
at–Automatisierungstechnik 2023; 71(5): 364–379

Methods

Fan Ji*, Maximilian Wünnenberg, Rafael Schypula, Juliane Fischer, Dominik Hujo, Michael Goedicke,

Johannes Fottner and Birgit Vogel-Heuser

Inconsistency management in heterogeneous
engineering data in intralogistics based on
coupled metamodels

Inkonsistenz Management in heterogenen Engineering Daten in der Intralogistik auf Basis von

gekoppelten Metamodellen

https://doi.org/10.1515/auto-2022-0128

Received October 4, 2022; accepted March 10, 2023

Abstract: During the development of intralogistics systems

(ILS), heterogeneous models are created, which represent

discipline-specific views, e.g., control software developed

by automation engineers or discrete-event simulation mod-

els created by simulation engineers. These models repre-

sent discipline-specific views on the system but contain

overlapping information. Thereby, keeping the information

in different development models consistent is challenging

and currently requires high manual effort, which highly

depends on the developers’ experience. To overcome this

challenge, an approach to link heterogeneous model data

and identify potential information inconsistencies within

and between models automatically is proposed. The con-

cept is evaluated with a use case containing three typical

inconsistencies from five representative engineering mod-

els applied in ILS development.

*Corresponding author: Fan Ji, Technical University of Munich, Institute

of Automation and Information Systems, Boltzmannstr. 15, 85748 Garch-

ing bei München, Germany, E-mail: fan.ji@tum.de

Maximilian Wünnenberg and Johannes Fottner, Chair of Materials

Handling, Material Flow, Logistics, Technical University of Munich, Boltz-

mannstr. 15, 85748 Garching bei München, Germany,

E-mail: max.wuennenberg@tum.de (M. Wünnenberg), j.fottner@tum.de

(J. Fottner)

Rafael Schypula and Michael Goedicke, Paluno – The Ruhr Institute

for Software Technology, University of Duisburg-Essen, Gerlingstraße 16,

45127 Essen, Germany, E-mail: rafael.schypula@paluno.uni-due.de

(R. Schypula), michael.goedicke@paluno.uni-due.de (M. Goedicke)

Juliane Fischer, Dominik Hujo and Birgit Vogel-Heuser, Technical

University of Munich, Institute of Automation and Information Systems,

Boltzmannstr. 15, 85748 Garching bei München, Germany,

E-mail: juliane.fischer@tum.de (J. Fischer), dominik.hujo@tum.de

(D. Hujo), vogel-heuser@tum.de (B. Vogel-Heuser)

Keywords: intralogistics systems; metamodel coupling;

model inconsistency.

Zusammenfassung: Bei der Entwicklung von Intralogis-

tiksystemen (ILS) werden heterogene Modelle erstellt, die

disziplinspezifische Sichten auf das ILS darstellen, z.B., von

Automatisierungsingenieuren entwickelte Steuerungssoft-

ware oder von Simulationsingenieuren erstellte ereignis-

diskrete Simulationsmodelle. Diese Modelle repräsentieren

disziplinspezifische Sichten auf das System, enthalten aber

überschneidende Informationen. Es ist herausfordernd, die

Informationen in den verschiedenen Entwicklungsmod-

ellen konsistent zu halten und erfordert derzeit einen

hohen manuellen Aufwand, der stark von der Erfahrung

der Entwickler abhängt. Um dies zu adressieren, wird

ein Ansatz zur Verknüpfung heterogener Modelldaten und

zur automatischen Ermittlung potenzieller Inkonsistenzen

innerhalb und zwischen Modellen vorgestellt. Das Konzept

wirdmit einemAnwendungsfall evaluiert, der drei typische

Inkonsistenzen aus fünf repräsentativen Modellen enthält,

die in der ILS-Entwicklung eingesetzt werden.

Schlagwörter: Intralogistiksysteme; Metamodelkopplung;

Modellinkonsistenz.

1 Challenges in ensuring model

consistency during the

development of intralogistics

systems

Intralogistics systems (ILS) play a vital role in ensuring the

successful satisfaction of customer demands within pro-

duction companies. The term intralogistics system refers to

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/auto-2022-0128
mailto:fan.ji@tum.de
mailto:max.wuennenberg@tum.de
mailto:j.fottner@tum.de
mailto:rafael.schypula@paluno.uni-due.de
mailto:michael.goedicke@paluno.uni-due.de
mailto:juliane.fischer@tum.de
mailto:dominik.hujo@tum.de
mailto:vogel-heuser@tum.de

F. Ji et al.: Inconsistency management in heterogeneous engineering data — 365

the internal material flow system of a company or factory,

such as the transportation of goods during the production

process [1]. Rapidly changing product portfolios, demand

fluctuations, and alterations in supply chains require high

flexibility of these systems,whichmeans, e.g., re-assembling

conveyor units to realize different material flow layouts

according to changing requirements and capabilities for

the adaption to different types of handling units. At the

same time, they must satisfy throughput demands while

being highly reliable [2]. Thus, developing successful ILS

is a challenging task that incorporates experts from var-

ious engineering domains, e.g., mechanical engineering,

electrical engineering, software development, or simula-

tion engineering. Every expert works with domain-specific

development tools, i.e., software tools that generate highly

diverse model files. Contradictions between the informa-

tion described in these models (subsequently referred to as

inconsistencies) might be difficult to discover during the ILS

development phase, but they can cause significant delays

during the assembly, commissioning, and operation of the

system. It is thus necessary to identify inconsistencies in the

different models before the physical product is generated,

which is a challenging task [3].

Recently, a study has been conducted to identify

domain-specific views on ILS and the main causes of model

inconsistencies in practice [4]. In the study, experts involved

in different stages of the development process have assessed

current practices and challenges in ILS development. The

study results show that model inconsistencies occurring in

the design phase are mostly caused by insufficient com-

munications between stakeholders, especially when chang-

ing system requirements. Thus, improving the efficiency of

data exchange between disciplines is highly demanded. In

addition, the study reveals that most inconsistencies among

model data are assessed manually, and no generic checking

process exists in reality. Therefore, the quality and reliabil-

ity of the results depend heavily on human experience and

are oftentimes difficult to guarantee.

To overcome the challenges mentioned above, this

paper addresses the following research question: How can

discipline-specific models, which are created during the

development of ILS, be automatically linked to detect poten-

tial information inconsistencies within and between these

models? To answer this question, the approach is derived

using insights from previously conducted expert interviews

[4], takes formalized domain knowledge into account, and

is evaluated using a prototypical implementation and a lab-

sized use case. Contradictions between the different engi-

neering views are automatically discovered by comparing

the overlapping information contained in their models. To

this end, the domain-specific formulation of model data is

transformed so that a cross-discipline comparison can be

executed.

As part of a production system, the ILS development

poses similar challenges, requirements, and boundary con-

ditions as the development of the general production sys-

tems. For example, both developments are interdisciplinary,

requiring the participation and collaboration of different

stakeholderswho express different views of the systemwith

discipline-specific models. In addition, both pursue small

batch sizes to realize customized production in loosely cou-

pled, discrete processes. Moreover, compared to other sub-

systems in factory automation, ILS exhibit a high degree of

modularity in both hardware and software, which results

in clearly defined interfaces and high reusability [5], and is

reflected, e.g., in themechanical layout as well as in the con-

trol software.Meanwhile, the domain knowledge that needs

to be considered to identify inconsistencies is relatively lim-

ited. These characteristics make ILS a good starting point

for investigating the inconsistency management approach

in the production domain.

The remainder of the paper is structured as follows:

Section 2 elaborates on five requirements for identifying

model inconsistencies during ILS development, followed by

the introduction of preliminaries and relevant research in

this area in Section 3. In Section 4, the proposed concept

is described in detail, which is prototypically implemented

and evaluated in Section 5 with three concrete inconsis-

tency cases to assess the fulfillment of the requirements.

In the end, a summary and an outlook on future research

directions are provided in Section 6.

2 Requirements for identifying

model information

inconsistencies in intralogistics

systems

Due to the challenges in keeping the information in dif-

ferent development models consistent during the design of

ILS, the following requirements need to be fulfilled by a

systematic and comprehensive inconsistency management

approach.

Firstly, as mentioned above, during the development

of ILS, engineers with different professional backgrounds

are involved, who model the same system from discipline-

specific perspectives using different modeling tools (soft-

ware) [6]. For example, simulation engineers use simulation

tools to forecast the dynamic performance of a logistics

366 — F. Ji et al.: Inconsistency management in heterogeneous engineering data

system, while automation engineers develop the Pro-

grammable Logic Controller (PLC) code to control different

actuators and to implement the desired process control.

Therefore, the resulting heterogeneity of the applied engi-

neeringmodels that express discipline-specific views on the

system should be handled by the inconsistency manage-

ment approach (R1: heterogeneous models).

Second, during the development phases, different types

of inconsistencies may occur within and across engineer-

ing models. Due to the high time pressure, engineers may

introduce inconsistencies within one model when changes

are performed on short notice at a late stage of the develop-

ment workflow or when copy-paste-modify is used to speed

up the development process [7]. Additional inconsistencies

result from overlapping model information, meaning that

the same information about the system under development

is contained in two different models [6]. These can be equiv-

alent information, that is, when two values within two dif-

ferent models need to be the same, or the values may be

dependent on each other [8]. Since developers from differ-

ent disciplines work with their discipline-specific model-

ing tools, they are not always aware of these content-wise

overlaps. Both types of inconsistencies are potential sources

of errors during the integration of system functionalities

and, thus, need to be detected by an inconsistency man-

agement approach as early as possible (R2: various types of

inconsistencies).

For identifying different inconsistency types within,

but especially across different development models, the

content-wise overlap and dependencies between the dif-

ferent discipline-specific models need to be made explicit.

However, due to the diversity and discipline-specific nature

of the engineering models created, it is a time-consuming

task to define relations among model information manu-

ally and, thus, not feasible to repeat for each specific ILS.

Moreover, due to changing requirements during the devel-

opment of a specific ILS, the respective models are updated

frequently, which would require updating the relations.

Therefore, automatic and dynamic coupling of project-

specific models is essential to improve the efficiency of the

inconsistency management approach (R3: automatic model

coupling).

Based on the pre-study [4], most inconsistencies are

assessed by experienced engineers in their respective dis-

ciplines. Thus, the accuracy of the checking results relies

heavily on engineers’ experience, including their aware-

ness and understanding of standards and guidelines. This

is called domain knowledge in the following. Therefore, to

check the conformance of model information with domain

knowledge, supplementary information from these sources

should also be incorporated. Formalized domain knowledge

also serves as a basis for defining reusable inconsistency

queries, since some of them are caused by a lack of expe-

rience or awareness of domain standards (R4: knowledge

formalization).

Ensuring the industrial applicability of the approach

can be considered from three perspectives: reusability,

extensibility, and tool support. First, to reduce the efforts of

adapting the concept to industrial applications, most parts

of the concept should be reusable. Besides, considering the

increasing complexity of ILS and the diversity of model-

ing tools applied in engineering activities, the concept and

resulting prototypical implementation should be extensible

to further integrate models from other disciplines. In addi-

tion, engineers involved in the ILS development should be

assisted with tool support to define and identify multi-types

of model inconsistencies (R5: industrial applicability).

3 Preliminaries and state of the art

in model inconsistency

management

Subsection 3.1 provides a brief overview of Model-based

Engineering (MBE) and Semantic Web Technologies (SWT).

Next, apart from the underlying approaches (V-SUMM,

SUMM), Subsection 3.2 focuses on the current state-of-the-

art in model inconsistency management approaches in the

domain of factory automation (discrete processes), limited

to linkedmodel approaches that follow the similar principle

to V-SUMM.

3.1 Preliminaries: model-based engineering
and semantic web technologies

Model-based engineering (MBE) iswidely applied to address

the growing complexity of ILS and to increase their flex-

ibility to changing market demands. In MBE, engineers

from different disciplines depict certain aspects of the sys-

tem by using specific modeling tools, which are not lim-

ited to software development but also include other disci-

plines involved in the system development. For example,

mechanical engineers use Computer Aided Design (CAD)

tools such as AutoCAD to design 3D system layouts, while

electrical engineers create the circuit diagram using Elec-

trical CAD tools such as EPLAN or Zuken E3. Consequently,

various engineering models are generated in the design

processes. Amodel, regarded as an abstraction of real-world

objects, describes a system from the specific viewpoint of its

F. Ji et al.: Inconsistency management in heterogeneous engineering data — 367

developer and contains only discipline-related system infor-

mation. To define the structure, semantics, and constraints

for a certain kind of model [9], metamodels are utilized and

often designed in advance. A metamodel expresses model

syntax and semantics at a higher abstraction level, which

enables a general description of a certain type of model.

In this paper, the information contained in metamodels is

considered as model knowledge.

Due to the heterogeneity of engineering models and

discipline-specific expressions of views on a system such as

an ILS, a common formalism for representing discipline-

specific knowledge about the structure and semantics of

these variousmodels is demanded. According to Sabou et al.

[10]. Semantic Web technologies (SWT) are advantageous in

terms of flexible semantic modeling, intelligent knowledge

integration, exploration of distributed datasets, knowledge

quality assurance, and knowledge reuse. These characteris-

tics make SWT an ideal concept to address the requirements

mentioned in Section 2. As the basic building block in SWT,

the Resource Description Framework (RDF) is a language

for representing information about resources in the World

Wide Web and is applied to integrate data from multiple

sources. An RDF graph is a set of triples, each consisting of a

subject, a predicate, and an object, which can be expressed

as a node-arc-node link (e.g., conveyor1-modeledBy – CAD-

model, conveyor1-is_a-Beltconveyor). Compared to RDF,Web

Ontology Language (OWL) is designed to formulate not only

relations between instances but also constraints and hierar-

chy among classes. Since both languages support rule-based

reasoning, i.e., inferring new element relations based on the

existing ones, the realization of R3 (automatic model cou-

pling) ismade possible. In this paper, the reasoning ability of

SWT is utilized to automatically generate links amongmodel

instances based on the previously coupled metamodels.

3.2 State of the art in model inconsistency
management

Within the scope of MBE, many approaches have been

raised tomaintain or rebuild consistency (i.e., inconsistency

management) among models. For example, Feldmann et al.

propose to use links to define different types of informa-

tion overlaps within and between engineering models in

the domain of automated production systems (aPS) [6]. To

check the consistency between models from different disci-

plines, they use a consistency model to trace links between

the elements from different models in combination with

a rule-based approach. Based on this work, Zou et al. [11]

further classify the intra-model and inter-model inconsis-

tencies links into five categories, which are existence, equiv-

alence, correspondence, refinement, and satisfaction-links.

In the proposed approach, the predefined links between

metamodels, which represent implicit inter-model depen-

dencies, are created based on this classification. However, in

these two approaches, all model relations should be explic-

itly and manually defined in advance (R3: automatic model

coupling), which greatly reduces their flexibility and exten-

sibility. In addition, in the work of Feldmann et al. [6, 8],

the lack of consideration of domain-specific knowledge (R4:

knowledge formalization) and the lack of the ability to gen-

erate a combined view, including linked model information

from all involved disciplines, lead to the limited utility in

industrial applications. To represent heterogeneous model

information in a uniform and formalized format, SWT have

been widely used in modeling inconsistency management.

For example, Herzig et al. [12] propose an SWT-based frame-

work in which all models are represented and stored in

a knowledge base in the form of RDF. They also design a

semantic reasoner for querying and inferring inconsisten-

cies based on deductive reasoning mechanisms. However,

due to the lack of a hierarchy of modeled information in the

knowledge base, allmodel relations need to be definedman-

ually (R3: automatic model coupling), and domain-specific

artifacts are not taken into consideration (R4: knowledge

formalization).

To automatically couple different types ofmodels, view-

based development is widely applied in the software engi-

neering domain in combination with MBE. A view, by

definition, is regarded as a model which is generated to

allow users to see the system from a specific viewpoint

[13]. To maintain consistency between models, Atkinson

et al. propose a Single Underlying Model (SUM) structure

combined with its metamodel (SUMM), where all the sys-

tem information is predefined [13]. They transform model

instances into the SUM to prevent potential inconsisten-

cies. However, the concept’s application in practice is lim-

ited since it requires a 1:1 relationship between different

metamodel elements, which cannot always be realized. To

overcome this shortage, Kramer et al. propose VITRUVIUS

using a V-SUMM (Virtual Single Underlying Meta Model) by

connecting metamodels from different disciplines to con-

struct a virtual metamodel [14], whereby “virtual” refers

to a metamodel that is combined of various metamodels.

In their work, the V-SUMM is built with a set of meta-

models coupledwith consistency preservation rules.Models

for developing a concrete software system can thereby be

derived and modified. However, V-SUMM is only applied

in the software domain and targets solving inconsistencies

among models formalized in major languages like the Uni-

fied Modeling Language (UML) profiles. The applicability of

V-SUMM to the development of engineering systems such

368 — F. Ji et al.: Inconsistency management in heterogeneous engineering data

as ILS is not investigated, which comparatively contain dif-

ferent disciplines, such asmechanical engineering, software

development, and projectmanagement. Additionally, model

inconsistencies depending on the domain knowledge are

not captured in the approach.

Some studies have already been conducted to manage

model inconsistencies in specific application domains. For

example, in mechatronics engineering, Li et al. propose a

concept to integrate multidisciplinary engineering models

during the development phase using SysML4Mechatronic,

which is a SysML profile aimed specifically at developing

mechatronic systems [15]. In this approach, required infor-

mation from heterogeneous engineering models is firstly

imported into a SysML4Mechatronics plant model, which

contains reusable components in each discipline and serves

as the central model database for various application cases.

The inconsistency checking process is performed on an

Automation Markup Language (AML) file exported from

this plant model. To store and formalize the consistency

constraints and rules, a knowledge base is built additionally

based on discipline-specific knowledge. However, after two

steps of transformation, the completeness and correctness

ofmodel informationmay not be ensured. In addition, since

themodel data and domain knowledge are saved separately,

their relationship is unknown to the system and should all

be definedmanually for eachmechatronic plant, which can-

not satisfy R3 (automatic model coupling) and R5 (industrial

applicability). In addition, Ananieva et al. explore the appli-

cation of VITRUVIUS framework in solving the inconsisten-

cies of AML models in the automation domain [16]. They

classify the consistency constraints into two types, namely

static and dynamic, and prove the ability of the VITRUVIUS

to detect both types of inconsistencies automatically. How-

ever, only a singlemodeling language, AML, is implemented,

and the content-wise model relations (R4: knowledge for-

malization) are not taken into consideration in their work.

In the intralogistics domain, Vogel-Heuser et al. propose a

software architecture based on coupled metamodels to syn-

chronize control programs and other models to support the

software evolution of ILS [17]. To link heterogeneous model

information in ILS, they introduce a three-layer architec-

ture, which consists of metamodels, models, and real-world

objects from top to bottom. This structure is also utilized in

this paper to define the multi-level model information.

Althoughmany works have been carried out in manag-

ingmodel inconsistency, research gaps remain (see Table 1).

InMBE, some approaches aim to integratemultidisciplinary

engineeringmodels based on themodel-linking concept and

also utilize multisource domain knowledge for consistency

definition, but the automatic model coupling is not realized

(R1), which brings great human efforts during the prepa-

ration phase and hinders their generic applicability. In the

domain of view-based software engineering, V-SUMMarchi-

tecture for automatic model coupling has been developed.

However, the complete process to apply it in the develop-

ment of real production systems such as ILS is still missing

(R5). Further, content-wise (semantic)model inconsistencies

depending on the application domain are not taken into con-

sideration (R4). In addition, V-SUMM is only implemented

on some major modeling languages such as UML and AML,

while its ability to couple heterogeneous engineering mod-

els (R1) and to handle extensive model inconsistencies (R2)

is not sufficiently researched Table 1.

4 Concept for automatic

inconsistency identification

based on coupled metamodels

The concept aims to automatically identify inconsistencies

within and between development models applied in the

intralogistics domain and to support engineers in resolving

the identified issues. The developed concept is depicted in

Figure 1 and consists of two main parts: a client module

(CM) for information extraction and user interaction and

an inconsistency checking module (ICM) for information

modeling, storage, and inconsistency query.

Table 1: Fulfillment of requirements in state of the art. Fulfilled (+), partially fulfilled (o), not fulfilled (−), or not considered (n.a.). If not specified
otherwise, the row entries refer to all sources in the heading.

Requirement Atkinson Kramer et al. Feldmann Herzig Li et al. Ananieva Vogel-Heuser

(SUMM) (V-SUMM) [14] et al. [6, 8], et al. [12] [15] et al. [16] et al. [17]

et al. [13] Zou et al. [11]

R: heterogeneous models + o + + o − o

R: various types of inconsistencies n.a. n.a. + − o + n.a.

R: automatic model coupling + + − − − + −
R: knowledge formalization − − o [11] o o o −
R: industrial applicability − o + + + o o

F. Ji et al.: Inconsistency management in heterogeneous engineering data — 369

Figure 1: Overview of the concept for automatic inconsistency checking of model data in ILS.

The ICM contains a database to store the extracted

model information, theirmetamodels, knowndependencies

between (meta-)model elements, and formalized knowledge

from the intralogistics domain, which should be consid-

ered to identify inconsistencies. Since the database contains

not only model-related data but also formalized knowl-

edge embedded in metamodels and domain standards, it

is called the knowledge base in the following. Based on

the concept of model coupling proposed by Vogel-Heuser

et al., this knowledge base is composed of three layers

[17]. The elements at the lowest layer refer to real-world

objects, which can be electrical or mechanical hardware

or software in a system. The middle layer stores the infor-

mation extracted from project-specific models (also called

model instances). At the top layer, metamodels are intercon-

nected to represent model-related knowledge. In addition,

knowledge from selected intralogistics domain standards,

together with domain experts’ knowledge, is formalized

as a complement to model knowledge (metamodels). The

arrows in the knowledge base refer to the relationships

between multisource data. Moreover, the IM also contains

a reasoner to generate different types of data relations (see

“derived links” in Figure 1) and a query engine to identify

potential contradictions among model information. The CM

mainly serves as an interface between engineers and ICM. It

includes a user interface allowing engineers to uploadmod-

els and self-defined consistency rules, trigger the checking

process and get access to the inconsistency checking results.

Overall, the inconsistency identification process can be

divided into four steps: First, domain knowledge is formal-

ized, and the metamodels of the selected engineering mod-

els are imported into the ICM together with their depen-

dencies (Preparation). After preparing the reusable part of

the ICM, project-specific models should be uniformly for-

malized so that they can be integrated into the knowledge

base (Preprocessing). Subsequently, the reasoner and query

engine in the IM link these model instances automatically

and check the inconsistencies with predefined and project-

specific queries (Inconsistency checking). Finally, the query

results are supplemented with additional information and

presented to the engineers via the user interface in the

CM (Postprocessing). Following these steps, details of the

concept are provided in the following.

Preparation: In the preparation phase, metamodels of

the selected engineering models, user-defined consistency

rules, relevant industry standards, and guidelines applied

in the intralogistics domain are utilized as the inputs. With

these inputs, a reusable upper structure (model knowledge

layer) is constructed in the knowledge base, which is the

core part of the ICM. To improve the extensibility and

general applicability of the approach, the V-SUMM concept

is applied, which utilizes coupled metamodels to achieve

automatic model linking. Thus, dependencies among meta-

models in this layer are manually defined (see “defined

mappings” in Figure 1) and imported into a link repository

in the ICM. The links “L” can be expressed as 3-tuple:

370 — F. Ji et al.: Inconsistency management in heterogeneous engineering data

L =
⟨
MMi,MM j, LTk

⟩
. (1)

In Eq. (1), MM represents a set of metamodels that are

imported into the ICM. MMi, MMj are the i-nd and j-nd

metamodels in the set where i, j = 1, . . . , m and i ≠ j. LT

refers to a set of link types, which is defined based on the

classification of model dependencies [11], and LTk is the

k-nd type of link, k = 1, . . . , n. In addition, a rule repository

containing rules for automatically deriving links between

model instances is prepared and integrated into the CM. The

rules are constructed based on the first-order logic (FOL),

which can be expressed as:

L1(ex, 𝑣1) ∧ L2(𝑣1, 𝑣2) ∧…∧ Lt(𝑣t−1, ey) ⇒ Lnew(ex, ey). (2)

L1, L2, . . . , Lt are the relations that were pre-saved in

the link repository, andLnew is the inferred relation between

elements in the model instances (entities). ex , ey refer to the

entities to be linked, which are extracted from the model

data. vi are the variables that represent entities in themodel

data.

Preprocessing: Before checking the model inconsis-

tency, heterogeneous model data should be preprocessed

to gain a uniform format so that they can be merged into

the knowledge base. The information extraction process is

performed by the CM. In the CM, a representation model is

developed for each selected engineering discipline (view).

The extracted model data needed for consistency checking

is written into respective representationmodels and each of

which entails the information for one engineering view. For

example, the representationmodel for themechanical view

contains information about the position, geometric dimen-

sions, name, and assignment to an assembly of each part.

Once the checking process is started, data from uploaded

engineering models is parsed based on the representation

models and transformed into RDF. In addition, self-defined

consistency rules are also transformed by the CM in this

step. All the processed data is sent together to the ICM.

Inconsistency checking: This process is performed by

ICM and can be divided into two sub-steps: model merg-

ing and inconsistency querying. In the first step, uniformly

formatted model data from the CM is merged into the

knowledge base. Relying on the unique identification num-

ber assigned to each model during preprocessing, model

instances are mapped to the corresponding metamodels.

Until now, model data is still independent in the knowledge

base. To generate relations between inter-model informa-

tion, metamodel links, and the FOL-rules are utilized. Based

on these two repositories (link- and rule-repository), an

SWT-reasoner looks through all the model data and cou-

ples the cross-domain model elements automatically (see

“derived links” in Figure 1) according to the FOL-rules.

After inserting the links between model instances, the

knowledge base is prepared for inconsistency querying. In

the query repository, some queries are pre-saved based

on domain knowledge, such as searching for the reference

velocity of conveyors based on their classification. In addi-

tion, user-defined inconsistencies, which are created based

on project specifications or engineers’ expertise, are also

imported. In each query statement, starting from the source

model information, the target information is searched along

the generated model links, and the mathematical relations

between the source and targetmodel data are also explicitly

defined (see Eq. (3) in Section 5.3).

Postprocessing:When inconsistencies are detected by

the query engine, the results are then completed with addi-

tional information to assist engineers in resolving conflicts

among models. The processed checking results include not

only information about conflicting model information but

also warning messages for engineers that are previously

supplemented to each query.

After the four steps described above, heterogeneous

model data are automatically extracted and connected. Dif-

ferent types of model inconsistencies are checked based

on the formalized model and domain knowledge, and the

results are presented to the engineers.

5 Evaluation using a prototypical

implementation

In this section, the proposed approach is prototypically

implemented and evaluated with three representative

inconsistency cases coming from an industrial use case.

5.1 Prototypical implementation

To evaluate the concept described in Section 4, a prototyp-

ical tool shown in Figure 2 is developed. As mentioned in

Section 4, the tool also consists of two modules.

The CM is written in the Java programming language

and includes a graphical user interface (GUI). The repre-

sentation models in the CM contain Java classes that need

to be filled with extracted model data. Subsequently, they

are transformed into RDF files using Apache Jena,1 which

is a Java framework for SWT. In addition, users can define

their own consistency rules with the modeling tool Eclipse

Papyrus.2 To ensure that these rules correctly addressmodel

1 https://jena.apache.org/.

2 https://www.eclipse.org/papyrus/.

https://jena.apache.org/
https://www.eclipse.org/papyrus/

F. Ji et al.: Inconsistency management in heterogeneous engineering data — 371

Figure 2: Prototypical implementation of the concept.

properties defined in the representation models, Papyrus

model files with UML profiles are provided. Through the

provided Papyrus model, user-defined rules are generated

in UML format, which are further transformed into the

form of JavaScript Object Notation (JSON) and sent to ICM

together with extracted model information.

On the other hand, the ICM is composed of three repos-

itories and a knowledge base. To provide a uniform for-

mat for representing heterogeneous engineering data and

to infer potential information relations, SWT are applied.

The knowledge base is modeled in OWL, which is an SWT

language that is designed to process and integrate heteroge-

nous information and supports relation reasoning. Thus, the

knowledge is understandable for humans and also inter-

pretable for machines. The link repository stores the links

between elements at the metamodel level in a CSV file.

Based on the predefined links and the model data received

from the CM, a knowledge base is generated in OWL. To

automatically couple the model instances, inference rules

based on the FOL (see Eq. (2)) are defined and saved in a rule

repository using the Semantic Web Rule Language (SWRL).

In addition, in the query repository, the explicit relations

between model elements are formalized in SPARQL, which

is a semantic web query language. Once the checking pro-

cess is triggered via the user interface, the query engine

contained in the open-source Python packet Owlready2 [18]

queries through the knowledge base to detect potential

inconsistencies. The synchronization of data and processes

between the two modules is achieved by using RESTful web

services.

5.2 Description of the use case

During the operation phase of ILS, individual logistics com-

ponents may break down, e.g., due to aging. In the worst

case, the broken component must be replaced by a new,

comparable one if the original component type is out of pro-

duction or has delivery delays [7]. Figure 3 shows aminimal

example of ILS consisting of four belt conveyors built in a

line. Although this use case is a minimal, lab-sized example,

it is sufficient to represent the identified challenges, such

as domain-specific models with different exchange formats

modeled by different stakeholders and containing overlap-

ping information about the system under development. In

the considered scenario, belt conveyor 3 is broken andmust

be replaced by new hardware with similar functionality. In

the new conveyor, a different drive is installed, requiring

an update of the ILS’s control software, and the mechanical

conveyor parts have minor geometrical differences com-

pared to the old components. Accordingly, during the prepa-

ration of the exchange, the model data needs to be updated.

For example, the mechanical engineer imports the new

conveyor’s 3D model provided by its manufacturer into the

3D model of the entire system, while the automation engi-

neer updates the configuration of the function block param-

eters. Meanwhile, to generate new process-related key per-

formance indicators, e.g., the system’s availability factor, a

process simulation engineer re-simulates the transportation

processwith new simulation parameters of conveyor 3, such

as the transportation time. If these model-related changes

are not performed in time, or communicational problems

372 — F. Ji et al.: Inconsistency management in heterogeneous engineering data

Figure 3: Use case replacement of a broken conveyor and the relevant engineering models.

between teams occur, conflicts among cross-domain engi-

neering data may be caused.

The goal of this evaluation is to cover relevant engineer-

ing disciplines involved in the development of ILS without

focusing too much on specific modeling tools from indi-

vidual vendors. According to the pre-study [4], mechan-

ical design, software development, material flow design,

and project data analysis are the most relevant disciplines

involved in ILS development. Thus, the following represen-

tative modeling tools are selected during the prototypical

implementation: in the field of mechanical engineering,

FreeCAD is selected (Model No. 1), to simulate the dynamic

material flows, JaamSim is selected (Model No. 2), including

generated system parameters (e.g., breakdown time, main-

tenance time) that are documented in a JaamSim report

(Model No. 3) to check the fulfillment of project-specific

requirements. The requirements list (Model No. 4) is stored

in table format using Excel and a predefined template. For

control software development, a TwinCAT export (Model

No. 5) is generated, which contains all the control parame-

ters and code to automate the transportation process. Each

selected model targets a sub-aspect of the considered ILS,

while there are information overlaps and dependencies

between the models that may lead to errors during the

design process, as highlighted in [4].

5.3 Potential inconsistencies

For evaluation purposes, three inconsistency cases are

derived and simplified from the previously conducted

expert interviews [4], which address different parts of the

proposed concept. In this sense, they can be considered rep-

resentative and serve as a first proof-of-concept evaluation.

5.3.1 Inconsistency case 1 (IC1): intra-model

inconsistency (different heights of two adjacent

conveyors)

When belt conveyor 3 is exchanged, its different interfaces

need to be considered regarding consistency. Some geomet-

rical conflicts of its mechanical interface can be detected

directly by the FreeCAD tool, e.g., the spatial overlap of

two objects. However, some inconsistencies still need to be

checked based on domain knowledge. A simple example is

the positions of the two adjacent conveyors on the z-axis

(see Figure 3), which need to be identical to ensure a fluent

and stable transportation process. In the use case, after

updating the 3D model of conveyor 3 in FreeCAD, its height

value is compared with the height values of its neighboring

conveyors (conveyors 2 and 4) to avoid this inconsistency.

Since no metamodel is officially provided by the

FreeCAD tool, a metamodel is developed during the imple-

mentation, which includes 24 classes representing the basic

structure and information of a FreeCAD model. In the

“geometry” class of the metamodel, three positions and

three directions are defined as its attributes. In this case, the

equivalence relations are utilized,which definewhether two

linked elements should be the same [11]. Thus, the link at

themetamodel level is defined as “z_position – equivalentTo

– z_position”. In the rule repository, the inference rule

to identify which conveyors are adjacent is derived from

the material flow information contained in the simulation

F. Ji et al.: Inconsistency management in heterogeneous engineering data — 373

model. Based on this rule, the reasoner automatically gen-

erates the “has_neighbor” relations among different convey-

ors. Based on this predefined link and the inferred relations,

the query engine compares the z-position of all adjacent

conveyors anddetects an inconsistency if they are not equal.

Additionally, tolerance of the height difference is also given

according to domain knowledge and stored in the query

repository.

5.3.2 Inconsistency case 2 (IC2): inter-model

inconsistency (conveyor velocity)

To assess the fulfillment of R1 (heterogeneous models), this

inconsistency case is utilized.When changing the configura-

tion of conveyor 3 regarding its geometrical data and control

software, engineers in the process simulation domain also

need to recalculate the transportation time of a workpiece

on each conveyor according to the system throughput time.

In the JaamSim model, the transport time of a workpiece

on conveyor 3 (tconveyor3, unit: s) is simulated. Moreover,

the function block of conveyor 3 is replaced in the control

program, including an update of the target rotational speed

of the drive (vrotation) on conveyor 3. The parameter vrotation
is converted to the linear target velocity of the conveyor

(vconveyor3, unit: m/s) in the control software. Overall, the

parameters tconveyor3 from JaamSim and vrotation from Twin-

CAT are connected via the conveyor length (lconveyor3, unit:

mm) defined in the 3D FreeCADmodel as follows:

𝑣conveyor3 =
lconveyor3

tconveyor3∗1000
(3)

Since this inconsistency case includes relations among

three different engineering models, more details are pro-

vided here. As shown in Figure 4, three classes from three

different metamodels are involved in this inconsistency

case: “component” in FreeCAD, “simulationItem” in Jaam-

Sim, and “FunctionBlock” in TwinCAT . The metamodel link

is defined between three attributes from these classes,

which are “length”, “transportationTime” and “velocity”

respectively. Two types of links are applied in this case,

which are correspondence and satisfaction respectively.

The correspondence links (“correspondTo”) focus more on

convention-based model relations by which the mathemat-

ical relations among values of model attributes are built,

whereas the satisfaction links (“satisfiedBy”) depict the con-

formance of model elements with domain standards, guide-

lines, or project-specific requirements [11]. As denoted in

Figure 4, links between corresponding parameter values

extracted from concrete models are derived automatically,

and their explicit relations (i.e., Eq. (3)) are saved in the

query.

To further check the conformance of the calculated

conveyor velocity with domain-specific knowledge, the tax-

onomy of continuous conveyors from guideline VDI 4440

is integrated into the knowledge base, including the usual

maximum conveying speed for belt conveyors indicated by

domain experts. This domain knowledge is additional infor-

mation beyond the model knowledge to identify additional

inconsistencies. The system component “Belt conveyor 3”

is automatically classified as a “Belt conveyor” in the tax-

onomy based on the analysis of string similarity. To fur-

ther couple the “maximum velocity” of the belt conveyor

Figure 4: Relations between multi-level elements in inconsistency case 2.

374 — F. Ji et al.: Inconsistency management in heterogeneous engineering data

and the velocity of conveyor 3 (vconveyor3), the following

FOL rule is formulated in Eq. (4) and saved in the rule

repository:

Is_a (conveyor, Beltconveyor)

∧ has_parameter (conveyor, velocity_conveyor)

∧ has_max_velocity (Beltconveyor, velocity_max)

⇒ satisfied_by (velocity_max, velocity_conveyor)

(4)

By reasoning on this FOL rule, all the velocities of

conveyors in a system can be linked to the correspond-

ing velocity limits based on the conveyor type. Thus, the

vconveyor3 coming from TwinCAT is coupled with the velocity

of belt conveyors in the taxonomy, and their consistency

can be checked after performing a query. The materials

for implementing inconsistency case 2, including an excerpt

of the used metamodels, model instances in tool-specific

formats, FOL rules, links on metamodel-level, SPARQL

queries, as well as the checking results, are available

online.3

5.3.3 Inconsistency case 3 (IC3): user-defined

inter-model inconsistency (MTBF, MTTF)

According to the conducted pre-study [4], many inconsis-

tencies in real ILS development are caused by requirement

changes. In most cases, engineers need to manually look up

specific parameters within their models that are affected by

a changed requirement, which is time-intensive and error-

prone. This IC3 addresses this challenge by defining consis-

tency rules to realize automatic inconsistency checking dur-

ing requirement changes. A typical requirement is the avail-

ability of the ILS,which represents the relationship between

3 https://gitlab.lrz.de/materials-for-ic2implementation.

the total expected downtime and the total theoretical usable

operating time. To ensure the economic efficiency of a plant

and quantitatively forecast the probability of failure, two

values are commonly applied, which are:

MTBF (mean time between failures) = 1

𝜆
= expected

value of the failure-free time between failures (𝜆 –

failure rate)

MTTR (mean time to repair)= 1

𝜇
= expected value of the

failure time (𝜇 – repair rate)

With these two values above, the availability of the

system (A) can be calculated by the following equation [19]:

A = MTBF

MTBF+MTTR
. (5)

The availability of ILS is a project-specific value and is

determined by custom requirements. As a result, when the

logistics planner changes the required system availability,

the model that provides these two values (MTBF, MTTR)

should also be adjusted accordingly.

To forecast the availability of the four-conveyor-ILS

described in Section 5.2, MTBF and MTTR are defined in

the JaamSim, and their simulated values are documented

in the JaamSim report. On the other hand, requirements

targeting quantitative system parameters are specified in

an Excel file with predefined value ranges. Since MTTR and

MTBF are not pre-integrated parameters in the JaamSim

but are simulation parameters self-defined at specific mea-

suring points, their consistency rule cannot be prepared.

Therefore, the framework is also developed to support user-

defined inconsistency queries. In the prototypical imple-

mentation, the lowest boundaries of these parameters are

specified in a requirement list. A consistency rule (i.e., “the

simulated MTBF andMTTR values should not be lower than

the required minimum values.”) is defined manually with

the graphical modeling tool provided by Papyrus. The gen-

erated rule file in the form of UML is uploaded together

with the two models (i.e., JaamSim report and requirement

list) via the user interface. Checking results are shown in

Figure 5.

Figure 5: Checking results of inconsistency case 3.

https://gitlab.lrz.de/TUMWAIS/public/materials-for-ic2implementation

F. Ji et al.: Inconsistency management in heterogeneous engineering data — 375

5.3.4 Implementation results

To evaluate the concept, inconsistency cases described

above are intentionally added to the respective models.

After loading the corresponding models and user-defined

consistency rule (IC3), all these three types of inconsisten-

cies are successfully detected. Figure 5 shows a screenshot

of the graphical user interface with the checking results

for IC3. The left part of the interface lists all the model

files uploaded by engineers, and the right part displays the

checking results. In the result table, the first two columns

show the internal number and rule file name, respectively,

and the next four columns describe the affected engineering

views, model types, and model elements. In the last col-

umn, amessage that helps relevant engineers to resolve this

inconsistency is provided.

5.4 Efforts for adapting to a different project

Although most parts of the concept are reusable, some

changes are required when applying the approach during

the development of different ILS. Three different adaptions

are described below.

Since the metamodels described in this paper are not

defined for specific modeling tools but for the selected dis-

ciplines (views), changing the tools for modeling will not

require major changes to the metamodels in most cases.

Most modeling tools within a discipline offer similar func-

tionalities resulting in similar classes in the metamodels.

For example, both AutoCAD and FreeCAD support modeling

geometric characteristics of logistics components, and both

own the class “Geometry” in their metamodel. This leads to

a high potential for reusing previously defined classes and

related links. However, the model parser in the CM needs to

be adjustedwhen the newmodeling tool has a different data

exchange format.

On the other hand, when the consistency of a model

from an additional discipline is required to be checked, its

metamodel should be integrated into the knowledge base

first. Somemodeling tools provide their ownmetamodels, if

not, they can also be newly developed or be selected from

third-party metamodels [14]. Further, the relations of this

metamodel with the existing ones saved in the knowledge

base need to be defined. Although a basic classification of

link types and a CSV-based definition of links are offered,

human efforts are still required in this step.

Depending on the targeted inconsistencies, domain

standards, norms, or guidelines that help to define the

model consistencies need to be updated or added. To include

domain knowledge that defines the relations between dif-

ferent models, as in Eq. (3), only links or queries need to

be updated. If the knowledge source provides additional

information, such as the taxonomy of conveyors, it needs

to be formalized in the knowledge base. Also, the relations

between newly imported knowledgewith the existingmeta-

models should be defined at themodel knowledge layer (see

Figure 1).

5.5 Assessment of the requirements’
fulfillment

To evaluate the proposed concept, consistency checks are

performed on five discipline-specific models (see Figure 3)

involved in the use case described in Section 5.2 (R1: hetero-

geneous models). Accordingly, their metamodels are formal-

ized in OWL and pre-coupled in the knowledge base, which

enables the automatic coupling of concrete model infor-

mation (R3: automatic model linking). In the evaluation,

three types of representative inconsistencies are intensively

introduced in the models and are successfully detected by

the prototypical tool developed, which proves the ability

of the concept to identify different types of information

contradictions within and between models (R2: various

types of inconsistencies). Apart from using model knowl-

edge expressed by discipline-specific metamodels, in IC2,

domain knowledge such as the conveyor taxonomy is also

integrated and formalized in the knowledge base, which

provides additional and supportive information for detect-

ing model inconsistencies (R4: knowledge formalization). In

terms of industrial applicability (R5), the CM in the proposed

approach enables model developers to upload the models

they are working with and check for consistency without

experience in SWT. Meanwhile, the ICM can be configured

and maintained by so-called knowledge management engi-

neers, a newly arising role in the industry [20]. According to

Lupp, it is possible to build and maintain reusable patterns

for modeling links and rules, which can be provided via

user interfaces to, e.g., intralogistics domain engineers, to

ease their interaction with the SWT [20]. To improve the

generalizability of the approach, the concept aims at using

standardized data exchange formats such as PLCopenXML

for control software. Unfortunately, standard formats are

not supported for all used models, and thus, tool-specific

files are also applied. However, R5 is not completely satis-

fied because the small use case applied in the paper can-

not cover all typical inconsistency cases that appear dur-

ing the development of industrial-scale ILS. Additionally,

most models applied in the implementation part are cre-

ated with open-source modeling tools. Thus, the applicabil-

ity of proprietary tools such as AutoCAD for 3D modeling

needs to be investigated in future work to ensure industrial

376 — F. Ji et al.: Inconsistency management in heterogeneous engineering data

Table 2: Assessment of the requirement fulfillment.

Requirement Relevant inconsistency case Assessment Details regarding assessment

R: heterogeneous models IC2, IC3 Fulfilled In IC2 and IC3, different engineering models are involved.

Both cases illustrate how to identify inconsistencies between

models from different disciplines.

R: various types of

inconsistencies

IC1, IC2, IC3 Fulfilled IC1 describes how to check inconsistencies within a model

(type: equivalence). In IC2 and IC3, different contradictions

between models are detected (types: correspondence and

satisfy)

R: automatic model

coupling

IC2, IC3 Fulfilled In both cases, links among model instances are automatically

generated based on the previously connected metamodels.

(See “derived links” in Figure 4)

R: knowledge

formalization

IC2 Fulfilled In IC2, additional domain knowledge is formalized and

utilized to further check if the values of model attributes

conform to the experience values.

R: industrial applicability IC3 Partially fulfilled IC3 shows how the engineers can be supported to check

model inconsistencies using project-specific consistency

rules. In Section 5.5, efforts that should be made to adapt the

approach to other projects are illustrated.

applicability. Details regarding the requirements’ fulfill-

ment are listed in Table 2.

6 Summary and outlook

This paper proposes a concept to automatically identify

multiple types of model inconsistencies that emerge dur-

ing the multidisciplinary development of ILS. Compared

to the basic V-SUMM approach [14], consistency rules and

links are extended to describe complex relations (including

mathematical relations) between heterogeneous engineer-

ing models. Besides, domain knowledge is considered, and

a third “system” layer is built to support checking various

types of inconsistencies. Compared to the manual check-

ing process, inconsistencies that are often easy to be over-

looked can be defined as rules and queries, which ensures

more reliable and user-independent checking results. In

addition, engineers do not need to look up, compare and

transform the parameters in different models, which sig-

nificantly reduces human effort when dealing with more

complexmodels in reality. Compared to other inconsistency

management approaches developed for the production sys-

tem development, the basic structure derived from the

V-SUMM can realize automatic linking of model instances

with pre-coupled metamodels, which cannot be addressed

by, e.g., the work of Feldmann et al. [8]. Moreover, using

V-SUMM, a so-called combined view (knowledge base),

including the domain knowledge from all involved disci-

plines, is generated. For each modeled element, this knowl-

edge base includes information about that element from all

involved disciplines. Thus, to avoid inconsistencies caused

by sequential, multiple modeling of an element in different

views, information about the element already contained in

the knowledge base is automatically displayed to engineers

from different disciplines. Thereby, it is possible to gen-

erate discipline-specific models partially based on already

entered information, which will be addressed in the future.

In addition, different from the previous studies based on

V-SUMM, which mainly focus on models in software devel-

opment, the concept is able to detect inconsistencies among

different models coming from multidisciplinary modeling

tools. Furthermore, domain- and discipline-specific knowl-

edge is also formalized in the knowledge base, which

extends the scope of model inconsistencies that can be

detected. The developed user interface enables engineers

to check self-definedmodel inconsistencies according to the

changing system requirements, which promotes the indus-

trial applicability of the approach. By defining links between

the metamodels and rules to be checked, a new potential

source of errors is introduced, in the worst case leading to

misidentified or overlooked inconsistencies. Nevertheless,

automatic identification of parts of the included inconsis-

tencies is a benefit compared to the so far completely man-

ual inconsistency checking approach.

Some limitations still existwithin the scope of the paper.

First, validation of the proposed approach is limited to

relatively simple inconsistency cases at the level of proof-

of-concept. Additionally, the potential risks of misidenti-

fied or overlooked inconsistencies are still open. In the

future evaluation, a real industrial use case will be selected,

F. Ji et al.: Inconsistency management in heterogeneous engineering data — 377

including the application of real models and inconsis-

tencies without simplification. The checking process and

results will be evaluated by domain experts who have deep

insights and experience in the intralogistics domain. Since

no generic inconsistency-checking process exists in reality

[4], the proposed approachwill be assessed by these experts

through a comparison with their current inconsistency-

checking approaches.

In future work, the approach will be first applied

to other ILS to further prove its generality. In addition,

model consistency of other industrial production plants

that include not only logistics systems will be tested with

the proposed concept, accompanied by the incorporation

of extensive engineering models and domain knowledge.

Due to the similar characteristics of intralogistics systems

and production systems in general, it is expected that the

approach can be transferred to further parts of the produc-

tion systems. For this purpose, additional model interfaces

will be created in the CM to widely support modeling tools

applied in the development phase, and the checking results

will be intuitively presented to engineers in a graphical

format. Meanwhile, knowledge not only from the logistics

domain but also from other sub-parts of the production

systems should be formally described and incorporated.

Since defining links and rules still requires much manual

work, future focuswill be put onutilizing available informa-

tion, such as unique equipment identifiers, which are used

company-wide by some companies in practice, for linking

models from different disciplines and, thus, reducing the

manual activities involved. Furthermore, the scalability of

the approach will be evaluated in the future to ensure, e.g.,

no cross effects will be caused by the coupling of additional

model information. In addition, to investigate the impact of

model changes, a future extension of the ICM is planned

to allow versioning of the models uploaded to the knowl-

edge base in order to identify inconsistencies resulting from

model updates.

Author contribution: All the authors have accepted respon-

sibility for the entire content of this submitted manuscript

and approved submission.

Research funding: This work was funded by the Deutsche

Forschungsgemeinschaft (DFG, German Research Founda-

tion) – 451550676.

Conflict of interest statement: The authors declare no con-

flicts of interest regarding this article.

References

[1] M. ten Hompel, T. Schmidt, and J. Dregger, Materialflusssysteme:

Förder- und Lagertechnik, 4th ed. Berlin, Heidelberg, Springer, 2018.

[2] C. Lieberoth-Leden, D. Regulin, and W. A. Günthner, “Efficient

messaging through cluster coordinators in decentralized

controlled material flow systems,” MATEC Web Conf., vol. 81,

p. 6005, 2016..

[3] J. Grundy, J. Hosking, and W. B. Mugridge, “Inconsistency

management for multiple-view software development

environments,” IEEE Trans. Software Eng., vol. 24, no. 11,

pp. 960−981, 1998..
[4] M. Wünnenberg, D. Hujo, R. Schypula, J. Fottner, M. Goedicke, and

B. Vogel-Heuser, “Modellkonsistenz in der Entwicklung von

Materialflusssystemen: Eine Studie über Entwicklungswerkzeuge

und Einflüsse auf den Produktentstehungsprozess,” ZWF , vol. 116,

no. 11, pp. 820−825, 2021..
[5] M. Spindler, T. Aicher, B. Vogel-Heuser, and J. Fottner,

“Engineering the control software of automated material handling

systems via drag & drop,” Logist. J., vol. 2017, no. 10, pp. 1−8, 2017.
[6] S. Feldmann, M. Wimmer, K. Kernschmidt, and B. Vogel-Heuser,

“A comprehensive approach for managing inter-model

inconsistencies in automated production systems engineering,” in

2016 IEEE International Conf. on Automation Science and Engineering

(CASE), 2016, pp. 1120−1127.
[7] T. Aicher, J. Fottner, and B. Vogel-Heuser, “A model-driven

engineering design process for the development of control

software for Intralogistics Systems,” Automatisierungstechnik,

vol. 70, no. 2, pp. 164−180, 2022..
[8] S. Feldmann, K. Kernschmidt, M. Wimmer, and B. Vogel-Heuser,

“Managing inter-model inconsistencies in model-based

systems engineering: application in automated production

systems engineering,” J. Syst. Software, vol. 153, pp. 105−134,
2019..

[9] S. J. Mellor, MDA Distilled: Principles of Model-Driven Architecture,

Boston, Addison-Wesley, 2004.

[10] M. Sabou, “An introduction to semantic web technologies,” in

Semantic Web Technologies for Intelligent Engineering Applications, S.

Biffl and M. Sabou, Eds., Cham, Springer International Publishing,

2016, pp. 53−81.
[11] M. Zou, H. Li, and B. Vogel-Heuser, “A framework for inconsistency

detection across heterogeneous models in industry 4.0,” in 2019

IEEE International Conf. on Industrial Engineering and Engineering

Management (IEEM), 2019, pp. 29−34.
[12] S. J. I. Herzig, A. Qamar, and C. J. J. Paredis, “An approach to

identifying inconsistencies in model-based systems engineering,”

Proc. Comput. Sci., vol. 28, pp. 354−362, 2014..
[13] C. Atkinson, D. Stoll, and C. Tunjic, Orthographic Service Modeling,

2011.

[14] M. E. Kramer, E. Burger, and M. Langhammer, “View-centric

engineering with synchronized heterogeneous models,” in Proc. of

the 1st Workshop on View-Based, Aspect-Oriented and Orthographic

Software Modelling, 2013.

378 — F. Ji et al.: Inconsistency management in heterogeneous engineering data

[15] H. Li, M. Zou, G. Hogrefe, et al., “Application of a multi-disciplinary

design approach in a mechatronic engineering toolchain,”

Automatisierungstechnik, vol. 67, no. 3, pp. 246−269,
2019..

[16] S. Ananieva, E. Burger, and C. Stier, “Model-driven consistency

preservation in automationml,” in 2018 IEEE 14th International

Conf. on Automation Science and Engineering (CASE), 2018,

pp. 1536−1541.
[17] B. Vogel-Heuser, M. Konersmann, T. Aicher, J. Fischer, F. Ocker,

and M. Goedicke, “Supporting evolution of automated material

flow systems as part of CPPS by using coupled meta models,”

in 2018 IEEE Industrial Cyber-Physical Systems (ICPS), 2018,

pp. 316−323.
[18] J. Lamy, “Owlready: ontology-oriented programming in Python

with automatic classification and high level constructs for

biomedical ontologies,” Artif. Intell. Med., vol. 80, pp. 11−28,
2017..

[19] D. Arnold and K. Furmans, “Planung von Materialflusssystemen,”

in Materialfluss in Logistiksystemen, Berlin, Heidelberg, Springer,

2009, pp. 233−328.
[20] D. P. Lupp, “A higher-level view of ontological modeling:

rule-based approaches for data transformation, modeling,

and maintenance,” Ph.D. dissertation, University of Oslo,

2019.

Bionotes

Fan Ji

Technical University of Munich, Institute of Automation and

Information Systems, Boltzmannstr. 15, 85748 Garching bei

München, Germany

fan.ji@tum.de

Fan Ji received an M.Sc. in Mechanical Engineering and Management

from the Technical University of Munich (TUM) in 2018. She is currently

pursuing a Ph.D. at the Institute of Automation and Information Systems

at TUM. Her main research interests include ontology-based knowledge

formalization and inconsistency management in interdisciplinary

engineering.

Maximilian Wünnenberg

Chair of Materials Handling, Material Flow, Logistics,

Technical University of Munich, Boltzmannstr. 15, 85748

Garching bei München, Germany

max.wuennenberg@tum.de

Maximilian Wünnenberg is currently a research associate pursuing his

Ph.D. at Technical University of Munich (TUM), Chair of Materials

Handling, Material Flow, Logistics (fml), where he received his M.Sc. in

Mechanical Engineering in 2020. He is responsible for the research

project “Consistent Development of Material Flow Systems using a

Model-based approach”. His main research interests are Model-based

Systems Engineering, Material Flow Systems and Data

Analytics.

Rafael Schypula

Paluno − The Ruhr Institute for Software Technology,

University of Duisburg-Essen, Gerlingstraße 16, 45127

Essen, Germany

rafael.schypula@paluno.uni-due.de

Rafael Schypula, M. Sc., studied Applied Computer Science with a focus

on industry and management at the Ruhr University Bochum. After five

years as a software developer in the private sector, he joined the paluno

in 2017. There he works on the design and development of software

systems.

Juliane Fischer

Technical University of Munich, Institute of Automation and

Information Systems, Boltzmannstr. 15, 85748 Garching bei

München, Germany

juliane.fischer@tum.de

Dr.-Ing. Juliane Fischer received an M.Sc. in Mechanical Engineering from

the Technical University of Munich (TUM) in 2017 and a Ph.D. degree in

Mechanical Engineering from TUM in 2022. She is currently working at

the Institute of Automation and Information Systems at TUM. Her main

research interests are the design of modular, reusable control software

and methods from the field of static code analysis to enhance the reuse

of variant-rich legacy control software via identification of potentials for

software improvement.

Dominik Hujo

Technical University of Munich, Institute of Automation and

Information Systems, Boltzmannstr. 15, 85748 Garching bei

München, Germany

dominik.hujo@tum.de

Dominik Hujo received the M.Sc. degree in Mechatronics and Information

Systems in 2020 from the Technical University of Munich (TUM), where he

is currently working toward the Ph.D. degree. He is currently a Research

Assistant with the Institute of Automation and Information Systems. His

research interests include heterogeneous distributed networked control

systems and model-based assessments and engineering, where his

primary focus is communication latencies at different automation levels.

Michael Goedicke

Paluno − The Ruhr Institute for Software Technology,

University of Duisburg-Essen, Gerlingstraße 16, 45127

Essen, Germany

michael.goedicke@paluno.uni-due.de

Prof. Dr. Michael Goedicke, has been Professor of Practical Computer

Science/Specification of Software Systems at the University of

Duisburg-Essen since 1994. He studied computer science at the

University of Dortmund and completed his doctorate there

in 1985 on specification languages on p. 16 for embedded systems. He

then conducted research in the areas of specification of software

architectures and description of software components. In 1993 he

completed his habilitation on the topic of specification of software

components.

mailto:fan.ji@tum.de
mailto:max.wuennenberg@tum.de
mailto:rafael.schypula@paluno.uni-due.de
mailto:juliane.fischer@tum.de
mailto:dominik.hujo@tum.de
mailto:michael.goedicke@paluno.uni-due.de

F. Ji et al.: Inconsistency management in heterogeneous engineering data — 379

Johannes Fottner

Chair of Materials Handling, Material Flow, Logistics,

Technical University of Munich, Boltzmannstr. 15, 85748

Garching bei München, Germany

j.fottner@tum.de

Johannes Fottner is a professor for technical logistics at TUM, Chair of

Materials Handling, Material Flow, Logistics (fml). His research areas are

innovative identification technologies, digital planning of logistics

systems and human factors in logistics. After obtaining his Ph.D. at TUM,

chair fml in 2002, he worked in several management positions at

Swisslog before becoming managing director of MIAS Group. Since 2015,

he also has worked at the Association of German Engineers (Verein

Deutscher Ingenieure, VDI) as chairman for Bavaria and vice-chairman

for manufacturing and logistics.

Birgit Vogel-Heuser

Technical University of Munich, Institute of

Automation and Information Systems,

Boltzmannstr. 15, 85748 Garching bei

München, Germany

vogel-heuser@tum.de

Prof. Dr.-Ing. Birgit Vogel-Heuser received a Diploma degree in Electrical

Engineering and a Ph. D. degree in Mechanical Engineering from RWTH

Aachen. Since 2009, she is a full professor and director of the Insititute of

Automation and Information Systems at the Technical University of

Munich (TUM). Her current research focuses on systems and software

engineering. She is member of the acatech (German National Academy

of Science and Engineering), fellow of IEEE, editor of IEEE T-ASE, and

member of the science board of MIRMI at TUM.

mailto:j.fottner@tum.de
mailto:vogel-heuser@tum.de

	1 Challenges in ensuring model consistency during the development of intralogistics systems
	2 Requirements for identifying model information inconsistencies in intralogistics systems
	3 Preliminaries and state of the art in model inconsistency management
	3.1 Preliminaries: model-based engineering and semantic web technologies
	3.2 State of the art in model inconsistency management

	4 Concept for automatic inconsistency identification based on coupled metamodels
	5 Evaluation using a prototypical implementation
	5.1 Prototypical implementation
	5.2 Description of the use case
	5.3 Potential inconsistencies
	5.3.1 Inconsistency case 1 (IC1): intra-model inconsistency (different heights of two adjacent conveyors)
	5.3.2 Inconsistency case 2 (IC2): inter-model inconsistency (conveyor velocity)
	5.3.3 Inconsistency case 3 (IC3): user-defined inter-model inconsistency (MTBF, MTTF)
	5.3.4 Implementation results

	5.4 Efforts for adapting to a different project
	5.5 Assessment of the requirementstnqx2019; fulfillment

	6 Summary and outlook
	Bionotes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1000
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.10000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /DEU <FEFF00280073006500650020006700650072006d0061006e002000620065006c006f00770029000d005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000700072006f006400750063006500200063006f006e00740065006e00740020007000720069006e00740069006e0067002000660069006c006500730020006100630063006f007200640069006e006700200074006f002000740068006500200064006100740061002000640065006c0069007600650072007900200072006500710075006900720065006d0065006e007400730020006f00660020004400650020004700720075007900740065007200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e002900200044006100740065003a002000300033002f00300031002f0032003000310035002e0020005400720061006e00730070006100720065006e0063006900650073002000610072006500200072006500640075006300650064002c002000520047004200200069006d0061006700650073002000610072006500200063006f006e00760065007200740065006400200069006e0074006f002000490053004f00200043006f0061007400650064002000760032002e002000410020005000440046002f0058002d0031006100200069007300200063007200650061007400650064002e000d005f000d000d00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d00200044007200750063006b0076006f0072006c006100670065006e0020006600fc0072002000640065006e00200049006e00680061006c0074002000670065006d00e400df002000640065006e00200044006100740065006e0061006e006c006900650066006500720075006e0067007300620065007300740069006d006d0075006e00670065006e00200076006f006e0020004400450020004700520055005900540045005200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e00290020005300740061006e0064003a002000300031002e00300033002e00320030003100350020007a0075002000650072007a0065007500670065006e002e0020005400720061006e00730070006100720065006e007a0065006e002000770065007200640065006e00200072006500640075007a0069006500720074002c0020005200470042002d00420069006c006400650072002000770065007200640065006e00200069006e002000490053004f00200043006f00610074006500640020007600320020006b006f006e00760065007200740069006500720074002e00200045007300200077006900720064002000650069006e00650020005000440046002f0058002d00310061002000650072007a0065007500670074002e>
 /ENU ()
 /ENN ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (ISO Coated v2 \(ECI\))
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 8.503940
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

