
Technische Universität München

TUM School of Computation, Information and Technology

Adaptive Storage Structures

Lukas Vogel

Vollständiger Abdruck der von der TUMSchool of Computation, Information and
Technology der Technischen Universität München zur Erlangung des akademis-
chen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr. Viktor Leis

Prüfer*innen der Dissertation:
1. Prof. Alfons Kemper, Ph. D.
2. Prof. Dr. Thomas Neumann
3. Prof. Pınar Tözün, Ph. D.

Die Dissertation wurde am 22.06.2023 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Tech-
nology am 23.09.2023 angenommen.

Abstract

In the last ten years, storage technology has developed at an unprece-
dented pace. Innovations like inexpensive and fast SSDs or persistent
memory have enabled off-the-shelve servers to read and persistently write
multiple gigabytes of data per second at nanosecond latency.

This thesis identifies several aspects in which the storage layer of
database systems can be better adapted to modern storage technologies
and makes the case that large parts of the storage stack must be rethought
to optimize the usage of novel hardware. To this end, this thesis proposes
two new systems, Mosaic and Plush, which rethink different aspects of a
database system’s storage layer to use these advancements.

In the modern storage landscape, multiple storage device types ex-
ist, each competitive at its price point. Existing database systems have
difficulties making use of most of them. Mosaic is a storage engine and
storage device purchase recommender for relational database systems. It
enables system administrators to utilize all modern storage devices with
varying throughput and costs for analytical workloads. With Mosaic, we
show that when optimizing for the zoo of modern storage technologies,
higher query throughputs than state-of-the-art approaches are possible at
the same budget or similar query throughputs at a lower cost.

Persistent memory has DRAM-like performance, is byte-addressable,
and excels at small randomwrites while having the persistency guarantees
of conventional block storage. These properties enable developers to
design much simpler and faster database systems in theory but are hard
to utilize in practice. Plush, a key-value store for persistent memory,
demonstrates how applications can be re-designed for groundbreaking
new storage hardware to simplify the storage stack.

Advances in storage technology have exposed bottlenecks when mov-
ing data within the software stack. Hardware workarounds exist but only
provide brittle abstractions and are hard to use. As a third contribution,
we thus present Data Pipes, a vision showing how to solve the bottleneck
of data movement between and within modern storage hardware and
memory.

Zusammenfassung

In den letzten zehn Jahren hat sich die Speichertechnologie in einem
noch nie dagewesenen Tempo entwickelt. Innovationen wie billige und
schnelle SSDs oder Persistent Memory ermöglichen es Servern, mehrere
Gigabytes an Daten pro Sekunde mit einer Latenz von Nanosekunden zu
lesen und dauerhaft zu speichern.

In dieser Dissertation werden mehrere Aspekte aufgezeigt, wie die
Speicherschicht von Datenbanksystemen besser an moderne Speichertech-
nologien angepasst werden kann, und es wird belegt, dass große Teile
des Speicherstapels neu gedacht werden müssen, um neue Hardware opti-
mal nutzen zu können. Zu diesem Zweck werden in dieser Arbeit zwei
neue Systeme, Mosaic und Plush, vorgestellt, die verschiedene Aspekte
der Speicherebene eines Datenbanksystems neu überdenken, um diese
Fortschritte zu nutzen.

In der modernen Speicherlandschaft gibt es mehrere Arten von Spe-
ichergeräten, von denen jedes in seinem Preissegment eine Daseinsberech-
tigung hat. Bestehende Datenbanksysteme haben Schwierigkeiten, diese
zu nutzen. Mosaic ist eine Storage-Engine für relationale Datenbanksys-
teme, die zudemKaufempfehlungen für neue Speicherhardware ausspricht.
Sie ermöglicht Systemadministratoren, alle modernen Speichergeräte mit
unterschiedlichem Durchsatz und Kosten für analytische Workloads zu
nutzen. Mit Mosaic zeigen wir, dass bei der Optimierung für den Zoo mod-
erner Speichertechnologien ein höherer Anfragedurchsatz bei gleichem
Budget möglich ist als bei vorhergehenden Ansätzen oder ein gleicher
Anfragedurchsatz bei geringeren Kosten.

Persistent Memory hat eine mit DRAM vergleichbare Leistung, ist
byte-weise adressierbar und ist besonders geeignet für kleine, nicht-
sequentielle Schreibvorgänge, während er die Persistenzgarantien eines
herkömmlichen Blockspeichers bietet. Diese Eigenschaften ermöglichen
es Entwicklern in der Theorie, konzeptuell viel einfachere und schnellere
Datenbanksysteme zu entwerfen. In der Praxis sind die Vorteile von Per-
sistent Memory jedoch schwer zu nutzen. Plush, ein Key-Value-Store für
Persistent Memory, zeigt, wie Anwendungen für neue Speicherhardware
umgestaltet werden können, um den Storage-Stack zu vereinfachen.

Fortschritte in der Speichertechnologie haben Flaschenhälse für den
Datentransport innerhalb des Software-Stacks aufgedeckt. Es gibt zwar
Hardware-Workarounds, die jedoch nur unzureichende Abstraktionen
bieten und schwer zu verwenden sind. Als dritten Beitrag stellen wir
daher Data Pipes vor, eine Vision, die zeigt, wie man den Flaschenhals
der Datenbewegung zwischen und innerhalb moderner Speicherhardware
und dem Arbeitsspeicher lösen kann.

Acknowledgments

To my wife, who not only encouraged me to take this path in life, but also
supported me all the way.

𓅀

Preface

Excerpts of this thesis have been published in advance.

Excerpts of Chapter 2 have previously been published in:
Lukas Vogel et al. “Mosaic: A Budget-Conscious Storage Engine for Rela-
tional Database Systems”. In: PVLDB 13.11 (2020), pp. 2662–2675

Excerpts of Chapter 3 have previously been published in:
Lukas Vogel et al. “Plush: A Write-Optimized Persistent Log-Structured
Hash-Table”. In: PVLDB 15.11 (2022), pp. 2895–2907

Excerpts of Chapter 4 have previously been published in:
Lukas Vogel et al. “Data Pipes: Declarative Control over Data Movement”.
In: CIDR. www.cidrdb.org, 2023

During his doctoral studies, the author also contributed to the following related
work.

Alexander van Renen et al. “Persistent Memory I/O Primitives”. In: Da-
MoN. ACM, 2019, 12:1–12:7

Alexander van Renen et al. “Building blocks for persistent memory”. In:
VLDB J. 29.6 (2020), pp. 1223–1241

Reika Kinoshita et al. “Cost-Performance Evaluation of Heterogeneous
Tierless Storage Management in a Public Cloud”. In: CANDAR. IEEE, 2021,
pp. 121–126

Christoph Anneser et al. “Programming Fully Disaggregated Systems”. In:
HotOS. USENIX Association, 2023

Contents

Preface ii

Listings ix

1 Introduction 1
1.1 Background . 2
1.2 Modern Storage Devices . 5
1.3 Challenges . 5
1.4 Opportunities and Thesis Contributions 8
1.5 Prior Publications and Authorship 10

2 Mosaic: A Budget-Conscious Storage Engine 11
2.1 Introduction . 11
2.2 Background and Related Work 14

2.2.1 Heterogeneous Storage for Big Data Query Engines . . . 14
2.2.2 Heterogeneous Storage in RDBMS 15
2.2.3 Prediction and Storage Recommendation 16

2.3 Mosaic System Design . 16
2.3.1 Metadata . 17
2.3.2 Storage Format . 19
2.3.3 Data Retrieval . 20
2.3.4 Data Placement . 21

2.4 Data Placement Strategies . 21
2.4.1 A Model for Predicting Table Scan Time 22
2.4.2 Responsibilities of a Strategy 25
2.4.3 HOT Strategy at Table Granularity 26
2.4.4 HOT Strategy at Column Granularity 26
2.4.5 Linear Optimization Strategy 27

2.5 Evaluation . 29
2.5.1 Benchmarks . 30
2.5.2 Mosaic vs. Traditional RDBMS 31

CONTENTS iv

2.5.3 Comparison of Placement Strategies 33
2.5.4 Per-Query Analysis of LOPT 34
2.5.5 Placement Calculation Cost of LOPT 34
2.5.6 Capacity Mode vs. Budget Mode 37
2.5.7 Prediction Accuracy . 38
2.5.8 Impact of Workload . 39
2.5.9 Mosaic vs. Big Data Query Engines 41

2.6 Mosaic in the Cloud . 42
2.7 Summary . 43

3 Plush: A Persistent Log-Structured Hash-Table 45
3.1 Introduction . 45
3.2 Background . 47

3.2.1 Persistent Memory . 47
3.2.2 LSM Trees . 49
3.2.3 Hashing on PMem . 49

3.3 Overarching Design . 50
3.4 Architecture . 51

3.4.1 Multi-leveled Hash Table 51
3.4.2 Recovery Log . 55
3.4.3 Payload Log and Variable-Length Records 57

3.5 Operations . 57
3.5.1 Upsert . 58
3.5.2 Lookup . 61
3.5.3 Delete . 61
3.5.4 Recovery . 61
3.5.5 Concurrency . 63
3.5.6 Crash Consistency . 63
3.5.7 Bulk Loading . 64

3.6 Evaluation . 64
3.6.1 Plush Configuration . 65
3.6.2 Comparison to Other Data Structures 67
3.6.3 Fixed-Size Records . 68
3.6.4 Space Utilization . 72
3.6.5 Plush Tuning . 72
3.6.6 Range Queries . 74
3.6.7 Recovery . 75
3.6.8 Variable-Length Records 76

3.7 Related Work . 76
3.8 Summary . 78

CONTENTS v

4 Data Pipes: Declarative Data Movement 79
4.1 Introduction . 79
4.2 Background and Motivation . 81
4.3 Case Study: External Sort . 83

4.3.1 Data Movements in External Sort 83
4.3.2 The Case for Hardware-Assisted Data Movement 85

4.4 Experiments . 86
4.4.1 Fast Load from Storage to Compute 86
4.4.2 Fast Load from Buffer to Memory 87
4.4.3 Lack of Control for Data Spills to Buffer 89
4.4.4 Discussion . 90

4.5 Our Vision: Data Pipes . 90
4.5.1 Resource Locators . 91
4.5.2 Data Pipes . 91
4.5.3 Data Pipes Optimization 96

4.6 Data Pipes Principles . 97
4.7 Related Work and Research Agenda 99

4.7.1 Operating Systems . 99
4.7.2 Hardware . 100
4.7.3 Cloud Infrastructure . 101

4.8 Summary . 102

5 Conclusions and Future Work 103

Bibliography 105

List of Figures

1.1 Price of different storage media in relation to capacity. 6

2.1 Estimated performance spectrum of Mosaic compared to big data
query engines like Spark and manual data placement. 13

2.2 The components of Mosaic and its interface with the RDBMS. . . . 17
2.3 Metadata recorded, maintained, and stored by Mosaic. 18
2.4 Modus operandi of Mosaic, and two exemplary placement strategies. 23
2.5 LOPT data placement in budget mode for TPC-H and TPC-DS (SF

100) at different budgets. 28
2.6 Benchmark runtime for TPC-H (SF 30) with column-granular place-

ment using the LOPT strategy compared to all placement permuta-
tions of the four largest tables at table granularity. 32

2.7 Comparison of placement algorithms normalized to HOT table . . . 33
2.8 Runtime per query for two different LOPT variants (TPC-H SF 30). . 35
2.9 Computation time in seconds for a solution within 5% of the lower

bound. 37
2.10 Impact of sampling on calculation time and runtime. 37
2.11 Comparison of placement modes for the TPC-H benchmark (SF 30)

using LOPT . 38
2.12 Predicted vs. actual performance for the TPC-H and TPC-DS bench-

marks (SF 30 and 100). 39
2.13 Performance of 4 out of 1000 TPC-DS workloads at different budgets

for data placed specifically for the workload and for data placed for
the TPC-DS benchmark in general. 40

2.14 Mosaic’s TPC-H throughput (SF 30) compared to Umbra and two
Big Data query engines. 41

3.1 Plush’s component overview with illustrated insert and lookup
algorithms. 52

3.2 Migrating the buckets of a directory entry. 53
3.3 Layout of a directory entry, its buckets (for fixed and variable-length

keys), and the payload log for fanout 8. 54

LIST OF FIGURES vii

3.4 Layout of a recovery log. 56
3.5 Space consumption relative to data set size as stacked area chart. . . 66
3.6 Throughput of core operations under varying thread count for fixed-

size records (8-byte keys, 8-byte values). 69
3.7 Throughput of mixed workloads with 48 threads for fixed-size

records (8-byte keys, 8-byte values). 70
3.8 Read and write amplification for 16-byte records on DRAM and PMem. 71
3.9 Tail latencies for 16-byte records with 23 threads. 72
3.10 Storage consumption compared to data set size. 73
3.11 Throughput gained by optimizations. 73
3.12 Throughput for range queries. 74
3.13 Recovery time vs. data set size for filters and logs. 75
3.14 Throughput for variable-length entries. 77

4.1 Data movement primitives can shuffle data among storage layers.
We claim that the set of primitives is incomplete and incoherent. . . 82

4.2 Hardware-efficient external sort using DDIO and I/OAT across CPU
caches, DRAM, PMem, and SSDs. 84

4.3 Performance with enabled and disabled DDIO (one CPU core) with
parallel DRAM-intensive STREAM workload. 87

4.4 Impact of the IIO_LLC_WAYS register on cache misses with DDIO
enabled. 88

4.5 Throughput when moving data between DRAM and PMem with
and without I/OAT. 88

4.6 Using data pipes to make algorithms modular. 96

List of Tables

1.1 Bandwidth, latency, and I/O operations per second for different
storage and memory devices. 3

2.1 Storage devices of the evaluation system. 29
2.2 TPC-H benchmark speedup (SF 30) of SSD and HDD for different

compression algorithms. 30
2.3 LOPT search time for a placement solution for four devices with

three different workloads. It shows the time to find a solution that
is within 5% or 1% of the theoretical optimum, or is optimal. 36

2.4 EBS types and their performance characteristics compared to a
consumer-grade SSD. 42

3.1 Write access characteristics for different media 45
3.2 Investigated Data Structures. 67

Listings

3.1 Insertion algorithm for a fixed-size KV pair. 58
3.2 Migration algorithm for a directory entry. 60
3.3 Lookup algorithm for a fixed-size KV pair. 62
4.1 Straightforward flavor, loading data from SSD and sorting it into

runs. 92
4.2 Inversion of Control flavor, store sorted runs on PMem. 94
4.3 OS supported flavor, load and merge sorted runs. 95

CHAPTER 1
Introduction

Excerpts of this chapter have been published previously [148, 149, 150].

We are currently in the Zettabyte Era: According to the International Data
Corporation, humanity will have created 175 Zettabytes of data by 2025, a large
part of which has to be stored persistently [135]. To this end, an ever-growing
amount of storage hardware must be installed yearly. While in 2010, only 0.5
ZB of storage capacity was shipped, this increased rapidly within the last years:

“over 22 ZB of storage capacity must ship across all media types from
2018 to 2025 to keep up with storage demands.”

— International Data Corporation [135]

Most data stored on such devices is structureless (e. g., videos, photos, or
audio) and stored in binary blobs. However, data critical to a company or private
user (e. g., sales, salary information, inventory, …) usually has a structured format
and is stored within a database system. Database systems fulfill two essential
purposes: (1) Store new incoming transactions persistently and (2) provide an
interface to query stored data. While database systems use volatile memory to
store intermediate results and buffer recently accessed data, they must ensure
that all primary data is flushed consistently and recoverable to durable storage
upon user commit. Otherwise, the system might lose primary data the user had
assumed to be durably stored already upon a crash.

Traditionally, durable storage was assumed to be spinning hard disks (HDDs)
or – more recently – comparatively slow SATA solid state drives (SSDs), which
are orders of magnitude slower than volatile dynamic random access memory
(DRAM). Thus, storing data (i. e., in a transactional setting where the user inserts
or updates records) or retrieving data (i. e., in an analytical setting where the
user queries the system) was traditionally dominated by the high access latency

CHAPTER 1. INTRODUCTION 2

and low throughput of a database system’s storage devices. Great care was
taken to ensure that data was stored in such a way that the access patterns
were optimal for HDDs (i. e., sequential, large reads and writes), for example,
via B-trees [11] or log-structured merge-trees (LSM trees) [115].

In recent years, new storage technologies such as Intel’s Optane DC Persis-
tent Memory Modules (PMem) [131] or fast consumer-grade NVMe SSDs have
invalidated many long-held assumptions of database systems concerning the
storage stack thus requiring us to re-design them to fully leverage the increased
performance of such new technologies [52]. This thesis tackles multiple chal-
lenges posed by emerging storage hardware and proposes ways to improve the
design of database systems so that they can fully profit from the new hardware.

In this chapter, we first introduce the theoretical background of storing
data in a database system context (Section 1.1), demonstrate the improvements
modern storage devices make over the classic storage stack (Section 1.2), then
state the unsolved challenges this new stack poses (Section 1.3), before finally
discussing this thesis’ contribution in solving those challenges in Section 1.4

1.1 Background
When discussing storing data, one must distinguish between memory and stor-
age. Memory is usually fast but volatile (i. e., it forgets stored data when the
system is powered down). At the same time, storage is slower but persistent
(i. e., data stored in storage is durable and survives power failures). Newer
developments like Persistent Memory (PMem) blur the lines between both.

Volatile memory. CPUs require the data they operate on to be stored in
main memory, where they can address it directly. Memory has traditionally
been dynamic random access memory (DRAM), which is expensive, volatile, and
limited in size, as a CPU only supports a limited number of memory channels.
Since data that has been recently accessed is more likely to be processed again
soon, CPUs store such data in a hierarchy of caches with lower latency and
higher bandwidth than DRAM. However, while caches higher in the hierarchy
have better bandwidth and latency, their size decreases accordingly. Additionally,
even the largest caches are usually orders of magnitude smaller than the system’s
DRAM capacity.

Persistent storage. To make sure that data is stored persistently, the
system has to move it from volatile DRAM to persistent background storage,
which usually has orders of magnitude lower bandwidth and higher latency (cf.
Table 1.1). Storage devices expose a logical block interface, where a block is the
smallest data unit that can be read or written with a standard block size of 4
KiB. Unfortunately, this block interface has always been a leaky abstraction: For

CHAPTER 1. INTRODUCTION 3

Table 1.1: Bandwidth, latency, and I/O operations per second for different storage
and memory devices.

Tput [MiB/s] Latency [𝜇𝑠] IOPS

Storage Device read write read write read write

DRAM 95000 87000 0.1 0.1 – –
PMem 39122 6452 0.4 0.1 – –
NVMe SSD (consumer) 3452 2604 1121 3760 551636 606654
NVMe SSD (enterprise) 2983 1285 3506 2796 376602 32072
SATA SSD 528 489 5800 20075 79096 50133
HDD 246 251 44842 121177 765 800
HDD (RAID 5) 472 181 39921 54874 2018 746

HDDs, which have spinning platters, the high latency almost exclusively stems
from physically moving the read head over the magnetic platters. To achieve
the maximum throughput of ≈ 250 MiB/s, reads thus have to be sequential so
that the head is only moved once. When doing random reads, an HDD can
only sustain about 765 IOPS/s ⋅ 4 KiB/IOPS = 3.1MiB/𝑠 (cf. Table 1.1). Thus,
one must ensure that reads and writes to HDDs are sequential and multiple
megabytes long to achieve peak throughput. Similar issues arise for SSDs:
While they are better suited for handling random workloads, they expose the
same block interface, even though this does not map cleanly onto their internal
structure. Internally, an SSD uses flash memory organized into erase blocks,
usually a few MiB in size [79]. To write even a single bit to such a block, the SSD
must first erase the whole block before it can write to that block, thus limiting
performance for small random writes. Furthermore, since each erase block
wears out after a limited number of writes, SSDs introduce a flash translation
layer between logical blocks and erase blocks as well as a DRAM cache [94]
to support wear leveling and garbage collection [14] making it challenging to
predict latency and throughput without knowing the internal device state [17].

Data movement interfaces. Moving data from and to persistent storage
can happen implicitly (triggered by the operating system) or explicitly (triggered
by the application). POSIX-compliant systems such as Unix, for example, offer
the mmap system call as implicit interface [108]. Calling mmap maps a file stored
on a storage device into memory. When the application accesses a file-backed
memory address afterward, a page fault is triggered, and the OS loads the
corresponding data from the storage device into memory. However, mmap’s
implicit interface makes it hard to correctly implement database systems without
violating consistency guarantees [30]. Alternatively, applications can use the

CHAPTER 1. INTRODUCTION 4

pread/pwrite system calls to explicitly move data between a storage device
and a specified memory region on DRAM [124]. While this approach gives the
application more control, it also requires the developer to implement their own
buffer manager, as the operating system will not be able to implicitly move data
back to its storage device when it runs out of memory.

Even the explicit system calls, however, have implicit side effects. Operating
systems repurpose some DRAM as page cache where they temporarily store
recently read or written data. Caching data in such a way is especially beneficial
when applications have predictable data access patterns (e. g., accessing data
sequentially). The operating system can then pre-fetch data it assumes will be
required soon (on the read path) or group data into sequential chunks before
writing it back to the storage device (on the write path), which better fits the
properties of HDDs as explained above. While this approach is advantageous in
the historically common case (i. e., using HDDs and having predictable access
patterns), it is a leaky abstraction and has two issues:

1. If the access patterns are mis-predicted by the OS, it incorrectly pre-
fetches data that will not be used, leading to spurious traffic to and from
the storage device and thus to reduced throughput and increased latency.

2. The operating system is not required to instantly store newly written or
updated data on the storage device. It is allowed to instead just mark it as
dirty in the page cache. The operating system then transparently and non-
deterministically (to the user) writes dirty data back to the corresponding
storage device. To ensure that data is stored persistently at a specific
point, the application must manually flush dirty pages to disk, e. g., by
using the expensive fsync system call on Linux [43].

Both, the explicit and the implicit approach, additionally have the down-
side of being blocking: When accessing memory (mmap) or issuing a system
call (pread/pwrite), the operation blocks until the underlying storage device
has transferred the data successfully, adding potentially multiple milliseconds
of delay in which the application could have done something else. This de-
lay was acceptable in the past when storage devices had such a high latency
that they were the bottleneck anyway. However, blocking interfaces and OS
overhead have become significant issues with modern storage devices. Newer
approaches like io_uring [68] solve this issue by running in user space and
thus eliminating expensive context switching and by providing an asynchronous
interface allowing one to do other computations while waiting for I/O requests
to complete.

CHAPTER 1. INTRODUCTION 5

1.2 Modern Storage Devices
Having introduced the background of storage devices, we present two innova-
tions that have transformed the storage landscape in the last five years.

Cheap and Fast NVMe SSDs. SSDs have long been bottlenecked by the
bandwidth of their SATA interface, allowing a maximum throughput of 600 MB
per second [41]. Newer SSDs alleviate this issue by using the NVMe protocol [48],
which allows for higher parallelism by having multiple queues and higher
throughput by connecting to the CPU via PCI Express (PCIe), which offers
much higher bandwidth than traditional SATA drives. As shown by Table 1.1, a
modern NVMe SSD thus improves by order of magnitude over traditional SATA
SSDs by latency and throughput. Applications, however, often have difficulties
fully profiting from this speedup as old interfaces (e. g., synchronous blocking
accesses and OS overhead through system calls) often become the bottleneck.

Intel Optane Persistent Memory. In 2019, Intel released their Optane DC
Persistent Memory Modules (or short: PMem), which blurs the line between
memory and storage. It comes in a DIMM form factor pin compatible with
standard DDR4 DRAM modules. Unlike DRAM, however, data written to them
is not wiped on power loss but is stored persistently. PMem exposes the same
load/store interface as DRAM but is considerably denser as it offers up to 512
GiB storage per stick. Even though PMem is slower than DRAM by a factor of 3
to 10, it still achieves previously unattained throughput (cf. Table 1.1) and –more
importantly – low write latency. While the high throughput can be achieved by
accessing multiple slower devices in parallel, latency can only be lowered by
improving the storage technology, making PMem peerless if low write latency is
required. Its low write latency, together with its byte addressability, thus opens
a case for persistent and crash-consistent write-optimized data structures.

1.3 Challenges
The advent of new storage technologies introduces substantial challenges and
opportunities to database systems. In this thesis, we tackle three challenges:

(1) The modern storage stack invalidates one-size-fit-all provisioning
of database systems. Traditionally, database systems are purpose-built for
a specific storage technology (e. g., HDDs, SSDs, or DRAM), leveraging their
unique benefits while mitigating their weak points. Such a bespoke architecture
worked well when the storage landscape was static. Nowadays, the storage

CHAPTER 1. INTRODUCTION 6

0

5

10

15

20

0 1000 2000 3000
Price [$]

C
ap

ac
it
y
[T
B
] Technology

HDD
OPTANE
SSD (NVMe)
SSD (SATA)

Figure 1.1: Price of different storage media in relation to capacity.a)
a) Source: Crawled from Amazon via https://diskprices.com, accessed: 10.03.2023

landscape is quite heterogeneous and offers different storage technologies at
different price points (cf. Table 1.1), each of them being competitive at their
different “sweet spots” (cf. Figure 1.1):

• Intel Optane PMem has high throughput and low latency but is very
expensive and has limited capacity. It is thus desirable for very hot and
to-be-inserted data.

• SSDs have higher throughput and lower latency than HDDs but have
a much higher cost per gigabyte of storage. They thus excel at storing
warm data, which is usually just a small part of the data set.

• Traditionally, a big part of a database’s data set is seldom or never accessed
(i. e., cold data). Here, only the persistency aspect of the storage device is
important: Throughput and latency do not matter. HDDs can thus store
such data at a very low cost without any drawbacks.

• New, unknown storage technologies could be introduced with different
drawbacks, upending the existing hierarchy yet again.

A traditional database system does not cope well with this multitude of
storage devices that are competitive at their “sweet spots”. To make use of
different storage technologies, users currently either

https://diskprices.com

CHAPTER 1. INTRODUCTION 7

1. have to accept that their database system is optimized for a certain storage
technology (DRAM for main memory DBMS like Hyper [84], HDDs for
traditional DBMS like PostgreSQL, or SSDs for systems like LeanStore [89]
and Umbra [112]) and provision their system accordingly,

2. expect a fixed and rigid hierarchy of storage devices (e. g., an HDD as
persistent storage, a small transient SSD cache for warm data, and a
volatile DRAM cache), which makes the system inflexible to changing
workload patterns or newly available hardware,

3. or have to resort to workarounds, such as overriding the system and
storing data manually in separate tablespaces on different devices without
any guidance, which incurs a high administration overhead and is prone
to misjudgments by the user.

Furthermore, existing approaches maximize performance for previously pur-
chased storage devices and do not guide the user in choosing the best combina-
tion of storage devices for their workload.

(2) Existing database systems are built with no longer relevant bottle-
necks in mind. Expensive DRAM modules make it prohibitively expensive
to buffer the whole working set in main memory [112]. Thus, before the advent
of fast, modern storage hardware, database system developers could reasonably
assume that the system’s bottleneck was accessing the disk. This lead to con-
ceptually elegant but slow design decisions, such as e. g., implementing volcano
style execution models [46] (incurring a lot of virtual function calls [110, 111,
141]), employing expensive locking (instead of cheaper, but harder to reason
about latching or lockless data structures) [16, 87], or relying on synchronous,
expensive, and slow (but easy to use) system calls to transfer data between exter-
nal storage and the CPU. The advent of modern storage technologies partially
fixes the storage bottleneck but uncovers previously hidden bottlenecks in those
design decisions. Thus, modern database systems must revise the traditional
system architecture, introduce abstractions more fitting to the current hardware
stack, and develop new interfaces using those abstractions.

(3) Existing database systems are hard to adapt to breakthroughs. As
storage device performance improvements have been incremental over the last
decades, overall system performance improvements also have been incremental.
Consequently, the architecture and application areas of traditional relational
database systems (RDBMS) have remained unchanged. However, new hardware
often exposes new properties allowing developers to design utterly different

CHAPTER 1. INTRODUCTION 8

database system architectures with new applications. Take, for example, PMem.
Its unmatched low write latency, while giving persistence guarantees, enables
developers to design conceptually much simpler and faster database systems.
Among other benefits, such systems do not need a complex write-ahead log (as
persisting data immediately does not come at a performance penalty) or group
commits (usually employed to batch writes to background storage) as PMem
excels at small random writes.

The increased write performance thus allows us to build simpler (with
caveats, as will later be shown in Chapter 3) and more performant applications
for previously unfavorable workloads (high write ratio, small inserts). Simpler
and more performant database systems, in turn, have the potential to simplify
the whole software stack: If a database system is very performant for small
reads, no caching layer such as Redis [130] is required reducing the system
architecture complexity. Suppose such a system can leverage modern hardware
to handle higher query throughputs at lower latencies concurrently. In that
case, the system might not need to support scaling out as it can handle more
workloads on a single node. Staying on a single node then reduces overall costs
(i. e., fewer servers), complexity (e. g., requiring no support for partitioning or
distributed operators), and failure modes (e. g., does not have to handle node
crashes or network partitioning).

However, as discussed in Challenge 1, many assumptions are baked into
current system architectures, making it hard to fully leverage modern storage
devices in such a way. While Challenge 1 concerns itself with uncovering
and fixing bottlenecks in existing database system architectures, this challenge
targets storage devices that expose an entirely new set of properties, like PMem,
which require a complete system re-design to be fully utilized. We thus should
re-think what is possible and open up new use cases that have not been possible
before.

1.4 Opportunities and Thesis Contributions
In this thesis, we address the previously stated challenges by proposing Mosaic, a
storage engine designed to accelerate analytical workloads, and Plush, a storage
structure optimized for transactional workloads. Finally, we present our vision
of data pipes which address the complexity of moving data to and from different
storage devices.

Mosaic. In Chapter 2, we address Challenge 1 by presenting Mosaic, a storage
engine for scan-heavy workloads on RDBMS that manages devices in a tierless
pool and provides purchase recommendations for a specified workload and bud-

CHAPTER 1. INTRODUCTION 9

get. Mosaic enables system administrators to utilize the multitude of available
storage device types with varying throughput and costs for analytical workloads.
In contrast to existing systems, Mosaic generates a performance/budget curve of
possible storage device combinations that is Pareto-optimal. The user can then
use this curve to inform their purchase decisions when shopping for storage
hardware. Our approach uses device models and linear optimization to find a
data placement solution that maximizes I/O throughput for the workload. With
Mosaic, we can show that higher query throughputs at the same budget as
state-of-the-art approaches are possible, or the user can choose similar query
throughputs at a lower cost than existing solutions.

Plush. In Chapter 3, we present Plush which addresses Challenge 3. It is a
write-optimized, hybrid hash table for PMem with support for variable-length
keys and values, demonstrating how software can be designed to adapt to break-
throughs in storage technology. Plush plays to PMem’s strengths of DRAM-like
performance, byte addressability, and the persistency guarantees of conven-
tional block storage. We also identify PMem’s weaknesses, namely its low
write bandwidth and high media write amplification, and present approaches
to mitigate them. On a 24-core server with 768 GB of Intel Optane DPCMM,
Plush outperforms state-of-the-art PMem-optimized hash tables by up to 2.44×
for inserts while only using a tiny amount of DRAM. Established PMem index
structures mainly focus on lookups and cannot leverage PMem’s low write
latency. Plush achieves this speedup by reducing write amplification by 80%.
For lookups, its throughput is similar to that of established PMem-optimized
tree-like index structures.

Data Pipes. In Chapter 4, we address Challenge 2 by addressing a significant
bottleneck in modern database systems: Data movement. Today’s storage
landscape offers a deep and heterogeneous stack of technologies that promises
to meet even the most demanding data-intensive workload needs. The diversity
of technologies, however, presents a challenge. Parts of it are not controlled
directly by the application, e. g., the cache layers. Parts that are controlled often
require the programmer to deal with very different transfer mechanisms, such
as disk and network APIs. Combining these different abstractions requires great
skill, and even programs written by experts can lead to sub-optimal utilization
of the storage stack and present performance unpredictability.

To address this problem, Chapter 4 proposes a new programming abstraction
called Data Pipes. Data pipes offer a new API that can express data transfers
uniformly, irrespective of the source and destination data placements. By doing
so, they can orchestrate how data moves over the different layers of the storage

CHAPTER 1. INTRODUCTION 10

stack explicitly and fluidly. We suggest a preliminary implementation of Data
Pipes that relies mainly on existing hardware primitives to implement data
movements. We evaluate this implementation experimentally and comment on
how a full version of Data Pipes could be brought to fruition.

1.5 Prior Publications and Authorship
Parts of the work presented in this thesis have previously been published as
research papers at multiple database system conferences. Although I am the
principal author of all publications, they were published in collaboration with
multiple co-authors. Chapter 2 is drawn from the publication “Mosaic, a Budget-
Conscious Storage Engine for Relational Database Systems” [149] which was
published at VLDB 2020 and has been created in collaboration with my advisor
Alfons Kemper as well as Thomas Neumann, Viktor Leis, and Alexander van
Renen from TUM, and Satoshi Imamura from Fujitsu. Chapter 3 is drawn from
the publication “Plush: A Write-Optimized Persistent Log-Structured Hash-
Table” [150] published at VLDB 2022 with the support of my supervisor Alfons
Kemper and my collaborators Thomas Neumann, Jana Giceva, and Alexander
van Renen from TUM, and Satoshi Imamura from Fujitsu. Chapter 4 builds on
the publication “Data Pipes: Declarative Control over Data Movement” [148],
which was published as a vision paper at CIDR 2023 and is an international
collaboration with Daniel Ritter from SAP, Danica Porobic from Oracle, Pınar
Tözün from the IT University of Copenhagen, Tianzheng Wang from SFU, and
Alberto Lerner from the University of Fribourg. In this thesis, I use the first
person plural to reflect the contributions of my collaborators.

CHAPTER 2
Mosaic: A Budget-Conscious Storage

Engine
Excerpts of this chapter have been published previously [149].

2.1 Introduction
For analytical queries on large data sets, I/O is often the bottleneck of query
execution. The simplest solution is to store the data set on fast storage devices,
such as NVMe SSDs. While it is prohibitively expensive to store all data on
such devices, systems can leverage the inherent hot/cold clustering of data.
Workloads often have a small working set, and storing the cold data on fast, but
expensive devices wastes money. It would be better for a storage engine to store
it on a cheap HDD instead, as no performance penalty is incurred.

Traditional RDBMS are unsuitable for this task. Most are optimized for a
specific class of storage devices and assume that all data will be stored on a
device of the given class. Traditional RDBMS, such as PostgreSQL or MySQL, are
optimized for HDD and only maintain a small DRAM cache. Modern systems
like HyPer [84], SAP HANA [39], or Microsoft Hekaton [35] are built for DRAM.
Our database system, Umbra [112, 155], is optimized for SSD. Some allow system
administrators the freedom to choose where to place data, even if they are not
designed for multiple types of storage devices, for instance, via tablespaces. Here,
the administrator can choose the storage location (and thus the storage device)
for each table. However, moving an entire table either wastes fast storage space
or negatively impacts on performance, as a table’s cold columns are always
moved together with its hot columns. Therefore, enabling column-granular
placement allows for a much more cost-efficient storage allocation.

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 12

This problem is well-known in the big data world. Big data query engines
like Spark [165] are therefore optimized for column-major storage formats like
Parquet [70, 134]. These file formats support the splitting of tables and their
columns into multiple files, so that they can be distributed between multiple
nodes. Heterogeneous, tiered storage frameworks, such as OctopusFS [77],
hatS [126], or CAST [26], distribute these chunks over multiple devices. They
are very good at eking out every ounce of performance from the storage devices.
Their downside is that they cannot judge if the provisioned storage devices are a
good fit for the workload, as they are installed after the system has already been
purchased and provisioned. Big data query engines using such storage frame-
works are often distributed systems optimized for cluster operation. While this
enables scaling to very large data sets, it incurs significant CPU and networking
overheads. Queries are therefore more frequently CPU- or network-bound than
is the case with traditional RDBMS.

It would thus be beneficial to have column-granular table placement on
single-node RDBMS. While table-granular placement is not optimal for the
reasons mentioned above, a user can at least manually determine a sensible
placement on the basis of their experience. For column-granular placement,
however, it is considerably harder to find a good solution by manual means,
as the number of possible placements grows exponentially in the number of
columns and storage devices.

Big data engines and RDBMS with heterogeneous storage frameworks have
another shortcoming. A modern server can have storage devices of multiple
classes: DRAM, PMem, NVMe SSDs, SATA SSDs, and HDDs in different RAID
configurations, and all are competitive at their price point. A system administra-
tor buying a new database server cannot determine the optimum configuration
that will achieve the required throughput at the lowest cost.

We therefore propose Mosaic, a storage engine for RDBMS that is optimized
for scan-heavyworkloads and covers the entire deployment process of a database
system: (1) hardware selection, (2) data placement on purchased hardware, and
(3) adaption to changing workloads. Mosaic uses purchased storage devices
to their full potential with column-granular placement, ensuring an optimum
throughput/performance ratio at all budgets. So as not to restrict the user in
the purchase process, Mosaic does not categorize storage devices into tiers
but organizes all devices in a tierless pool. A conventional storage engine, in
contrast, has distinct tiers (e. g., HDD, SSD, and DRAM). Mosaic’s tierless design
allows the user to mix device classes (e. g., adding an NVMe SSD to a system
already equipped with a SATA SSD, where a tiered approach would only have
an SSD tier).

Figure 2.1 compares Mosaic to existing approaches. The x-axis shows the
cost of the installed storage devices, the y-axis the throughput of the system.

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 13

Figure 2.1: Estimated performance spectrum of Mosaic compared to big data
query engines like Spark and manual data placement.

Big data engines do not scale well with the price of the storage devices used as
they are rarely I/O-bound, even for smaller workloads. RDBMS scale well but
offer no automated mechanism for data placement and are restrained to table-
granular placement. Manual data placement does not guarantee that the choice
is Pareto-optimal or fits the data set. Mosaic’s automatic column-granularity
placement not only increases throughput for scan-heavy workloads at all price
points, but it also empowers the user to find the best configuration within a
given budget or subject to specific performance requirements.

Mosaic is an improvement over existing solutions during all stages of the
deployment process:

• Before hardware is purchased: given a typical set of queries and a list of
devices available for purchase, Mosaic gives purchase recommendations
for arbitrary budgets. Each recommendation is guaranteed to be Pareto-
optimal, i. e., no other configuration is faster while also being cheaper.

• After purchase: given the trace of a typical set of queries and a set of
storage devices, Mosaic places data optimally to maximize throughput.
Mosaic can work with any set of storage devices, not only those that have
been bought on the basis of its recommendations.

• During operation: Mosaic acts as a pluggable storage engine component
for any columnar relational database system.

In summary, our key contributions are:

1. We present Mosaic, a column-based storage engine for RDBMS, optimized
for scan-heavy OLAP workloads and using a device pool without fixed

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 14

tiers. In contrast to existing approaches, it places data with column
granularity.

2. We design a placement algorithm based on linear optimization that finds
optimum data placement for a workload.

3. We design a prediction component for Mosaic that gives purchasing rec-
ommendations along a Pareto-optimal price/performance curve.

4. We integrate Mosaic into the database sytem Umbra [112] and point out
its benefits over state-of-the-art approaches.

2.2 Background and Related Work
While, to the best of our knowledge, Mosaic has no direct competitor, all of
its design goals have been achieved in other systems individually, but never
together. These systems are therefore not able to leverage the synergies of
implementing all of Mosaic’s design goals.

2.2.1 Heterogeneous Storage for Big Data Query Engines
Data set sizes have over time outgrown the storage capacity of single systems,
which is why big data engines were introduced. Most query engines, such as
MapReduce [32] or Spark [165], support the Hadoop file system (HDFS) [140].
This splits files into blocks, which it replicates across nodes. Until recently,
nodes were unaware of the characteristics of their storage device and therefore
could not place data in a workload-aware fashion.

Multiple extensions to HDFS have been developed to rectify this issue. Kak-
oulli et al. implement OctopusFS [77], a tiered distributed file system based on
HDFS. OctopusFS uses a model to infer a data placement for a fixed set of tiers
(DRAM, SSD, and HDD) that maximizes throughput. The authors later built on
OctopusFS and developed an automated tiered storage manager [55] that uses
machine learning to decide on which blocks to up- or downgrade.

CAST [26] recognizes that cost models and tiering mechanisms used for
operating systems do not solve problems of OLAP style workloads, as they rely
on access characteristics that are atypical for an OS, i. e., large, sequential table
scans. Multiple other works have introduced a heterogeneity-aware layer on
top of HDFS using fixed tiers [69, 126, 127, 128]. Snowflake does not rely on
HDFS but uses its own tiered distributed storage system, optimized for cloud
operation [152].

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 15

What all solutions building on HDFS have in common is that they focus
on opaque HDFS blocks as atomic units of storage. As they do not know what
is stored inside those blocks, they cannot make domain-specific optimizations.
Mosaic knows its domain (retrieving columns for table scans in anOLAP context),
and its placement strategies can take this into account. Mosaic deliberately
decides against a tiered architecture common in HDFS approaches, as new
hardware does not always cleanly map onto existing tiers.

The approaches referred to in this section do not offer any purchase recom-
mendations. In contrast to Mosaic, they have to manage replication and data
locality, as they run on clusters. While replication is orthogonal to Mosaic (i. e.,
one could extend Mosaic to replicate data), we focus on a single machine for
now, to simplify the data model.

2.2.2 Heterogeneous Storage in RDBMS
RDBMS hide the throughput gap between DRAM and background storage with
a buffer pool. In the last decade, when SSDs became affordable, a lot of work was
done to profit from their improved throughput and random access characteristics.
For example, Umbra is optimized for SSDs [112]. It provides main memory-like
speed when the working set fits into the DRAM buffer pool and gracefully
degrades to SSD-speed with larger working sets, an idea first implemented in
LeanStore [89].

Algorithms have been designed for caching data on SSDs into DRAM [73, 74,
145] or using SSDs as cache for HDDs [61]. MaSM [6], for example, uses an SSD
cache for out-of-place updates. DeBrabant et al. [33] introduce anti-caching,
where DRAM is the primary storage device, and cold data is evicted to HDD.
Stoica and Ailamaki [143] reorganize cold data so that the OS can efficiently
page it out. Another approach is to build buffer pools with multiple tiers [37, 80].
Here, SSD is a caching layer for slower devices like HDDs. These approaches,
however, waste valuable storage space on SSDs, as data is replicated across
multiple tiers. While caching is necessary for volatile devices like DRAM, it is
not needed for persistent storage. Hybrid storage managers circumvent this
issue by placing the data on different device classes without caching [20, 98, 104,
167]. hStorage-DB [104], like Mosaic, uses information from the query engine
to place data on HDDs and SSDs.

These approaches focus on HDD and SSD. With new storage technologies,
such as persistent memory, the whole cycle of research begins anew as RDBMS
now have to integrate a new layer of storage [4, 132]. Mosaic finally breaks
this cycle by being device-agnostic. Every device is instead parameterized by
the user and added to a tierless pool. The user can add or remove new device
classes without having to re-engineer Mosaic. General-purpose data placement

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 16

systems [64, 116, 154] are not restricted to relational data and therefore, unlike
Mosaic, cannot make use of domain knowledge.

2.2.3 Prediction and Storage Recommendation
Mosaic’s prediction component also builds on prior work. Wang et al. built
a MapReduce simulator [153] to investigate the impacts of different design
decisions, such as data placement or device parameters, on performance. In
contrast to Mosaic, their tool only plans new setups and does not act as a
storage engine. Herodotou et al. designed a ‘what if’ [54] engine capable of
comparing different configurations and giving recommendations for MapReduce
jobs. Cheng et al. went a step further and designed CAST [26], a tiered storage
framework for MapReduce jobs. It gives data placement recommendations for a
cloud context that minimize cost while maintaining performance guarantees.
However, they also limit themselves to a predefined set of device classes.

Guerra et al. developed a general-purpose framework for dynamic tier-
ing [49]. Like Mosaic, it has an advisor that gives purchase recommendations
and a runtime component that retrieves data. In contrast to Mosaic, however,
it operates on opaque data chunks instead of tables. While this approach is
more generalized, it has the downside that it cannot make domain-specific
optimizations, as explained above.

Wu et al. developed a general-purpose hybrid storage system with an ap-
proach similar to that of Mosaic [157]. It forgoes tiering and places data so that
the bandwidth of all devices is fully utilized. Unlike Mosaic, however, it only
supports a mixture of identical HDDs and SSDs (i. e., not multiple HDDs or
SSDs at different speeds).

2.3 Mosaic System Design
Mosaic comprises four components, as shown in Figure 2.2. Mosaic collects
metadata from users before they purchase devices and while running as a storage
engine. Information about attached devices, their measured performance, and
recorded traces is kept in a metadata store (Section 2.3.1). Mosaic stores its
managed data in a storage format that is optimized for the access characteristics
of its devices (Section 2.3.2). The data retriever is an interface between the
storage layer and the DBMS (Section 2.3.3). The data placement component
distributes data between attached storage devices so that the data retriever
can maximize the average throughput for a workload (Section 2.3.4). It is also
responsible for predictions and purchase recommendations.

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 17

Mosaic

DBMSselect a, b
from R

Metadata Data Retriever

Data Placer

Traces

Table Defs

Buffer

Device Configs

Device Models

scan(R, [a,b])

Device 1 Device 2 Device n
...

char* buffer

Strategy

Recommender

Figure 2.2: The components of Mosaic and its interface with the RDBMS.

The components are interdependent: An inappropriate storage format (e. g.,
one that uses a slow compression algorithm for a storage device with high
throughput) reduces overall throughput, even if the data placer finds an optimal
placement. The same goes for the data retriever: If data placement is not optimal
or Mosaic chooses the wrong compression type for the data, performance suffers,
even if Mosaic uses the whole throughput of a storage device.

2.3.1 Metadata
Figure 2.3 summarizes the metadata gathered by Mosaic. The only information
supplied by the user is a list of connected devices (Figure 2.3a). This contains
each device’s capacity, the optimum number of concurrent reader threads, cost1,

1We use €-cents (ct) as the unit of currency as € is the currency in which we bought our
evaluation system. If the absolute cost is unknown or subject to change, it is possible to define
the cost relative to the cheapest device. For example, if an SSD costs three times as much as an
HDD, enter 3 and 1 respectively.

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 18

[[device]]
id = 0
mnt = "/mnt/nvme"
name = "NVMe SSD"
capacity = 60 GB
threads = 8
compression = "ZSTD"
cost_per_gb = 60 ct

(a) Device configuration entry

[[trace]]
A:x,y
B:z
A:x
C:u,v
A:y
C:v,w
...

(b) Excerpt of a trace

A: x -> int,
y -> varchar(200)

B: z -> int
C: u -> int64,

v -> varchar(10),
w -> int

(c) Table definitions

[[model]]
device_id = 0
none = 2.1 GB/s
LZ4 = 1.6 GB/s
zstd = 1.2 GB/s
seek = 0

(d) Device model

Figure 2.3: Metadata recorded, maintained, and stored by Mosaic.

and the preferred compression algorithm. Since Mosaic does not depend on
fixed device tiering, the user can add and remove devices to the pool during
runtime by editing the device configuration file. Mosaic records table scans
of queries being run since the last time the user triggered data placement in a
trace file (Figure 2.3b). If the user has not yet purchased any storage devices,
but wishes to receive a purchase recommendation, Mosaic can generate a trace
file without a data set being present. Mosaic then extracts the table scans from
each query and inserts them into the trace file. The trace file allows Mosaic to
match the accessed data chunks to columns, and the columns to table scans, and
shows which columns the DBMS has frequently accessed together. The data
placer uses the trace file to infer the optimum data placement for the recorded
workload. This is an advantage over established big data file systems. HDFS,
for example, only keeps access statistics per file, with no insight into what a file
consists of. Mosaic can derive data interdependencies from the trace file (i. e., it
can determine which columns are often queried together).

Mosaic furthermore extracts table definitions from the data set (Figure 2.3c)
and periodically measures the throughput of all attached devices for the current
workload and stores it in a device model file (Figure 2.3d). The predictor uses
this file to predict how the data retriever would perform with hypothetical data
placements.

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 19

2.3.2 Storage Format
We adapted Apache’s established Parquet file format to form the Mosaic data
storage format. It is a columnar data storage format, and it has many properties
beneficial to Mosaic:

1. Parquet stores data in a column-major format with columns further sub-
divided into chunks comprising pages. Mosaic extricates column chunks
out of existing Parquet files and distributes them between storage devices.

2. Parquet can compress pages individually with a variety of compression
algorithms. Mosaic can thus compress column chunks depending on their
storage device and recompress them with a different algorithm during
migration.

3. Parquet’s internal data format has built-in support for partitioning a
relation on multiple files. We extend this so that Mosaic can place any
column on any storage device.

4. Parquet stores one metadata block per column chunk and separates data
and metadata. Mosaic can thus easily move them independently of each
other. Instead of storing the column chunk metadata with the data itself,
we reserve some storage space on a m<etadata device chosen by the user.
This ensures that reading metadata does not affect concurrent reads on
devices not suited to random reads (i. e., HDDs).

Mosaic allows the user to choose a compression algorithm for each device.
Compressing the stored data has multiple advantages:

1. Mosaic can store more data while staying within budget, as compressed
data takes up less space.

2. When the decompression throughput of the CPU is higher than a device’s
throughput, data compression increases the effective throughput.

3. When data on faster devices is compressed, Mosaic can move a greater
percentage of the working set to those devices, thus increasing overall
throughput.

Column-major storage and compression make random accesses and updates
more difficult. This, however, is no issue for Mosaic, as it focuses on scan-heavy
workloads.

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 20

2.3.3 Data Retrieval
Mosaic’s data retriever component retrieves stored data and converts it into
a format that the RDBMS is able to read. The smallest unit of storage it can
retrieve on request is a column chunk, which, by default, comprises 5 million
values. At a higher level, the RDBMS can also request entire table scans. When
the RDBMS triggers a table scan, Mosaic asynchronously fetches chunks of the
requested columns in ascending order, until the buffer is full.

Mosaic can keep this buffer small: It assumes that queries are I/O-bound,
and the RDBMS is thus limited by the speed at wich Mosaic fills the buffer. The
buffer only holds the set of chunks that the RDBMS is actively processing and
the set of chunks being concurrently prefetched. The size of the buffer thus
depends on the number of columns being scanned and their data type. In our
experiments, it never exceeded 1 GiB. Whenever the data retriever has buffered
a set of chunks, it notifies the RDBMS of the new data via a callback. As soon as
the RDBMS has processed a chunk, Mosaic evicts it from the buffer. Prefetching
is straightforward, as Mosaic only needs to support linear table scans.

As the data placer can store columns of a table scan on different devices,
Mosaic must read from multiple devices in parallel. Devices such as NVMe SSDs
only reach their maximum throughput when multiple threads read concurrently.
Mosaic’s data retriever maintains a thread pool with reader threads. It assigns
each requested column chunk to a reader thread. As most table scans access
multiple columns, the data retriever reads the chunks of all requested columns in
parallel. This is important, as the slowest reader determines overall throughput.
The placement strategy must ensure that the chunks are placed in a way that
maximizes the data retriever’s throughput. The placer thus has to make sure
that a column on a slow device does not stall a table scan whose other columns
are on fast devices. Each reader forces the OS to sequentially populate its page
cache with the relevant data. Without this step, random access by the RDBMS
or the decompressor could reduce the throughput.

While SSDs need concurrent access to maximize throughput, HDDs have
a large drop in throughput if accessed concurrently, as sequential access will
degenerate into random access when multiple threads contend for the device.
Mosaic thus lets the user set a per-device thread limit. A semaphore guards each
device to ensure that the number of threads reading from a device in parallel
never exceeds the optimum.

Before returning to the reader thread pool, reader threads add the chunk’s
data, which the OS page cache now buffers, to a queue. This queue is ordered
by the chunk request time. Mosaic now decompresses the queued chunks.
Since the throughput of a storage device could be higher than that of a single
thread that is decompressing data, Mosaic maintains a decompression thread

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 21

pool. Whenever a decompression thread is idle, it fetches the first chunk in the
queue, decompresses it, and makes the resulting values available to the RDBMS
via its callback.

2.3.4 Data Placement
Mosaic places data offline and only reorders data when prompted to do so by
the user. To this end, it starts a new trace file after each placement or on manual
prompt by the user. It stores information about the columns accessed by the
RDBMS in the trace file of that epoch. It enters a record for each table scan of
every query executed. Each record stores the table, and the columns requested
by the table scan. As explained in Section 2.1, Mosaic’s placement module has
two modes. Before devices are purchased, Mosaic is in budget mode. When
they are installed, Mosaic switches to capacity mode. In budget mode, Mosaic
calculates a recommended placement on the basis of a given budget. In capacity
mode, it distributes the data between the connected devices up to their capacity
as specified in the device configuration metadata. When in budget mode, Mosaic
considers all devices of the device configuration metadata as targets regardless
of whether they are present. This mode does not restrict the device’s capacities,
but it does restrict their cost. Here, Mosaic’s recommender provides the user
with the recommended hypothetical placement along with a set of devices and
their capacity for installation. Mosaic ensures that the total device cost does
not exceed the user-defined maximum budget. In both modes, Mosaic uses
swappable placement strategies to calculate a data placement. The next section
summarizes the strategies employed.

2.4 Data Placement Strategies
For performance predictions, Mosaic not only needs to place data optimally,
i. e., to find the best placement solution qualitatively, it also has to predict
performance quantitatively. Mosaic consequently needs a model that can predict
how data placement impacts query runtime (Section 2.4.1).

Mosaic supports pluggable data placement strategies (Section 2.4.2). The
following three sections present three different placement strategies. The first
two of these (Section 2.4.3 and Section 2.4.4) are used by multiple state-of-the-art
systems. They were designed for a tiered storage engine, i. e., they assume that
‘slow’ and ‘fast’ layers exist, between which they can move the data. However,
as Mosaic is a tierless engine, they are not a good fit. We therefore use them
as a baseline against which we compare our contribution, which is the third
strategy, called LOPT, and is explained in Section 2.4.5.

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 22

2.4.1 A Model for Predicting Table Scan Time
SinceMosaic not only offers data placement for installed devices but also predicts
performance for hypothetical configurations, it needs a model on which to base
its predictions. To keep complexity down, we make three assumptions:
(1) Columns are atomic. We assume a column is stored contiguously on a
single device. Mosaic can split columns at the parquet column chunk level and
distribute the chunks on multiple devices. The prediction component, however,
considers columns to be atomic. This speeds up placement calculation, as
only whole columns have to be placed, which reduces the complexity of the
model. It also has the added benefit that placement calculation is independent
of data set size, as the number of columns and therefore possible placement
permutations is constant in the number of tuples. Distributing chunks on
multiple devices only benefits runtime performance if some chunks of a column
are read disproportionally frequently and therefore profit from being on faster
devices. This is only the case if data is either sorted (which is only possible for
one column per table) or the query is so selective that chunks can be skipped.
This is unrealistic with large chunk sizes. While possible with smaller chunk
sizes, Mosaic cannot shrink chunks too far as the placement calculation would
become too expensive.
(2) Queries are I/O dominated. To keep the model agnostic of the query
execution engine, we ignore computation times, such as aggregation, joins, or
predicate evaluation and we only model table scans. Each query comprises
one or more table scans, each of which reads one or more columns. Columns
on different devices can — and should — be scanned in parallel. While this as-
sumption might reduce absolute prediction accuracy for CPU-bound workloads,
predictions will still be correct in relation to each other, as the computation
overhead is constant. The overhead only depends on the contents and size of its
tables, not on data placement and only adds a constant error to all predictions,
assuming the computation overhead is not shadowed by I/O.
(3) The throughput of a device is independent of the number of columns
being read in parallel. We assume that Mosaic can saturate a device’s I/O
bandwidth regardless of how many columns it reads in parallel. This is true for
SSDs, which benefit from multi-threaded reads. It is wrong for HDDs, whose
throughput decreases when reading columns in parallel, because of their seek
time. Since we solve this problem on the architecture side by reading columns a
chunk at a time and using per-device semaphores (see Section 2.3.3) that ensure
that only one thread at a time can read from a HDD, we need not model it.

The model we built is based on these assumptions. It predicts the total
execution time 𝑡𝑡𝑜𝑡𝑎𝑙 of a set of table scans 𝑇 𝑆 given a set of devices 𝐷 and a set
of columns 𝐶.

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 23

H
D
D

SS
D

t
1

2
3

4
5

6
7

8
9

10
11

12

Q
1

Q
2

Q
3

Q
4

13Q
5

H
D
D

SS
D

t

Q
3

1
2

3
4

5
6

7
8

9

Q
1

Q
2

Q
4

Q
5

D
ev
ic
es

1.
G
at
he

r
In
pu

t
D
at
a

Tr
ac
e

Q
1:

, ,
Q
2:

Q
3:

,

Q
4:

,

Q
5:

/Δ
𝑡

Th
ro
ug

hp
ut
:Si
ze
:

SS
D

C
:

D
:

S

R
el
at
io
ns A

:

B
:

R

/Δ
𝑡

Th
ro
ug

hp
ut
:Si
ze
:

H
D
D

D
at
a
pl
ac
em

en
t

Q
ue
ry

ex
ec
ut
io
n

2b
.L

O
PT

Pl
ac
em

en
t

H
D
D

SS
D

2a
.H

O
T
Pl
ac
em

en
t

H
D
D

SS
D

Fi
gu

re
2.
4:

M
od

us
op

er
an

di
of

M
os

ai
c,

an
d
tw

o
ex

em
pl
ar
y
pl
ac

em
en

ts
tr
at
eg

ie
s.

Th
e
H
O
T
al
go

ri
th
m

in
di
sc
ri
m
in
at
el
y
m
ov

es
th
e
m
os

tf
re
qu

en
tly

ac
ce

ss
ed

co
lu
m
ns

to
th
e
SS

D
.T

he
LO

PT
al
go

ri
th
m

fin
ds

th
e
da

ta
pl
ac

em
en

tw
it
h
th
e
le
as
ts

to
ra
ge

de
vi
ce

id
le

tim
e
an

d
th
us

sp
ee

ds
up

se
qu

en
tia

le
xe

cu
tio

n
of

th
e
4
sa
m
pl
e
qu

er
ie
s
by

30
%
.F

or
de

m
on

st
ra
tio

n
pu

rp
os

es
,w

e
as
su

m
e
th
at

th
e
SS

D
ha

s
tw

ic
e
th
e
th
ro
ug

hp
ut

of
th
e
H
D
D
.

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 24

For each column 𝑐 ∈ 𝐶, the function 𝑠𝑖𝑧𝑒 returns its size:

size ∶ 𝐶 → ℕ ∶ size of column

For uncompressed data, size is the product of the number of tuples in the column
and the size of the column’s data type. For compressed data, Mosaic looks up
its size in the metadata of each column chunk.

Each table scan 𝑇 ∈ 𝑇𝑆 is a subset of 𝐶, and each device 𝑑 ∈ 𝐷 is modeled as
a 5-tuple

𝑑 = ⟨𝑡seek, 𝑐𝑟 , 𝑡 , capacity, cost⟩ (2.1)

with the following values:

𝑡seek ∶ seek time
cr ∶ compression ratio
𝑡 ∶ throughput

capacity ∶ capacity
cost ∶ cost per unit of storage

These values are stored in the user-provided device configuration entry (see
Section 2.3.1), with the exception of 𝑡, the continuously measured throughput
stored in the device model metadata.

Equation (2.2) expresses the time 𝑡𝑑,𝑐 required to scan a column 𝑐 ∈ 𝐶 stored
on a device 𝑑 ∈ 𝐷:

𝑡𝑑,𝑐 = 𝑡seek +
size(𝑐)

cr(𝑑) ⋅ 𝑡(𝑑)
(2.2)

The fraction size(𝑐)
cr(𝑑) is an estimation of the compressed size of 𝑐 on 𝑑. If

the column has already been stored on 𝑑 or another device with the same
compression algorithm, Mosaic looks up the actual size instead of estimating it.

When the placer stores two or more columns relevant to a table scan on
different devices, the retriever can read them in parallel. The runtime of each
table scan 𝑇 ∈ 𝑇𝑆, 𝑡𝑇 is thus only determined by the device taking the longest, as
seen in Equation (2.3).

𝑡𝑇 = max{∑
𝑐∈𝑇

𝐼𝑑,𝑐 ⋅ 𝑡𝑑,𝑐 | 𝑑 ∈ 𝐷} (2.3)

𝐼 is an indicator function:

𝐼𝑑,𝑐 = {
1 if column 𝑐 is stored on device 𝑑
0 otherwise

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 25

The total time required to run the set of table scans 𝑇 𝑆 is the sum of the
runtime of each table scan:

𝑡total = ∑
𝑇∈𝑇𝑆

𝑡𝑇 (2.4)

The model allows the approximate cost of a real or hypothetical data place-
ment to be calculated:

costtotal = ∑
𝑐∈𝐶

∑
𝑑∈𝐷

𝐼𝑑,𝑐 ⋅ cost(𝑑) ⋅
size(𝑐)
𝑐𝑟(𝑑)

(2.5)

Mosaic’s data placer, given 𝐼, moves all columns to the device specified by 𝐼.
𝐼 is an abstraction over specific placement strategies and their implementa-

tions. A strategy can either determine 𝐼 algorithmically (Sections 2.4.3 and 2.4.4)
or with a constraint solver (Section 2.4.5). Mosaic’s prediction and placement
component is therefore independent of the placement algorithm.

2.4.2 Responsibilities of a Strategy
As seen in Figure 2.4, the data placer supplies each strategy with a number of
inputs. These are

1. the size of each relation’s columns,

2. the throughput, size, price per gigabyte, and optimal number of parallel
readers for each attached device, and

3. a trace with the table scans since the start of the current epoch.

A strategy places columns on storage devices in such a way that the average
throughput of a workload similar to the trace is maximized. Figure 2.4 shows
two such strategies. Strategy (a), called HOT, places the columns read the most
often (i. e., the ‘hottest’ columns) on faster devices. Strategy (b), called LOPT,
finds the optimum placement using linear optimization. As can be seen on the
right-hand side, the choice of strategy impacts the overall throughput. The HOT
strategy cannot profit from the fact that Mosaic reads data from multiple devices
in parallel. The LOPT strategy, in contrast, uses both devices, concurrently
decreasing the overall table scan time in the example by ≈ 30%.

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 26

2.4.3 HOT Strategy at Table Granularity
The table granular HOT strategy (HOT table) treats each table as an atomic
entity that can only ever live on one single device at a time. The strategy places
tables according to their ‘hotness’. It assumes that a table that the RDBMS
scans often (being ‘hot’) benefits from being on a fast device. Improving a table
scan that runs more often has an overall higher positive impact on average
throughput. It places tables descending in order of their number of accesses on
the fastest device with enough space for the whole table.

This strategy is an approximation of the toolset available to administrators
of many established RDBMS such as PostgreSQL or Oracle. These systems
allow database administrators to create different tablespaces on different devices
and assign each table to a specific tablespace. While these systems do not
allow automatic data placement like Mosaic does, we assume that a system
administrator using tablespaces will decide in the same way as the HOT strategy:
they will move tables appearing disproportionally often in observed queries to
faster devices.

2.4.4 HOT Strategy at Column Granularity
The column-granular HOT strategy (HOT column) is an improvement over the
table granular version. As before, data accessed more frequently is considered
‘hot’ and so is placed on devices with higher throughput. But this time, tables
are no longer treated as atomic. Instead, HOT column migrates single columns
of tables. This is a huge improvement over HOT table, as even the hottest tables
often have multiple columns that are only rarely queried. HOT column will
rightfully prioritize warmer columns of cold tables over cold columns of hot
tables. While the HOT approach has been proven to be workable by many
existing tiered storage engines, it has multiple weaknesses.

1. HOT relies on a tiered architecture in which data is moved up or down
one tier at a time. With HOT, Mosaic can emulate such a hierarchy with
two or three devices that have large performance gaps (say, an HDD and
an SSD). If we, however, add multiple devices whose throughputs are close
(i. e., multiple HDDs, or a SATA SSD and a RAID 5 of multiple HDDs) the
HOT strategy can no longer cleanly bin those devices into distinct tiers.

2. As can be seen in Figure 2.4, HOT does not place data such that a table scan
can be parallelized. If the RDBMS often scans two hot columns together,
they would benefit from being on different devices so that Mosaic could
read from both devices in parallel. HOT would try to place both on the
fastest device available, leaving optimization potential on the table.

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 27

3. Mosaic can only apply the HOT placement strategy if it knows the device
capacities beforehand. If Mosaic is in budget mode, it is not obvious how
to choose device sizes to maximize throughput.

2.4.5 Linear Optimization Strategy
Rather than using a heuristic to place data, the linear optimization strategy
(LOPT) uses the model defined in Section 2.4.1 to find an optimal solution. LOPT
deems a solution optimal if it minimizes the time spent scanning tables for a set
of queries. It uses a constraint solver to define the indicator function 𝐼 in such a
way that 𝑡𝑡𝑜𝑡𝑎𝑙 of Equation (2.4) is minimized.

LOPT subjects Equation (2.4) to the following constraints for each column:

∀𝑐 ∈ 𝐶 ∶ ∑
𝑑∈𝐷

𝐼𝑑,𝑐 = 1 (2.6a)

∀𝑐 ∈ 𝐶 ∶ ∀𝑑 ∈ 𝐷 ∶ 𝐼𝑑,𝑐 ∈ {0, 1} (2.6b)

A column has to be stored exactly once (2.6a) and is completely stored on
a device or not at all (2.6b). LOPT enforces one of two additional constraints,
depending on the mode:

a) In capacity mode, the strategy infers optimal placement for previously pur-
chased hardware. A valid placement must therefore not exceed the storage
capacity of any installed device. Mosaic thus subjects Equation (2.4) to
the following additional constraint for each device:

∀𝑑 ∈ 𝐷 ∶ (∑
𝑐∈𝐶

𝐼𝑑,𝑐 ⋅
size(𝑐)
cr(𝑑)

) ≤ capacity(𝑑) (2.7)

b) In budget mode, the strategy predicts the optimum placement for a budget
costmax. Since no hardware has been bought yet, Mosaic can ignore all
the capacity limitations but has to stay below budget. Mosaic subjects
Equation (2.4) to the following additional constraint:

(∑
𝑑∈𝐷

∑
𝑐∈𝐶

𝐼𝑑,𝑐 ⋅ cost(𝑑) ⋅
size(𝑐)
cr(𝑑)

) ≤ costmax (2.8)

Mosaic uses Gurobi [51] to solve this optimization problem. Gurobi is a con-
straint solver with support for mixed-integer programming (MIP).

LOPT strategies’ advantage over HOT variants is that it makes use of all the
information encoded into the model which has the following upsides:

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 28

TPC-DS TPC-H

1000 1500 2000 2500 1000 1500 2000 2500
0

25

50

75

100

Total cost of storage [ct]%
st
or
ed

on
gi
ve
n
de
vi
ce

NVMe SSD SATA SSD RAID 5 HDD

Figure 2.5: LOPT data placement in budget mode for TPC-H and TPC-DS (SF
100) at different budgets. The vertical lines indicate from when an increased
budget does not increase performance.

• As Figure 2.4 shows, HOT ‘leaves bandwidth on the table’. It underutilizes
slower devices, which — while having less throughput than their faster
counterparts — could still contribute to overall throughput. This is because
HOT tries to concentrate hot data on a few, fast devices. LOPT is free to
place hot data on slower devices if a larger column is the bottleneck of
the table scan.

• LOPT is aware that it is optimizing table scan performance and makes
domain-specific optimizations through its modeling. It does not waste
precious space on faster storage devices for columns that are hot but are
often queried together with colder columns.

• The user can easily extend LOPT. A user might, for example, want to
model a limited amount of expansion slots, a maximum/minimum size
of each storage device, or a power budget constraint. With LOPT, they
can just add new dimensions to the device model and add additional
constraints for those dimensions to the solver. The solver will then find
the best solution given the additional constraints. No further changes to
Mosaic are needed.

Figure 2.5 shows the advantages of LOPT and its budget mode for an ex-
emplary storage configuration. It comprises a fast NVMe SSD, a slower SATA
SSD, an even slower HDD, and a RAID 5 of three HDDs. At lower budgets,
LOPT in budget mode does not spend all the available money on a fast NVMe

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 29

Table 2.1: Storage devices of the evaluation system.

Device Price per GB Throughput

NVMe PCIe SSD 125 ct 2.10 GB/s
SATA SSD 60 ct 0.41 GB/s
RAID 5 of HDDs 45 ct 0.32 GB/s
HDD 30 ct 0.23 GB/s

drive. It instead distributes data between the four devices, maximizing overall
throughput. Only with an increasing budget does LOPT gradually place data
on the fast NVMe SSD. Even at high budgets, it still keeps parts of the data on
SATA SSD. To save costs, it keeps never-touched data (25% for TPC-DS, 50% for
TPC-H) on HDD. LOPT can thus determine when adding additional hardware is
just a waste of money. In the figure, this threshold is marked by a vertical line.

While LOPT is more sophisticated than HOT, it is also much harder to
compute. Constraint (2.6b) that permits only integers is particularly constricting,
as it forces us to employ MIP, which is NP-hard. But it is important to note that
run time only depends on the device count and the number of distinct table
scans. It is independent of the number of tuples (as we treat columns as atomic
units) and queries. If multiple queries ‘re-use’ the same table scans or the user
runs a query multiple times, the model does not become more complex. LOPT
just multiplies its modeled runtime for that query by the number of reuses, and
the optimizer does not need to consider more variables. Section 2.5.5 evaluates
placement computation cost in detail.

2.5 Evaluation
Table 2.1 shows the storage configuration of the evaluation system. The system
comprises four different storage device classes, each competitive at its respective
price point. Besides two SSDs of different speeds, we equip the server with four
enterprise grade server HDDs at 10k RPM. We configure three HDDs as a RAID
5 and keep the fourth as a standalone disk. The server is equipped with 192 GB
of DRAM and a single socket Intel Xeon Gold 6212U CPU with 24 physical cores
@ 2.4 GHz (with SMT: 48 cores).

As explained in Section 2.3, choosing a fitting compression algorithm for
each storage device increases throughput. While using no compression incurs
no added CPU overhead, it requires the most space. LZ4 has a low CPU overhead
with an acceptable compression ratio. Zstandard (ZSTD) has the highest com-
pression ratio with a still acceptable CPU overhead. As expected, the synthetic

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 30

Table 2.2: TPC-H benchmark speedup (SF 30) of SSD and HDD for different
compression algorithms.

Speedup over HDD

Device None LZ4 ZSTD

HDD 1 — 2.92
NVMe PCIe SSD 6.2 11.18 12.66

TPC-H SF30 data set compresses quite well, requiring 44.11 GB uncompressed,
16.51 GB if compressed with LZ4, and only 10.03 GB with ZSTD. ZSTD still
yields a compression ratio of about 3 on real-world data sets (2 for LZ4) [171].
Table 2.2 shows the relative speedup of the TPC-H benchmark over the baseline
for different compression algorithms. ZSTD compressed data takes up less space
and increases overall performance compared to LZ4, even on PCIe SSD. For this
setup, we therefore configure Mosaic to always compress data with ZSTD.

We run all benchmarks with Umbra as the database engine and Mosaic as
its storage engine. We choose Umbra as it provides best-of-class speed and
thus rules out CPU bottlenecks, unlike big data query engines. While RDBMS
like MySQL also expose an interface for storage engines, they cannot easily be
adapted to columnar data storage. A more detailed reasoning as to why we
evaluate Mosaic only in conjunction with Umbra can be found in Section 2.5.9.

2.5.1 Benchmarks
For our evaluation, we use two OLAP benchmarks: TPC-H and TPC-DS. TPC-
H comprises 22 queries and 8 tables. The largest table, lineitem, accounts for
70% of the data set size, while the smallest 5 tables together only make up 3%.
Choosing the best placement for the columns of the lineitem table thus gives
Mosaic a large optimization potential. TPC-DS is a much more complex OLAP
benchmark. It comprises 99 queries and 24 tables. Since Umbra does not yet
support all features required by TCP-DS, such as window functions, we discard
unsupported queries. We thus run a subset of TPC-DS comprising 67 queries.
We run both benchmarks at scale factor 30 and 100.

For both benchmarks, we define one run as a measurement of the runtime
of each query executed once sequentially, with the execution times then added.
To accurately measure a query’s runtime, we execute it five times and take the
mean. Before each query, we clear the OS cache to force Mosaic to read all data
from the underlying storage devices. Running all queries sequentially just once
is not a realistic benchmark. In reality, a workload is usually heavily skewed

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 31

towards just a few queries. It is, however, the worst case for Mosaic and thus a
good benchmark. The more distinct queries we run, the harder it is for Mosaic to
find an optimal placement. The working set is also larger. Mosaic thus benefits
less from expensive storage on faster devices.

2.5.2 Mosaic vs. Traditional RDBMS
In this section, we evaluate how Mosaic compares against the toolkit of a tradi-
tional relational database system. We compare Mosaic’s column-granular LOPT
placement strategy against table-granular placement. Table-granular placement
is the status quo and the best option in an RDBMS such as Oracle or PostgreSQL.

We first import a trace of the TPC-H benchmark (executing queries 1 to
22 once in sequence). We then trigger Mosaic’s LOPT placement strategy for
different budgets. After data placement, we repeat the benchmark and record
the runtime. As a baseline, we benchmark all table placement permutations
for the four largest TPC-H tables that make up 98% of the total data set size.
The remaining four smallest tables are always stored on NVMe SSD to keep the
number of possible configurations manageable.

Figure 2.6 shows all unique table-granular placement configurations () for
HDD, SATA SSD, and NVMe SSD. Each configuration could have been chosen by
a system administrator of a traditional RDBMS with tablespaces. We mark the
three configurations in which Mosaic stores all five tables on the same device.
The three distinct clusters correspond to the storage location of the lineitem table.
At 6.8 GB, it contributes 70% of the total data set size, and its placement thus has
the greatest effect on the total cost of storage. The Pareto-optimal line () shows
the best case for table-granular placement, i. e., there is no cheaper placement
that also reduces benchmark runtime. A system administrator can, therefore,
hope at best to hit this line. For most budgets, Mosaic’s LOPT placement strategy
() dominates and offers the choice of having the same performance at less cost
or more performance at the same cost. As indicated in the figure, at a budget of
536 ct, LOPT offers the same throughput as the Pareto-optimal table placement
at 60% of the cost, or 41% of the runtime at the same budget. Table-granular
data placement is only competitive if Mosaic places all data on the cheapest or
most expensive devices.2

This result also shows that when Mosaic just stores a small part of the
working set on fast storage, this already drastically increases overall throughput.
The cost of this increase is very low if placing data at column granularity. A
budget increase of 12% (from 310 ct to 350 ct) speeds up the benchmark by over

2To keep the number of variants for table granularity measurements manageable, the four
smallest tables always reside on NVMe SSD. The cheapest measurement at column granularity
is therefore cheaper than the cheapest measurement at table granularity.

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 32

al
lt
ab
le
s
on

N
V
M
e
SS

D

al
lt
ab
le
s
on

SA
TA

SS
D

al
lt
ab
le
s
on

H
D
D

0.
60
×
co
st

0.41×time

20 40 60 80 10
0

12
0

14
0

40
0

60
0

80
0

10
00

12
00

31
0
35
0

53
6

13
00

To
ta
lc
os
t
of

st
or
ag
e
[c
t]

Benchmarkruntime[s]

G
ra
nu

la
ri
ty

co
lu
m
n
(L
O
PT

)
ta
bl
e

Fi
gu

re
2.
6:

Be
nc

hm
ar
k
ru

nt
im

e
fo
r
T
PC

-H
(S
F
30

)w
ith

co
lu
m
n-

gr
an

ul
ar

pl
ac

em
en

tu
si
ng

th
e
LO

PT
st
ra
te
gy

co
m
pa

re
d
to

al
lp

la
ce

m
en

tp
er
m
ut
at
io
ns

of
th
e
fo
ur

la
rg

es
tt

ab
le
s
at

ta
bl
e
gr

an
ul
ar
ity

.T
he

da
sh

ed
lin

e
in
di
ca

te
s
th
e
Pa

re
to

op
tim

um
fo
r

ta
bl
e
pl
ac

em
en

t.
C
on

fig
ur

at
io
ns

th
at

ar
e
no
t
pa

re
to

op
ti
m
al

ar
e
m
ar
ke

d
se
m
it
ra
ns

pa
re
nt
.T

he
do

tt
ed

ar
ro
w
s
sh

ow
th
at

M
os

ai
c
us

in
g
LO

PT
pl
ac

em
en

to
ffe

rs
th
e
sa
m
e
pe

rf
or

m
an

ce
at

a
lo
w
er

bu
dg

et
or

fa
st
er

ru
nt
im

e
at

th
e
sa
m
e
bu

dg
et
.

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 33

×1.99

×1.301.99

1

2.58

0

1

2

3

HOT table HOT column LOPT
Data placement algorithm

R
el
at
iv
e
sp
ee
du

p

Figure 2.7: Comparison of placement algorithms normalized to HOT table. Each
bar is the sum of 56 runs of the TPC-H benchmark (SF 30). Each run uses a
distinct device configuration.

100% (from 117 s to 55.6 s). At higher costs, where most data fits on the fastest
device, Mosaic cannot gain much advantage from distributing data between
devices (as seen in Figure 2.5). It thus has equal or — if the model’s throughput
estimates are inaccurate — slightly worse performance than if the user placed
all data on the fastest device.

Mosaic also visualizes a law of diminishing returns. With a budget of 600 ct,
Mosaic is already within 14% of the best performance that requires twice the
budget, i. e., 1300 ct. The optimal table granular placement at 600 ct results in a
benchmark that takes 3.7 times as long as at maximum budget.

2.5.3 Comparison of Placement Strategies
In this experiment, we compare Mosaic’s three placement strategies, LOPT, HOT
table, and HOT column, against each other. How much the placement strategies
differ in performance depends on the storage configuration. If, for example, only
one storage device is available, all strategies place data identically. To obtain a
representative comparison of the strategies, we compare performance across
a range of device configurations. For each of the four devices in Table 2.1, we
fix its proportion of the total storage to a value between 0% and 100% of the
data set size, in 20% steps. We then recursively fix the values of the remaining
three devices in the same way. We only consider configurations whose storage
adds up to 100% of the data set size. Mosaic thus runs the benchmark for 56
configurations for each strategy. We then add the runtimes of those benchmarks.

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 34

Figure 2.7 shows the results for the TPC-H benchmark. It shows the speedup
of the placement strategies over the baseline, HOT table. HOT table is worse
than the other two strategies, as the TPC-H data set has many large but cold
columns on otherwise hot tables. At table granularity, these columns waste
valuable storage space that hot columns of different tables could have used.
Data placement at column granularity provides a 99% speedup, confirming our
findings in Section 2.5.2. LOPT is ≈ 25% faster still than HOT column, showing
the advantage of a tierless device pool over a tiered architecture even with
just four devices. Because throughput gaps between SATA SSD, RAID 5, and
HDD are small, LOPT can distribute columns often accessed together between
those devices. HOT column places as much data as possible on SATA SSD,
preferring it over HDD and RAID 5, leaving optimization potential on the table.
We, therefore, chose LOPT as Mosaic’s default strategy.

2.5.4 Per-Query Analysis of LOPT
While average query performance increases monotonically with budget, there
are ‘loser queries’ that either do not become faster or even degrade with in-
creasing budget, since LOPT’s only goal is to minimize the sum of all query
runtimes. Figure 2.8a shows per-query performance at varying budgets. The
two zoomed-in sections show the biggest ‘winner’ and ‘loser’ queries at 400 and
450 cents. At 400 cents (upper cutout), Q18 and Q19 are slower than at 350 cents,
as LOPT moves the columns of lineitem read by both queries from RAID back
to HDD. This makes space for four columns read by the other queries, reducing
overall runtime. When the budget increases to 500 cents (lower cutout), the
pattern reverses: LOPT moves lineitem’s primary key back to RAID from
SATA SSD. This slightly slows down most queries reading it but allows LOPT
to move Q18’s and Q19’s previously demoted columns back to SATA SSD.

The user may deem such regressions unacceptable, i. e., they require guar-
antees that some specific subset — or all queries — do not slow down after a
system upgrade. In this case, Mosaic supports the addition of a new constraint
to LOPT, setting a query’s (or all queries’) current execution time as an upper
bound. Figure 2.8b shows LOPT’s performance with this constraint. While
the throughput is 10.1% worse on average, there are no more unpredictable
performance regressions.

2.5.5 Placement Calculation Cost of LOPT
As stated in Section 2.4.5, LOPT is NP-hard. Heuristics of modern MIP solvers,
however, keep computation time at a reasonable level even for larger problems.
We first evaluate LOPT’s placement calculation time for smaller sized work-

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 35

0.0

2.5

5.0

7.5

350 400 450 500
Cost of storage [ct]

Q
ue
ry

ru
nt
im

e
[s
]

Q19

Q20

Q18

Q14

Q8

Q172

3

4

350 400

Q9

Q19

Q8

Q3

Q7

Q18
2

3

4

400 450

(a) Default LOPT. The zoomed-in sections show the biggest winner and loser queries
at budgets of 400 and 450 cents.

0.0

2.5

5.0

7.5

350 400 450 500
Cost of storage [ct]

Q
ue
ry

ru
nt
im

e
[s
] Q19

Q20

Q8

Q17

Q14

Q182

3

4

5

350 400

Q9

Q19

Q8

Q18

Q7

Q3

2

3

4
400 450

(b) Modified LOPT. Placement is constrained so that no query may become slower.
The zoomed-in sections show the same queries as (a).

Figure 2.8: Runtime per query for two different LOPT variants (TPC-H SF 30).
The solid red line shows average runtime, the dashed lines show runtime of
each of TPC-H’s 22 queries.

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 36

Table 2.3: LOPT search time for a placement solution for four devices with three
different workloads. It shows the time to find a solution that is within 5% or 1%
of the theoretical optimum, or is optimal.

table scans time [s]

#queries total distinct < 5% < 1% opt

TPC-H 22 86 58 < 1 < 1 < 1
JOB 113 977 62 < 1 < 1 < 1
TPC-DS 67 492 193 < 1 ≈ 4 ≈ 64

loads. The results are shown in Table 2.3. The JOB workload by Leis et al. [88]
benchmarks cardinality estimators with queries that join many tables. Many of
its table scans only touch primary and foreign keys. It thus has only a few more
distinct table scans than TPC-H. In both cases, LOPT finds the optimal solution
effectively instantaneous for arbitrary data set sizes. TPC-DS has over 3 times
as many distinct table scans as TPC-H. LOPT’s performance with TPC-DS is
acceptable, but at ≈ 1 minute for the optimal solution it is considerably worse.

We now move on to progressively larger workloads, to see how LOPT scales
with more devices, tables, and queries. We load multiple independent instances
of TPC-H, multiplying the number of tables and queries by up to 80 times
(resulting in up to 1760 queries on 640 tables with 4880 columns) and simulate
each device up to 20 times (up to 80 in total). Note that this is an adverse
workload, since as each column is accessed by 22 queries at most, there is no
fast way for Gurobi to prune the solution space, i. e., all TPC-H instances are
‘warm’. Figure 2.9 shows how long Mosaic takes to calculate a placement within
5% of the theoretical lower bound for all permutations. The worst case is ≈ 52
minutes for 80 devices and 640 tables. Cases that are realistic for a single node
(i. e., ≤ 10 devices) take less than 8 minutes.

Being NP-hard, LOPT has its limits. With 1200 TPC-H instances (26400
queries, 10800 tables, 73200 columns) on eight devices, computing a solution
within 5% of the lower bound takes ≈ 21.5 hours. This can be remedied with
sampling, i. e., having LOPT only consider a subset of all table scans. Figure 2.10
shows the impact of sampling with 400 TPC-H instances (8800 queries, 3200
tables, 24400 columns) on eight devices. Since all columns are always ‘warm’ in
this adverse workload, each discarded table scan removes valuable information.
Even here, sampling is still beneficial. If a predicted slowdown of ≈ 9% is
acceptable, it is possible to sample 60% of the table scans, thus reducing the
placement calculation time by 44%, from 141 to 80 minutes.

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 37

15 60

60

240

960

20

40

60

80

0 200 400 600
#Tables

#D
ev
ic
es

Figure 2.9: Computation time in seconds for a solution within 5% of the lower
bound. The z-axis is log2 scale, i. e., time doubles with each contour step.

0
30
60
90
120
150

100 80 60 40 20 0
Scans sampled [%]

C
al
c.
ti
m
e
[m

in
]

0

50

100

150

100 80 60 40 20 0
Scans sampled [%]

Sl
ow

do
w
n
[%

]

Figure 2.10: Left: Impact of sampling on placement calculation time. Right: Im-
pact of sampling on predicted runtime performance. 400 TPC-H SF 30 instances,
8 devices.

2.5.6 Capacity Mode vs. Budget Mode
Figure 2.11 compares Mosaic’s capacity mode () against its budget mode
(). For budget mode, we repeat the measurement of Section 2.5.2. For capacity
mode, we use the method of the experiment in Section 2.5.3 to generate 56 device
configurations and use the LOPT strategy for placement. Each configuration
() could have been chosen by a system administrator using educated guesses.
Because Mosaic uses the LOPT strategy for both placement modes, we can now
quantify the advantage of having Mosaic assisting in the purchase decision ()
over pre-purchasing hardware and only then letting Mosaic place data ().

16 out of 56 capacity configurations are Pareto-optimal (). For TPC-H,
there is a probability of ≈ 29% of a system administrator picking a desirable
storage device configuration by guessing which could be the best. But even if

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 38

50

100

500 750 1000 1250
Cost of storage [ct]

R
un

ti
m
e
[s
]

Placement mode
budget

capacity

Figure 2.11: Comparison of placement modes for the TPC-H benchmark (SF 30)
using LOPT. In budget mode, Mosaic chooses its storage devices for a budget.
In capacity mode, Mosaic places data on 56 predefined device configurations.

they pick a Pareto-optimal configuration, its corresponding budget counterpart
dominates it. On a price-point-per-price-point comparison, the budget approach
is ≈ 26% faster than the Pareto optimum of the capacity mode.

2.5.7 Prediction Accuracy
In this section, we evaluate whether predictions made by Mosaic’s table scan
model are accurate. For this benchmark, we use the LOPT placement strategy
in budget mode. Mosaic predicts the runtime for a range of maximum budgets,
both for TPC-H and TPC-DS, at scale factors of 30 and 100. It then places data
according to the budget constraint and runs the benchmark. We then compare
Mosaic’s predicted benchmark runtime with the actual runtime.

Figure 2.12 shows the predicted runtime for a budget () and the measured
time after Mosaic placed the data (). For TPC-H, the absolute mean error
between predicted and measured time across all scale factors and budgets is
only 4.1%. For TPC-DS, it is 19.0%, with higher budgets having a higher error
than lower budgets. The reason is that TPC-DS, is CPU-bound on the evaluation
system, when Mosaic stores most of the data on the NVMe SSD. At lower
budgets, the slower but cheaper devices hide the CPU overhead.

While the prediction is accurate when running an I/O-dominated workload
or using slow devices, the prediction becomes inaccurate when the workload
becomes CPU-bound. This is because Mosaic cannot predict the throughput
of the DBMS’s execution engine. While slower devices shadow the execution

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 39

TPC
-H

TPC
-D

S

1 2 3 4

0.00

0.25

0.50

0.75

1.00
0.00

0.25

0.50

0.75

1.00

Budget (relative to HDD)

R
un

ti
m
e
(r
el
at
iv
e
to

ch
ea
pe
st
bu

dg
et
)

SF 30

SF 100

measured

predicted

Figure 2.12: Predicted vs. actual performance for the TPC-H and TPC-DS bench-
marks (SF 30 and 100).

overhead, faster devices expose it. The experiment, however, shows that Mosaic
is useful, even in CPU-heavy workloads for the following reasons: (1) ≈ 20%
error is still acceptable when the status quo is having no prediction; (2) Mosaic
brings the most benefit when users have limited budget and thus having most
of the data on fast devices is not an option. Here, Mosaic is quite accurate,
even for TPC-DS; (3) Mosaic correctly predicts the shape of the graph, showing
where a small investment makes a huge return and when diminishing returns
kick in. Mosaic’s purchase recommendations are still valid, and it finds the
fastest configuration for the given cost. It just does not take the bottleneck of
the execution engine into account. We thus argue that even for CPU-bound
benchmarks, Mosaic still offers great benefits over storage engines without
predictive capabilities.

2.5.8 Impact of Workload
To evaluate how Mosaic adapts to different workloads, we generate 1000 work-
loads with 10 random TPC-DS queries each. We pick four of those workloads
that deviate the most from the shape in Figure 2.6 and compare their perfor-
mance at different budgets. We have chosen them for a number of characteristics,

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 40

381 406

147 300

300 400 500 300 400 500

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Total cost of storage [ct]

R
un

ti
m
e
(n
or
m
al
iz
ed

to
sl
ow

es
t)

specialized general

Figure 2.13: Performance of 4 out of 1000 TPC-DS workloads at different budgets
for data placed specifically for the workload and for data placed for the TPC-DS
benchmark in general.

for instance workload 147 profits above average at low budgets while workloads
300 and 406 profit at higher budgets. Workload 381 has a big performance jump
at medium budgets. The performance of all 1000 workloads increases by more
than 100% at 500 ct. Figure 2.13 shows Mosaic’s performance for the four chosen
workloads with data placed specifically for the workload () and data placed for
the original TPC-DS workload (), which is a superset of the four workloads.

The workloads profit from a placement specifically tailored to them. Since
the working set is smaller, Mosaic can move a larger percentage to devices with
higher throughput. Each workload, however, also sees improvements with the
generic TPC-DS placement. This experiment shows that — while it is beneficial
to give Mosaic a trace that represents the actual workload as closely as possible
— performance is still acceptable if the trace is a superset. Our earlier evaluations
show that Mosaic finds a placement quickly even for large traces. A superset
can thus be chosen (e. g., all queries run in the last month) without hurting
performance too much.

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 41

0.16
0.27

0.89

0.01
0.07

0.38

0.03 0.04 0.040.050.04 0.05
0.00

0.25

0.50

0.75

1.00

HDD SATA SSD NVMe SSD

qu
er
ie
s/
s

Mosaic Umbra Spark MariaDB ColumnStore

Figure 2.14: Mosaic’s TPC-H throughput (SF 30) compared to Umbra and two
Big Data query engines, all 22 queries distributed uniformly.

2.5.9 Mosaic vs. Big Data Query Engines
In this section, we compare the performance of Mosaic against Spark and Mari-
aDB ColumnStore as representatives of big data query engines. These OLAP
systems are optimized to read data in column-major format. Both claim to be
competitive on a single node. We also compare Mosaic against vanilla Umbra as
a representative of conventional RDBMS. Umbra buffers data into main memory
when first accessed. Consequently, Umbra is an order of magnitude faster when
data is already buffered. To benchmark I/O speed, we clear Umbra’s buffer
between queries.

Figure 2.14 shows the throughput for TPC-H. For all three configurations,
we store the data set on just one device. Umbra is optimized for in-memory
data sets and SSD. Its performance degrades on devices not suited for random
I/O, but it is slower than Mosaic even on NVMe SSD, as Mosaic’s compression
results in a higher effective throughput. Umbra’s table scans furthermore read
all columns while Mosaic only reads queried columns. Spark and MariaDB
ColumnStore are slower by an order of magnitude. While Umbra and Mosaic
speed up when moving the data set to an NVMe SSD, Spark and MariaDB only
become marginally faster.

When reading from disk, Spark has a similar throughput to Umbra with
Mosaic. It is optimized for distributed workloads and introduces abstraction
layers required to make it compatible to its many supported file formats. This,
however, results in the computation time shadowing the I/O time when running
on a single node. Query 7, for example, takes 42 seconds at SF 30, even with all
data on NVMe SSD. Even if we ignore four seconds of startup time, Umbra with

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 42

Table 2.4: EBS types and their performance characteristics compared to a
consumer-grade SSD.

Type IOPS Tpt. [MB/s] Cost [$/(TB ⋅mo)] Use case

io2 256000 4000 9824.00 Transactional Wrklds.
gp3 16000 1000 146.92 High-throughput SSD
gp2 16000 250 102.40 Warm SSD storage
st1 500 500 46.08 Warm HDD storage
sc1 250 250 15.36 Cold HDD storage
Samsung 980 Pro ≈ 106 5000 3.75 General Purpose

Mosaic is ≈ 30 times faster at 1.2 seconds. At SF 100, it is still 10 times faster
than Spark at SF 30. Spark spends more time on garbage collection (≈ 2 seconds)
than Umbra takes for the whole query. On a single node, there is therefore
not much to be gained by integrating Mosaic’s smart data placement into big
data query engines. Mosaic therefore has an important use case for single node
systems with big data sets.

2.6 Mosaic in the Cloud
While we designed Mosaic primarily for on-premise systems where the system
administrator has complete control over which storage hardware to purchase
and install, we can also apply Mosaic to cloud installations. Cloud providers offer
different kinds of attachable storage devices which provide different performance
characteristics at different prices. For example, Amazon Web Services (AWS)
offers Elastic Block Store (EBS) to store data persistently, exposing a standard
block device interface. Table 2.4 shows the different types of EBS storage Amazon
offers3. This offering is further complicated by the distinction between burst and
base throughput for gp2, st1, and sc1 volumes where utilizing all IOPS (for gp2)
or maximizing bandwidth (for st1 and sc1) depletes a bucket of refilling credits
making the performance of those types more challenging to model. Furthermore,
io2 volumes offer a (re-)configurable amount of IOPS, making them cheaper if
less random access is required.

Users pay a hefty premium for cloud storage: As Table 2.4 shows, a 1 TB SSD
with similar throughput and four times the IOPS than the fastest io2 instance
can currently be bought for just $75 while lasting 600 days at an assumed write
throughput of 1 TB per day making it cheaper by orders of magnitude4. For

3Source: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
ebs-volume-types.html, accessed: 09.05.2023

4To ensure similar availability to AWS’s offerings, it would be necessary to operate multiple

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 43

the user, the price premium might still be worth it as cloud storage has the
advantage of supporting dynamically scaling attached volumes to the user’s
need, switching between different device types as required without paying a
high up-front price. However, a system administrator faces the same problem as
with on-premise systems: It is not apparent what the optimal configuration of
EBS volumes for a given workload is. The number of EBS volume types and their
tuning knobs opens up a large configuration space. In contrast to on-premise
systems, cloud deployments even allow the user to reconfigure attached EBS
volumes (i. e., the storage devices) with the click of a button, allowing for more
flexible data placement without upfront costs.

Mosaic should thus be a good fit for cloud-native database systems: As cloud
storage is more expensive than local storage, Mosaic can save more money for
cloud systems than on-premise systems. Furthermore, as the system administra-
tor can easily reconfigure EBS volumes, they can more quickly react to Mosaic’s
data placement suggestions by dynamically resizing attached EBS devices.

In follow-up work, Kinoshita et al. [86] evaluate Mosaic in such a cloud
context, comparing placing data with Mosaic on sc1, st1, and gp2 volumes
against using Linux’s application-agnostic bcache utiltity [12] to cache hot
data on gp2 volumes while keeping cold data on HDD-based EBS types. Here,
Mosaic was able to outperform bcache by an average of 3.04× for TPC-H and
3.35× for TPC-DS for the same budget as Mosaic recognized cold data and stored
it on the cheap sc1 volume type while using gp2 for hot data. Furthermore,
Mosaic could mitigate I/O credit exhaustion of the fast st1 HDD volume type by
partially moving data to slower HDD volumes and the gp2 volume type without
increasing the budget. In contrast, bcache could not adapt to the dropping
performance of st1.

2.7 Summary
This chapter introduces Mosaic, a storage engine optimized for scan-heavy
workloads on RDBMS. It manages columnar data in a tierless device pool and
supports pluggable data placement strategies. We evaluate three such strategies,
including our linear programming placement strategy (LOPT), based on a model
for predicting the throughput of table scans. In capacity mode, LOPT places data
on previously purchased devices. In budget mode, LOPT predicts performance
for a budget and makes purchase recommendations.

We evaluate Mosaic on two data sets to show the advantage of Mosaic’s
column-granular data placement over existing approaches of RDBMS and big

such SSDs in a RAID configuration. While this increases the operating cost, it is still far lower
than the EBS offerings.

CHAPTER 2. MOSAIC: A BUDGET-CONSCIOUS STORAGE ENGINE 44

data query engines. Mosaic outperforms them by an order of magnitude and
beats Umbra without Mosaic in OLAP queries when the working set does not
fit into DRAM. We show the accuracy of Mosaic’s prediction, which closely
follows the Pareto-optimal price/performance curve. It is accurate for I/O-
bound benchmarks. We finally show that Mosaic – while not primarily designed
for cloud environments – can easily be deployed in the cloud and improves
performance by a factor of 3 compared to a less sophisticated caching approach
at similar budgets.

CHAPTER 3
Plush: A Persistent Log-Structured

Hash-Table
Excerpts of this chapter have been published previously [150].

3.1 Introduction
Persistent memory (PMem) promised low latency, random access performance
and throughput comparable to DRAM, as well as data persistency, while being a
drop-in replacement of DRAM. PMem-optimized data structures could theoreti-
cally achieve the same throughput as their DRAM counterparts while offering
granular persistency guarantees without needing additional write-ahead logging.
However, in practice, Intel’s Optane Persistent Memory Modules (DPCMM) per-
form considerably worse than DRAM. For example, their read latency is three
times higher [131]. While its write latency is comparable to that of DRAM,
its write bandwidth is lower by an order of magnitude, as shown in Table 3.1.
Furthermore, PMem’s internal smallest unit of access is 256-byte blocks, leading
to significant read and write amplification for small accesses.

Prior work addresses PMem’s high read latency, but often fails to fully
leverage its low write latency and mitigate its low write bandwidth. Many

Table 3.1: Write access characteristics for different media

Medium Latency Bandwidth Price Access unit

DRAM 90 ns 80 GB/s 7.2 $/GB cache line (64B)
PMem 130 ns 6.5 GB/s 4.0 $/GB block (256B)
SSD ≥ 1000000 ns 3.4 GB/s 0.3 $/GB page (4KiB)

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 46

current PMem-optimized data structures, for example, follow a hybrid design,
storing the recoverable part of their data (e. g., the inner nodes of a B-Tree) on
faster DRAM [13, 24, 118]. This approach is excellent for lookups but it does
not solve the issues of inserts as every insert has to store its payload on PMem
to guarantee data persistency. State-of-the-art PMem-optimized data structures
minimize the number of writes per insert to mitigate latency. However, because
of PMem’s low bandwidth, write amplification is just as much of a problem.
PMem’s internal 256-byte block structure further exacerbates this problem for
small random writes: It internally amplifies each write to update a 256-byte
block. This amplification leads to spurious writes saturating PMem’s internal
buffer, which drives up write latency and thus indirectly lowers throughput
even if little actual payload is being stored [50].

Workloads consisting of small writes are a common use case in key-value
stores [7]. Yahoo!, for example, states that their typical low latency workloads
have more than 50% inserts [138]. We target this use case: We capitalize on
PMem’s low write latency by optimizing for small writes while mitigating its
low write bandwidth by reducing write amplification. Our approach adapts
the write amplification-reducing techniques of log-structured merge-trees (LSM
trees) to PMem using hash tables.

LSM trees reduce write amplification for SSDs and HDDs [115] but do not
leverage PMem’s low latency for smaller writes. They buffer records on DRAM
before merging them into consecutively larger sorted runs on SSD or HDD.
This buffering reduces write amplification as LSM trees can fill each 4 KiB OS
page before writing it back. They accept some overhead incurred by keeping
their data sorted to ensure access patterns to SSDs/HDDs are favorable, i. e., by
enforcing that merges are sequential reads and writes.

PMem-optimized LSM trees like NoveLSM [81] or SLM-DB [76] adapt ex-
isting LSM trees like LevelDB [44] and replace some components with PMem-
optimized counterparts but keep their overall architecture. However, modern
NVMe SSDs are often more attractive for workloads with large writes as they
already offer half of PMem’s throughput at a tenth of its cost. Therefore, porting
LSM trees directly to PMem is hard to justify if one does not need the proper-
ties offered by sorting data (i. e., range queries) as their design does not take
advantage of PMem’s superior random write latency.

In contrast, we make use of the fact, that on PMem, it is unnecessary to
generate large sequential runs by sorting records as it already reaches full
bandwidth with just 256-byte writes. We instead propose gathering records
in a list of unsorted 256-byte buckets, which we address through a hash table.
Whenever such a bucket list is full, we propose re-hashing its contents and
recursively merging them into a bigger hash table (the “next level”). We thus
adapt the LSM tree’s merging approach to a PMem-aware hash table. This

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 47

was previously not workable, as the throughput of conventional block storage
devices is too low for writes that small. Larger buckets to accommodate 4 KiB
pages were also infeasible as search time would dominate for such large unsorted
buckets. We call our approach Persistent Log-strUctured haSH-table, or
Plush for short. In all other aspects, Plush takes proven approaches by LSM
trees but adapts them for a PMem-native data structure in two ways:
(1) Batch writes to PMem. Like an LSM tree, Plush gathers new data in
DRAM before moving it to PMem in batches, minimizing write amplification so
that PMem does not have to deal with spurious writes which would increase
latency and lower throughput. However, it uses a hash table instead of a skip
list. Plush allows a configurable amount of DRAM buffer. Established hybrid
data structures, in contrast, cannot control their DRAM consumption as it grows
with the record count. This puts a limit on record count before running out of
DRAM. Plush has no such limit.
(2) Store large records out of place. In contrast to many other PMem data
structures, Plush supports variable-length keys and values. It employs a similar
approach to LSM trees like WiscKey [101], which stores values in a separate log
that periodically collects garbage. This approach reduces write amplification,
since Plush does not have to copy values when merging them into the next level.

In summary, our key contributions are:

1. We explore how approaches to reduce write amplification developed for
LSM trees can be adapted to PMem with the help of hash tables.

2. We propose Plush, a write-optimized hash table for PMem with bounded
DRAM usage and low write amplification.

3. We evaluate Plush with fixed and variable-length records and show that
it outperforms state-of-the-art PMem data structures for inserts.

To our knowledge, Plush is the first PMem-optimized data structure to take
this approach.

3.2 Background
Plush is a hash table for persistent memory inspired by LSM trees. This section
introduces each aspect.

3.2.1 Persistent Memory
PMem positions itself as a drop-in replacement of DRAM as it has the same
load and store interface: One allocates a chunk of it and treats the memory

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 48

region just like any allocated memory on DRAM. There are, however, some
particularities unique to PMem:
Performance. We measured PMem performance in earlier work [131]. We
found that one can expect a 3.2× higher read latency for PMem compared to
DRAM but similar write latencies. The write latencies are similar as a store
does not have to reach the physical medium but just the CPU’s ADR domain
which already guarantees persistency [71], while reads have to go all the way to
the physical medium. For throughput, PMem falls off more: 2.6× for reads and
7.5× for writes. Thus, a significant advantage of PMem over conventional block
storage is its low latency. A persistent data structure should therefore capitalize
on this low write latency.
Persistency barriers. Even on PMem, a system crash can lead to data loss: For
example, the CPU might cache dirty data and delay flushing it to PMem. On a
crash, all dirty cache lines are lost as caches are not persistent. Therefore, one
has to use persistency barriers to ensure that the persisted data is always in a
consistent state. A persistency barrier is a clwb, clflush, or a non-temporal
write followed by an sfence. Flushing the cache line guarantees that the data
reaches PMem. The store fence forbids the CPU to re-order any writes before or
after. Such a barrier is expensive as it blocks until the CPU evicts the cache line
to its ADR domain and the store fence prevents the CPU from concealing this
stall by re-ordering other stores. One should therefore use as few persistency
barriers as possible. If a barrier is required, one should ensure that the whole
flushed cache line consists of payload to keep write amplification low. Intel’s
extended ADR (eADR), available since Ice Lake, solves this issue by including
the CPU cache in the persistency domain, obsoleting persistency barriers. Since
eADR needs a special power supply and not all CPUs supporting PMem support
eADR, persistency barriers are still required for backward compatibility.
Torn writes. The system might crash while flushing data to PMem, resulting in
a torn write. PMem guarantees that writes up to 8 bytes are atomic, larger writes
might only be persisted partially after a crash. Torn writes are usually prevented
by first writing a record to PMem followed by a persistency barrier. Afterward,
this record can be “armed” by atomically writing an at most 8-byte header
containing a valid bit followed by another persistence barrier. Having to use
two persistence barriers makes this approach expensive. We have previously
researched and tested approaches requiring only one persistence barrier [131],
which we also employ in Plush.
256-byte blocks. Internally, PMem operates on 256-byte blocks, just like
CPUs use 64-byte cache lines. The same principles apply: To reduce write
amplification, programs should write and read data in 256-byte blocks. When
this is not feasible, writes should be sequential so that PMem’s write combining

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 49

buffer can merge multiple writes which also enhances PMem’s limited write
endurance [65].

3.2.2 LSM Trees
Write amplification is an issue with data structures operating on background
storage. Since the smallest unit of access is often larger than the record to be
stored (256 B for PMem, 4 KiB for HDD/SSD), it is desirable to batch multiple
writes, which reduces write amplification. LSM trees, therefore, buffer new
records in DRAM. The LSM tree recursively merges the DRAM buffer into
consecutively larger layers of background storage whenever it reaches a size
limit. LSM trees keep the records sorted, usually using a skip list on the DRAM
layer to make this merge process efficient. A 𝑘-way merge then comprises 𝑘
sequential reads and one sequential write. This merge fits the access patterns of
HDDs and SSDs as they benefit from sequential access, but keeping data sorted
is expensive: Inserts cannot happen in constant time, and skip lists offer poor
cache locality and can suffer from write contention. If, however, records are
only stored on DRAM and PMem, there is no performance benefit for keeping
them sorted: PMem has exceptional random write latency as long as writes are
grouped into 256-byte blocks. Existing approaches to adapting LSM trees for
PMem do not leverage this advantage but replace or improve just a few core
components of already established LSM trees. NoveLSM, for example, adds
persistent skip lists and mutable memtables [81]. SLM-DB only employs a single
level and additionally keeps a persistent B-Tree index [76].

3.2.3 Hashing on PMem
Most bleeding-edge PMem-based hash tables use extendible hashing [38] or a
variant thereof. Extendible hashing splits the hash table into a set of fixed-size
buckets and a hash-addressable directory whose entries point to those buckets.
The buckets store the actual records, consisting of a key and its value. To
accommodate skew, 𝑛 directory entries, with 𝑛 = 2𝑘, 𝑘 ≥ 0 may point to the
same bucket. That way, underutilized directory entries do not need their own
(nearly empty) bucket taking up unnecessary space. Whenever a bucket is full,
it is split into two buckets. All records of the old bucket are re-hashed with
one additional bit of the hash function discriminating in which new bucket
they belong. Afterward, 𝑛/2 directory entries of those that pointed to the old
bucket point to each of the two new entries. If a bucket was already pointed to
by just one directory entry before the split, we cannot discriminate further. In
that case, the whole directory is doubled. Afterward, every bucket is pointed
to by at least two directory entries and the bucket can be split. This is called a

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 50

structural modification operation (SMO) which is very expensive and hard to do
concurrently and with consistency guarantees.

Modern PMem-based hash tables like CCEH [109] or Dash [100] group
multiple buckets into a segment to better optimize for PMem block size. They
split a segment when any of its buckets is full. Therefore, hash tables take great
care to improve the segment load factor to reduce the number of splits and
SMOs arising from them. Level hashing employs a second level with standby
buckets [172], Dash uses stash buckets.

3.3 Overarching Design
Plush combines the highlights of LSM Trees with the highlights of hash tables.
As PMem does not depend on sequential accesses as long as the accesses are
grouped in 256-byte blocks, we propose doing away with sorting and replacing
the LSM tree’s layers with hash tables. We still keep a DRAM buffer to group
the records into 256-byte blocks, reducing write amplification.

Plush also builds on the foundation of extendible hashing. Like CCEH and
Dash, it groups multiple buckets per directory entry. However, when a directory
entry would need to be split, Plush does not split in place, but merges its records
into a hash table with a bigger directory a level below. We call this a migration.
This leveling approach allows Plush to skip expensive SMOs altogether. Unlike
CCEH and Dash, Plush can also insert a record into any bucket of a directory
entry instead of a specific one determined by the record’s hash. While this slows
down lookups, it speeds up inserts, as the load factor is higher: A directory entry
is only migrated if it is full, resulting in low write amplification. To speed up
lookups, Plush uses positive bloom filters in the directory entries which indicate
whether a specific bucket contains a record with the requested key.

Plush is, to our knowledge, the first PMem-optimized data structure com-
bining LSM trees and hash tables in this way. Plush capitalizes on PMem’s
low random write latency for 256-byte blocks. It mitigates PMem’s low write
bandwidth by reducing its write amplification.

This approach helps Plush to achieve the following design goals:
Hybrid architecture. Plush uses a small but configurable amount of DRAM to
increase throughput. Here, DRAM acts as a buffer whose size is configurable.
In contrast, other hybrid PMem data structures cannot provide an upper bound
for DRAM consumption.
Low write amplification. Plush avoids expensive random writes to PMem and
instead groups data into 256-byte chunks in a DRAM buffer to write at once. It
keeps a write-ahead log of not yet persisted records to still guarantee per-record
persistency. Since Plush writes this log sequentially, PMem can use its write

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 51

combining buffer for increased throughput. Reducing write amplification also
conserves PMem’s limited endurance.
Reduce persistency barriers without relaxing persistency guarantees.
We tolerate small time windows where data is duplicated to ensure that Plush is
always consistent. This concession allows us to reduce the number of persistency
barriers. In the event of a crash, Plush amortizes data deduplication over runtime
after recovery.
Concurrency without persistent locks. PMem-optimized hash tables often
need locks stored on PMem for structural modification operations to reconstruct
the current state during recovery. Since Plush is always in a consistent state,
we can forgo such persistent locks. Inserts use fine-grained locking on DRAM,
while lookups only use optimistic locking [16, 87].
Efficient bulk loading. Plush guarantees persistency with the help of a PMem
write-ahead log. For bulk loading, relaxed persistency guarantees (i. e., manual
checkpoints) are often sufficient. The user can temporarily turn off logging for
increased throughput.
First-class support for variable-length records. In contrast to other PMem
data structures, Plush supports both variable-length keys and values. Unlike
some prior work like Dash, Plush always persists the payload itself, i. e., does
not treat keys or values as pointers to data managed by a separate data structure
like a write-ahead log. No separate write-ahead log is therefore required when
using Plush.

3.4 Architecture
Figure 3.1 shows Plush’s architecture. It consists of three components: A multi-
leveled hash table stores the (fixed-size) records. A table of write-ahead recovery
logs ensures that records that have not yet reached PMem are recoverable. An
optional table of payload logs stores variable-length records.

3.4.1 Multi-leveled Hash Table
The core of Plush is its hash table. It stores all records. Figure 3.1 shows such a
hash table with fanout 2.
Levels. The hash table consists of multiple levels, with the lowest level residing
in DRAM. All higher levels are stored on PMem, with each level’s directory
multiplying in size by a configurable power of 2, the fanout, except for the first
PMem level, which may have a smaller fanout. The user can thus adjust the
DRAM consumption by varying the size of the DRAM level compared to the first

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 52

Payload logs

insert(key,val)

h(key) = …10

3

1

2 Recovery logs

DRAM PMEM

4
5

lookup(key) h(key) = …111
a

b

c

d

Figure 3.1: Plush’s component overview with illustrated insert (1 - 5) and
lookup algorithms (a - d). The colored lines represent steps in the algorithms,
the black lines pointers of the data structure.

PMem level without modifying the fanout on PMem. Like extendible hashing,
each level’s hash table consists of a directory whose entries contain a bucket list
of up to fanout buckets. A bucket holds up to 16 records consisting of 8-byte
keys and values. It thus has a total size of 256 bytes which is the same size as a
PMem block.
Migration. When all buckets for an entry are full, Plush re-hashes their records
using log2(fanout) additional bits of the hash function. It then distributes
the records onto fanout directory entries on the next level (4), recursively if
necessary (5). Figure 3.2 illustrates the migration process. In the example, the
directory entry for all keys whose hash ends on 1 is full and has to be migrated
to the next level. We assume a fanout of 2, so each directory entry points to two
buckets. Let us furthermore assume that the hash of all entry marked with
hash to 0 on the second-to-last place and all entries marked with hash to 1.

When migrating, Plush appends records to the end of the last non-full bucket
for the corresponding directory entry on the next level. If that bucket overflows,
it allocates a new bucket (in the case). Plush then clears the old buckets in the
original level, making space for newly inserted records. Records thus slowly
move to larger levels like in an LSM tree. Assuming a uniform hash function,

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 53

…0 .
.

…1 .
.

…01 .
.

…11 .
.

16 records ≡ 256B

fanout buckets

fanout
directory
entries

Figure 3.2: Migrating the buckets of a directory entry.

we expect fanout full buckets in level 𝑛 to distribute evenly onto the fanout
directory entries on level 𝑛+1where each directory entry receives ≈ 1 bucket of
new records. Migrating a bucket to the next level, therefore, results in fanout
PMem block reads and one write in the best case (). In most cases, however,
there is not exactly one bucket’s worth of entries to insert, or the current bucket
already contains some elements from a previous migration forcing some records
to spill into the next bucket (). We, therefore, have to expect two block writes
per migrated bucket on average. Since most records will be on the highest level,
the average per-record write amplification grows linearly with the number of
levels (and thus logarithmically with the record count). This, however, is also
true for conventional PMem data structures. Hash tables, for example, have to
deal with SMOs and segment splits, trees with (leaf-) node splits.
DRAM buffer. Plush always inserts new elements into DRAM (3). Buffering
records in DRAM guarantees that Plush never stores single records on PMem
by itself, which would amplify writes by 16 (updating a 256-byte block for each
16-byte record). The buffering approach is an advantage over pure PMem data
structures which cannot buffer and combine writes in DRAM by design.
Lookups. Lookups search for the key by probing a filter in the directory entry
at each level consecutively (a - c). Only on a filter hit is the actual bucket
accessed and searched as well (d).

Figure 3.3 shows the layout of the hash table’s directory and buckets. Each
directory entry consists of:
Filter. Plush uses per-directory entry filters to efficiently checkwhether a bucket
contains a key. In contrast to prior work like the FPTree using fingerprints [118],
Plush uses a partitioned bloom filter [125, 137] where each partition bf𝑥 with

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 54

bf0 bf1 … bf7 𝑠 𝑒 𝑝0 𝑝1 … 𝑝7

Partitioned bloom filter (256B ≡ 1 block) Bucket pointers (64B)

32B → ≈ 2B/key 8B 8B

𝑣15…𝑣1𝑣0𝑘15…𝑘1𝑘0Bucket𝑓 𝑖𝑥:
8B 8B

Keys (128B) Values (128B)

𝑙𝑝15…𝑙𝑝1𝑙𝑝0ℎ(𝑘15)…ℎ(𝑘1)ℎ(𝑘0)Bucket𝑣𝑎𝑟:

epoch … len(𝑘) len(𝑣) 𝑘 𝑣 …
payload_logs[l_id].chunks[c_id]:

offset

l_id c_id
epoch

offset[0..15]
offset[16..31]

16 8 0

Figure 3.3: Layout of a directory entry, its buckets (for fixed and variable-length
keys), and the payload log for fanout 8.

0 ≤ 𝑥 < fanout covers the keys of one bucket. By forgoing fingerprints for
bloom filters, we sacrifice the ability to find the offset of potential hits within
the bucket upon a lookup (a) but achieve a far lower false-positive rate. Plush
stores all keys 𝑘0…𝑘15 within a bucket sequentially, so that it can compare all
of them with the search key with two AVX-512 SIMD instructions. Since the
PMem block read latency dominates the bucket lookup, this does not lose us
significant performance at the benefit of a far lower false-positive rate compared
to fingerprinting. A negative lookup on a hash table level thus only has to load
the bloom filter, which fits into a single PMem block. When doing inserts, we
bulk insert multiple elements into the same directory entry, updating the filter
in bulk. An insert of 16 elements thus only requires us to update the filter once
(≡ 1 PMem block write).
Size and epoch. Since Plush fills buckets sequentially, a single size field 𝑠 in
the directory entry suffices to calculate into which bucket and position a new
element has to be inserted. The recovery log (see Section 3.4.2) uses the epoch
field 𝑒 to determine which entries Plush has already migrated to a persistent
hash table level on PMem. Plush increments it after every migration.
Bucket pointers. The directory entry stores an array of pointers 𝑝𝑥 with
0 ≤ 𝑥 < fanout to the buckets containing the records. Plush updates the array
whenever it allocates a new bucket. Plush distinguishes between two kinds

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 55

of buckets: Buckets for fixed-size records (up to 8B keys and 8B values) called
bucket𝑓 𝑖𝑥 and buckets for variable-length records called bucket𝑣𝑎𝑟. We discuss
the second kind in Section 3.4.3. Fixed-size buckets are the size of a single
PMem block and can thus store 16 records. Plush can optionally drop the bucket
pointers and pre-allocate all buckets for all directory entries of the first 𝑘 PMem
levels at pre-defined offsets as an optional optimization. Pre-allocating buckets
incurs space overhead, especially if the utilization of the hash table is low. On
the flip side, it speeds up lookups and inserts as the pointer dereference (a PMem
read) is replaced by an unconditional, pre-calculated jump. Since we expect all
but the last level to be full, pre-allocating buckets for the upper levels will not
impact space consumption in the long run but considerably speed up lookups
and inserts. Section 3.6.5 evaluates the impact of this optimization.

Plush can also store 16-, 32-, and 64-byte keys and values in its buckets.
This is disabled by default as it reduces per-level capacity and requires coarser
locks for synchronization as C++ atomics cannot be larger than 8 bytes without
incurring additional synchronization overhead.

3.4.2 Recovery Log
Plush guarantees that it persists records permanently when the insert method
returns. Since Plush stores the newest entries on the DRAM part of its leveled
hash table, it has to keep a persistent log of all entries that it has not yet migrated
to a PMem hash table. Before it inserts a record into the hash table, it persists
the record in such a log (2). Unfortunately, this is a “law of nature” we cannot
get around: To guarantee persistency for each 16-byte record, we have to persist
each record in the log with an expensive persistence barrier and high write
amplification (since 16 ≪ 256). However, PMem’s write combining buffer saves
us: Since we write to each log sequentially, it can combine multiple writes into
a larger write without weakening persistence guarantees. Plush’s design thus
prevents small random writes to PMem: Instead, it either batches writes (hash
table bucket migration) or issues sequential writes (recovery logs) which the
write combining buffer batches internally.

Plush employs multiple logs, which it partitions by the key’s hash. Parti-
tioning is a trade-off: The more logs Plush uses, the lower the write contention
on each log. However, more logs also mean the write combining buffer will
not be as effective since more random accesses hit PMem. Plush thus allows a
configurable number of logs independent of the DRAM hash table size. It uses
64 logs by default. Since Plush partitions the logs by key, it can still ensure a
global ordering of updates on the same key, as it persists updates to the same
key in the same (sequential) log.

Figure 3.4 shows the layout of a log. It consists of a configurable number

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 56

head

compact_tgt

current

free

⋮

⋮

𝑏 𝑒0 𝑒1
𝑒𝑛…

𝑏 𝑒0 𝑒1 𝑏 𝑒0

𝑏 𝑏

key[0..62] b
value[0..62] b

k v bepoch
6362 0132

Figure 3.4: Layout of a recovery log. Each log consists of a set of chunks, split
into in-use chunks and a free list.

of fixed-size chunks arranged in a linked list and a free list of chunks currently
not in use. A current pointer points to the chunk that is currently being filled.
Each log entry 𝑒 consists of the key, value, and epoch counter. The epoch counter
signifies during which epoch of the DRAM hash table’s directory entry this
record was inserted. Plush increments the DRAM epoch when it persists the
corresponding buckets on PMem. It uses this information during log compaction
and recovery to determine whether it has already moved the corresponding
entry in the DRAM hash table to PMem. If it already moved that entry, it can
discard the log entry during compaction respectively skip it during recovery.

The log has to guarantee persistency and prevent torn writes. Plush achieves
both through the RAWL approach invented by Mnemosyne [151]: PMem guar-
antees atomicity for up to 8-byte integers. We thus distribute our data between
3 integers, each having 63 bits of payload and a flag bit 𝑏. Plush considers an
entry valid if its flag bits are equal to the flag in the chunk’s header. Since each
integer was stored atomically, it is guaranteed that all data is persisted if all
flags match. This approach needs just one persistence barrier after writing all
three integers. Invalidating a chunk’s entries is cheap: Plush flips the flag bit in
the chunk header.

When the free list is empty, Plush compacts the oldest log chunk by iterating
over its entries. When an entry is obsolete (i. e., its epoch is smaller than that of
the DRAM hash table entry it belongs to), it skips the entry. Otherwise, it copies
the entry to the chunk pointed at by compact_tgt preserving order. Last, Plush
invalidates all chunk log entries by flipping the flag bit 𝑏 in the chunk header
and inserting it into the free list. Since Plush uses a fixed number of fixed-size
chunks per log, the log space consumption is bounded.

Plush also profits from the fact that the capacity of its DRAM hash table
is fixed. It sets the log’s total capacity so that all logs together can hold more
records than the DRAM hash table. This way, Plush will probably already have

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 57

migrated the corresponding records of the oldest chunk’s log entries to PMem
by the time it compacts the chunk. In this case, compaction is just a sequential
read without writes as all entries can be discarded. Plush additionally stores
the highest epoch per chunk in DRAM. If that is lower than the epoch of all
DRAM directory entries belonging to the chunk’s log partition, it can even skip
this read. By choosing the right log size, compaction is thus free. By default,
Plush employs 64 logs with six chunks of 5 MiB. This configuration achieved
free compaction at Plush’s default DRAM directory size of 216 in our tests.

Plush using a DRAM buffer with a separate PMem log has a distinct ad-
vantage over other PMem data structures. Unlike Plush, they trigger a PMem
block write with high write amplification for every insert as they do not write
to PMem sequentially and thus cannot make use of the write combining buffer.

3.4.3 Payload Log and Variable-Length Records
Plush also supports variable-length keys and values. It stores keys and values
larger than 8 bytes out of place in a separate payload log. This separation
keeps cache locality high, lookups inside buckets fast, and write amplification
low. When storing records out of place, Plush does not have to copy them
whenever it migrates their bucket to the next level. The payload log is similar
to the recovery log except that log entries inside chunks can have arbitrary
sizes, and each chunk has a log epoch counter (cf. Figure 3.3). Whenever Plush
inserts a variable-length record, it first inserts the record into the payload log
(1) followed by a persistence barrier. Only then is the record inserted into
the recovery log and hash table. Plush uses special buckets for variable-length
values. Instead of a key and value, they store a hash of the key and a pointer
to the record’s position in the payload logs. Plush pre-faults the recovery- and
payload logs at startup to reduce page fault overhead at runtime [27].

3.5 Operations
In this section, we take a closer look at Plush’s three operations: upsert, lookup,
and delete. We then explore how Plush’s design guarantees that it is always in a
consistent state and ensures it scales with multiple threads. We finally explore
how Plush handles recovery and how it can further speed up inserts for bulk
loading.

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 58

1 void upsert(KeyType key, ValType val) {
2 // Find the correct directory entry
3 uint64_t hash = hash(key);
4 DirectoryEntry& entry = dram_directory[hash % dram_size];
5

6 lock(entry);
7

8 // Migrate, if full
9 if (entry.size == fanout * 16) {

10 migrate(entry);
11 ++e.epoch;
12 }
13

14 // First persist to log ...
15 Log& log = logs[hash % log_num];
16 LogEntry& log_entry = log.entries[log.size++]; // Entries are

on PMem, metadata (i.e, size field) is on DRAM.
17 log_entry.store(key, val, entry.epoch); //Using RAWL
18 persist(log_entry);
19

20 // ... then update the bucket
21 size_t bucket_idx = entry.size / 16;
22 size_t pos_in_bucket = entry.size % 16;
23 entry.buckets[bucket_idx].keys[pos_in_bucket] = key;
24 e.buckets[bucket_idx].vals[pos_in_bucket] = val;
25 ++entry.size;
26

27 unlock(entry);
28 }

Listing 3.1: Insertion algorithm for a fixed-size KV pair.

3.5.1 Upsert
Like an LSM tree, Plush is an append-only data structure. It, therefore, combines
inserts and updates into a single upsert operation. Internally, an update is just
an insert. The lookup operation has to ensure that it returns the latest value
inserted for the specified key.

Listing 3.1 shows the upsert algorithm for a fixed-size key-value pair. Plush
first determines the target directory entry in DRAM (3-4) and locks it (6). Note
that this is a regular lock in DRAM. If there is no space for the record, it migrates
the entries’ contents to PMem (9-12). Note that the directory entries on the
level to which Plush migrates the records only accept records from the current
entry and are, therefore, indirectly locked. The migration thus only needs to
consider concurrent lookups, but no inserts. Plush then inserts the record into

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 59

the recovery log (15-18), persists it using RAWL (cf. Section 3.4.2), and finally
inserts it into DRAM (23-27).

Listing 3.2 shows the migration process. First, Plush allocates a temporary
buffer for re-hashing keys for the next level (2). It then iterates over the records
of the old level from back to front, inserting them into the correct buffer (4-14). It
skips records with keys that have already been inserted into the buffer before and
thus prunes older versions of updated records. While this check has a runtime
complexity of 𝒪(𝑛2) in theory, 𝑛 is only 16 on average in practice leading to
negligible constant overhead. Afterward, it inserts the contents of the buffers
into the correct bucket on the next level (19-39), with a recursive migration (27)
if necessary. The order in which it updates and persists the data is critical: Plush
first persists new keys, values, and filters (33). Since it has not yet updated the
size field, the new values are not reachable yet and Plush will just overwrite
them after a crash and recovery. The filters, however, are not protected: If
the system crashes after Plush has persisted the filters at least partially, they
may yield false positives after a restart. Inconsistent filters are not an issue as
they are probabilistic. Plush has to deal with false positives anyway, leading to
slightly degraded performance for the partially migrated bucket after recovery
at worst. Plush automatically fixes this as it resets the filters during migration.
After it has updated and persisted the size (35-37), the migrated records are
visible but are shadowed by their still valid old version on the previous level. If
a crash occurs now, those values will be duplicated until they are migrated and
merged into the next level. While this leads to some potential data overhead
after recovery, Plush can migrate data holding no locks on PMem, keeping read-
and write amplification low. In the last step, Plush marks the old entry as empty
by zeroing and persisting its size and filters (41-43).

For variable-length records, migrations have to consider additional issues:
As newly inserted records shadow old records with the same key, the payload
log may contain old, no longer reachable entries. When a migration merges
bucket entries, it does not purge their records from the payload log leading to
two inconsistencies Plush has to consider:

1. Plush updated a record in the hash table, but its old value still lives in the
log. Plush solves this through periodic garbage collection. Whenever it
runs out of memory, it compacts the oldest chunk of each payload log to
a new chunk. Plush checks whether each entry is still reachable, i. e., a
lookup with the logged key will yield a pointer to the current log entry.
If that is not the case, the entry is stale, and Plush garbage collects it.
Otherwise, it moves the record and updates the log pointer. Like with the
recovery logs, we assume that the oldest entries are stale most of the time
so that Plush does not have to move many records on garbage collection.

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 60

1 void migrate(DirectoryEntry& e) {
2 List<Record> rehashed[fanout];
3 // Rehash all elements
4 for (int idx = e.size - 1; idx >= 0; --idx) {
5 size_t cur_bucket = idx / 16;
6 size_t idx_in_cur_bkt = idx % 16;
7 KeyType key = e.buckets[cur_bucket].keys[idx_in_cur_bkt];
8 ValType val = e.buckets[cur_bucket].vals[idx_in_cur_bkt];
9 List<Record> tgt = rehashed[(hash >> lvl_bits) % fanout];

10 // Drop if duplicate - iterating from back to front ensures
newest version is kept.

11 if (!tgt.contains(key)) {
12 tgt.append((key, val))
13 }
14 }
15

16 // Insert rehashed elements into next level
17

18 // For each directory entry in the next level ...
19 for (int e_idx = 0; e_idx < fanout; ++e_idx) {
20 DirectoryEntry tgt = get_entry(
21 lvl + 1,
22 index_of(e) * fanout + e_idx);
23

24 // For each bucket in the directory entry ...
25 for (int pos=0; pos < rehashed[e_idx].size; ++pos) {
26 if (tgt.size == fanout * 16) { // Target full?
27 migrate(tgt); // Recursive
28 }
29 update_filter(tgt, rehashed[e_idx][pos].key)
30 insert(tgt, rehashed[e_idx][pos]);
31 }
32 // Nothing is guaranteed to be persisted yet!
33 persist([tgt.keys, tgt.values, tgt.filters]);
34 // If crashing here: Filter has false-positives
35 tgt.size += elems_inserted;
36 tgt.epoch = e.epoch;
37 persist([tgt.size, tgt.epoch]);
38 // If crashing here: Duplicates! -> will be cleaned up with

the next migration
39 }
40

41 e.size = 0;
42 e.filters = 0;
43 persist([e.filters, e.size]); // Consistent again!
44 }

Listing 3.2: Migration algorithm for a directory entry.

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 61

2. During a migration, Plush might discover that a pointer in the hash table
points to a log entry that no longer exists. Pointers dangle if the user
updated a record, and Plush then garbage collected its old version but has
not yet merged the old pointer on the higher hash table level. For this
reason, the log pointer contains the epoch of the chunk it is pointing to.
When Plush migrates a chunk, it increments its epoch. It thus can detect
a dangling pointer by comparing the epochs and excluding them from
migration to the next level.

In contrast to the recovery log, the payload log does not need to detect torn
writes: Plush deems log entries valid if pointed at by a pointer. It only persists
pointers after it flushed the log entry to PMem. As torn log entries were never
valid, no pointer will point to them, and Plush will garbage collect them.

3.5.2 Lookup
Listing 3.3 shows the lookup algorithm. Since updates are just inserts,

multiple versions of a record can co-exist on different levels of the hash table.
Plush thus needs to ensure lookup returns the latest version of a record. To
guarantee that, it searches all levels, beginning with DRAM (5-9) and ending
with the highest PMem level (12-17), and buckets from back to front (37-41).
It only checks a bucket if its bloom filter cannot rule out a hit (21-24). This
operation is expensive as we can expect most data to live in the last PMem level,
leading to negative lookups at all lower levels. Plush mitigates the issue by
optionally storing the directory filters in DRAM instead of PMem. Storing filters
in DRAM does not weaken Plush’s persistency guarantees as it can recover filters
from the records stored on PMem but lengthens recovery time. Sections 3.6.5
and 3.6.7 evaluate the trade-off. DRAM consumption stays configurable as the
user can decide which level’s filters Plush should store on DRAM.

3.5.3 Delete
Plush uses tombstone records for deletion. Deletes are thus just inserts where
the value equals a pre-defined tombstone marker. During migrations, tombstone
markers “cancel out” records with the same key, i. e., drops the record.

3.5.4 Recovery
When Plush crashes, it loses the contents of its DRAM hash table and has to
rebuild it from the recovery logs. Plush iterates over every log and compares
each log entry’s epoch with the epoch of its target bucket on the lowest PMem

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 62

1 ValType lookup(KeyType key) {
2 uint64_t hash = hash(key);
3

4 // First, try DRAM
5 DirectoryEntry& e = dram_directory[hash];
6 ValType val = lookup_in_bucket(key);
7 if (val) {
8 return val;
9 }

10

11 // Iterate over PMem until hit or reached last level
12 for (int lvl = 0; !val && lvl < pmem_levels; ++lvl) {
13 DirectoryEntry& e = get_entry(lvl, hash);
14 val = lookup_in_lvl(e, key);
15 }
16 return val;
17 }
18

19 ValType lookup_in_lvl(DirectoryEntry& e, KeyType key) {
20 RETRY:
21 int b_id = e.filter.get_bucket(key);
22 ValType result = nullptr;
23 // If we have a filter hit, check bucket
24 if (b_id != -1) {
25 int epoch = e.epoch;
26 result = lookup_in_bucket(e.buckets[b_id]);
27 if (e.epoch != epoch) {
28 // Someone inserted while we checked, retry
29 goto RETRY;
30 }
31 }
32 return result;
33 }
34

35 ValType lookup_in_bucket(Bucket& b) {
36 // Just check every element - can be sped up using SIMD

instructions
37 for (int i = get_size_of(b) - 1; i >= 0; --i) {
38 if (b.keys[i] == key) {
39 return b.values[i];
40 }
41 }
42 return nullptr;
43 }

Listing 3.3: Lookup algorithm for a fixed-size KV pair.

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 63

level. If the bucket’s epoch is higher than that of the recovery log entry, Plush
had already persisted that entry before the crash and skips it. Otherwise, Plush
reinserts it into the DRAM hash table. As the recovery logs are partitioned,
Plush can trivially recover them in parallel.

If Plush crashes during compaction of a log (i. e., while copying a log entry
to a new chunk), there is no special case needed: Either it did not wholly
persist the new version of the copied log entry and therefore recognizes the new
value as torn, or both versions are valid. If both versions are valid, Plush will
discard the older entry as it does a duplicate check when inserting recovered
entries. Since all recovered entries fit into DRAM by definition (they would not
need to be recovered otherwise), no migration is necessary during recovery.
Plush’s recovery is, therefore, idempotent. It can just restart a crashed recovery.
The payload log for variable-length entries does not need a special recovery
mechanism. An entry is, by definition, valid if a value in the hashtable is pointing
to it. If Plush recovered no such pointer while iterating over the recovery logs,
it will drop the entry in the next garbage collection run.

3.5.5 Concurrency
Upserts lock each bucket non-persistently. Assuming a fanout of 16, in 255 out
of 256 cases, no migration is required, and the lock is thus just held for a short
time. Since Plush uses hashing, inserts are ideally uniformly distributed over the
directory. This uniform distribution is an advantage over LSM trees which have
to keep data sorted, which leads to higher contention. For Plush, logging is the
bottleneck, as multiple directory entries share the same log. Even though the
logs use a lock-free atomic counter to assign slots, the CPU’s cache coherency
protocol adds some overhead. We have found that for our system with 24 cores
the best trade-off between synchronization overhead and space consumption is
64 logs.

Lookups do not acquire any locks but use optimistic concurrency control.
Therefore, values, keys, epoch, and size have to be atomic variables. Plush reads
a bucket’s epoch before searching for a record’s key. After it finds the key, it
re-reads and compares the epoch. If the epochs match, Plush can be sure that the
bucket has not been migrated and overwritten during lookup. This design allows
for multiple lookups and one insert to operate on a directory entry concurrently.

3.5.6 Crash Consistency
As long as the records are still on DRAM, crash consistency is guaranteed:
Write-ahead logging ensures that entries are recoverable before Plush inserts
them into DRAM. If another thread sees the key in DRAM, it is thus guaranteed

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 64

to be recoverable. It is more complex during migration. Plush ensures that
there is no inconsistent state being read by making migrated values visible
after it persisted them and only then removing the old version at the previous
level. This approach saves a lock and a persistency barrier but allows for a
small time window where an entry is valid on both levels simultaneously. If
the system crashes here, records are duplicated. This duplication is, however,
not an issue. Since Plush’s append-only architecture forces it to deal with and
merge multiple records having the same key anyway, it will merge the duplicates
when it migrates them to the next level. We thus trade off cheap consistency
guarantees for the small risk of some temporary data duplication after a crash.
Since inserts guarantee that Plush is always in a valid state and data is duplicated
at worst, Plush does not need any additional consistency checks during lookups.

3.5.7 Bulk Loading
Some workloads do not need the strict persistency guarantees given by Plush
but would benefit from increased throughput. Take bulk loading as an example:
A user has to insert some existing large data set, but a (rare) crash is not world-
ending as they can restart the bulk loading process. Here, it would be sufficient
that the user can define checkpoints after which all records that a user has
inserted before are guaranteed to be persisted (i. e., at the end of bulk loading)
instead of having a per-insert persistency guarantee.

Plush can increase insert throughput by disabling write-ahead logging.
When disabled, the persistency guarantees weaken as records living in the
DRAM hash table are now lost on a crash. Plush mitigates this by allowing the
user to create checkpoints manually. Checkpointing moves all records from
the DRAM table to the first PMem level. It even supports mixing regular and
relaxed persistency inserts: The user can decide upon each insertion if Plush
should log the record. Section 3.6.5 evaluates bulk loading.

3.6 Evaluation
In this section, we compare Plush against other persistent trees and hash tables
optimized for fixed- and variable-length records. We also evaluate the impact
of different optimizations. Finally, we examine Plush’s space utilization and
recovery performance.

Our evaluation system is equipped with an Intel Xeon Gold 6212U CPU, with
24 physical (48 logical) cores and clocks at a 2.4 GHz base clock. The system
has access to 192 GB (6 × 32 GB) DRAM and 768 GB (6 × 128 GB) of Intel’s
first-generation DCPMM DIMMs. It runs Ubuntu 20.04 LTS with kernel version

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 65

5.4.0. We configure the DCPMM in AppDirect mode and provision it in fsdax
mode with an ext4 filesystem. We manage via load and store instructions on an
mmap’d memory regions and do not use any additional libraries.

We implement Plush in C++20 and make use of AVX-512 instructions. To our
knowledge, all CPUs supporting PMem also support the AVX-512 instruction set.
We compile Plush and all other data structures with GCC 11.1.0 with the -O3
flag. If not otherwise mentioned, we use the PiBench benchmarking suite by
Lersch et al. [92]. It was designed for persistent tree indexes but also supports all
workloads applicable to Plush. Using a third-party benchmarking tool ensures
our benchmarks do not accidentally favor Plush.

3.6.1 Plush Configuration
Let us first discuss how to best configure Plush depending on workload char-
acteristics. Assume we have 𝑁 records and a fanout 𝑓. Each directory entry
thus holds up to 16𝑓 records. Further, assume that the hashing is not perfectly
uniform, so migrating a batch of 16𝑓 records to the next level writes to two
buckets on average (cf. Section 3.4.1). Thus a migration incurs 2 ⋅ 16𝑓 bucket
writes and 16𝑓 filter updates, so a media write amplification of 3 per record. Due
to the write combining buffer, we get away with a write amplification of 1 for
the log. Since log compaction is free (cf. Section 3.4.2), there is no additional
amplification. We thus expect a per-record write amplification of 3 ⋅ log𝑓 𝑁 + 1.
We thus want to choose the fanout as large as possible to minimize level count
and thus write amplification while still having acceptable directory size spikes
when Plush adds a new level. A high fanout also reduces read amplification as
fewer levels have to be searched per lookup.

We choose 𝑓 = 16 resulting in 216 DRAM directory entries and the same
amount of PMem directory entries at level 1. With this configuration, Plush
has a directory sized 32 MiB, 544 MiB, 8.7 GiB, and 147 GiB at 1, 2, 3, and 4
levels holding 3.3 × 107, 3.0 × 108, 4.5 × 109, and 7.3 × 1010 records, respectively.
Plush uses 64 recovery logs, each with six chunks of 5 MiB, the empirically
determined sweet spot between minimizing contention (more logs are better)
and maximizing write combining buffer usage (fewer logs are better).

Plush’s behavior in this default configuration is demonstrated by Figure 3.5,
which shows overall space consumption in relation to data set size broken
down by bucket-, directory-, and log size for an insert workload of uniformly
distributed 16-byte records (8-byte keys and values). Note the constant size of
the log and growth of the directory whenever Plush creates a new PMem level.
As stated earlier, the high fanout of 16 leads to big space consumption spikes
for each new level, as Plush has to create a complete directory for the new, still
nearly empty level. This spike is a downside of Plush’s hash table approach

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 66

buckets directory log

0 100 200 300 400
0

200

400

600

0 10 20 30 40
0

20

40

60

Data set size [GiB]

Sp
ac
e
co
ns
um

pt
io
n
[G

iB
]

Figure 3.5: Space consumption relative to data set size as stacked area chart.
Broken down by bucket-, directory-, and log size.

compared to traditional LSM trees, which do not need a directory. If storage
space is a concern, the user should thus choose a lower fanout, leading to less
severe spikes. However, note that the buckets’ space consumption rises more
well-behaved with the data set size. Although a directory entry can point to
up to 16 buckets, Plush only creates buckets on demand (i. e., if the preceding
bucket is already full). Therefore, no storage space is wasted. The stair-like
pattern is an artifact of the workload: Since it is uniformly distributed and keys
are hashed, all parts of the hash table fill at approximately the same rate. Thus,
when all 𝑛-th buckets are full simultaneously, Plush creates the 𝑛 + 1-th buckets
in parallel, increasing the space consumption. This rise is followed by a plateau
during which Plush (recursively, through all previous layers) fills the newly
created buckets. Since the default fanout is 16, this pattern repeats 16 times
until the level is full, and Plush has to create the next level.

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 67

Table 3.2: Investigated Data Structures.

Name Type Var-length records DRAM Range queries

Plush LSM+ht 3 𝒪(1) 31

𝜇Tree tree just values 𝒪(𝑛) 7

FPTree tree 7 𝒪(𝑛) 3

FAST+FAIR tree 7 𝒪(𝑛) 3

DPTree tree 7 𝒪(𝑛) 3

Dash ht just keys - 7

PmemKV ht 3 - 7

Viper ht 3 𝒪(𝑛) 7

RocksDB LSM 3 𝒪(1) 3

FASTER ht+log 3 𝒪(1) 7

3.6.2 Comparison to Other Data Structures
We compare Plush against nine indexes listed in Table 3.2 which can be grouped
into hash tables and tree-like data structures. Plush combines aspects of all those
approaches allowing us to compare different trade-offs made by each approach.
We also compare two versions of Plush. One, where the filters for the top two
levels are stored in DRAM (cf. Section 3.5.2), and one, where all filters are stored
on PMem. As the DRAM overhead of the filters is just 256MiB, we treat this case
as the default case if not otherwise mentioned. Dash [100] and PMemKV [123]
with the cmap backend are PMem-only hash tables. Both support the same
operations as Plush but do not use any DRAM. PMemKV also supports variable-
length records, while Dash only supports (pointers to) variable-length keys.
Viper [13] stores its records in PMem but keeps a hash table with fingerprints
of all keys in DRAM, thus requiring large amounts of DRAM linearly growing
with the number of records stored.

We also compare against persistent B-Trees: FPTree2 [118], FAST+FAIR [62],
DPTree [169], and 𝜇Tree [24]. They store inner nodes (e. g., FPTree) or keys
(e. g., 𝜇Tree) on DRAM. As they sort their records at the cost of some insert
throughput, most support range queries in contrast to the hash tables. The
DRAM consumption of all trees and Viper grows with the record count. The
DRAM consumption of all other hash tables and Plush is either constant in the
record count or zero for the PMem-only indexes.

FASTER [22] is a log-based kv-store designed for SSD and gives weaker
persistency guarantees. We place the persistent part of its log on PMem. We

1In range partitioning mode, see Section 3.6.6.
2We use SFU’s open-source re-implementation: https://github.com/sfu-dis/fptree

https://github.com/sfu-dis/fptree

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 68

configure FASTER to have the same amount of DRAM available as Plush, with
half reserved for its hash index and the other half for the mutable part of its log.
PMem-RocksDB [122] is a fork of RocksDB optimized for PMem. It serves as a
representation of all established LSM trees that were adapted to PMem.

3.6.3 Fixed-Size Records
First, we evaluate how Plush deals with fixed-size records. We preload 100
million 16-byte records consisting of 8-byte keys and values. Keys are uniformly
distributed. We then execute 100 million operations for varying thread counts.
Figures 3.6 and 3.7 show the results.

Throughput

For lookups (Figure 3.6a), Viper and Dash win over Plush and the tree data
structures as both have just a single level. Plush has to look up the key at every
level on average as it stores most records on the last level and therefore cannot
end the search early. For lookups, it thus behaves like a tree. It still has an
advantage (×1.41) over FPTree but is beaten by 𝜇Tree and DPTree which store
a copy of all keys in DRAM. Plush beats the other trees because of its hybrid
design where it optionally stores bloom filters in DRAM (cf. Section 3.6.5),
speeding up negative level lookups. Without this optimization, Plush has a
similar lookup performance to those trees.

Plush’s tiered design benefits from temporal skew: If Plush looks up a key
that was recently inserted, it will probably still be in DRAM or a low PMem
level: It can end the search early. Figure 3.6b illustrates this advantage. Here,
lookups are Zipf-distributed [47]. The higher the skew factor, the more likely a
lookup is for a record that was inserted just recently. While all data structures
profit from skew due to caching effects, Plush profits disproportionally more,
catching up with Viper and nearly reaching Dash.

Plush outperforms all data structures for inserts (Figure 3.6c), scaling nearly
linearly up to 48 threads. It improves over Viper by 1.44×, Dash by 2.44×,
and FPTree, the fastest tree, by 3.31×. The picture looks similar for deletes
(Figure 3.6d), where Plush’s performance is identical to inserts as a delete is just
an insert of a tombstone.

Figure 3.7 shows how the data structures behave for mixed workloads on
48 threads ranging from only lookups (left) to only inserts (right). For insert
ratios below 30%, Viper has higher throughput than Plush as it can leverage its
superior lookup throughput below those insert ratios. Above that, Plush’s insert
throughput dominates.

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 69
Pl
us
h

Pl
us
h
w
/o

D
R
A
M

fi
lt
er

D
as
h

𝜇T
re
e

FP
Tr
ee

FA
ST
+F
A
IR

D
PT

re
e

V
ip
er

01020304050

1
4

8
16

24
36

48
#
th
re
ad

s

ops/s×106

(a
)1

00
%

lo
ok

up

0255075

0.
1

0.
2

0.
5

0.
7

0.
9

0.
99

0.
99
9

sk
ew

ops/s×106

(b
)L

oo
ku

ps
un

de
r
sk

ew

0102030

1
4

8
16

24
36

48
#
th
re
ad

s

ops/s×106

(c
)1

00
%

in
se
rt

0102030

1
4

8
16

24
36

48
#
th
re
ad

s
ops/s×106

(d
)1

00
%

de
le
te

Fi
gu

re
3.
6:

T
hr

ou
gh

pu
to

fc
or
e
op

er
at
io
ns

un
de

r
va

ry
in
g
th
re
ad

co
un

tf
or

fix
ed

-s
iz
e
re
co

rd
s
(8
-b
yt
e
ke

ys
,8

-b
yt
e
va

lu
es
).

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 70

Plush Plush w/o DRAM filter Dash 𝜇Tree

FPTree FAST+FAIR DPTree Viper

0

10

20

30

40

50

0.00 0.25 0.50 0.75 1.00
insert ratio

op
s/
s
×1
06

Figure 3.7: Throughput of mixed workloads with 48 threads for fixed-size records
(8-byte keys, 8-byte values).

Overall, Plush is very predictable: It shows stable throughput at all insert
ratios, scales well for all operations due to its partitioning design, low write
amplification, lock-free lookups, and profits more than other data structures
from temporal skew.

Read/write amplification

Figure 3.8 explains the throughput differences. It shows how much data is
read/written per operation by the CPU at cache line granularity (64 bytes) on
average. The overlayed hatched columns show data reaching the physical
storage medium at PMem block granularity (256 bytes). The difference between
the yellow and the hatched column is thus the overhead incurred by not packing
writes and reads into 256B-blocks perfectly.

Plush’s batching of reads and writes with a DRAM buffer decreases ampli-
fication on inserts: Its read and write amplification is just 63% resp. 70% of
Viper, the runner-up. Viper, however, has lower end-to-end write amplification,
as it always writes to PMem sequentially. This is the optimal write pattern
for PMem, but it comes at a cost: Viper needs to keep a large hash table in
DRAM that indexes all records, significantly increasing DRAM read- and write
amplification. This experiment confirms that DRAM latency is not negligible
for inserts, supporting our earlier observation that PMem’s write latency is
similar to DRAM’s. Plush, Viper, DPTree, and Dash have similar PMem read
amplifications for lookups, but Plush is at a disadvantage as it also has to read
from DRAM. Even though 𝜇Tree reads 56% less from PMem than Plush, its
throughput is only 18% higher as it reads over twice as much data from DRAM.

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 71

Dash DPTree FAST +
FAIR FPTree Plush Plush w/o

DRAM f. utree Viper
insert

lookup

r w r w r w r w r w r w r w r w

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

K
iB
/o
p

Figure 3.8: Read and write amplification for 16-byte records on DRAM () and
PMem (). Overlayed hatched columns () show PMem media amplification.

This experiment confirms our initial assumption that the throughput of
PMem data structures is heavily influenced by their write amplification, as write
bandwidth is a bottleneck of PMem.

Latency

Plush’s weakness is its migration step. To increase throughput by reducing
communication overhead, Plush does not employ separate background migrator
threads. Thus, a single “unlucky” insert might have to move a lot of data since
a migration can start a chain of recursive migrations leading to higher tail
latencies. We investigate the impact of this design decision on latency. For
this, we run our workload on 23 threads (and one monitor thread) to rule out
any SMT effects. Figure 3.9 shows the latency at different percentiles. Plush’s
insert latency is close to Dash’s at lower percentiles. At the 99.9-percentile,
Plush’s latency increases sharply. This increase is expected, as on average, every
256th insert triggers a migration. However, Plush’s latency does not worsen
significantly at higher percentiles, and it even outperforms Dash again. Plush’s
and the other tree-like data structures’ advantage is that they do not have to do
any rare but costly structural modification operations like directory splits. For
lookups, all data structures behave similarly.

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 72

Plush Plush w/o DRAM filter Dash 𝜇Tree

FPTree FAST+FAIR DPTree Viper

Insert Lookup

mi
n

50% 90% 99% 99.
9%
99.
99%
99.
999

%
mi
n

50% 90% 99% 99.
9%
99.
99%
99.
999

%
0

25

50

75

100

La
te
nc
y
[𝜇
s]

Figure 3.9: Tail latencies for 16-byte records with 23 threads.

3.6.4 Space Utilization
We fill all data structures with 16-byte records until we run out of storage space
on our PMem partition, out of DRAM, or just crash. We then plot the total data
set size (i. e., record count × 16 bytes) against the actual space consumption.
Figure 3.10 shows the results for DRAM consumption (left) and overall space
consumption (right).

DRAM consumption for both Plush variants and Dash is constant, with
Plush using < 1 GB and Dash not using DRAM at all. Viper, 𝜇Tree, and DPTree
store the bulk of their data in DRAM and are thus limited by DRAM capacity
and cannot scale with the amount of installed PMem. They instead run out of
DRAM or crash at ≈ 70 GiB inserted records, which can be seen on the right.

Regarding overall space consumption, both Plush variants show a huge
increase at ≈ 50GiB when they create the directory for PMem level 4 (directories
for levels 1-3 are too small to be visible here) and the characteristic stair pattern
already described in Section 3.6.1. While the trees show a more linear growth,
the hash table Dash has even steeper jumps in size as it doubles the directory
whenever full.

3.6.5 Plush Tuning
As explained in Sections 3.4.1, 3.5.2 and 3.5.7, Plush supports multiple opti-
mizations trading off DRAM consumption, PMem consumption, or persistency
guarantees for throughput. Figure 3.11 compares the impact of the different
optimizations compared to the baseline.

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 73

Plush Plush w/o DRAM filter Dash 𝜇Tree

FPTree FAST+FAIR DPTree Viper

0 25 50 75 100
0

1

2

3

4

0 100 200 300 400
0

50

100

150

Data set size [GiB]

D
R
A
M

[G
iB
]

0

200

400

600

0 100 200 300 400
Data set size [GiB]

D
R
A
M
&
PM

em
[G

iB
]

Figure 3.10: Storage consumption compared to data set size. Top: Just DRAM,
Bottom: DRAM and PMem combined.

Insert Lookup

baseline +prealloc +dramfilter -log baseline +prealloc +dramfilter -log
0

20

40

60

op
s/
s
×1
06

Figure 3.11: Throughput gained by optimizations.

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 74

Plush FAST+FAIR FPTree DPTree

0

1

2

3

1 4 8 16 24 36 48
threads

op
s/
s
×1
06

Figure 3.12: Throughput for range queries.

Pre-allocation. When enabled (+prealloc), all buckets up to the second
PMem level are pre-allocated upon initialization. This setting does not increase
memory consumption when enough records are inserted (as all levels except the
last level are full anyway). However, it increases insert throughput (×1.36) and
marginally increases lookup throughput (×1.05). Inserts are disproportionally
faster as every migration saves fanout pointer dereferences while reading the
records and ≈ fanout ⋅ 2 pointer dereferences for storing records on the next
level. For our experiments, we pre-allocate up to the second PMem level which
reserves 4.26 GiB PMem for the buckets.
Filters on DRAM. When additionally storing first two level’s filters in DRAM
(+dramfilter), insert throughput improves only slightly (×1.05) while lookup
throughput improves considerably (×1.30). Here, lookups improve dispropor-
tionally as checking if a level contains a key no longer involves a costly PMem
block read. As write latency is lower and inserts batch writes to PMem filters
anyway, inserts do not benefit.
Skipping logging. When additionally not logging inserts (-logs), insert
throughput increases dramatically (×1.89) while lookup throughput stagnates as
lookups log nothing. As explained in Section 3.5.7, disabling logging is helpful
for bulk loading. Creating a checkpoint with a single thread takes ≈ 840 ms.
Plush also supports creating checkpoints concurrently. This is useful when
Plush currently does not run other operations, e. g., after a bulk load before
accepting requests. With 32 threads, checkpoint creation takes ≈ 69 ms.

3.6.6 Range Queries
By default, Plush partitions the key space into disjunct directory entries by hash
to avoid skew. However, it supports arbitrary partitioning functions. When
choosing a range partitioning function, Plush supports range queries: While

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 75

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400
0

1

2

3

Data set size [GiB]

R
ec
ov
er
y
ti
m
e
[s
]

Allocator Filters Logs

Figure 3.13: Recovery time vs. data set size for filters and logs.

records within a directory entry’s buckets are still unsorted, it can use divide
and conquer to only iterate over a few such entries. This is prone to skew but is
an advantage over pure hash tables.

Figure 3.12 shows Plush’s range query performance in range partition mode.
The workload consists of a data set with 100 million records and 100 million
lookups of random keys for which the next 100 larger records are returned in
order. Plush keeps up with FPTree but is outperformed by the other trees as
they can scan their sorted leaf nodes while Plush still has to check all unsorted
buckets with potential candidates.

3.6.7 Recovery
While crashes in a production system should be rare, Plush should still recover
quickly to keep downtime low. We load an increasing number of 16-byte records,
forcibly terminate Plush during loading, and then measure the recovery time.
Figure 3.13 shows the results for the three types of data Plush has to recover:

1) Records in the PMem log that had not been persisted in the hash table,

2) bloom filters that had been stored on DRAM (cf. Section 3.6.5),

3) and the status of the allocator (i. e., until which address it already had
allocated buckets).

1) is constant as the log has a fixed size, 2) is constant as Plush only allows
DRAM filters up to a given level (2, in this case) and 3) is linear in the number
of levels (so logarithmic in the number of records). Note that this is the worst

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 76

case as recovery time only grows with the number of records, not the data set
size: If storing records larger than 16 bytes, Plush does not read the keys and
values themselves during recovery, but just the pointers referencing them.

3.6.8 Variable-Length Records
Figure 3.14 shows throughput for records having 16-byte keys and 1000-byte
values. We evaluate a read-heavy (a), a mixed (b), and a write-heavy workload
(c) with varying thread count. Plush scales well for read-heavy workloads but
does not scale beyond 24 threads for write-heavy workloads. This observation
aligns with our earlier findings that PMem’s write bandwidth can be saturated
by just a few threads. The more inserts we issue, the more bandwidth-starved
all data structures become. For read-heavy workloads, Viper and Dash keep up
with Plush (a). For low thread counts on an insert-heavy workload, FASTER
overtakes Plush. Since FASTER gives fewer persistency guarantees, it may
store records only in DRAM and flush them in bulk. This is an advantage over
Plush, which keeps a write-ahead log. All data structures beat the RocksDB fork
showing the advantage of designing a data structure optimized for PMem from
the ground up instead of adding it as an afterthought. Figure 3.14d shows how
throughput for the mixed workload changes with varying record sizes. Plush is
latency-bound for smaller sizes but becomes bandwidth-limited as the record
size increases. Plush profits from its low write amplification as it stores records
out of place and from pre-faulting the payload log. Out-of-place storage is also
the reason for the drop in throughput from 16-byte records to 32-byte records
as storing the latter records out of place, leading to a level of indirection.

3.7 Related Work
PMem’s low bandwidth (compared to DRAM) has been researched extensively
in the past [15, 31, 60, 71, 95, 156]. Plush specifically addresses issues raised by
Gugnani et al. [50] and Woo et al. [156]. Most data structures mitigate this by
adapting a hybrid design where reconstructible data resides in DRAM [13, 24, 58,
118, 163, 169]. Such data structures are usually B-Trees that store inner nodes
inside DRAM (e. g., NV-Tree [163] or FPTree [118]), or even store (fingerprints
of) keys in DRAM (e. g., 𝜇Tree [24]). Viper [13] and HiKV [159] are hybrid hash
tables. Viper logs records to PMem and stores their fingerprints in a DRAM
hash table for efficient lookups and synchronization between threads. HiKV
combines a PMem hash index with a DRAM B-Tree. These approaches do not
have control over how much DRAM they consume as it depends on the data
set size. LibreKV [96] uses a fixed-size hash table on DRAM like Plush but

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 77
Pl
us
h

D
as
h

FA
ST

ER
PM

em
K
V

R
oc
ks
D
B
-P
M
em

V
ip
er

036912

1
4

8
16

24
36

48
#
th
re
ad

s

ops/s×106

(a
)R

ea
d-
he

av
y
(1
0%

in
se
rt
s)

02468

1
4

8
16

24
36

48
#
th
re
ad

s

ops/s×106

(b
)M

ix
ed

(5
0%

in
se
rt
s)

024

1
4

8
16

24
36

48
#
th
re
ad

s

ops/s×106

(c
)W

ri
te
-h

ea
vy

(9
0%

in
se
rt
s)

0102030

8/
8

16
/1
6

16
/1
28

32
/2
56

64
/5
12

12
8/
10
24

re
co
rd

si
ze

(k
/v
)

ops/s×106
(d
)V

ar
yi
ng

re
co

rd
si
ze

Fi
gu

re
3.
14

:T
hr

ou
gh

pu
tf

or
va

ri
ab

le
-l
en

gt
h
en

tr
ie
s.

(a
)-

(c
)s

ho
w

th
ro
ug

hp
ut

fo
r
3
di
ffe

re
nt

w
or

kl
oa

ds
w
ith

16
-b
yt
e
ke

ys
an

d
10

00
-b
yt
e
va

lu
es
,(
d)

sh
ow

s
th
ro
ug

hp
ut

fo
r
va

ry
in
g
re
co

rd
si
ze

s
un

de
r
a
m
ix
ed

w
or

kl
oa

d
(5
0%

in
se
rt
s)
.

CHAPTER 3. PLUSH: A PERSISTENT LOG-STRUCTURED HASH-TABLE 78

does not optimize for write amplification. Multi-tiered buffer managers [91,
132, 170] also make use of DRAM. PMem-only data structures do not consume
any DRAM [5, 23, 57, 100, 105, 109, 172]. They are great for lookups but suffer
from high write amplification during inserts. LB+-Tree [97] and write-optimized
skip lists [160] minimize write amplification, but are PMem-only and thus have
limited possibilities to reach that goal. Plush straddles the line by using a fixed
amount of DRAM.

Most approaches to making LSM trees PMem-aware use an existing LSM
tree like LevelDB as a foundation [21, 76, 81, 161]. They are, therefore, lim-
ited by LevelDB’s architecture which was not designed with PMem in mind.
NVLSM [166] is built for PMem from the ground up. Plush is also inspired by
approaches employed by LSM trees not originally meant for PMem: Its value
separation approach was initially proposed by WiscKey [101] and has since
been adapted by other LSM trees like Parallax [158] or HashKV [21]. HashKV
also inspired Plush’s approach to partition its logs by hash. Haubenschild et al.
propose global sequence numbers [53].

Plush’s logging approach was invented by Mnemosyne [151] and further
refined by our previous work [131]. PiBench [92] is a benchmarking framework
for persistent indexes that we also used for our evaluation. Hu et al. adapted it
for hash indexes [56].

3.8 Summary
This chapter introduces Plush, a write-optimized data structure for persistent
memory. It employs techniques popularized by LSM trees to minimize write
amplification and adapts them to PMem by replacing sorted runs with leveled
hash tables and optimizing for 256-byte blocks. Because of Plush’s low write
amplification, it has higher insert throughput than existing PMem-optimized
hash tables (2.44× of Dash) while having a lookup throughput comparable to
fast tree-like PMem data structures. This confirmed our initial hypothesis that
PMem data structures are often bandwidth-limited. Plush profits from temporal
skew and excels at write-heavy workloads as its throughput stays constant even
at high insert ratios. As Plush’s DRAM consumption is independent of the data
set size, Plush is arbitrarily scalable and only limited by PMem capacity.

CHAPTER 4
Data Pipes: Declarative Data Movement

Excerpts of this chapter have been published previously [148]. With contributions
from Daniel Ritter, Danica Porobic, Pınar Tözün, Tianzheng Wang, and Alberto

Lerner.

4.1 Introduction
The storage hierarchy in state-of-the-art computing systems has become deeper
and more heterogeneous. Besides the traditional cache layers and DRAM, Persis-
tent Memory (PMem) is now available on Intel platforms [162], and soon High-
Bandwidth Memory (HBM) will also be on the market [139] Now widespread,
technologies such as RDMA-enabled networks can connect stacks from different
machines with low latency [42, 144]. In addition, platforms that enable compu-
tational storage and near-data processing are becoming more widely available
[10, 90]. Programming with such a diverse set of technologies requires quite a
skill set. Such a skill set is especially crucial in data-intensive systems, where
efficient data movement is paramount.

The challenges to obtaining efficient and predictable data movement are
numerous. The following is a non-exhaustive list:

1. HDDs, SSDs, PMem, and DRAM all have different device characteristics
requiring the programmers to adopt different system optimizations.

2. There are various interfaces of different granularity when accessing these
devices (e. g., block, zone, key-value, byte).

3. Different workloads (e. g., OLTP, OLAP, Machine Learning) exhibit differ-
ent data access patterns and require different hardware-conscious opti-
mizations.

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 80

4. The cloud and high-performance computing infrastructure have disaggre-
gated storage, adding network-induced unpredictability.

5. Different CPU vendors offer support for different storage, such as Intel
historically supporting persistent memory while AMD supports more
PCIe lanes.

The conventional wisdom in writing data-intensive systems is to deal with
each storage type individually, using whichever OS, file system, or library API
that is available. This approach is valid when storing large data structures but
only moving little data, e. g., indexes. The programmer decides which storage
layer data should reside on and creates efficient access methods. This permits
targeting optimizations for particular storage device [2, 13, 99, 119, 136, 150],
stack [36, 59, 85, 103], or primitive [78, 129].

This approach breaks down when one wants to move large amounts of data.
One such example is an external sort. Sorting is one of the most fundamental
operations in data-intensive systems and, as we will show shortly, one that
can significantly benefit from different storage technologies. The reason is that
implementing all the data movements that an external sort requires is difficult
precisely because of the diversity of storage options. The programmer is exposed
directly to all the individual idiosyncrasies of each layer. We will use sort as an
example throughout this chapter. However, many other operators and patterns
exist in data-intensive systems that can benefit from significant data movement
across storage layers. Rather than exposing the programmer to a jamboree of
APIs and specific behaviors, we propose to give her an abstraction that can move
data across any layers efficiently. We call this abstraction Data Pipes.

Data pipes is a holistic, top-down approach to creating data-intensive systems
that utilize modern storage stacks. More specifically, data pipes offer program-
mers a declarative interface for explicitly controlling how data moves from one
layer of the storage stack to another. Underneath, a framework determines
which primitives to use based on the available hardware and requested data
path. In other words, a data pipe will resort to a hardware-assisted data move-
ment instead of wasting precious CPU cycles with load and store instructions
whenever such a hardware unit exists. For instance, modern CPUs offer a little-
known uncore DMA unit called I/OAT [67]. The I/OAT unit can move data
from PMem to DRAM and back. For another instance, data pipes will resort
to optimizations, such as DDIO [66], to move data directly to caches, skipping
DRAM whenever possible. The main goal of the framework underneath the
Data Pipes abstraction is to minimize data movement traffic and latency.

In summary, the contributions of the Data Pipes abstraction in this chapter
are the following:

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 81

1. We survey the primitives that give us more control for orchestrating data
movement over the storage hierarchy (Section 4.2).

2. We demonstrate the potential of these primitives over the use case of an
external sort in terms of minimizing data movement latency and traffic
(Section 4.3) and quantify the performance of two primitives, I/OAT and
DDIO, in this context (Section 4.4).

3. We present our vision of Data Pipes, a top-down and holistic approach to
creating a declarative control plane over data movement in data-intensive
systems (Section 4.5) and discuss the guiding principles behind their design
(Section 4.6).

4. We identify a research agenda targeting different system layers (from
hardware to applications) to better support the data pipes vision (Sec-
tion 4.7).

4.2 Background and Motivation
We have mentioned several storage layers but have yet to describe them. Fig-
ure 4.1 depicts the typical stack in a modern computing system. The right side
shows the layers as a classic size vs. latency pyramid. The lower storage layers
are larger and slower, while the upper layers are smaller but present better
latency and bandwidth. On the left side of the figure, we present a partial list
of mechanisms that allow a programmer to directly or indirectly move data
between two layers. Note that the mechanisms range from complete protocols
such as NVMe [114] to technologies such as DDIO to CPU instructions.

We classify the mechanisms by color-coding them according to how easy
to use and accurate they are from a programming point of view. The green
mechanisms are effortless for a programmer to access —e. g., via I/O system
calls—and can issue precise data transfers. One such example is the NVMe
protocol. On the other end of the spectrum, we portray highly specialized mech-
anisms in red. They require low-level programming skills and are sometimes
advisory. Examples of such mechanisms are DDIO and I/OAT. In between, a
savvy programmer can use a growing number of instructions to interact with
the caching storage layers. When combined, these mechanisms can move data
between almost any two distinct layers of the stack.

We note how non-uniform these mechanisms are. Some are transparent,
such as promoting an entire cache line as a side-effect of reading data; others are
explicit, such as issuing the recent CLDEMOTE instruction to perform the opposite
movement. Some are implemented as hardware instructions, as above, while

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 82

L2 cache

L3 cache

PMem DRAM

Flash Network

persistent volatile

cl
fl

us
h

cl
de

mo
te

Pr
ef
et
ch

I/O
AT

N
VM

e

D
D
IO

Figure 4.1: Data movement primitives (left) can shuffle data among storage
layers (right). We claim that the set of primitives is, at best, incomplete and,
arguably, incoherent from the programmer’s point of view.

others are libraries. In particular, I/OAT defies classifications. As mentioned
before, the I/OAT is a DMA unit that can move data without CPU intervention.

Some frameworks try to unify these mechanisms and make themmore acces-
sible to programmers, the most notorious one being Intel’s Storage Performance
Development Kit (SPDK) [142]. Indeed, we extensively used SPDK for the ex-
periments we present in Section 4.4. SPDK is, however, very ”opinionated” on
how programs must be structured. It gives the programmer access to even the
I/OAT unit but forbids her from using, for instance, established threading and
many other useful libraries.

In contrast, we propose an API for data pipes that encapsulates the exact
mechanisms SPDK does without imposing any other programming style or
limitation to the application. As we commented above, we introduce these
notions with the help of a motivation sorting example. Sorting is an operation
we call well-behaved concerning data movements. Even though we cannot
predict the amount of data to move, these operations have predictable data
access and movement patterns. Some other well-behaved operations and work-
loads in data-intensive applications are the following: logging, which comprises

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 83

data movements of small sequential records to low-latency persistent storage;
and checkpointing, which moves several large chunks of DRAM-resident data
structures in parallel, also into stable storage, to cite a few.

The advantage of recognizing a workload as predictable—well-behaved—is
that it allows the programmer to declare the data transfers in advance.
One of the goals of Data Pipes is to give the programmer the syntax to encode
these declarations. Let us see one such example in practice.

4.3 Case Study: External Sort
In this section, we look at a typical external sort algorithm but concentrate on
the types of data movement it generates. We pick external sort because it is a
central building block for many data-intensive operations (e. g., compaction of
log-structured merge trees [115], deduplication [120], and sorting query results).

An external has two phases: first, data is partitioned into small batches,
and each batch is sorted, then the sorted batches are merged. Unsorted batches
move ”up” the storage stack to be sorted by the CPU and then need to be moved
”down” to make space for new batches. The recently sorted batches should be
kept as close to the CPU as possible, as the latter will operate on them again
when merging. Figure 4.2 depicts the data movements for sorting (way up from
storage/memory) and merging (way down). We discuss each of these movements
in turn.

4.3.1 Data Movements in External Sort
We assume in the following that our system contains PMem. PMem can be
used in different ways, but we focus on deploying it as a staging layer between
sorting and merging.
Way up/Sorts. As shown in step 1 of Figure 4.2, with DDIO, the data to be
sorted is read directly from persistent storage (i. e., data source) to CPU caches
via the DMA engine, bypassing main memory (hence avoiding extra memory
allocations). The size unit of these fetches (runs) can be half the LLC size per
core. We need twice the space to allow double buffering in LLC rather than
going to DRAM while a core sorts the fetched data.
Larger-than-Memory Data Spills. We first sort all the runs before merging
them in a later step. Each core performs soring until the DRAM size is exhausted.
As seen in step 2 , the sorted runs can be efficiently spilled to a staging area
backed by a persistent storage device larger than DRAM, using I/OAT as soon as
its initial block/page is produced. The staging area could use a different device

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 84

D
R
A
M

SS
D

PM
em

LL
C

LL
C

L2
L2

D
M
A

un
so
r

te
d

so
rt
ed

&
m
er
ge
d

sr
td
.

sr
td
.

m
er
ge
d

I/
O
AT

ta
rg
et

PC
Ie

D
D
IO

1
W
ay

up
/S
or
ti
ng

3
M
er
gi
ng

/W
ay

D
ow

n

pr
ef
et
ch

cl
flu

sh

I/
O
AT

,D
C
A
off

2
La

rg
er
-t
ha

n-
m
em

or
y
da

ta
sp

ill
s

pr
ef
et
ch

I/
O
AT

,D
C
A
on

cl
de
m
ot
e

Fi
gu

re
4.
2:

H
ar
dw

ar
e-
effi

ci
en

te
xt
er
na

ls
or

tu
si
ng

D
D
IO

an
d
I/
O
A
T
ac

ro
ss

C
PU

ca
ch

es
,D

RA
M
,P

M
em

,a
nd

SS
D
s.

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 85

than the data source (if available). Ideally, the device should exhibit low access
latency, preferring PMem or the latest low-latency SSDs.
Way down/Merges. In step 3 , the sorted runs are read from the staging
area, using I/OAT via DMA as a fetch unit similar to the way up/sorting phase.
However, since the runs are already sorted, the CPU only needs to perform a
merge. This process is repeated until the run is sorted.

4.3.2 The Case for Hardware-Assisted Data Movement
Data movements should be computationally inexpensive in theory, and in many
cases, they are. Take a transfer from a modern SSD, for instance. The NVMe
protocol, which fast SSDs overwhelmingly use, can be seen as a layer atop the
SSD’s DMA engine. NVMe allows an application to point to data it wants to
write instead of moving the data itself. However, not all layers are built as
NVMe, and, in practice, transfers could be CPU intensive for multiple reasons:
1. They waste CPU cycles if synchronous storage APIs are used (e. g., read(),
write() system calls); 2. Moving data between different layers can incur non-
trivial overheads on the side (e. g., entering kernel mode or copying buffers);
3. They are inherently expensive because of implicit aspects (e. g., networking
or PMem’s load/store interface requiring CPU instructions).

Besides efficiency, another observation is that some data movements may
occur explicitly (e. g., reading a block from an NVMe SSD). In contrast, other
transfers are implicit (e. g., the CPU flushes a cache line). Anecdotally, practi-
tioners invest significant time trying to coerce implicit data movements into
efficient patterns for their applications.

With Data Pipes, we aim to make all data movements explicit. One way to
achieve so is to assume that DMA units, rather than the CPU, will perform all
movements. As mentioned above, this is already the case when transferring
data in or out of NVMe devices. It is also the case when using RDMA-capable
network interface cards (NICs). We resort to the I/OAT unit as a DMA agent for
the remaining movement possibilities. In other words, we avoid using the CPU
load and store instructions to transfer data whenever possible. We call this
strategy hardware-assisted data movement. Putting it differently, one may see
Data Pipes as wrappers to different DMA units available in a system. We discuss
what Data Pipes look like shortly, but before doing so, we perform preliminary
experiments to quantify the effects of hardware-assisted data movements.

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 86

4.4 Experiments
When using Data Pipes instead of coding data transfers by hand, a programmer
can move the responsibility of optimizing those transfers to the Data Pipes
implementation. This section evaluates such potential optimizations using two
hardware-based mechanisms: DDIO and I/OAT. We start with one experiment of
data loading from storage into LLC/L3 with DDIO. Then, we evaluate I/OAT for
data spills from memory to storage and vice versa in two separate experiments.

In our experiments, we use the same machine es in the earlier chapters: A
server equipped with a Xeon Gold 6212U CPU with 24 physical (48 logical) cores,
192 GiB RAM, 768 (6 ⋅ 128 GiB) first generation PMem, and a Samsung 970 Pro
(PCIe 3) SSD.

4.4.1 Fast Load from Storage to Compute
In our first experiment, we use the data movement accelerator DDIO, enabled
by default on current Intel platforms, to move data from SSD toward the CPU
for sorting. DDIO directly places data with DMA via PCIe into the L3 cache,
assuming that requested data will be needed soon. Since we can also use DMA
to read data from NVMe SSDs, we can re-purpose DDIO to load data from SSD
and put it directly into L3 (cf. step 1 in Figure 4.2).

The experiment consists of issuing reads at queue depth 32 and then iterating
over the read data once whenever a request is finished (forcing all data into the
caches). We use SPDK on one CPU core to copy integers in increasing chunk
sizes to DRAM (with DDIO disabled) or L3 cache (with DDIO enabled) and
sum them up. To show that we can perform the storage-to-cache movement
without using DRAM bandwidth, we fully saturate the DRAM bandwidth by
creating heavy artificial traffic using STREAM benchmark [106] in parallel in
the background.

Figure 4.3 shows the resulting performance of DDIO on this DRAM-intensive
workload. In Figure 4.3b, we observe that leveraging DDIO reduces cache misses
(i. e., minimizing the side-effects of heavy DRAM traffic) as long as the chunk
fits into the L3 cache. In addition, when the memory subsystem is taxed, DDIO
can increase throughput (cf. Figure 4.3a) and reduce latency (cf. Figure 4.3c)
even for “slow” SSDs (compared to NICs, i. e., DDIOs original use case), while
freeing the CPU to do other computations (e. g., sorting).

We note that DDIO can be hard to use optimally as it depends on some
hidden tuning knobs: Tuning the value of the undocumented msr register
IIO_LLC_WAYS as explained by Farshin et al. [40] has a significant impact for
this workload, as seen in Figure 4.4. Increasing its value from 2 to 11 reduces
cache misses by up to 41% at chunk sizes below 1 MiB.

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 87

DDIO enabled DDIO disabled

0

500

1000

4 64 1024
Chunk Size [KiB]

Th
ro
ug

hp
ut

[M
iB
/s
]

(a) Throughput of DDIO workload

0

50

100

150

200

4 64 1024
Chunk Size [KiB]

C
ac
he

M
is
se
s
⋅1
06

(b) L3 Cache Misses (from perf)

0.000

0.025

0.050

0.075

0.100

0.125

4 64 1024
Chunk Size [KiB]

La
te
nc
y
[𝜇
s/
B
]

(c) Latency of DDIO workload

Figure 4.3: Performance with enabled and disabled DDIO (one CPU core) with
parallel DRAM-intensive STREAM workload.

4.4.2 Fast Load from Buffer to Memory
In our second experiment, we leverage I/OAT as a DMA engine to offload data
movement between PMem (i. e., storage) and DRAM. This movement optimiza-
tion comes in handy when loading spilled data during sorting (cf. step 3 in
Figure 4.2). Here, offloading data movement is especially valuable since PMem
uses a load()/store() interface like DRAM, where each access is a CPU in-
struction. This experiment uses SPDK’s accel_fw [142] on a single core to
issue copy requests of increasing size from PMem at queue depth 8, comparing
memcpy (internally using non-temporal load, store) to the I/OAT backend.

The resulting throughput is shown in Figure 4.5a. When deploying I/OAT,
moving data from PMem to DRAM is up to ≈ 2.57× faster compared to memcpy

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 88

IIO_LLC_WAYS: 0 2 5 7 11

0

50

100

150

200

4 64 1024
Chunk Size [KiB]

C
ac
he

M
is
se
s
⋅1
06

Figure 4.4: Impact of the IIO_LLC_WAYS register on cache misses with DDIO
enabled.

Mode: memcpy I/OAT
Measurement: Media throughput Effective throughput

4

6

8

4 32 256 2048
Chunk Size [KiB]

Th
ro
ug

hp
ut

[G
iB
/s
]

(a) Moving data from PMem to DRAM

2.5

5.0

7.5

10.0

4 32 256 2048
Chunk Size [KiB]

Th
ro
ug

hp
ut

[G
iB
/s
]

(b) Moving data from DRAM to PMem

Figure 4.5: Throughput when moving data between DRAM and PMem with and
without I/OAT.

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 89

on a single core. Hence, for a throughput comparable to I/OAT, three CPU
cores need to be dedicated to data movement. This emphasizes the benefit of
offloading data movement from the CPU.

4.4.3 Lack of Control for Data Spills to Buffer
In our third experiment, we look into the reverse data movement from the
experiment in Section 4.4.2. We use the I/OAT unit once again, this time to
move data from DRAM to PMem (cf. step 2 in Figure 4.2).

Figure 4.5b shows the resulting throughput. These experiments reveal some
issues with I/OAT. While writing to PMem, I/OAT is still marginally faster at
chunk sizes ≤ 512 KiB, but it only reaches a third of the read throughput. That
is far below PMem’s potential write throughput. To investigate further, we
measured the PMem media throughput (i. e., the write throughput the physical
DIMM experiences), which is ≈ 10 GiB/s, close to PMem’s maximum write
throughput [131]. The reason for the high write amplification was first discov-
ered by Kalia et al. [78]: I/OAT implicitly puts data into the L3 cache when it
moves it to PMem using DMA, assuming it will be processed soon. This feature
is called Direct Cache Access (DCA) and is not readily usable on modern CPUs.
While this is great when moving data in from PMem, it is a huge bottleneck
when moving data out to PMem for two reasons:

1. It evicts other data from the L3 cache and replaces it with data not intended
to be accessed (otherwise, we would not have moved it out of DRAM).

2. When the CPU finally evicts the data, it does not evict it sequentially but
semi-randomly. As each cache line is 64 bytes and PMem’s internal block
size is 256 bytes, each cache line eviction triggers a block write, resulting
in up to 4× write amplification (≈ 3.27× in our measurements).

These experiments show that using I/OAT to offload memory movement
to/from PMem is hard to implement in practice. What compounds the issue is
that Intel does not document details about DCA or how to toggle it. Even on
CPUs that nominally support disabling it, it often is not exposed in the BIOS
configuration and requires error-prone fiddling with Intel’s msr registers. In our
setup, Intel does not expose the msr register, leaving us with no way to disable
DCA. In other words, hiding these complexities behind a Data Pipe interface
allows us to adapt to systems that permit the configuration and fall back to a
less optimized transfer in systems that do not.

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 90

4.4.4 Discussion
Our experiments showed that existing hardware-assisted data movement mech-
anisms such as DDIO and I/OAT are beneficial for database workloads, but they
also uncovered several challenges.

The main issue is how obscure some of these mechanisms are. I/OAT’s DCA
issue when copying to PMem and DDIO’s hidden tuning knobs highlights a
central problem with our current data movement primitives. These primitives
provide significant speedups if use cases match the scenarios for which they
were originally designed. It is possible to deviate from those scenarios but
not without mixed results (i. e., DDIO is great with reducing traffic in caches
but shows limited latency improvements and is hard to tune; I/OAT is hard to
handle). We require further experiments to determine all the constraints, tuning
knobs, and implicit assumptions required to make the hardware mechanisms
work for Data Pipes.

4.5 Our Vision: Data Pipes
We discussed Data Pipes as an abstraction and showed that some powerful
hardware-assisted data movement mechanisms to support them are available,
even if these mechanisms are tricky to configure. Therefore, we hide the imple-
mentation complexity under a friendlier API and expose only concepts familiar
to data-intensive programmers. We chose to do so by making Data Pipes resem-
ble a new type of descriptor/object in a C/C++ sense. Once a pipe is instantiated,
it can transfer data from source to destination via a special call. We make the
pipe’s source and destination explicit by introducing the concept of resource lo-
cators. These decisions still allow us to experiment with different programming
styles when using Data Pipes.
Data Pipe Flavors. We propose three different flavors of data pipes. They
mainly differ on whether the programmer wants to: (1) wait on the transfer, (2)
be asynchronously notified when it is done, (3) or whether there is OS support
for the wait. Listing 4.1 implements the data movement step 1 of Figure 4.2
using flavor (1), i. e., it moves data in L2 cache-sized chunks to the cache of each
core, where it is sorted and then demoted to DRAM. Listing 4.2 implements
step 2 using flavor (2), spooling sorted runs from DRAM to the backing PMem.
Listing 4.3 illustrates flavor (3) by retrieving sorted runs from PMem andmerging
them (step 3).

We discuss these flavors shortly, but first, we present the abstraction of the
resource locator in more detail.

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 91

4.5.1 Resource Locators
Resource Locators can declare a source or destination of a data movement.
We highlight resource locators code in green. Different types of resource loca-
tors are used for different storage devices, e. g., a DRAMResourceLocator, an
SSDResourceLocator, or a CoreCacheResourceLocator for the L2 cache of
a given core. Employing this abstraction has at least two advantages. First, it
presents a uniform start and endpoint to which a data pipe can connect. Second,
it enforces a type system of sorts on data movement. Traditionally, most data
access is “loosely typed” as a pointer and an offset (memory-mapped devices) or
file descriptor (block devices). With the thin abstraction of resource locators and
pipes, data movements have become intentional and “strongly typed.” While a
locator internally might be a pointer, the user is now forced to think about what
that pointer represents and where this data is supposed to be moved to, which
aligns with our earlier goal of making data movement explicit and declarative.

Underneath each locator type, we include code that makes that storage
area available for use. The locator is responsible for acquiring/releasing that
resource (e. g., malloc()/ free() for DRAM, issuing NVMe commands, through
io_uring for instance, for SSDs). The design of each locator thus depends on
the resource it manages:

• Locators backed by a file take the path to a file as an argument (e. g., the
SSDResourceLocator in Listing 4.1, Section 4.5.2)

• A DRAM locator only needs a size to be constructed (Listing 4.1, Sec-
tion 4.5.2) as it allocates its memory by itself.

• Locators not referencing addressable memory, such as the core cache
locator that references L2 cache (Listing 4.1, Section 4.5.2), need to be
backed by a memory area.

4.5.2 Data Pipes
A Data Pipe connects two resource locators, 𝐴 and 𝐵. For simplicity, it is
unidirectional, so it can only transmit data from 𝐴 to 𝐵. As Listings 4.1 to 4.3
show, all flavors are declarative.

To use a Data Pipe, a programmer first declares the locators she intends to
use. She then prepares data movement by connecting the locators with pipes
before moving data and performing additional computations. This concept can
be rendered in different ways. We describe three variations next.

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 92

1 size_t buffer_sz = 1 * GB;
2 size_t run_sz = CoreCacheResourceLocator::CacheSize;
3

4 SSDResourceLocator ssd_locator("/path/to/ssd/file");
5 DRAMResourceLocator dram_locator(buffer_sz);
6

7 do_parallel_foreach_core {
8 size_t offset = core_idx * run_sz;
9

10 // Allocate cache at the local core
11 // backed by a memory area
12 CoreCacheResourceLocator cache_locator(
13 run_sz,
14 dram_locator + offset);
15

16 Pipe ssd_uppipe(ssd_locator , cache_locator);
17 Pipe cache_downpipe(cache_locator , dram_locator);
18

19 // Will try to use DDIO since this is
20 // a disk-to-cache transfer
21 ssd_uppipe.transfer(
22 offset /*ssd offset*/,
23 0 /*cache offset*/,
24 run_sz);
25

26 sort(cache_locator.data(), run_sz);
27

28 // Will try to use CLDEMOTE since this is
29 // a cache-to-DRAM transfer
30 cache_downpipe.transfer(
31 0 /*cache offset*/,
32 offset /*dram offset*/,
33 run_sz);
34 }

Listing 4.1: Straightforward flavor, loading data from SSD and sorting it into
runs. Step 1 in Figure 4.2.

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 93

Straightforward flavor

Here (Listing 4.1), pipes are objects initialized with source and target resource
locators (Lines 16 – 17) and provide a transmit() method. This method takes
two offsets, one for the source and one for the target resource locator. The
transmit() call blocks until data is successfully moved to the target locator.
This flavor is easy to implement, e. g., as a library, and integrate into an existing
application as the caller of the pipes never relinquishes control (similar to
traditional blocking I/O).

Inversion of control flavor

This flavor (Listing 4.2) schedules data movement asynchronously. A run-
time, initialized once (Lines 10 – 13), runs concurrently with the application
and is responsible for scheduling. The pipe’s transmit() method is asyn-
chronous and signals their completion via a future argument (lines 20–30).1

The application thus relinquishes control to the pipe runtime.
The advantage of this approach is that multiple data pipes can run in par-

allel with a central coordinator keeping track of progress and scheduling data
movements optimally. In this example, a single thread can trigger multiple
data movements in parallel, leaving scheduling and CPU allocation to the pipe
runtime. The downside is that inversion of control is often hard to incorporate
into an existing application as it might complicate the programming model and
add synchronization overhead. Communicating over a future involves a mutex
which might add negligible overhead when moving megabytes of data but is
very expensive if moving just a few bytes between caches.

OS-supported flavor

The previous approaches depend on a library written in the application’s
language. In this third flavor (Listing 4.3), a pipe is an abstraction at the OS
level:2 Here, pipes are OS concepts represented by file descriptors (Lines 4 –
6), and so one can transfer data (Lines 24 – 30) analogous to pread/pwrite.
Leveraging OS support, such as epoll in Linux, the application can monitor the
pipe’s state. As shown by Lines 8–12, the application uses epoll to obtain a file
descriptor that allows it to get notified when the pipe can start a new transfer.
Afterward, we spawn multiple threads that wait until the pipe is ready to accept
new requests (Lines 15 - 20) via the epoll API and then issue a transfer request.

1We use C++’s promises, but C-style callbacks would work just as well.
2Note that this is just a proposal on how such an interface could look. The implementation

would require specialized kernel support.

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 94

1 size_t base = 0;
2 size_t pmem_offset = 0;
3

4 PMemResourceLocator pmem_locator(
5 "/dev/dax0.1",
6 pmem_offset ,
7 sz);
8

9 // Let the runtime run concurrently in the background
10 PipeRuntime runtime;
11 runtime.fork_and_start();
12

13 Pipe dram_downpipe(dram_locator , pmem_locator , &runtime);
14

15 while (is_sorting_runs) {
16 //Collect pending tasks
17 vector<future> futures;
18 for (size_t offs = 0; offs < wtrmark; offs += run_sz) {
19

20 promise<void> write_promise;
21 futures.push_back(write_promise.get_future());
22

23 // Uses I/OAT without DCA to not pollute the cache.
24 // The runtime schedules moves asynchronously.
25 // The promise is transferred to the runtime.
26 dram_downpipe.transfer_with_cb(
27 offs /*dram offset*/,
28 base + offs /*pmem offset*/,
29 run_sz,
30 move(write_promise));
31 }
32 base += wtrmark;
33 // Block until all moves are done
34 wait_all(futures).wait();
35 futures.clear();
36 }

Listing 4.2: Inversion of Control flavor, store sorted runs on PMem. Step 2 in
Figure 4.2.

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 95

1 int k = 4;
2 size_t merge_sz = k * run_sz;
3

4 int pmem_uppipe_fd = create_pipe(
5 pmem_locator ,
6 cache_locator);
7

8 int epoll_fd = epoll_create1(0);
9 epoll_event pmem_pipe_op;

10 pmem_pipe_op.events = EPOLLTRANSFER;
11 pmem_pipe_op.fd = pmem_uppipe_fd;
12 epoll_ctl(epoll_fd , EPOLL_CTL_ADD , 0, &pmem_pipe_op);
13

14 do_parallel_for_each_core {
15 // Wait until the pipe can transfer ,
16 // as the I/OAT unit might be occupied elsewhere.
17 epoll_event event;
18 epoll_wait(epoll_fd , &event, 1);
19 if (/* error */)
20 break;
21

22 size_t offset = core_idx * merge_sz;
23

24 // Issue a DMA request from PMem using I/OAT.
25 // Recall that a memory area backs the cache locator
26 pipe_transfer(
27 pmem_uppipe_fd ,
28 offset /*pmem offset*/,
29 0 /*cache offset*/,
30 merge_sz);
31 merge(k, event.locator);
32 }

Listing 4.3: OS supported flavor, load and merge sorted runs. Step 3 in
Figure 4.2.

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 96

merge

sort

sort

staging

(a) Blueprint for a declarative external sort
using pipes.

merge

sort

sort
a

b

PMEM

PMEM

SSD

(b) Instantiated template with data pipes:
Operator can be instantiated using
PMem(a) or SSD as a staging area (b).

Figure 4.6: Using data pipes to make algorithms modular.

From a programmer’s perspective, this approach is an abstraction level below
the other two approaches: The user has to check whether the data pipe is in the
correct state before issuing any requests. While this approach is more involved
than the other two, it comes with two advantages: (1) It takes a big step towards
being programming language agnostic, as it relies on and extends a universally
known and supported interface (epoll, pread/pwrite) of the operating system.
(2) It serves as a foundation upon which a library for the other two approaches
can be built: Encapsulating Lines 15 – 30 into a transfer method yields the
behavior of the ”straightforward” approach, adding a request to a queue before
epolling on a separate thread yields the ”inversion of control” approach. This
approach, however, also has the downside of requiring still-to-be-developed
kernel support.

4.5.3 Data Pipes Optimization
We note that in well-behaved workloads, there are often options for where
to move data. In our external sort illustrated in Figure 4.2, for example, we
arbitrarily decided to spill runs to PMem. However, PMem is not universally
available, e. g., in AMD CPUs. Depending on the system configuration, we
could store sorted batches on the source SSD or a second SSD, if available.
Since data pipes already follow a declarative approach, we can abstract over
which intermediate storage device the runs are placed. We illustrate here a
fourth possibility: that in which an optimizer within the runtime picks the
“proper” storage device during execution instead, considering the storage devices
available in the system.

Figure 4.6a illustrated this possibility. It depicts how multiple threads sort
small runs, which are transferred via (for now) abstract data pipes to a staging
area and, from there, are merged, producing the sorted output. Since data
pipes are declarative, an optimizing runtime can decide during execution how

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 97

to instantiate the abstract pipes. Figure 4.6b shows two such options. A sort
might start with path (a), storing sorted runs in PMem, and switching to option
(b) using an SSD when PMem is exhausted. Since pipes are declarative, this
would come with minimal overhead for the programmer and would allow the
algorithm to be split into smaller parts that can be connected via pipes in a
dynamic manner.

4.6 Data Pipes Principles
We have shown a few examples of how data pipes could be used as a program-
ming artifact, but we have yet to discuss the guiding principles behind their
design. This section does so. We start with two principles that were already
demonstrated:

(1) Declarative The programmer declares beforehand which data pipes they
wish to use, e. g., from a PCIe NVMe SSD to a cache layer or from there to PMem.
The upfront declaration makes the intention of the programmer explicit, which
allows the system to 1. make specific optimizations (e. g., enabling or disabling
DCA), and 2. reject ways to move data for which no suitable optimization is
implemented. The programmer can always check if the intended data path is
used and adjust the application logic otherwise.

(2) Composable As seen in our external sort example in Section 4.3 and
Figure 4.6, data movement primitives depend on each other’s results. Data is
loaded, operated on, and then moved again (i. e., spilled back to background
storage or moved to the cache of a different core). Making data pipes declarative
allows the programmer to compose them and thus indicate which dependencies
between computation and data movement exist. This approach is very similar
to traditional query engines where optimizing data movement also plays a big
part (i. e., vectorized vs. code generation).

There are additional principles we now introduce that should be just as an
integral part of data pipes:

(3) Configurable Current data movement primitives are hard to configure.
They either (1) cannot be configured at all (caching behavior), (2) only be con-
figured coarsely (e. g., globally turning the prefetcher on/off), or (3) rely on
undocumented msr registers (e. g., DCA, amount of L3 cache available to DDIO).
Data pipes can instead expose those tuning knobs to the programmer. This
allows for tighter integration between software and hardware, as each knob can

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 98

be tuned to the application’s specific needs. In our DDIO experiment, tuning
the value of the undocumented register IIO_LLC_WAYS significantly reduces
cache misses, as shown in Figure 4.4. Exposing and documenting features like
this would thus make it easier to benefit from DDIO.

(4) Visible State Being configurable alone is no silver bullet: Some aspects
cannot be tuned as they are fixed hardware properties (e. g., cache associativity
or cache line size), and it is unrealistic to expect hardware vendors to make them
tuneable. Data pipes, however, can make such aspects and their state visible to
the programmer. As such, the programmer is not forced to guess or infer such
constants via heuristics (e. g., CPU generation, manufacturer, benchmarking),
thus making them more confident in the applicability and benefits of a particular
pipe upfront.

Lastly, we have indirect goals we wish the data pipes API also to achieve:

(5) Orthogonal to existing primitives Data pipes do not rely on hardware
vendors implementing new data movement primitives. While we believe that
programmerswould profit from additional datamovement primitives that are not
currently available, there is already a huge benefit in making existing primitives
more easily accessible and configurable. We thus do not urge hardware vendors
to invent new ways to resolve all challenges in designing hardware-conscious
data management software. We instead want them to enhance the interfaces to
current data movement primitives to make it easier for applications to benefit
from them.

(6) Inspiring new primitives On the other hand, data pipes can pave the way
to creating new primitives that benefit data-intensive systems, since they offer a
straightforward and user-friendly way for programmers to indicate their desired
data orchestration motives. This mode of indicating desired movements and
paths could ease the communication between hardware vendors and software
programmers to better address the needs of data-intensive systems.

Our work is aligned with other efforts to provide higher-level abstractions
on which to build data-intensive systems. Some recent examples of this line of
work are DFI [144], which help programmers to make use of RDMA networks,
and xNVME [102], which does the same in spirit but for fast NVMe devices. We
share several traits with these abstractions but try to take a unified view of data
movement independent of data location.

While data pipes can easily be used to implement well-behaved workloads
efficiently, other workloads could be more challenging. For example, OLTP

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 99

is characterized by the unpredictability of the read and write patterns. In
literature, a commonway to handle such not-well behaved workloads is to create
hardware-conscious data structures such as log-structured merge trees [115,
136], B-epsilon tree [18], Plush [150], Apex [99], and others. When creating such
data structures, the main design goal is to morph the workload’s unpredictable
data access patterns or movement into a more well-behaved pattern for the target
storage device. There are also recent works, such as Umzi [103], Mosaic [149], or
NovaLSM [59] that target multiple layers of storage hierarchy or disaggregated
storage. Enhancing these proposals with data pipes should not be an issue as
long as the predictable access patterns are identifiable in the system.

4.7 Related Work and Research Agenda
It is possible to turn data pipes vision into a real-world framework even by
using the available primitives and software libraries today. However, to be
able to create a flexible and efficient framework across different programming
languages and computer infrastructures (bare metal to the cloud), additional
support from different computer systems layers is essential. We are not the only
ones researching such solutions. Therefore, in this section, we identify related
and future research directions that can enable better support for data movement
in general and Data Pipes in particular. We divide these efforts according to
the context in which they are being studied: from the OS, the hardware, or the
cloud infrastructure perspective.

4.7.1 Operating Systems
While performing the preliminary experiments for our vision of data pipes in
Section 4.4, we relied heavily on SPDK to get access to the low-level primitives
to control data movement. However, this comes at the cost of using a niche and
unintuitive programming model. To keep the data pipes programming model
as simple and adaptable as possible across programming languages and infras-
tructure deployments, it would be ideal to have better OS support for accessing
low-level primitives rather than always relying on OS-bypass techniques (such
as Arrakis [121], Demikernel [168], Persephoné [34]).

Furthermore, enabling an application that uses data pipes to collocate with
other applications that may not use data pipes requires OS support as well. The
OS needs to be aware of the data pipes and avoid swapping memory or evicting
last-level cache (LLC) blocks that are explicitly needed by a pipe. One solution
is to reserve part of the main memory/CPU caches to be exclusive to data pipes

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 100

or to give priority to data pipes to prevent other collocated applications from
thrashing memory or LLC.

These wishes are plausible and would benefit more approaches than data
pipes, given recent efforts that crave more explicit control over memory regions.
For example, to tackle DDIO’s problems, IAT [164] and IDIO [1] devise efficient
frameworks that can monitor I/O and cache traffic to customize data placement
in the LLC for better performance isolation. Performance isolation on LLC
can also be achieved by using Intel’s Cache Allocation Technology (CAT) [113]
or by configuring DDIO usage via some recently discovered mechanisms [40].
Furthermore, DimmStore [83] explores different data layouts in main memory
chips for energy efficiency. Differentiated storage service [107] allows classifying
I/O operations to process different requests with proper policies. Data pipes can
leverage such differentiated storage services and LLC management techniques
to use dedicated policies with priority, avoiding thrashing across layers.

4.7.2 Hardware
The current I/OAT unit in the Intel Xeon line of chips is an example of a DMAunit
that can support transfer between ”upper” layers of the storage hierarchy, such
as caches, DRAM, and PMem. It has been shown that it can free the CPU while it
performs asynchronousmemory copies [146, 147]. This DMA unit, however, can
be improved in at least three ways. First, while it delivers latency benefits over,
for instance, the highly optimized glibc’s memcpy() [25], it may present lower
bandwidth when it comes to small data transfers. Second, the unit presents
a limited number of channels. The exact number is a piece of information
protected under NDA, but the maximum number of channels reported has been
16 [25]. For comparison, we note that the number of tags in a PCIe Gen 3 system,
arguably the equivalent mechanism to support parallel transfers, is 256. This
number keeps growing; it is 1024 for PCI4–and both PCIe generations allow
extended tags, further increasing this number. Third, the I/OAT unit does not
support advanced transfer mechanisms such as scatter/gather [29], in which
several non-contiguousmemory ranges are transferred in one operation. Despite
all the limitations, there have been reports of successfully incorporating I/OAT
into sophisticated data movement schemes [19].

Studies, such as memif [93], have also experimented with more powerful
DMA units. That work, however, confined the use of the DMA unit to the
operating system’s use, for instance, for data movement caused by page migra-
tion. They justify the decision by noting the lack of mechanisms to notify an
application once a requested transfer is done. We demonstrated three possible
ways of dealing with the issue. Putting it differently, we believe that a DMA

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 101

unit that overcomes the challenges we listed above can be quite valuable for
data pipes and can be successfully made accessible to applications.

We seek a future DMA unit with extended capabilities in another specific
direction: increased reach. By increased reach, we mean accessing a portion of
the storage hierarchy that remains closed. For instance, nothing can reach the
CPU registers that do not come from the L1 cache. Recent examples, such as the
nanoPU NIC [63], show that transferring data straight into the CPU registers
can significantly reduce communication latency. This, in turn, can support new
algorithms such as record-breaking sorting techniques [72]. Moreover, we also
mean by the increased reach that a more modern unit should keep pace with
any new type of memory that newer systems will bring. One such imminent
example, as we mentioned above, is High-Bandwidth Memory [75]. The next
generation of Intel Xeon chips, codenamed Sapphire Rapids, will support this
type of memory [139], and there have been reports of the HBM benefits for the
kind of data-intensive applications that we address here [82].

4.7.3 Cloud Infrastructure
Cloud infrastructure is becoming the de-facto environment for the development
and deployment of modern applications, and data pipes have the potential to
be very valuable both to cloud infrastructure providers and cloud application
developers. Current cloud infrastructure providers offer much flexibility in com-
pute and storage deployments ranging from a wide variety of virtual machine
or bare metal instances [9, 45] to fully flexible resource sizing [117] to stateless
compute [8]. However, data-intensive applications often make resource sharing
challenging and can quickly become a noisy neighbor to others. Data pipes that
make data movement predictable can alleviate this problem and help schedule
and balance resource usage in shared infrastructure environments.

From the cloud application perspective, the goal of predictable data move-
ment performance often requires over-provisioning shared or provisioning
dedicated infrastructure to avoid noisy neighbors. Exposing data pipes as a
first-class resource with predictable throughput and latency would make it much
easier to ensure performance predictability at the application level. Furthermore,
using a common API for data movement across different layers of memory and
storage hierarchy would make it much easier for applications to use each new
and improved generation of devices without significant application changes.

CHAPTER 4. DATA PIPES: DECLARATIVE DATA MOVEMENT 102

4.8 Summary
In this chapter, we motivated and illustrated a vision, data pipes, where the
programmers can dictate and fine-tune how data moves from one storage layer
to another in a declarative manner. Data pipes can make data movement more
visible and configurable at the application layer. Moreover, they would not
clash with existing low-level primitives to control data movement while having
the potential to inspire new ones. It allows a user-friendly abstraction while
making use of the modern storage stack to achieve low latency and reduce data
movement traffic in data-intensive systems.

CHAPTER 5
Conclusions and Future Work

Modern storage devices have developed unprecedentedly in the last ten years,
forcing database systems to adapt. In this thesis, we identified several areas
where recent improvements in storage hardware have made it essential to
rethink the storage layer of database systems: Some improvements have exposed
previously hidden bottlenecks, such as the software stack bottlenecking fast
NVMe SSDs. Other innovations, such as PMem, have changed how one should
build applications, making it essential to custom-tailor applications to make the
most of their appealing new properties. In all cases, we must rethink how to
move data between storage and memory devices. In this thesis, we have adapted
the storage layer to use these advancements by introducing two new systems,
Mosaic and Plush, and a vision, Data Pipes.

Mosaic is a storage engine and storage device purchase recommender for
relational database systems and addresses the modern heterogeneous storage
stack. Plush, a key-value store for PMem, demonstrates how applications can be
re-designed for groundbreaking new storage hardware. Finally, Data Pipes are a
vision of how to move data inside/between the storage stack and memory. Nev-
ertheless, all contributions also come with limitations and, thus, opportunities
for future work. While Mosaic already works in cloud settings (cf. Section 2.6),
we did not initially design it for the cloud. The cloud offers unmatched elasticity:
Resources can be allocated or dropped dynamically within seconds without high
upfront costs. This elasticity prompts more and more customers to move their
database systems into the cloud. This flexibility, however, comes at a cost, as
cloud providers charge high hourly prices for this privilege. A cloud-native
version of Mosaic could thus offer considerable benefits to customers running
their database systems in the cloud. To this end, Mosaic should know that
resources (i. e., storage devices) can be scaled instantly. Thus, placement de-

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 104

cisions and storage device “renting” recommendations should be updated far
more often. Furthermore, Mosaic’s storage device model should be aware of the
idiosyncrasies of cloud storage volumes, such as higher latency, lower IOPS, or
credit models.

Plush is optimized for PMem, which has produced a considerable buzz in
the research community but has not seen widespread adoption in the industry
due to its high price compared to SSDs and the difficulty of programming for
it. Furthermore, scaling is limited in practice since a CPU socket only supports
3 TiB of PMem at most. Intel has discontinued its PMem DIMM offerings but
promised to release PMemmodules for CXL [28], allowing cache-coherent access
over PCIe and solving the scaling issue. While we do not believe that PMem
will die as technology – since its low write latency is not replicable by any
other technology – we probably will not see servers equipped with dozens of
terabytes of PMem soon. In future work, we should thus extend Plush to scale
to storing data to SSD once PMem is exhausted by putting its larger levels on
SSD. Each directory entry currently points to up to 4 KiB of unsorted records.
Plush could sort those during migration and write them to an SSD page. During
future migrations, Plush could merge values into this sorted run which is the
root of a conventional LSM tree. With growing data set size, more and more
data would live in this LSM forest with performance gracefully declining to SSD
speed.

Finally, Data Pipes are currently just a vision. While we have shown promis-
ing experiments in Chapter 4, much work must be done before Data Pipes are
ready for production. We have shown and discussed approaches to implement
Data Pipes and possible interfaces to interact with them, but we leave a full
implementation for future work.

Bibliography

[1] Mohammad Alian et al. “IDIO: Network-Driven, Inbound Network Data
Orchestration on Server Processors”. In: MICRO. 2022, pp. 480–493.

[2] Thomas E. Anderson et al. “Assise: Performance and Availability via
Client-Local NVM in a Distributed File System”. In: OSDI. 2020.

[3] Christoph Anneser et al. “Programming Fully Disaggregated Systems”.
In: HotOS. USENIX Association, 2023.

[4] Raja Appuswamy, David C. van Moolenbroek, and Andrew S. Tanen-
baum. “Cache, cache everywhere, flushing all hits down the sink: On
exclusivity in multilevel, hybrid caches”. In: MSST. IEEE Computer Soci-
ety, 2013, pp. 1–14.

[5] Joy Arulraj et al. “BzTree: A High-Performance Latch-free Range Index
for Non-Volatile Memory”. In: PVLDB 11.5 (2018), pp. 553–565.

[6] Manos Athanassoulis et al. “MaSM: efficient online updates in data
warehouses”. In: SIGMOD. ACM, 2011, pp. 865–876.

[7] Berk Atikoglu et al. “Workload analysis of a large-scale key-value store”.
In: SIGMETRICS. ACM, 2012, pp. 53–64.

[8] AWS Lambda. https://aws.amazon.com/lambda/. [accessed June 09,
2023].

[9] Azure Virtual Machine series. https://azure.microsoft.com/en-
us/pricing/details/virtual-machines/series/. [accessed June
09, 2023].

[10] Antonio Barbalace and Jaeyoung Do. “Computational Storage: Where
Are We Today?” In: CIDR. 2021, pp. 1–6.

[11] Rudolf Bayer and EdwardM. McCreight. “Organization andMaintenance
of Large Ordered Indices”. In: Acta Informatica 1 (1972), pp. 173–189.

[12] bcache. https://bcache.evilpiepirate.org/. [accessed June 09,
2023].

https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series/
https://bcache.evilpiepirate.org/

BIBLIOGRAPHY 106

[13] Lawrence Benson, Hendrik Makait, and Tilmann Rabl. “Viper: An Ef-
ficient Hybrid PMem-DRAM Key-Value Store”. In: PVLDB 14.9 (2021),
pp. 1544–1556.

[14] Matias Bjørling et al. “ZNS: Avoiding the Block Interface Tax for Flash-
based SSDs”. In: USENIX Annual Technical Conference. USENIX Associa-
tion, 2021, pp. 689–703.

[15] Maximilian Böther et al. “Drop It In Like It’s Hot: An Analysis of Per-
sistent Memory as a Drop-in Replacement for NVMe SSDs”. In: DaMoN.
ACM, 2021, 7:1–7:8.

[16] Jan Böttcher et al. “Scalable and robust latches for database systems”. In:
DaMoN. ACM, 2020, 2:1–2:8.

[17] Luc Bouganim, Björn Þór Jónsson, and Philippe Bonnet. “uFLIP: Under-
standing Flash IO Patterns”. In: CIDR. www.cidrdb.org, 2009.

[18] Gerth Stølting Brodal and Rolf Fagerberg. “Lower bounds for external
memory dictionaries”. In: SODA. 2003, pp. 546–554.

[19] Darius Buntinas et al. “Cache-Efficient, Intranode, Large-Message MPI
Communication with MPICH2-Nemesis”. In: ICPP. IEEE Computer Soci-
ety, 2009, pp. 462–469.

[20] Mustafa Canim et al. “SSD Bufferpool Extensions for Database Systems”.
In: PVLDB 3.2 (2010), pp. 1435–1446.

[21] Helen H. W. Chan et al. “HashKV: Enabling Efficient Updates in KV
Storage via Hashing”. In: USENIX Annual Technical Conference. USENIX
Association, 2018, pp. 1007–1019.

[22] Badrish Chandramouli et al. “FASTER: A Concurrent Key-Value Store
with In-Place Updates”. In: SIGMOD Conference. ACM, 2018, pp. 275–290.

[23] Shimin Chen and Qin Jin. “Persistent B+-Trees in Non-Volatile Main
Memory”. In: PVLDB 8.7 (2015), pp. 786–797.

[24] Youmin Chen et al. “uTree: a Persistent B+-Tree with Low Tail Latency”.
In: PVLDB 13.11 (2020), pp. 2634–2648.

[25] Zhenke Chen et al. “RAMCI: a novel asynchronous memory copying
mechanism based on I/OAT”. In: CCF Trans. High Perform. Comput. 3.2
(2021), pp. 129–143.

[26] Yue Cheng et al. “CAST: Tiering Storage for Data Analytics in the Cloud”.
In: HPDC. ACM, 2015, pp. 45–56.

[27] Jungsik Choi, Jiwon Kim, and Hwansoo Han. “Efficient Memory Mapped
File I/O for In-Memory File Systems”. In:HotStorage. USENIXAssociation,
2017.

BIBLIOGRAPHY 107

[28] Compute Express Link. https://www.computeexpresslink.org/
download-the-specification. [accessed June 09, 2023]. 2023.

[29] J. Corbet. The chained scatterlist API. https://lwn.net/Articles/
256368/. [accessed June 09, 2023]. 2007.

[30] Andrew Crotty, Viktor Leis, and Andrew Pavlo. “Are You Sure You Want
to Use MMAP in Your Database Management System?” In: CIDR 2022,
Conference on Innovative Data Systems Research. 2022.

[31] Björn Daase et al. “Maximizing PersistentMemory Bandwidth Utilization
for OLAP Workloads”. In: SIGMOD Conference. ACM, 2021, pp. 339–351.

[32] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data pro-
cessing on large clusters”. In: Commun. ACM 51.1 (2008), pp. 107–113.

[33] Justin DeBrabant et al. “Anti-Caching: A New Approach to Database
Management System Architecture”. In: PVLDB 6.14 (2013), pp. 1942–
1953.

[34] Henri Maxime Demoulin et al. “When Idling is Ideal: Optimizing Tail-
Latency for Heavy-Tailed Datacenter Workloads with Perséphone”. In:
SOSP. ACM, 2021, pp. 621–637.

[35] Cristian Diaconu et al. “Hekaton: SQL server’s memory-optimized OLTP
engine”. In: SIGMOD. ACM, 2013, pp. 1243–1254.

[36] Jialin Ding et al. “Instance-Optimized Data Layouts for Cloud Analytics
Workloads”. In: SIGMOD. 2021, pp. 418–431.

[37] Jaeyoung Do et al. “Turbocharging DBMS buffer pool using SSDs”. In:
SIGMOD. ACM, 2011, pp. 1113–1124.

[38] Ronald Fagin et al. “Extendible Hashing - A Fast Access Method for
Dynamic Files”. In: ACM Trans. Database Syst. 4.3 (1979), pp. 315–344.

[39] Franz Färber et al. “SAP HANA database: data management for modern
business applications”. In: SIGMOD Record 40.4 (2011), pp. 45–51.

[40] Alireza Farshin et al. “Reexamining Direct Cache Access to Optimize I/O
Intensive Applications for Multi-hundred-gigabit Networks”. In: USENIX.
2020, pp. 673–689.

[41] Fast Just Got Faster: SATA 6Gb/s. https://sata-io.org/system/
files/member-downloads/SATA-6Gbs-Fast-Just-Got-Faster_2.
pdf. [accessed June 09, 2023].

[42] Philip Werner Frey and Gustavo Alonso. “Minimizing the Hidden Cost
of RDMA”. In: IEEE ICDCS. 2009, pp. 553–560.

https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://lwn.net/Articles/256368/
https://lwn.net/Articles/256368/
https://sata-io.org/system/files/member-downloads/SATA-6Gbs-Fast-Just-Got-Faster_2.pdf
https://sata-io.org/system/files/member-downloads/SATA-6Gbs-Fast-Just-Got-Faster_2.pdf
https://sata-io.org/system/files/member-downloads/SATA-6Gbs-Fast-Just-Got-Faster_2.pdf

BIBLIOGRAPHY 108

[43] fsync manual page. https://man7.org/linux/man-pages/man2/
fsync.2.html. [accessed June 09, 2023].

[44] Sanjay Ghemawat and Jeff Dean. LevelDB. 2011. url: https://github.
com/google/leveldb.

[45] Google Cloud Machine families resource and comparison guide
. https://cloud.google.com/compute/docs/machine-resource.
[accessed June 09, 2023].

[46] Goetz Graefe. “Volcano - An Extensible and Parallel Query Evaluation
System”. In: IEEE Trans. Knowl. Data Eng. 6.1 (1994), pp. 120–135.

[47] Jim Gray et al. “Quickly Generating Billion-Record Synthetic Databases”.
In: SIGMOD Conference. ACM Press, 1994, pp. 243–252.

[48] NVM Express Work Group. NVM Express Base Specification. 2023. url:
https://nvmexpress.org/specification/nvm-express-base-
specification/.

[49] Jorge Guerra et al. “Cost Effective Storage using Extent Based Dynamic
Tiering”. In: FAST. USENIX, 2011, pp. 273–286.

[50] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. “Understanding
the Idiosyncrasies of Real Persistent Memory”. In: PVLDB 14.4 (2020),
pp. 626–639.

[51] Gurobi Optimization LLC. Gurobi Optimizer Reference Manual. 2019. url:
http://www.gurobi.com.

[52] Gabriel Haas, Michael Haubenschild, and Viktor Leis. “Exploiting
Directly-Attached NVMe Arrays in DBMS”. In: CIDR. www.cidrdb.org,
2020.

[53] Michael Haubenschild et al. “Rethinking Logging, Checkpoints, and Re-
covery for High-Performance Storage Engines”. In: SIGMOD Conference.
ACM, 2020, pp. 877–892.

[54] Herodotos Herodotou and Shivnath Babu. “Profiling, What-if Analysis,
and Cost-based Optimization of MapReduce Programs”. In: PVLDB 4.11
(2011), pp. 1111–1122.

[55] Herodotos Herodotou and Elena Kakoulli. “Automating Distributed
Tiered Storage Management in Cluster Computing”. In: PVLDB 13.1
(2019), pp. 43–56.

[56] Daokun Hu et al. “Persistent Memory Hash Indexes: An Experimental
Evaluation”. In: PVLDB 14.5 (2021), pp. 785–798.

[57] Jing Hu et al. “Parallel Multi-split Extendible Hashing for Persistent
Memory”. In: ICPP. ACM, 2021, 48:1–48:10.

https://man7.org/linux/man-pages/man2/fsync.2.html
https://man7.org/linux/man-pages/man2/fsync.2.html
https://github.com/google/leveldb
https://github.com/google/leveldb
https://cloud.google.com/compute/docs/machine-resource
https://nvmexpress.org/specification/nvm-express-base-specification/
https://nvmexpress.org/specification/nvm-express-base-specification/
http://www.gurobi.com

BIBLIOGRAPHY 109

[58] Chenchen Huang, Huiqi Hu, and Aoying Zhou. “BPTree: An Optimized
Index with Batch Persistence on Optane DC PM”. In: DASFAA (3).
Vol. 12683. Lecture Notes in Computer Science. Springer, 2021, pp. 478–
486.

[59] Haoyu Huang and Shahram Ghandeharizadeh. “Nova-LSM: A Dis-
tributed, Component-based LSM-tree Key-value Store”. In: SIGMOD.
2021, pp. 749–763.

[60] Kaisong Huang et al. “SSDs Striking Back: The Storage Jungle and Its
Implications to Persistent Indexes”. In: CIDR. www.cidrdb.org, 2022.

[61] Sai Huang et al. “Improving Flash-Based Disk Cache with Lazy Adaptive
Replacement”. In: TOS 12.2 (2016), 8:1–8:24.

[62] Deukyeon Hwang et al. “Endurable Transient Inconsistency in Byte-
Addressable Persistent B+-Tree”. In: FAST. USENIX Association, 2018,
pp. 187–200.

[63] Stephen Ibanez et al. “The nanoPU: A Nanosecond Network Stack for
Datacenters”. In: OSDI. 2021, pp. 239–256.

[64] Ilias Iliadis et al. “ExaPlan: Efficient Queueing-Based Data Placement,
Provisioning, and Load Balancing for Large Tiered Storage Systems”. In:
TOS 13.2 (2017), 17:1–17:41.

[65] Intel. Intel Optane DC persIstent Memory Data sheet. 2022. url: https:
//www.intel.de/content/dam/www/public/us/en/documents/
product-briefs/optane-dc-persistent-memory-brief.pdf.

[66] Intel Data Direct I/O Technology. https://www.intel.ca/content/
www/ca/en/io/data-direct-i-o-technology.html. [accessed
June 09, 2023].

[67] Intel I/O Acceleration Technology. https://www.intel.ca/content/
www / ca / en / wireless - network / accel - technology . html. [ac-
cessed June 09, 2023].

[68] io_uring. https : / / man . archlinux . org / man / io _ uring . 7 . en.
[accessed June 09, 2023].

[69] Nusrat Sharmin Islam et al. “Triple-H: A Hybrid Approach to Accelerate
HDFS on HPC Clusters with Heterogeneous Storage Architecture”. In:
CCGRID. IEEE Computer Society, 2015, pp. 101–110.

[70] Todor Ivanov andMatteo Pergolesi. “The impact of columnar file formats
on SQL-on-hadoop engine performance: A study on ORC and Parquet”.
In: Concurrency and Computation: Practice and Experience 32.5 (2020).

https://www.intel.de/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.de/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.de/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.ca/content/www/ca/en/io/data-direct-i-o-technology.html
https://www.intel.ca/content/www/ca/en/io/data-direct-i-o-technology.html
https://www.intel.ca/content/www/ca/en/wireless-network/accel-technology.html
https://www.intel.ca/content/www/ca/en/wireless-network/accel-technology.html
https://man.archlinux.org/man/io_uring.7.en

BIBLIOGRAPHY 110

[71] Joseph Izraelevitz et al. “Basic Performance Measurements of the Intel
Optane DC Persistent Memory Module”. In: CoRR abs/1903.05714 (2019).

[72] Theo Jepsen et al. “From Sand to Flour: The Next Leap in Granular
Computing with NanoSort”. In: CoRR abs/2204.12615 (2022).

[73] Zhiwen Jiang et al. “A Cost-aware Buffer Management Policy for Flash-
based Storage Devices”. In: DASFAA. Vol. 9049. Lecture Notes in Com-
puter Science. Springer, 2015, pp. 175–190.

[74] Peiquan Jin et al. “AD-LRU: An efficient buffer replacement algorithm
for flash-based databases”. In: Data Knowl. Eng. 72 (2012), pp. 83–102.

[75] Hongshin Jun et al. “HBM (High BandwidthMemory) DRAMTechnology
and Architecture”. In: 2017 IEEE International Memory Workshop (IMW).
2017, pp. 1–4.

[76] Olzhas Kaiyrakhmet et al. “SLM-DB: Single-Level Key-Value Store with
Persistent Memory”. In: FAST. USENIX Association, 2019, pp. 191–205.

[77] Elena Kakoulli and Herodotos Herodotou. “OctopusFS: A Distributed
File System with Tiered Storage Management”. In: SIGMOD. ACM, 2017,
pp. 65–78.

[78] Anuj Kalia, David G. Andersen, and Michael Kaminsky. “Challenges
and solutions for fast remote persistent memory access”. In: SoCC. 2020,
pp. 105–119.

[79] Jeong-Uk Kang et al. “The Multi-streamed Solid-State Drive”. In: HotStor-
age. USENIX Association, 2014.

[80] Woon-Hak Kang, Sang-Won Lee, and Bongki Moon. “Flash-based Ex-
tended Cache for Higher Throughput and Faster Recovery”. In: PVLDB
5.11 (2012), pp. 1615–1626.

[81] Sudarsun Kannan et al. “Redesigning LSMs for Nonvolatile Memory
with NoveLSM”. In: USENIX Annual Technical Conference. USENIX Asso-
ciation, 2018, pp. 993–1005.

[82] Kaan Kara et al. “High Bandwidth Memory on FPGAs: A Data Analytics
Perspective”. In: FPL. IEEE, 2020, pp. 1–8.

[83] Alexey Karyakin and Kenneth Salem. “DimmStore: Memory Power Op-
timization for Database Systems”. In: PVLDB 12.11 (July 2019), pp. 1499–
1512.

[84] Alfons Kemper and Thomas Neumann. “HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots”. In:
ICDE. IEEE, 2011, pp. 195–206.

BIBLIOGRAPHY 111

[85] Jongyul Kim et al. “LineFS: Efficient SmartNIC Offload of a Distributed
File System with Pipeline Parallelism”. In: SOSP. 2021, pp. 756–771.

[86] Reika Kinoshita et al. “Cost-Performance Evaluation of Heterogeneous
Tierless Storage Management in a Public Cloud”. In: CANDAR. IEEE,
2021, pp. 121–126.

[87] Viktor Leis, Michael Haubenschild, and Thomas Neumann. “Optimistic
Lock Coupling: A Scalable and Efficient General-Purpose Synchroniza-
tion Method”. In: IEEE Data Eng. Bull. 42.1 (2019), pp. 73–84.

[88] Viktor Leis et al. “How Good Are Query Optimizers, Really?” In: PVLDB
9.3 (2015), pp. 204–215.

[89] Viktor Leis et al. “LeanStore: In-Memory Data Management beyond
Main Memory”. In: ICDE. IEEE, 2018, pp. 185–196.

[90] Alberto Lerner and Philippe Bonnet. “Not your Grandpa’s SSD: The Era
of Co-Designed Storage Devices”. In: SIGMOD. 2021, pp. 2852–2858.

[91] Lucas Lersch, Wolfgang Lehner, and Ismail Oukid. “Persistent Buffer
Management with Optimistic Consistency”. In:DaMoN. ACM, 2019, 14:1–
14:3.

[92] Lucas Lersch et al. “Evaluating Persistent Memory Range Indexes”. In:
PVLDB 13.4 (2019), pp. 574–587.

[93] Felix Xiaozhu Lin and Xu Liu. “memif : Towards Programming Hetero-
geneous Memory Asynchronously”. In: ASPLOS. ACM, 2016, pp. 369–
383.

[94] Haodong Lin et al. “DRAMCacheManagement with Request Granularity
for NAND-based SSDs”. In: ICPP. ACM, 2022, 29:1–29:10.

[95] Haikun Liu et al. “A Survey of Non-Volatile Main Memory Technologies:
State-of-the-Arts, Practices, and Future Directions”. In: J. Comput. Sci.
Technol. 36.1 (2021), pp. 4–32.

[96] Hao Liu et al. “LibreKV: A Persistent in-Memory Key-Value Store”. In:
IEEE Trans. Emerg. Top. Comput. 8.4 (2020), pp. 916–927.

[97] Jihang Liu, Shimin Chen, and Lujun Wang. “LB+-Trees: Optimizing
Persistent Index Performance on 3DXPoint Memory”. In: PVLDB 13.7
(2020), pp. 1078–1090.

[98] Xin Liu and Kenneth Salem. “Hybrid Storage Management for Database
Systems”. In: PVLDB 6.8 (2013), pp. 541–552.

[99] Baotong Lu et al. “APEX: A High-Performance Learned Index on Persis-
tent Memory”. In: PVLDB 15.3 (2021), pp. 597–610.

BIBLIOGRAPHY 112

[100] Baotong Lu et al. “Dash: Scalable Hashing on Persistent Memory”. In:
PVLDB 13.8 (2020), pp. 1147–1161.

[101] Lanyue Lu et al. “WiscKey: Separating Keys from Values in SSD-
Conscious Storage”. In: ACM Trans. Storage 13.1 (2017), 5:1–5:28.

[102] Simon AF Lund et al. “I/O interface independence with xNVMe”. In:
Proceedings of the 15th ACM International Conference on Systems and
Storage. 2022, pp. 108–119.

[103] Chen Luo et al. “Umzi: Unified Multi-Zone Indexing for Large-Scale
HTAP”. In: EDBT. 2019, pp. 1–12.

[104] Tian Luo et al. “hStorage-DB: Heterogeneity-aware Data Management
to Exploit the Full Capability of Hybrid Storage Systems”. In: PVLDB
5.10 (2012), pp. 1076–1087.

[105] Shaonan Ma et al. “ROART: Range-query Optimized Persistent ART”. In:
FAST. USENIX Association, 2021, pp. 1–16.

[106] John D. McCalpin. STREAM: Sustainable Memory Bandwidth in High
Performance Computers. https://www.cs.virginia.edu/stream/.
[accessed June 09, 2023].

[107] Michael Mesnier et al. “Differentiated Storage Services”. In: SOSP. 2011,
pp. 57–70.

[108] mmap manual page. https://man7.org/linux/man-pages/man2/
mmap.2.html. [accessed June 09, 2023].

[109] Moohyeon Nam et al. “Write-Optimized Dynamic Hashing for Persistent
Memory”. In: FAST. USENIX Association, 2019, pp. 31–44.

[110] Thomas Neumann. “Efficiently Compiling Efficient Query Plans for
Modern Hardware”. In: PVLDB 4.9 (2011), pp. 539–550.

[111] Thomas Neumann. “Evolution of a Compiling Query Engine”. In: PVLDB
14.12 (2021), pp. 3207–3210.

[112] Thomas Neumann and Michael J. Freitag. “Umbra: A Disk-Based System
with In-Memory Performance”. In: CIDR. www.cidrdb.org, 2020.

[113] Khang T Nguyen. Introduction to Cache Allocation Technology in the
Intel® Xeon® Processor E5 v4 Family. url: https : / / www . intel .
com / content / www / us / en / developer / articles / technical /
introduction-to-cache-allocation-technology.html.

[114] NVM Express. Everything You Need to Know About the NVMe® 2.0 Speci-
fications and New Technical Proposals. 2022.

https://www.cs.virginia.edu/stream/
https://man7.org/linux/man-pages/man2/mmap.2.html
https://man7.org/linux/man-pages/man2/mmap.2.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html

BIBLIOGRAPHY 113

[115] Patrick E. O’Neil et al. “The Log-Structured Merge-Tree (LSM-Tree)”. In:
Acta Informatica 33.4 (1996), pp. 351–385.

[116] Kazuichi Oe and Koji Okamura. “A Hybrid Storage System Composed
of On-the-Fly Automated Storage Tiering (OTF-AST) and Caching”. In:
CANDAR. IEEE, 2014, pp. 406–411.

[117] Oracle Cloud Infrastructure Compute Shapes. https://docs.oracle.
com/en-us/iaas/Content/Compute/References/computeshapes.
htm. [accessed June 09, 2023].

[118] Ismail Oukid et al. “FPTree: A Hybrid SCM-DRAM Persistent and Con-
current B-Tree for Storage Class Memory”. In: SIGMOD Conference. ACM,
2016, pp. 371–386.

[119] Ismail Oukid et al. “FPTree: A Hybrid SCM-DRAM Persistent and Con-
current B-Tree for Storage Class Memory”. In: SIGMOD. 2016, pp. 371–
386.

[120] G. N. Paulley and Per-Åke Larson. “Exploiting Uniqueness in Query
Optimization”. In: CASCON. IBM Press, 1993, pp. 804–822.

[121] Simon Peter et al. “Arrakis: The Operating System Is the Control Plane”.
In: ACM Trans. Comput. Syst. 33.4 (2016), 11:1–11:30.

[122] PMem-RocksDB. https://github.com/pmem/pmem-rocksdb. [ac-
cessed June 09, 2023].

[123] PMemKV. https://pmem.io/pmemkv/. [accessed June 09, 2023].

[124] pread/pwrite manual page. https://man7.org/linux/man-pages/
man2/pread.2.html. [accessed June 09, 2023].

[125] Felix Putze, Peter Sanders, and Johannes Singler. “Cache-, hash-, and
space-efficient bloom filters”. In: ACM J. Exp. Algorithmics 14 (2009).

[126] Krish K. R., Ali Anwar, and Ali Raza Butt. “hatS: A Heterogeneity-Aware
Tiered Storage for Hadoop”. In: CCGRID. IEEE, 2014, pp. 502–511.

[127] Krish K. R., M. Safdar Iqbal, and Ali Raza Butt. “VENU: Orchestrating
SSDs in hadoop storage”. In: BigData. IEEE, 2014, pp. 207–212.

[128] Krish K. R. et al. “On Efficient Hierarchical Storage for Big Data Process-
ing”. In: CCGrid. IEEE, 2016, pp. 403–408.

[129] Amanda Raybuck et al. “HeMem: Scalable Tiered Memory Management
for Big Data Applications and Real NVM”. In: SOSP. 2021, pp. 392–407.

[130] Redis. https://redis.io/. [accessed June 09, 2023].

[131] Alexander van Renen et al. “Building blocks for persistent memory”. In:
VLDB J. 29.6 (2020), pp. 1223–1241.

https://docs.oracle.com/en-us/iaas/Content/Compute/References/computeshapes.htm
https://docs.oracle.com/en-us/iaas/Content/Compute/References/computeshapes.htm
https://docs.oracle.com/en-us/iaas/Content/Compute/References/computeshapes.htm
https://github.com/pmem/pmem-rocksdb
https://pmem.io/pmemkv/
https://man7.org/linux/man-pages/man2/pread.2.html
https://man7.org/linux/man-pages/man2/pread.2.html
https://redis.io/

BIBLIOGRAPHY 114

[132] Alexander van Renen et al. “Managing Non-Volatile Memory in Database
Systems”. In: SIGMOD. ACM, 2018, pp. 1541–1555.

[133] Alexander van Renen et al. “Persistent Memory I/O Primitives”. In: Da-
MoN. ACM, 2019, 12:1–12:7.

[134] Alice Rey, Michael Freitag, and Thomas Neumann. “Seamless Integra-
tion of Parquet Files into Data Processing”. In: BTW. Vol. P-331. LNI.
Gesellschaft für Informatik e.V., 2023, pp. 235–258.

[135] David Reinsel-John Gantz-John Rydning, J Reinsel, and J Gantz. “The dig-
itization of the world from edge to core”. In: Framingham: International
Data Corporation 16 (2018).

[136] Subhadeep Sarkar andManos Athanassoulis. “Dissecting, Designing, and
Optimizing LSM-based Data Stores”. In: SIGMOD. 2022, pp. 2489–2497.

[137] Tobias Schmidt, Maximilian Bandle, and Jana Giceva. “A four-dimensio-
nal Analysis of Partitioned Approximate Filters”. In: PVLDB 14.11 (2021),
pp. 2355–2368.

[138] Russell Sears and Raghu Ramakrishnan. “bLSM: a general purpose log
structured merge tree”. In: SIGMOD Conference. ACM, 2012, pp. 217–228.

[139] Galen M. Shipman et al. “Early Performance Results on 4th Gen Intel(R)
Xeon (R) Scalable Processors with DDR and Intel(R) Xeon(R) processors,
codenamed Sapphire Rapids with HBM”. In: CoRR abs/2211.05712 (2022).

[140] Konstantin Shvachko et al. “The Hadoop Distributed File System”. In:
MSST. IEEE, 2010, pp. 1–10.

[141] Moritz Sichert and Thomas Neumann. “User-Defined Operators: Ef-
ficiently Integrating Custom Algorithms into Modern Databases”. In:
PVLDB 15.5 (2022), pp. 1119–1131.

[142] SPDK: Acceleration Framework. https://spdk.io/doc/accel_fw.
html. [accessed June 09, 2023].

[143] Radu Stoica and Anastasia Ailamaki. “Enabling efficient OS paging for
main-memory OLTP databases”. In: DaMoN. ACM, 2013, p. 7.

[144] Lasse Thostrup et al. “DFI: The Data Flow Interface for High-Speed
Networks”. In: SIGMOD Conference. ACM, 2021, pp. 1825–1837.

[145] Cristian Ungureanu et al. “TBF: A memory-efficient replacement policy
for flash-based caches”. In: ICDE. IEEE, 2013, pp. 1117–1128.

[146] Karthikeyan Vaidyanathan and Dhabaleswar K. Panda. “Benefits of I/O
Acceleration Technology (I/OAT) in Clusters”. In: ISPASS. IEEE Computer
Society, 2007, pp. 220–229.

https://spdk.io/doc/accel_fw.html
https://spdk.io/doc/accel_fw.html

BIBLIOGRAPHY 115

[147] Karthikeyan Vaidyanathan et al. “Designing Efficient Asynchronous
Memory Operations Using Hardware Copy Engine: A Case Study with
I/OAT”. In: IPDPS. IEEE, 2007, pp. 1–8.

[148] Lukas Vogel et al. “Data Pipes: Declarative Control over Data Movement”.
In: CIDR. www.cidrdb.org, 2023.

[149] Lukas Vogel et al. “Mosaic: A Budget-Conscious Storage Engine for
Relational Database Systems”. In: PVLDB 13.11 (2020), pp. 2662–2675.

[150] Lukas Vogel et al. “Plush: A Write-Optimized Persistent Log-Structured
Hash-Table”. In: PVLDB 15.11 (2022), pp. 2895–2907.

[151] Haris Volos, Andres Jaan Tack, and Michael M. Swift. “Mnemosyne:
lightweight persistent memory”. In: ASPLOS. ACM, 2011, pp. 91–104.

[152] Midhul Vuppalapati et al. “Building An Elastic Query Engine on Disag-
gregated Storage”. In: NSDI. USENIX Association, 2020, pp. 449–462.

[153] Guanying Wang et al. “A simulation approach to evaluating design
decisions in MapReduce setups”. In: MASCOTS. IEEE, 2009, pp. 1–11.

[154] Hui Wang and Peter J. Varman. “Balancing fairness and efficiency in
tiered storage systems with bottleneck-aware allocation”. In: FAST.
USENIX, 2014, pp. 229–242.

[155] Christian Winter et al. “On-Demand State Separation for Cloud Data
Warehousing”. In: PVLDB 15.11 (2022), pp. 2966–2979.

[156] Youngjoo Woo et al. “Analysis and Optimization of Persistent Mem-
ory Index Structures’ Write Amplification”. In: IEEE Access 9 (2021),
pp. 167687–167698.

[157] XiaoJian Wu and A. L. Narasimha Reddy. “Exploiting Concurrency to
Improve Latency and throughput in a Hybrid Storage System”. In: MAS-
COTS. IEEE, 2010, pp. 14–23.

[158] Giorgos Xanthakis et al. “Parallax: Hybrid Key-Value Placement in LSM-
based Key-Value Stores”. In: SoCC. ACM, 2021, pp. 305–318.

[159] Fei Xia et al. “HiKV: A Hybrid Index Key-Value Store for DRAM-NVM
Memory Systems”. In: USENIX Annual Technical Conference. USENIX
Association, 2017, pp. 349–362.

[160] Renzhi Xiao et al. “Write-Optimized and Consistent Skiplists for Non-
Volatile Memory”. In: IEEE Access 9 (2021), pp. 69850–69859.

[161] Baoyue Yan et al. “Revisiting the Design of LSM-tree Based OLTP Storage
Engine with Persistent Memory”. In: PVLDB 14.10 (2021), pp. 1872–1885.

BIBLIOGRAPHY 116

[162] Jian Yang et al. “An Empirical Guide to the Behavior and Use of Scalable
Persistent Memory”. In: USENIX FAST. 2020, pp. 169–182.

[163] Jun Yang et al. “NV-Tree: A Consistent and Workload-Adaptive Tree
Structure for Non-Volatile Memory”. In: IEEE Trans. Computers 65.7
(2016), pp. 2169–2183.

[164] Yifan Yuan et al. “Don’t Forget the I/O When Allocating Your LLC”. In:
ISCA. 2021, pp. 112–125.

[165] Matei Zaharia et al. “Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing”. In: NSDI. USENIX, 2012,
pp. 15–28.

[166] Baoquan Zhang and David H. C. Du. “NVLSM: A Persistent Memory
Key-Value Store Using Log-Structured Merge Tree with Accumulative
Compaction”. In: ACM Trans. Storage 17.3 (2021), 23:1–23:26.

[167] Gong Zhang et al. “Automated lookahead data migration in SSD-enabled
multi-tiered storage systems”. In: MSST. IEEE, 2010, pp. 1–6.

[168] Irene Zhang et al. “The Demikernel Datapath OS Architecture for
Microsecond-scale Datacenter Systems”. In: SOSP. ACM, 2021, pp. 195–
211.

[169] Xinjing Zhou et al. “DPTree: Differential Indexing for Persistent Mem-
ory”. In: PVLDB 13.4 (2019), pp. 421–434.

[170] Xinjing Zhou et al. “Spitfire: A Three-Tier Buffer Manager for Volatile
andNon-VolatileMemory”. In: SIGMODConference. ACM, 2021, pp. 2195–
2207.

[171] zstd. https://facebook.github.io/zstd/. [accessed June 09, 2023].

[172] Pengfei Zuo, Yu Hua, and Jie Wu. “Write-Optimized and High-Perfor-
mance Hashing Index Scheme for Persistent Memory”. In: OSDI. USENIX
Association, 2018, pp. 461–476.

https://facebook.github.io/zstd/

	Preface
	Listings
	Introduction
	Background
	Modern Storage Devices
	Challenges
	Opportunities and Thesis Contributions
	Prior Publications and Authorship

	Mosaic: A Budget-Conscious Storage Engine
	Introduction
	Background and Related Work
	Heterogeneous Storage for Big Data Query Engines
	Heterogeneous Storage in RDBMS
	Prediction and Storage Recommendation

	Mosaic System Design
	Metadata
	Storage Format
	Data Retrieval
	Data Placement

	Data Placement Strategies
	A Model for Predicting Table Scan Time
	Responsibilities of a Strategy
	HOT Strategy at Table Granularity
	HOT Strategy at Column Granularity
	Linear Optimization Strategy

	Evaluation
	Benchmarks
	Mosaic vs. Traditional RDBMS
	Comparison of Placement Strategies
	Per-Query Analysis of LOPT
	Placement Calculation Cost of LOPT
	Capacity Mode vs. Budget Mode
	Prediction Accuracy
	Impact of Workload
	Mosaic vs. Big Data Query Engines

	Mosaic in the Cloud
	Summary

	Plush: A Persistent Log-Structured Hash-Table
	Introduction
	Background
	Persistent Memory
	LSM Trees
	Hashing on PMem

	Overarching Design
	Architecture
	Multi-leveled Hash Table
	Recovery Log
	Payload Log and Variable-Length Records

	Operations
	Upsert
	Lookup
	Delete
	Recovery
	Concurrency
	Crash Consistency
	Bulk Loading

	Evaluation
	Plush Configuration
	Comparison to Other Data Structures
	Fixed-Size Records
	Space Utilization
	Plush Tuning
	Range Queries
	Recovery
	Variable-Length Records

	Related Work
	Summary

	Data Pipes: Declarative Data Movement
	Introduction
	Background and Motivation
	Case Study: External Sort
	Data Movements in External Sort
	The Case for Hardware-Assisted Data Movement

	Experiments
	Fast Load from Storage to Compute
	Fast Load from Buffer to Memory
	Lack of Control for Data Spills to Buffer
	Discussion

	Our Vision: Data Pipes
	Resource Locators
	Data Pipes
	Data Pipes Optimization

	Data Pipes Principles
	Related Work and Research Agenda
	Operating Systems
	Hardware
	Cloud Infrastructure

	Summary

	Conclusions and Future Work
	Bibliography

