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Abstract— Software-defined vehicles (SDV) play an impor-
tant role in future electrical and electronic (E&E) architectures.
Their increased flexibility compared to traditional architec-
tures is a crucial factor in the rapid development cycles of
autonomous driving. Containerization and virtualization are
two key technologies that enable rapid software installation and
updates under the SDV framework. These two technologies have
been widely adopted in cloud computing, but their performance
and suitability in intelligent vehicles still has to be evaluated. In
this work, we look at generic performance experiments of con-
tainerization and virtualization on both embedded and general-
purpose computer systems regarding CPU, memory, network,
and disk. We further investigate the impact of virtualization
and containerization on the Autoware framework to evaluate
scenarios that are close to real-world automotive applications.
Additionally, we evaluate performance by splitting the Auto-
ware framework into several dependent service parts, which are
installed in separate containers. Extensive experimental results
show that virtualization and containerization have no significant
performance drop with 0-5% loss compared to a bare-metal
setup in terms of CPU, memory, and network. However, both
technologies suffer dramatic performance degradation on the
disk side, losing 5-15% in containers and 35% in virtualization.

I. INTRODUCTION

Due to the rapid development of automobiles, more and
more functions are embedded in various electronic control
units (ECUs) on current vehicles. Since software and hard-
ware are optimized and coupled in embedded systems, the
vehicle functions are difficult to be modified or updated on
demand, as in mobile phones. Furthermore, the increasing
number of recalls for cars is primarily caused by software
issues [1] and only the original equipment manufacturer
can fix these bugs [2]. The concept of software-defined
vehicles (SDV) is introduced to increase the flexibility of
software deployment and maintenance. The SDV provides
a scalable and flexible solution utilizing domain, zone, or
centralized architecture [3]. In such systems, automotive soft-
ware is independent of the underlying hardware. Therefore,
software installation and upgrades can happen frequently,
changing the overall functionality of the system.

Virtualization and containerization are two fundamental
technologies for achieving maximum flexibility and scala-
bility of SDVs [4]. Fig. 1 illustrates the difference between
virtualization and containerization. In cloud computing ser-
vices, virtualization and containerization are heavily used in
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Fig. 1: Difference between virtualization (right) and con-
tainerization (left) in SDV.

server management due to the abundance of computing re-
sources and the lack of significant difference in response time
between 1 ms and 1 s for web pages. These two technologies
can also be applied to software-defined vehicles, however
cars cannot stack resources infinitely like servers due to
the capacity of integrated chips. We therefore need to focus
on the performance of these two technologies with limited
resources, especially in relation to security-related software.
Even though virtualization and containerization have been
widely promoted in cloud computing, no benchmark reports
are available for evaluating virtualization and containeriza-
tion in an automotive context.

In this work, we aim to provide a reference for developers
when searching for virtualization and container technologies
with the best performance. We present several benchmarks
of hypervisors and container engines in automotive-related
scenarios. The experiments are conducted on platforms in-
cluding an embedded system, a desktop computer, and a
high-performance workstation. Our experiments start with
a general performance evaluation with selected benchmark
tools regarding CPU, memory, disk, and network. To further
analyze automotive use cases, we investigate the performance
of the Autoware framework (Autoware.Universe) in virtual-
ized and containerized environments. Autoware is an open-
source software stack built on top of the Robot Operating
System (ROS) and offers various autonomous driving appli-
cations. In application-related tests, we recognize the appli-
cation’s startup time as the key performance indicator since
automotive applications often demand short (re-)start times.
Furthermore, we separate the complete Autoware framework
into multiple dependent container segments to demonstrate
the flexibility of container-based software maintenance. Any
software segments can be (re-)started/updated in such a soft-



ware structure. In our benchmark experiments, virtualization
and containerization show a performance comparable to bare
metal.

II. RELATED WORK

Various research works have discussed the performance of
virtualized/containerized environments. Giallorenzo et al. [5]
presented an overview of state-of-the-art hypervisors and
container engines. They also provide a collection of ref-
erence benchmarks on high-performance computers. Xavier
et al. [6] conducted a performance evaluation of container-
ization for high-performance computing. They discussed
the trade-off between performance and isolation in both
containerized and virtualized environments. Felter et al. [7]
focused on the hypervisor KVM and the container engine
Docker for cloud computing. Morabito [8] evaluated the
performance of Docker on single-board computers, including
Raspberry Pi and ODROID systems, in the context of the
Internet of Things. Raho et al. [9] showed the system and
I/O-related performance of KVM, Docker, and Xen on an
ARM-based platform. In these works, the performance of
virtualization and containerization was discussed regarding
four aspects: CPU, memory, network, and disk I/O perfor-
mance. They showed that systems under virtualization and
containerization had acceptable performance compared with
the bare-metal scenarios.

Nowadays, the utilization of hypervisors and container
engines in SDVs is actively discussed. According to Sundar
et al. [10], hypervisors can allocate resources to separate vir-
tual environments (VMs) and, thus, can be utilized for mix-
critical applications in vehicles. With isolated VMs and con-
tainers, different applications can be deployed on the same
physical machine without interfering with each other. While
SOAFEE [11] is investigating the safety feature of VMs and
containers, there is no benchmark report available discussing
the runtime performance of virtualization/containerization
technologies for automotive applications.

III. GENERIC PERFORMANCE BENCHMARK

In this section, we present a general performance evalu-
ation of virtualization and containerization tools regarding
CPU, memory, disk, and network on different platforms.

A. Experimental Setup

We utilize the benchmark tools Whetstone [12], Dhrys-
tone [13], and Kcbench [14] to perform CPU-related tests.
The memory performance is tested via the tool RAMspeed
and network-related experiments are conducted via iPerf3.
Dbench and Bonnie++ are employed for Disk I/O eval-
uation. The functionality of each benchmark is described
in the following section. Various hypervisors and container
engines are evaluated, including Docker, KVM, Podman,
and Systemd-Nspawn. The experiments are performed on
three platforms with different disk configurations: Embed-
ded (Raspberry Pi 4 Model B), Desktop (Dell Optiplex
7040 PC), and Workstation (a high-performance custom
workstation). Table I and II present more details of platform

TABLE I: Configuration of platforms used in experiments.

Embedded Desktop Workstation

Raspberry Pi 4B Dell OptiPlex 7040 Custom

Kernel 5.15.0-1013-raspi 5.15.0-46-generic 5.15.0-46-generic
CPU ARM Cortex-A72 Intel i5-6500 Intel i9-12900K
Cores
(HT)

4(4) 1.5 GHz 4(4) 3.2 GHz 8(16) 3.2 GHz
8( 8) 2.4 GHz

RAM 4 GB LPDDR4
3200 MHz

8 GB DDR4
2133 MHz

32 GB DDR5
5200 MHz

Disk 1 Crucial MX500
SATA 250 GB

Crucial MX500
SATA 250 GB

Crucial MX500
SATA 250 GB

Disk 2 - Samsung 980 Pro
M.2 500 GB

Samsung 980 Pro
M.2 500 GB

Disk 3 - - Intel D7 P5520
U.2 1.92 TB

Disk 4 - - WD Black SN850
M.2 1 TB

PCIe - 3.0 4.0

TABLE II: Versions of all software used in experiments.

Benchmark tools Version

Bonnie++ 2.00
Dbench 4.00
Dhrystone 2.2a
iPerf3 3.9
Kcbench 0.9.5
RAMspeed 3.5.0
Sysbench 1.0.20
Whetstone 1.2

Virtualization tools Version

Docker 20.10.17
k3s v1.25.3
KVM 6.2.0
Podman 3.4.4
Systemd-Nspawn 249.11

configurations and software. Disk 1-4 in Table I is the list of
disks we have used on the Workstation in the bus interface
benchmark test, the Workstation is using a Western digital
disk in the other tests. We selected different types of disks
to achieve the best performance for each platform. Since our
results are expressed as percentages compared to the bare-
metal reference.

The configurations of the KVM hypervisor are identical
on all platforms. On each platform, we create a single VM
allocated with all GPU cores and RAM. For the virtualization
of disks, we select the “native” I/O mechanism and set
the cache to “none”. In addition, the disk performance is
influenced by the format of disk images. There are three
formats of disk images: raw, qcow2, and direct use of a
partition as a disk image. Our initial evaluation, visualized
in Fig. 2, demonstrates that the partition format outperforms
the others on all platforms.

Thus, we employ the partition disk format in the follow-
ing experiments. During the evaluation of containerization
technology, default settings of container engines are utilized.

B. CPU Performance

1) Benchmark tools: Whetstone can be used to evaluate
float-point operations performance and was first proposed
in Algol 60 in 1972. We evaluate Whetstone 50 000 000
times to acquire stable and meaningful results. Dhrystone is
a synthetic computing benchmark program for emphasizing
the integer performance of the CPU that outputs the number
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Fig. 2: Performance comparison between disk image formats.

of iterations of the main code loop per second. Kcbench is a
benchmark script used to compile a Linux kernel a few times
in a row and measure the compilation time. The results of
Kcbench reflect the CPU’s overall performance reasonably
well. The source code of the Linux 4.11 kernel is compiled
in the experiments. The default number of jobs is two times
the number of CPU cores, however this needs to be adjusted
according to different CPUs. In our case, the CPUs of the
first two platforms have four cores, while the Workstation has
eight performance cores (with 16 threads) and eight efficient
cores. To achieve the best performance, the number of jobs
is set to 4 and 24 in our experiments.

2) Benchmark results: The results are listed in Table III.
The numbers in the table specify percentages compared
to the bare-metal reference of the current platform. The
close number on different platforms does not mean they
have similar performance. As an example, the absolute
numbers for Kcbench are: 2.68 kernels/hour for Embedded
bare-metal, 17.58 kernels/hour for Desktop bare-metal, and
122.38 kernels/hour for Workstation bare-metal. The CPU
performance gap between the three platforms is significant,
as is the memory and disk I/O performance gap. These four
technologies perform nearly identically in terms of float-
point and integer performance compared to bare metal, with
the Workstation suffering the least performance loss. One
interesting aspect is that Podman performs even better than
bare-metal in Whetstone on Embedded. The reason could be
the different Debian images used in the container and bare-
metal tests. There is no Ubuntu for Raspberry Pi container
image, therefore a standard Ubuntu image is used instead.
According to the Kcbench results, KVM has the most perfor-
mance loss among these technologies on all three platforms.
Overall, Embedded has a greater performance loss than the
other two platforms, while the performance loss of Podman
remains similar during the whole CPU experiment. Our
conclusions are similar to that of Giallorenzo et al. [5] (using
a high-performance computer) and Morabito [8] (using a
single-board computer).

C. Memory Performance

1) Benchmark tool: RAMspeed measures a computer sys-
tem’s cache and memory performance. We use version 3.5.0
for multiprocessor machines running UNIX-like operating
systems [15]. The read and write speed for integer and float-
point operations are collected by averaging the result over
five runs.

2) Benchmark results: Table IV shows that containeriza-
tion has little performance loss on memory, while KVM
results in more performance loss than container engines. On
the Embedded platform, KVM loses more than 10% of bare-
metal memory performance.

D. Network Performance

1) Benchmark tool: iPerf3 is a tool for active mea-
surements of the maximum achievable bandwidth on IP
networks [16]. Both the TCP send and receive performance
should be tested; the whole duration of each test is set to 180
seconds for a stable outcome. The bitrate limit is disabled,
and the first 10 seconds of the test are omitted to skip the
TCP slow-start period for the best result.

2) Benchmark result: Table VI contains the results of
KVM since the container engines show stable perfor-
mance (100%) on three platforms. The KVM slightly in-
fluences the network performance on these platforms.

E. Disk Performance

1) Benchmark tools: Dbench is a tool to generate I/O
workloads to a filesystem or network [17]. It uses a load
file to generate workloads. A load file defines a sequence of
operations, including open, read, close, etc. The default load
file, which performs a list of create, write, and save work,
is used in the experiments. Moreover, we apply a second
tool Sysbench, which is used to enable and disable the fsync
function. In addition, we also evaluate the tool Bonnie++,
which is another file system benchmark tool that can test
the input, output, delete and create performance [18]. The
number of files for creation and deletion is set to 512, and
we also set the random seed to a fixed one. Thus, Bonnie++
will perform the test identically on each run.

2) Benchmark results: Similar to Kcbench, the result of
Dbench is influenced by the number of processes. We use
4 processes for Embedded and Desktop, and 24 processes
for the Workstation. The results are listed in Table V. We
notice that Nspawn has the best performance among these
technologies, with nearly no difference (99%) compared to
bare-metal. KVM shows the biggest performance loss (35%)
while Podman and Docker are in the middle (6-15%), which
matches the existing results.

In addition, we discuss the influence of synchroniza-
tion (fsync) on disk performance. As shown in Table I,
we test four disk types and visualize the results in Fig. 4.
Sysbench is used in this experiment to get an intuitive
result. The results show that applying fsync will significantly
decrease the performance of the first three disks. Programs
will use fsync to ensure that after a system crash, all data
up to the time of the fsync call is recorded on the disk.



TABLE III: CPU performance of four technologies on three platforms. Numbers specify percentages compared to the bare-
metal reference (100 %).

Embedded Desktop Workstation

Podman Docker Nspawn KVM Podman Docker Nspawn KVM Podman Docker Nspawn KVM

Dhrystone 99.77 99.74 99.76 93.72 99.58 96.97 97.10 99.24 99.19 96.28 97.20 99.61
Whetstone 100.63 100.00 100.00 99.38 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.26
Kcbench 99.25 90.67 91.42 89.55 99.49 96.81 96.41 93.96 99.66 97.73 97.35 94.12

TABLE IV: Memory performance of four technologies on three platforms. Numbers specify percentages compared to the
bare-metal reference (100 %).

Embedded Desktop Workstation

Podman Docker Nspawn KVM Podman Docker Nspawn KVM Podman Docker Nspawn KVM

Integer writing 99.32 99.73 99.92 97.10 99.52 99.85 99.57 97.70 99.96 99.95 99.69 97.69
Integer reading 99.67 99.86 99.97 86.50 99.90 99.48 99.67 93.86 98.68 99.93 99.30 94.65
Float writing 99.61 99.99 99.97 97.33 99.63 99.55 99.43 97.74 99.70 99.29 99.43 98.88
Float reading 99.84 99.62 99.62 88.90 99.90 99.62 99.24 95.94 99.79 99.41 99.85 96.72

TABLE V: Bonnie++ performance of four technologies on three platforms. Numbers specify percentages compared to the
bare-metal reference (100 %).

Embedded Desktop Workstation

Podman Docker Nspawn KVM Podman Docker Nspawn KVM Podman Docker Nspawn KVM

Bonnie++ output 85.85 85.85 96.23 92.45 89.62 88.08 96.73 95.58 89.14 87.29 96.94 94.76
Bonnie++ input 89.34 90.07 100.00 96.69 90.22 90.80 97.44 96.86 90.95 89.27 99.61 95.55
Bonnie++ create 62.72 59.21 97.04 90.59 65.71 63.40 94.63 93.73 67.18 63.08 96.42 90.27
Bonnie++ delete 88.27 84.79 97.71 66.66 76.76 71.80 98.82 63.01 76.13 72.02 97.47 64.32
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Fig. 3: Dbench results of four technologies compared to bare-
metal on different platforms.

Some disks, such as the enterprise-grade Intel SSD used in
the experiment, have optimizations for fsync and their per-
formance is far ahead while applying fsync. The result of the
Intel disk without fsync is 15% worse than the Samsung and
Western Digital disk, which means the fsync optimization is a
drag on disk performance. Consequently, whether the chosen
application applies fsync will affect the disk selection. Apart
from fysnc, the influence of the bus interface is also tested.
The results in Fig. 3 are collected on Embedded (SATA),
Desktop (PCIe 3.0), and Workstation (PCIe 4.0) with dif-
ferent bus interfaces. The performance loss on the Desktop
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Fig. 4: Performance comparison between disks (MB/s)

and Workstation are nearly the same. Moreover, Embedded
even has less performance loss with the SATA port except for
Nspawn, although its speed is relatively slow. The conclusion
is that the bus interface has few impact on virtualization and
containerization; the bus interface and disk type can therefore
be selected according to individual requirements.

We describe the results of Bonnie++ in Table V. Nspawn
has the least performance loss among these technologies.
KVM has a good performance in I/O and the create operation
with only 5-10% of performance loss but experiences a
significant drop in the delete operation on three platforms.
Docker and Podman have the worst performance on Bon-
nie++, especially on the create operation (40% of loss).



TABLE VI: Network performance of KVM on three plat-
forms. Numbers specify percentages compared to the bare-
metal reference (100 %). Disk: Desktop (with Samsung disk);
Workstation (with Western Digital disk).

Embedded Desktop Workstation

iPerf3 send 96.67 95.31 97.13
iPerf3 receive 94.47 98.72 99.68

TABLE VII: Description of Autoware modules.

Module Nodes Function

Vehicle 1 Interface between Autoware and vehicle
System 12 Monitoring hardware performance and errors
Sensing 32 Collecting environment perception data
Planning 26 Brain of autonomous driving, decision-making
Perception 36 Processing data collected by sensing module
Map 7 Loading and broadcast maps
Location 12 Estimating vehicle pose/velocity/acceleration
Control 8 Generate motion signal to drive the vehicle
Api 62 Software interface, offering service
Rviz 1 Visualizing the application

IV. AUTOMOTIVE SCENARIO BENCHMARK

The general performance evaluation in the previous sec-
tion shows that systems utilizing hypervisor and container
engines perform similarly to a bare-metal setup. This section
extends our experiments with a realistic automotive scenario
by utilizing the Autoware framework. In our experiments,
the application startup time is considered as the performance
indicator. Furthermore, we conduct experiments on mixed
environments of VM and containers, e.g., multiple containers
in a VM.

A. Experimental Setup

Autoware is an advanced autonomous driving framework
based on ROS (Galactic) and contains 242 ROS nodes, which
include all necessary functions for driving an autonomous
vehicle. ROS allows communication across different devices,
which makes it possible to separate Autoware into multiple
containers. We select nine Autoware modules to simulate
the automotive scenario, including vehicle, map, sensor,
perception, location, planning, control, api, and rviz. These
are split into ten containers. Additionally, we prepare a
rosbag container responsible for playing back the point-cloud
data recorded in a realistic scenario. Table VII describes the
information and functions of these modules. The Workstation
platform is selected to satisfy the high computational demand
of Autoware during the experiments.

1) Choice of Disk: Applications using fsync can affect
the choice of disk. However, it is unclear if Autoware utilizes
fsync constantly. Hence, we select two disks, the Intel disk
and the Western Digital disk, to show differences in the
launch performance. As shown in Fig. 5, their performance in
this scenario is identical. It means fsync optimization does
not improve the startup time of the Autoware framework.
The Western Digital disk therefore is a more appropriate
selection, as it can achieve the highest speeds without fsync.
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Fig. 5: Comparison of Start-up time (in seconds) under disk
w/ or w/o fsync optimization

2) Choice of Container: Among the container engines,
Docker is chosen because Systemd-Nspawn currently does
not offer GPU support and Docker has a more mature
GPU support than Podman. We select k3s, a light-weighted
version of Kubernetes, to orchestrate multiple containers.
The version of k3s is listed in Table II, and the default
container runtime is changed from containerd to Docker. We
use the nvidia-docker2 package for Docker to manage the
GPU and nvidia-device-plugin for k3s. KVM is configured
in the following way: each VM is assigned with 24 vCPUs,
28 000 MB RAM, and 150 GB disk space. The “native” I/O
mechanism and cache option “none” are set for the disk. The
GPU pass-through mechanism is chosen to allow the VM to
access the Nvidia GPU and the host machine uses the iGPU.

B. Start-Up Time Experiments

1) Start-Up Time in Container: This section aims to test
how containerization and virtualization influence the start-up
time of the Autoware framework. First, the start-up time of
Autoware needs to be defined. As mentioned, the Autoware
framework has 242 ROS nodes while running, including
standard and composable nodes launched by Python scripts
and C++ code. Using composable nodes aims to run multiple
nodes in a single process with lower overhead and, option-
ally, more efficient communication. By editing the source
code of Autoware and ROS, the start time and loaded time
of different nodes can be logged. We regard the time when
the “ros launch” command is executed as the start time and
the time when the loading of the last node is completed as
the end time. In this way, the start-up time of the whole
application and that of different modules can be calculated.

Fig. 6 reports the start-up time of the whole application
and different modules under four different conditions. Fig. 6c
shows the results while the application is divided into ten
containers and launched by k3s. As shown in the figure,
it takes nearly 3.0 s for k3s to launch all containers. All
modules except Rviz are launched almost simultaneously. In
this figure, the bar with the k3s label stands for the time
used by k3s to apply the deployments plus the time for
creating containers. We will refer to it as k3s launch time



in the following text. Rviz is a visualization tool of ROS.
Preprocessings are needed to export visualized data in the
Rviz container. Thus, the Rviz module is launched later than
other modules. The perception module takes the longest time
to launch, which is expected due to the GPU. It needs to load
a large number of libraries for CUDA acceleration. In this
case, the application takes 6.9 s to be launched.

Fig. 6a shows the results of the bare-metal setup. Unlike
the results of k3s, modules are launched at different times
on bare-metal. As the Autoware framework is not separated,
individual modules are started one after the other instead of
simultaneously. Surprisingly the startup time on bare-metal
is 0.4 s longer than that on k3s, even including the time used
by k3s. In order to explore this in more detail, additional
experiments are needed: we put the whole application in one
container and run it with Docker and k3s, as shown in Fig. 6e
and Fig. 6f. The data shows that it takes 2.8 s for Docker and
2.4 s for k3s to launch one container this time. ROS’s launch
time is almost the same on bare-metal, Docker, and k3s for
around 0.7 s. Moreover, the total time is longer than bare-
metal, especially for Docker, meaning that container engines
will slightly slow down the startup time. Consequently,
it is the division into separate modules that makes the
key difference. When the number of nodes increases, the
performance of ROS will significantly decrease, and 242 is
already a large amount [19]. Dividing the application into
small modules with fewer nodes will reduce performance
degradation. The benefit of dividing exceeds the container’s
overhead, thus resulting in a better performance compared
to bare-metal.

By comparing Fig. 6a and Fig. 6c, a conclusion can
be drawn that all modules are launched earlier with k3s.
Furthermore, these modules take nearly half the time to
be launched when divided into ten containers. This does
not mean that k3s has much better performance than bare-
metal. The main reason is that in k3s, each module has
one separate container, which can focus on loading the
nodes that belong to the module. We elaborate further on
this with the vehicle module as an example. As shown in
Table VII, the vehicle module only contains one node: robot-
state-publisher, a native node ROS that can parse various
parameters to link the vehicle and different sensors. In the
Autoware framework, for all modules, some dependent nodes
need to be loaded before the launch of core nodes. ROS is
responsible for launching the vehicle module in the vehicle
container. In this case, the only dependent node is the robot-
state-publisher. After this node is loaded, the vehicle module
begins to acquire vehicle information and links it with the
relevant sensors. After this process is done, the launch of
the vehicle module is complete. When it comes to the bare-
metal, the task of ROS is to launch all of these ten nodes.
Thus ROS has first to launch all the dependent nodes, which
is a lot more than a single module has. In these experiments,
we consider that the module begins to launch with its first
dependent node. In other words, the launch time of modules
under bare-metal also contains the launch time of dependent
nodes needed by other modules. For the vehicle module

under bare-metal, it has to wait for all 85 dependent nodes to
be loaded after loading the robot-state-publisher node. Only
after these nodes are loaded can the vehicle module begin
parsing vehicle parameters. This is why modules take much
longer to be launched under bare-metal, while there is no
significant difference in the total launch time.

As mentioned before, automotive applications should have
short (re-)start times to reduce boot time and recovery
time after a software crash. It is meaningful to compare
the influence of first-run and re-run. First-run is running
the application for the first time after rebooting. Re-run
means running the application after it is run multiple times.
The results discussed before are all collected after reboot,
therefore the results of the re-run are added in Figs. 6b, 6d,
6f, and 6h for comparison. Fig. 6d shows that the launch
time for k3s decreased from 3.0 s to 1.5 s, and the launch
time of all modules decreased. However, at this time, the
ten containers no longer start at the same time, which is
why the total launch time does not drop as much as the
data mentioned before. The second difference is the launch
time of ROS. The data in Figs. 6b, 6f, and 6h shows that the
launch time of ROS decreased for around 0.3 s while utilizing
all of these three technologies. This can also explain the
decrease in launch time for all modules in Fig. 6d, since all
containers need to launch ROS separetely inside. Docker also
shows noticeable differences between first-run and re-run.
Apart from the differences explained above, the launch time
of the container significantly decreased for re-run, which is
due to Docker’s cache mechanism.

In conclusion, if the Autoware framework is not divided
and runs in a single container, the start-up time for Docker
and k3s will be longer than that on bare-metal. However,
on first-run, Docker will be much slower. If the Autoware
framework is divided into multiple containers and they are
launched via k3s, the overall start-up time will be shorter
than bare-metal. Our results show that containerization only
has a slight influence on the application’s start-up time, and it
can even achieve better performance by dividing it properly.

2) Start-Up Time in Virtualization: To evaluate the vir-
tualization technology, we perform additional experiments
under KVM. In addition to the previous tests, Docker and
k3s performance in a VM are also evaluated. Fig. 7 lists
the results under KVM, and the first discovery is that the
performance of bare-metal, k3s, and Docker decreased under
KVM. Table VIII listed the difference in launch time in
three cases. For k3s and bare-metal, the performance loss
is around 10.0%, and the re-run time is higher than first-run.
The performance loss for Docker on the first-run is 19.1%
under KVM, which is much higher than the other two cases.

TABLE VIII: Performance loss under KVM compared to
bare-metal.

Bare-metal k3s Docker

first-run 0.79 s (10.81%) 0.66 s (9.59%) 1.78 s (19.08%)
re-run 0.76 s (11.16%) 0.72 s (11.52%) 0.57 s (7.71%)
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Fig. 6: Start-up time (in seconds) of modules and whole Autoware framework under bare-metal and container.

0 2 4 6 8 10 12

0.849

3.730

4.765

4.111

4.567

4.139

7.258

3.757

1.470

2.538

2.523

8.107

ROS

Vehicle

System

Map

Sensing

Location

Perception

Planning

Control

Api

Rviz

Total

(a) KVM first-run

0 2 4 6 8 10 12

0.492

3.340

3.787

3.396

4.173

4.548

7.164

3.568

1.642

2.493

1.956

7.656

ROS

Vehicle

System

Map

Sensing

Location

Perception

Planning

Control

Api

Rviz

Total

(b) KVM re-run

0 2 4 6 8 10 12

3.369

1.098

1.175

1.245

2.909

2.461

4.149

2.702

1.449

2.865

1.050

7.534

k3s

Vehicle

System

Map

Sensing

Location

Perception

Planning

Control

Api

Rviz

Total

(c) KVM+k3s first-run

0 2 4 6 8 10 12

1.574

0.733

0.859

0.866

1.890

1.251

3.792

1.453

1.105

2.619

0.732

6.968

k3s

Vehicle

System

Map

Sensing

Location

Perception

Planning

Control

Api

Rviz

Total

(d) KVM+k3s re-run

0 2 4 6 8 10 12

3.559

0.739

3.165

3.102

3.796

4.395

3.757

6.818

3.233

1.851

1.825

2.678

11.116

Docker

ROS

Vehicle

System

Map

Sensing

Location

Perception

Planning

Control

Api

Rviz

Total

(e) KVM+Docker first-run

0 2 4 6 8 10 12

0.713

0.476

2.938

3.282

3.458

4.134

3.883

6.755

2.854

1.555

2.634

2.361

7.944

Docker

ROS

Vehicle

System

Map

Sensing

Location

Perception

Planning

Control

Api

Rviz

Total

(f) KVM+Docker re-run

0 2 4 6 8 10 12

2.861

0.773

2.420

3.527

3.318

3.678

3.048

5.070

3.007

1.497

2.650

2.557

8.558

k3s

ROS

Vehicle

System

Map

Sensing

Location

Perception

Planning

Control

Api

Rviz

Total

(g) KVM+k3s one cont. first-run

0 2 4 6 8 10 12

1.457

0.435

1.910

2.663

2.677

2.559

3.339

5.043

2.747

1.794

3.077

2.701

7.108

k3s

ROS

Vehicle

System

Map

Sensing

Location

Perception

Planning

Control

Api

Rviz

Total

(h) KVM+k3s one cont. re-run

Fig. 7: Start-up time (in seconds) of modules and whole Autoware framework under KVM.



However, the performance loss on re-run is relatively low
with 7.7%. Another thing worth comparing is the ROS and
container launch time. Fig. 7 shows that the launch time
of ROS and Docker container becomes longer on the first-
run under KVM: 10.6% for ROS and 21.1% for Docker
container. As for the re-run, it is 11.5% for ROS and 7.8%
for the Docker container. These differences are mainly due
to the disk performance of KVM. These data are similar
to the total performance loss and are consistent with our
conclusions in the previous section. The performance loss
is acceptable (except for Docker on the first-run) if a VM
outside a container is needed for better isolation and safety.

V. CONCLUSION

This paper presents various benchmark experiments of
hypervisors and containers in the context of SDVs. Several
virtualization and containerization technologies are evalu-
ated, including KVM, Docker, Podman, and Nspawn. We
consider the performance of bare-metal as the base line. Our
experiments are conducted on different platforms, including
a Raspberry Pi, a standard desktop, and a high-performance
workstation. In the first part of our work, we perform
a general performance test with selected benchmark tools
regarding CPU, memory, network, and disk. Afterwards,
we evaluate the performance in an automotive scenario
with the Autoware framework in a VM, a container, and a
container inside of a VM. Furthermore, we separate a single
Autoware framework into different containers managed by
the container orchestrator k3s and analyze its performance.
The benchmark results show that the performance of running
software in virtualized/containerized environments is compa-
rable to the performance of bare-metal systems.

In general benchmark tests, software running in VMs and
containers have approx. 0-5% decrease in the performance
of CPU, memory, and network. Virtualization and container-
ization show a greater impact on disk performance. The
container engines have approx. 5-15% performance loss on
disk. The disk performance in KVM is 35% slower than
that in a bare-metal setup. We further design automotive
application-related experiments to measure the application’s
startup time in different software execution environments.
The results show that startup times for KVM and Docker (ex-
cluding the first run) are 5 to 10% slower than those for
bare-metal. Additionally, k3s performs better than bare-
metal when Autoware is divided into nine containers. These
results illustrate that virtualization and containerization are
appropriate for automotive applications.

In future work, we plan to demonstrate the microservice-
based architecture for a containerized Autoware framework

and ROS applications and investigate the impacts on SDVs.
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