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Abstract

Face recognition (FR) describes the identification of a person in an image. It constitutes
the most popular vision-based biometrics technology and has attracted tremendous
research interest, accelerating the expansion of FR applications into everyday life. While
current FR approaches accomplish near-perfect performance in straightforward scenarios,
FR under adverse conditions, such as extreme head poses, occlusions, low image quality,
and large age gaps, remains unsolved. This work presents three robust solutions to
remedy the shortcomings of recent FR approaches under adverse conditions.

Firstly, a novel approach to blind face completion is presented, which reconstructs
faces obstructed by small synthetic occlusions prior to the FR. The key innovation is
the parallel dual attention structure embedded into the coarse-to-fine network, which
leverages global information to reconstruct the occluded pixels, generating a realistic and
semantically coherent image. The in-depth analysis demonstrated its applicability even
for arbitrary shapes and multiple colors, which were not part of the training. Moreover,
face completion substantially mitigates the drop in FR performance of occluded faces.
Secondly, in order to cope with face patches, i.e., faces suffering from large occlusions, a
robust partial FR model is designed to precisely extract information only from relevant
non-occluded pixels and aggregate it in a joint feature space. Experimental results
show that satisfying performance is obtained even for tiny non-overlapping face patches.
Besides, a performance improvement was observed even on natural occlusions despite
exclusively training with synthetic occlusions. Lastly, a unique approach to robust
video FR is presented, which constitutes the first permutation-invariant approach to
face aggregation. The face aggregation network incorporates information from all video
frames to synthesize a more discriminative face, which is then used for FR. Despite the
challenging implementation, the presented face aggregation network outperforms various
state-of-the-art models, including a permutation-variant face aggregation model. Besides,
the robustness against widespread motion blur is improved since the network leverages
information from the non-affected frames.

All three suggested FR methods are characterized by their improved robustness under
adverse scenarios while maintaining the performance in standard conditions. Furthermore,
the face completion and face aggregation approaches additionally provide synthesized
images of higher quality, enabling new innovative FR applications.
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Îa Aggregated face
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Introduction

Face recognition (FR) (or facial recognition) is the “technology that makes it possible for
a computer to recognize a digital image of someone’s face” [13]. Like gait, fingerprint,
palm print, iris, and retina recognition, FR forms part of vision-based biometrics, i.e.,
systems that leverage images of an individual’s characteristic features for identification.
Compared to other computer vision tasks, e.g ., action and gesture recognition, pose and
face detection, object tracking, image synthesis, etc., biometrics technology is unique as
it requires exhaustive analysis due to its employment in security-sensitive areas.

FR research has made tremendous improvements in the last decades. The first break-
through in FR was set in 1991 by Turk and Pentland [207]. They expressed every face as a
combination of so-called eigenfaces, which are obtained by performing a principal compo-
nent analysis on a face dataset. Shortly thereafter, many approaches achieved satisfying
results under controlled conditions, e.g ., as covered by the Yale Face Database B [51].
Hence, new unconstrained datasets, such as the Labeled Faces in the Wild (LFW) [86]
dataset, emerged, providing a new objective in FR research. Owing to the advances
in artificial neural networks (ANNs), a new era in FR approaches required even more
adverse evaluation datasets. Therefore, current challenges in FR become apparent by
observing the evaluation datasets – more precisely in the face pairs, which the FR
approach tries to classify as “same identity” or “different identity”, which are depicted
in Figure 1.1.

Even though the Similar-Looking LFW dataset [37] guaranteed that all face pairs
of different identities in LFW look alike, current approaches managed to accomplish

Yale Face Database B (2001) Labeled Faces in the Wild (2007) Cross-Age LFW (2017) Cross-Pose LFW (2018)Similar-Looking LFW (2017)

Figure 1.1: Accuracy of state-of-the-art FR approaches on various evaluation datasets, which
are represented by face pairs. Datasets are marked with ✓ if the accuracy exceeds 99.5% and
saturation effects arise. Note that only the face pair from the Cross-Age LFW (CALFW)
dataset is from the same identity.
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1. Introduction

near-perfect accuracy. Thus, the difficulty of pairs comprising faces of the same identity
also needed to be increased. Cross-Age LFW (CALFW) [276] and Cross-Pose LFW
(CPLFW) [275] outline the current limits of FR approaches. They created challenging
face pairs by ensuring identical gender and ethnicity in pairs with different identities
and only considering pairs with large age gaps or head pose variations.

Recent datasets for evaluating FR approaches demonstrated that FR still constitutes
an unsolved problem under real-world conditions. Despite almost impeccable performance
for frontal faces and the ability to distinguish even similar identities, adverse scenarios
still pose a challenge, attracting massive research interest lately. Besides face pairs
with an increased age gap or large head pose variations, various datasets were proposed
to specifically evaluate adversarial attacks [280], partial faces [10†], cross-quality [16†],
surveillance video [100], or racial bias [218]. Therefore, novel approaches are required to
address the remaining challenges in FR.

1.1 Motivation

FR constitutes the most popular biometric modality for recognition even though it is
typically less accurate than other biometric characteristics such as fingerprints or iris
scans. Besides, faces can be manipulated with makeup and disguises to imitate other
identities. On the other hand, FR benefits from being non-intrusive, i.e., face images are
obtained quickly with sufficiently high quality and without any action or physical contact
of the person as opposed to other biometric modalities. Furthermore, faces constitute
an abundant source of information as also information about the head pose, fiducial
keypoints, gender, age, expression, and the presence of face attributes, e.g ., beard, hair
color, piercing, etc., can be extracted to build more powerful systems.

However, potentially missing consent to capture the data raises many ethical concerns.
E.g ., given the ubiquitous surveillance in major cities [12], many people question data
privacy or feel that their liberties are threatened [120]. Without understating the
importance of ethical concerns provoked by this controversial technology, this work
focuses entirely on the technical part of FR systems, emphasizing the algorithms and
performance of the latest FR systems. Hence, an in-depth discussion about the ethical
aspects of FR is out-of-scope. Consequently, consultation with an ethical expert is highly
encouraged when employing any FR system.

Regardless of the ethical concerns, the FR market is growing and is projected to
reach a worldwide value of 11.6 billion USD in 2026 (from 3.7 billion USD in 2020)
[155]. China constitutes one of the major consumers and producers of FR technology,
which is supported by the number of surveillance cameras in use. E.g ., in China, 54%
of the global number of surveillance cameras, or ≈ 415M, were installed in 2021 [12].
Moreover, western cities are also highly surveilled; e.g ., on average, 1138 cameras per
square mile are in use in London, which corresponds to a distance between two cameras
of less than 50 meters if they were equally distributed in a grid [12]. Traditionally,
the surveillance footage was manually screened for persons of interest by humans with
a “significantly better than ordinary FR ability” [181] – so-called super-recognizers.
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Nowadays, super-recognizers are still widely employed despite the success of automatic
FR. This is supported by Phillips et al . [171], who showed that the performance of an
FR algorithm could be further improved with human supervision.

Owing to the wide availability of low-cost embedded chips capable of running a
real-time FR system with satisfying performance, nowadays, everyday life cannot be
imagined without FR. Over the recent years, this development has become apparent even
in the different options to unlock a smartphone. After multi-digit passcodes, fingerprint
authentication became widely employed and reduced the effort of unlocking a smartphone
to a single button press. Today, this already minimal effort is minimized using FR,
which only requires a quick look at the phone and has even been enhanced to work
when wearing a medical face mask [5]. The employment of FR technology across many
operating systems and devices with sensitive private data indicates that sufficiently high
accuracy can be guaranteed. Therefore, a detailed scan of the user’s face encompassing
varying head poses is required when setting up the authentication method. Moreover,
popular products incorporate depth and infrared [4] or solely infrared [151] sensory
information to ensure that spoofing attacks fail.

In addition to law enforcement or unlocking personal devices with on-device FR,
there exist plenty of opportunities for employing FR to improve or speed-up daily life.
E.g ., FR facilitates migration and passport control at airports. Retail stores that share
a common database of convicted shoplifters can deny their entry even if they have never
been to the store [161]. With the help of FR, not only fugitives or criminals but also
missing children can be found [29]. People in photos uploaded to social media can be
identified and photos can be clustered automatically into albums [47]. FR can further
help in increasing safety at schools by automatically detecting unauthorized persons.
Besides, the pupils’ attendance can be tracked with FR, ensuring that no student signs
for other students as in traditional attendance sheets [15]. Curiously, FR was even
employed to limit the amount of toilet paper every individual could dispense within
a certain amount of time [172]. Unsurprisingly, citizens were concerned about using
cameras in a private space, resulting in its suspension.

To comply with this sheer unlimited creativity of employing FR in every inch of
daily life, robust and reliable FR is essential for the success of any application. In
order to find missing children, it is crucial to recognize faces despite a large age gap or
develop methods for kinship recognition [8†]. Moreover, recognizing faces occluded by
medical face masks or sunglasses is crucial to provide the user with a convenient way of
unlocking a smartphone even amidst a pandemic or intense sunlight. When considering
the recognition of faces in videos, new challenges arise due to the nature of the data
since the approach must be capable of combining the information in an arbitrary number
of frames. Besides, videos are typically captured in poor conditions and affected by
motion blur due to camera movement. Consequently, current FR approaches suffer under
adverse conditions, which is affirmed by the analyses on varying head poses, occlusions,
noise, JPEG quality, and blur [60, 115, 145, 281, 9†, 10†, 13†]. Thus, algorithms with
increased robustness are required to succeed in these unique scenarios and promote the
advancement of FR in everyday life.
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Examples Approach

Robust Face
Recognition

Partial 
Faces

Face
Completion

Occluded 
Faces

Face
Recognition

Figure 1.2: Left: Example of occluded faces. Right: Two approaches to cope with occluded
faces Io. After reconstructing the occluded pixels in Io, an existing FR approach is leveraged.
Alternatively, a typical FR approach is altered to better handle Io. The novel approaches
presented in this work are highlighted in orange.

Apart from proposing robust algorithms for face recognition, recent progress in
generative adversarial networks (GANs) [57] provides researchers with the tools to find
new solutions, which are employed prior to the FR. E.g ., a face with a large head pose can
be synthesized into a frontal face [164, 206] or the age gap can be reduced [76]. In order
to cope with partial faces, missing or occluded areas can be reconstructed [138, 237, 284].
For videos, Rao et al . [178] proposed aggregating multiple video frames into a single
more discriminative image. All approaches constitute popular alternatives compared
to directly improving the robustness of an FR system since they provide the frontal,
reconstructed, or aggregated face as an additional output. Ideally, this synthesized face
contains the same or better identity information, whereas, in videos, it also provides a
more compact representation than a large number of frames.

1.2 Objectives

This work considers two adverse FR scenarios and presents three solutions to remedy
the vulnerability of state-of-the-art FR approaches.

Occluded and partial faces refer to images of a face where a part of the face, and
therefore, part of their identity-defining characteristics, is occluded. Figure 1.2 (left)
depicts examples of naturally occluded faces Io, e.g ., faces occluded by foreground
objects such as arms, medical face masks, or text, and partial faces, e.g ., faces cut off at
the image’s border. Both are very similar; however, occluded faces comprise faces where
most pixels are unobstructed, whereas only a small part of the face is visible for partial
faces.

Typically, occluded and partial faces Io represent a minority within large training
datasets. Therefore, during the training of FR models, the network only learns a
general representation of the face overlooking the characteristics of Io. To overcome
this imbalance problem, augmenting the data by synthetically generating occluded and
partial faces is a straightforward solution. However, the best performance is accomplished
only by tailoring the entire FR algorithm to a given scenario.
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Face 
Aggregation

Face
Recognition

Figure 1.3: Approach for video face recognition. Frames of a video V are aggregated, yielding
a more discriminative image Îa, which is used for FR.

Depending on the size of the occlusions, two approaches are proposed: 1) predicting
the pixels’ values within the occluded areas, i.e., face completion; or 2) increasing the
robustness of FR.

By reconstructing the pixel values of the occluded areas in Io, a new face Î is
generated. Ideally, Î should be realistic, i.e., only non-occluded areas of Î must be
altered and Î should resemble the image before applying the synthetic occlusion. Besides,
Î should mitigate the drop in FR performance when exposed to occlusions. In order
to increase the applicability, the face completion should be blind, i.e., no additional
mask annotation is required. Furthermore, it should handle occlusions varying in form,
position, size, and color.

Reconstructing tiny face patches, e.g ., faces where only 10% of the area is visible,
constitutes a complicated task with few chances of satisfying results. Thus, a direct partial
FR approach without prior reconstruction is more promising. Apart from increasing
the robustness against partial faces compared to state-of-the-art FR approaches, this
direct approach should still provide comparable results on non-partial faces. Moreover,
it should improve the performance for synthetic and natural occlusions, as in Figure 1.2
(left), and permit the comparison of two non-overlapping face patches, e.g ., patches
centered around the mouth matched with a patch containing an eye.

Besides occluded and partial faces, this work also addresses video FR. Here, motion
blur constitutes an omnipresent issue as frequent head or camera movements lead to
poor quality frames compared to the high quality still images. Additionally, video FR
provides multiple video frames, which raises the question of how to efficiently combine
the information from an arbitrary number of frames. Even though temporal information
is available, it is rarely leveraged as it does not help extract richer identity information.
In order to also consider set-based FR tasks, i.e., a set of various images of the same
identity, the video is described as a set V by dispensing with the frame order.

Unlike most state-of-the-art methods in video FR, which perform the aggregation of
information of every frame in the feature space, this work presents a rather unorthodox
approach by aggregating the face in the image space, as depicted in Figure 1.3. In fact,
by considering V as a set, it constitutes the first approach for permutation-invariant face
aggregation of video frames. While this requires advanced methods to ensure permutation
invariance and allow information exchange between every frame, it has the benefit of
providing the aggregated face as an additional output. Hence, it can be considered the
first step towards face aggregation for sets comprising various still images. Besides being
permutation invariant and capable of aggregating an arbitrary number of frames, the face
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aggregation should provide a realistic image Îa, which fuses the identity information of
the entire video V . In this way, Îa should ease distinguishing whether different identities
occur in two videos – particularly if V suffers from motion blur.

In summary, this work contributes threefold to FR research. Besides an approach to
partial FR, a blind face completion and a face aggregation method are presented. While
the first contribution focuses on increasing the robustness of state-of-the-art algorithms,
the latter two aim to increase robustness by generating an image of higher quality, which
is then analyzed by state-of-the-art FR approaches. For occluded faces, the approach
yields a reconstructed image Î, where the viewer should be unable to recognize that
the face was occluded in the first place. Moreover, the aggregated face Îa for video FR
should constitute a compact representation of the all-embracing identity information
within the input video V. Even though the approach for partial FR does not generate
any additional output, it should handle even tiny non-overlapping face patches.

1.3 Overview

The structure of this work is visually illustrated in Figure 1.4 and is summarized as follows:

Chapter 2 introduces the notation and lays the mathematical foundation essential for
following and comprehending the subsequent chapters. This involves the components of
an ANN for computer vision and ranges from elementary building blocks to optimization.
Besides, a sophisticated framework to generate realistic images is described with the GAN.

Chapter 3 establishes the FR pipeline, i.e., every step to build and evaluate an FR
system. For that, a thorough discussion of the relevant literature is provided. Moreover,
three base models, which play a vital role in the subsequent chapters, are evaluated
in-depth and put into context with state-of-the-art approaches.

Chapter 4 presents the design and implementation of a novel approach for occlusion-
robust FR by blind face completion. The chapter is concluded by a comprehensive
evaluation encompassing quantitative and qualitative analyses.

Chapter 5 provides an alternative solution to the FR of highly occluded, i.e., partial,
faces and demonstrates its benefits for naturally occluded faces.

Chapter 6 introduces a face aggregation approach for recognizing faces in videos – par-
ticularly when affected by motion blur. It constitutes the first step towards permutation-
invariant face aggregation of a set of still images.

Chapter 7 recapitulates the critical findings of this work and draws the main implications
w.r.t. the research objectives stated in Section 1.2.
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7. Conclusion

SphereFace CosFace ArcFace

Figure 1.4: Graphical overview of the content of this work. After establishing a foundation in
artificial neural networks (ANNs), general still image FR is explained in-depth, which forms
a part of subsequent chapters. The core of this work form the novel approaches to robust
FR under challenging conditions: blind face completion, partial face recognition, and face
aggregation. The chapters are highlighted in blue.
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2

Background in
Artificial Neural Networks

The target of artificial neural networks (ANNs) is modeling how we – as humans – think as
a mental process with logical rules. In its simplest realization, the ANN comprises a single
processing unit – a neuron. While early models of a neuron were limited to predicting a
binary output based on multiple binary inputs [147], more recent implementations of
ANNs contain millions of neurons and have surpassed human performance on numerous
tasks a long time ago, e.g ., in 2014 for face recognition (FR) [113, 198] or in 2015 for
image classification [69].

To follow the remaining part of this work and the advances that led models to obtain
performance superior to humans, this chapter briefly establishes the methodological and
mathematical foundation. The mathematical notation utilized throughout this work is
based on ISO 80000-2 [94] and is summarized in Appendix A.

2.1 Perceptron

The initial binary model of a neuron [147] was extended by Rosenblatt [180] to handle
continuous real-valued inputs and outputs. In a similar form, the perceptron constitutes
one of the core building blocks within recent ANNs. Figure 2.1 (left) depicts a graphical

representation of a perceptron. For an input vector x =
(
x1 x2 . . . xM

)T
, the output

ŷ is obtained by

ŷ = Ψ(ỹ) = Ψ
(
wTx+ b

)
, (2.1)

with w =
(
w1 w2 . . . wM

)T
and b being the weight vector and the bias, respectively.

ỹ denotes the intermediate output before applying the activation function Ψ (·) (see also
Section 2.3), which allows the perceptron to model non-linear behavior but can also be
set to Ψ (ỹ) = ỹ for a linear relationship.
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2. Background in Artificial Neural Networks

Hidden Layers

Figure 2.1: Left: Model of a perceptron. Right: Various perceptrons forming a multilayer
fully connected neural network. For the sake of simplicity, the bias was omitted.

2.2 Fully Connected Neural Networks

Since the computational power of a single perceptron is very limited, multiple perceptrons
are stacked layerwise to form a computational graph, in which all output neurons of the
first layer are connected with all input neurons of the subsequent layer (see Figure 2.1
(right)). In this way, the information is processed in a feedforward manner. The output

of a so-called hidden layer Θ[l] (x) ∈ RM [l]
at depth l with input x is calculated by

Θ[l]
(
x
)
= Ψ[l]

(
Θ̃[l](x)

)
= Ψ[l]

(
W [l]Θ[l−1]

(
x
)
+ b[l]

)
,

Θ[0]
(
x
)
= x,

(2.2)

with W [l] ∈ RM [l]×M [l−1]
, b[l] ∈ RM [l]

and Ψ[l] (·) denoting the weight matrix, bias vector
and the element-wise activation function at depth l, respectively. M [l] is the number
of neurons in a layer at depth l. Hence, the weight

[
W [l]

]
i,j

indicates how the output[
Θ[l−1] (x)

]
j
of the jth neuron in layer l − 1 is scaled when it is connected to the input

of the ith neuron in layer l. The output vector ŷ of a network with depth L is then

ŷ = Θ[L](x)

= Ψ[L]
(
W [L]Ψ[L−1]

(
W [L−1] · · ·

(
Ψ[1]
(
W [1]x+ b[1]

)
· · ·
)
+ b[L−1]

)
+ b[L]

)
.

(2.3)

When assuming linear activation functions Ψ[l]
(
Θ̃[l] (x)

)
= Θ̃[l] (x) ∀ l, Equation (2.3)

can be rewritten as

ŷ =

[
L∏
l=1

W [l]

]
x+ b[L] +

L−1∑
l=1

[
L∏

j=l+1

W [j]

]
b[l]. (2.4)

Hence, without any non-linear activation function within the neural network, adding
layers does not increase the modeling capability of a neural network since it can always
be reduced to an affine linear mapping of the input onto the output space.
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Figure 2.2: Popular activation functions Ψ(x) with default parameters.

2.3 Activation Functions

As demonstrated by Equation (2.4), employing non-linear activation functions Ψ (x) is
decisive for modelling more complex relationships between input and output. While
early works following LeNet [117, 118] mainly relied on sigmoid(x) = 1/ [1 + exp(−x)]
or tanh(x) = 2 sigmoid(2x) − 1 as activation function, sigmoid(x) is nowadays almost
exclusively employed when transforming x into a probability distribution. With the
rectified linear unit (ReLU) (ReLU(x) = max(0, x)), Nair et al . [159] proposed a simple
yet effective activation function, which solved the vanishing gradients for x≫ 0, in which
gradients tend to converge to zero due to numerical instabilities (cf . Section 2.4). Besides,
the ReLU is very resource-efficient compared to sigmoid(x) or tanh(x). Consequently,
the training of ANNs with ReLUs as activation functions is more efficient and yields
better results. However, the zero gradient for x < 0 together with the shift of mean unit
activation towards positive values constitutes a downside, which was tackled by multiple
subsequent works. E.g ., leaky ReLU (LReLU) [141] lReLU(x) = max(αx, x) uses a small
predefined slope α for negative x, whereas parameterized ReLU (PReLU) considered α
a trainable parameter [69]. The exponential linear unit (ELU) [27] is characterized by
α (exp(x)− 1) for x < 0, which further ensures a noise-robust deactivation state. Recently,
the search for a more powerful activation function yielded swish(x) = x sigmoid(βx) with
trainable β [174] and mish(x) = x tanh (ln(1 + exp(x))) [153].

As depicted in Figure 2.2, all activation functions except sigmoid(x) and tanh(x)
follow roughly the same principle: Small activations ≈ 0 for x < 0 and large activations
for x > 0. In this way, the network can create sparse activations, which are suitable to
encode the existence of certain features.
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2.4 Optimization

During ANN training, the objective is to find the optimal weights θ∗ =
{
W [l]∗ , b[l]

∗}L
l=1

such that the network resembles the underlying problem x 7→ y given a dataset

X =
{(

x(n), y(n)
)}N

n=1
comprising N samples.[i] This can be reformulated into an opti-

mization problem
θ∗ = argmin

θ
L (X , θ) , (2.5)

where the loss function L (X , θ), which measures how well the network with the weights
θ approximates the task x 7→ y, is minimized. For scalar regression tasks, the mean
squared error (MSE) loss

L (X , θ) = 1

|X |

|X |∑
n=1

[
ŷ(n) − y(n)

]2
=

1

N

N∑
n=1

[
Θ

[L]
θ (x(n))− y(n)

]2
(2.6)

constitutes a popular choice with ŷ(n) = Θ
[L]
θ (x(n)) denoting the network’s output with

the weights θ and the nth sample x(n) at the input. While a system with only linear
activation functions as in Equation (2.4) has – with the pseudo-inverse – a closed-form
solution when minimizing Equation (2.6), arbitrary network structures require iterative
methods.

Equation (2.5) defines a multi-dimensional optimization problem in the weight space
defined by a loss function L (X , θ), which is chosen to be differentiable with respect to θ.
This enables the employment of gradient descent to iteratively minimize Equation (2.5)
by descending L (X , θ) in the direction of the gradient. Thus, W [l] is updated by moving
in the opposite direction of the current gradient ∇W [l] scaled by the learning rate η
resulting in

W [l] ←W [l] − η∇W [l]. (2.7)

In addition, the biases b[l] are updated analogously.
There are multiple ways to initialize the weights before the training. A popular

choice is using a Gaussian normal distribution with zero mean and a small standard
deviation. More sophisticated methods involve considering the number of neurons in the
previous layer [53] and combining it with the nonlinearity of the activation functions [69].
However, their detailed discussion is out of scope for this work.

The weight update in Equation (2.7) is prone to stagnate due to vanishing gradients
or diverge if the gradients oscillate. Both behaviors can be addressed with a momentum
term, which uses the exponential moving average over all previous gradients to increase
the effective learning rate η if all gradients point in the same direction and decrease
η in case of oscillating gradients. Multiple extensions (adaptive gradient (AdaGrad)
[43], root mean square propagation (RMSProp) [78], Adadelta [259], adaptive moment
estimation (Adam) [110]) have been proposed, among which Adam is still considered
the most popular optimizer despite its age. In addition to the momentum term, Adam

[i]For the sake of simplicity, a scalar output is assumed.

12



2. Background in Artificial Neural Networks

employs the exponential moving average of the second moment of the gradient and
utilizes bias correction to speed up the early training stages.

Regardless of the modifications on Equation (2.7) proposed by [43, 78, 110, 259], the
gradient computation of the weight matrix ∇W [l] is always required. In case of a single
sample X = {(x, y)}, ∇W [l] is computed by leveraging the chain rule of calculus and
Equation (2.2) via

∇W [l] =
∂L (X , θ)
∂W [l]

=
∂L ({(x, y)} , θ)

∂Θ[l] (x)
· ∂Θ

[l] (x)

∂W [l]

=
∂L ({(x, y)} , θ)

∂Θ[l] (x)
·Ψ[l]′(W [l]Θ[l−1] (x) + b[l]

)
·Θ[l−1] (x)T .

(2.8)

Hence, to calculate ∇W [l], the input x is propagated forwards through the network
yielding the output ŷ and then backwards to obtain ∂L ({(x, y)} , θ) /∂Θ[l] (x), which
explains why this technique is named backpropagation.

Equation (2.8) also reveals a limitation of backpropagation as the gradient is composed
of two terms: 1) the backwards propagated gradient from the loss function L ({(x, y)} , θ);
and 2) the output of the previous layer Θ[l−1] (x). Thus, to compute the gradient for all
θ, the outputs of all layers Θ[l] (x) need to be retained in memory. In practice, computing
the gradients for the entire dataset X is only feasible for small datasets or low-dimensional
data due to hardware limitations. Contrarily, utilizing a single sample (x, y) results in a
noisy and biased gradient. As a trade-off, minibatch stochastic gradient descent (SGD) is
employed to calculate the gradient for a representative minibatch Xb ⊂ X of Nb samples.
In this case, all gradients computed per sample from Equation (2.8) are averaged as in
Equation (2.6) to obtain a more robust gradient.

The selection of a representative minibatch is crucial for efficient training. If the
samples within a minibatch are too similar, minibatch SGD behaves similarly as if a single
sample was used to calculate the gradient for the weight update step. To ensure variety
within a minibatch, the entire dataset is always shuffled before traversing it. Moreover,
a sample is only used once in every dataset traverse. The counter epoch indicates how
often the whole dataset X was iterated through, while step refers to the weight update
step executed for every minibatch Xb. Typically, the batch size Nb is chosen as large as
possible such that the optimization step does not exceed the memory limitations. In this
way, Nb gradients are averaged, which speeds up convergence. Besides, the calculations
are more efficient due to the parallel computation of Nb samples.

One issue when training ANNs are vanishing gradients, i.e., ∇W [l] ≈ 0. There are
multiple apparent reasons in Equation (2.8) that can lead to a vanishing gradient: 1)
the backpropagated gradient L ({(x, y)} , θ); 2) the derivative of the activation function

Ψ[l]′ (·); and 3) the output of the previous layer Θ[l−1] (x). All three highly depend on

the activation function Ψ[l] (·). While the second term directly contains Ψ[l]′ (·), the first

term encompasses all Ψ[k]′ (·) for k = l + 1, . . . , L. Thus, to compute the gradient of the
weights in early layers, all gradients from deeper layers are multiplied, resulting in barely
any weight update if various gradients are close to zero. Since these early layers typically
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2. Background in Artificial Neural Networks

recognize basic patterns in the input data, the entire network training is impaired. This
constitutes the main reason for dispensing with Ψ (x) = tanh(x) or Ψ (x) = sigmoid(x)
after ReLUs were introduced as ReLUs provide a constant gradient ReLU′(x) = 1∀x > 0.
However, the ReLU’s zero gradients for x < 0 can lead to entirely deactivated neurons as
there is no gradient to reactivate them. Moreover, the term Θ[l−1] (x) directly depends
on Ψ[l−1] (· · · ), which can also lead to zero gradients. Despite the apparent disadvantage
of only updating very few weights at every update step and parts of the network not
contributing towards the prediction due to dead neurons, the advantages of zero gradients
are fast computations and high numerical stability. To solve the issue of zero gradients
in ReLUs, one of the multiple extensions discussed in Section 2.3 can be utilized.

Even though all optimizers with a momentum term account for oscillating or small
gradients, the training typically reaches a stationary state after several epochs. By
reducing the learning rate η after reaching such a state, the optimizer can find the
minimum more efficiently in the current loss surface resulting in further improvement.
Besides detecting a stationary state by considering the loss on a separate dataset and
triggering a decrease, learning rates η are updated every epoch or step. While a learning
rate update every epoch is independent of the batch size Nb, updating η every step
results in independence from the number of samples of the training dataset Ntrain. One
option is to multiply η with a factor at every update η(i + 1) ← 1

γlr
η(i) with γlr > 1.

Alternatively, η is decreased by a factor γlr only for predefined values of i, e.g ., every five
epochs. Loshchilov and Hutter [136] proposed a cosine-like learning rate decay together
with resetting the learning rate schedule multiple times during the training to speed up
the convergence. Since random initial weights can cause unstable training with a large η,
slowly increasing η warms up the network such that training with a larger η is stable.
The interested reader is referred to the analysis by Gotmare et al . [58] as a detailed
analysis is out of scope for this work.

2.5 Convolutional Neural Networks

Fully connected neural networks with multiple layers, as introduced in Section 2.2, are
powerful tools to solve various problems; however, when applied to images, their inherent
properties raise several issues: 1) Fully connected layers do not leverage the spatial
information within images, i.e., the relationship of neighboring pixels is not considered.
If the pixels of all images in a dataset were permuted in the same way, the training
outcome of a multilayer fully connected neural network would be similar even though
the permuted images would be irrecognizable to us humans. Besides, the fully connected
layer is not shift-equivariant, i.e., shifting the position of an object within the input
image does lead to the same shift in the output. This property is crucial for, e.g .,
object detection or image-to-image translation tasks. 2) Using fully connected layers on
images causes the weight matrices to become huge, which requires more data to obtain a
well-generalizing network (see also Section 2.6). E.g ., an RGB image with a resolution of
100×100 px passed into a single fully connected layer with 1000 neurons requires 3 · 107
weights - more than most of the networks discussed in this work.
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2. Background in Artificial Neural Networks

Similar to the perceptron (see Section 2.1), which tries to model neural connections
in the human brain, the first neural model leveraging spatial dependency of nearby pixels
– the neocognitron [49] – is also inspired by biology since it is based on experiments
performed on cat’s visual cortex [88]. Already in 1983, the neocognitron showed promising
results when recognizing handwritten numbers. Nevertheless, only six years later, the
first convolutional neural networks (CNNs) demonstrated an even greater potential when
exploiting the spatial information in images [117]. Even decades after the first CNN, the
convolutional layer is still considered an essential layer for computer vision tasks.

2.5.1 Convolutional Layer

In order to obtain a shift-equivariant operation, the weight is assigned solely based on
the relation of the input pixel with respect to the output pixel, i.e., the input pixel to the
left of the target position always has the same weight regardless of the target position.
By only considering pixels within a KH×KW vicinity of the target position, the network
is forced to learn local patterns, resulting in a substantial reduction of the number of
weights. Thus, this operation can be interpreted as multiple fully connected layers with
shared weights and restricted to the vicinity of a pixel.

Given the input tensor F [l−1] ∈ RH[l−1]×W [l−1]×C[l−1]
with H [l−1], W [l−1], and C [l−1]

denoting the height, width, and the number of channels of F [l−1], respectively, the output[
F̃

[l]]
i,j,k

at every possible output position i = 1, . . . , H [l], j = 1, . . . ,W [l], and the output

channel k = 1, . . . , C [l] is computed as

[
F̃

[l]]
i,j,k

=
[
b[l]
]
k
+

K
[l]
H∑

h=1

K
[l]
W∑

w=1

C[l−1]∑
c=1

[
W [l]

]
h,w,c,k

[
F [l−1]

]
i+h−∆

[l]
H −1,j+w−∆

[l]
W−1,c

, (2.9)

with W [l] ∈ RK
[l]
H ×K

[l]
W×C[l−1]×C[l]

and b[l] ∈ RC[l]
denoting the weight matrix and bias

vector, respectively, and 2∆
[l]
i +1 = K

[l]
i for i ∈ {H,W}.[ii] In the context of convolutional

layers, the weight matrix is also referred to as the filter or kernel. The filter size K
[l]
H×K

[l]
W

determines the vicinity and is often chosen to be an odd number such that it is not
required to employ symmetric padding [18] to cope with the inherent spatial shift of a
convolution with an even filter size.

As depicted in Figure 2.3 (left), the convolution moves the filter W [l] to every possible
position in the input F [l−1] and computes the dot product of

[
W [l]

]
:,:,:,k

with the input

volume in the K
[l]
H×K

[l]
W vicinity for k = 1, . . . , C [l]. Along the width W [l−1], the filter can

be aligned to W [l−1] −K
[l]
W + 1 positions resulting in an underrepresentation of borders

and a shrinking output size. Due to its convenience of maintaining the width and height
during the operation, zero-padding is frequently applied to every border with PW = ∆

[l]
W

[ii]In contrast to Equation (2.2), the activation function Ψ[l](·) is considered an independent layer as
it does not always follow directly after the convolution (see also Figure 3.4).
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Figure 2.3: Left: Convolution of the input F [l−1] ∈ R5×5 with a 3×3 filter W [l] and default

configuration. Right: The output F̃
[l]

for two configurations with zero-padding along both axes
PH = PW = 1 and different strides S and dilation factors D. All configurations result in an

output F̃
[l]

of size 3×3, however, with different values. The colors indicate which input pixels
were used to compute the corresponding output pixel. For the sake of simplicity, the bias is
omitted.

pixels along the width and PH = ∆
[l]
H pixels along the height.[iii] Since zero-padding only

adds zeros, i.e., no artificial activations in F̃
[l]
, no unwanted artifacts are introduced. If

not stated otherwise, zero-padding is employed throughout this work for all convolutional
layers such that W [l] = W [l−1] and H [l] = H [l−1].

However, in some scenarios, it is desired to reduce the spatial footprint after a
convolution. By introducing a stride S, the convolution is only evaluated every S pixels,

which leads to an output width W [l] =
W [l−1]−K

[l]
W+2PW

S
+ 1 with the parameters K

[l]
W

and 2PW chosen such that (W [l−1] − K
[l]
W + 2PW) mod S = 0. The top parameter

configuration in Figure 2.3 (right) illustrates an example incorporating padding and
stride.

Despite its name, the convolutional layer, according to Equation (2.9), is actually not
performing a convolution, as known from signal theory, but a cross-correlation between[
W [l]

]
:,:,:,k

and F [l−1] in a K
[l]
H×K

[l]
W vicinity for multiple positions. Nevertheless, both

operations are closely related since Equation (2.9) also represents a convolution of F [l−1]

yet with a horizontally and vertically flipped kernel W [l]. While the channels of an RGB

image correspond to the red, green, and blue colors, every channel of the output F̃
[l]
of

a convolutional layer, a so-called feature map, indicates the presence of particular shapes
in the input F [l−1]. In earlier layers, these shapes are relatively simple and often just
involve edges, whereas more complex shapes, e.g ., circles or squares, are detected in
deeper layers.

Even though every convolution only considers pixels within a KH×KW vicinity, this
restriction is lifted by stacking multiple convolutional layers, which results in an increasing

receptive field, i.e., the region of the input image X affecting a particular position in F̃
[l]
.

[iii]Even though parameters may vary for every convolutional layer, the dependency on the layer [l] is
omitted to improve readability.
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2. Background in Artificial Neural Networks

In fact, by stacking l convolutions, which each considers a 3×3 vicinity, the receptive
field of the lth convolution is l(Ki − 1) + 1 = 2l + 1 along both axes. When employing a
layer with S > 1, the receptive field increases further. Thus, in order to encompass all
pixels of the input X, the network’s receptive field must be substantially more extensive
than the input size, as otherwise, border effects lead to an underrepresentation of pixels
in the corners.

Another technique to increase the receptive field is by dilating the kernel with a
dilation factor D > 1 [253], i.e., the kernel is spread out by introducing D − 1 spaces
between every kernel element, which is indicated by the bottom parameter configuration
in Figure 2.3 (right). While the receptive field of a single dilated convolution is extended
to D(Ki− 1)+1, the sparse kernel creates gridding artifacts, which need to be accounted
for with custom degridding techniques [227] or prior smoothing [149].

2.5.2 Transposed Convolution

Any convolution layer can also be rewritten as a sparsely connected layer with shared
weights following the notation of Equation (2.3). E.g ., considering Figure 2.3 (left) with

the input F [l−1] and the output F̃
[l]
flattened into a column vector f [l−1] ∈ R25×1 and

f̃
[l] ∈ R9×1, respectively. Then, the doubly block-circulant matrix – a special case of a

Toeplitz matrix cf . [59] – W̃
[l]
∈ R9×25 of W [l] can be used to describe the convolution

f̃
[l]
= W̃

[l]
f [l−1]. (2.10)

Despite its large size, W̃
[l]
is typically very sparse and contains redundant information

as every row
[
W̃

[l]]
k,:

is filled with the same coefficients
[
W [l]

]
i,j
, yet distributed at

different positions such that the matrix-vector multiplication represents the convolution.

Thus, only K
[l]
HK

[l]
W out of H [l−1]W [l−1] elements in

[
W̃

[l]]
k,:

are unequal zero. For the

general case, as in Equation (2.9), W̃
[l]
is of size H [l]W [l]C [l] ×H [l−1]W [l−1]C [l−1] with a

bias vector b̃ ∈ RH[l]W [l]C[l]
. Moreover, by altering the position of the K

[l]
HK

[l]
W elements in[

W̃
[l]]

k,:
, even special cases involving strides, and dilated convolutions can be represented

as in Equation (2.10).
As analyzed in Section 2.5, a convolution typically maintains or reduces the spatial

size of a feature map. However, some tasks, such as super-resolution, image-to-image
translation, or semantic segmentation, require the spatial resolution to be increased,[iv]

which is accomplished by transposing the weight matrix W̃
[l]
in Equation (2.10) yielding

f̃
[l]
= W̃

[l]Tf [l−1]. (2.11)

[iv]In image-to-image translation and semantic segmentation, the input resolution is typically reduced
and increased forming an hourglass structure. Thus, increasing spatial resolution is necessary despite
identical input and output resolutions.

17



2. Background in Artificial Neural Networks

This so-called transposed convolution is illustrated by Figure 2.4 (left) with the

original weight matrix W [l] ∈ RK
[l]
H ×K

[l]
W×C[l−1]×C[l]

. While for the standard convolution
(cf . Equation (2.9)), a K

[l]
H×K

[l]
W vicinity in the input is considered for computing the

value of a single output pixel, transposed convolutions operate fundamentally differently.
Still, both are related since the transposed convolution corresponds to the derivation
of a regular convolution. Thus, it is only necessary to switch forward and backward
operations of a convolutional layer to obtain a transposed convolutional layer.

Considering the kth output channel of a transposed convolution, the filter
[
W [l]

]
:,:,c,k

is scaled by every input value
[
F [l−1]

]
i,j,c

and summed over all C [l−1] input channels to

obtain the intermediate output

[
G̃

[l]]
i,j,k,:,:

=
C[l−1]∑
c=1

[
F [l−1]

]
i,j,c

[
W [l]

]
:,:,c,k

. (2.12)

Then, the final output F̃
[l]
is obtained by placing neighboring

[
G̃

[l]]
i,j,k,:,:

separated

by the stride S that is followed by a summation of overlapping pixels. The overlap also
allows a different point of view onto the transposed convolution since – unlike for the
regular convolution – more than a single position i, j of the kernel W [l] can influence
an output pixel. For S ≥ K

[l]
H and S ≥ K

[l]
W, there is no overlap between neighboring[

G̃
[l]]

i,j,k,:,:
in the output F̃

[l]
(cf . Figure 2.4 (left) for S = 2). Typically, a doubling of

the spatial resolution and overlap is desired as only then values of multiple input pixels
are considered to obtain an output pixel’s value. Hence, zero-padding with PH and PW

can be employed similarly to the convolutional layer in order to obtain an exact doubling
of the spatial resolution computed by W [l] = (W [l−1] − 1) · S +K

[l]
W − 2PW.

The overlap also reveals a downside when dealing with transposed convolutions with
a filter size not being a multiple of the stride S > 1. E.g ., considering S = 2 and

K
[l]
H = K

[l]
W = 3, the 3×3 dimensional intermediate outputs

[
G̃

[l]]
i,j,k,:,:

are placed S = 2

pixels apart in F̃
[l]
. Thus, the center element

[
G̃

[l]]
i,j,k,2,2

is not affected by overlapping,

whereas all surrounding elements are altered by the neighboring
[
G̃

[l]]
i,j,k,:,:

.[v] Due to this

nonuniform overlap, checkerboards artifacts occur [165], which are even more prominent
if multiple transposed convolutions are employed in the CNN. Odena et al . [165] further

found that subtle checkerboard artifacts are present even if K
[l]
H and K

[l]
W are multiples

of S. Therefore, when employing transposed convolutions, it is very difficult to avoid
checkerboard artifacts entirely as they are easily created during training.

Transposed convolutions can also be interpreted as an upsampling with a trainable
kernel. Hence, they provide more flexibility compared to the nearest neighbor, bi-linear
or bi-cubic interpolations. However, when combining the upsampling alternatives with a
convolution layer, similar complexity is achieved and checkerboard artifacts are prevented
[165].

[v]This is only valid for elements not being affected by border effects; hence, i /∈ {1, H [l−1]} and
j /∈ {1,W [l−1]}.
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Figure 2.4: Transposed convolution of the input F [l−1] ∈ R2×2 with a 2×2 filterW [l] and stride
S ∈ {1, 2} (left). For the sake of simplicity, the bias is omitted. Average and maximum pooling
layer (right). The colors indicate which input pixels were used to compute the corresponding
output pixel.

2.5.3 Pooling

The pooling layer constitutes a parameter-free operation within a CNN and serves two
purposes: 1) increasing the receptive field; and 2) decreasing the feature map size,
which makes the network less prone to overfitting and lowers its computational cost.
The average pooling layer can be interpreted as a convolutional layer with a constant
weight matrix W = 1

KHKW
1KH,KW

, which is applied – unlike in convolutional layers – to
every input feature map separately. In this way, the values within a KH×KW vicinity
are averaged and the number of channels is maintained. Another popular option is
the maximum pooling layer, which outputs the maximum in a KH×KW vicinity. The
difference between both pooling operations is illustrated in Figure 2.4 (right).

Typically, pooling layers are used with stride S = KH = KW to obtain non-overlapping
pooling and a dimensionality reduction. Besides, pooling allows the model to become
(slightly) shift-invariant as a slight spatial shift only results in minor changes in feature
maps, particularly after multiple pooling layers. A special case of pooling is global pooling,
which calculates the average or maximum over the entire spatial dimensions and thereby
dispenses with any spatial information present in the input. Usually, it is employed after
all convolutional layers to obtain a feature vector indicating the average or maximum
activation within every feature map, i.e., the presence of specific shapes within the input
regardless of their position.

With the first CNN [117], a variant of average pooling was utilized. Krizhevsky et
al . [112] used overlapping maximum pooling with KH = KW = 3 and S = 2. Nowadays,
average and maximum pooling are equally popular due to their negligible influence on
the results. Nevertheless, multiple more complex pooling methods have been proposed,
among which mixed pooling combines average and maximum pooling [252], and spatial
pyramid pooling employs a spatial pyramid instead of global pooling to obtain a fixed-size
feature representation [70]. Region of interest pooling is typically used in object detection
tasks and involves pooling region proposals of an arbitrary size into a fixed-size feature
map for further processing [52]. More recent region pooling methods fuse the information
based on the predicted object’s corners [114] or the object’s corners and center [41];
however, their discussion is out of scope for this work.
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2.6 Improving Generalization

When training an ANN with a dataset Xtrain, it is desired to obtain the best performance
on a separate dataset Xtest comprising different samples (Xtrain ∩ Xtest = ∅). In this way,
the measured performance resembles the actual performance in real-world applications.

However, when optimizing the network to obtain the best results on Xtrain, the results
on Xtest might be better when choosing different weights θ, which leads to suboptimal
performance on Xtrain. In such a scenario, the model overfits on Xtrain and does not
generalize well on unknown data Xtest, which can be verified by comparing the respective
losses

L (Xtest, θ
∗)≫ L (Xtrain, θ

∗) ≈ 0. (2.13)

Overfitting occurs if Xtrain is not sufficiently diverse for the network to learn the
underlying patterns or – seen from the network’s perspective – if the network is too
complex and thus memorizes a direct input-output mapping instead of learning the
underlying relationship. If the amount of data does not match the network’s complexity,
the network will try to memorize the input and thereby the training results in a loss
L (X , θ) ≈ 0. E.g ., in contrast to learning what makes a cat differ from a dog, a
sufficiently complex network directly learns the images of a cat.

In fact, overfitting is ubiquitous in ANN, as demonstrated by Zhang et al . [262]. The
authors showed that even simple networks trained with “images” containing shuffled
pixels, i.e., with no apparent spatial dependencies, or shuffled labels still manage to
obtain 100% accuracy on Xtrain and an accuracy corresponding to random guessing
on Xtest. So, the network can predict the labels perfectly despite the absence of any
relationship between images and their labels. This vast generalization gap demonstrates
that every network is sufficiently complex and thus prone to overfit. Hence, it is crucial
to present more obvious links between images and labels, i.e., shared patterns in images
for a given label, forcing the networks to focus on generalizing patterns rather than
sample-specific nuances.

There are two straightforward approaches to cope with overfitting: increasing the
dataset size or reducing the complexity of the neural network. The former can be
achieved through data augmentation, i.e., the amount of data is artificially increased by
flipping, randomly cropping, or changing brightness, contrast, saturation etc. (see also
Section 3.5.1). Network complexity encompasses multiple aspects and is hard to grasp.
E.g ., a single layer with a huge number of neurons is typically not sufficient to solve
any task, and using multiple layers only improves complexity if non-linear activation
functions are employed (cf . Equation (2.4)). Thus, network complexity involves – among
others – the number of trainable parameters θ, values taken by the parameters, activation
functions, and depth.

Increasing complexity can also lead to less overfitting if the predictions from multiple
networks are averaged, even when they are trained on the same dataset. Since every
network is optimized to a different set of optimal weights θ∗ due to random weight
initialization and shuffling of Xtrain, the ensemble of networks is more robust and gener-
alizes better. Despite their popularity when CNNs were adapted to many new computer
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vision tasks, nowadays, their usage is mainly limited to challenges, in which the overall
performance is slightly boosted by simply employing an ensemble.

Besides the amount of training data and network complexity, there are multiple
techniques to manipulate the network or the training to improve generalization. Among
these, the most popular are introduced in the following.

2.6.1 Early Stopping

Early stopping is a simple albeit effective method to mitigate overfitting, which utilizes
an additional disjoint validation dataset Xval with Xtrain ∩ Xval = Xtest ∩ Xval = ∅. Then
Xval is employed to terminate the training on Xtrain if L (Xval, θ) begins to rise.[vi] In
this way, the loss is not optimal on Xtrain yet yields better performance on Xtest since the
network’s weights θ are not too specialized on Xtrain, which improves generalization on
unseen data Xtest.

2.6.2 Weight Decay

One aspect contributing to model complexity is the value range taken by the trainable
parameters θ. If a network can choose θ freely within R, the weights after training θ∗

optimally resemble the relationship in Xtrain given the network structure. However, it
also increases susceptibility to slightly varying input data as in unseen data Xtest (cf .
Equation (2.13)). By constraining the value space of θ, the network cannot optimally
approximate the task given by Xtrain, resulting in inferior performance, which is recogniz-
able by the increased training loss L (Xtrain, θ). However, the network is less specialized
on Xtrain, which leads to improved generalization and ultimately to better performance
on Xtest.

This concept is implemented under the term weight decay. Formally, weight decay
adds the L2 norm of all weights, denoted by Lreg, as a penalty term to the total loss
Ltot, which is used to optimize the network

Ltot (X , θ) = L (X , θ) + λreg

[ ∑
W ,b∈ θ

∥W ∥2 + ∥b∥2
]

︸ ︷︷ ︸
Lreg

, (2.14)

with λreg denoting a regularization constant to balance the losses. In this way, the
network needs to find an optimal trade-off between minimizing the objective defined
by L (X , θ) and utilizing large weights to achieve it. In contrast to clipping all values
exceeding a given threshold, this soft regularization also affects small weights and allows
the network to balance the absolute value among all weights.

[vi]Besides the loss L (Xval, θ), any other stopping criteria based on Xval, such as accuracy, can be
used to measure the generalization gap.
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Besides the L2 norm, L1 norm can also be employed to allow sparser weight distri-
butions, which is particularly useful in the presence of noisy data. With the L2 norm,
outliers are penalized, resulting in more uniformly distributed weights. Thus, weight
decay with the L2 norm mitigates the creation of multiple spurious associations during
training, which ultimately alleviates the dependency on Xtrain and improves generalization
on Xtest.

2.6.3 Dropout

An important objective in ANN training is robustness to small perturbations in the data,
i.e., a small change in the input pixels’ value should not lead to different predictions. To
improve such robustness, Srivastava et al . [197] proposed to inject noise into different
layers of the neural network. Their technique is named dropout since neurons – including
all incoming and outgoing connections – are dropped during training with a probability
pd. This behavior is implemented by adding a new dropout layer,[vii] which modifies the
ith neuron’s output value Θ[l] (x) of a preceding hidden layer at depth l

[
Θ

[l]
D (x)

]
i
=

{
0 with probability pd
[Θ[l](x)]i
1−pd

otherwise
∀ i. (2.15)

If the value is retained, it is scaled with 1/ (1− pd) to guarantee that the expected

value after adding the dropout layer remains unchanged E
[
Θ

[l]
D (x)

]
= Θ[l] (x). This is

equivalent to scaling the weights at test time with 1 − pd as proposed by the authors
[197]. However, compensating the dropout during the training as in Equation (2.15)
allows a more convenient use of identical weights during training and testing.

Dropout can also be interpreted as sampling different thinned-out networks from
the original network for every gradient update. Since the network does not know which
neuron is dropped, it is forced to distribute detections among various neurons and base
its decision on multiple neurons. Hence, a certain degree of redundancy is induced,
which ultimately leads to improved generalization. Despite their effectiveness in fully
connected networks, dropout is hardly incorporated in convolutional layers due to the
spatial dependency of different pixels. While the gradient is zeroed for all weights
associated with the dropped out units in fully connected layers, filter weights are still
updated through backpropagation when dropping out pixels in feature maps as they are
influenced by multiple pixels. This is also apparent in Equation (2.10) since the trainable

weights occur in various rows of W̃
[l]
. Thus, a variation of the original dropout, such as

spatial dropout [205], must be incorporated to obtain similar behavior.

[vii]Even though an activation function, dropout, and batch normalization (see Section 2.6.4) are layers,
both are not counted towards the overall depth of a network L as they are considered as part of the
preceding layer.
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2.6.4 Batch Normalization

One essential technique for efficient ANN training – or in fact, when training any classifier
– is input normalization [119]. The idea is to provide input data with zero mean and
unit variance to the network in order to avoid over-prioritization of individual inputs.
However, the initially normalized data is not maintained after several layers of processing
as not every feature (map) outputs values in the same range. Moreover, most activation
functions, including the popular ReLU and its variations (see Section 2.3), do have an
expected value E[Ψ(x)] ̸= 0 and thus provoke a drift of the layers’ output values towards
the positive value range, which is accumulated throughout the network. This drift
also leads to unequal weight updates since the output of every layer directly influences
its gradient (cf . Equation (2.8)). Generally, the gradient for a given weight ∇W [l] is
computed during backpropagation under the assumption that all remaining weights
remain constant. However, in practice, all weights are updated simultaneously, which
requires lower learning rates η or maintaining the output distribution of every layer
roughly constant to ensure a stable training.

Thus, it is no surprise that a drift of the distribution of the layers’ output values –
the so-called internal covariate shift – throughout the network can hamper convergence,
as postulated by Ioffe and Szegedy [96]. To alleviate this issue, they proposed the batch
normalization (BN) layers, which inserts normalization within the network based on the
statistics of every minibatch Xb. Instead of normalizing the outputs of an intermediate
layer Θ̃[l] (x) to zero mean and unit variance, BN introduces two trainable parameters, β
and γ, denoting the target mean and variance after normalization. Then, the BN layer
can be mathematically written as

[
Θ̃

[l]
BN (x)

]
i
= [γ]i

[
Θ̃[l] (x)

]
i
− [µBN]i√

[σ2
BN]i + ϵBN

+ [β]i , (2.16)

with µBN and σ2
BN denoting the mean and variance of the minibatch Xb, and ϵBN being

a constant to account for numerical instabilities due to small variances σ2
BN, which is

typically chosen in the orders of 10−3. Formally, µBN and σ2
BN are calculated as

µBN =
1

Nb

∑
x∈Xb

Θ̃[l] (x) and (2.17)

σ2
BN =

1

Nb

∑
x∈Xb

(
Θ̃[l] (x)− µBN

)
⊙
(
Θ̃[l] (x)− µBN

)
. (2.18)

For a fully connected layer with M [l] neurons, BN introduces 2M [l] new trainable
weights since every neuron is normalized separately. When employing BN in convolutional

layers, Equations (2.16) to (2.18) are adapted such that every feature map
[
F̃

[l]]
:,:,i

is

normalized separately. In this way, its computational footprint is relatively low compared
to the large trainable weight matrices W .

Typically, BN is utilized in every layer Θ̃[l] (x) of the ANN and positioned before
the activation function Ψ(·). Thus, β acts as a bias b, making b obsolete when BN

23



2. Background in Artificial Neural Networks

is employed together with a fully connected or a convolutional layer. Also, γ is often
omitted if a ReLU follows the BN since the scaling can be applied in the next layer.
In order to leverage meaningful minibatch statistics, the minibatch size Nb must be
sufficiently large. In fact, for the extreme case of Nb = 1, training is completely stopped
in fully connected layers as µBN = Θ̃[l] (x). Multiple extensions to cope with small Nb

proposed normalizing across all feature maps for every sample [7], across all feature maps
and all samples [208], or across a group of feature maps for every sample [236].

Equation (2.16) also reveals the dependency of the output of every training sample x
on the remaining samples in Xb. This has a positive effect during training as it induces
noise and makes the BN further act as regularization. However, to obtain deterministic
values independent of Nb at inference, i.e., when not training the weights as during
evaluation, exponential moving averages of µBN and σ2

BN are stored during training with
momentum αBN, and used for inference [95].

BN fundamentally impacts ANN training in multiple ways. It mitigates the network’s
internal covariate shift addressing vanishing and exploding gradients, which enables the
training of deeper networks. Santurkar et al . [185] attributed the success of BN to the
smoother landscape of the optimization problem it creates, making the gradients more
predictive. Regardless the reasons for its success, the introduction of BN ultimately
enables training of deeper networks with larger learning rates and increases robustness
to weight initialization and thus constitutes a key ingredient in most ANNs.

2.7 Generative Adversarial Networks

To this point, this work has only considered discriminative tasks, in which a mapping of a
sample X onto the target class (classification) or value y (regression) is approximated by
the network. While such tasks can achieve remarkable performance by straightforwardly
stacking the layers introduced throughout this chapter and employing a suitable loss
function, this approach fails to deliver satisfying results when the generation of new data
is involved. The biggest challenge of such generative tasks, e.g ., creating synthetic data
resembling a given distribution, image manipulation, etc., is that the generated image
X fake must be photo-realistic and indistinguishable from real images Xreal. Hence, these
tasks require to cautiously design a loss function that is capable of measuring the images’
realism and imitating the judgment of humans. Even if pairwise ground-truth data is
available during training, e.g ., for image inpainting tasks in which a mask is typically
generated synthetically,[viii] obvious loss functions like the pixel-wise mean absolute error
(MAE) or MSE turn out to be impractical as a slight spatial shift of high-frequency
patterns leads to significant losses despite them being realistic. Moreover, it is difficult
to grasp the ambiguity of X fake since generative tasks do not have a single acceptable
solution. Thus, generative models minimize such losses by providing a blurry output
X fake that lacks details and thereby is close to all possible realistic solutions,[ix] making
X fake easy to identify as fake.

[viii]Image inpainting refers to the tasks of filling missing pixels of an image.
[ix]in terms of pixel-wise MAE or MSE
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Generator

Discriminator

Classifier

Figure 2.5: Architecture of a generative adversarial network (GAN): While the generator
creates an image X fake based on a noise vector z, the discriminator tries to discern X fake from
a real image Xreal. The dashed components illustrate the addition of information y to create
X fake such that it satisfied y (conditional GAN).

In 2014, Goodfellow et al . [57] proposed generative adversarial networks (GANs) –
a new concept of designing ANNs to generate realistic data. Their clever idea was to
circumvent the cumbersome design of a loss function that imitates human judgment of
realism by employing a separate ANN – the discriminator – that is trained with this
task. Hence, the requirement of a loss function, which has to be meticulously designed
to measure realism, is substituted by training a separate network with the sole task of
discerning fake images X fake from real images Xreal.

In this way, Goodfellow et al . [57] effectively expressed the generative task as two
discriminative tasks: 1) the training of a generator to generate an image X fake, which
is classified as real by the discriminator; and 2) the training of a discriminator, which
can distinguish fake images X fake from real images Xreal. This unique configuration
of two components with contrary objectives creates a competitive dynamic, making
them improve each other. If the generator has learned to deceive the discriminator, the
discriminator is presented with harder samples making it learn to differentiate them
better, which in turn encourages the generator to create even more realistic samples. This
competitive relationship between generator and discriminator constitutes the adversarial
part of this approach.

2.7.1 Architecture

In their paper [57], Goodfellow et al . investigated the task of training the generator
G(·) to create images X fake, which resemble the data distribution of real images Xreal

in a training dataset Xtrain, from a noise vector z. The discriminator D(X) yields a
scalar denoting the probability of X being real D(X) = P (X ∈ Xtrain). This structure
is denoted by the solid arrows in Figure 2.5.

While the first publication related to GANs [57] was mainly a – mostly theoretical –
proof of concept confirmed by a few experiments, architectures have evolved substantially.
In their first approach, Goodfellow et al . transformed the noise vector z into an image
X fake employing solely fully connected layers and thereby without leveraging the spatial
dependencies within an image (see also Section 2.5). Mirza and Osindero [152] proposed
a conditional GAN, which creates the image X fake = G(z | y) based on an additional
condition given by a vector y. Their work added the condition to the discriminator
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D(X | y); however, a separate classifier, as depicted by the dashed lines in Figure 2.5,
is a valid alternative to better separate both objectives: generating realistic data that
also fulfills the condition y. By substituting the fully connected layers in the generator
with four transposed convolutions (see Section 2.5.2) to transform z into an image of
resolution 64×64, Radford et al . [173] managed to better leverage the spatial properties
of images. With StyleGAN [104] and StyleGAN2 [105], Karras et al . employed the
technique of progressively increasing the resolution of a GAN from ProGAN [103]. They
combined it with adaptive instance normalization (AdaIN), which inserts the image’s
style into the network by scaling the normalized feature maps with β and γ computed
from the style vector. Together with the noise, both are introduced into the network
at different depths resulting in highly realistic but still random images, which are also
controllable by the style vector.

In contrast to tasks involving the generation of data from noise, image manipulation
tasks, e.g ., face attribute manipulation, face swapping, image coloring, style transfer,
etc., perform a transformation on an input image X 7→ X fake and do typically not
include any noise vector z. Thus, the requirement of generative models to also match the
training data distribution in terms of variety is lifted. While some approaches [170, 251]
opted for encoder-decoder structure, which downsampled the feature maps to a lower
resolution and upsampled again, Isola et al . [97] employed skip connections to allow
low-level information to propagate directly towards the last layers. For tasks where the
output has the same underlying structure as the input, e.g ., edges or corners are at
similar positions, this so-called U-Net [179] has become the default architecture for image
manipulation tasks. Besides, Zhu et al . [285] proposed to use cycle-consistent losses

by training an additional generator G̃(X) to perform the inverse task X fake 7→X. By

ensuring that G̃(G(X)) ≈ X, the generator can learn a realistic transformation even
for frequent under-constrained scenarios in which pair-wise data is unavailable. This
concept was further extended by StarGAN [23, 24] to multiple domains or by DiscGAN
[107] by employing separate cycle-consistency losses and separate discriminators for each
generator. Another major step in improving the structure of the generator (and the
discriminator) was proposed by Zhang et al . [264] by incorporating the self-attention
mechanism, which enables the generator to grasp long-distance relationships between
pixels.

Even though improving the architecture of the generator seems to be the best
approach to generate more realistic data, the discriminator D(X) also has a significant
influence on the outcome. Overall, there are various fundamentally different discriminator
architectures to consider. Traditionally, the image X is propagated through multiple
convolutional layers with stride S = 2 and concluded by a fully connected layer with
sigmoid(·) activation to output the probability of X being real D(X) ∈ [0, 1] [103, 104,
173]. Isola et al . [97] assumed that low-level realism is already captured by additional L1

or L2 losses and proposed restricting the receptive field of the convolutions such that it
does not cover the entire image X and employing global average pooling to obtain a
single output probability. In this way, local patches are evaluated separately, and thus
the focus is shifted towards evaluating whether every patch also contains high-frequent
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information, i.e., crisp details. To reduce the overfitting onto a single discriminator,
multiple discriminators [44, 154, 219] can be employed, which can fulfill a different
purpose if provided with a different input, e.g ., multiple scales of X as in Wang et al .
[219]. Besides, other discriminator variants also include intermediate layers from the
generator in judging realism [102] or output the probability of X being real for every
class separately if images are translated between multiple classes [129].

2.7.2 Training

The discriminator D(·) is trained in order to maximize the probability of correctly
classifying X, which can be formulated as minimizing the negative log-likelihood

min
D

(−y log(D(Xreal)− (1− y) log(1−D(X fake)) (2.19)

assuming that the label y is 1 for Xreal and 0 for X fake.
[x] The generator G(·) tries to

deceive the discriminator D(·) with X fake, i.e., it maximizes Equation (2.19) for y = 0

max
G

(− log(1−D(G(z))) . (2.20)

To address vanishing gradient problems, Equation (2.20) is expressed as a minimization
problem

min
G

(− log(D(G(z))) , (2.21)

from which a training loss can be deduced.
Overall, the adversarial min-max game between generator G(·) and discriminator

D(·) is described by the following comprehensive objective function:

min
D

max
G

(−y log(D(Xreal)− (1− y) log(1−D(G(z))) . (2.22)

Generator G(·) and discriminator D(·) are typically optimized in an alternating
manner, i.e., the weights of D(·) are fixed when optimizing G(·) and vice versa. However,
since their objectives are contrary, their respective losses do not behave similarly to the
training of a single ANN. Every weight update of G(·) makes X fake being perceived as
more realistic by D(·), which increases the difficulty of distinguishing X fake from Xreal,
setting back the loss of D(·) and vice versa. Thus, GAN training can be interpreted as
training the generator G(·) with the discriminator D(·) as a loss function, which also
learns to better judge realism while training progresses.

Despite this apparent standstill in terms of losses, the tasks of both networks adapt,
i.e., the weight updates in G(·) lead to a more realistic X fake, which is now necessary to
deceive D(·). If the loss of either G(·) or D(·) approaches zero, the GAN training fails
as G(·) found an easy way of deceiving D(·) or D(·) always correctly identifies X fake,
e.g ., due to artifacts, overrepresentation of a single color, etc. This behavior is also

[x]This binary version of the cross-entropy (CE) loss is discussed more in-depth in Section 3.4 on the
example of face recognition (FR).
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referred to as (partial) mode collapse, which makes the generator converge towards always
generating a very similar face despite depending on random noise z. In such scenarios,
the training is stuck in local minima and both networks cannot benefit from one another
anymore. Hence, it is crucial to balance weight updates of G(·) and D(·) to maintain a
steady loss, even though it seems counterintuitive. To mitigate mode collapse, Metz et
al . [150] proposed to unroll several optimization steps of the discriminator. In this way,
G(·) is less likely to overfit to local minima, which could be exploited by D(·), resulting
in a stabilization of the training. Apart from the meticulous hyperparameter selection to
maintain steady losses throughout the training, the inability of losses to measure training
success contributes to the overall cumbersome GAN training.

Goodfellow et al . [57] showed that at convergence, which is also referred to as the
Nash equilibrium, G(z) is indistinguishable from X , causing the discriminator to always
guess with D(Xreal) = D(X fake) = 0.5. Moreover, they illustrate that optimizing the
generator corresponds to minimizing the Jensen-Shannon divergence between G(z) and
X .[xi] However, according to Farnia and Ozdaglar [46], not all GANs have Nash equilibria.
Since the initial GAN, multiple new loss functions, such as least-squares GAN [144],
Wasserstein GAN [6] with gradient penalty [61], or boundary equilibrium GAN [11], have
emerged with their benefits being questioned by Lucic et al . [137], in which a large-scale
study showed that all investigated loss functions can yield comparable results given
sufficient hyperparameter optimization. Thus, the vanilla GAN by Goodfellow et al . [57]
remains viable.

[xi]In contrast to the Kullback-Leibler divergence, the Jensen-Shannon divergence symmetrically
measures the dissimilarity between two probability distributions.
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General Face Recognition

Any face recognition (FR) system can be divided into subject-dependent and subject-
independent FR as depicted in Figure 3.1. Since subject-dependent FR systems are
trained and evaluated on the same limited group of identities, their generalization to
unknown identities – while theoretically possible – is rather limited. Hence, they are
inflexible as they require costly retraining if the pool of identities is extended. Nowadays,
the focus lies entirely on subject-independent architectures as well-established powerful
deep learning architectures are capable of learning to generalize intra-subject variations.
While subject-dependent architectures are considered classifiers, which directly predict
the identity y of a face I,[i] subject-independent approaches are feature extractors as they
map I into a discriminative deep feature space f , in which the distance between two
features corresponds to the faces’ dissimilarity. Thus, subject-independent architectures
can also cover the subject-dependent evaluation scenarios as long as at least one reference
image is provided. This work follows recent advances in FR and exclusively considers
subject-independent approaches.

Face Recognition

Classifier Feature Extractor

Open-SetClosed-Set

Training
Protocol

Test
Protocol

Subject
Dependent

Subject
Independent

Classifier

ID1

ID2
Classifier ID

Feature

Extractor

Feature
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Probe

Gallery

All probe identities

are part of the gallery

Probe identity might not

be part of the gallery

Face

Verification

Face

Identification

Face

Verification

Face

Identification

Figure 3.1: Different approaches to face recognition (FR).

[i]with “face” referring to “image of a face”
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Figure 3.2: Training and evaluation pipeline of a subject-independent FR system.

Regardless of subject dependency, both architectures can be evaluated in terms
of face verification or face identification. Face verification (one-to-one comparison)
investigates whether a pair comprising two faces is either genuine, i.e., both faces’
identity is identical, or imposter, i.e., both faces belong to the distinct identities. Face
identification determines the identity of a probe face by comparing it with a gallery of
faces (one-to-many comparison). The latter is further split into closed-set and open-set
dependent on whether the identity of the probe face is represented within the gallery
or not. All three evaluation protocols are closely related, yet they provide different
metrics corresponding to everyday real-world tasks, e.g ., unlocking the smartphone and
automatic passport control (face verification), or law enforcement and large-scale image
retrieval (face identification).

Building and evaluating an FR system usually involves three steps: 1) data prepro-
cessing; 2) network training; and 3) performance evaluation. Figure 3.2 illustrates this
process for a subject-independent system.
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First, all unprocessed face datasets (for training and evaluation) are preprocessed,
which involves detecting the face and spatially normalizing it by face alignment. Then,
the resulting preprocessed training dataset is utilized to optimize the weights of a face
feature extractor by minimizing a loss function. In order to evaluate the performance of
the FR system, features are extracted from the faces within the test dataset. Ultimately,
the test features are used to evaluate the performance of the FR system in terms of face
verification or face identification.

The first part of this chapter introduces the reader to different components of a
conventional FR system, as indicated by Figure 3.2. Section 3.1 provides an overview of
widely-used datasets for training and testing, and emphasizes the criteria for a suitable
dataset selection. In Section 3.2, the data preprocessing steps, including face detection
and alignment, are explained. Popular architectures and loss functions for FR are
presented in Section 3.3 and Section 3.4.

After providing a general and exhaustive overview of every component necessary to
perform FR in Sections 3.1 to 3.4, the second part of this chapter (Section 3.5) presents
training strategies and defines metrics to evaluate the models in terms of FR. Then,
various FR models are trained and their parameters are compared in an ablation study
in Section 3.6.1. In addition, Section 3.6.2 provides an in-depth analysis of three models
used throughout this work and Section 3.6.3 compares the three models with the state
of the art.

3.1 Datasets

3.1.1 Training Datasets

As introduced in Section 2.4, an artificial neural network (ANN) is trained for a specific

task using a dataset Xtrain =
{(

I(n), y(n)
)}Ntrain

n=1
comprising Ntrain tuples of face images I

with their corresponding identities as a label y. To ensure that any FR model is capable
of generalizing well to unknown identities, it is decisive to train it on a sufficiently large
dataset (see Section 2.6). Large in this context can signify two different things: 1) a
large number of identities with a relatively low number of images per identity, which is
referred to as wide; or 2) a limited number of identities with a large number of images
per identity, which is denoted as deep.

As depicted in Table 3.1, the average number of images per identity of popular
datasets ranges from 20 to 1000, allowing the selection of relatively wide or deep datasets.
Intuitively, it is not evident whether training with a wider or a deeper dataset leads to
better FR performance. Wide datasets comprise many identities and thereby cover more
inter-identity variations, which allows the model to learn even subtle differences between
similar-looking identities. On the other hand, a deep dataset encompasses a high amount
of intra-identity variations.

In her analysis, Fees [7+] showed that face identity representations highly depend on
face attributes such as grey hair, bald, and eyeglasses, requiring the dataset to contain
many examples of both cases such that the trained model becomes invariant to them.
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Moreover, Sun [32+] evaluated how the variety of head poses affects face verification
accuracy. She found that when only utilizing half of the images for every identity, equally
distributing the head poses among the range of head poses clearly outperforms using
only frontal faces or faces with extreme head poses. This effect was observed when
training with 1000 to 6000 number of identities on the VGGFace2 dataset and evaluating
on the Labeled Faces in the Wild (LFW) [86] dataset (see Section 3.1.2). Hence, it
is crucial to ensure that a dataset also exhibits a vast variety of head poses to obtain
the best possible performance given a limited number of images. In addition, different
illuminations, occlusions, and expressions of one identity increase the variety of the data
and allow the model to conclude what truly represents an identity.

To evaluate whether deeper or wider datasets are superior, Bansal et al . [9] divided
several datasets into deep and wide halves. They found that it is better to use deeper
datasets for deeper networks, while wider datasets are preferred for shallower networks.
In addition, the analysis from Zhou et al . [283] shows that adding more identities to
a given dataset boosts performance, but only if the added identities contain a certain
number of images. While this rule of thumb holds for the investigated cases, additional
factors likely influence the overall quality of a dataset.

Zhang et al . [270] showed that a uniformly distributed dataset outperforms so-called
long-tailed datasets, comprising many identities with few samples and few identities with
many samples. Hence, it is vital that a dataset contains at least a few images for every
identity and it is uniformly distributed in terms of the number of images per identity.
With Range Loss, a specific loss to cope with long-tailed datasets was proposed [268].

Due to the large number of images in most datasets, manual annotations are too
time-consuming. Moreover, the large number of identities and the thereby larger number
of similarly looking identities together with poor quality (e.g ., low resolution, extreme
head poses, etc.) causes labeling errors from manual annotators – especially if they are
unfamiliar with the identity to be labeled. But also automatically generated datasets
are noisy if they are not supervised by any (manual) cleaning. Wang et al . [211] showed
that large datasets are especially susceptible to label noise. They estimated that the
MS-Celeb1-1M dataset contains ≈ 50% label noise rendering the training particularly
cumbersome. Moreover, Bansal et al . [9] further demonstrated that adding noise to a
dataset worsens the performance, which was reproduced by Wang et al . [211]. While the
authors MS-Celeb-1M are aware of the high level of noise present in their dataset and
see it as a challenge to develop noise-robust training strategies, the analysis from Wang
et al . [221] suggests that the noise level in the VGGFace2 dataset is comparably low.

To cope with noisy datasets, some approaches [17, 83, 189, 235] directly addressed
the uncertainty in face datasets, whereas other researchers [98, 221] showed that cleaning
training datasets (especially MS-Celeb-1M [65]) yields superior results. Deng et al . [33]
even employed annotators familiar with the ethnicity to improve the label quality of hard
samples in MS-Celeb-1M, which resulted in the MS1MV2 dataset. Other approaches
utilized different cleaning techniques resulting in a different number of identities and
images, e.g ., 59k and 3.7M [175], 73k and 3.3M [223], 82k and 4M [36], 82k and 4.5M
[34, 35], 100k and 5M [268], respectively. Still MS1MV2 by Deng et al . [33], remains the
most popular training dataset for FR [87, 108, 109, 148, 199, 281].
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Table 3.1: Popular datasets used for training FR models. † denotes that only the training
subset is considered.

# Images/Videos per Identity

Dataset # Identities # Images # Videos Min Avg Max

CelebFaces+ [201] 10 177 202 599 1 20 35
CASIA-WebFace [248] 10 575 494 414 2 47 804
UMDFaces [10] 8 277 367 888 44
VGGFace [169] 2 622 2 622 000 1 000 1 000 1 000
VGGFace2† [14] 8 631 3 138 924 87 364 843
MS-Celeb-1M [65] 100 000 10 000 000 100
MS1MV2 [33] 85 742 5 822 653 2 68 602
Asian-Celeb [30] 93 979 2 830 146 30
Glint360k [3] 360 232 17 091 657 47
UMDFaces-Videos [9] 3 107 22 075 7
VoxCeleb2 [26] 6 112 150 480 25

Besides noisy data, it is crucial to minimize bias and ensure that the distribution
of the training dataset resembles the distribution of the test dataset, e.g ., when testing
the recognition of children, the training dataset must contain juvenile faces (see also
Section 2.6). While gender is distributed relatively equally in VGGFace2 (59.3% male
versus 40.7% female [91]),[ii] the ethnicity distribution is substantially biased towards
Caucasians (74.2%) with Asians (6.0%) Indians (4.0%) and Africans (15.8%) being
underrepresented [218]. For MS-Celeb-1M, this inequality is even more pronounced. To
compensate the resulting inferior performance when evaluating Asian faces, extending the
training dataset to encompass the Asian-Celeb dataset [30] constitutes a viable option
as performed by Deng et al . [33].

It can be concluded that a training dataset should ideally be: 1) uniformly distributed;
2) contain a low amount of noise and bias; and 3) deep, as the models used in this
work are considered deep when compared to [9]. This leaves two choices for the training
of FR models, namely the VGGFace2 dataset – a deep dataset with particularly low
noise and a focus on high intra-identity variations in head pose and age – and the
MS1MV2 dataset, which comprises a very high number of identities and was cleaned
to reduce the amount of noise. CASIA-WebFace [248] is also quite popular in FR
[87, 130, 131, 148, 189, 215, 268, 281], but its single benefit compared to VGGFace2
lies in a time-efficient training with less images. Thus, VGGFace2 constitutes a viable
and powerful training dataset despite being less popular [14, 33, 101, 239, 240, 273].
Other large datasets are either very specific for one ethnicity (Asian-Celeb [30]) or are
difficult to train as they require additional hardware due to the huge number of identities
(Glint360k [3]). In terms of video FR datasets, VoxCeleb2 [26] is considered superior to
UMDFaces-Videos [9] due to its larger number of identities and videos.

[ii]assuming binary genders
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3.1.2 Benchmark Datasets

In contrast to datasets used for training, benchmark datasets Xtest are typically wide
as they try to mimic the general population.[iii] In addition, a wide dataset is crucial
in order to generate pairs of similar-looking identities and to obtain a huge number of
imposter pairs, which is necessary to evaluate security-sensitive applications. Since only
subject-independent approaches are considered, the identities in benchmark datasets
do not have to be part of the training dataset. In fact, there should be no identity
overlap between both datasets as otherwise, the performance would not correspond to
the actual performance when exposed to unknown identities. However, minor overlaps
exist between various training and benchmark datasets. Ideally, overlapping identities
should be removed during training. Since this would inevitably increase the clutter of the
training datasets, most approaches ignore the identity overlap. In addition, the overlap
is considered minor and since every approach is affected similarly, the comparison of
various approaches is still meaningful.

Typically, every benchmark dataset was created to investigate a particular task.
Table 3.2 sums up the most important properties of popular datasets used to evaluate
FR performance. The LFW dataset [86], initially released in 2007, was the first dataset
to comprise images taken in uncontrolled (in the wild) environments and was long the
gold standard for measuring FR performance. Nowadays, the accuracy is saturated as
achieving a face verification accuracy above 99.3% is considered relatively easy. One
reason contributing to this is that imposter pairs often have different gender and ethnicity,
whereas both are the same for genuine pairs. Moreover, the age gap between two faces
in genuine pairs is usually substantially lower than between two faces in imposter pairs.

Therefore, new datasets, such as Cross-Pose LFW (CPLFW) [275] and Celebrities in
Frontal-Profile (CFP) [188],[iv] emerged evaluating face verification performance under
varying head poses. Another direction was pursued by the Cross-Age LFW (CALFW)
[276] dataset and AgeDB [156],[v] which focus on ensuring a similar age gap among genuine
and imposter pairs. While all datasets mentioned above fulfill their purpose and are still
widely employed, their relatively low number of pairs restricts the performance analysis.
In particular, more practical use cases cannot be evaluated, including the performance
when only allowing a very low (1 in 106) number of falsely classified imposter pairs.

To overcome these limitations, the MegaFace dataset [106] provides ≈ 4 ·109 face pairs
enabling a more comprehensive face verification analysis. In addition, MegaFace allows
the evaluation of closed-set face identification performance, where all probe identities
form part of the gallery. Due to its unique protocols with up to Nd = 106 images
of distractors, the influence of an extensive gallery can be investigated exhaustively.
Following the latest analyses of FR algorithms, this work utilizes the refined MegaFace
benchmark provided by Deng et al . [33] to minimize noise if not stated otherwise.

[iii]The terms “test dataset” (cf . Section 2.6) and “benchmark dataset” are used as synonyms.
[iv]In this work, only the frontal-profile protocol is utilized as the frontal-frontal protocol does not

yield any additional insights compared to LFW.
[v]In this work, only the AgeDB-30 protocol, i.e., an age gap of 30 for genuine and imposter pairs, is

employed.
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Table 3.2: Popular datasets used to evaluate FR models. † denotes that FaceScrub [163] is
used as a gallery and ⋄ indicates the mixed media protocol.

Dataset # Identities # Images # Videos # Pairs Gallery Probe Description

LFW [86] 4 281 7 701 6 000 Saturated
CPLFW [275] 2 296 5 984 6 000 Head pose
CFP [188] 500 5 901 7 000 Head pose
CALFW [276] 2 996 7 156 6 000 Age
AgeDB [156] ≤ 568 ≤ 12 000 6 000 Age
MegaFace† [106] 690 572 1 027 060 4 · 109 1 000 001 3 530 Distractors
YTF [232] 1 447 3 226 5 000 Frames
IJB-A [111] 500 5 712 2 085 11 748 113 1 764 Image & Frames
IJB-B⋄ [231] 1 845 21 798 7 011 8 010 270 931 & 914 10 270 Images & Frames
IJB-C⋄ [146] 3 531 31 334 11 779 15 658 489 1 772 & 1 759 19 593 Images & Frames

For video FR, the YouTubeFaces (YTF) dataset [232] represents a popular choice as
it contains on average 181.3 frames per video. The IARPA Janus Benchmarks (IJBs)
[111, 146, 231] contain protocols for face sets comprising still face images together with
video frames. Thus, they evaluate information fusion for an arbitrary number of images
within a set. Moreover, in IJB-B and IJB-C, the gallery is split into two disjoint galleries.
This allows the investigation of open-set face identification performance, i.e., the probe
identity is not always part of the gallery, which is particularly relevant for security access
applications.

Besides the datasets mentioned earlier, benchmark datasets focusing on similarly
looking faces [37], adversarial attacks [280], racial bias [218], cross-quality [16†], or
comprising trillion pairs [30] are occasionally employed. However, the analysis of FR
performance on the latter datasets is out of scope for this work.

3.2 Data Preprocessing

Typically, the images Iorg provided by FR datasets X were taken in unconstrained
environments and are rather loosely cropped, i.e., they contain not only information
about the person but also background or even other persons (see Figure 3.2). Hence,
it is necessary to either develop an algorithm capable of identifying multiple persons
within an image or employ face detection prior to the FR. Joint face detection and
recognition is feasible [22], yet its performance is far from optimal. Thus, most FR
algorithms incorporate face detection to mitigate the influence of background noise and
thereby allow the FR network to focus on the recognition task.

After face detection, faces are usually aligned, i.e., spatially normalized, to further
speed up the training and improve performance. This is possible since all human faces
– and even animal faces to some extent – are always composed in the same way with
roughly the same proportions, and every face part (e.g ., eyes, mouth, nose) is located
at a specific position in relation to one another. By enforcing a fixed image resolution,
it is not required to employ specific algorithms capable of handling arbitrary input
resolutions. Besides, sizes and distances within the faces remain relatively constant for
all faces. Therefore, the network does not have to learn multiple filter combinations with
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distinct receptive fields to extract identity features at different scales. This lowers the
redundancy within the network, which ultimately allows the network to focus on more
decisive features.

Cropping the face to the bounding boxes obtained by face detection and resizing
the face to a fixed resolution constitutes a straightforward method to achieve spatial
normalization. In this way, all faces have roughly the same size. However, due to the
resizing, faces are not scaled uniformly, causing unwanted deformations, which ultimately
results in worse performance [9]. To obtain a more accurate spatial normalization to a
canonical position without deforming the face, a similarity transformation (rotation φ,
uniform scaling ζ,[vi] and translation τx and τy) of NLM facial landmarks is incorporated.

Thus, the objective of the face alignment is to map NLM facial landmarks of the

original image
(
xi,src yi,src

)T
onto predefined dataset-wide target landmark positions(

xi,tar yi,tar
)T (

xi,src

yi,src

)
7→
(
xi,tar

yi,tar

)
, i = 1, . . . , NLM. (3.1)

After face alignment, the recognition model knows where information about a specific
face part can be extracted without first localizing this specific face part within the input
image space. Aligning a face involves multiple steps, which are illustrated in Figure 3.3,
and listed as follows:

1. Extract facial landmark positions of the source image.

2. Compute the transformation parameters to map the source onto the target positions.

3. Transform the image using the transformation parameters.

4. Interpolate and crop the aligned image.

Facial landmark detection is the localization of fiducial keypoints within the face.
Even though face alignment is an essential preprocessing step in any state-of-the-art FR
algorithm, the accuracy of facial landmarks plays a less important role compared to the
remaining FR system. The main reason for this is that optimal alignment is impeded
when some face parts do not exist within the image due to occlusions or extreme head
poses. Moreover, due to different face proportions (narrow versus wide faces), the facial
landmarks of the aligned face only lie as close as possible (in a least-squares sense) to the
target landmarks. Hence, imperfect alignment is unavoidable, requiring the FR model to
become robust to slight variances.

The number of detected facial landmarks NLM varies depending on the dataset used for
training the facial landmark detector. While older facial landmark detectors have focused
primarily on 4 or 5 landmarks [265], nowadays, 68 landmarks are mainly investigated
[16, 63, 149], and the HELEN dataset [116] allows the training of models predicting even
192 landmarks. Despite the analysis from Guo et al . [63], in which they demonstrated
that FR performance is superior when aligning faces with 68 3D facial landmarks instead
of utilizing the multi-task CNN (MTCNN) (five 2D landmarks) from Zhang et al . [265],
the MTCNN is still widely used [33, 87, 108, 109] as a facial landmark detector for FR.

[vi]ζ > 0, thus no mirroring.
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Figure 3.3: Face alignment pipeline with NLM = 5 landmarks extracted with the MTCNN
using the face alignment policy (FAP) from ArcFace [33].

Since only rotation φ, uniform scaling ζ, and translations τx and τy are allowed when
transforming the facial landmarks, the mapping from Equation (3.1) can be rewritten

(
xi,tar

yi,tar

)
=

(
ζ cosφ −ζ sinφ τx
ζ sinφ ζ cosφ τy

)
︸ ︷︷ ︸

T

·

xi,src

yi,src
1

 , i = 1, . . . , NLM, (3.2)

where T denotes the transformation matrix.

For NLM > 2, the system of equations induced by Equation (3.2) is overdetermined,
and therefore, except for unrealistic cases of linear dependencies, does not have a solution.
Hence, the objective is to find a solution that minimizes the mean squared error (MSE)
between source and target landmarks

φ∗, ζ∗, τ ∗x , τ
∗
y = argmin

φ,ζ,τx,τy

 1

NLM

NLM∑
i=1

∥∥∥∥∥∥
(
xi,tar

yi,tar

)
− T ·

xi,src

yi,src
1

∥∥∥∥∥∥
2 . (3.3)

In 1991, Umeyama derived the least-squares solution for Equation (3.3) [209]. The
interested reader is referred to Appendix B for the solution for two-dimensional facial
landmarks.

In order to align the face, new coordinates x̃ and ỹ of the original pixel values [Iorg]y,x,:
in the aligned image Ialign must be computed. This is achieved by applying Equation (3.2)
with the solution of Equation (3.3) to every position of the original image Iorg with size
W×H×C

[Ialign]ỹ,x̃,: = [Iorg]y,x,: ∀
(
y x

)
∈ {1, . . . , H} × {1, . . . ,W} (3.4)

with (
x̃
ỹ

)
=

(
ζ∗ cosφ∗ −ζ∗ sinφ∗ τ ∗x
ζ∗ sinφ∗ ζ∗ cosφ∗ τ ∗y

)
·

x
y
1

 . (3.5)
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The new coordinates x̃ and ỹ, computed by Equation (3.5), are real-valued and thus

do not typically lie on the grid
(
ỹ x̃

)
∈ {1, . . . , H̃} × {1, . . . , W̃}, where H̃×W̃ is the

desired spatial resolution after face alignment. To obtain the final pixel values [Ialign]ỹ,x̃,:
with x̃ and ỹ being integer, the pixel values are bilinearly interpolated ∀

(
ỹ x̃

)
∈

{1, . . . , H̃} × {1, . . . , W̃}. If the transformed image does not contain information to fill
all pixels in the target image space, the pixels’ values are set to zero (see also Figure 3.3).
To mitigate the influence of such hard borders within the image onto the activations
within the neural network, these values are sometimes set to grey (127 for input value
range [0, 255]). After the face alignment pipeline, all images Ialign of a dataset have

exactly the same resolution H̃×W̃ , with their facial landmarks lying roughly at the same
position.

In addition to the model used to extract facial landmarks, the facial alignment depends

on the image resolution and the landmarks’ target positions
(
xi,tar yi,tar

)T
. With the

emerging cleaned versions [33, 98, 221] of the MS-Celeb-1M dataset [65], aligning faces to
112×112 px has become the standard. This is mainly due to the authors of the MS-Celeb-
1M dataset [65] revoking database access and the authors of MS1MV2 [33] only providing
access to the dataset after face alignment to 112×112 px. Besides, using faces aligned to
160×160 px or 224×224 px is not uncommon in the domain of face feature aggregation
[240, 245]. In this case, a training dataset with high-resolution images such as VGGFace2
[14] needs to be used. Consequently, the model can leverage identity features of higher
frequency, which are only present in higher resolutions, enabling superior performance at
the cost of higher memory requirements and longer training time.

Concerning the face alignment policy (FAP), i.e., the landmarks’ target positions,
there is no mutual agreement among the research community. Earlier, researchers did
not reveal their FAP, which is most likely since their work’s attention was set on the
FR algorithm and, as a result, the rare code releases did not include the face alignment.
Until the analysis by Xu et al . [242] in 2021, the influence of different FAPs on the FR
performance was hardly investigated. By utilizing their proposed FAP search, they found
that the optimal FAP involves a looser crop and positive vertical shift (i.e., including
less forehead and more chin information) compared to the FAP used in ArcFace [33]. By
changing the FAP, the face verification accuracy of ArcFace on CALFW and CPLFW
improved by 0.42% and 0.97%, respectively, while the effect on LFW and AgeDB is
rather negligible. Similar to the preference of 112×112 px as image resolution, the FAP
by Deng et al . [33] is widely employed since the refined MS1MV2 dataset is only available
as an aligned dataset following their FAP.

While the choice of FAP and facial landmark detection algorithms vary, there is
mutual agreement on the necessity of facial alignment. Face alignment not only allows
faster training but also dispenses with the need for non-uniform scaling to obtain a
fixed resolution or a resolution-independent architecture. Moreover, not aligning faces
results in a substantial drop in FR performance if the model is not specifically designed
to cope with unaligned faces [9, 63]. Multiple approaches have been proposed to allow
end-to-end FR. While the prediction of facial landmarks is required for standalone face
alignment, Zhong et al . [279] and Wu et al . [234] directly predicted the transformation
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parameters (rotation φ, uniform scaling ζ, and translations τx and τy) to align the face
in a separate module within their networks. In contrast to the similarity transformation
of face alignment, face frontalization normalizes the head pose by generating an entirely
new image of the same identity. Thus, unlike previous face alignment methods, Zhou
et al . [282] incorporated multiple local homography transformations to frontalize the
face. Typically, generative adversarial networks (GANs) (see Section 2.7) are frequently
employed for face frontalization. E.g ., Zhao et al . [272] directly normalized the person’s
head pose and Na et al . [157] completed the UV map for accurate face synthesis. Even
though utilizing an end-to-end approach seems beneficial, the additional supervision of
the face alignment (or frontalization) together with a more complex network architecture
make the training unnecessarily cumbersome. Moreover, their additional computational
cost compared to efficient facial landmark algorithms limits their application in the real
world. This is also indicated by the underrepresentation of end-to-end FR approaches
among the published FR papers despite the increased access to more powerful hardware
in recent years.

This work follows most recent FR approaches [33, 87, 108, 109] and employs the
MTCNN [265] as the facial landmark detector. An additional face detector is not required
since the MTCNN handles inputs of arbitrary resolution without previous face detection
due to its image pyramid structure. The MTCNN was able to predict landmarks for all
test sets, which are used throughout this work. However, extreme head poses or low
resolutions in the VGGFace2 training dataset impeded the facial landmark prediction for
2944 images (0.09%), whose influence on the training outcome is negligible. Typically,
faces in all datasets are centered and loosely cropped. Thus, in case facial landmarks of
multiple faces were detected, the face size together with the offset from the center of
the image are considered to find the most prominent face within the image. Besides,
two different FAPs are utilized depending on the training dataset: 1) the FAP proposed
by Deng et al . [33] when training on the MS1MV2 dataset; and 2) a handcrafted FAP
of the same tightness but shifted ≈ 15% towards the bottom (i.e., more similar to the
optimal FAP according to [242]) when training on the VGGFace2 dataset.

3.3 Architectures

The architecture constitutes the component of an FR system, which transforms the input
image I into a deep feature vector f . Despite its central part in the system, recent
advances in FR are majorly attributed to advances concerning the loss function and
training strategy. Nevertheless, FR approaches directly benefit from developments in
classical computer vision tasks, such as image classification.

Early deep learning models for FR incorporated variants of the AlexNet [112], which
comprise 4-5 convolutional and one fully connected layer [198, 204]. In contrast to the
large convolutions (up to 11×11) in [112, 204], Simonyan and Zisserman [191] opted for
smaller 3×3 convolutions in their 16-layer deep VGGNet.[vii] Moreover, VGGNet is the

[vii]In contrast to the layers introduced in Chapter 2, the depth of a network only considers trainable
layers, i.e., dropout, activation function, batch normalization, and pooling are not included.
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Figure 3.4: Residual units [72] for shallow (top) and
deep (bottom) ResNets.

Table 3.3: Utilization of ResNets
of different depths in recent FR ap-
proaches.

Depth Methods

27 [36]
34 [108, 199]
50 [14, 33, 34, 87]
64 [130, 131, 189, 215]
101 [33, 87, 101, 108, 109, 148, 199]

first network that proved the effectiveness of doubling the number of feature maps when
their spatial dimensions are halved. For FR, VGGNet was utilized in combination with
a new dataset [169], supervisory signals [200], or a new loss function [268]. The 22-layer
deep GoogleNet [203] employed inception modules, which comprise parallel 1×1, 3×3,
5×5 convolutions and a 3×3 maximum pooling, to obtain multi-resolution feature maps
and was applied to FR by Schroff et al . [187].

The architectures mentioned above demonstrate that increasing the network depth
results in a substantial performance boost. However, deeper networks are generally more
cumbersome to train as they suffer from vanishing and exploding gradients and thus are
prone to diverge. This limitation was lifted by the residual network (ResNet) [71, 72],
which is still the most popular architecture in FR even five years after its publication (cf .
Table 3.3). The key innovation constitutes the residual unit, as depicted in Figure 3.4,
which allows the training of networks with even 1000 layers [72].

The detailed architecture of ResNets with varying depths is depicted in Table 3.4.[viii]

Similar to GoogleNet [203], the dimension of the input image is reduced by a factor of 4
using a 7×7 convolution followed by maximum pooling – both with stride 2. Then, to
obtain a network of depth L, the residual units (see Figure 3.4) are stacked from 8-times
for L = 18 to 33-times for L = 101, where a group of residual units with the same output
dimension forms a residual block (cf . Table 3.4). For shallower architectures (L ≤ 34),
the residual unit in Figure 3.4 (top) is used. This bottleneck structure, i.e., the number
of feature maps is reduced and restored afterwards, of the residual unit in Figure 3.4
(bottom) enables an economical implementation of deeper networks.

Instead of learning the desired mapping of a unit Y = ΘRes (X) directly, the residual
unit only needs to learn the difference ΘRes (X) −X. This has multiple advantages:
Low-level features extracted from early layers are forwarded to the output via the skip
connections. In this way, the network can decide to skip particular residual units if the
complexity of the input does not require a high amount of nonlinearity. This added
flexibility further unburdens the selection of the network depth L specifically for a given
task, as the network is capable of not incorporating all residual units in its prediction.
Moreover, skip connections allow an unimpeded gradient flow, which stabilizes the

[viii]Note that the depth L of the ResNet is the number of trainable layers, which are used at inference.
Since the last fully connected layer is dropped after training, it is not counted towards L.
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Table 3.4: Architectures of ResNets for varying depths L with an input resolution of 112×112.
Residual units are shown in brackets (cf . Figure 3.4), with the numbers of units stacked.
† denotes that the first 3×3 convolution in the first unit operates with stride S = 2. Note that
the depth L does not include the last layer since it is omitted after training. Adapted from [71].

Depth L

Layer Name Output Size L = 18 L = 34 L = 50 L = 101

conv1 56×56 7×7, 64, S = 2

conv2 x 28×28

3×3 maximum pooling, S = 2[
3×3, 64
3×3, 64

]
×2

[
3×3, 64
3×3, 64

]
×3

 1×1, 64
3×3, 64
1×1, 256

×3

 1×1, 64
3×3, 64
1×1, 256

×3

conv3 x 14×14

[
3×3, 128†

3×3, 128

]
×2

[
3×3, 128†

3×3, 128

]
×4

 1×1, 128
3×3, 128†

1×1, 512

×4

 1×1, 128
3×3, 128†

1×1, 512

×4

conv4 x 7×7

[
3×3, 256†

3×3, 256

]
×2

[
3×3, 256†

3×3, 256

]
×6

 1×1, 256
3×3, 256†

1×1, 1024

×6

 1×1, 256
3×3, 256†

1×1, 1024

×23

conv5 x 4×4

[
3×3, 512†

3×3, 512

]
×2

[
3×3, 512†

3×3, 512

]
×3

 1×1, 512
3×3, 512†

1×1, 2048

×3

 1×1, 512
3×3, 512†

1×1, 2048

×3

1×1

GAP
Dropout

Mf-dimensional fc
Mcls-dimensional fc, softmax

training. Together with batch normalization (see Section 2.6.4), the employment of skip
connections is a crucial component in training deep models.

In contrast to the initial publication [71], the convolutional layers in the residual
units of ResNet-v2 [72] are preactivated, i.e., the activation function is applied before
the convolution, as in Figure 3.4. Besides, ResNet-v2 does not employ the activation
function in the skip connection, which allows unrestricted propagation of information to
deeper layers.

To conclude the stacked residual units, multiple FR approaches [33, 131] dispense with
the global average pooling (GAP) in the original ResNet [71, 72]. Still, the GAP outputs
the average activation in every feature map independent of its location and reduces the
number of parameters and thus remains a viable option. Regardless of the usage of GAP,
dropout is employed to improve the generalization of the subsequent layer. Specifically
for FR, another fully connected layer – the so-called bottleneck layer – with M [L−1] = Mf

neurons is introduced before the final fully connected layer with M [L] = Mcls neurons.
Then every activation of the last layer Θ[L](I) is associated with an identity in X . The
output of the bottleneck layer constitutes the feature space f = Θ[L−1](I), into which the
faces I are embedded. By choosing Mf ≪Mcls, this bottleneck structure ensures that the
relevant information to discern all Mcls identities must be encoded in the Mf-dimensional
vector f . This is crucial to allow subject-independent FR evaluation and improve the
generalization to unknown identities. While rectified linear unit (ReLU) activation is
employed throughout the network, it is crucial not to apply it to f̃ as it would restrict
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the features after the activation function f to the non-negative value space resulting in
inferior performance. Thus, f = f̃ . Due to its unique purpose when combined with the
loss function, the activation function of the last layer Ψ[L](·) is discussed in Section 3.4.

Multiple extensions to the original ResNets have been proposed, which involve grouped
convolutions [238] or so-called squeeze-and-excitation units to recalibrate the feature
maps [82] in every residual unit. In addition, Wang et al . [213] incorporated attention
models into the ResNet and Duta et al . [45] proposed the improved ResNet, which
enhances the information flow and the skip connections for the resolution reduction, and
adds grouped convolutions in the residual layer. Other architectures have shown the
potential of adding more skip connections [84]. However, all extensions to the ResNet
are hardly utilized by FR approaches. Lately, a promising approach was postulated
by Zhong et al . with the vision transformer [281], which is likely to shape future FR
research.

For the sake of comparability, this work follows the majority of related works and
utilizes the ResNet architecture. To balance the increased training time and memory
requirements of a deeper model with the undeniable inferior performance of shallower
models, the ResNet-50 was selected as it offers the best trade-off.

3.4 Loss Functions

FR research is driven mainly by novel loss functions specifically designed to increase
the discriminability of the feature space, i.e., decrease intra-class distance and increase
inter-class distances.

Early FR approaches [14, 169, 198, 204] opted for the softmax cross-entropy (CE)
loss, which is popular in image classification. First, the softmax function is applied to
the network’s last layer ỹ = Θ̃[L](I) with Mcls neurons to obtain the final prediction

[ŷ]i =
[
Ψ[L](ỹ)

]
i
= [softmax(ỹ)]i =

e[ỹ]i

Mcls∑
m=1

e[ỹ]m

. (3.6)

Unlike the activation functions introduced in Section 2.3, the softmax is not applied
to every element of the vector of unnormalized class scores ỹ separately. In this way, the
softmax ensures that the output of the neural network ŷ fulfills both requirements of
a probability distribution: [ŷ]i ∈ [0, 1] ∀ i and

∑Mcls

m=1 [ŷ]m = 1. Thus, the activation of
the ith neuron [ŷ]i represents the probability P (i = y | I) of i being the index of the
ground-truth identity y of the face I. According to maximum likelihood estimation, this
probability is maximized by minimizing the negative log-likelihood, which results in the
CE loss

LCE = −
Mcls∑
m=1

[y]m log
(
[ŷ]m

)
= − log

(
[ŷ]y

)
, (3.7)

with y denoting the one-hot encoded vector of the index of the ground-truth identity
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y.[ix] Since the CE can also be expressed as the entropy of the label distribution y and
the Kullback-Leibler divergence between y and the distribution of the predictions ŷ,
minimizing Equation (3.7) directly leads to the desired minimization of the difference of
ŷ from y.

Despite its simplicity, LCE provides satisfying results for FR, which is why it is still
viable in FR-related tasks when only a face feature extractor is required. However, LCE

is not optimal, which motivated a considerable amount of publications to gradually
improve the discriminability of the features f . Among these publications, two paradigms
can be identified: 1) Using pairwise labels to directly minimize feature distances; and 2)
utilizing class-level labels to minimize feature distances indirectly.

3.4.1 Pairwise Losses

Softmax CE loss was combined with feature-distance-based losses leveraging pairwise
labels to improve the discriminability of the feature vector f directly. Sun et al .
[198, 200] employed the contrastive loss [25], which minimizes the pairwise distances
between two faces of the same identity and maximizes the distances for imposter pairs.
Since contrastive loss only considers pairs, the feature distance is absolute. This causes
issues as intra-class variance differs for every identity. Therefore, Schroff et al . [187]
utilized the triplet loss LTriplet [79, 217], which jointly minimizes the distance between a
feature of an anchor face fA and a positive face fP, i.e., from the same identity, and
maximizes the distance between fA and the feature of a negative face fN, i.e., from a
different identity. Hence, by considering triplets

LTriplet =
[
∥fA − fP∥2 − ∥fA − fN∥2 + α

]
+
, (3.8)

where α denotes a margin between positive and negative pairs and [·]+ = max(0, ·), the
feature distance of a genuine pair is minimized relative to the feature distance to a sample
from a different identity. Like contrastive loss, LTriplet is also used in combination with
softmax CE loss LCE [169, 184], which shows a good trade-off between learning for face
verification (LTriplet) and face identification (LCE). However, the effectiveness of LTriplet

highly depends on the triplet generation as the network does not learn much from easy
samples, i.e., from negative pairs, which are easy to differentiate due to, e.g ., opposite
gender. To alleviate this dependency, Sohn [193] and Deng et al . [36] computed pairwise
distances within the entire batch. Another solution was proposed with the center loss
by Wen et al . [229], which minimizes the distance between the feature and the center
of its identity in the feature space. By continuously updating all centers, all previous
features are leveraged. In this way, the center loss is less susceptible to pair generation.
The center loss was extended by Zhang et al . to jointly maximize the distance between
two class centers [268].

With circle loss, Sun et al . [199] proposed a unified framework encompassing pairwise
and class-level losses. In contrast to previous approaches, they re-weigh the pairwise
distances to focus on those that deviate far from their optima.

[ix]To improve readability and following the notation in literature, losses are defined for a single sample
L = L ({(X, y), θ) and the dependency on θ is omitted if not relevant to avoid ambiguity.
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3.4.2 Class-Level Losses

Another trend was motivated by the analysis of Parde et al . [167], who identified a
correlation between feature quality and its norm ∥f∥2, which was later confirmed by
Meng et al . [148] in their recent FR approach. Thus, by normalizing the features to lie
on a hypersphere with a fixed radius s before passing them onwards to the last fully
connected layer, Ranjan et al . [175] forced the network to shift focus onto the hard,
low-quality samples with smaller feature distances. They prove that the scaling parameter
s to map the normalized features to a hypersphere with a given radius depends on the
number of classes Mcls and is crucial to provide “sufficient space” on the hypersphere.
This concept was further extended by Hasnat et al . [68], who also normalized the variance
by effectively employing a batch normalization layer (with γ = 1 and β = 0). In contrast
to enforcing a fixed radius s of the hypersphere by normalizing and scaling the features
[175], the ring loss [277] uses an additional loss to minimize the feature distance to a
trainable radius.

In 2016, Liu et al . [132] initiated a new direction in FR by analyzing the decision
boundaries of the softmax CE loss. With the help of the definition of a fully con-
nected layer and the softmax function (see Equations (2.2) and (3.6), respectively),[x]

Equation (3.7) can be rewritten as follows:

LCE = − log

(
e[ỹ]y∑Mcls

m=1 e
[ỹ]m

)
= − log

 e[
WTf]

y∑Mcls

m=1 e
[WTf]

m

 . (3.9)

To compute the yth entry of the vector WTf only the yth column of W is relevant,
which results in the scalar product

[W ]:,y · f = ∥[W ]:,y∥∥f∥ cos
(
[α]y

)
(3.10)

with [α]y denoting the angle between the vectors [W ]:,y and f . Since the denominator
in Equation (3.9) is independent of y, a feature f is classified as class y if

∥[W ]:,y∥∥f∥ cos([α]y) > ∥[W ]:,j∥∥f∥ cos([α]j) ∀ j ̸= y. (3.11)

Thus, to obtain a correct classification, the angle [α]y must be close to 0. Hence, [W ]:,y
constitutes a trainable vector representing the yth identity. In this case, the training
is referred to as proxy-based learning since the similarity between samples and a set of
proxies representing each class is optimized.

With their large-margin softmax loss, Liu et al . [132] proposed a more robust decision
boundary than the original LCE. To enforce an angular margin m1 they substitute
cos([α]y) with a generalization of the form Ξ([α]y) = cos(m1 [α]y) to ensure a monotoni-
cally decreasing function in [α]y.

With SphereFace, Liu et al . [131] further investigated this concept by normalizing the
weight matrix ∥W ∥ = 1. Hence, the decision for a class is solely dependent on the angle

[x]For the sake of simplicity, the bias b and the depth L information in W = W [L] are omitted.
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Figure 3.5: Decision boundaries (dashed) for binary classification with different loss functions
and their respective margins (grey). Adapted from [33].

[α]y on the hypersphere (cf . Equation (3.11)), resulting in the angular softmax loss.
By also minimizing the minimum hyperspherical energy of the output layer, the classes
are more evenly distributed on the hypersphere as demonstrated by Liu et al . [130].
This issue of unbalanced distributed features in SphereFace [131] is also addressed by
additionally maximizing the distance between class centers of dissimilar classes [42, 273].

A slightly different approach was proposed by Wang et al . with NormFace [214].
They used the normalization of features to a hypersphere with a fixed radius s from
Ranjan et al . [175] and combined it with weight normalization ∥W ∥ = 1. In this
way, NormFace minimizes the cosine distance directly without any influence from the
feature quality ∥f∥ as in SphereFace [131]. The normalization and feature rescaling
to ∥f∥ = s constitutes the first step towards implementing more sophisticated losses
[33, 34, 87, 108, 109, 148, 212, 215, 223].

To ease the cumbersome training caused by the multiplicative marginm1 in SphereFace
[131], an additive margin was proposed [33, 212, 215]. With CosFace [215] and additive
margin loss [212], both groups independently proposed to leverage the normalization
and scaling of f and W as in [214], and further employ an additive margin Ξ([α]y) =
cos([α]y) − m3. In this way, the cosine distance between two features is minimized
directly [214] yet with an additive margin m3. As opposed to [212, 215], ArcFace applies
the margin in an angular manner Ξ([α]y) = cos([α]y + m2), which is considered a
breakthrough in FR research and is widely addressed in recent FR research [17, 34, 42,
87, 108, 109, 148, 223, 273].

The multiplicative margin m1 in SphereFace [131, 132], the additive margin m3 in
CosFace [212, 215], and the additive angular margin m2 in ArcFace [33] all improve
discriminability in the feature space by enforcing a margin. Despite their similarity, the
margins result in substantially different decision boundaries as depicted in Figure 3.5.
In contrast to the non-linear margins of SphereFace and CosFace, the additive angular
margin from ArcFace is constant ∀ [α]i. Hence, only ArcFace ensures that lookalike
[α]i ≈ [α]j and dissimilar classes [α]i ≫ [α]j are equally separated by a uniform
margin in the angular feature space. Combining all margins into a unified framework
Ξ([α]y) = cos(m1 [α]y + m2) − m3 was analyzed by Deng et al . [33]. However, their
ablation study on suitable margins mi revealed that such losses are upper-bounded by
ArcFace (m1 = m3 = 0).
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After providing a new baseline with ArcFace, special attention was given to the
hard, i.e., difficult, samples. Wang et al . [223] extended the concept of ArcFace [33] by
introducing an extra margin on the misclassified vectors since well-separated features do
not contribute substantially to the learning task. By incorporating curricular learning,
i.e., easy samples at the beginning of the training and hard samples in later stages,
Huang et al . [87] adaptively adjusted the importance of easy and hard samples during
the training (CurricularFace). To obtain a universal face representation for all faces,
including hard samples, Shi et al . [190] applied occlusion, low resolution, and head pose
data augmentation to generate hard training samples, whose features are divided into
multiple sub-features with confidence scores.

A distinct approach to cope with hard or noisy data constitutes extending the
representation of a face, which is typically a point f in the feature space. To improve
robustness to noisy data, Shi et al . [189] modeled the uncertainty of every feature of a
given pretrained model by adding a variance term. This approach of representing the face
as a Gaussian distribution in the feature space was trained end-to-end by Chang et al .
[17]. Deng et al . [32] proposed to use multiple class representatives instead of a single one.
Then, Deng et al . [34] extended their previous approach by incorporating the uncertainty
modeling as in [17, 189], which resulted in variational class-wise prototypes. Revisiting
the findings of Prade et al . [167], Meng et al . proposed with MagFace a magnitude-aware
additive angular margin [148] Ξ([α]y) = cos([α]y +m2(∥f∥)), which allows to adaptively
select a suitable margin based on the feature quality ∥f∥. Class dependent margins to
address dataset imbalances were also proposed by Liu et al . [126], who predicted an
adaptive margin for CosFace and ArcFace utilizing reinforcement learning, and by Liu et
al . [128] by employing a trainable additive margin m3.

Besides the extensions mentioned above, Kim et al . proposed two different approaches
based on ArcFace: GroupFace [108] combined the default instance-based representation
of a face with group-aware representations to leverage specific group-dependent features.
Moreover, they proposed BroadFace [109], which overcomes the restriction of only
considering a limited number out of tens of thousands of identities per batch by buffering
feature vectors of previous batches.

3.5 Experiments

After providing a general overview of every component required for FR in Sections 3.1
to 3.4, the remaining part of this chapter describes training strategies in Section 3.5.1 and
the evaluation metrics in Section 3.5.2 in order to train and compare multiple datasets,
FAPs, architectures, and loss functions. Moreover, these general FR models are used
later in this work to extract identity features for face completion (see Chapter 4) or face
aggregation (see Chapter 6), or to provide a baseline for partial FR (see Chapter 5).
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3.5.1 Training Details

In order to determine how datasets, FAPs, architectures, and loss functions influence
the FR performance, fixed training parameters are required. As elaborated in Sec-
tion 3.1.1, there is no mutual agreement on a single training dataset in the related works.
Nevertheless, MS1MV2 [33] and VGGFace2 [14] offer two viable options focusing on a
considerable number of images and low noise. From all faces, five facial landmarks are
extracted using the MTCNN [265]. Then the faces are aligned following two different
FAPs as described in Section 3.2, yielding aligned faces Ialign with resolutions r×r px
with r ∈ {112, 160, 224}.

To increase the variance of the samples during training, data augmentation is employed.
However, the face alignment renders some conventional augmentations, e.g ., random
cropping, vertical flipping, rotating, and translation, rather unpopular. Still, multiple
data augmentations do not interfere with the facial alignment and thus are widely used
in FR. Most approaches [148, 199, 281] utilize horizontal flipping as it does not change
the face alignment due to the symmetrical target facial landmark positions. Even though
faces are not perfectly symmetric, this simple augmentation is particularly beneficial
for faces with extreme head poses as it allows the network to become more invariant to
such cases. Besides horizontal flipping, slightly changing the brightness, contrast, and
saturation allows the face to remain realistic while still providing different pixel values
to the network. Before applying these operations, the aligned image Ialign ∈ [0, 255] is
transformed to float Ialign ∈ [0, 1].

• To change the brightness, a scalar γb, drawn from a uniform distribution γb ∼
U1(−γb,∆, γb,∆), is added to the image by

Iaug = Ialign + γb. (3.12)

• The contrast is altered independently for every channel by scaling every pixel’s
distance to the channel-wise mean

[
µIalign

]
c
with a scalar γc drawn from a uniform

distribution γc ∼ U1(γc,min, γb,max) as follows:

[Iaug]:,:,c = γc

(
[Ialign]:,:,c −

[
µIalign

]
c

)
+
[
µIalign

]
c
. (3.13)

• As opposed to the previous augmentations, saturation augmentation is applied in
the HSV color space. There, only the saturation channel is multiplied with a scalar
γs drawn from a uniform distribution γs ∼ U1(γs,min, γs,max) by

[Iaug]:,:,2 = γs [Ialign]:,:,2 . (3.14)

To ensure that the augmented image Iaug fulfills the properties of every float image, it is
clipped to [0, 1] by

Iaug ← min (max (Iaug, 0) , 1) . (3.15)

To ease convergence, the image is normalized to a symmetrical value range [−1, 1] with
a mean value close to zero

Iaug ← 2Iaug − 1. (3.16)
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Figure 3.6: Impact of different values of brightness γb, contrast γc, and saturation γs
parameters when augmenting the aligned image Ialign.

While the objective of data augmentation is to increase variety, it is vital to guarantee
the realism of a face and match the distribution of the benchmark datasets. E.g ., one
could train an FR system specifically for low-light conditions by reducing the brightness
of an otherwise normal training dataset. Hence, suitable limits γb,∆, γc,min, γc,max, γs,min,
γs,max must be determined.

Figure 3.6 depicts the augmentations for the limits γb,∆ = 0.1, γc,min = 0.8, γc,max =
1.2, γs,min = 0.7, γs,max = 1.1, which are employed when training convolutional neural
networks (CNNs) throughout this work. All augmented images are still very realistic
and force the network to become robust against minor variations in brightness, contrast,
and saturation, which frequently occur in benchmark datasets. In her analysis, Sun [7+]
demonstrated that these limits provide a natural augmentation, and a reduction or an
increment of these augmentation intensities leads to slightly inferior FR performance.

All previous data augmentations are applied independently in succession with a
probability of paug = 50% each, i.e., multiple augmentations may be applied to an image.
To ensure that a combination of all augmentations does not produce any unwanted
results, the limits are chosen rather conservative. Moreover, the uniform probability
distribution of the augmentation parameters causes the augmentation to be often subtle
and barely noticeable.

Other augmentations like Gaussian blur, motion blur, and JPEG quality can also
be helpful; however, they depend on the purpose of the FR system, e.g ., motion blur is
often employed for video FR. As a more advanced data augmentation technique, cutout
was proposed by Devries et al . [38], in which square areas within the image are masked
to make the model consider less distinctive parts of an object and recognize it from
partial views. Hence, cutout can be interpreted as a special localized form of dropout
applied to the input layer. Mixup augmentation [263] creates a weighted combination
of two images and their labels. Instead of only removing pixels as in cutout, Yun et al .
[258] proposed cutmix, which substitutes the masked pixels with patches from another
image and mixes the labels according to the number of pixels. Despite their benefits,
these advanced augmentation techniques are barely used in FR.
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Along with data augmentation and normalization, additional training parameters,
which were introduced in Sections 2.4 and 2.6, are required to train various FR models.
Since the spatial resolution is substantially reduced at deeper layers of the network, the
memory footprint of a standard FR model is comparatively low. Thus, batch sizes of
Nb = 100 are manageable even on consumer graphical processing units (GPUs), which is
sufficient to obtain a high amount of variety and a steady gradient from the samples within
the batch. To improve generalization, the methods presented in Section 2.6 are widely
used. Specifically, batch normalization (αBN = 0.995 and ϵBN = 0.001), L2-regularization
on all weights with a factor λreg = 5 · 10−5 and dropout with a probability of pd = 40%
before the feature embedding layer (cf . Table 3.4) are employed. The network is then
optimized with ADAM [110] (β1 = 0.9 and β2 = 0.999) for 20 epochs with an initial
learning rate of η = 0.05, which is reduced by a factor of γlr = 4 every 4 epochs.

In various training runs, multiple parameters are varied, resulting in slightly different
training parameters:

• Dataset: VGGFace2 [14] and MS1MV2 [33] with different FAPs (custom and
following Deng et al . [33]) and image resolutions r ∈ {112, 160, 224}.

• Architecture: ResNet-v2 with ReLU activation function and different depths L ∈
{18, 34, 50, 101}. The incorporation of GAP before the feature embedding layer
and the number of hidden neurons Mf in the feature layer f are varied. Following
Hasnat et al . [68], batch normalization is utilized after f .

• Loss: Softmax CE is investigated with and without additive angular margin [33].
For training with additive angular margin, the margin is set to m2 = 0.3 when
training on VGGFace2, as proposed by the authors. For MS1MV2, the default
parameters as in the paper are utilized (s = 64 and m2 = 0.5).

3.5.2 Evaluation Details

Whereas the model is trained with Iaug, only aligned faces Ialign are utilized to ensure
a deterministic evaluation.[xi] Nevertheless, some FR approaches [215, 229] perform
horizontal flipping and concatenate the feature vectors of the flipped and original image
to slightly improve the performance. However, in this work, no data augmentation is
employed at test time.

In general, FR models are evaluated following the protocols published with the
benchmark datasets enumerated in Table 3.2. Thus, every face is aligned with the same
FAP as the training dataset and then processed by the CNN to obtain the respective
features f . Independent of the evaluation protocol (see Figure 3.1), it is necessary to
classify whether two face images, I1 and I2, belong to the same identity. Typically, this
is achieved by computing the cosine distance between their features f 1 and f 2

d (f 1,f 2) = 1− f 1 · f 2

∥f 1∥∥f 2∥
. (3.17)

[xi]For the remaining part of this work, the indices aug and align are omitted if not necessary to avoid
ambiguity.
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The cosine distance d (f 1,f 2) ∈ [0, 2] measures the angular distance in feature space,
which is indirectly optimized by many loss functions introduced in Section 3.4.2. Hence,
d (f 1,f 2) corresponds to the dissimilarity of two faces, I1 and I2. By definition, genuine
pairs will ideally yield a small cosine distance ≈ 0. However, cosine distances ≈ 1
are more prominent in imposter pairs as ≈ 2 would imply that f 1 and f 2 are entirely
contrary. Thus, all identity features must be contrary, i.e., dark eye color versus bright
eye color, etc., making it highly unlikely to encounter a face fulfilling all requirements.
Moreover, a cosine distance ≈ 1 is typically observed when comparing any face with an
image not containing a face, such as an image of a single color. Since an image without
a face should ideally provoke no activation within the network, the network outputs a
feature vector f ≈ 0. Hence, in practice, cosine distances rarely occupy the entire range
[0, 2] as most distances of imposter pairs are centered around 1.

3.5.2.1 Face Verification

For face verification protocols, a list of N triplets is given
[(
I
(n)
1 , I

(n)
2 , y(n)

)]N
n=1

, which
comprise an image pair I1, I2, and a binary ground-truth label y ∈ {0, 1} indicating
the image pair is imposter (0) or genuine (1). To obtain a binary prediction ŷ from the
network, a dataset-wide discrimination threshold t is applied to the continuous distance
d ∈ [0, 2] by

ŷ (f 1,f 2) =

{
0 if d (f 1,f 2) ≥ t,

1 if d (f 1,f 2) < t.
(3.18)

By comparing the prediction ŷ with the ground truth y, the prediction is classified
as true positive (TP ) (y = ŷ = 1), true negative (TN) (y = ŷ = 0), false positive (FP )
(y = 0 and ŷ = 1) and false negative (FN) (y = 1 and ŷ = 0). In this way, the face
verification accuracy (Acc) of a FR system is calculated as

Acc =
TP + TN

TP + TN + FP + FN
, (3.19)

where Acc depends on the choice of the threshold t. However, by choosing t such that
Acc is maximized, information from the benchmark dataset is leveraged resulting in a
bias. Therefore, computing Acc as in Equation (3.19) renders its value meaningless when
determining Acc of an FR system that is exposed to unknown data. To alleviate this
issue, 10-fold cross-validation with deterministic, predefined folds is employed for most
benchmarks (LFW, CALFW, CPLFW, CFP, AgeDB, IJB-A, and YTF).[xii] In this way,
t is computed to maximize Accval when using nine out of ten validation folds. Then, the
test accuracy Acctest is calculated on the left-out fold with t maximizing Accval. After
repeating this process ten times, the final actual accuracy on the dataset is obtained by
averaging all ten test accuracies Acctest.

Even though Acc is a popular metric for face verification performance, it is inappro-
priate when evaluating typical scenarios in biometrics. The issue of Acc lies in its equal

[xii]No predefined data splits into folds for the IJB-B and IJB-C face verification benchmarks are
provided.
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weighting of genuine and imposter pairs. Thus, e.g ., in security-sensitive applications,
FP s need to be minimized at the cost of obtaining fewer TP s. The receiver operating
characteristic (ROC),[xiii] i.e., the true acceptance rate (TAR) as a function of the false
acceptance rate (FAR),[xiv] focuses on providing more insights into this regard. Formally,
TAR and FAR are defined as

TAR =
TP

TP + FN
, (3.20)

FAR =
FP

FP + TN
. (3.21)

Thus, a large discrimination threshold t ensures that FP is small, resulting in
FAR ≈ 0, as desired for security-sensitive applications. On the downside, a large t also
misses the classification of many positives, causing a large FN . To capture this trade-off,
TAR is computed for the threshold t, which results in a predetermined FAR. E.g .,
TAR@FAR = 0.01 denotes TAR calculated for a threshold, which led to FAR = 0.01.

Besides computing TAR for different FAR, the equal error rate (EER) denotes the
error rate when both error rates (FAR and false reject rate (FRR), where FRR =
1− TAR) are equal FAR = FRR. Thus, a lower EER is desirable. When the impacts
of FP s and FNs are considered equally harmful, EER constitutes the most popular
metric to describe a biometric system.

3.5.2.2 Closed-Set Face Identification

In contrast to face verification, face identification tries to determine the identity of a
face. In real-world applications, one has a gallery of, e.g ., mugshot images with their
identity labels and wants to determine the identity of a face by comparing it with every

image in the gallery. This is described by a gallery G =
{(

I
(n)
G , y

(n)
G

)}NG

n=1
and a probe

set P =
{(

I
(n)
P , y

(n)
P

)}NP

n=1
with yG and yP denoting the identity of the gallery image IG

and probe image IP, respectively.
For closed-set face identification, all identities in the probe set P also must be present

in the gallery G. Thus, ∀
(
I
(i)
P , y

(i)
P

)
∈ P ∃

(
I
(j)
G , y

(j)
G

)
∈ G | y(j)G = y

(i)
P . Therefore, closed-

set FR simplifies the identification task by leveraging the prior knowledge that yP is also
part of G. First, the pairwise feature distances dij between the ith probe image I

(i)
P and

all gallery images I
(j)
G ∈ G are calculated according to Equation (3.17). The smallest

distance between the probe and all gallery images of the same identity is calculated by

di∗ = min
j

{
dij | y(j)G = y

(i)
P

}
. (3.22)

Then, the match of the ith probe image I
(i)
P with G is said to have rank R if di∗ is

the Rth smallest feature distance. This is denoted by rank(I
(i)
P ) = R. In other words, R

[xiii]also referred to as detection error trade-off (DET)
[xiv]In biometrics, the true and false positive rates are typically referred to as true and false acceptance

rates.
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is the index of di∗ in a list of distances [di1, di2, . . . , diNG
], which is sorted in ascending

manner.
With the help of the rank of a match, it is possible to investigate more sophisticated

face identification applications, e.g ., in law enforcement when displaying a list of R
suspects for a given probe face. Thus, it is crucial to evaluate how often the correct
suspect appears on this list. This application is grasped by the cumulative match
characteristic (CMC), which displays the true positive identification rate (TPIR) at
rank R and is computed by

TPIR(R) =

∣∣{I(i)
P | rank

(
I
(i)
P

)
≤ R

}∣∣
|P|

. (3.23)

Typically, TPIR(1) is reported and referred to as the rank 1 identification accuracy.
TPIR is highly dependent on the gallery size NG as TPIR(NG) = 1. Hence, it is
vital to either normalize the rank by the gallery size or only compare face identification
benchmarks with similar gallery sizes.

3.5.2.3 Open-Set Face Identification

In contrast to closed-set face identification, it cannot be relied upon that the identity of
a probe face is also part of the gallery in open-set face identification. To analyze this
scenario, the probe set is split into two disjoint subsets P = PG ∪ PN (PG ∩ PN = ∅)
with PG containing images of identities in G and PN images of identities, which do not
form part of G.

Therefore, a discrimination threshold t is employed as in face verification, which labels
the probe face as “not in G” if all pairwise feature distances dij exceed t. This means
that for open-set face identification, Equation (3.23) needs to be adapted as follows:

TPIR(R, t) =

∣∣{I(i)
P ∈ PG | rank

(
I
(i)
P

)
≤ R and di∗ < t

}∣∣
|PG|

(3.24)

With the help of the additional subset PN, it is also possible to evaluate how often
probe images IP ∈ PN are erroneously assigned an identity. This statistic measures the
false positive identification rate (FPIR), which is computed by

FPIR(t) =

∣∣{I(i)
P ∈ PN | minj {dij} < t

}∣∣
|PN|

. (3.25)

Generally, the open-set face identification performance of an FR system can be
described by a surface in a three-dimensional parameter space, spanned by TPIR,
FPIR, and R. However, most information is only relevant in very specific scenarios
such that the analysis is typically reduced to two-dimensional slices to analyze the most
prominent scenarios: 1) the ROC, which displays TPIR in terms of FPIR for R = 1;
and 2) the CMC, which illustrates TPIR as a function of R for FPIR = 1. In this way,
open-set face identification not only allows the analysis of how often the correct identity
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Table 3.5: Ablation study on datasets and preprocessing. Verification accuracy Acc and
TPIR at rank R = 1 in % for a fixed architecture (ResNet-v2 [72] with depth L = 50, size of
the feature layer Mf = 256, GAP after the feature layer and softmax cross-entropy loss without
additive angular margin [33]). ↑ denotes that the results were obtained by upscaling the aligned
faces from the original resolution r = 112 since unaligned faces with higher resolutions were
unavailable. The highlighted models are analyzed in detail in the next section.

Alignment Policy Verification ID
Training

Dataset Training Test

Image

Resolution r LFW CPLFW CFP CALFW AgeDB MegaFace

MS1MV2 ArcFace 112 99.18 80.30 90.77 90.23 92.52 66.14
VGGFace2 ArcFace 112 99.40 85.87 94.97 88.35 90.15 61.24
VGGFace2 Custom 112 99.43 85.70 94.76 87.95 89.63 61.25
VGGFace2 Custom 160 99.42 87.40 96.37 88.97 91.70↑ 66.27↑

VGGFace2 Custom 224 99.65 87.73 96.97 89.87 92.62↑ 71.21↑

VGGFace2 ArcFace Custom 112 97.63 78.05 91.93 78.48 82.17 27.89
VGGFace2 Custom ArcFace 112 97.68 79.88 91.60 80.88 85.90 24.55

is within the top R identity proposals (CMC), but also how often the correct identity is
identified when a fixed number of erroneous identifications of identities, which do not
form part of the gallery, are permitted (ROC).

3.6 Results

3.6.1 Ablation Study

The ablation study is divided into Tables 3.5 and 3.6. While Table 3.5 depicts the impact
of different datasets and preprocessing on the FR performance, Table 3.6 focuses on the
architecture.

In terms of the training dataset, the results do not provide a clear picture. Table 3.5
suggests that VGGFace2 outperforms MS1MV2 on half (LFW, CPLFW, and CFP) of
the evaluated benchmark datasets, whereas the results favor MS1MV2 (see Table 3.6)
after dispensing with GAP and incorporating additive angular margin. However, only
on VGGFace2 the maximum accuracy on the CFP benchmark is obtained. This affirms
the claim of Cao et al . [14] that VGGFace2 contains faces with more significant pose
variations. Another aspect is the high amount of noise present in MS1MV2. Even though
Deng et al . [33] employed annotators familiar with the identities’ ethnicity, detecting
falsely labeled data is particularly difficult in case of extreme head poses. Thus, it would
be no surprise if more mistakes are made under these circumstances or if more faces
are removed due to high uncertainty. Both lead to comparably low performance for
frontal to pose comparisons in the CFP benchmark. Hence, both datasets are viable.
However, when training with additive angular margin, it is important to use MS1MV2
as it benefits from the high number of identities.
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As indicated in Section 3.2, alignment is essential for FR. Nevertheless, there is no
mutual agreement on the alignment policy. Table 3.5 illustrates the FR performance for
models trained on the VGGFace2 dataset with different alignment policies introduced in
Section 3.2. Both policies yield comparable results with a slight advantage of the policy
proposed in ArcFace [33]. This indicates that both FAPs cover all relevant information
necessary to distinguish two faces despite their vertical offset of 15%. Therefore, all
identity information relevant for the FR network must lie at the center of the face and
cropping part of the chin – as when using the ArcFace FAP (cf . Figure 3.3) – does not
mitigate the FR performance. When comparing the results with the analysis by Xu et
al . [242], it seems like the looser crop in their FAP is decisive for obtaining the best FR
performance.

When the FAPs during training and testing are not identical, a substantial decline in
FR performance can be identified. This demonstrates the dependency of the FR models
on a consistent face alignment. In terms of robustness, both FAPs are relatively equal.
While the FAP from ArcFace shows advantages on CFP and MegaFace, the custom FAP
is favored for CPLFW, CALFW, and AgeDB. Hence, the choice of FAP has only a minor
effect on the FR performance as long as training and benchmark datasets are aligned
based on the same FAP.

As expected, image resolution r clearly impacts the performance, improving non-
saturated benchmarks by over 1% compared to the default resolution r = 112. However,
the improvement from r = 160 to r = 224 is relatively small on CPLFW and CFP,
which suggests saturation due to the limited available resolution before alignment. The
inherent higher amount of details in the input face aids the model in making better
decisions and is decisive for very similarly looking faces that differ only by nuances. This
also demonstrates that despite the increased resolution r the receptive field still suffices
to capture global features, which are then encoded in deeper layers. The increased
resolution does not impact the overall number of parameters due to the GAP before the
bottleneck layer providing the features f . However, it leads to higher memory load as
feature maps of higher spatial resolutions need to be stored in memory to compute the
gradients during backpropagation. For even larger image resolutions, one must consider
the network’s receptive field and eventually compensate it by incorporating dilated
convolutions. Moreover, when training without GAP, the quadratic dependency of the
number of parameters of the feature layer on r results in a shift of the network’s focus
from the convolutional layers to the bottleneck layer, which needs to be accounted for.
Overall, the employment of higher resolutions is also limited by the poor availability of
high-resolution training datasets. E.g ., MS1MV2 is only available as an aligned version
cropped to r = 112.

Table 3.6 provides FR results for different architectures. As expected, training a
ResNet with more layers L consistently boosts the performance as the network can
extract more sophisticated features. Furthermore, the skip connections in the ResNet
allow more combinations of feature maps at different depths for higher L. Doubling
the layers also roughly doubles the number of parameters.[xv] Moreover, the memory

[xv]Note that for ResNets up to L = 34 a residual unit comprising two 3×3 convolutions is used
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Table 3.6: Ablation study on the architecture. Verification accuracy Acc and TPIR at rank
R = 1 in %, and the number of parameters at inference for ResNet-v2 [72] at different depths L,
varying size of the feature layer Mf, GAP after the feature layer, and additive angular margin
[33]. All models are trained with a resolution r = 112 and the FAP as proposed in ArcFace
[33]. The highlighted model is analyzed in detail in the next section.

Training Verification ID #

Dataset L GAP Mf ArcFace LFW CPLFW CFP CALFW AgeDB MegaFace Params

MS1MV2 18 ✓ 512 ✓ 99.38 82.17 91.06 92.38 93.75 74.13 11.4
MS1MV2 34 ✓ 512 ✓ 99.52 83.82 92.19 93.08 94.72 79.41 21.6
MS1MV2 50 ✓ 512 ✓ 99.53 86.50 92.93 94.22 96.13 87.85 24.6
MS1MV2 101 ✓ 512 ✓ 99.55 86.92 92.97 94.27 96.55 90.02 43.6
MS1MV2 50 ✗ 512 ✓ 99.60 87.62 92.99 94.87 97.03 93.52 40.3
MS1MV2 50 ✗ 256 ✓ 99.67 87.92 93.17 94.83 97.05 93.28 31.9
MS1MV2 50 ✗ 256 ✗ 99.38 83.57 92.04 92.07 93.83 75.84 31.9
MS1MV2 50 ✓ 256 ✗ 99.18 80.30 90.74 90.23 92.52 66.14 24.6

VGGFace2 50 ✗ 256 ✓ 99.43 86.43 94.84 89.67 91.68 72.35 31.9
VGGFace2 50 ✗ 256 ✗ 99.43 86.47 94.71 89.75 91.33 73.04 31.9
VGGFace2 50 ✓ 256 ✗ 99.40 85.87 94.99 88.35 90.15 61.24 24.0

requirement is substantially higher and training time is longer, resulting in a cumbersome
training on consumer GPUs. Hence, utilizing L = 50 offers a good trade-off between
performance, memory efficiency, and training time.

Using GAP between the last convolutional and the bottleneck layer f averages the
activations across the spatial dimensions for all 2048 feature maps. Thus, the network
becomes more robust against the activations’ spatial shifts frequently occurring under
varying head poses. However, without GAP, the fully connected layer leverages spatial
variations in activations for given feature maps at the cost of an increased parameter
count. For an input resolution r = 112 and Mf = 512 neurons in the bottleneck layer,
dispensing with GAP adds 2048 · 512 · (42 − 1) = 15.7M parameters. When training
with faces cropped to r = 224, the fully connected layer comprises 51.4M parameters,
more than doubling the number of parameters in all previous convolutional layers and
heavily shifting the network’s focus towards a single fully connected layer. The FR
performance depicted in Table 3.6 illustrates that for CFP, which focuses on extreme
head pose differences within the pairs, no significant difference between models trained
with and without GAP can be identified. Thus, the GAP can cope with spatial shifts in
feature maps of faces with large pose variations similar to a larger bottleneck layer while
at the same time maintaining a low parameter count. On all remaining benchmarks,
it is evident that many additional parameters in the bottleneck layer improve the FR
performance substantially, which proves that the model is not prone to overfitting despite
the huge number of parameters in the bottleneck layer.

The number of neurons Mf in the bottleneck layer only has a negligible influence on
the FR performance. Nevertheless, it is decisive that Mf fits the training dataset and
that Mf ≪ Mcls is fulfilled to ensure good generalization (see also Section 3.3). The

(cf . Figure 3.4), whereas a more parameter-efficient structure (1×1, 3×3, 1×1) is employed for deeper
ResNets.
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analysis in Table 3.6 further shows that a 256-dimensional feature vector f suffices to
encode enough identity information. In contrast, incrementing the dimensionality of f
to 512, accompanied by a doubling of the number of parameters of f , does not lead
to better performance. Overall, both choices (Mf ∈ {256, 512}) are viable when using
MS1MV2 as a training dataset. Since VGGFace2 only comprises ≈ 10% of the identities
(cf . Table 3.1), Mf = 256 constitutes the better choice to ensure good generalization.

In accordance with the findings in the original publication [33], incorporating additive
angular margin (ArcFace) leads to superior FR results when training on MS1MV2.
Especially for networks without GAP, the additive angular margin can better leverage
the additional parameters in the bottleneck layer to increase the discriminability of the
feature vector f . Nevertheless, a performance boost after training with additive angular
margin can also be observed with GAP. On VGGFace2, there are no apparent benefits
from adding ArcFace. This is probably due to the lower number of identities in the
dataset and the necessary reduction of the margin m2 = 0.3 (compared to m2 = 0.5 on
MS1MV2) to ensure convergence. Since the margin is enforced during training between
the ground-truth identity and all remaining identities, it is conclusive that a lower margin
together with a reduced number of identities leads to less impact on the performance.
Thus, despite the substantial improvement by training with additive angular margins on
MS1MV2, it is decisive to carefully choose the parameters according to the dataset in
order to obtain a noticeable improvement.

3.6.2 Detailed Analysis

To obtain more insights on the FR performance, additional metrics as introduced in
Section 3.5.2 are reported for selected methods, which form the feature extractor in
Chapters 4 and 6 or a baseline in Chapter 5.[xvi] In particular, three ResNets with L = 50
layers, which are highlighted in Tables 3.5 and 3.6, are considered: While MS-112-Arc is
trained with additive angular margin loss [33] on MS1MV2 with a resolution of r = 112,
both other models do not incorporate the additive angular margin loss and utilize the
VGGFace2 dataset with faces cropped to r = 112 (VGG-112 ) and r = 160 (VGG-160 ).

3.6.2.1 Face Verification

Figure 3.7 and Table 3.7 depict the ROC and important metrics describing the ROC,
respectively. Both illustrations affirm the assumptions made in the previous ablation
study. Utilizing additive angular margin in combination with the MS1MV2 dataset
(MS-112-Arc) offers the best performance even against VGG-160, which is trained with
a higher input resolution. When focusing solely on benchmarks with high head pose
variances (CPLFW and CFP), VGG-112 and VGG-160 are more robust. Besides, higher
input resolution always yields better performance.

[xvi]While the models utilized later in this work are trained with the same parameters according to
Table 3.5 and Table 3.6, they use slightly different learning rates or batch sizes to maintain consistency
in the respective task, which explains the minor deviations.
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Figure 3.7: ROC for selected methods
(line style) on various benchmarks (line
color).

Table 3.7: Detailed evaluation of selected meth-
ods on multiple face verification benchmarks. ↑ de-
notes that aligned faces with r = 112 were up-
scaled. All results are given in % and .

TAR@FAR =

Dataset Method EER 10−3 10−2 10−1

LFW MS-112-Arc 0.46 99.30 99.63 99.83
LFW VGG-112 0.60 93.33 99.43 99.87
LFW VGG-160 0.60 98.00 99.47 99.90

CPLFW MS-112-Arc 14.96 48.57 66.67 82.73
CPLFW VGG-112 14.75 31.73 51.03 81.83
CPLFW VGG-160 12.97 31.80 59.00 84.70

CFP MS-112-Arc 7.86 76.26 85.86 93.11
CFP VGG-112 5.19 72.51 87.26 96.91
CFP VGG-160 3.71 74.37 91.17 98.14

CALFW MS-112-Arc 7.36 80.47 88.87 93.10
CALFW VGG-112 12.21 39.73 64.53 86.17
CALFW VGG-160 11.43 42.63 69.73 87.47

AgeDB MS-112-Arc 3.78 80.87 93.30 97.47
AgeDB VGG-112 10.15 39.53 68.40 89.73
AgeDB↑ VGG-160 8.05 50.60 70.27 93.70

From Figure 3.7 can be deduced that MS-112-Arc performs exceptionally well at very
low FAR = 10−3 despite its susceptibility to extreme head poses. Moreover, it reveals
the limitations of the LFW benchmark as a difference between the methods is noticeable
only for FAR ≈ 10−3. Generally, TARs for FAR ≈ 10−3 are afflicted with substantial
uncertainty since they correspond to TAR when falsely predicting solely three imposter
pairs as genuine. Hence, for a more detailed analysis at lower FAR, benchmark datasets
comprising more pairs need to be employed.

The IJB-B and IJB-C benchmarks comprise 8.0M and 15.7M pairs. While the
number of genuine pairs is relatively low (10k and 19k, respectively), the huge number
of imposter pairs allows a detailed analysis of more practical use cases, i.e., FAR as
low as 10−6. In contrast to previous face verification benchmarks, which considered a
pair of two face images, both IJB benchmarks use pairs of so-called templates – a set
containing an arbitrary number of still images and frames. Thus, to obtain a single
feature vector representing a template, the features within the template are extracted
separately from every face, L2-normalized, and then averaged. In addition to the IJB-B/C
benchmarks, the MegaFace verification benchmark allows computing meaningful TARs
even for FAR ≈ 10−8 by encompassing ≈ 4 · 109 pairs.

Figure 3.8 and Table 3.8 depict the ROC and important metrics describing the ROC
for the verification benchmarks mentioned above, which comprise millions of pairs. Both
confirm the analysis obtained from Figure 3.7 and Table 3.7 in which MS-112-Arc obtains
the best results for low FAR. Generally, an inferior performance on IJB-B/C compared
to MegaFace is observed. This result can be considered unexpected as the templates in
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Figure 3.8: ROC for selected methods
(line style) on IJB-B/C mixed media and
the MegaFace (line color) face verification
protocols.

Table 3.8: Detailed evaluation of selected meth-
ods on IJB-B/C mixed media and the MegaFace
face verification benchmarks. ↑ denotes that
aligned faces with r = 112 were upscaled. All
results are given in %.

TAR@FAR =

Dataset Method EER 10−6 10−5 10−4

IJB-B MS-112-Arc 3.62 38.84 68.24 82.52
IJB-B VGG-112 3.66 30.51 52.43 71.76
IJB-B VGG-160 3.52 30.58 56.63 74.87

IJB-C MS-112-Arc 3.32 51.26 65.49 80.59
IJB-C VGG-112 3.33 42.74 57.70 73.65
IJB-C VGG-160 3.13 43.42 62.10 76.46

MegaFace MS-112-Arc 0.84 76.32 85.01 92.14
MegaFace VGG-112 1.20 66.66 77.93 87.55
MegaFace↑ VGG-160 0.99 73.09 82.28 90.33

IJB-B/C contain more information than a single image of a face. However, it is quite
certain that frames almost always contain less information due to the inherent motion
blur or poor quality compared to single images. By naively taking the average of all
L2-normalized features within a template, all features are considered equally valuable in
terms of information quality. Thus, poor features extracted from video frames mitigate
the performance. Additionally, noise also influences the performance. Regarding the
MegaFace benchmark, the refined protocol guarantees that it can be considered relatively
clean and thus less noisy than both IJB benchmarks. Hörmann et al . proposed two
methods to cope with noisy identity labels in templates [7†] and low-quality video frames
[6†]. The latter is presented in Chapter 6 together with an overview of other sophisticated
methods to better leverage the additional information present in templates.

While the superiority of MS-112-Arc is evident for most FARs, EER indicates no
clear preference when minimizing FNs and FP s is deemed equally important. Moreover,
correctly verifying 76.32% of all genuine pairs while falsely predicting only a single
imposter pair out of 106 as genuine demonstrates that FR systems can be employed even
in security-sensitive scenarios.

3.6.2.2 Face Identification

Due to their disjoint galleries, IJB-B and IJB-C allow the simultaneous analysis of
closed-set and open-set face identification. In both benchmarks, every identity in both
galleries is represented by a single template containing solely still images. Like during face
verification, the probe sets contain templates comprising still images and video frames.
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Figure 3.9: CMC and ROC at rank R = 1 for selected methods (line style) on IJB-B/C
mixed media and MegaFace identification protocols (line color).

Hence, the feature representative for every template is obtained by averaging the L2-
normalized features of every face within the template. The MegaFace benchmark evaluates
only closed-set face identification. However, the protocol allows the analysis for varying
gallery sizes |G| = Nd + 1 by adding Nd distractors to the single image representing the
identity that is altered throughout the analysis. Then, the face identification performance
is evaluated by comparing all remaining probe images of the same identity with the
gallery G.

Figure 3.9 and Table 3.9 illustrate the face identification performance on the three
datasets. Both CMCs indicate an explicit dependency of TPIR on the rank R. While
MS-112-Arc outperforms both methods on MegaFace with Nd = 106 distractors, it only
achieves a better TPIR for lower ranks R on IJB-B/C. The MegaFace benchmark reveals
the apparent dependency of the CMC on the gallery size, as introduced in Section 3.5.2.2.
Particularly when considering TPIR for R = 1, a considerable difference for distinct Nd

can be identified. At the same time, for relatively small galleries of ≈ 1k to 2k identities
(IJB-B/C and MegaFace with Nd = 103), TPIRs between the models do not differ a
lot – particularly for higher R. For larger galleries Nd = 106, the superior performance
of MS-112-Arc is more apparent even for higher R. Thus, it is crucial to consider the
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Table 3.9: Detailed evaluation of selected methods on IJB-B/C mixed media and MegaFace
identification benchmarks. ↑ denotes that aligned faces with r = 112 were upscaled. For
MegaFace, TPIR@R was computed for Nd = 106 and TPIR@Nd for R = 1. All results are
given in %.

TPIR@R = TPIR@FPIR = TPIR@Nd =

Dataset Method 1 10 100 10−3 10−2 10−1 10 103 106

IJB-B MS-112-Arc 88.03 94.03 97.72 35.98 72.88 85.35
IJB-B VGG-112 86.30 93.99 98.31 33.42 62.87 78.53
IJB-B VGG-160 87.49 94.47 98.48 26.93 66.21 80.56

IJB-C MS-112-Arc 87.06 93.09 97.19 47.98 64.70 82.37
IJB-C VGG-112 85.17 93.44 97.85 43.46 60.27 74.95
IJB-C VGG-160 86.81 94.09 98.06 44.20 60.66 77.16

MegaFace MS-112-Arc 70.90 82.31 90.48 99.51 94.33 70.90
MegaFace VGG-112 61.25 76.31 86.76 99.59 92.29 61.25
MegaFace↑ VGG-160 66.27 79.45 88.96 99.55 93.71 66.27

gallery size |G| when estimating the closed-set face identification performance of an FR
system.

In terms of open-set FR, the ROC reveals a clear advantage of MS-112-Arc of mostly
5-10% over both other methods. For all methods, a substantial drop in TPIR at R = 1
for FPIR < 1% is noted. When applying this trend to a larger gallery, most FR
models could be deemed unusable for open-set face identification tasks. Hence, despite
exceptional performance in face verification, open-set face identification offers much room
for improvements and is considered one of the hardest challenges in biometrics.

3.6.3 Comparison with the State of the Art

Table 3.10 provides an overview of the FR performance of the most recent methods (cf .
Section 3.4) on various datasets. It is evident that the algorithms’ capabilities have
surpassed humans on LFW by a substantial margin for many years.[xvii] Besides the better
efficiency in processing images, the clear advantage of algorithms is proven with these
results. Furthermore, the results demonstrate that relying solely on humans to label FR
datasets is far from optimal, which justifies the employment of either ethnicity-specific
annotators familiar with the identities [33] or super-recognizers [171] to minimize label
noise.

Table 3.10 clearly illustrates the limitations of LFW as saturation was reached in
2019. Moreover, the authors published a list of seven incorrectly labeled pairs [85], which
account for most errors in recent methods. Thus, despite the popularity of the LFW
benchmark, one must consider additional benchmarks to reveal the differences in FR
performance of multiple models.

[xvii]For a fair comparison, the human performance of tightly cropped images was chosen as it is similar
to the input of deep learning algorithms. Kumar et al . [113] showed that humans achieve 99.20%
accuracy on LFW if the background is also considered.
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Table 3.10: Performance comparison of various state-of-the-art approaches and the methods
used throughout this work. For the verification datasets, accuracy Acc is reported. The IJB
mixed-media face verification protocols were employed and TAR@FAR = 10−4 is reported.
On the MegaFace, ID denotes the TPIR for rank R = 1 with Nd = 106 distractors and Ver
refers to face verification performance described by TAR@FAR = 10−6. ↑ denotes that aligned
faces with r = 112 were upscaled. All results are given in %.

Verification IJB MegaFace

Method Year LFW CPLFW CFP CALFW AgeDB IJB-B IJB-C ID Ver

Human Performance [113] 2009 97.53
CenterLoss [229] 2016 99.28 77.48 85.48 90.72 65.23 76.51
SphereFace [131] 2017 99.42 81.40 90.30 72.73 85.56
VGGFace2 [14] 2018 99.43 84 90.57 80 84
CosFace [215] 2018 99.73 82.72 96.65
ArcFace [33] 2019 99.83 92.08 98.27 95.45 98.15 94.20 95.60 98.35 98.48
CircleLoss [199] 2020 99.73 96.02 93.95 98.50 98.73
GroupFace [108] 2020 99.85 93.17 98.63 96.20 98.28 94.93 96.26 98.74 98.79
CurricularFace [87] 2020 99.80 93.13 98.37 96.20 98.32 94.80 96.10 98.71 98.64
BroadFace [109] 2020 99.85 93.17 98.63 96.20 98.38 94.97 96.38 98.70 98.95
MagFace [148] 2021 99.83 92.87 98.46 96.15 98.17 94.51 95.97
Face Transformer [281] 2021 99.80 93.08 96.77 96.18 98.05 96.31
ArcFace-VPL [34] 2021 99.83 93.45 99.11 96.12 98.60 95.56 96.76 98.80 98.97

MS-112-Arc 99.53 86.50 92.93 94.22 96.13 82.52 80.59 87.85 76.32
VGG-112 99.43 85.70 94.76 87.95 89.63 71.76 73.65 61.25 66.66
VGG-160 99.42 87.40 96.37 88.97 91.70↑ 74.87 76.46 66.27↑ 73.09↑

On datasets besides LFW, the differences between methods and the substantial
improvements in the last years become apparent. Multiple methods demonstrate different
directions of improving the baseline provided by ArcFace [33]. Most notably, buffering
previous feature vectors to allow the model to consider identities outside the batch
as in BroadFace [109] and using variational class-wise prototypes instead of a single
prototype vector as in ArcFace-VPL [34] shows the best performance boost compared to
ArcFace. Overall, ArcFace-VPL provides the best results and demonstrates that it can
be confidentially employed in adverse scenarios with large head pose variations (CPLFW
and CFP), age gaps (CALFW and AgeDB) or even security-sensitive applications since
the reported TAR ≈ 99% for FAR = 10−6 on MegaFace indicates that it would still
yield a satisfying TAR even for a lower FAR.

The analysis further reveals that the selected methods (VGG-112, VGG-160 and
MS-112-Arc) used in Chapters 4 to 6 cannot match the performance of current methods.
This can be partially attributed to the employment of deeper ResNets (see Table 3.3)
and the usage of more powerful albeit costly GPUs [33, 34, 87, 108, 109], allowing the
training without GAP in a reasonable time. Nevertheless, these selected methods form a
valid baseline for Chapter 5 and suffice as a feature extractor for Chapters 4 and 6.
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4

A Coarse-to-Fine Dual Attention
Network for Blind Face Completion

This chapter introduces a novel approach for blind face completion. Face completion
constitutes a subdomain of image inpainting, in which occluded pixels are reconstructed.
Formally, this can be written as Io 7→ Î with Io denoting the occluded image and Î
the reconstructed image, which is optimized to resemble the non-occluded ground-truth
image Igt.

[i] While the focus in classical image inpainting lies exclusively on achieving a
realistic prediction of the occluded pixels, face completion must also ensure that identity
features are semantically coherent within the reconstructed face Î. If there is a mismatch
between identity features extracted from the occluded and non-occluded areas, the feature
extractor does not know which areas to rely on, resulting in an ambiguous feature vector
f . This can even lead to worse performance than if identity features are extracted from
the occluded image Io. Moreover, special attention must be given to guarantee realism
in terms of faces, such as consistent eye colors and makeup, as even recent methods
struggle to deliver satisfying results [260, 284]. Hence, face completion has the extra
complexity of considering identity features and matching face-specific realism criteria
compared to image inpainting.

A selection of occluded faces from various face recognition (FR) datasets are depicted
in Figure 4.1. Some occlusions, e.g ., sunglasses, medical face masks, microphones, body

Figure 4.1: Examples of occluded faces ranging from natural to synthetic occlusions.

[i]The ground-truth image corresponds to the aligned and augmented image Iaug.
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parts, etc., occur naturally, whereas others, such as copyright protection, subtitles, album
or magazine covers, etc., are introduced after the photo was taken. Besides, a part of a
face can be cut off if encountered at the image’s borders. In the case of natural occlusion,
no pairwise data (Io and Igt), i.e., the exact face with and without occlusion, is available.
Therefore, standard approaches based on the availability of pairwise data cannot be
employed.

One approach to compensate the lack of natural pairwise data constitutes synthetically
generating them. Multiple datasets [228, 257] have been published, which motivated
more comprehensive works [138, 250] on medical face mask removal. E.g ., Yuan et
al . [257] synthesized the faces by adding medical face masks, sunglasses, scarves, etc.,
according to the facial landmarks. Even though Yin and Di [250] only considered medical
face masks, they showed that their approach can handle a wide range of medical face
masks. Thus, the crucial aspect when coping with natural occlusions is recreating them
synthetically to be as realistic as possible, which is very challenging.

Synthetic occlusions, as depicted in Figure 4.1, are reproduced relatively effortlessly
via data augmentation (see Section 3.5.1). Furthermore, an exact implementation of
specific occlusion patterns is not required since the network can generalize well as long
as it is provided with occlusions varying in shape, color, size, and position. Formally, the
synthetically occluded image Io with a spatial resolution r×r can be written as

Io = (1r,r −M gt)⊙ Igt +M gt ⊙ c, (4.1)

where ⊙ denotes the Hadamard product, and M gt and c are the ground-truth mask
and the mask’s color vector, respectively. The mask M gt is a binary r×r matrix with
a value of 1 describes an occluded area. In case of synthetically occluded images Io as
created with Equation (4.1), Io is also referred to as masked image.

While the availability of pairwise data eases training, automatic processing of syn-
thetically occluded faces is only possible if M gt is not an input of the network but rather
predicted by it. This case is referred to as blind face completion. By definition, blind face
completion approaches also include the case where the mask M gt is provided. Hence, it
can also cope with natural occlusions given a manually annotated mask encompassing the
unwanted regions. On the other hand, non-blind face completion approaches require the
meticulous annotation of a mask if M gt is unavailable. This is not only time-consuming
but also prone to cause errors. Both cases, too small or too large masks, yield undesired
results due to either untouched occluded areas or alterations of non-occluded areas. Thus,
blind face completion constitutes a clear advantage as it dispenses with the need for
tedious mask annotations, given that the network can reliably detect the mask M gt.
Nevertheless, special attention must be given to avoid errors in the mask detection as
the thereby introduced unwanted artifacts may distort the reconstructed image Î.
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Figure 4.2: Position of the occlusions defined by regions and their respective centers (left)
and the influence of shape, position and size on the occlusion (right).

From the FR systems’ point of view, prior face completion is not essential as long
as the FR system is robust against occlusions. As analyzed by multiple researchers
[60, 145, 281, 13†], FR systems are vulnerable to occlusions – mainly if both eyes are
affected [60]. To alleviate the effect of occlusions on the FR performance, Mathai et
al . [145] and Hörmann et al . [13†] demonstrated that prior face completion boosts FR
performance substantially. Considering this result, the main objectives of the blind face
competition approach are: 1) a realistic reconstruction; and 2) mitigating the drop in
FR performance. Since both objectives are not always aligned, this chapter aims at a
balanced approach for blind face completion for synthetic occlusions with the option to
shift the focus to either objective. Besides, the blind FR approach should be able to
handle occlusions varying in form, position, size and color.

The approach, experiments, and results presented in this work are, in part, pre-
published in [13†] and are referenced throughout the chapter. After describing how
to generate synthetic occlusions in Section 4.1, Section 4.2 analyzes the impact of
occlusion on the FR performance and thereby motivates the consideration of occluded
faces. In Section 4.3, the related work on image inpainting with emphasis on face
completion is presented. The architecture and the proposed loss functions are described
in Sections 4.4 and 4.5, respectively, followed by the training strategy and evaluation
metrics in Section 4.6. Section 4.7 reports the quantitative and qualitative results of the
blind face completion approach.

4.1 Generating Synthetic Occlusions

The approach presented in this chapter aims to remove synthetic occlusions similar
to the occlusions in Figure 4.1. Therefore, it is necessary to encompass occlusions,
varying in shape, size, position, and color, to ensure the generalization to unknown
occlusions. Generating suitable occlusions is crucial for satisfying results despite its
apparent simplicity compared to the complex neural network design and training.
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Table 4.1: Parameters used to define occlusions.

Shape

Parameter Rectangle Text

Form aspect ratio ∼ U1(0.5, 2) 2048 words
Size area ratio κa height ratio κh

Position eyes, nose, mouth, and outside with the occlusions’ center co ∼ N (µi,σ
2
i )

Color uniform color c

There are multiple options to generate masks. Previous works in image inpainting
removed random rectangular regions [89, 160, 202, 254, 284]. More complex free-form
masks were created by Liu et al . [127] based on point trajectories in video frames
and published as a mask dataset, which is widely used in image inpainting works
[89, 160, 256, 260, 261, 286]. Various works [20, 170, 249] manipulated real object shape
templates obtained from object segmentation masks. Besides, Yu et al . [255] created
free-form masks by simulating random drawing accompanied by repeatedly changing the
angle and Suvorov et al . [202] used polygonal chains, which were dilated with random
width.

This work employs a more straightforward approach following [13†], in which two
geometric shapes are considered: 1) rectangular occlusions representing uniform occlusions
concentrated in a small area; and 2) occlusions generated from words, which cover the
entire face and contain holes. Thus, text occlusions resemble the free-form masks in
related works [20, 89, 160, 170, 202, 249, 255, 256, 260, 261, 286]. Utilizing two different
shapes not only aids the network in generalizing but also enables a more differentiated
and meaningful evaluation.

For rectangular occlusions, their form is determined randomly by selecting an aspect
ratio ∼ U1(0.5, 2). To generate text occlusion, words are chosen from a list of 2048
mnemonic English words [192], with a mean length of 5.4 letters (minimum 3 and
maximum 8). In this way, the forms of the occlusions cover a wide range of variations.

To create a synthetic occlusion of a specific size, which is defined by its mask M gt,
an area ratio κa is introduced as

κa =
1

r2

∑
∀x,y

[
M gt

]
x,y

. (4.2)

While κa is suitable to define the size of a rectangular occlusion, it is rather difficult
to generate a text occlusion for a given κa since κa depends on the number of letters and
the letters themselves. Hence, the height ratio κh = Htxt/r is utilized for text occlusions,
where Htxt is the height of the text, since κh is independent of the word length.

To investigate the influence of occlusions covering different face parts, the center

of the occlusion co =
(
xo yo

)T
is placed within one of the following four regions: 1)

eyes; 2) mouth; 3) nose; and 4) outside, where two regions, eyes and outside, are further
divided to encompass all cases. All regions with their respective centers µi are depicted
in Figure 4.2 (left). Then, the center of every occlusion co is sampled from a Gaussian
normal distribution co ∼ N2(µi,σ

2
i ) with a region-specific center coordinate µi and
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Figure 4.3: Face verification accuracy Acc of the VGG-112 model on the LFW dataset
dependent on the occlusions’ size. Different shapes and positions are considered.

standard deviation σi to recreate the form of the region. By truncating co, the center
point always remains within its respective region. Besides, since all images Igt are aligned
(see Section 3.2), eyes, mouth, and nose lie roughly at the same position for all images,
which justifies the definition of dataset-wide regions.

Lastly, the occlusions’ colors are chosen randomly within the color space and encoded
in the color vector c (see Equation (4.1)). All masks are colored uniformly, i.e., no color
gradient or color variations within the masks are permitted. While this restricts the
generalization, allowing non-uniform masks complicates the distinction of valid occlusions
from the background.

Table 4.1 summarizes all parameters describing an occlusion. During training, every
parameter is selected randomly within certain constraints. In this way, the network is
exposed to a large variation of occlusions, which improves generalization. For evaluation,
the randomness is constrained yet ensured to be deterministic by using a seed. Thus,
if the size or region is changed for rectangular occlusions, all other parameters are
untouched, guaranteeing a meaningful analysis. Figure 4.2 (right) depicts an excerpt of
the vast variations possible utilizing this augmentation scheme.

4.2 Preliminary Analysis: The Impact of Occlusions

on Face Recognition

Intuitively, restricting the information within a face mitigates the performance of FR
systems, which was also shown by [60, 145, 281, 13†]. Thus, even subtle occlusions, as
in Figure 4.1, are expected to introduce classification errors and require an in-depth
analysis. Figure 4.3 illustrates the vulnerability of FR systems to occlusions on the
example of the FR model VGG-112, which is a ResNet-v2 of depth L = 50 trained
on the VGGFace2 dataset with the softmax cross-entropy (CE) loss as introduced in

67



4. A Coarse-to-Fine Dual Attention Network for Blind Face Completion

Section 3.6.2. The analysis is performed on the Labeled Faces in the Wild (LFW) face
verification dataset. Both images of every face verification pair are occluded similarly
following Section 4.1, i.e., shape, size, and region are identical for both faces, whereas
form and color are distinct. Note that an identical region means that the position within
the region still varies between both images, which may lead to an occluded left eye for
one image and an occluded right eye for the other image of a pair.

For rectangular occlusions covering 30% of the image area, a drop in face verification
accuracy (Acc) of 8− 12% is observed. The most significant drop occurs when occluding
the nose region of a face. This is expected as the nose constitutes the most central region,
which often involves the occlusion of the critical eye and mouth regions if the occlusion
is sufficiently large. Moreover, occluding areas outside the face only slightly affects the
Acc.

The Acc of faces tampered with text occlusion also clearly depends on the occlusions’
size. However, the effect is less explicit than for rectangular occlusions, which is mainly
due to the letters’ arbitrary form. The eyes region is particularly susceptible to text
occlusion as text occlusions are wider than tall, resulting in a large probability of both eyes
being occluded. On the other hand, rectangular occlusions indicate that the occlusion of
only one eye is compensated well by extracting the information from the other eye. This
finding is in accordance with the analysis by Grm et al . [60].

Computing the area ratio κa for text occlusions (cf . Figure 4.3 (right)) reveals that
κa highly depends on the region and barely exceeds 0.15 even for κh = 0.6, which clearly
hints toward border effects due to wide occlusions. Thus, text occlusions centered in the
mouth region only slightly affect Acc even for large height ratios κh as large parts of the
occlusion lie outside the image boundaries allowing the network to still extract sufficient
information from eye or nose regions. For κa = 0.1, rectangular occlusions yield superior
Acc except for the mouth region. This suggests that feature vectors are particularly
distorted if occlusions contain holes and thereby cover a larger part of the face. Since
κa for text occlusions is afflicted by large standard deviations and varies largely among
the regions, text occlusion is evaluated dependent on κh for the remaining part of this
chapter.

In conclusion, this analysis highlights the impact of the occlusions’ position, shape,
and size on the FR performance. To reduce this apparent dependency, it is necessary to
develop methods to cope with occlusions.

4.3 Related Work in Image Inpainting

Even though there exist some image inpainting methods [28, 77, 123, 127, 133, 139,
267], which utilize a convolutional neural network (CNN) without incorporating it in a
generative adversarial network (GAN), the vast majority [20, 31, 66, 80, 89, 90, 93, 121,
140, 160, 196, 202, 216, 224, 225, 244, 247, 249, 254, 255, 260, 261, 269, 274, 284] use a
GAN. This is mainly due to the GANs’ unique ability to create astonishingly realistic
reconstructions of the occluded areas and to obtain an overall semantically coherent
image.
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Figure 4.4: Example of a typical coarse-to-fine architecture used for image inpainting. Each
network comprises a U-Net [179], which is characterized by downsampling the input to the
desired resolution followed by an upsampling, resulting in the U-like shape. Additional skip
connections allow the incorporation of low-level features from the encoder in the decoder.

Multiple approaches [28, 123, 139, 182, 249, 254, 255, 286] employ a so-called coarse-
to-fine structure, in which the first generator outputs a rough estimation of the input,
which is then refined by the subsequent generator (cf . Figure 4.4). In their analysis,
Sagong et al . [182] demonstrated that using a coarse network as a prior provides superior
results compared to exclusively training the refinement network. A similar way of
providing the network with a prior is proposed by Nazeri et al . [160], in which they
first predict a reconstructed edge map, which is then used together with the masked
face for refinement. Likewise, Xiong et al . [241] proposed to include the reconstructed
contours as the input of the coarse and the fine reconstruction networks. As opposed to
all approaches above, Guo et al . [64] proposed a coupled network to process two inputs
parallelly yet collaboratively, predicting a structure and a texture, which are then fused
to obtain a compelling reconstruction.

A variant of the U-Net architecture [179], depicted in Figure 4.4, constitutes the
most popular architecture in image inpainting [28, 77, 80, 90, 127, 133, 139, 196, 244,
249, 269, 284] even if no coarse-to-fine structure is employed. While most approaches
utilize skip connections to alleviate learning identity transformations for the non-occluded
regions some researchers [145, 202, 254, 255] proposed to dispense with them or employ
ResNet-like units to mimic their behavior on a more local level [202].

Besides the adversarial loss, the network is typically guided by pixel-wise similarity
distance losses between the prediction Î and the ground-truth image Igt [20, 28, 39, 64,
77, 80, 121–123, 127, 133, 138, 139, 160, 216, 237, 246, 249, 254, 255, 261, 267, 286] to
obtain a rough reconstruction by the coarse network. Johnson et al . [99] proposed to
measure similarity in the feature space by computing the distance between feature maps
extracted by a network pretrained on image classification. In this way, this so-called
perceptual loss compares high-level features instead of pixel values. Similarly, the style
loss [99] punishes the difference in the correlation between activations in feature maps.
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Both losses were successfully adapted to image inpainting and are frequently utilized in
conjunction [64, 80, 127, 138–140, 160, 216, 237, 246, 261, 286].

One research direction in image inpainting addresses the unreliable information
within the input pixels in every convolutional layer. This direction was initiated by Liu
et al . [127], who proposed partial convolutions, in which the input of a convolutional
layer is masked such that the convolution only considers input values originating from
the non-occluded areas. The binary mask is then expanded successively after every
convolution according to the convolution’s receptive field. This concept was enhanced by
Yu et al . [255] with gated convolutions. Unlike the binary masks in partial convolutions,
every gated convolution learns its own soft mask for every channel with values between 0
and 1 by performing a separate convolution on the input followed by a sigmoid function.
This soft attention mask is applied to the output via an element-wise multiplication.
Yi et al . [249] proposed lightweight gated convolutions with multiple modifications to
substantially reduce the number of parameters during the mask prediction.

In contrast, region-wise convolutions [139] operate with two distinct weights (and
biases) depending on whether the input lies within the occluded or non-occluded area.
Hukkel̊as et al . [90] proposed imputed convolutions, which substitute the value of uncer-
tain input pixels by a weighted average over spatially close features. With mask-aware
dynamic filtering, Zhu et al . [286] created kernels of a convolutional layer adaptively based
on a mask. In contrast to the previous methods, which focus on altering the convolution
operation, Yu et al . [256] introduced a region normalization layer, which normalizes
occluded and non-occluded regions with different means and variances. Hong et al . [80]
utilized a fusion block on multiple feature maps of the decoder to generate an attention
map, which makes the network focus on the occluded pixels during reconstruction.

4.3.1 Attention Blocks for Image Inpainting

While manipulating the convolutional layers to focus on reliable information [90, 127,
249, 255, 286] via an attention map is considered a form of attention mechanism, the
attention blocks introduced in this section aim to exchange information at larger scales.
This is crucial as a realistic reconstruction is obtained only if the network successfully
captures the environment in which the picture was taken. Thus, the network needs to
extract the underlying context to reconstruct the area with fitting elements. For face
completion, the network can only maintain a coherent makeup if it is aware of global
information. Hence, it is essential to provide the network with the tools to leverage
information, even from more distant pixels, i.e., a large receptive field is required.

One straightforward method to increase the receptive field is by employing convo-
lutional layers with large 7×7 kernels [225]. However, it is necessary to employ them
in deeper layers with a large number of feature maps C, which inevitably leads to a
massive increase of trainable parameters. As introduced in Section 2.5.1, the receptive
field can also be increased substantially by dilated convolutions with a dilation factor
D > 1 [31, 93, 160, 254, 260, 261]. Despite the substantial increase of the receptive field
without additional parameters, dilated convolutions only provide sparse activations and
are prone to generate gridding artifacts [165].
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To cope with sparse activations, Hui et al . [89] proposed the dense multi-scale fusion
block (DMFB), which combines multi-scale information extracted from four parallel
convolutional layers with different dilation factors D. Later, Zeng et al . [261] proposed
the aggregated contextual-transformation block, which is a simplification of the DMFB
as it does not employ the hierarchical feature fusion. Even though the DMFB provides a
considerably large receptive field of 21 and accounts for the inherent sparsity of dilated
convolutions, it is biased towards the center. In contrast, attention blocks are desired
to truly incorporate global information while considering the activation of every pixel
equally and thus independently of its distance.

The patch-swap block proposed by Song et al . [196] substitutes feature patches within
the occluded area with similar patches from the non-occluded area. The authors use
feature maps extracted from a coarse reconstruction by a pretrained image classification
network as the input of the patch-swap block. With Shift-Net, Yan et al . [244] incor-
porated a shift-connection layer, which enhances the skip connections in the U-Net by
concatenating the encoder and decoder feature maps with a pixel-wise replacement of all
features in the decoder with their nearest neighbors in the encoder. Similarly, Zheng
et al . [274] restricted the pixel-wise attention from Yan et al . [244] to only allow the
replacement of occluded features.

A comparison with patches of size 3×3 is performed by Yu et al . [254]. Analogous
to the patch-swap block [196], the authors replaced patches from the occluded area
with patches from the non-occluded area. Moreover, they used attention propagation to
encourage coherency by smoothing the patch similarity scores before patch replacement.
In order to not distort the patch features during the normalization when computing
their similarity, Sagong et al . [182] proposed to use euclidean distance instead of cosine
similarity as in [254]. In accordance with Yu et al . [254], Zeng et al . [260] calculated patch-
wise similarity between occluded and non-occluded decoder feature patches; however,
they utilized features patches from the encoder for reconstruction. In addition, the
output of the attention block is further refined by four parallel dilated convolutions and
the attention block is employed at multiple resolutions. Likewise, Guo et al . [64] utilized
global patch-wise attention followed by parallel dilated convolutions. Then, the output
of every branch was fused after multiplying it with an attention map generated from the
output of the attention layer. Yi et al . [249] extended image inpainting to ultra-high
resolution images of 8k pixels per side. While the patch similarity is computed only
once, they substitute patches at multiple resolutions in the decoder. To account for the
varying resolutions at which the attention transfer is performed, the resolution of the
patches for reconstruction is modified to cover the whole feature map.

The dual spatial attention module, proposed by Zhou et al . [284], comprises two
pixel-wise attention mechanisms: 1) self-attention restricted to the occluded area; and
2) cross-attention to replace features from the occluded areas with features from the
non-occluded area. In contrast to all aforementioned methods, the authors adapted
the structure from the pioneering work in self-attention [264] by utilizing three 1×1
convolutional layers to split the input into three different branches for matching and
reconstruction.
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Recently, Suvorov et al . [202] proposed a very different approach by incorporating
fast Fourier convolution [21], i.e., transforming the feature maps into the frequency
domain by a fast Fourier transform and applying a convolution before transforming back
into the feature domain. In this way, global information is leveraged without adding
a huge number of parameters. The authors show impressive results particularly – and
unsurprisingly – on periodic structures, e.g ., bricks, fences, windows, etc.

4.3.2 Face Completion

Most approaches introduced in Section 4.3 were trained and evaluated on faces, thus
performing face completion. However, since face completion (or face inpainting) requires
the method to guarantee coherent face identity features apart from realism, face com-
pletion is considered one of the most challenging image inpainting tasks. This involves
maintaining the rich information and implicit relationships between multiple face parts
also for the reconstructed areas. Therefore, face-specific algorithms are proposed focusing
on improving image inpainting tasks.

One research direction is characterized by leveraging face-specific priors during the
reconstruction. Li et al . [122] supervised the reconstruction with an additional loss
determined by a semantic parsing network. In contrast, Song et al . [194] predicted the
semantic parsing map jointly with facial landmarks prior to the reconstruction. Similar to
Song et al . [194], Yang et al . [246] guided the inpainting with facial landmarks, whereas
Yin and Di [250] first predicted the mask and the 3D reconstructed face prior to the
reconstruction of medical face masks. Dey and Boddeti [39] disentangled the face into
geometric and photometric factors followed by an iterative inpainting algorithm.

While previous approaches provided the output of other face-specific algorithms at the
input of the reconstruction network, Zhang et al . [269] proposed to embed information
about the face regions and facial landmarks into latent variables. These latent variables
are concatenated at the input of the decoder and thus provide valuable guidance in the
reconstruction. Using a siamese network structure, Ma et al . [138] leveraged features
from dense field estimation and employed a dual attention fusion module for medical
face mask removal. A more complex framework is proposed by Wu et al . [237], which
extracts features from a coarse reconstruction and stores them in a memory grouped
according to a semantic parse map. Then, the most relevant features are injected into
the refinement network to produce a highly realistic reconstruction.

In contrast to approaches mentioned earlier, Chen et al . [20] do not incorporate
any additional face-specific algorithms. They proposed to increase the resolution of
the network progressively in order to consolidate information across multiple scales and
thereby reconstruct even high-quality faces. Li et al . [121] leveraged the faces’ symmetry
by a symmetry-consistent CNN, which transfers brightness-adjusted information from
one half of the face to the other. If pixels are occluded in both halves, the remaining
pixels are reconstructed in a separate network. Besides the DMFB, Hui et al . [89]
proposed a self-guided regression loss, which focuses on the pixels in the feature map loss
that cause a discrepancy in the image space, and a loss punishing spatial misalignment
of the feature maps. In addition to the dual attention block, Zhou et al . [284] proposed
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an oracle supervision signal to the attention blocks to ensure that the attention scores
are reasonable. Moreover, seven discriminators focus on various face regions, ensuring a
realistic reconstruction.

Entirely distinct from all previous approaches, image inpainting can also be performed
in the latent feature space of a generative model (see also Figure 2.5). In this case, a
randomly initialized latent vector is updated iteratively until the generated face matches
the synthetically occluded face [1, 247].

4.3.3 Blind Image Inpainting

While the mask M gt is provided in default image inpainting tasks, the occluded areas are
unknown in blind image inpainting, increasing the task’s difficulty substantially. Thus,
blind image inpainting approaches differ from previous methods on image inpainting
or face completion (see Sections 4.3 and 4.3.2) by how the network is trained to detect
occlusions.

Zhang et al . [267] investigated faces that were affected by random meshes for iden-
tity protection. Due to the relatively thin periodic patterns, they obtained satisfying
reconstructions without utilizing a GAN nor additional mask prediction. Liu et al . [133]
proposed a residual learning approach, i.e., the network estimates only the pixels affected
by occlusion. Moreover, the gradients of the image are used to predict the structure
in the occluded regions. With the blind visual motif removal (BVMR) model, Hertz
et al . [77] employed a U-Net architecture with three decoder branches, which predict
the reconstructed image, mask, and motif. They found that learning the motif and
partially sharing weights between the decoder branches for image and motif improves
the reconstruction quality. Cun et al . [28] extended the BVMR model by adding a
subsequent refinement network and perceptual loss.

In contrast to [28, 77], Liang et al . [123] employed two decoding branches in the coarse
network, in which mask predictions at different levels are leveraged in the reconstruction
branch. Besides, additional skip connections between the coarse network’s decoder and
the refinement network’s encoder are used. The visual consistency network by Wang et
al . [224] disentangles mask prediction and inpainting and trains both in an adversarial
manner. The mask prediction network predicts visually inconsistent areas within the
face, while the reconstruction network uses the mask at multiple depths to reconstruct
only the inconsistent areas. In order to cope with masks of different patterns and colors,
Wang et al . [216] proposed a frequency-guided transformer together with a top-down
refinement network. First, they detect the mask with a vision transformer [281] and
include high-frequency information of the masked image, which was extracted leveraging
a discrete cosine transform. Then, the refinement network utilizes the predicted mask and
facial landmarks as a prior for hierarchically restoring semantically consistent features.
Additionally, Yin and Di [250] predicted medical face masks and the 3D reconstructed
face of the masked face. Then the mask is substituted with noise before passing it to the
reconstruction network. In contrast to Yin and Di [250], Ma et al . [138] proposed an
approach for the blind removal of medical face masks without any intermediate mask
prediction.
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Figure 4.5: Overview of the blind face completion network. The occluded face Io is re-
constructed by a coarse-to-fine generator G(·), which additional outputs the mask M̂ . First,
a rough reconstructed image Îc,r is obtained by the coarse network, guided by pixel-wise

similarity losses Lpix. Then, Îc,r is further refined by the fine network yielding Î f,r. A highly
realistic reconstruction is ensured by leveraging a discriminator D(·) and adversarial loss Ladv.
Furthermore, identity losses Lid guarantee similarity in the identity feature space using a
pretrained face feature extractor F(·). Adapted from [13†].

4.4 Architecture

Reconstructing faces occluded by masks, which vary in shape, form, size, position, and
color, is a highly complex task requiring the synergy of multiple components supervised
by precisely designed loss functions as depicted in Figure 4.5. Following the majority
of image inpainting works [28, 123, 139, 182, 249, 254, 255, 286], the central component
of the proposed approach for blind face completion is the coarse-to-fine generator G(·),
which divides the complex reconstruction into two steps with distinct objectives. First,
the coarse generator predicts the mask M̂ and outputs a rough reconstructed image Îc,r.

By only incorporating pixel-wise similarity losses for the generation of Îc,r, the focus lies
on a coarse estimation without high-frequency details. In this way, the subsequent fine
network solely focuses on refining the coarse reconstruction Îc,r yielding Î f,r. With the
help of two parallel attention blocks, the fine network leverages long-range pixel-wise
relationships within a face and substitutes patches of occluded areas with similar patches
from non-occluded areas. Distinct loss functions guide the reconstruction by focusing
on two criteria: 1) a highly realistic reconstruction Î f,r, which is guaranteed by the
discriminator D(·) and by training the coarse-to-fine generator G(·) as a GAN; and 2)
coherent identity features within Î f,r, which are obtained by incorporating identity losses
Lid based on feature maps extracted from a pretrained face feature extractor F(·).

The following subsections first introduce four advanced blocks, among which the latter
three blocks play an essential role in accomplishing large receptive fields and exchanging
global information during the reconstruction. Then, every component in Figure 4.5 is
described in-depth, followed by the definition of the loss functions.
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Figure 4.6: The reconstruction block (left) ensures that in the output Îi,r, only occluded

pixels indicated by M̂ are altered. With the dense multi-scale fusion block (DMFB) (right),
multi-scale features are extracted using parallel 3×3 convolutional layers (green) with different
dilation factors D ∈ {1, 2, 4, 8} and hierarchically fused by a concatenation ++ together with a
1×1 convolutional layer. Adapted from [89].

4.4.1 Advanced Blocks

4.4.1.1 Reconstruction Block

Ideally, the generator G(Io) only alters the value of pixels within the occluded area of Io,
whereas non-occluded pixels are left untouched. Thus, similar to [77, 13†], the predicted
mask M̂ can be used to limit the reconstruction to the area specified by M̂ . Then,
the final reconstructed image

[
Î i,r

]
x,y,:

of the coarse and the fine network is obtained

from
[
Io

]
x,y,:

if
[
M̂
]
x,y

= 0 or from the network’s output
[
Î i

]
x,y,:

if
[
M̂
]
x,y

= 1. Unlike

the binary ground-truth mask M gt, M̂ is continuous ∈ (0, 1), resulting in the following
relationship of the reconstruction block

Î i,r = (1r,r − M̂)⊙ Io + M̂ ⊙ Î i ∀ i ∈ {c, f}. (4.3)

After a minor transformation of Equation (4.3), the reconstruction block can be
drawn as a signal flow graph, which is depicted in Figure 4.6 (left).

By using Equation (4.1) and assuming reliable mask detection M̂ = M gt, Equa-
tion (4.3) can be rewritten to

Î i,r = (1r,r −M gt)⊙ Igt + (1r,r −M gt)⊙M gt︸ ︷︷ ︸
=0

⊙ c+M gt ⊙ Î i (4.4)

= (1r,r −M gt)⊙ Igt +M gt ⊙ Î i ∀ i ∈ {c, f}. (4.5)

Equation (4.5) demonstrates that by concluding the coarse and the fine network with
the reconstruction block, only pixels indicated by M̂ are modified, whereas ground-truth
pixel values are used for non-occluded pixels mitigating unwanted artifacts. Still, reliable
mask detection is essential.
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Figure 4.7: The global pixel-wise self-attention block (left) is designed to leverage global
information without any restriction to the occluded area, whereas the patch-wise cross-attention
block (right) searches and substitutes 2×2 patches of the occluded area with the most similar
patches in the non-occluded area. Adapted from [13†].

4.4.1.2 Dense Multi-Scale Fusion Block

As motivated in Section 4.3.1, leveraging long-range pixel relationships is crucial in order
to accomplish a realistic and semantically coherent reconstruction. Dilated convolutions
provide large receptive fields with a low number of parameters. However, they only
produce sparse activations and therefore require postprocessing. Hui et al . [89] proposed
the DMFB to address the disadvantages of the dilated convolutions while maintaining
a manageable parameter count. The implementation of the DMFB is illustrated in
Figure 4.6 (right). First, a 3×3 convolutional layer reduces the number of feature maps
by a factor of four. Then, four parallel branches extract information at multiple scales
utilizing a single 3×3 convolution with a different dilation factor D ∈ {1, 2, 4, 8}. In
order to obtain dense multi-scale features from the sparse activation for D > 1, all four
outputs are combined in a cumulative manner, followed by another 3×3 convolution.
After concatenating the four branches, a 1×1 convolution fuses the information.

Overall, the DMFB is designed as a residual block, which eases convergence during
training and allows the network to focus on improving the input by leveraging the
multi-scale information. Besides, all convolutional layers are followed by a leaky ReLU
(LReLU) [141] activation function. With this unique structure, the DMFB provides the
network with a parameter-efficient method to generate dense multi-scale features, which
are essential in image inpainting. By enforcing this multi-scale structure, the network
does not need to implicitly encode a similar relationship utilizing multiple convolutional
layers, which speeds up convergence. Therefore, the DMFB is employed multiple times
within the coarse-to-fine generator.
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4.4.1.3 Pixel-Wise Self-Attention

Nowadays, attention blocks are vital in image inpainting, as listed in Section 4.3.1. This
work incorporates a pixel-wise self-attention block, depicted in Figure 4.7 (left). A
pixel-wise attention block is a modification of the non-local block of Wang et al . [220] by
Zhang et al . [264], who successfully employed it in a self-attention GAN. Later, pixel-wise
attention blocks demonstrated their benefits in image inpainting [244, 274, 284]. This
work follows the implementation of Hörmann et al . [13†], which is based on the original
implementation [220, 264].

The input of the self-attention block constitutes a feature tensor X ∈ R28×28×256.
First, X is split into three branches – Q, K, and V – by applying three 1×1 convolutions.
The number of feature maps C is set to 32 for Q and K, and to 128 for V since Zhang
et al . [264] observed no decrease in performance when reducing C by a factor of 8. As
in [220], maximum pooling is employed for K and V to further decrease the memory
footprint. Even though this increases the sparseness of the computation, it does not alter
the general behavior of the self-attention block. After reshaping every branch to perform
a matrix multiplication, three tensors are obtained: query Q, key K, and value V .

The network encodes in
[
Q
]
i,:

the reference to a key
[
K
]
j,:

which is associated with

a value
[
V
]
j,:
. Thus, the key-value pairs form a dictionary

{([
K
]
j,:
,
[
V
]
j,:

)}142
j=1

, which

is queried by
[
Q
]
i,:
. In this way,

[
Q
]
i,:
defines a queried property for the ith pixel,

[
K
]
j,:

constitutes the property of the jth pixel, and
[
V
]
j,:

denotes the value of the property

used for further computations.
Mathematically, the self-attention block is written as follows. First, the attention

map S ∈ R282×142 containing the similarity scores is computed by

S = softmax
(
QKT

)
, (4.6)

where the softmax(·) is applied to the columns of S̃. Therefore,
[
S
]
i,j

denotes the

normalized relevance of the jth key K for the ith pixel in Q. Then, a feature for the ith
pixel according to their query is selected from V by matrix multiplication

R = SV . (4.7)

In Equations (4.6) and (4.7), the two steps of a typical attention mechanism become
apparent: 1) compare by computing a similarity; and 2) attend by moving the features
to the desired pixels. After reshaping R and applying a 1×1 convolution to restore the
initial number of feature maps, the output Y of the self-attention block is obtained by
adding the input X. Similar to the DMFB, this skip connection between input X and
output Y facilitates convergence.

With this unique combination of relatively simple operations, the pixel-wise self-
attention block can refine the input X by leveraging global information, which results
in a receptive field equal to the size of the input feature map. However, this global
influence comes with a rather large memory footprint. Therefore, the self-attention block
is employed rather scarcely.
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4.4.1.4 Patch-Wise Cross-Attention

As listed in Section 4.3.1, many image inpainting researchers [64, 196, 249, 254, 260] favor
patch-wise attention over pixel-wise attention. The patch-wise cross-attention follows
the same concept as the pixel-wise self-attention; however, two differences change the
block’s purpose fundamentally: 1) instead of substituting pixel-wise information, patches
of 2×2 pixels allow the consideration of spatial dependency within a small vicinity; and
2) while self-attention performs unrestricted information exchange between all regions in
the input, cross-attention only allows the replacement of patches from the occluded area
with patches from the non-occluded area as in [64, 196, 249, 254, 260, 274, 284]. Multiple
changes to the pixel-wise self-attention block are required to obtain such behavior.
Nevertheless, the purpose of every branch Q, K, and V is identical.

Figure 4.7 (right) depicts the cross-attention block, which was adapted to blind face
completion from [64, 196, 249, 254, 260] by Hörmann et al . [13†]. Similar to the self-
attention block, the cross-attention block uses 1×1 convolutions to reduce the number of
channels to 64 in every branch. After element-wise multiplication of the key branch with
1 r

2
, r
2
− M̂ ↓, where M̂ ↓ denotes the mask predicted by the network downsized to 56×56,

all activations within the occluded area are set to 0. Thus, only reliable information,
i.e., only keys K corresponding to values V extracted from the non-occluded areas, are
considered. Unlike pixel-wise attention, every patch constitutes a key. Hence, 552 = 3025
overlapping patches of size 2×2×64 are extracted and L2-normalized, such that

2∑
i=1

2∑
j=1

64∑
k=1

[
K
]2
i,j,k,l

= 1 ∀ l. (4.8)

The query Q is also L2-normalized, however, only along the channel dimension. Then,
a convolution of the input Q with kernel K is performed with stride S = 2 according to
Equation (2.9). Here, the fact that Equation (2.9) actually performs a cross-correlation
is leveraged. Thus, the output S̃ ∈ R28×28×3025 of this convolution denotes the similarity
of the 282 non-overlapping patches of size 2×2×64 of Q to the 3025 patches of K. In
fact, due to prior L2-normalization S̃ constitutes the cosine similarity, which corresponds
to 1− d(Q,K) (cf . Equation (3.17)). Next, the matrix S containing the index of the
most similar patch is computed by[

S
]
x,y

= argmax
c

[
S̃
]
x,y,c

. (4.9)

As earlier for K, 552 = 3025 overlapping patches of size 2×2×64 are extracted from
V . Then, these patches are used to reconstruct the tensor R according to the similarity
of Q with K measured by S. While excluding the occluded region from K led to the
corresponding patches in K not being queried by Q, it is still necessary to ensure that the
cross-attention block only alters the occluded region. This is accomplished by applying
the reconstruction block (see Section 4.4.1.1) to R, where V provides the values for
the non-occluded areas and its output constitutes the output Y of the cross-attention
block. Like in the self-attention block, employing the reconstruction block serves as a
skip connection for the entire attention component, resulting in improved convergence.
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Figure 4.8: Architecture of the generator. First, the coarse network creates a rough recon-
struction Îc of the occluded face Io and predicts the mask M̂ . After passing Îc through the
reconstruction block (see Section 4.4.1.1), the reconstructed face Îc,r is refined in the fine

network yielding Î f. While the coarse network only uses a single dense multi-scale fusion block
(DMFB) for information exchange, multiple DMFBs together with a dual attention structure
allow the fine network to extract and exchange global information, which is crucial for a realistic
prediction of the occluded pixels. Adapted from [13†].

Through several modifications, the pixel-wise attention block is transformed to cope
with 2×2 patches, which allows the network to transfer detailed and realistic textures. By
restricting the information exchange to replace patches exclusively within the occluded
area with patches exclusively from the non-occluded area, the cross-attention block
further ensures that reliable information is exchanged and that the non-occluded area is
left untouched.

4.4.2 Coarse-to-Fine Generator

As motivated by Section 4.4, the blind FR task is split into two steps: 1) The coarse
network outputs a rough prediction of the occluded area, which is then 2) refined by the
fine network. This separation is widely employed [28, 123, 139, 182, 249, 254, 255, 286]
as it allows each network to focus on its respective task. The detailed architecture is
depicted in Figure 4.8 and will be explained in detail in the following subsections. Overall,
both networks are composed similarly following the popular U-Net architecture [179].
However, Hörmann et al . [13†] introduced multiple modifications, which are necessary to
also predict the mask M̂ in the coarse network and consider global information exchange
in the fine network in order to obtain a realistic reconstruction.

4.4.2.1 Coarse Network

The spatial resolution of the occluded face Io at the input is reduced from 112×112
to 28×28 utilizing convolutional layers with a 3×3 kernel and stride S = 2. At the
same time, the number of feature maps C is doubled with every reduction starting
from C [1] = 64. After six convolutional layers with kernel size 3×3, the DMFB [89] (see
Section 4.4.1.2) is employed to exchange information at multiple scales. In this way,
the coarse network incorporates information from different regions to produce a rough
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estimate of the occluded area. The DMFB is then followed by another 3×3 convolutional
layer that concludes the encoder of the coarse network.

As typical for U-Net architectures, the latent feature map is decoded by concatenating
the upsampled latent feature map with the respective feature map of the same resolution
from the encoder. Before the concatenated feature maps are upsampled again, they are
processed by three 3×3 convolutional layers per resolution. As discussed in Section 2.5.2,
utilizing transposed convolutions causes checkerboard artifacts [165]. Thus, unlike [77]
and following [80, 90], upsampling with nearest-neighbor interpolation is applied.

Since the coarse network predicts the reconstructed face Îc and the mask M̂ , the
decoder uses two parallel, almost identical branches. Both branches are concluded with
a final convolutional layer, which sets the number of feature maps to C [L] = 3 for Îc

and to C [L] = 1 for M̂ . Besides, the value range of Îc is limited to [−1, 1] via clipping,
whereas the sigmoid activation function ensures a proper value range for M̂ . Apart from
the two convolutional layers, which conclude both branches, LReLU [141] is employed as
an activation function in the encoder, whereas rectified linear unit (ReLU) [159] is used
in the decoder following [244]. Due to its non-zero gradients for inputs < 0, LReLU is
particularly helpful when training GANs as it can cope with sparse gradients.

4.4.2.2 Fine Network

The fine network implements the U-Net structure [179] similarly to the coarse network.
While its single output Î f simplifies the structure, the dual attention structure requires
additional modifications [13†].

First, the coarse reconstruction Îc,r is downsampled to a spatial resolution of 28×28
using convolutional layers with 3×3 kernels. The dual attention structure is utilized in the
network at different resolutions. Since the cross-attention block operates on 2×2 patches,
it considers the spatial dependency in the feature maps like in textures. Therefore, the
cross-attention block benefits from prominent textures, which are more frequent at a
relatively large spatial resolution of 56×56. In contrast, the pixel-wise self-attention
block is applied at a resolution of 28×28. In order to allow the self-attention block to
also leverage low-level features, the latent feature map extracted by the coarse network
is fused at its input.

A DMFB follows both attention blocks to further refine the feature. A similar structure
was proposed by Zeng et al . [260]; however, they only employed dilated convolutions
without the additional hierarchical fusion. After upsampling the self-attention branch, the
information is combined at a resolution of 56×56 by concatenation of: 1) the pixel-wise
self-attention branch; 2) the patch-wise cross-attention branch; and 3) the feature map
of the same resolution from the encoder. The fine network is concluded similarly to the
coarse network with the expection of using another DMFB to promote the information
exchange after fusing all branches. Following [254], exponential linear unit (ELU) [27] is
employed as the activation function throughout the fine network.

The parallel employment of two attention blocks with distinct objectives similar
to [48, 284] leads to complementing behavior even though both blocks are designed to
handle long-range dependencies within feature maps. The cross-attention block excels
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Figure 4.9: Architecture of the discriminator. In total, seven discriminators are employed:
While D1(·) is a global discriminator, all remaining discriminators are patch discriminators [97].
Except for D7(·), all discriminators take as input the concatenation of the occluded face Io

with either the ground-truth face Igt or the reconstruction by the generator Î f,r. All patch
discriminators except D2(·) focus on relevant face regions, which are cropped to 28×28 pixels
around the corresponding facial landmark. D7(·) considers both eyes from either Igt or Î f,r

and therefore enforces consistency around the eye regions.

when the occlusion is not occurring symmetrically, e.g ., if only the right face half is
occluded, since it finds and incorporates similar textures in the non-occluded parts of
the face. This is particularly important when reconstructing eyes. Owing to the spatial
dependency within the patches, the cross-attention block maintains textural consistency.
The information exchange is restricted to avoid that the non-occluded area is altered
by unreliable information originating from the occluded face area. In contrast, the
self-attention block focuses on reconstructing unique face parts, e.g ., the nose or the
mouth, by learning the relationship between all pixels within the entire feature map.
Unlike the approach by Zhou et al . [284], the self-attention block is not limited to the
occluded area.

4.4.3 Discriminator

As introduced in Section 2.7.1, the discriminator plays a vital role during GAN training.
Here, it ensures that the reconstructed face Î f,r is indistinguishable from the ground-
truth face Igt, i.e., before the synthetic occlusion was applied. In order to make the
discriminator focus on the relevant regions and not base the final decision on a single
output, multiple discriminators with different purposes are utilized [44, 219]. This
technique is widespread in image inpainting tasks, in which two discriminators [31, 269],
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one global and one patch discriminator [97], or even up to seven discriminators [284, 13†]
are employed. This work follows the approach from Hörmann et al . [13†] by incorporating
seven discriminators Di(·) – one global discriminator and six patch discriminators similar
to [97], which are depicted in Figure 4.9.

Except for the discriminator D7(·), the input to all remaining discriminators Di(·)
consists of the concatenation of the occluded face Io with either the ground-truth face
Igt or the reconstruction by the generator Î f,r. By providing the discriminators with Io,
the discriminators learn to pay attention to the occluded areas.

While the input of the global discriminator D1(·) and the patch discriminator D2(·)
contains the entire face region 112×112, the inputs of all remaining discriminators are
crops of size 28×28 around the respective facial landmark (see Section 3.2).[ii] Despite
prior face alignment, a considerable difference between the target position and the
actual position after alignment remains due to large yaw angles of the head poses and
different face proportions. Hence, leveraging the facial landmarks after alignment ensures
that all crops resemble each other as much as possible. The facial landmarks after
alignment are obtained without any costly detection using Equation (3.2) with the
transformation matrix T (n), which was determined for the face alignment of the nth
image. Moreover, storing and loading facial landmarks is only required for the training
since all discriminators are discarded after training.

In order to cope with inconsistent eye colors, which caused unrealistic results upon
closer inspection in [260, 284], Hörmann et al . [13†] proposed another discriminator. This
discriminator, denoted as D7(·), processes the concatenation of the left eye with the right
eye, which was horizontally flipped for improved spatial alignment.

Regardless of their purpose, all discriminators are built similarly and comprise four
3×3 convolutional layers with LReLU [141] as an activation function. The former two
convolutions operate with strides S = 2 to reduce the spatial resolution to 28×28 or 7×7.
The number of feature maps is doubled in the first three layers from initially C [1] = 64
for D1(·) and D2(·), and C [1] = 32 for all remaining discriminators. The fourth layer
then outputs a single feature map, i.e., C [4] = 1. For all patch discriminators Di(·) with
i ∈ {2, 3, . . . , 7}, sigmoid is used as an activation function after the fourth layer Ψ[4](·)
to obtain a patch-wise probability, which denotes the probability of the corresponding
patch belonging to Igt, i.e., the patch is realistic. After global average pooling (GAP), a
scalar probability is obtained for all patch discriminators. The global discriminator D1(·)
obtains the probability utilizing a fully-connected layer followed by a sigmoid.

Unlike [244], Hörmann et al . [13†] dispensed with normalization layers. This is
mainly due to the massive impact of the occluded area in Io on the mean and variance.
Various related works, including image inpainting [254], super-resolution [125, 222], and
deblurring [158], support the removal of the normalization layer and demonstrated that
it leads to improved performance and reduced computational complexity.

[ii]The average of the two landmarks marking the mouth corners is used for the crop around the
mouth region.
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4.4.4 Face Feature Extractor

The objective of the face feature extractor is to guide the reconstruction with meaningful
face identity features. The purpose of this supervision is two-fold:

1. Without consideration of any face identity features, the reconstruction is defined by
the realism judged by the discriminators. In contrast to previous face completion
methods, which used general feature maps extracted from image classification
networks [64, 80, 121, 127, 139, 140, 160, 237, 246, 261, 284, 286], Hörmann et al .
[13†] opted for a network explicitly trained on FR as in [138, 250], increasing the
relevance of the extracted feature maps.

2. For an optimal reconstruction, consistency of the face features within the face is
crucial, i.e., features originating from occluded areas in Î f,r must not contradict
features extracted from the non-occluded areas.

Thus, supervision by FR features is vital to ensure that Î f,r mitigates the drop in accuracy
in faces manipulated by occlusions, as observed in Section 4.2. Besides guiding the
training to consider face identity features, the face feature extractor is further employed
to evaluate the FR performance of Î f,r.

Hörmann et al . [13†] employed the VGG-112 model, which was introduced and
analyzed exhaustively in Section 3.6.2, as a face feature extractor. VGG-112 constitutes
a ResNet-v2 [72] with depth L = 50 and a Mf = 256-dimensional bottleneck layer,
from which the face identity features are extracted. The network is trained on the
VGGFace2 dataset [14] with softmax CE loss for 20 epochs. The faces were aligned
following the custom face alignment policy (FAP) with facial landmarks extracted by
the multi-task CNN (MTCNN) [265]. All training parameters are identical to those
reported in Section 3.5.1 except for a smaller initial learning rate η = 0.3 to account
for a reduced batch size Nb = 64 due to memory limitations. This change ultimately
resulted in slightly different values to those reported in Section 3.6.2. Since this work
follows Hörmann et al . [13†], their model is used to maintain consistency and avoid costly
retraining as all results depend on the choice of the feature extractor.

As discussed in Section 3.6.2, VGG-112 does not provide state-of-the-art results and
can be improved by incorporating additive margin loss [33]. However, since this chapter
focuses on mitigating the effect on FR performance caused by occlusion as analyzed in
Section 4.2, a state-of-the-art FR model is not required as similar behavior is observed for
many FR models [60] and thus is also expected to be observed in more recent approaches.
Therefore, VGG-112 constitutes a viable choice for blind FR.

4.5 Loss Functions

Typically, GANs are trained in an alternating manner, i.e., two total losses are required
– one for the generator G(·) and one for the discriminator D(·). Figure 4.5 depicts an
overview of all loss terms and their dependencies. A combination of multiple losses is
required in order to obtain the desired behavior, i.e., 1) a rough reconstruction Îc by the
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coarse network; 2) a reliable mask prediction M̂ ; and 3) a photo-realistic reconstruction
Î f by the fine network with 4) coherent face identity features matching the ground-truth
image Igt. Thus, at least one loss term is dedicated to one of the objectives mentioned
above.

Pixel-wise similarity losses Lpix cannot enforce complex spatial dependencies and

thus suffice to ensure a rough estimate Îc. Since no spatial dependencies occur in
masks, a reliable prediction of the mask M̂ is also covered by a pixel-wise similarity loss
Lpix. To improve realism and encourage crisp details in Î f, adversarial losses Ladv from
multiple discriminators Di(·) are employed. Coherent face identity features are obtained
by incorporating identity losses Lid based on meaningful features extracted by a face
feature extractor F(·).

As in [13†], all loss terms are merged into a single total loss function for the generator

L G
tot =λo

pixL
o
pix + λno

pixL
no
pix + λm

pixL
m
pix+

λG
advL

G
adv + λper

id L per
id + λstyle

id L style
id ,

(4.10)

where λ denote scalars to balance the losses. The discriminators are trained solely based
on the adversarial loss L D

tot = L D
adv.

4.5.1 Pixel-wise Similarity Losses

A pixel-wise similarity loss, e.g ., L1 or L2 distance between Îc and Igt, constitutes the
most straightforward choice in image inpainting as the network is punished if it fails to
model the exact pixel value. However, multiple problems arise in image inpainting tasks
since Igt is typically not the single acceptable solution. This ambiguity is also widespread
in face completion. E.g ., if the mouth is completely occluded, the network cannot know
whether the mouth is open or closed unless a muscle contraction in the non-occluded
region reveals its state. Thus, reconstructing an open or closed mouth is equally valid as
long as the whole face with makeup, beard, etc., is consistent. Even extreme scenarios
are conceivable, where Igt is an “unacceptable” solution, e.g ., after manually covering
acne or a birthmark with a mask, the reconstruction should not reconstruct it.

Since pixel-wise similarity losses punish the network if it makes the “wrong” decision,
i.e., Îc ̸= Igt, it does not dare to make a decision that may result in ambiguity. Hence,
the network takes only safe decisions, e.g ., reconstructing only a rough position of an eye,
which ultimately results in a blurry reconstruction containing mainly low frequencies
and entirely lacking high-frequent details. This also becomes evident since every pixel in
Îc is compared independently with its corresponding pixel in Igt. Therefore, shifting Igt

by a single pixel leads to an increased loss with the original Igt even though the shift
is invisible to the naked eye. To prevent an exploding loss, the network creates blurry
outputs, which are less susceptible to such shifts. Still, pixel-wise losses perfectly fit the
purpose of the coarse network.

Following the majority of image inpainting works [20, 28, 39, 64, 64, 77, 80, 123, 127,
133, 138, 139, 160, 216, 237, 246, 249, 255, 261, 286], L1 distance is employed since outliers
are punished less by the L1 distance than by the L2 distance [121, 122, 254, 267]. Then,
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the L1 distance losses are computed separately for the occluded L o
pix and non-occluded

area L no
pix in order to weigh them individually. Formally, both losses are formulated as

L o
pix =

∥
(
Îc − Igt

)
⊙M gt∥1

∥M gt∥1
, (4.11)

L no
pix =

∥
(
Îc − Igt

)
⊙
(
1r,r −M gt

)
∥1

∥1r,r −M gt∥1
. (4.12)

Normalizing both losses with the (non-)occluded area is crucial to ensure that the
losses do not depend on the size of occlusion and thus may vary largely between batches.

A reliable mask prediction is essential for the outcome of the blind FR approach as it
determines whether a pixel in the occluded image Io is substituted by the reconstruction
Î f in every reconstruction block (see Section 4.4.1.1). Due to the binary ground-truth
maskM gt, the mask prediction task can be interpreted as a binary pixel-wise classification
[28, 77, 123, 216, 224]. Thus, a binary CE loss is employed and formulated by

L m
pix = −

1

r2

r∑
i=1

r∑
j=1

[
M gt

]
i,j
log
([
M̂
]
i,j

)
+
(
1−

[
M gt

]
i,j

)
log
(
1−

[
M̂
]
i,j

)
. (4.13)

4.5.2 Adversarial Losses

As elaborated in Section 4.5.1, losses minimizing L1 distances fail to provide realistic
results as they promote blurry images lacking crisp details. Hence, additional losses are
required to ensure a photo-realistic reconstruction, indistinguishable from real images such
as Igt. Note that “indistinguishable” in this context does not mean that ∥Î f − Igt∥1 = 0

but rather that Î f is perceived as similarly realistic as Igt. Embedding the blind
face completion network inside a GAN allows a discriminator D(·) to judge realism.
Nowadays, this offers the best way to obtain realistic results since realism cannot be
grasped mathematically and written as a derivable loss function. The discriminator is
automatically trained to consider ambiguous solutions, e.g ., open and closed mouths, as
equally viable as long as both options are realistic, which lifts the limitations imposed
by the L1 distance losses.

Despite the complex task of judging realism, this so-called adversarial loss can be
expressed using a simple binary CE loss. Due to the discriminators’ scalar output
Di(·) ∈ (0, 1), every discriminator yields the probability of its input being realistic.
Then, the ground-truth label of the binary CE loss is set dependent on the origin of the
input and as to whether the generator or the discriminator is trained. As introduced in
Section 4.4.3, seven discriminators Di(·) are employed. Thus, the adversarial loss of the
generator L G

adv is written as the average of all discriminators by

L G
adv = −

1

7

[ 2∑
i=1

log
(
Di(Î f,r ++ Io)

)
+

6∑
i=3

log
(
Di(Ci(Î f,r ++ Io))

)
+

log
(
D7

(
C5(Î f,r) ++ C̃6(Î f,r)

))]
,

(4.14)
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where Ci (·) for i ∈ {3, 4, 5, 6} denotes a method to crop the input image to a 28×28
patch centered around the nose, mouth, left eye, and right eye, respectively, and C̃6 (·)
that horizontal flipping is applied after cropping. L G

adv is minimized if Di(·) ≈ 1, meaning
that Di(·) perceives the input as realistic. Hence, G(·) successfully deceives the Di(·).

The discriminators Di(·) are trained to discern fake images Î f,r from real images Igt

by promoting Di(·) ≈ 0 for the former and Di(·) ≈ 1 for the latter. Thus, the adversarial
loss for the discriminators is defined as

L D
adv = −

1

7

[ 2∑
i=1

log
(
1−Di(Î f,r ++ Io)

)
+ log (Di(Igt ++ Io))+

6∑
i=3

log
(
1−Di(Ci(Î f,r ++ Io))

)
+ log (Di(Ci(Igt ++ Io)))+ (4.15)

log
(
1−D7

(
C5(Î f,r) ++ C̃6(Î f,r)

))
+ log

(
D7

(
C5(Îgt) ++ C̃6(Îgt)

))]
.

As derived for a general problem in Section 2.7.2, Equations (4.14) and (4.15)
demonstrate that the generator and discriminator pursue contrary objectives, which
ultimately leads to the desired realistic reconstruction Î f,r.

4.5.3 Identity Losses

While adversarial losses promote a realistic reconstructed face Î f,r, they do not guarantee
that the face features are coherent within the face. Thus, it is crucial to incorporate
losses, which ensure that the reconstructed faces resemble the underlying identity. Yin
and Di [250] compared the face feature f f,r of Î f,r with the face feature f gt of the ground-
truth face Igt. However, the face feature f does not contain any spatial information,
which is essential when forcing the network to maintain coherent face features within
the entire face. Therefore, multiple approaches [20, 28, 64, 80, 89, 121, 123, 127, 138–
140, 160, 196, 216, 237, 246, 261, 284, 286] favor comparing intermediate feature maps
extracted from Î f,r and Igt. By selecting feature maps at different depths, the network’s
focus can be adjusted to low-level or high-level feature map similarity. Unlike [64, 80, 121,
127, 139, 140, 160, 237, 246, 261, 284, 286] and following Ma et al . [138], Hörmann et al .
[13†] extracted feature maps from a network trained on FR. Therefore, the feature maps
contain more meaningful information for face completion than feature maps extracted
by image classification networks.

In the following paragraphs, two different approaches for measuring feature map dis-
similarity are introduced, which were proposed by Johnson et al . [99]: 1) The perceptual
loss L per

id directly computes the distances between two feature maps, whereas 2) the

style loss L style
id compares the so-called Gram matrices of the feature maps.

Following [99], the perceptual loss is computed by

L per
id =

∑
l∈L

1

H [l]W [l]C [l]

[ ∥∥∥Θ̃[l]
F (Î f)− Θ̃

[l]
F (Igt)

∥∥∥
1
+
∥∥∥Θ̃[l]

F (Î f,r)− Θ̃
[l]
F (Igt)

∥∥∥
1

]
, (4.16)
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where Θ̃
[l]
F (I) denotes the feature map at depth l of the feature extractor F(·) with the

input I before applying the activation function, and L is a set of depths l. Following Liu
et al . [127], L per

id is computed for Î f and Î f,r. In this way, additional focus is set onto

the occluded area, while the non-occluded area is still considered due to Î f. Moreover, a
mix of low-level and high-level feature information is compared by setting L = {10, 40},
i.e., after the ResNet-block “conv2 x” and “conv4 x” (cf . Table 3.4).

The perceptual loss L per
id is often complemented by the style loss

L style
id =

∑
l∈L

1

H [l]W [l]C [l]

[ ∥∥∥Γ(Θ̃[l]
F (Î f)

)
− Γ

(
Θ̃

[l]
F (Igt)

)∥∥∥
1
+

∥∥∥Γ(Θ̃[l]
F (Î f,r)

)
− Γ

(
Θ̃

[l]
F (Igt)

)∥∥∥
1

]
,

(4.17)

where the Gram matrix Γ (F ) of a feature tensor F ∈ RH×W×C is defined as

Γ (F ) = GTG. (4.18)

Here, the matrix G ∈ RHW×C corresponds to F reshaped to a matrix. Thus, the
Gram matrix Γ (F ) ∈ RC×C of a feature tensor F describes the correlation between
different feature maps, i.e., whether different channels tend to activate together at similar
positions. This becomes even more apparent when considering Γ (F ) at position i, j

[
Γ (F )

]
i,j

=
H∑

x=1

W∑
y=1

[
F
]
x,y,i

[
F
]
x,y,j

. (4.19)

In this way, the style loss L style
id promotes similar feature map correlations, whereas

L per
id naively minimizes their difference. Moreover, L style

id can be employed to mitigate
checkerboard artifacts caused in the decoder by transposed convolutions, as shown in
image inpainting and style transfer tasks [127, 139]. Still, multiple image inpainting
approaches [20, 28, 89, 121, 123, 196, 284] exclusively rely on L per

id and do not incorporate

L style
id . This trend is particularly noticeable in face completion tasks.

4.6 Experiments

4.6.1 Training Details

As mentioned in Section 4.4.4, a pretrained face feature extractor F(·) is employed, from
which the feature maps for the identity losses Lid are extracted. During the entire
training of the face completion network, the weights of F(·) are frozen.

Similar to the training of F(·), the VGGFace2 dataset is utilized, which comprises
3.1M images of 8631 identities (see also Table 3.1). All faces are aligned according to
the custom FAP introduced in Section 3.2 with the facial landmarks predicted by the
MTCNN [265] and are then cropped to a resolution of 112×112 pixels. In order to
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guarantee accurate crops for the inputs of the discriminators, the facial landmarks of the
faces after alignment are also loaded.

While F(·) was trained with the augmentations listed in Section 3.5.1, all color
augmentations are discarded as the occlusions provide sufficient variations to avoid
overfitting. Still, horizontal flipping is employed with a probability of paug = 0.5. Since
occlusions constitute the central aspect of this task, faces are occluded with paug = 0.9.
During training, the occlusion’s size and center position co are selected more freely
than introduced in Section 4.1. The area and height ratios are sampled from a uniform
distribution κa ∼ U1(0.01, 0.15) and κh ∼ U1(0.05, 0.5). Besides, the occlusions’ center
co is not limited to any of the four regions but sampled from

[
co
]
i
∼ U1(0.1r, 0.9r). By

excluding the borders, the occlusions primarily cover the face. All remaining parameters
(shape, form, and color) are set as listed in Table 4.1.

The training of the blind face completion network is divided into two steps. First, the
coarse network is pretrained for one epoch with a learning rate η = 2 · 10−4 and batch
size Nb = 8. After pretraining, a rough estimate Îc together with an accurate prediction
of the mask M̂ is obtained, which eases the subsequent training of the fine network.
Only pixel-wise losses focusing on the occluded area are considered for the pretraining
with λo

pix = 3 and λno
pix = λm

pix = 1. Thus, the coarse network is not pretrained as part of
a GAN.

For the GAN training, the weights in the coarse network are initialized with the
values from the pretraining. To account for random weights in the fine network and the
discriminators, their initial learning rates are set to ηfine = ηD = 10−4, while the initial
learning rate in the coarse network is substantially lower ηcoarse = 5 · 10−5. The GAN is
trained for five epochs in an alternating manner, i.e., a batch is either used to train only
the generator or only the discriminator. Furthermore, the discriminator’s weights are
fixed when training the generator and vice versa. After every epoch, the learning rate η is
reduced by a factor of γlr = 4. The total loss of the generator L G

tot (see Equation (4.10))
is balanced using the following factors λo

pix = 3, λno
pix = 1, λm

pix = 10, λG
adv = 1, λper

id = 0.1,

and λstyle
id = 240. Note that by increasing the weight of the pixel-wise similarity loss

for the mask λm
pix by a factor of 10 compared to pretraining, the network is forced to

ensure that the mask prediction remains reliable. λper
id and λstyle

id are chosen as in [127].
All remaining training parameters, including those related to the generation of occlusion,
are identical to the pretraining of the coarse network.

4.6.2 Evaluation Details

The FR performance is evaluated using two benchmark datasets (see also Table 3.2):
The LFW dataset [86] for face verification and the MegaFace dataset [106] for closed-set
face identification. For both protocols, faces need to be synthetically occluded in order to
measure the quality of the reconstruction. The occlusion parameters listed in Table 4.1
are controlled by a seed to obtain a random albeit deterministic augmentation. To cope
with the vast amount of different settings, the influence of text occlusion is evaluated for
height ratios κh ∈ {0.1, 0.3, 0.5}, whereas rectangular occlusions are investigated for area
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ratios κa ∈ {0.05, 0.1, 0.15} if not stated otherwise. Furthermore, all four regions (eyes,
nose, mouth, outside) are considered, resulting in overall 24 occlusion configurations.
Xia [31+] demonstrated that the blind face completion models are robust against color
variations. Thus, color and form, are selected at random yet in a deterministic way.

The occlusion scheme for the LFW dataset was introduced for the preliminary analysis
in Section 4.2, where the face pairs are always occluded similarly. Even though the
position is fixed, it only refers to the region (eyes, nose, mouth, and outside) and permits
a different center co for every occlusion as long it is within the selected region. Thus,
the cross-occlusion scenario of shape, size, and region varying between the two pairs is
not considered.

The MegaFace benchmark comprises a probe set, which consists of 3530 images of 80
identities from the FaceScrub dataset [163], and up to Nd = 106 distractor images from
690k identities within a gallery G. By adding a single image from the probe set to the
gallery set, all remaining images of the same identity are matched with the entire gallery
G to evaluate the face identification performance for a varying gallery size |G| = Nd + 1.
While for the LFW dataset, both faces from a pair are synthetically occluded, only the
images from FaceScrub are occluded for the MegaFace benchmark. Thus, the probe
set only contains occluded faces, whereas the gallery set G consists of Nd non-occluded
distractors and a single occluded image. Therefore, the difficulty of the benchmark is
increased substantially since the single feature of the occluded image enrolled in the
gallery must prevail against Nd accurate features from non-occluded faces. All masks
were published by Hörmann et al . [13†].

The metrics to evaluate face verification and face identification performance are
computed as introduced in Sections 3.5.2.1 and 3.5.2.2.[iii] In order to evaluate the
reconstruction quality, the peak signal-to-noise ratio (PSNR) is computed according to

PSNR = 10 log10

(
22

∥Î f,r − Igt∥2

)
, (4.20)

where the images are assumed to have the value range [−1, 1]. In contrast to the pixel-wise
PSNR, the structural similarity (SSIM) [226] offers a more comprehensive analysis of
visual similarity as it comprises multiple factors accounting for luminance, contrast, and
structure.

Moreover, the accuracy of the reconstruction is evaluated by extracting 196 facial
landmarks [62] and computing the normalized mean squared error (MSE)

MSEn =

1
196

196∑
i=1

∥x̂i − xi∥2

∥x38 − x88∥2
, (4.21)

[iii]In contrast to the analysis in Section 3.6, the original MegaFace benchmark, i.e., without the
refinement introduced by Deng et al . [33], was used to match the results obtained by Hörmann et al .
[13†]. Thus, the baseline results on MegaFace do not correspond to the results obtained in Section 3.6
by the VGG-112 model.
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Table 4.2: Ablation study on FR performance using TPIR [%] at rank R = 1 on the MegaFace
benchmark [106] with Nd = 106 and Acc [%] on the LFW benchmark [86]. All metrics are
averaged over four positions and three sizes per shape (cf . Section 4.6.2). † denotes that
L o

pix was also computed on Î f. The highlighted model is analyzed in detail in the following
subsections.

Losses Attention MegaFace Nd = 106 LFW

L per
id L style

id L
(n)occ
pix Self Cross non-occluded Rectangle Text Avg Rectangle Text Avg

VGG-112 52.32 29.81 28.88 29.34 97.65 97.18 97.41
VGG-112-o 54.40 42.38 44.66 43.52 98.85 99.05 98.95
BVMR [77] 52.32 29.48 43.61 36.55 97.75 99.04 98.40
Coarse Network 52.32 31.63 44.89 38.26 97.95 99.08 98.52

✓ ✓ ✓ ✓ ✓ 52.32 37.18 47.50 42.34 98.61 99.18 98.90
✓ ✗ ✓ ✓ ✓ 52.32 37.43 47.53 42.48 98.60 99.17 98.88
✗ ✓ ✓ ✓ ✓ 52.32 36.98 47.35 42.17 98.62 99.23 98.93
✗ ✗ ✓† ✓ ✓ 52.32 36.08 46.89 41.49 98.54 99.18 98.86

✓ ✗ ✗ ✓ ✓ 52.32 36.53 47.24 41.89 98.56 99.20 98.88
✓ ✗ ✓† ✓ ✓ 52.32 37.09 47.43 42.26 98.64 99.22 98.93

✓ ✗ ✓ ✗ ✓ 52.32 35.05 46.91 40.98 98.44 99.17 98.80
✓ ✗ ✓ ✓ ✗ 52.32 37.19 47.42 42.31 98.63 99.21 98.92

where xi and x̂i denote the ith facial landmark of the ground-truth image Igt and the

reconstructed image Î f,r, respectively. The 38th and the 88th landmark correspond to the
left and right pupil and are used to determine the intraocular distance. By normalizing
MSEn with the intraocular distance, the metric becomes invariant to different face sizes.
This normalization is popular for evaluating facial landmark detection approaches.

4.7 Results

During evaluation, two primary baselines are considered. For a fair comparison, a
blind face completion method, the BVMR model by Hertz et al . [77], was trained
on the VGGFace2 dataset with the same augmentation scheme as all other models.
The remaining parameters are identical to the parameters reported by the authors.
Furthermore, a similar model to VGG-112 is trained, which follows the same occlusion
data augmentation as when training the blind face completion models. This model is
named VGG-112-o. Even though VGG-112-o does not perform any face completion, it
still provides valuable insights into the performance of a straightforward method if face
completion is not required.

4.7.1 Ablation Study

4.7.1.1 Quantitative Results

An ablation study is performed in terms of FR performance and reconstruction quality to
obtain the best-performing model and analyze the impact of different training parameters.
The results are reported in Tables 4.2 and 4.3, respectively.
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Table 4.3: Ablation study on reconstruction quality using PSNR and SSIM on MegaFace.
All metrics are averaged over four positions and three sizes per shape (cf . Section 4.6.2).
† denotes that L o

pix was also computed on Î f. The highlighted model is analyzed in detail in
the following subsections.

Losses Attention PSNR SSIM

L per
id L style

id L
(n)occ
pix Self Cross Rectangle Text Avg Rectangle Text Avg

Occluded 19.95 20.89 20.42 0.8665 0.8388 0.8526
BVMR [77] 31.29 39.07 35.18 0.9406 0.9721 0.9563
Coarse Network 33.11 39.48 36.30 0.9505 0.9739 0.9622

✓ ✓ ✓ ✓ ✓ 33.44 39.94 36.69 0.9533 0.9743 0.9638
✓ ✗ ✓ ✓ ✓ 33.42 39.94 36.68 0.9535 0.9743 0.9639
✗ ✓ ✓ ✓ ✓ 33.43 39.93 36.68 0.9530 0.9739 0.9634
✗ ✗ ✓† ✓ ✓ 34.25 40.40 37.33 0.9566 0.9743 0.9655

✓ ✗ ✗ ✓ ✓ 33.25 39.70 36.47 0.9523 0.9742 0.9632
✓ ✗ ✓† ✓ ✓ 34.32 40.47 37.39 0.9573 0.9751 0.9662

✓ ✗ ✓ ✗ ✓ 33.25 39.81 36.53 0.9521 0.9735 0.9628
✓ ✗ ✓ ✓ ✗ 33.36 39.87 36.61 0.9531 0.9739 0.9635

The drop in FR performance of VGG-112 for occluded faces observed in Section 4.2 is
also apparent in Table 4.2 on the MegaFace benchmark from 52.32% to 29.34%. Besides,
it is reflected by the PSNR and SSIM in Table 4.3. Note that on MegaFace, the true
positive identification rate (TPIR), and PSNR are very similar for rectangular and text
occlusion. Thus, the evaluation parameters introduced in Section 4.6.2 create occlusions
of different shapes, which are perceived as equally challenging for an FR model that
is unfamiliar with occlusions. For non-occluded faces, no drop in TPIR is observed.
Hence, non-occluded faces are untouched by the blind face completion networks, and
thus alterations are limited to the occluded areas.

Reconstructing the face clearly helps in mitigating this drop as the average TPIR is
restored to 36.55% and 38.26% by the BVMR model and the pretrained coarse network,
respectively. The superior performance of the coarse network compared to the BVMR
model is also apparent when considering reconstruction quality in Table 4.3. Thus, despite
the lower parameter count (4.1M compared to 20.5M), the coarse network outperforms
the BVMR model. Hörmann et al . [13†] conjectured that this is mainly due to the
DMFB in the coarse network.

The addition of the fine network consistently provides superior results on all metrics
regardless of the exact parameter configuration. Even though it is crucial to employ
identity losses Lid, the differences between employing L style

id or L per
id are only noticeable

in the FR performance with minor advantages of solely using L per
id . This is in accordance

with many image inpainting researchers [20, 28, 89, 121, 123, 196, 284] who employed
L per

id and discarded L style
id . Without any identity losses, the training only converges if

an additional pixel-wise similarity loss is employed for the occluded area of Î f,r. Besides,
the FR performance drops substantially, which demonstrates the necessity of using at
least one identity loss.
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Even though pixel-wise similarity losses L (n)o
pix are employed solely for the coarse

reconstruction, they improve the FR performance and reconstruction quality of the
refined reconstruction. Adding another loss L o

pix on the prediction of the fine network Î f,r

slightly mitigates the FR performance yet increases reconstruction quality. However, one
must note that PSNR is computed similarly to L o

pix without any spatial dependencies.
Thus, a blurrier reconstruction would help in accomplishing a better PSNR. To fully
evaluate this apparent trade-off between FR performance and reconstruction quality, a
qualitative analysis is required.

Besides the influence of the loss function, it is apparent that the dual attention
structure is vital for the best performance. When considering both attention blocks
separately, it is clear that the self-attention block has a more significant impact on the
FR performance and reconstruction quality than the cross-attention block. Still, a slight
improvement is observed when adding the cross-attention block.

The FR performance for VGG-112-o, i.e., the FR network trained on occluded
faces, demonstrates that superior results are accomplished on average without prior
face completion. This is no surprise since the face feature extractor F(·) of the blind
face completion network was not optimized to cope with reconstructed faces Î f,r and is
still identical to VGG-112. Hence, F(·) was never exposed to occlusions and assumes
that information originating from every pixel is equally reliable. In contrast to F(·),
VGG-112-o only extracts information from non-occluded – i.e., reliable – pixels. However,
while VGG-112-o surpasses all face completion approaches for rectangular occlusions, face
completion algorithms perform the best results for text occlusion, demonstrating that
face completion excels for sparse activations. Moreover, face completion always provides
the reconstructed face Î f,r and a prediction of the mask M̂ as additional outputs.

This quantitative analysis demonstrated that face completion cuts in half the drop
in FR performance when faces are tampered with occlusions. At the same time, no
unwanted artifacts are introduced into the non-occluded regions, which shows that prior
face completion can always be performed and does not create any downsides except for
the additional processing time.

4.7.1.2 Qualitative Results

Figure 4.10 illustrates the qualitative results of the proposed coarse-to-fine network in
comparison with the coarse network and the BVMR model [77]. It is apparent that the
coarse network and the BVMR model struggle when exposed to rectangular occlusions.
Since the results for text occlusions are acceptable, a dependency of the reconstruction
quality on the distance to the closest reliable pixel is identified. Sparse text occlusions do
not require long-distance information transfer, leading to overall superior performance
compared to dense rectangular occlusions.

The results of the coarse-to-fine network show an increase in realism of the recon-
structed areas, which is primarily attributed to the adversarial training and the dual
attention structure. Even under adverse conditions, e.g ., glasses, head poses, and in-
tense beards, the networks generated remarkable reconstructions without any unrealistic
mismatch in eye colors as in [260, 284].
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Coarse

BVMR

Figure 4.10: Qualitative results of selective models with the occluded input Io (first row) and
the ground-truth image Igt (last row). The size set to as κa = 0.1 and κh = 0.3. The models

using the fine network were trained with either L style
id or L per

id . Hence, the model marked by

L per
id is highlighted in Tables 4.2 and 4.3. † denotes that L o

pix was also computed on Î f.

The occlusion of the mouth region also illustrates the ambiguity of the task, which
was introduced in Section 4.5.1. While the coarse network and the BVMR model produce
blurry results, the coarse-to-fine networks provide realistic results even though they differ
from the ground-truth image Igt. E.g ., lipstick was not applied in the reconstruction;
however, the reconstruction still fits and is realistic without lipstick. Moreover, two
additional examples are depicted in which the mouth is open in Igt while it is closed in

the reconstruction Î f,r, and vice versa. In the case of applying lipstick, the model seems
to favor not reconstructing a mouth with applied lipstick – most likely due to the lack of
training samples and gender bias. In contrast, the different reconstructions of the mouth
indicate no mode collapse of the GAN. However, extreme facial expressions, as in the
last column of Figure 4.10, provoke reconstruction artifacts.

Between the three models, minor differences become apparent only upon closer
inspection. The reconstructions by the model, which was trained with L style

id and thus
without L per

id , contain more unrealistic textures and artifacts. Using L per
id instead of

L style
id reduces these artifacts. The additional L1 loss on the occluded pixels in Î f

suppresses the artifacts creating a smoother yet more realistic reconstruction. This
finding confirms the analysis in the previous section, which found that this additional L1

controls the trade-off between FR performance and reconstruction quality. The overall
best reconstruction by the model denoted with L per

id
† is accompanied by slightly inferior

FR performance compared to the model marked with L per
id .
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Figure 4.11: Overview of the robustness of the coarse-to-fine dual attention network
(C2F-DAN) and the baselines in terms of rank R, number of distractors Nd, size κa and
κh, and position on the MegaFace benchmark [106]. Adapted from [13†].
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Figure 4.12: Effect of occlusion and reconstruction on the accuracy of facial landmark
prediction on the LFW dataset [86].

4.7.2 Detailed Analysis

The ablation study in Section 4.7.1 identified a trade-off between FR performance and
reconstruction quality. Since the focus of this work lies on FR performance, the model
trained with L per

id and without style loss L style
id , which is highlighted in Tables 4.2 and 4.3,

is selected for the upcoming in-depth analysis and referred to as the coarse-to-fine dual
attention network (C2F-DAN).

4.7.2.1 Rank R and Number of Distractors Nd

Figure 4.11 depicts an exhaustive analysis of the C2F-DAN in terms of FR dependent
on shape, size, and position of the occlusions. The first two columns in Figure 4.11 show
similar behavior for TPIR as the general FR approaches in Section 3.6.2.2. Overall,
the averaged results from Table 4.2 are confirmed. The C2F-DAN outperforms BVMR
consistently regardless of the occlusions’ shape, whereas the C2F-DAN obtains superior
TPIR compared to VGG-112-o only for text occlusions.

4.7.2.2 Influence of Position and Size κ

For both occlusion shapes, the dependency of TPIR on the position and size follows
the preliminary analysis in Section 4.2. Rectangular occlusions reveal a clear picture
of the influence caused by the occlusions’ position. As expected, occlusions outside
the face only slightly harm FR performance and thus also yield the best TPIR after
reconstruction. This is confirmed by the reconstruction quality since worse SSIM is
observed for occlusion at the borders. Hence, the superior TPIR for the borders is not
due to impressive reconstruction quality but rather caused by the irrelevance of the
background when identifying a face. Interestingly, VGG-112-o provides superior results
if the rectangular occlusion is centered around the mouth. This is also observed for the
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Figure 4.13: Qualitative results Î f,r of the C2F-DAN for faces tampered with occlusions Io,
which were not part during training.

BVMR, where a larger TPIR is obtained from reconstructing the mouth regions. In
contrast, the C2F-DAN considers the mouth and eyes as equally difficult, whereas the
nose is perceived as the most challenging region – probably due to the central occlusion
within the face. In contrast to BVMR and VGG-112-o, the slightly elevated TPIR on
eyes compared to mouth and nose suggests that the C2F-DAN successfully transfers
information from the non-occluded eye to reconstruct the occluded eye.

Text occlusions reveal an impressive gap between the C2F-DAN and the remaining
approaches. Besides, it is apparent that all approaches struggle with occlusions covering
the eyes, which is mainly attributed to the wide form of the text. Thus, for large
height ratios κh it is likely that both eyes are occluded, which inevitably leads to a drop
in TPIR. The SSIM provides a clear preference for the C2F-DAN, particularly for
rectangular occlusions.

4.7.2.3 Reconstruction Accuracy

Hörmann et al . [13†] proposed to leverage facial landmarks to measure the accuracy of the
reconstruction. By computing the MSE normalized by the intraocular distance according
to Equation (4.21), they obtain a metric describing the accuracy of the position and the
form of the reconstructed face parts. Ideally, the position of the facial landmarks of the
reconstructed image Î f,r and the ground-truth image Igt should be identical. However,
similar to PSNR and SSIM , the MSE does not address the ambiguity problem.

Figure 4.12 depicts the cumulative distribution of the normalized MSE. The
C2F-DAN provides a more accurate reconstruction, particularly for rectangles. Be-
sides, this analysis further shows that prior face completion is vital to obtain accurate
facial landmarks as facial landmark detectors are very susceptible to occlusions.
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target source swapped

Figure 4.14: Attention map of the patch-wise cross-attention block. Colors illustrate the
information transfer, i.e., a red patch in the source V is used for the red position(s) in the
target R. The information transfer is visualized on Igt even though takes place in feature maps.
Still if the reconstruction looks visually appealing in the image space, it is likely that relevant
information is considered in the feature space.

4.7.2.4 Extension to Arbitrary Shapes

Figure 4.13 depicts a wide range of occlusions which were never seen by the network
during training. The reconstructed images show the impressive generalization capabilities
and limitations of the C2F-DAN. It is evident that the network recognizes different forms
(circles) or free-form shapes. However, covering both eyes with occlusion constitutes a
challenging problem as no information can be transferred from a potentially non-occluded
eye. Also, grids are reconstructed satisfyingly by the C2F-DAN. Occluding the face with
text composed of non-Latin letters reveals that the C2F-DAN did not overfit on Latin
letters during training. The artifacts created by Arabic and Chinese letters suggest that
thin lines impede a reliable mask detection. Since thin lines were rare during training,
extending the occlusion generation to incorporate lines could alleviate these limitations.

The second row of Figure 4.13 reveals that the C2F-DAN handles an arbitrary number
of occlusions in random colors as long as they do not overlap or cover a large part of the
face. This is particularly impressive since the C2F-DAN was only exposed to a single
occlusion with a homogeneous color. Artifacts in the reconstruction occur if occlusions
overlap. However, this can also be addressed by extending the augmentation scheme
to encompass overlapping occlusions. Overall, Figure 4.13 highlights the astounding
generalization capability of the C2F-DAN.

4.7.2.5 Attention Map of the Patch-Wise Cross-Attention Block

Figure 4.14 illustrates the most similar patches according to S, which are used to
reconstruct R from V . The patch-wise cross attention block mostly leverages information
from the non-occluded eye. This is particularly noticeable for the eye brows and the
inner eye regions. Information for the pixels surrounding the eye are pooled from the
entire face, which is reasonable. The swapped faces demonstrate that the cross-attention
block leverages relevant information to rebuild the eye in the feature space. Hence. the
patch-wise cross-attention block operates as intended.
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4.8 Conclusion and Future Work

This chapter introduced a novel approach for blind face reconstruction utilizing a coarse-
to-fine network with a dual attention structure (C2F-DAN). The coarse-to-fine network
effectively splits the reconstruction task into two parts: 1) create a rough estimate of the
occluded area and an accurate prediction of the mask; and 2) refine the rough estimate to
obtain a realistic reconstruction. While the DMFB ensures that the coarse network has a
large receptive field, the parallel structure of two attention modules that complement each
other makes the network incorporate global information. The patch-wise cross-attention
block captures the underlying structure and promotes the transfer of textures, whereas
the pixel-wise self-attention block performs unrestricted information transfer.

Multiple loss functions were employed to obtain the desired results. Pixel-wise
similarity losses Lpix ensure a rough estimate by the coarse network together with an
accurate mask prediction. A realistic refinement is obtained by training the C2F-DAN
embedded into a GAN to leverage the adversarial loss Ladv. In total, seven discriminators
focus on distinct parts of the face and ensure crisp details in the reconstruction. Identity
losses Lid based on feature maps from a pretrained feature extractor guide the C2F-DAN
to generate coherent identity features in the reconstructed areas.

The exhaustive ablation study revealed a trade-off between FR performance and
reconstruction quality. By adding another pixel-wise similarity loss on the occluded area
of the refined reconstructed image Î f,r, the reconstruction quality is improved at the
cost of FR accuracy. Besides, the perceptual loss L per

id is the preferred identity loss and
the parallel attention structure is vital for the training success. Moreover, the analysis
showed that the patch-wise cross-attention block operates as expected by replacing
occluded patches with similar patches from the non-occluded region.

The in-depth analysis on the MegaFace benchmark demonstrated that the C2F-DAN
excels when exposed to sparse occlusion outperforming the BVMR model and the baseline
trained on occlusions (VGG-112-o). For rectangular occlusions, the VGG-112-o can
better focus on the reliable pixels and ignore the occluded pixels. In contrast, the feature
extractor in the C2F-DAN cannot tell whether the information originating from a single
pixel is reliable since it was never trained with occlusions, resulting in overall inferior
FR performance. Still, the C2F-DAN provides the reconstructed image Î f,r and the

mask M̂ as additional outputs. Regarding the occlusions’ position, it can be stated that
nose regions are most challenging for rectangular occlusions, whereas the eye regions
constitute the most difficult position for text occlusions. Due the wide form of the
text occlusion, both shapes have the highest probability that both eyes are occluded.
Therefore, occluding both eyes is the most challenging scenario for face completion,
whereas the occlusion of one eye is compensated by leveraging the information provided
by the other eye. To conclude, the quantitative analysis confirms that the C2F-DAN
successfully mitigates the drop in FR performance and thereby accomplishes the second
objective of blind face completion.

The reconstruction accuracy indicated that the C2F-DAN closely approximates the
underlying face parts and is very useful when extracting facial landmark positions of
occluded faces. Furthermore, the abundance of distinct occlusions unseen during training
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demonstrated that the C2F-DAN successfully adapts to unknown shapes and letters,
and handles multiple occlusions of different colors. This analysis shows that a vast
variety of occlusions are removed without tedious mask annotations since the C2F-DAN
estimates the mask. Considering the highly realistic inpainting results and impressive
generalization to unknown occlusions, the first objective of blind face completion is also
achieved by the C2F-DAN.

The analysis also revealed several limitations of this work, which can be tackled in
future works. The drop in FR performance due to occlusions can be further minimized by
finetuning the face feature extractor F(·) of the C2F-DAN to cope with the reconstructed
faces. In this way, F(·) learns to identify the pixels that contain reliable information and
does not consider every pixel as equally important. This shortcoming can be remedied
by incorporating modified partial convolutions [127]. The vanilla partial convolution
sets the input pixel value to zero if it is encompassed by the occluded area. If partial
convolutions were implemented in F(·), this behavior would lead to similar performance
as obtained by VGG-112-o as no information from the occluded area is considered and
the face completion would become irrelevant. Subsequent works do not incorporate a
binary mask and thus offer a more promising solution, e.g ., gated convolutions [249, 255],
which learn to create layer-wise soft attention maps, or region-wise convolutions [139]
with different weights for occluded and non-occluded pixels.

The C2F-DAN was trained with the VGG-112 model as a face feature extractor.
However, the analysis in Section 3.6.3 illustrated that recent models outperform VGG-112
on FR. This is not a huge issue when analyzing the general behavior of FR models
exposed to occluded faces since all FR models are expected to be affected similarly by
occlusions. Nevertheless, incorporating richer features provided by recent FR models is
expected to aid the reconstruction.

Another limitation becomes apparent in the qualitative results. Unrealistic reconstruc-
tions are obtained if both eyes are occluded, in extreme head poses or facial expressions.
While the network would undoubtedly benefit from more training data encompassing
such cases, increasing the focus of the adversarial loss L G

adv on the occluded area may
alleviate these issues. Besides increasing λG

adv, employing discriminators with only the
occluded region as input would also shift the focus. Zhou et al . [284] demonstrated
remarkable results with a similar discriminator structure.

Further extensions are conceivable in terms of the variety of occlusions. The general-
ization analysis illustrated that the C2F-DAN already handles a wide range of occlusions.
Still, several limitations become apparent. The C2F-DAN often misses detections of
thin occlusions and overlapping occlusions of distinct colors. Both can be coped with by
diversifying the augmentation scheme to encompass such scenarios. Besides, masks are
only detected for sharp edges. Thus, if antialiasing is applied afterward, the C2F-DAN
struggles to detect the mask and thus entirely fails the reconstruction. Like overlapping
masks, this scenario can be considered by extending the variety of the augmentations.
As the next step, natural occlusions, e.g ., medical face masks or glasses, can be included.
Recently, emerging works on face mask removal have shown astounding results [138, 250];
however, face mask removal with photos taken in the wild still leaves some artifacts due
to the limited generalization of the model trained with synthetic occlusions [138].
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5

Attentional Pooling for
Partial Face Recognition

The previous chapter presented a blind face completion approach to cope with occluded
faces, i.e., part of the face Igt is synthetically occluded by a mask M gt of a random color
c. Partial face recognition (FR) is related to occluded FR since it also considers FR,
where part of the face is occluded. However, partial FR constitutes a more challenging
scenario since only a small part of the face is visible, whereas the occluded FR implies
that only a (small) part of the face is occluded. Thus, partial FR is also referred to as
the recognition of face patches.

As introduced for face completion in Equation (4.1), a partial face Io is generated
from a ground-truth face Igt and a mask M gt by

Io = (1r,r −M gt)⊙ Igt, (5.1)

where
[
M gt]x,y = 1 denotes that the pixel position x, y is occluded.[i] In the domain of

partial FR, non-occluded faces Igt are typically referred to as holistic faces. Compared to
Equation (4.1), Equation (5.1) does not consider distinct colors of the masked areas. Thus,
the background is automatically set to gray to match the preprocessing, which provided
an image Igt with values ∈ [−1, 1] (cf . Equation (3.16)). Besides, a gray background
compared to a black background also softens the edges between the background and the
non-occluded areas.

While occluded faces in Chapter 4 and partial faces are highly related, obtaining
reliable FR results on both differ due to the varying size of occlusion. For synthetically
occluded faces, only masks with an area ratio κa ≪ 0.5 (cf . Equation (4.2)) are considered,
whereas even faces with κa > 0.9, e.g ., only one eye of the face is visible, are addressed
in partial FR. In such scenarios, reconstructing the faces as in Chapter 4 constitutes an
incredibly challenging task. Moreover, after reconstruction, most pixels are artificially
generated and thus unreliable. This needs to be considered during the FR as otherwise,

[i]The symbol Io is used for partial faces to maintain consistency with Chapter 4 since occluded and
partial faces are created similarly. Note that the ground-truth image Igt corresponds to the aligned
image Iaug.
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Figure 5.1: Examples of partial faces occurring in the Labeled Faces in the Wild (LFW)
dataset [86] and synthetically generated partial faces.

the features become distorted by the overwhelming amount of unreliable information.
Therefore, a direct FR approach, i.e., recognition without reconstruction, is favored in
partial FR. Still, advanced mechanisms are essential to aid the network in focusing on
the non-occluded pixels, as straightforward data augmentation with partial faces does
not suffice.

Figure 5.1 depicts partial faces in unconstrained conditions and the synthetic partial
faces created with Equation (5.1). Thus, partial faces must be considered in unconstrained
scenarios as information may be limited due to extreme head poses, occlusions of
foreground objects, or if the face is cut off at the image’s border. While natural and
synthetic partial faces seem vastly different, both contain large areas with no identity
information. Such faces complicate the recognition in multiple ways. On the one hand,
information is scarce, and thus partial FR approaches must be able to extract meaningful
identity information from a small patch. On the other hand, the non-occluded area
varies, i.e., the network must learn to extract information from distinct areas, e.g ., from
the eye and from the mouth, and reach a decision whether two patches from different
face regions belong to the same identity. Moreover, face alignment as introduced in
Section 3.2 is often not feasible. Thus, the network must be able to handle face patches
also at unusal positions in the input image, e.g ., the last image in Figure 5.1 shows an
eye patch at the center of the image.

Therefore, the objective of partial FR is to obtain an algorithm that is robust to
partial faces regardless of whether the partial faces are synthetically created or taken
in the wild. Besides, the partial FR algorithm must be capable of comparing two non-
overlapping face patches and should be invariant to the position of the patches within
the image, while accomplishing comparable performance on holistic faces.

Robustness against partial faces is increased by encompassing them in training.
However, by precisely designing the architecture and loss function to cope with the
limited information inherent in partial faces the robustness further improves. Large parts
of the work provided in this chapter were pre-published in [10†].

5.1 Related Work

As elaborated in Section 3.2, face detection and alignment are vital preprocessing steps
in holistic FR. For partial FR, either the preprocessing must be modified to cope with
partial faces, or the subsequent partial FR must be capable of handling images of varying
scales and resolutions. The latter option requires highly sophisticated methods to learn
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dependencies between face parts at various resolutions. Thus, most partial FR approaches
rely on prior partial face detection [19, 142, 166] or manually create partial faces by
synthetically masking holistic faces.

Partial FR has been investigated for decades, with the first approaches focusing on
single face parts [67, 168, 186]. Sato et al . [186] proposed radial basis function networks
to predict the identity given patches around the eye, ear, or nose, whereas Gutta et
al . [67] considered face halves. Similarly, Park et al . [168] focused on the periocular
region. However, they extracted features based on gradient orientation histogram and
local binary patterns around multiple eye keypoints. Since the extraction of keypoints
is feasible for partial faces of arbitrary size, various works [81, 124, 230] alleviated the
limitation of fixed-size inputs of predefined face patches.

Liao et al . [124] represented every partial face with a set of scale-invariant feature
transform (SIFT) keypoint descriptors and employed a sparse representation-based
classification algorithm. SIFT descriptors were also extracted by Hu et al . [81]; however,
they proposed a more efficient instance-to-class distance for matching. Weng et al. [230]
combined SIFT and speeded up robust features (SURF) descriptors and utilized metric
learning extended robust point matching method for recognition.

Owing to the emerging convolutional neural networks (CNNs), more powerful methods
were proposed for partial FR. He et al . [75] designed a multiscale double supervision
CNN, comprising 55 distinct CNNs. Every CNN is trained with different face patches
at multiple scales for feature extraction by optimizing cross-entropy (CE) and triplet
loss (see Equation (3.8)). For holistic faces, all features are extracted, whereas partial
faces only allow the extraction of particular patches. Thus, partial faces can only be
recognized if their patches overlap. Moreover, all faces are aligned using the eye corners,
restricting this approach to faces where eyes are always visible.

With dynamic feature matching, He et al . [73] proposed a fully convolutional network
capable of matching face patches of arbitrary size. After multiple convolutional layers,
holistic faces are described by feature maps of size 7×7×512, whereas partial faces
are represented by feature maps of size H×W×512, where H ≤ 7 and W ≤ 7. Since
identical feature map dimensions are required for matching, various sub-feature maps of
size H×W×512 are extracted from the holistic feature maps. Then, every sub-feature
map is compared to the feature map of the partial face. Sparse and similarity-guided
constraints further supervise the matching. To cope with misalignment of feature maps
caused by different resolutions, the authors further extended their work by incorporating
multiscale feature maps [74].

Keypoint-based approaches [81, 124, 230] and both deep-learning methods [73, 75]
accomplish matching of faces of arbitrary input resolutions. Nevertheless, they require
overlapping face patches. Hence, matching non-overlapping partial faces, e.g ., a patch of
the eye with the mouth, is not feasible with [73, 75, 81, 124, 230]. This also holds for
earlier models, which solely focus on single face parts [67, 168, 186].

Despite the vigorous efforts to adapt CNNs to handle arbitrary input sizes by He et al .
[73–75], recent methods shifted focus from face patches of arbitrary input resolutions to
fixed-size inputs. In order to obtain an input image with a fixed resolution, two options
are plausible: resizing or zero-padding every face. The former was considered by He et
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Figure 5.2: Architecture of the partial FR network. A truncated ResNet with L = 40 layers
extracts feature maps F and attention maps Ã from a partial face Io. By leveraging the
recalibrated attention maps A, information from F at the positions indicated by A is pooled
into K intermediate feature vectors vk. The aggregate module maps vk into a joint feature
space f̃k in which they are aggregated to obtain the final feature vector f , which robustly
encodes the information of a partial face. Adapted from [10†].

al . [73, 74], who employed a VGGNet [191] (see Section 3.3) as a baseline. Their analysis
clearly showed that deforming the face patch to match the desired input resolution leads
to inferior results. Hence, deforming the input should only be used if an FR network
is available and a fast solution without additional training is necessary. Zero-padding
provides a less invasive way of obtaining an image with a fixed resolution. Still, it must
be noted that the information of an appropriate size is leveraged if face patches are
zero-padded. Hence, this information needs to be available by the partial face detector.

Apart from the partial FR approaches mentioned earlier, occlusion-robust FR ap-
proaches can also handle partial faces. E.g ., blind inpainting approaches (see Section 4.3.3)
detect the occlusion and reconstruct the face [28, 77, 123, 133, 138, 216, 224, 250, 267, 281].
However, the reconstruction leaves many unreliable pixels, complicating the subsequent
FR.

Thus, direct occlusion-robust FR approaches are proposed. Geng et al . [50] employed
a generative adversarial network (GAN) to generate medical face masks for data augmen-
tation and thereby increased the robustness of FR models when exposed to faces with
medical face masks. Besides, Ding et al . [40] proposed to combine local features from
the non-occluded area with global features originating from partly occluded pixels. Wan
et al . [210] attenuated the activations associated with occluded face areas of a middle
layer in a CNN. Song et al . [195] claimed that these activations in a middle layer are
not discriminative enough and proposed to entirely discard activations originating from
occluded pixels right before the bottleneck layer. In order to improve the robustness
against occlusions, Xu et al . [243] incorporated an attention mechanism to extract local
features, which are combined with global features to form an occlusion-robust feature.

5.2 Architecture

Extracting valuable information from faces, where only a small part of the face is visible,
constitutes a challenging task. The network needs to extract relevant information from a
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Table 5.1: Architecture of the extract module. Residual units are shown in brackets. † denotes
that the 3×3 convolution in the first unit operates with stride S = 2.

Block Size Layer

1 80×80 7×7, 64, S = 2

2 40×40

3×3 maximum pooling, S = 2 1×1, 64
3×3, 64
1×1, 256

×3

3 20×20

 1×1, 128
3×3, 128†

1×1, 512

×4

4 20×20

 1×1, 256
3×3, 256
1×1, 1024

×6

 1×1, 256
3×3, 256
1×1, 1024

×6

1×1, K

small patch and create general, comparable features regardless of the content and position
of the patch. To be precise, the feature vector f describing the identity information of a
face must be invariant to crops of varying sizes of the same face around different face
parts. Besides, it must further be invariant against the position of the crop, e.g ., the
network must learn to extract information from an eye since the patch contains an eye
and not because the patch is positioned at the typical location of the eye.

To handle such scenarios and improve the invariance of the network against content
and position, Hörmann et al . [10†] proposed to split the network into three distinct
modules: 1) The extract module processes the input image Io and extracts feature
maps F ∈ R20×20×1024, which spatially encode identity information, and attention maps
Ã ∈ R20×20×K , which point towards relevant information in F . 2) In the attend module,
the information in F is pooled into K intermediate feature vectors vk as indicated by
the kth recalibrated attention map

[
A
]
:,:,k

. 3) The aggregate module concludes the

architecture, which maps all intermediate feature vectors vk into a joint feature space
f̃k ∈ R256 and outputs the final feature vector f by averaging all f̃k. The following
subsections explain every module in detail.

5.2.1 Extract Module

As introduced in Section 3.3, state-of-the-art FR approaches leverage residual networks
(ResNets) [72] to extract rich identity features from faces. In contrast to approaches
designed to embed holistic faces into a discriminative feature space represented by a
feature vector f , the extract module provides feature maps F of size 20×20 in order
to preserve spatial information. A larger resolution of F is obtained by considering
larger resolutions of r×r = 160×160 of the input face Io instead of the widespread
r = 112. Inspired by Xie et al . [239], Hörmann et al . [10†] based their extract module on
a ResNet-v2 with depth L = 50, which is truncated after l = 40, i.e., after the fourth
block named “conv4 x” (cf . Table 3.4). By downsampling the input only three times, a
resolution of F = Θ[40](Io) ∈ R20×20×1024 is obtained. In this way, the position of the
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features is still well-distinguishable. Unlike Xie et al . [239], Hörmann et al . [10†] split
the ResNet after the third block such that each branch focuses on its respective task.
To obtain K attention maps

[
Ã
]
:,:,k

an extra 1 × 1 convolutional layer is added. The

rectified linear unit (ReLU) [159] activation function is employed throughout the extract
module. Table 5.1 summarizes the detailed architecture of the extract module.

In order to extract meaningful information from the non-occluded areas, attention
maps Ã should fulfill the following two properties: 1) They should be mutually exclusive,
i.e.,

[
Ã
]
:,:,j
̸≈
[
Ã
]
:,:,k
∀ j ̸= k, such that every attention map

[
Ã
]
:,:,k

points at the

location of distinct features. 2) The activation of the attention maps should correlate
with the presence of its respective feature in F , i.e., if only the nose is visible, attention
maps indicating the location of nose-related features should have only values ≈ 0. Note
that Ã is implicitly defined, and thus the attention maps

[
Ã
]
:,:,k

do not necessarily

correspond to the human-defined facial landmarks.

5.2.2 Attend Module

A recalibration is required before pooling the information from the feature maps F at the
locations indicated by

[
Ã
]
:,:,k

to obtain a feature vector vk. Xie et al . [239] implemented

attentional pooling for set-based FR. This allowed them to normalize
[
Ã
]
:,:,k

spatially

over all pixels and across all images within a set. In this way, they guarantee that the
information is pooled from the image with the most prominent features. In contrast to
set-based FR with multiple holistic faces, partial FR only considers a single face or even
a face region. Therefore, features corresponding to face regions defined by

[
Ã
]
:,:,k

may

not be present in F due to the occlusion. This corresponds to attention maps
[
Ã
]
:,:,k

with values ≈ 0, which the recalibration must address.
Hörmann et al . [10†] based their recalibration on the squeeze-and-excitation block

proposed by Hu et al . [82] and converted it into a parameter-free recalibration suitable
for partial FR. First, every pixel in Ã is self-normalized independently to a value range
between 0 and 1 by employing a sigmoid function Ψnorm (·) = sigmoid (·).

In parallel, a score vector s̃ ∈ RK denoting the presence of the respective features in
the kth feature map is obtained via global average pooling (GAP) by

[s̃]k =
1

202

20∑
i=1

20∑
j=1

[
Ã
]
i,j,k

, k = 1, . . . , K. (5.2)

After normalizing s̃ with Ψex (·) = softmax (·) by

s = Ψex (s̃) , (5.3)

the vector s indicates the relevance of every attention map
[
Ã
]
:,:,k

after comparing the

average activation of all K attention maps
[
Ã
]
:,:,j

. Then, the normalized scores s are

leveraged to recalibrate the self-normalized attention maps yielding the final recalibrated
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attention maps [
A
]
:,:,k

= [s]kΨnorm

([
Ã
]
:,:,k

)
, k = 1, . . . , K. (5.4)

Equation (5.4) illustrates that the attention maps are recalibrated in two ways: 1)
Local self-normalization is performed by normalizing every pixel individually; and 2)
global cross-normalization according to the relevance vector s, which is calculated by
comparing the average activation of all attention maps. Thus, the activations in

[
Ã
]
:,:,k

are recalibrated to correlate with the presence of the corresponding features in F with
respect to all other features indicated by

[
Ã
]
:,:,j

for j ̸= k.

After recalibration, F and A are reshaped to a resolution of 1024×202 and 202×K,
respectively. Then attentional pooling, as in [239], is performed by

V = FA. (5.5)

The attentional pooling, as described by Equations (5.2) to (5.5), describes a variation
of a simplified self-attention block as introduced in Section 4.4.1.3. In self-attention, a
normalized matrix of relevance scores S is used to pool information from the value matrix
V at positions specified by S. Here, Ã is normalized and used to pool information from
F according to the positions indicated by A.

The output of the attentional pooling V ∈ R1024×K is a matrix of intermediate feature
vectors V =

(
v1 v2 . . .vK

)
, which contain the information in F determined by the

corresponding attention map
[
Ã
]
:,:,k

. If the location where the information is encoded

in F shifts, the corresponding attention maps pointing towards that information will
also shift. Thus, this disentanglement of feature map F and attention maps Ã allows
the network to become more invariant to the position of relevant information, which is
vital for partial FR.

5.2.3 Aggregate Module

The aggregate module concludes the partial FR network with the objective of transforming
K feature vectors vk into a joint feature space for FR. Since vk were pooled from different
regions in F according toA, they comprise different information and cannot be aggregated
directly. Thus, every vk needs to be mapped independently into a joint feature space
f̃k ∈ R256 by a fully connected layer

f̃k = W kvk, k = 1, . . . , K, (5.6)

where W k ∈ R256×1024 denotes the kth weight matrix of the aggregate module. As typical
in FR, no activation function is applied to f̃k in order to exploit the entire value space.

After transforming vk into a joint feature space f̃k, identity information is encoded
similarly in f̃k. Thus, the information from all K feature vectors is aggregated via
averaging

f =
1

K

K∑
k=1

f̃k. (5.7)
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Owing to the previous attentional pooling followed by the mapping into a joint feature
space, f is relatively invariant against the position and content of the partial face, which
is crucial for a reliable partial FR.

5.3 Loss Functions

The main objective of the partial FR network constitutes a robust FR performance.
Thus, any FR loss from Section 3.4 can be used for training. Besides, it is vital to ensure
that the attention maps Ã are mutually exclusive. Hence, a diversity regularization loss
is employed to guarantee diversity among Ã. Both losses were adapted to partial FR by
Hörmann et al . [10†].

Overall, both losses are combined with weight decay (cf . Section 2.6.2), which leads
to the following description of the total loss

Ltot = λwCELwCE + λwDivLwDiv + λregLreg, (5.8)

where λ denote scalars to balance the losses, and Lreg is the L2 norm of all trainable
weights following Equation (2.14).

5.3.1 Weighted Softmax Cross-Entropy Loss

The aggregate module comprises multiple fully connected layers that transform vk into a
joint feature space, in which an aggregation as in Equation (5.7) is possible. However, a
joint feature space is not formed without any additional regularization.

In order to obtain a joint feature space, another fully connected layer is added to
every f̃k; however, the weight matrices are shared. As typical when training FR losses,
every neuron in the last fully connected layer represents one identity of the training
dataset. Since the number of identities vastly outnumbers the feature dimensionality 256,
f̃k act as bottleneck layers, which improves the network’s generalization. Furthermore,
due to the shared weights of the fully connected layer, all f̃k are transformed equally. In
this way, all f̃k must encode identity information likewise in order to be mapped onto
the same identity.

Then, K softmax cross-entropy (CE) losses LCE,k are calculated for every f̃k following
Equation (3.7). However, not every LCE,k is equally relevant as they may originate from
occluded areas. In order to consider the relevance of every LCE,k, Hörmann et al . [10†]
proposed to leverage the normalized relevance scores s during the aggregation LCE,k.
Then, the weighted softmax CE loss is calculated by

LwCE =
K∑
k=1

[s]kLCE,k. (5.9)

Scaling every LCE,k with its respective relevance LwCE emphasizes the information
from visible face parts, whereas the influence of unreliable features from occluded face
parts is mitigated.
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5.3.2 Weighted Diversity Regularizer

As motivated in Section 5.2.1, attention maps
[
Ã
]
:,:,k

should be mutually exclusive.

Otherwise, the attention map will likely collapse into one of the two scenarios: All
K attention maps focus on the same face regions or only a single attention map is
established, whereas the remaining are discarded. Thus, diversity among all

[
Ã
]
:,:,k

must

be promoted by a separate regularizer.
Xie et al . [239] proposed a diversity regularizer, which penalizes mutual overlap

between
[
Ã
]
:,:,k

and
[
Ã
]
:,:,j

for k ̸= j. First, every attention map
[
Ã
]
:,:,k

is self-normalized

using a softmax. The resulting probability map
[
P
]
:,:,k

indicates the activations in
[
Ã
]
:,:,k

independent of the strength of the activations and are computed by

[
P
]
i,j,k

=
exp

([
Ã
]
i,j,k

)
20∑
i=1

20∑
j=1

exp
([

Ã
]
i,j,k

) (5.10)

If an attention map is responsible for a single face region and this region is occluded,
the distribution of its activation should not be considered by the regularizer. Thus,
Hörmann et al . [10†] modified the diversity regularizer from Xie et al . [239] to consider
the relevance of the attention maps, which is indicated by s. Then, the loss of weighted
diversity regularizer is formulated as follows:

LwDiv = 1−
20∑
i=1

20∑
j=1

max
k

(
[s]k
[
P
]
i,j,k

)
. (5.11)

If the scaling with [s]k is neglected, mutually overlapping
[
P
]
:,:,k

are absorbed by

the maximum projection, as only the maximum value across all probability maps is
considered for every pixel. K mutually exclusive probability maps

[
P
]
:,:,k

have their

activations at different positions. This results in a max projection with the sum of all its
pixels close to K. By normalizing

[
P
]
:,:,k

with [s]k, mutually exclusive probability maps

yield a sum of all pixels close to 1.

5.4 Experiments

5.4.1 Training Details

Directly training the partial FR network with partial faces fails as the network cannot
extract diverse and rich features from partial faces. One way to slowly adapt to this
difficult task is to increase the occlusion area after every epoch. A more straightforward
approach, which requires less tedious parameter tuning, was proposed by Hörmann et
al . [10†] by splitting the training in a pretraining on solely holistic faces followed by a
finetuning on partial faces.
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Figure 5.3: Faces before data augmentation Ialign and after data augmentation Iaug for
training.

The partial FR model is trained on the VGGFace2 [14] dataset, comprising 3.1M
images of 8631 identities (see also Table 3.1). All faces are aligned using the custom
face alignment policy (FAP) with the facial landmarks extracted by the multi-task
CNN (MTCNN) [265] and cropped to a resolution of 160×160 pixels. Regarding data
augmentation, brightness, contrast, and saturation are varied and horizontal flipping
is performed with paug = 0.5. The remaining augmentation parameters are set to the
default values introduced in Section 3.5.1.

For pretraining, the weighted softmax CE loss LwCE is replaced by an average of all
individual loss terms LCE,k. In this way, the feature originating from every attention
map is considered equally. This is necessary as all face areas are visible in holistic faces.
Besides, this is crucial as Equation (5.11) is also minimized if the network focuses on a
single attention map, whereas the remaining attention maps remain without activations
regardless of the input. However, this would inevitably cause K − 1 out of K individual
CE loss terms LCE,k to predict wrong, ultimately leading to an even larger total loss Ltot.
Hence, the average CE loss ensures that every feature f̃k extracted by its corresponding
attention map

[
Ã
]
:,:,k

– and in this way, every
[
Ã
]
:,:,k

– is considered, while the weighted

diversity regularizer LwDiv guarantees that all
[
Ã
]
:,:,k

are mutually exclusive.

Similarly to the training of the FR models in Section 3.5.1, the pretraining is performed
for 20 epochs with the Adam optimizer [110]. However, a batch size Nb = 50 is used
due to memory limitations. The losses are balanced by setting λwCE = λwDIV = 1 and
λREG = 5 · 10−5. An initial learning rate of η = 0.05 is used, which is reduced by a factor
of γlr = 4 every 6 epochs. Furthermore, dropout with pd = 0.2 is employed after vk to
improve generalization.

After the pretraining, the network provides satisfying results on holistic faces. To
adapt the network to partial faces, the model is trained with partial faces with paug = 0.8.
Figure 5.3 illustrates the partial faces, which are generated by applying a rectangular
mask M gt to the ground-truth image following Equation (5.1). In comparison to
Chapter 4, the masks are inverted yielding a small face patch. The rectangular masks are
generated with an aspect ratio sampled from U1(0.5, 2) and an area ratio κa ∼ U1(0, 0.9)
(cf . Equation (4.2)). Besides, the center coordinates of the face patch are drawn from
U1(0.15r, 0.85r) to ensure that a small patch always includes part of the face. Since
pretraining provided well-initialized weights, training for five more epochs suffices. The
learning rate η is reset to 0.002 and decayed by a factor of γlr = 4 every 2 epochs. For
finetuning, the weighted softmax CE loss LwCE as defined in Equation (5.9) is employed.
All remaining training parameters are identical to the pretraining.
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lEye

Nose

Mouth

Area Ratio  
  

partial -
holistic

partial -
cross
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Figure 5.4: Position and size of the occluded area considered during benchmark (left), where
the right eye is not listed to improve visibility. Definition of different protocols for partial FR
with an excerpt of the included pairs (right).

5.4.2 Evaluation Details

Similar to Chapter 4, a systematic evaluation is desirable. In contrast to the random
masking during training, the area ratio κa is varied from 0.26 to 0.91. Besides, the
patches are centered around the left eye, right eye, nose, and mouth according to the
dataset-wide target facial landmark coordinates. Figure 5.4 (left) illustrates an example
of partial faces created using the script published by Hörmann et al . [10†].

Together with the holistic face, any face verification protocol offers 25 variations in
terms of position, from which 7 are discarded due to the similarity of the left eye and
right eye. As introduced in Section 3.5.2.1, face verification protocols are defined by
triplets of two images, I1 and I2, and a binary ground-truth label. Then, Hörmann
et al . [10†] divided the remaining 18 variations into the following protocols, where the
variations are denoted by “Patch of I1”-“Patch of I2”:

• The holistic protocol is the standard protocol as it compares the non-partial version
of a pair, i.e., Holistic-Holistic.

• The partial-holistic protocol matches a partial face with a holistic face. This
includes the following variations: lEye-Holistic, Nose-Holistic, Mouth-Holistic,
Holistic-lEye, Holistic-Nose, and Holistic-Mouth.

• The partial-same protocol considers two identical face patches, i.e., lEye-lEye,
Nose-Nose, and Mouth-Mouth.

• The partial-cross protocol evaluates face patches centered around different face
regions, i.e., lEye-rEye, lEye-Mouth, lEye-Nose, Mouth-Nose, rEye-lEye, Mouth-
lEye, Nose-lEye, and Nose-Mouth.

To evaluate whether the network can extract features of a face patch regardless of its
position within Io, every protocol is extended by a centered version. In this version, the
face patch is moved to the center of Io followed by zero padding. Examples for every
partial protocol are depicted in Figure 5.4 (right).
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For synthetic partial faces, the LFW dataset is utilized with the partial protocols as
described in this section. Despite the saturation when evaluating on the LFW dataset
with holistic faces, the accuracy (Acc) drops substantially when synthetically occluding
the face. Therefore, LFW is a viable choice as it yields meaningful results. Hörmann
et al . [10†] released this Partial LFW (PLFW) dataset. In order to evaluate whether
training on synthetic partial faces also improves the performance for natural partial faces
due to extreme head poses, as in Figure 5.1, the Cross-Pose LFW (CPLFW) dataset
[275] is employed.

5.5 Results

The partial FR network is compared with the VGG-160, which was analyzed exhaustively
in Section 3.6.2.[ii] Besides, a ResNet-v2 with depth L = 50 (identical to the VGG-160
model) and L = 41 were trained with the training protocol as in Section 5.4.1. The
ResNet with L = 41 has the same number of layers as the partial FR network. The
networks are denoted by ResNet-41 and ResNet-50.

The partial FR network is also trained without the aggregate module. In this case, all
K normalized attention Ak are averaged to obtain a single global attention map. With
this single attention map, attentional pooling yields a single feature vector v, which is
processed by another fully connected layer denoting the feature space f . Hence, the
model without the aggregate module is trained with standard softmax CE loss.

5.5.1 Ablation Study

First, an ablation study is performed to confirm the design choices made in terms of
architecture and loss functions. The Acc for various holistic and partial face verification
protocols are reported in Table 5.2. As expected, the VGG-160 model struggles with
partial faces. A substantial drop in Acc is observed for all partial protocols compared
to the holistic protocol. While the partial-holistic and the partial-same protocols are
still handled relatively well, the partial-cross protocol causes the most significant drop in
Acc. Furthermore, when normalizing the position of the patches to the center, the Acc
worsens further. Thus, by default, CNNs are very susceptible to spatial shifts. In FR,
this effect is likely higher than usual since the network expects aligned faces and thus
relies on specific information always being found at certain locations in the image space.

Finetuning VGG-160 on partial faces reduces the generalization gap inherent in
any FR model, which was never exposed to partial faces during training. While the
ResNet-50 obtains superior Acc than ResNet-41 on all non-centered protocols, ResNet-41
substantially outperforms ResNet-50 on all centered-protocol. Hörmann et al . [10†]
conjecture that the large difference in trainable parameters (8.82M vs . 24.05M) causes
the ResNet-50 to overfit on the default position of certain feature information as known

[ii]Note that the results vary slightly from those reported in Section 3.6.2 as a different batch size Nb

was employed to maintain consistency.
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Table 5.2: Ablation study on architecture and loss functions. The average Acc [%] is reported
over nine occlusion sizes κa and all position pairs as listed in Section 5.4.2. The average Acc of
all partial protocols is reported in the last column. The highlighted model is analyzed in detail
in the following subsection.

CPLFW LFW

non-centered: partial- centered: partial-

K Ψex Ψnorm Agg LwCE holistic holistic holistic same cross holistic same cross avg

VGG-160 88.20 99.58 94.77 94.93 88.85 92.05 92.47 83.92 91.16
ResNet-41 87.52 99.62 97.71 97.27 94.53 97.25 96.80 93.56 96.19
ResNet-50 87.80 99.60 97.75 97.36 94.80 95.48 94.72 89.60 94.95

5 no recalibration ✗ ✗ 87.80 99.47 97.60 97.18 94.14 97.01 96.64 92.96 95.92
5 softmax softmax ✗ ✗ 88.42 99.45 97.76 97.30 94.23 97.25 96.77 93.00 96.05
5 softmax sigmoid ✗ ✗ 88.87 99.62 98.04 97.60 94.58 97.62 97.16 93.45 96.41
5 softmax sigmoid ✓ ✗ 89.10 99.47 98.02 97.56 94.79 97.61 97.12 93.74 96.48
5 softmax sigmoid ✓ ✓ 89.18 99.67 97.99 97.54 94.79 97.58 97.08 93.73 96.45

12 no recalibration ✗ ✗ 88.03 99.63 97.74 97.28 94.38 97.17 96.63 93.06 96.04
12 softmax softmax ✗ ✗ 88.10 99.50 97.61 97.11 94.43 96.77 96.24 92.68 95.81
12 softmax sigmoid ✗ ✗ 89.13 99.62 97.99 97.61 94.62 97.54 97.03 93.44 96.37
12 softmax sigmoid ✓ ✗ 89.08 99.60 98.02 97.56 94.85 97.60 97.08 93.86 96.49
12 softmax sigmoid ✓ ✓ 88.97 99.70 98.03 97.66 94.90 97.64 97.16 93.87 96.54

from aligned faces. In contrast, the reduced number of trainable parameters of the
ResNet-41 restricts the training by not learning such spatial dependencies.

The ablation study demonstrates the necessity of recalibration. No recalibration
or recalibrating with Ψnorm = softmax yields inferior Acc on all protocols compared
to Ψnorm = sigmoid. The employment of the aggregate module is only visible in an
improvement on the partial-cross protocols for K = 5, whereas a slight but consistent
improvement originating from the aggregate module is observed for all protocols if
K = 12. The weighted softmax CE loss LwCE only improves the Acc for K = 12. For
K = 5, LwCE has negligible influence. The reason for this behavior likely lies in the
fact that every attention map is considered (equally) important for lower K, and thus
LwCE has no influence. Due to the slight boost in Acc after employing LwCE, the best
performance on almost all protocols is accomplished by the model with K = 12 attention
maps, which is highlighted in Table 5.2.

On naturally occurring occlusions due to extreme head poses, as frequent in CPLFW,
all partial FR networks with Ψex = softmax and Ψnorm = sigmoid improve the per-
formance. However, this improvement is not attributed to the data augmentation
encompassing partial faces since Acc drops as indicated by the ResNet-41 and ResNet-50.
Thus, only the sophisticated attend and aggregate modules adequately leverage the data
augmentation and use it to extract identity features from partial faces due to extreme
head poses.

The results on the holistic LFW benchmark indicate a slight improvement. However,
due to the saturation, this improvement may be caused by noise. Overall, it is apparent
that the network highlighted in Table 5.2 achieves the best performance. The presented
approach surpasses all baselines with fewer parameters than the ResNet-50 (19.09M vs .
24.05M). For further analysis, this model is denoted as the partial FR network (PFRN).
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Figure 5.5: The accuracy (Acc) on the Partial LFW (PLFW) benchmark is split into all six
protocols as introduced in Section 5.4.2. The partial FR network (PFRN) with and without
the aggregate module are compared with the baselines (ResNet-41 and ResNet-50) for different
area ratios κa. Note that all protocols are averaged with their inverse protocols, i.e., lEye-nose
also includes nose-lEye. Besides, partial FR network (PFRN) without the aggregate module is
only shown for the partial-cross protocols due to its minor influence on the remaining protocols.
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5.5.2 Detailed Analysis

Figure 5.5 illustrates the influence of the area ratio κa on the face verification Acc.
As expected, increased occlusion sizes exacerbate the drop in Acc. The non-centered
partial-holistic and partial-same protocols only indicate a clear difference between patches
around the left eye, nose, and mouth. While Acc is relatively robust for the left eye and
nose with > 95% for κa ≈ 0.9, a clear drop below 90% is observed for the mouth region.
Hence, the mouth region contains less meaningful information to distinguish between
two faces. For the non-centered partial-cross protocol, the decrease in Acc correlates
with the distance between both faces patches, e.g ., all networks struggle particularly
with lEye-Mouth, followed by lEye-Nose and Nose-Mouth. lEye-rEye shows only slightly
inferior results than lEye-lEye. Thus, comparing two distinct eyes is almost as good as
comparing identical eyes.

The centered protocols follow the same trend as the non-centered protocols. Partic-
ularly noteworthy is the vast gap between ResNet-50 and the PFRN. Therefore, the
most straightforward approach – finetuning a ResNet-50 with partial faces – overfits on
the positions and clearly motivates the necessity of the attend and aggregate module
as proposed in Section 5.2. Besides, a slight improvement between the PFRN with and
without the aggregate module is apparent for lEye-Nose and lEye-Mouth, i.e., the most
challenging protocols, where it is necessary to map information originating from different
patches into a joint feature space. Even when comparing centered patches containing
≈ 10% of the images’ area cropped around the left eye and mouth, the PFRN yields
with Acc > 70% a satisfying performance when considering the difficulty of this protocol.

5.6 Conclusion and Future Work

In this chapter, a novel partial FR network (PFRN) network was presented, which
comprises three modules: Firstly, the extract module employs a truncated ResNet-
50 to predict feature maps and attention maps with a spatial resolution of 20×20.
Secondly, the attend module pools information from the feature maps as indicated
by recalibrated attention maps. Lastly, the aggregate module maps the information
originating from different attention maps into a joint feature space and aggregates it into
a single discriminative feature vector. The training is guided by a weighted classification
loss, which considers the visibility of every attention map, together with a diversity
regularizer to promote mutually exclusive attention maps.

The objectives of partial FR approaches, stated at the beginning of this chapter, were
clearly met by the presented PFRN. The PFRN outperforms all baselines on all partial
FR protocols and even improves the performance for holistic face pairs. Moreover, it
allows the comparison of non-overlapping face patches. Most notably, an improvement was
observed even for natural occurring occlusions despite training exclusively with synthetic
occlusions. By considering centered face patches, it becomes apparent that the PFRN
is more robust to spatial shifts than the traditional ResNet-50, which substantially
overfits on the positions of the face patches. On the most challenging partial-cross
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protocols, which have not been considered in most related works, the aggregate module
of the PFRN is deemed vital to merge and compare feature information originating from
non-overlapping face patches.

In order to improve the FR performance for partial faces in future works, more
recent loss functions (see Section 3.4 can be employed. As analyzed by the centered
protocols, the PFRN demonstrated robustness against the position of the partial face
patch. However, due to the zero-padding of the face patch, the network leverages size
information, i.e., all face parts have roughly the same size as in the holistic face. Thus,
future works should focus on lifting this restriction by extracting multiscale features.
Besides, computing the attention maps similarly to Woo et al . [233], i.e., without a
parallel branch in the extract module, seems promising. First results by Tian [27+] did
not reveal any difference, suggesting that the number of trainable parameters can be
reduced while maintaining comparable performance.

While this chapter has shown the viability of a direct partial FR approach, recon-
structing partial faces prior to the FR offers a novel albeit very challenging research
direction. Due to the large occlusions covering almost the entire face the task is only
feasible with appropriate data augmentation and network structure. In fact, a model
similar to the coarse-to-fine dual attention network (C2F-DAN) presented in Chapter 4
would not have a sufficiently large receptive field in the coarse network to reconstruct face
parts, which are more distant from the non-occluded face patch. Therefore, guiding the
model with identity information, i.e., feature vectors extracted prior to the reconstruction,
induced at various depths of the reconstruction, constitutes a promising option.
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6

Towards Robust
Permutation-Invariant

Face Aggregation

In all still image face recognition (FR) approaches, previously discussed in Chapters 3
to 5, the objective constitutes recognizing the identity depicted in the input face I. This
chapter extends the input along the time axis by considering a video, i.e., a sequence of
various images. However, in FR, the additional temporal component does not serve as a
valuable source of information to determine the identity. Except for scarce characteristic
head movements, the vast amount of identity information is encoded in every frame
instead of in the changes between frames. In contrast to other video-related tasks, such
as gait recognition [20†, 21†] or action recognition [19†], where temporal information is
vital, temporal information is rarely leveraged in video FR. Therefore, following most
related works in video FR, the video sequence V comprising N frames I is written as an
unordered set

V = {I1, I2, . . . , IN} . (6.1)

Hence, most video FR approaches can also be used for set-based FR tasks.

Compared to still image FR, recent video FR methods still face various challenges.
Video frames are typically acquired under poor capturing conditions and are often
affected by varying expressions, head poses, and motion blur. Due to these varying
factors, not every frame is considered equally valuable. Thus, to leverage the theoretically
vast increase of available information in N frames compared to a single image, it is
essential to take into account the relevance of every frame. Sharp, frontal frames without
motion blur must be favored compared to frames captured during head movements
in order to optimally aggregate the information. Therefore, any video FR approach
must carefully select which information is considered from which image. Besides, all
video FR approaches must be capable of processing an arbitrary number of images N ,
and since the video is treated as an unordered set V, the architecture must be entirely
permutation-invariant.
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Most video FR approaches [54–56, 134, 135, 148, 177, 183, 189, 240, 245, 266, 271,
278, 7†] first extract N feature vectors fn ∈ RMf . Then, all fn are scaled by their
relevance scores and aggregated to obtain a single feature vector f a, which represents the
entire video V . In contrast, Rao et al . [178] proposed to aggregate N faces In ∈ V into an
aggregated face Îa followed by extracting a single feature vector f a from Îa. This method
provides multiple advantages: Firstly, the relevance of a frame is directly visible in the
image space, whereas it is more challenging to extract this information in the feature
space. Hence, the face aggregation network can directly extract the relevance from the
image and predict it more accurately, mitigating the influence of outliers. Secondly, this
disentanglement of face aggregation and FR allows every model to focus on its respective
task. In this way, video FR performance can be further improved by employing a more
recent FR network without the costly retraining of the aggregation network. Thirdly,
with the aggregated image Îa an additional output is provided.

The objective of the face aggregation network A(·) is formulated as

{I1, I2, . . . , IN}︸ ︷︷ ︸
V

7→ Îa = A(V) (6.2)

subject to:

d
(
F(V(n)

i ),F(V(m)
j )

)
≥ d

(
F(A(V(n)

i )),F(A(V(m)
j ))

)
∀ k, l, i = j, (6.3)

d
(
F(V(n)

i ),F(V(m)
j )

)
< d

(
F(A(V(n)

i )),F(A(V(m)
j ))

)
∀ k, l, i ̸= j, (6.4)

where d(·, ·) is the cosine distance (see Equation (3.17)) and F(·) denotes the feature
extractor. The superscripts (n) and subscripts i indicate the nth video of the ith identity.
In addition to the constraints in Equations (6.3) and (6.4), Îa should be realistic, i.e.,
the viewer should not be able to discern Îa from any In ∈ V .

Hence, the main task constitutes the aggregation of N images V into a single
aggregated image Îa. The aggregation network should fuse the most valuable feature
information from V in Îa, such that its feature is more discriminative. I.e., distances
between genuine video pairs are smaller after aggregation (see Equation (6.3)), whereas
distances between two imposter video pairs should become larger after the aggregation
(see Equation (6.4)). Thereby, the aggregation network A(·) becomes robust against
varying capture conditions, e.g ., motion blur, illumination, or out-of-focus faces.

This chapter presents an approach for video face aggregation. Unlike Rao et al .
[178], the video is considered an unordered set V , requiring a complicated, permutation-
invariant architecture since only then identical outputs independent on the image order
are ensured. Large parts of the approach presented in this chapter were pre-published in
[6†] and are referenced in the corresponding sections.

6.1 Related Work

The vast majority of approaches to video FR operate in the feature space, i.e., every frame
In ∈ V is processed separately by a face feature extractor yielding N features fn. Next, a
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aggregated feature vector f a representing the entire video V is obtained via an aggregation.
Depending on whether temporal information is considered during this aggregation, every
approach is either classified as sequence-based or set-based. While the order of the frames
matters and is incorporated during the aggregation for sequence-based methods, set-based
approaches are permutation-invariant, i.e., the same f a must be obtained regardless of the
frame order. Since the temporal information does not provide much insight into the faces’
identity, most researchers [8, 56, 134, 135, 148, 183, 189, 239, 240, 245, 266, 271, 278, 7†]
aim for set-based approaches as they can also be employed for sequence-based FR by
discarding the temporal information. In contrast, sequence-based approaches [54, 55, 176–
178] can typically not be employed in set-based FR, e.g ., in multiple still images.

Naive set-based approaches either compute the pairwise distance between all images
within a set [187] or obtain f a by averaging frame-wise features by

f a =
1

N

N∑
n=1

fn. (6.5)

This simple technique is frequently employed by still image FR approaches, which also
evaluate on videos or sets [33, 87, 109] (cf . Table 3.10). While this approach is fast and
parameter-efficient, it disregards the varying relevance of every frame. Due to distinct
quality, motion blur, occlusions, or changes in illumination, not every frame is considered
equally valuable. Thus, more sophisticated approaches aim to adaptively aggregate every
feature based on its respective relevance

f a =
N∑

n=1

νnfn, (6.6)

where νn denotes the relevance of fn and
∑N

n=1 νn = 1. This general formulation of
the feature aggregation motivated various researchers to propose ways of computing the
relevance score νn.

Yang et al . [245] incorporated two cascaded attention blocks, which effectively predict
a relevance score νn using the scalar product of fn with a kernel. Hörmann et al . [7†]
modified the neural aggregation network from Yang et al . [245] to improve its robustness
against outliers, i.e., faces with other identities in V . Since the norm of the feature vectors
∥fn∥ is a measure for feature quality [167], Meng et al . [148] provided a parameter-free
solution of boosting the performance for set-based FR by scaling every feature with its
norm, i.e., νn = ∥fn∥. Shi et al . [189] represented every face as a Gaussian distribution
in the feature space, in which aggregation is performed with νn = 1

σ2
n
. With multicolumn

networks, Xie et al . [240] proposed to split νn into two factors: 1) visual quality, which
is computed for every feature independently using a single fully connected layer; and 2)
content-aware quality by concatenating every feature with the aggregation according to
the visual quality and employing another fully connected layer. By combining visual and
content-aware quality control, νn considers its internal quality compared to the remaining
frames. Zhong et al . [278] proposed GhostVLAD, which soft-assigns every fn to K +G
cluster centers. Then, the difference between every fn and the cluster center is scaled
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by the soft-assignment and aggregated. The final aggregated vector f a is obtained by
concatenating all K cluster-wise aggregations.

While previous methods [148, 189, 240, 245, 278, 7†] directly leveraged the features
fn in order to compute their relevance scores νn, Liu et al . [134] computed a quality score
νn based on intermediate feature maps of an FR network. Zhang et al . [266] employed a
separate residual network (ResNet) with depth L = 18 to predict a discriminability score
νn with an entirely separated branch. In contrast to previous approaches, Sankaran et
al . [183] considered a pair of sets during matching in order to predict pair-specific νn.
Guided by head pose information, a pixel-wise self-attention block (cf . Section 4.4.1.3
and [264]) computes νn specifically for the paired set such that both sets are aligned to
each other, i.e., information originating from similar head poses is compared. While this
adaptive aggregation tailors two sets to each other, it creates a massive computation
and storage overhead as the feature representing a set is not unique.

Besides estimating the relevance of every feature vector fn as by [134, 148, 183, 189,
240, 245, 266, 278, 7†], another direction was pursued by predicting the relevance of
every component of fn, i.e., [fn]i. Then, the aggregation is performed by

f a =
N∑

n=1

νn ⊙ fn, (6.7)

with ν ∈ RMf and
∑N

n=1[νn]i = 1 ∀ i = 1, . . . ,Mf. Drawing from the success of the neural
aggregation network [245], Liu et al . [135] modified the cascaded attention structure to
perform a component-wise feature aggregation. Gong et al . [56] employed a separate,
fully connected layer to predict the quality vectors νn, which is in parallel to the
bottleneck layer representing fn. In order to avoid designing a permutation-invariant
architecture, which can cope with an arbitrary number of inputs, all relevance scores νn
are only compared with each other during a simple normalization to obtain

∑N
n=1 νn = 1

[56, 134, 266]. To promote this information exchange between all N feature vectors fn

during the computation of the νn, Zhao et al . [271] incorporated graph convolutions,
which allow leveraging more sophisticated contextual information.

With comparator networks, Xie et al . [239] proposed pooling information across all N
inputs from feature maps at different spatial locations indicated by attention maps. Thus,
the information of all N inputs at a specific region, e.g ., the eye, is combined before
feature vectors are created. Similarly, Bai et al . [8] proposed a local feature enhancement
network, which transfers local information across all images using pixel-wise self-attention
(cf . Section 4.4.1.3 and [264]).

In contrast to all set-based approaches, which can also be applied to video sequences,
sequence-based approaches are uniquely defined for videos and leverage the temporal
information. Similar to [245, 7†], Gong et al . [54, 55] predicted feature quality νn;
however, they employed long short-term memory networks (LSTMs) to leverage context
information. Rao et al . [177] used attention-aware reinforcement learning to predict
feature quality νn based on the feature vectors fn and the frames In.

Unlike all previous methods, which perform aggregation of feature vectors fn according
to equations Equations (6.5) to (6.7) [54–56, 134, 135, 148, 177, 183, 189, 240, 245, 266,
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Figure 6.1: Architecture of the face aggregation network. N faces In are aggregated into a
single face Îa by a permutation invariant U-Net. Every In is processed in a separate branch.
Of these branches, the branch for I1 is highlighted. All weights between the branches are
shared. Adapted from [6†].

271, 278, 7†], or fuse information of feature maps [8, 239], Rao et al . [176, 178] proposed
the discriminative aggregation network (DAN), which aggregates images. Thus, N frames
In are aggregated into a single image Îa followed by a feature extractor to obtain a
single vector describing the video. However, due to the concatenation of N = 20 frames
In at the input of the DAN, the approach becomes permutation-variant and allows the
aggregation of exactly N = 20 frames.

6.2 Architecture

The DAN [178] always requires N = 20 frames at the input and creates a different Îa

if the frame order changes. Since the video is written as a set V, the DAN [178] is
unsuitable for this task, as more sophisticated techniques are required to account for the
permutation invariance and the arbitrary number of input frames N .

As introduced in Section 6.1, almost all related works perform the aggregation in the
feature space. Unlike face aggregation, feature aggregation is a comparatively simple
task since averaging all features, as in Equation (6.5), already provides a solid baseline.
For face aggregation, performing such a naive aggregation with all frames In ∈ V would
not yield any satisfying result, even though all In depict the same identity. Therefore, it
is necessary to provide the model with the ability to exchange information at multiple
depths of the aggregation. Only then it is possible to generate a photo-realistic image Îa.

In order to design a permutation-invariant face aggregation network that can handle
an arbitrary number of frames N , Hörmann et al . [6†] modified a U-Net [179] by
incorporating the global concatenation layer [2] for information exchange. The detailed
architecture of the aggregation network A(·) is illustrated in Figure 6.1.
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6. Towards Robust Permutation-Invariant Face Aggregation

Hörmann et al . [6†] proposed to process all N input frames In in parallel by a
U-net with shared weights. In this way, the architecture can be adapted to any arbitrary
number of input frames N . The global concatenation is employed to exchange information
between branches [2]. For N input feature tensors Xn ∈ RH×W×C , which are extracted
from the corresponding input images In, the output Y n ∈ RH×W×2C is computed by

Y n = Xn ++ max
m

(Xm) . (6.8)

Thus, the current feature map Xn is concatenated with a feature map of similar size,
which contains the maximum activation of all N feature maps Xm. In this way, local
information is maintained in the first C feature maps, whereas the remaining C feature
maps contain global information. In the decoder of the U-Net, the encoder feature maps
form an additional input to the global concatenation. In this case, the encoder feature
maps are concatenated such that Y n ∈ RH×W×3C and are not considered in the maximum
pooling as it already took place in the encoder. Integrating global concatenation layers
at multiple depths of the aggregation network enables various opportunities for back-
and-forth information exchange between the branches. Therefore, every branch is always
aware of the content of the remaining branches and can leverage this information to
complement missing information.

With the help of the global concatenation, the U-Net is structured as follows (see
Figure 6.1): In the encoder, four 3×3 convolutional layers with stride S = 2 downsample
the input of resolution 112×112 to 7×7. Before every downsampling, the global concate-
nation pools global information from all branches and a subsequent 1×1 convolution
merges local and global information. In the decoder, the initial resolution is restored
by employing four 4×4 transposed convolutional layers (see Section 2.5.2). After eight
global concatenations, all branches have equalized each other such that a final maximum
pooling layer is used to consolidate all information into a single branch, which outputs
the final aggregated image Îa. As an activation function, exponential linear unit (ELU)
[27] is employed throughout the aggregation network.

6.3 Loss Functions

Besides the objectives stated in Equations (6.3) and (6.4), the aggregated image Îa

must be realistic. Therefore, Hörmann et al . [6†] trained the aggregation network as the
generator of a generative adversarial network (GAN) (cf . Section 2.7). Overall, the total
loss of the aggregation network L G

tot is calculated by

L G
tot = λdisLdis + λrecLrec + λadvL

G
adv + λtvLtv, (6.9)

where the scalars λ are used to balance the losses.
While the adversarial loss L G

adv and the total variation loss Ltv force the network to

generate a realistic Îa, the discriminative loss Ldis and the reconstruction loss Lrec ensure
that the identity of V is maintained in Îa. For Ldis and Lrec, a feature extractor F(·) is
required. A ResNet [72] with depth L = 50 and trained with additive angular margin
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loss [33] is employed to obtain meaningful features. This model is named MS-112-Arc
and is analyzed exhaustively in Section 3.6.2.

6.3.1 Discriminative Loss

The discriminative loss was employed by Rao et al . [178] in the DAN to guarantee more
discriminative features from Îa as desired in Equations (6.3) and (6.4). In addition to

the feature of the aggregated image f a, features are extracted from all frames Im ∈ V(n)
i

of the ith identity. Moreover, the feature fp of a frame Ip ∈ V(ñ)
i , i.e., from a different

video n ̸= ñ of the same identity, and the feature fn of a frame In ∈ V(ñ)
j , i.e., from a

video of a different identity i ̸= j are considered. Then, the discriminative loss Ldis is
formulated as a triplet loss (cf . Equation (3.8) and [79, 187, 217]) by

Ldis =
[∥∥f a − fp

∥∥2 − α
]
+
+
[
β − ∥f a − fn∥

2]
+
, (6.10)

where α and β denote margins, and [·]+ = max(0, ·). While the β is typically constant
during training, α is calculated adaptively by

α = min
m

∥∥fm − fp

∥∥2 . (6.11)

The first term in Equation (6.10) guarantees that Îa is closer to Ip in the feature space

than all N frames Im ∈ V(n)
i (cf . Equation (6.3)). At the same time, the second term

ensures that the feature distance between Îa and In is maximized (cf . Equation (6.4)).

6.3.2 Reconstruction Loss

As elaborated in Section 3.4.1, triplet loss alone does not suffice in obtaining a well-
generalizing network since dataset-wide feature information representing an identity is
missing. To consider this information during training, two distinct reconstruction losses
are analyzed. The reconstruction loss proposed by Rao et al . [178] promotes intra-class
compactness by minimizing the feature distance between f a and the feature center of V .
Mathematically, this can be formulated by

L avg
rec =

∥∥∥f a −
1

N

N∑
n=1

fn

∥∥∥2. (6.12)

While Equation (6.12) mitigates the influence of low-quality images Im ∈ V, it only
considers a single video. Despite including N features, the variance within a video is
minimal since all images are captured under similar conditions regarding the distance to
the subject, illumination, occlusions, and accessories. Hence, global features encompassing
multiple videos are necessary to truly guide the network to embed information that
represents the identity.
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To overcome this limitation, Hörmann et al . [6†] adapted the center loss [229] to face
aggregation. In contrast to considering the distance between the f a and the center of V ,
the distance to a dataset-wide center ci of the ith identity is minimized by

L cen
rec =

∥∥f i
a − ci

∥∥2 . (6.13)

To obtain relevant centers for every identity, all ci are updated during training by

ci ← (1− ηc)c
i − ηc

N + 1

[
fp +

N∑
n=1

fn

]
, (6.14)

with ηc denoting the learning rate of the centers. Since the center ci contains all
information of the ith identity, it can be considered a global memory and thus operates
similarly to the trainable class representatives [W ]:,i of class-level losses (cf . Section 3.4.2).

While L avg
rec is limited to the current video V, L cen

rec updates and leverages global
features stored in ci. In this way, L cen

rec reduces the influence of outliers in V and thus is
more robust.

6.3.3 Adversarial Loss

In order to obtain a realistic aggregated image Îa, the global discriminator D(·), presented
in Section 4.4.3, is employed and trained to judge whether its input Îa or Ip is real
or generated by the aggregation network. Following Equations (4.14) and (4.15), the
adversarial losses are computed by

L G
adv = − log(D(Îa)). (6.15)

L D
adv = − log(1−D(Îa))− log(D(Ip)). (6.16)

6.3.4 Total Variation Loss

As discussed in Section 2.5.2, transposed convolutions are prone to cause checkerboard
artifacts – especially if their kernel size KH = KW is not a multiple of the stride [165].
Thus, Hörmann et al . [6†] employed transposed convolutions with KH = KW = 4 and
S = 2 for the upsampling in order to mitigate checkerboard artifacts. In order to punish
the creation of even subtle checkerboard artifacts, Hörmann et al . [6†] incorporated the
total variation loss Ltv from [99, 127, 143], which is calculated by

Ltv =
112∑
x=1

111∑
y=1

∥∥[Îa]x,y+1,: − [Îa]x,y,:
∥∥
1
+

111∑
x=1

112∑
y=1

∥∥[Îa]x+1,y,: − [Îa]x,y,:
∥∥
1
. (6.17)

By punishing large gradients between neighboring pixels, which are ubiquitous if
checkerboard artifacts arise, their generation by the transposed convolutions is hampered.
However, the punishment of large gradients also smooths Îa. Therefore, Ltv can only be
employed as a small regularizer, which should never dominate the total loss L G

tot.
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6.4 Experiments

6.4.1 Training Details

VoxCeleb2 [26] is utilized as a video FR dataset (see also Table 3.1) and comprises 150k
videos of 6112 identities with a total duration of 2442 hours. Since this dataset was
initially proposed for speaker identification, it only contains frames of speaking persons,
and thus the 150k videos are further split into 1.1M utterances. Five frames are extracted
per utterance to obtain a roughly equal frame distribution, which results in 5.3M frames
corresponding to 0.64 frames per second. Note that the frames per second vary depending
on the length of the utterance. In this way, the data imbalance is reduced as otherwise,
more frames would be extracted from longer utterances.

The frames are then aligned like during the training of the FR network, i.e., the face
alignment policy (FAP) following Deng et al . [33] is used with the landmarks extracted
from the multi-task CNN (MTCNN) [265]. In addition to the contrast, brightness, and
saturation augmentation and horizontal flipping (see Section 3.5.1), which are applied to
the entire video, frame-wise motion blur with a filter size ∈ {7, 9, 11} at a random angle
is performed with a probability of paug = 0.5. Even though the architecture can process
videos comprising an arbitrary number of frames N , all batches contain Nb = 6 videos of
exactly N = 10 frames to make the training more efficient. All frames are selected from
distinct utterances or repeated if there are not enough utterances in a video. Overall,
every video is used once per epoch, i.e., not every frame is exposed in every epoch to the
network. Using N = 10 frames, also ensures comparable settings as when training the
DAN. Compared to the DAN, no additional pretraining on mean squared error (MSE)
loss is necessary to initialize the weights of the face aggregator, simplifying the overall
training while still obtaining good convergence.

The face aggregation network is trained in an alternating manner with the discrimi-
nator using adaptive moment estimation (Adam) optimizer [110] for six epochs. The loss
terms are balanced with λdis = λadv = 1, λrec = 0.5, and λtv = 10−4 and the center loss
L cen

rec as reconstruction loss. The margin of Ldisc is set to β = 32 and the learning rate
of the center loss to η = 0.5. Initially, the learning rate η is set to 5 · 10−5 and decreased
to η = 1.25 · 10−5 after 3 epochs.

6.4.2 Evaluation Details

Three benchmark datasets from Table 3.2 are suitable to evaluate the face aggregation
network.

First, the YouTubeFaces (YTF) dataset is used, which comprises 3425 videos of
1595 identities. Every video contains between 48 and 6070 frames. Even though the
face aggregation network can handle any arbitrary number of faces N , every video is
resampled to N · Navg frames as proposed by Rao et al . [178]. In this way, a direct
comparison between the presented face aggregation network and the DAN is possible.
After resampling, N consecutive frames are aggregated into Navg aggregated images Îa,m.

Then, features are extracted from every Îa,m using F(·) and the final feature vector
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Figure 6.2: Evaluation protocol for video face aggregation for N = 4 and Navg = 6.

representing the video is obtained by averaging all Navg features f a,m. This process in
illustrated in Figure 6.2 for N = 4 and Navg = 6.

Second, the IARPA Janus Benchmark (IJB)-B and IJB-C benchmarks are employed
to evaluate face identification on the 1:N mixed media protocol. Both consider templates,
i.e., sets containing a mix of still images and video frames. While the general analysis in
Section 3.6.2.2 assumed that every feature is equally relevant regardless of whether it is
a still image or a video frame, multiple feature aggregation models employ hierarchical
aggregation. I.e., first, all frames are aggregated separately to obtain a representative
feature vector for the entire video. Then, all features from the still images together with
the aggregated feature vectors from the videos are aggregated. In this way, an entire
video is considered equally relevant as a single still image, removing the previous bias
towards the low-quality video frames due to their large number. Besides, their disjoint
galleries allow the evaluation of open-set and closed-set face identification performance.

6.5 Results

The presented face aggregation network is compared to the average of all N ·Navg features
denoted by MS-112-Arc. In addition, the DAN, a permutation-variant aggregation
network, is trained on VoxCeleb2 using the MS1M-112-Arc model as the feature extractor.
Thus, a fair comparison is guaranteed. For better differentiation with the original work
[178], this version of the DAN is denoted as DAN∗.

On both IJB benchmarks, averaging all features (MS-112-Arc) as in Section 3.6.2.2
and the hierarchical averaging (MS-112-Arc†) are considered. First, the DAN and the
face aggregation network aggregate all video frames into a single frame. Then, all features
are averaged to obtain the final feature for matching. Even though it is possible to
aggregate different still images, the huge variance between still images and the exclusive
training on videos results in unusable aggregate images.
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Table 6.1: Ablation study on distinct loss functions. The verification Acc [%] is reported on
the YTF dataset following the protocol introduced in Section 6.4.2. The last column denotes the
average Acc over all protocols. To obtain the Acc marked with † input frames were duplicated
to circumvent the limitation of the DAN’s architecture. The highlighted model is analyzed in
detail in the following subsections. Adapted from [6†].

Losses N = 1 5 10

Ladv Ldis L avg
rec L cen

rec Ltv Navg = 2 2 2 4 6 8 Avg

MS-112-Arc 95.80 96.40 96.32 96.34 96.34 96.52 96.29
DAN∗ 95.44† 96.10† 96.24 96.48 96.20 96.56 96.17

✗ ✓ ✓ ✗ ✓ 95.58 95.90 96.26 96.42 96.34 96.62 96.19
✗ ✓ ✗ ✓ ✓ 95.52 96.08 96.24 96.44 96.28 96.42 96.16
✗ ✓ ✗ ✗ ✓ 95.44 95.72 96.40 96.42 96.42 96.36 96.13

✓ ✓ ✓ ✗ ✓ 95.58 96.44 96.36 96.44 96.28 96.44 96.26
✓ ✓ ✗ ✓ ✓ 95.90 96.52 96.56 96.60 96.48 96.62 96.45
✓ ✓ ✗ ✗ ✓ 95.58 96.26 96.40 96.58 96.62 96.52 96.33
✓ ✓ ✗ ✓ ✗ 95.58 96.14 96.42 96.40 96.60 96.58 96.29

6.5.1 Ablation Study

Table 6.1 reports the impact of various losses on the video face verification performance
measured by the accuracy (Acc) (see Section 3.5.2.1). The results follow the findings
from Rao et al . [178] in that the adversarial Loss Ladv is vital to obtain the best Acc.
Besides, slight improvements are identified by adding the total variation loss Ltv and
using the global center loss L cen

rec instead of the local L avg
rec , which was employed in the

DAN [178].
As expected, increasing the number of aggregated frames N improves the Acc as more

information is leveraged from more input data. For a single frame at the input N = 1,
the face aggregation network yields roughly the same results, i.e., no undesired artifacts
are introduced during the “aggregation”. When the face aggregation networks aggregate
the information of 2 ·10 frames (N = 10, Navg = 2) into barely two images whose features
are averaged, the MS-112-Arc baseline averages all 20 features. Considering this, the
remarkable result of the aggregation is apparent when comparing the results of the face
aggregation networks (96.56%) with the MS-112-Arc when averaging two features, i.e.,
95.80%. Thus, the frames extracted from both aggregated images contain richer features
for the following face verification. For Navg > 4, no further increase is observed and
the slight variance in Acc is likely attributed to different input frames due to different
resampling.

Overall, the model with L cen
rec yields the best results across all benchmark protocols

and, from now on, is referred to as the permutation-invariant face aggregation network
(PIFAN). While the DAN outputs a different aggregate image Îa depending on the
order of the input frames, the PIFAN creates identical Îa regardless of the frame order.
Despite the added complexity of the inherent permutation invariance, the face aggregation
network yields superior results than the DAN and the MS-112-Arc baseline. Compared
to MS-112-Arc, the face aggregation even provides the additional benefit of fusing the
information of N ·Navg frames into Navg aggregated images Îa,m.
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Figure 6.3: The cumulative match characteristic (CMC) and the receiver operating char-
acteristic (ROC) at rank R = 1 for selective methods (line style) on the IJB-B/C mixed
media identification protocols (line color). † denotes the use of hierarchical aggregation (cf .
Section 6.4.2).

6.5.2 Detailed Analysis

6.5.2.1 Face Identification

Figure 6.1 and Table 6.2 report the face identification performance using the hierarchical
aggregation as introduced in Section 6.4.2. The results demonstrate that hierarchical
aggregation is a fast and straightforward way of improving the performance by leveraging
the typically lower quality of video frames compared to still images.

It is apparent that the PIFAN outperforms all baselines on both datasets for the true
positive identification rate (TPIR) at rank R = 1 by almost a 1% margin. Even though
only the aggregated feature vectors of the videos vary between MS-112-Arc∗, DAN∗, and
PIFAN, the results prove that it is decisive to intelligently aggregate the frames since
outliers seem to considerably deteriorate the naive feature average. For larger ranks R,
this advantage diminishes. The receiver operating characteristic (ROC) demonstrates
that the PIFAN provides superior TPIRs for almost all false positive identification rates
(FPIRs) on both datasets.

Besides the remarkable performance of the PIFAN, the face aggregation reduces the
computational cost of feature extraction from 228k to 52.2k (−77.1%) on IJB-B and
from 449k to 89.5k (−80.9%) on IJB-C.
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Table 6.2: Detailed evaluation on the IJB-B/C mixed media identification benchmarks. All
TPIRs are reported in % and both galleries are averaged. † denotes the use of hierarchical
aggregation (cf . Section 6.4.2).

IJB-B IJB-C

TPIR@R = TPIR@FPIR = TPIR@R = TPIR@FPIR =

Method 1 10 100 10−3 10−2 10−1 1 10 100 10−3 10−2 10−1

MS-112-Arc 88.03 94.03 97.72 35.98 72.88 85.35 87.06 93.09 97.19 47.98 64.70 82.37
MS-112-Arc† 89.49 95.13 98.14 32.40 75.33 87.22 89.87 94.90 97.88 60.23 74.69 86.78
DAN∗† 89.69 94.77 97.90 32.84 74.44 87.11 89.71 94.58 97.34 60.19 74.89 85.96
PIFAN† 90.44 95.16 97.98 30.02 76.28 88.15 90.67 95.13 97.74 61.08 77.62 87.42

Table 6.3: Verification Acc [%] for N = 10 and Navg = 4 on the YTF dataset. Nblur denotes
the number of frames affected by motion blur.

Filter Size Nblur ✗ 3 5 7 9 11 13 15 17 19

MS-112-Arc 9 96.34 96.42 96.34 96.28 95.90 95.40 94.78 93.76 92.66 91.64
DAN∗ 9 96.48 96.44 96.16 96.48 95.68 94.48 93.92 91.28 89.44 87.14
PIFAN 9 96.60 96.34 96.40 96.50 96.48 96.40 96.18 95.82 95.92 95.84

MS-112-Arc 10 96.34 96.46 96.38 95.84 95.24 94.64 93.50 91.82 89.92 88.38
DAN∗ 10 96.48 96.34 96.04 95.96 95.16 94.26 92.74 89.90 88.54 86.10
PIFAN 10 96.60 96.46 96.22 95.74 95.10 94.36 93.22 91.04 89.90 88.06

6.5.2.2 Robustness Analysis

In order to analyze the robustness, Nblur out of N frames are affected with motion blur.
The Acc on the YTF dataset for two cases are analyzed in Table 6.3: All Nblur = N = 10
frames and Nblur = 9 out of N = 10 frames are tampered with motion blur. This analysis
exposes the strengths and weaknesses of the PIFAN. While the PIFAN demonstrates
astounding results if a single frame is left untouched, it struggles to match the MS-112-Arc
baseline if all frames are affected by motion blur. Still, the Acc is only slightly worse
than MS-112-Arc for Nblur = N = 10, and substantially higher robustness than by the
DAN∗ is observed.

Overall, this analysis suggests that the PIFAN learned to successfully identify the
single frame with reliable information, whereas it struggles to combine unreliable infor-
mation to synthesize an aggregate face, which contains more discriminative features than
any individual input frame.

6.5.2.3 Qualitative Results

The qualitative results in Figure 6.4 depict the aggregated face Îa of the DAN∗ and the
PIFAN given N = 10 input frames. It is apparent that the DAN∗ exclusively outputs
I3 regardless of its relevance. This result is only possible for a permutation-variant
architecture as in the DAN∗ since the permutation-invariance impedes this form of mode
collapse (cf . Section 2.7.2) by design. Thus, the DAN clearly did not learn to aggregate
the faces based on their relevance but instead always forwards I3 to the output.
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Figure 6.4: Qualitative results for three videos with N = 10 frames. For every video,
Nblur ∈ {0, 9, 10} frames are tampered with motion blur of filter size 19.

The PIFAN cannot always forward the nth image to the output as there is no order
in the input. Hence, by employing a permutation-invariant architecture, Hörmann et al .
[6†] avoided this issue. For Nblur < N , the PIFAN typically identifies the single image
without motion blur I1 as the most relevant image. However, the first two videos in
Figure 6.4 illustrate two scenarios where the head pose or the occlusion in the untouched
I1 are considered a less valuable information source than motion-blurred frontal face. On
the other hand, in the last video, the PIFAN selected I1 despite the occlusion likely due
to the sharp face. Even though the PIFAN correctly identifies the frame that most likely
yields the best features, it does not aggregate information from multiple low-quality
frames in order to form a high-quality aggregated face Îa as illustrated by all videos with
Nblur = N = 10. Therefore, while the PIFAN successfully avoids selecting always the
same frame, it fails to fuse information from various frames, which explains the findings
provided in Section 6.5.2.2.

In retrospect, this is no huge surprise since the easiest way to satisfy the discriminator
is to provide it with a high-quality image, which can be found among the input frames.
Moreover, by selecting a frame with meaningful features, the discriminative loss Ldis

and the reconstruction loss Lrec do not punish the aggregation network.
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Table 6.4: Comparisons with state-of-the-art methods on the YTF dataset. For better
comparability, the improvements of the approaches with respect to average pooling (see
Equation (6.5)) is provided. All values are reported in %.

Method Acc Improvement Method Acc Improvement

FaceNet [187] 95.12 MS-112-Arc 96.52
ArcFace [33] 98.02 Broadface [109] 98.0

DAN[178] 95.01 +0.89 NAN [245] 95.72 +0.52
QAN [134] 96.17 +0.71 FAN [135] 96.21 +0.51
TADPool [183] 96.4 +1.7 MARN [54] 96.44 +0.20
C-FAN [56] 96.50 +0.14 ADRL [177] 96.52
REAN [55] 96.60 +0.36 PFE [189] 97.36 +0.18
G-FAN [271] 97.98 +0.72 DDL [266] 98.18 +0.21

DAN∗ 96.56 +0.04 PIFAN 96.62 +0.10

6.5.2.4 Comparison with State of the Art

A comparison with state-of-the-art approaches in video FR is outlined in Table 6.4. The
PIFAN outperforms a large part of the methods. As typical for most FR datasets, the
comparison is not entirely fair as either a more powerful architecture – a ResNet with
depth L = 101 – is used as a feature extractor [33, 54, 109, 183, 266] or a higher input
resolution is considered [134, 245]. Besides, the PIFAN was not further finetuned on the
YTF dataset as indicated in [177, 178]. Moreover, it is not always apparent if the related
works used all frames or applied resampling, which impedes a conclusive comparison.
The results become more comparable by considering the improvements compared to
average pooling. Still, approaches evaluated with a high Acc of the average pooling
baseline are subjected to saturation.

The PIFAN surpasses MS-112-Arc and DAN∗ and thus is considered the best approach
for face aggregation. Besides, with its permutation-invariant architecture, a more flexible
approach is pursued as the aggregated image Îa should not depend on the order of
the input frames. Moreover, compared to the feature aggregation approaches [54–
56, 134, 135, 177, 183, 189, 245, 266, 271], Îa is provided as an additional output and
the computation cost of the feature extraction is reduced to 1

N
.

6.6 Conclusion and Future Work

This chapter introduced the first face aggregation approach, which handles an arbitrary
number of faces in a permutation-invariant manner. The presented permutation-invariant
face aggregation network (PIFAN) combinesN frames of a video V into a single aggregated
image Îa and thus considers every frame’s quality where it is most visible. After face
aggregation, identity features are only extracted from Îa, reducing the computational
cost of the feature extraction to 1

N
.

The PIFAN lifts the limitations of a previous face aggregation approach by employing
a permutation-invariant U-Net. With various global concatenation layers, back-and-forth
information exchange between the input faces is promoted. Besides, by incorporating
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the center loss, the PIFAN further learns to approximate global dataset-wide identity
features.

The thorough analysis revealed that the PIFAN outperforms the previous face aggre-
gation approach while generating the same Îa regardless of the frame order. Besides,
the PIFAN can match up to state-of-the-art feature aggregation approaches. While
the qualitative analysis demonstrated that the PIFAN identifies the frame In ∈ V that
provides the best face identity features, it does not fuse the information from multiple
frames in order to generate an Îa with higher quality than all In. Still, the robustness
analysis showed that the PIFAN is robust against motion blur despite the lack of details.
Besides, compared to widespread feature aggregation methods, the permutation-invariant
face aggregation network (PIFAN) additionally provides the aggregated face Îa.

Regarding the objectives stated at the beginning of this chapter, the PIFAN is
permutation-invariant and successfully aggregates an arbitrary number of frames N .
Even though the PIFAN does not fuse information of all frames into Îa, it forwards
the most discriminative frame In ∈ V even under aggravated conditions. Considering
the tremendous limitations imposed by the requirements of a permutation-invariant
architecture, this endeavor has delivered a satisfying solution and represents the first
step towards permutation-invariant face aggregation of sets of multiple still images.

In future works, the shortcomings of the PIFAN can be remedied to truly fuse
the information instead of selecting the most discriminative frame. Incorporating an
additional loss, which punishes close pixel distances between In and Îa, would not
solve the issue as Îa should always resemble at least one In. Therefore, modifying
the architecture has a higher chance of success. For example, dispensing with skip
connections at large spatial resolutions impedes the direct information flow and thereby
limits the pixel-wise reconstruction of a selected image. Besides, even though the authors
of the global concatenation layer [2] found no difference between maximum pooling
and average pooling, average pooling forces the network to truly consider all branches
instead of focusing on the branch with the most prominent activations. In addition,
the activations of every branch can be scaled with with their respective relevance, i.e.,
similar to feature aggregation approaches described by Equation (6.6), or information
can be pooled from various feature maps as in [8, 239].

After solving the network’s focus onto a single frame, the face aggregation network
can be extended to also cope with a set of still images, which is even more challenging
due to the vastly varying capture conditions, background, accessories, and even age of
the identity. Drawing from the idea of Karras et al . [104, 105], who proposed to transfer
style using adaptive instance normalization (AdaIN), a spatially independent approach
constitutes the most promising direction.
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Conclusion

This work presented various solutions to obtain satisfying face recognition (FR) per-
formance under adverse conditions. Two adverse scenarios, with which state-of-the-art
FR approaches still struggle, were selected and three robust solutions were designed,
implemented, and evaluated. In particular, images of faces obstructed by occlusions
of different sizes and videos affected by motion blur were considered. Every solution
encompasses an architecture and several loss functions – both meticulously tailored to
the given scenario. At the same time, special attention was given to ensure that the
approaches also accomplished comparable results in non-adverse scenarios in order to
avoid designing specialized systems, which are unable to perform simple tasks.

The following paragraphs recapitulate the most important findings and draw conclu-
sions w.r.t. the objectives from Section 1.2. The three approaches presented in Chapters 4
to 6 were:

1. The coarse-to-fine dual attention network (C2F-DAN) for blind face completion
reconstructs a synthetically occluded face.

2. The partial FR network (PFRN) constitutes a robust solution to the FR even of
small face patches.

3. The permutation-invariant face aggregation network (PIFAN) represents the first
approach of permutation-invariant face aggregation.

The C2F-DAN aims at retrieving information lost due to the occlusions and thus serves
as a preprocessing step prior to the FR. Only synthetic occlusions were considered to
facilitate the training and ensure that the occlusion is well defined. However, the approach
dispenses with the tedious annotation of the mask, which describes the occlusions, since
it is predicted by the network during the reconstruction. The architecture encompasses
a parallel structure of two attention modules embedded into a coarse-to-fine network.
By separating the architecture into two parts – a rough prediction by the coarse network
followed by a refinement step – and supervising the training with carefully selected loss
functions, a realistically reconstructed face with sharp details was obtained.

The exhaustive analysis revealed that the C2F-DAN handles occlusions with multiple
colors, arbitrary forms, and letters, which were not part of the data augmentation.
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Moreover, the C2F-DAN reconstructed challenging scenarios, such as glasses and large
head poses, or underdefined face parts like the entire mouth. Only thin lines caused
failure in detecting the mask. However, this issue can be resolved by incorporating
such occlusions during training. Besides, the reconstruction of both eyes only rarely
created satisfying results. Despite remaining limitations, the C2F-DAN mostly fulfills
the qualitative objective posed in Section 1.2 as no further alterations of non-occluded
pixels were observed. Additionally, utilizing the reconstructed face, which is generated
by the C2F-DAN, yielded superior performance than the state of the art on all evalu-
ation protocols. Despite the increased difficulty of the approach, the C2F-DAN even
outperformed the FR baseline without reconstruction for sparse occlusions. Hence, this
endeavor was successful as proven by the exhaustive qualitative and quantitative analyses
on FR performance and reconstruction quality.

In order to recognize face patches covering less than 10% of the face’s area, the PFRN
pools information from relevant positions in the feature maps, which were pointed out
by attention maps. In this way, the PFRN is to some degree invariant to the position
of the face patch within the image. Moreover, mapping the local features extracted at
various positions into a joint feature space enables the comparison of non-overlapping
face patches. The thorough analysis demonstrated that the PFRN outperformed all
baselines and successfully mitigated the drop in FR for partial faces. Despite training
exclusively with synthetic occlusions, the PFRN improved the performance of face pairs
with extreme head poses, i.e., with natural occlusions. Besides, the performance is
maintained on a high level for holistic, i.e., non-occluded faces. Overall, the results
demonstrated that the PFRN provided viable results even with tiny face patches, thereby
accomplishing all objectives stated in Section 1.2.

For video face recognition, a unique approach was presented with the PIFAN by
aggregating the frames in the image space. With global concatenation layers, the PIFAN
enables back-and-forth information exchange at various depths during aggregation. In
this way, only the most relevant information is leveraged to synthesize the aggregate
image. By ensuring permutation invariance in the PIFAN, the aggregated image is
identical regardless of the frame order. Quantitatively, the PIFAN outperformed the
previous method in permutation-variant face aggregation on all benchmark protocols
and accomplished satisfying results compared to state-of-the-art video FR approaches.
Despite these remarkable quantitative results, the qualitative analysis revealed that the
PIFAN selected the input frame with the best facial features instead of aggregating
the information of all frames. In this way, the PIFAN is robust to some degree against
motion blur as it correctly identifies the frame containing the most viable information.
Nevertheless, if all frames are affected by motion blur, the PIFAN fails to provide a
higher quality aggregated face. In conclusion, the PIFAN surpasses all requirements set
for the FR performance yet fails to truly aggregate the information. Despite its flaws,
the PIFAN constitutes the first approach for permutation-invariant face aggregation and
paves the way to aggregate a set of faces without any temporal dependency.

In conclusion, all three approaches effectively remedy the imposed constraints by
mitigating the drop in FR performance without exacerbating the performance under
normal conditions. Hence, all approaches provide a clear benefit over state-of-the-art
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approaches, which suffer under adverse conditions. Besides, two approaches even provide
synthesized faces as additional outputs. Future research directions of all three methods
were presented individually at the end of Chapters 4 to 6. Most notably, the generalization
of the C2F-DAN can be improved quite effortlessly by extending the data augmentation
during training. Additionally, the information about whether a pixel was reconstructed
and thus contains less reliable identity information can help the subsequent FR network
refine its features. Therefore, leveraging this information within the FR network would
further boost the performance. Moreover, generating an entire face based on tiny face
patches could pose an alternative solution for partial FR.

Besides investigating the vulnerability of FR systems for faces with occlusion (see
Chapters 4 and 5) and videos affected by motion blur (see Chapter 6), other domains
can also be explored: faces with different image qualities [15†, 16†], face sets with
outliers, i.e., images of different identities within the set [7†], or combining auditory
and visual information to compensate the degradation of one modality [9†]. While
first approaches provide satisfying results, the latest advances in deep learning enable
even more sophisticated methods to tailor the architecture and the loss functions more
precisely to adverse conditions.
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Appendix: Notation

This appendix briefly introduces the notation used throughout this work. The notation
is based on the style manual published by the Institute of Electrical and Electronics
Engineers (IEEE) [92].

References

References are divided into three groups to improve clarity:

1. Self-citations are denoted by a †, e.g ., [13†].

2. Citations of theses written by supervised students are marked with a +, e.g ., [31+].

3. Any other citations are not highlighted, e.g ., [14].

Multi-references are separated by a comma in alphanumerical order and thus inde-
pendent of the order of appearance in the text, e.g .: The works of Xia [31+], Kong
[20+], and Cao [5+] employed a generative adversarial network (GAN). Or in other
words, multiple works [5+, 20+, 31+] employed a GAN. To avoid clutter from frequently
recurring references, every reference is usually repeated only once per paragraph unless an
attribution is ambiguous. Citing pages are listed after every reference. Besides, footnotes
are marked by Roman letters.[i]

Acronyms

Acronyms are introduced (at least) once when they first appear on a per-chapter basis.
Articles are assigned to the acronyms based on the pronunciation of acronym’s first
letter when used in the research field. E.g ., it is an face recognition (FR) system and
a convolutional neural network (CNN), but a residual network (ResNet). To avoid
confusion with plural usage, acronyms are suffixed by a plural “s”, e.g ., CNNs is the
plural of CNN.

[i]This is a footnote.
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Mathematics

The mathematical notation follows the ISO 80000-2 standard where possible [94]. The
most important aspects are summarized below:

• Scalars are written in italic lower-case letters, e.g ., l.

• Constant scalars are written in capital letters, e.g ., N .

• Vectors are written in bold lower-case letters, e.g ., v.

• Matrices and tensors are written in bold capital letters, e.g ., X.

• Distributions and sets are written in calligraphic capital letters, e.g ., G.

In addition to ISO 80000-2, the following rules apply:

• Whenever partial and total derivatives are identical, partial notation is preferred.
In other words, ∂x

∂t
is preferred over dx

dt
unless the meaning changes.

• A single element x at the coordinate
(
a b c d

)
of an A×B×C×D tensor X is

obtained by x =
[
X
]
a,b,c,d

. With the help of “:”, all indices within are dimension

are selected, i.e.,
[
X
]
a,:,c,d

denotes a vector since the ath element is chosen in the

first dimension, the cth element in the third dimension, and the dth element in the
fourth dimension. Besides, X =

[
X
]
:,:,:,:

holds.

• A M×N matrix W can be written as

W =
(
w1 w2 . . . wN

)
=


w1,1 w1,2 . . . w1,N

w2,1 w2,2 . . . w2,N
...

...
. . .

...
wM,1 wM,2 . . . wM,N

 , (A.1)

where wn =
[
W
]
:,n

denotes the nth column vector and elements wm,n =
[
W
]
m,n

the element at position
(
m n

)
.

• All mathematical operations are subject to automatic singleton expansion, also
referred to by broadcasting. That is, if two tensors are included in a calcu-
lation that requires identical size, e.g ., a summation, their mismatching (sin-
gleton) dimensions are expanded via repetition until their dimensions match.
E.g ., consider a scalar a and a vector b =

(
b1 b2 . . . bN

)
∈ R1×N , then

b+ a =
(
b1 + a b2 + a . . . bN + a

)
.

Analogously, for a matrix C =
(
c1 c2 . . . cN

)
∈ RM×N ,

C + b =
(
c1 + b1 c2 + b2 . . . cN + bN

)

=


c1,1 + b1 c1,2 + b2 . . . c1,N + bN
c2,1 + b1 c2,2 + b2 . . . c2,N + bN

...
...

. . .
...

cM,1 + b1 cM,2 + b2 . . . cM,N + bN

 .
(A.2)
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• If not stated otherwise, the L2 is used as the default vector norm, i.e.,

∥x∥ = ∥x∥2 =
√∑N

i=1[x]
2
i for x ∈ RN . However, for matrices (and tensors)

the Frobenius norm is utilized, i.e.,

∥X∥ = ∥X∥F =

√√√√ M∑
i=1

N∑
j=1

[X]2i,j, (A.3)

where X ∈ RM×N .

Artificial Neural Networks

The notation in artificial neural networks (ANNs) follows [162].

• The superscript (n) denotes the nth sample in a dataset, e.g ., X =
{(

X(n), y(n)
)}N

n=1
,

where X is a dataset comprising N samples – here, an input matrix X together
with a scalar label y.

• The superscript [l] describes the lth layer of an ANN.

• Predictions by the network are marked with ,̂ e.g ., ŷ is the prediction of a network
and should ideally be close to the target label from a dataset y.

• To discern outputs before and after applying the activation function Ψ (·), the
tilde ˜ is used for the output without Ψ (·), i.e., ŷ = Ψ(ỹ).

In order to minimize clutter, all markers are omitted if they are not necessary to avoid
ambiguity.
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Appendix: Similarity Transformation
for 2D Face Alignment

Umeyama [209] describes the least-squares estimation of the similarity transformation
parameters (rotation φ, uniform scaling ζ, and translation τx and τy), which are used in
this work to perform face alignment using NLM 2D facial landmarks. Equation (3.3) can
be rewritten as

R∗, ζ∗, τ ∗ = argmin
R, ζ, τ

(
1

NLM

NLM∑
i=1

∥yi − (ζRxi + τ )∥2
)
, (B.1)

with the rotation matrix R =

(
cosφ − sinφ
sinφ cosφ

)
and translation vector τ =

(
τx
τy

)
, and

xi and yi denoting the source and target vector, respectively. The mean vectors µx and
µy, the variance σ2

x, and the covariance matrix Cx,y are computed by

µx =
1

NLM

NLM∑
i=1

xi, (B.2)

µy =
1

NLM

NLM∑
i=1

yi, (B.3)

σ2
x =

1

NLM

NLM∑
i=1

∥xi − µx∥
2 , (B.4)

Cx,y =
1

NLM

NLM∑
i=1

(xi − µx)
(
yi − µy

)T
. (B.5)

Moreover, the singular value decomposition of the covariance matrix Cx,y is denoted
as UDV T , with the singular values in D being in descending order. In addition,

S =

(
1 0
0 −1

)
. Then, the optimal rotation matrix R∗, the scaling ζ∗, and the translation
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vector τ ∗ minimizing Equation (B.1) are

R∗ =


UV T if (rank (Cx,y) = 1 & det (Cx,y) ≥ 0) or

(rank (Cx,y) = 2 & det (U) det (V ) = 1)

USV T if (rank (Cx,y) = 1 & det (Cx,y) < 0) or

(rank (Cx,y) = 2 & det (U) det (V ) = −1) ,

(B.6)

ζ∗ =


1
σ2
x
tr (D) if det (Cx,y) ≥ 0

1
σ2
x
tr (DS) if det (Cx,y) < 0,

(B.7)

τ ∗ = µy − ζ∗R∗µx. (B.8)
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