ψ(x) = bx + λ(1 − L(x; J1)), where L(x; J1) is the Laplace-transformation

corresponding to J1.
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For a compound Poisson subordinator, defined as above, the number

of jumps in the time-intervals (0, t1], (t1, t2], . . . are independent and

Poi(λ(tk − tk−1)) distributed on N0, respectively, and the jth jump-size

is Jj .

Example 4.3 (Gamma subordinator). Let Λ have a Bernstein func-

tion of the form ψ(x) = α ln(1 + x/β) for α, β > 0. The corresponding

increments Λ(s) − Λ(t) are Gamma-distributed and can easily be sampled,

see e.g. [41], Alg. 6.5 and Alg. 6.6, pp. 242–243.

Example 4.4 (Inverse-Gaussian subordinator). Let Λ have a Bern-

stein function of the form ψ(x) = β(
√

2x+ η2 − η) for β, η > 0. The

corresponding increments Λ(s)−Λ(t) are Inverse-Gaussian distributed and

can easily be sampled, see e.g. [41], Alg. 6.10, p. 245.

Example 4.5 (Stable subordinator). Let Λ have a Bernstein function

of the form ψ(x) = xα for some 1 ≥ α > 0. Then the increments Λ(s) −
Λ(t) belong to the class of stable distributions and can be sampled, see e.g.

[41], Alg. 6.11, p. 246.

Marshall–Olkin multi-factor models

The Lévy-frailty model has the serious drawback of being a one-factor

model. This implies not only homogeneity with respect to marginal dis-

tributions, but also an exchangeable dependence structure. However, we

can exploit that independent Lévy subordinators form a cone and we can

consider the extended Lévy-frailty model, where τ is defined by

τi := inf{t > 0 : Λi(t) > Ei}, i ∈ [d], (14)

where Λi, i ∈ [d], are Lévy subordinators from the cone spanned from in-

dependent Lévy subordinators Υ1, . . . ,Υn and E1, . . . , Ed are i.i.d. unit

exponentials, which are independent thereof. In the following, a result of

[26] regarding this model is presented. Assume that Υ is an n-dimensional

vector of independent Lévy subordinators corresponding to Bernstein func-

tions ψ̂1, . . . , ψ̂n and Θ = (θ1, . . . ,θd) ∈ Rn×d+ is a matrix with non-negative

entries. Define the process Λ by Λi := θ′iΥ, i ∈ [d].

Theorem 4.3. Let t ≥ 0 and π ∈ Sd be a permutation with tπ(1) ≥ . . . ≥
tπ(d) and let τ be defined as in Eq. (14). Then

P(τ > t) = exp



−

d∑

i=1

tπ(i)

n∑

k=1

ψ̂k




i∑

j=1

Θk,π(j)


− ψ̂k



i−1∑

j=1

Θk,π(j)





 .
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Furthermore, τ has a Marshall–Olkin distribution.

Proof. See [26].

A slightly simplified extension with n = 1 has the interpretation of allowing

inhomogeneous trigger rates in the original Lévy-frailty model, cf. [53].

Furthermore, a useful alternative representation of the vector in Thm. 4.3

can be attained as follows, cf. [41], Sec. 3.3.4: Let τ (k) be independent

random vectors corresponding to Lévy-frailty models with inhomogeneous

trigger rates θk and trigger processes ψ̂k for k = 1, . . . , n. Then τ has the

survival function in Thm. 4.3, where τ is defined by

τi := min{τ (k)
i : k ∈ [n]}, i ∈ [d].

Remark 4.4 (Constructing the full Marshall–Olkin class). The

multi-factor Lévy-frailty construction is general enough to comprise the

full family of Marshall–Olkin distributions. To this end, we use m = 2d −
1 independent killed subordinators Υ(I)(t) := ∞1{EI≤t} and Λ(k)(t) :=∑
I:k∈I Λ̂(I)(t), which is basically just a complicated way of writing the

original Marshall–Olkin shock model, cf. Eq. (8). This construction is not

unique in the class of Lévy-frailty models and provides an alternative proof

of [54], Thm. 4.2.

Closely related, a hierarchical and h-extendible Marshall–Olkin law is

constructed in [55] and [56]. The idea is to group the components according

to some (economic) criterion (e.g., geographic region, industry segment,

etc.). In the simplest case one has only one classification criterion, say for

illustration purposes the industry segment, and each component is affected

by a global and an industry specific factor. With respect to the factor model

described in Thm. 4.3, assume that the components can be separated into

J industry segments. Let Υ1, . . . ,ΥJ be independent Lévy subordinators,

each corresponding to a specific segment. Furthermore, let Υ0 be another

independent Lévy subordinator corresponding to a global factor affecting

all components. For component i ∈ [d] which is in segment k, an individual

trigger-processes Λi is defined using the weights θi which are for α, βk > 0

defined by

θi = (α, 0, . . . , 0︸ ︷︷ ︸
k−1 times

, βk, 0, . . . , 0︸ ︷︷ ︸
(J−k) times

)′ ∈ RJ+1
+
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and by

Λi = θ′iΥ =

n∑

k=0

Θk,iΥk.

This model is said to be h-extendible with two levels of hierarchy —

meaning that there exists a σ-algebra G0 such that, conditional on this G0,

the vector of default-times separates into independent groups and there

exist group specific σ-algebras Gk such that the marginal group vectors of

default-times are conditionally i.i.d., see [56]. For more levels of hierar-

chy, say one wants an additional regional classification, the model can be

extended easily.

This model specification solves the problems (a), (b), and partially also

(c), which were described at the beginning of this section:

(a) As shown in the previous paragraph, Marshall–Olkin distributions have

the unique property that all marginal survival indicators are time-

homogeneous Markovian. Therefore, simulation-studies on subport-

folios can be performed efficiently using lower dimensional Markovian

processes.

(b) The hierarchical construction gives an intuitive way to deal with portfo-

lio restructuring. In case of a downsize, we can simply use the reduced

model as each of the factors should be chosen in a way that they are

(mostly) independent of the portfolio. If an additional component has

to be modeled, one only has to specify factor-loadings corresponding to

the “risk” regarding to each factor.

(c) Even though this model setup is not a copula ansatz, the factor ap-

proach offers a schematic picture of the inner- and outer-group depen-

dence between components. In particular, it follows that the depen-

dence, measured with the upper-tail dependence coefficient, between

two components of the same group is higher than that of two compo-

nents of different groups, see [55] for a similar result with temporal-,

instead of spatial scaling of the underlying subordinators. However,

the complete dependence structure, in form of the underlying copula,

as well as the marginal distributions, are influenced by the specific

weights. If only marginal distributions should be altered, this is pos-

sible by using a component specific factor. However, the choice of the

marginal is restricted to the class of exponential distributions (as oth-

erwise the Markov property is lost) and the minimal marginal rate is

determined by the remaining weights.
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In default modeling, the historical data is rarely substantial enough

to perform goodness-of-fit tests for the chosen copula. Therefore, a good

qualitative understanding of the schematic dependence is crucial. A slight

modification of this model, which then partially solves (c), can be specified,

if the loadings are assumed to be constant, e.g. αi = βi = 1, and the group-

components of the resulting vector are scaled with group specific scalar

values to attain a group specific exponential-rate.

In Fig. 2, most of the distributional classes discussed in this paper are

summarized in a schematic picture.

WEM

Multivariate phase-type

EM

MSMVE

MO (≡ 2d − 1-factor LFM)

k-factor LFM
(k < 2d − 1)

1-factor LFM

Ind.
exp.

Multivariate
Freund

Fig. 2. Venn-diagram of (selected) multivariate exponential, Phase-type distributions,

and distributions fulfilling the WEM-property. See Chap. 2.2 as well as [41], [37], [35],
[13] for details.
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4.3. Case study: Iteration bias for selected multivariate

distributions

In Thm. 3.1 it was highlighted that iterating bivariate (non-comonotonic)

Gaussian-, Clayton-, or Frank-coupled exponential margins “kills” depen-

dence asymptotically. In the first numerical case study, cf. Sec. 3.2, it was

demonstrated that probabilities for “survival-of-all” events can divert sig-

nificantly if “terminal one-shot” are compared to “terminal iterated” laws.

Only distributions fulfilling the weak exponential minima property have the

property that “survival-of-all” events have the same probability under the

“terminal one-shot” and “terminal iterated” law.

In Thm. 4.1 it was shown that the “terminal one-shot” and the “terminal

iterated” law are equal if and only if it is a Marshall–Olkin distribution.

The purpose of this section is to underscore this statement with a second

numerical case study.

The model

Before numerical results are presented, it is specified mathematically what

was referred to loosely as the “terminal one-shot” and “terminal iterated”

law. It is assumed that the multivariate probability and survival distri-

bution of “mixed default/survival” events are replaced by corresponding

events using discretely iterated survival indicators, i.e. instead of

P



(⋂

i∈I
{τi > ki∆}

)
∩


⋂

i 6∈I
{τi ≤ ki∆}






we consider the probabilities

P



(⋂

i∈I
{Z̃(∆)

i (ki) = 1}
)
∩


⋂

i 6∈I
{Z̃(∆)

i (ki) = 0}




 ,

where Z̃
(∆)

is a (discrete-time) Markov-chain with i.i.d. multiplicative in-

crements that are fully determined by

Z̃
(∆)

(1)
d
= (1{τ1>∆}, . . . , 1{τd>∆})

′.

This approach corresponds to the widespread industry-practice of defin-

ing a default distribution and iterating (multiplicative) i.i.d. increments of

the corresponding survival-indicator for the step-size ∆ through a discrete

time grid up to the final horizon T = N∆.
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The case study

It is assumed that ∆ = 1, k1 = 10, and k2 ∈ {5, 10} for the event {τ1 >
k1∆, τ2 > k2∆} and the following distributions with common marginal rate

λ > 0 are considered:

• Marshall–Olkin: A bivariate exchangeable Marshall–Olkin distribution

with copula-parameter αMO ∈ [0, 1], in the exchangeable Cuadras-Augé

parameterization.

• Gumbel: A bivariate Gumbel distribution with parameter θGu ∈ [1,∞].

• Clayton: An exchangeable Clayton-coupled exponential distribution with

parameter θCl ≥ −1.

• Frank: An exchangeable Frank-coupled exponential distribution with pa-

rameter θFr ∈ R.

• Gaussian: An exchangeable Gaussian-coupled exponential distribution

with parameter ρGa ∈ [−1, 1].

• t: An exchangeable t-coupled exponential distribution for ν = 3 degrees

of freedom, parameter ρt ∈ [−1, 1].

The marginal rates are assumed to be λSG = 4.5% (speculative grade) and

the copula parameters are calibrated such that Kendall’s τ equals 50%,

see [30], pp. 260–261 for an overview on the Gumbel, Clayton, and Frank

copula. Additionally, the following distributions are considered:

• Freund: An exchangeable Freund distribution with rates λ1 = λ2 = λSG
and η1 = η2 = 3λSG. The corresponding marginal distributions are not

exponential and the resulting Kendall’s τ is not set up to equal 50%.

• Independent: Two independent exponential random variables with com-

mon marginal rate λSG > 0. The independence copula is contained in

all previously mentioned copulas families and is included as a reference

point in this analysis.

In Tables 3 and 4 the results for both events can be observed. As

expected, apart from Marshall–Olkin, Gumbel, Freund, and the indepen-

dence copula, all copulas yield sizable differences for the “survival-of-all”

event. For the “mixed default/survival” event only the Marshall–Olkin dis-

tribution and the independence copula yield equal “terminal one-shot” and

“terminal iterated” probabilities. The effect is particularly strong for the

Clayton- and Frank copula, where the “terminal iterated” probabilities are

almost at the level of the independence copula.
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Table 3. Comparison of “terminal one-shot” and “ter-

minal iterated” survival probabilities for k1 = 10,

k2 = 10, and ∆ = 1y (survival-of-all case).

Copula Exact law Iterated law %Diff

Marshall–Olkin 0.5488 0.5488 0%
Gumbel 0.5292 0.5292 0%

Clayton 0.5051 0.4220 19.71%

Frank 0.5299 0.4388 20.77%
Gaussian 0.5205 0.4788 8.72%

t 0.5219 0.5053 3.28%

Independent 0.4066 0.4066 0%
Freund 0.4066 0.4066 0%

Table 4. Comparison “terminal one-shot” and “termi-

nal iterated” survival probabilities for k1 = 10, k2 = 5,

and ∆ = 1y (mixed default-survival case).

Copula Exact law Iterated law %Diff

Marshall–Olkin 0.5916 0.5916 0%

Gumbel 0.6046 0.5809 4.09%

Clayton 0.5747 0.5187 10.79%
Frank 0.5965 0.5289 12.77%

Gaussian 0.5956 0.5525 7.8%

t 0.5956 0.5676 4.93%
Independent 0.5092 0.5092 0%

Freund 0.4885 0.5042 −3.13%

5. Conclusions

The problem of simulating the survival-indicator process on a discrete time-

grid along with the remaining risk-factors has been investigated. It has been

argued that, especially for high dimensions, good candidates for consis-

tent and feasible joint simulations are continuous-time, time-homogeneous

Markovian survival-indicators processes. In particular, the market practice

of modeling the survival-indicator process as a discrete-time Markov chain

with i.i.d. multiplicative increments, corresponding to a step distribution

which is based on a copula-based ansatz, has been analyzed, criticized, and

rectified. It has been shown theoretically and demonstrated with numeri-

cal examples that if we are concerned only with the “survival-of-all” event,

then in order for “terminal one-shot” and “terminal iterated” probabilities

to coincide, the multivariate default times distribution must fulfill the weak

exponential minima property. In particular, this property is fulfilled for
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exponential margins with a survival copula of extreme-value kind. If we are

concerned with more general “mixed default/survival” events, this consis-

tency is only achieved by Marshall–Olkin distributions. A special emphasis

is on warning practitioners who are iterating Gaussian-coupled exponential

distributions, which fulfill neither the weak exponential minima property

nor do they belong to the class of Marshall–Olkin distributions. Indeed,

since these distributions lie in the domain of attraction of the independence

copula, iterating them completely “kills” dependence asymptotically, when

the number of iterations increases.

Appendix A. Alternative construction of Markovian processes

An alternative construction of continuous-time, time-homogeneous Marko-

vian processes on finite state spaces is presented. The construction is a

variation of the classical construction, where (state specifically) jumps are

constructed with exponential waiting times and independent new (random)

states, cf. Rmk. 2.1.

Theorem A.1. Let Q be an intensity matrix of a continuous-time, time-

homogeneous Markovian process on a finite state space S (which is w.l.o.g.

assumed to be {1, . . . , |S|}). Consider a process Z which is constructed as

follows:

(i) Let X0 be the (possibly random) initial state, i.e. define Z(0) := X0.

(ii) Assume that Z jumped k ∈ N0 times and define the time of the kth

jump by Tk (for k = 0 we define T0 := 0). Furthermore, assume that

Z(Tk) = i ∈ S.

(a) For j ∈ S\{i} let Ejk+1 ∼ Exp(qij) be independent exponential

random variables and define Eik+1 := ∞. Assume additionally

that Ek+1, conditional on Z(Tk), is independent of {El : l ≤ k},
Ek+1 := (E1

k+1, . . . , E
d
k+1)′.

(b) Define Tk+1 := Tk + minj∈S E
j
k+1 and Z(t) := i ∀t ∈ (Tk, Tk+1).

(c) Define Z(Tk+1) := argminj∈S E
j
k+1.

(iii) Repeat (ii) either infinitely often or until an absorbing state is reached.

Then the process Z is time-homogeneous Markovian with intensity-matrix

Q.

Proof. For k ≥ 0 and i ∈ S define Pk(·) = P(· | Z(Tk) = i). It suffices to

show that for every k ≥ 0 and i ∈ S the following three conditions hold, as

this implies the classical construction:
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(I) Pk(minj∈S E
j
k+1 > t) = exp{qiit} ∀t > 0.

(II) Pk(argminj∈S\{i}E
j
k+1 = j?) = −qij?/qii ∀j? ∈ S\{i}.

(III) The random variables minj∈S E
j
k+1 and argminj∈S\{i}E

j
k+1 are inde-

pendent conditional on {Z(Tk) = i}.

Condition (I) holds as the minimum of independent exponential random

variables is again exponential with the rate corresponding the sum of all

rates. In this particular case this implies, conditional on {Z(Tk) = i},
minj∈S E

j
k+1 is exponential with rate

∑

j∈S\{i}
qij

(?)
= −qii,

where (?) follows because Q is an intensity matrix.

The following calculation shows that condition (II) hold:

Pk

(
argmin
j∈S\{i}

Ejk+1 = j?

)
= Pk

(
Ej

?

k+1 < min
j∈S\{i,j?}

Ejk+1

)

(?)
= Ek


exp



−E

j?

k+1

∑

j∈S\{i,j?}
qij








(†)
=

qij?

qij? +
∑
j∈S\{i,j?} qij

(‡)
= −qij?

qii
,

where (?) follows using the tower property conditioning on Ej
?

k+1, (†) follows

with the Laplace-transform of the exponential distribution, and (‡) follows

using that Q has vanishing row sums.

Finally, the following calculate proves that condition (III) holds:

Pk

(
min

j∈S\{i}
Ejk+1 > t, argmin

j∈S\{i}
Ejk+1 = j?

)

(?)
= Ek


1{Ej?k+1>t}

exp



−E

j?

k+1

∑

j∈S\{i,j?}
qij








(†)
= −qij?

qii
exp{qiit},

where (?) follows using the tower property conditioning on Ej
?

k+1 and (†)
follows using that for an exponential random variable E with rate η > 0
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one has for t, x > 0

E
[
1{E>t} exp{−xE}

]
=

∫ ∞

t

η exp{−(x+ η)v}dv

=
η

η + x
exp{−(x+ η)t}.
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5. T. R. Bielecki, S. Crépey and A. Herbertsson, Markov chain models of

portfolio credit risk, in The Oxford Handbook of Credit Derivatives, eds.

A. Lipton and A. Rennie (Oxford University Press, 2011) pp. 327–382.

6. A. Herbertsson and H. Rootzen, Pricing kth-to-default swaps under

default contagion: the matrix-analytic approach, Journal of Computa-

tional Finance 12, 49–78 (2008).

7. D. Brigo and K. Chourdakis, Consistent single-and multi-step sam-

pling of multivariate arrival times: a characterization of self-chaining

copulas, Available at SSRN: https://ssrn.com/abstract=2047474 or

http://dx.doi.org/10.2139/ssrn.2047474 (April, 2012).

8. D. Brigo, J.-F. Mai and M. Scherer, Markov multi-variate survival indi-

cators for default simulation as a new characterization of the Marshall–

Olkin law, Statistics & Probability Letters 114, 60–66 (2016).

 I
nn

ov
at

io
ns

 in
 I

ns
ur

an
ce

, R
is

k-
 a

nd
 A

ss
et

 M
an

ag
em

en
t D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 9

5.
91

.2
36

.1
75

 o
n 

10
/1

3/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



August 9, 2018 13:1 Innovations in Insurance, Risk- and Asset Management 9in x 6in b3285-ch03 page 90

90 Innovations in Insurance, Risk- and Asset Management
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