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1. Waste Heat Potential from Energy Intensive Industries
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» Enormous waste heat is available all over Europe
» Temperature levels of available waste heat is sector specific
» Technical potential in Europe for electricty from waste heat is about 150 TWh/a Source [1]
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1. Waste Heat Potential from Energy Intensive Industries
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Fig. 1. Cumulative distribution of the IWH as a function of the temperature
from Briickner et al. [33].

Source [2]

» Not all of the available waste heat is easy to use
» Temperature levels can be challenging low and distributed heat sources are difficult to be harvested
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Waste heat recovery
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» Clausius Rankine Cycle T > 200 °C (State-of-the-art)
» ORC & Kalina T > 120 °C (State-of-the-art)

Source: modified from [3]



2. The Organic Rankine Cycle Technology
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. and its Research Challenges
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3. Example 1: Steel plant
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» Fluctuations in volume flow rate are significant
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» Temperature fluctuations only between 60%-90% of the maximum temperature



3. Impact of Volume Flow and Temperature

Volume flow rate Temperature
Heat source
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» Usually waste heat is sensible in nature > Q~T
» Pinch-point limits heat transfer to Carnot cycle




3. Impact of Volume Flow and Temperature
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» Part load operation, as available heat is reduced
» Temperature/pressure of ORC is maintained - Efficiency remains constant




3. Impact of Volume Flow and Temperature

Volume flow rate Temperature

Heat source

Temperature
Temperature

Heat Heat

» Part load operation, as available heat is reduced
» Temperature/pressure of ORC is reduced or waste heat utilisation is reduced



3. Example 1: Steel plant
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Challenges for Investments

» Security of supply

- Seamless commissioning
and operation

- Simple and easy installation
only outside battery limit

» Retrofitting to the existing asset
has

— Space constraint

— Decentral distributed waste heat
sources are hard to capture

» Industry usually focuses only on
their core-process

» Likelihood that existing assets
cannot commit to long-term
operation

Quelle: Flaticon.com

» Typical pay-back periods are in
the range of 3-5 years vs. >>10
years in the energy sector

— Low specific investment costs

- Modularity, flexibility and “second

life” approaches are selling points

&

Source: [4]
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Example: Cement and Glass
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Figure 3: Energy flowchart of a typical fired glass furnace

Source: [5]



Example: Cement and Glass

Cement - Clinker

TUTI

Item M.U. C
ooler
Source of data Holcim
Plant size td 2,000
t/h 208
Type of fuel/source Ambient air
Exhaust gas flow rate Nm?3/h 125,000
Exhaust gas temperature °C 330
N2 78
" 0O, 20
Exhaust gas composition 1,0 5
CO; 0
Exhaust gas specific heat capacity kd/kg K 1.06
Exhaust gas density kg/Nm? 1.28
Exhaust gas cooled down to °C 120
Thermal power available KWt 9,900
Gross ORC efficiency 20%
Ambient air °C 20
ORC Gross electric power output kWe 1,950
ORC auxiliary consumptions 10%
Net electric power output (estimated) kWe | 1,715

Item M.U. Glass -
Container glass

Source of data Vidrala

Plant size t/d | 440

Type of fuel/source Natural gas

Exhaust gas flow rate Nm?3/h 43,000

Exhaust gas temperature °C 380

N2 68
" o)) 7

Exhaust gas composition H.0 15
CO: 10

Exhaust gas specific heat capacity kd/kg K 1.15

Exhaust gas density Kg/Nm? 1.27

Exhaust gas cooled down to °C 200

Thermal power available KWt 3,130

Ambient air °C 20

Gross electric efficiency 20%

Net electric efficiency 18%

ORC Gross electric power output kKWe 630

Net electric power output (estimated) kKWe 565

Source: [5]




LCOE for Cement and Glass

BCS: best-case scenario
ACS: average-case scenario
WCS: worst-case scenario

» Cement case: All the investigated scenarios can use the available waste heat economically
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Fig. 10. Economic potential for production with i = 4%, n= 10 years: (a) cement; (b) glass.
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Source: [2]

» Glass case: Bigger challenges. As waste heat recovery is more complex, electricity prices are higher



LCOE for Cement and Glass
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Fig. 14. Boundaries for economic feasibility of WHR-ORC from: (a) cement and (b) glass.
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» Cement case: Payback periods are between 4-10 years. Interest rates between 4-15%
» Glass case: Payback periods are between 8-25 years. Interest rates between <0-5%

Source: [2]
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ORC Market Ove rVieW » More than 2600 plants

» More than 4 GWe installed capacity | |ggg n
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» 30 manufacturers in Waste Heat Recovery ﬁ
» Global market

(C=cmmemy) Source: [7], flaticon.com
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/. Summary and Conclusion

Waste heat recovery is abundantly available and for free.
For optimal operation, part load should be achieved at constant temperature.
Investment decisions need to be facilitated.

By incentives

By technological progress

ORC technology is a mature technology, with a lot of successful plants in the field.

Despite the above challenges, there are already today quite a number of commercially successful
references.



Energy Sources for Energy Intensive Industry

Table 1
Sector and key factors for estimating flue gas properties.

Sector Process Primary fuel Non-energy-related CO,

Power Power generation Boiler Coal, oil, natural gas
Combined cycle Natural gas

Industry Cement Clinker production Coal v

Iron and steel Boiler Steel process gas

Refineries Furnace 0il

Ethylene Furnace 0Oil

Glass Furnace Natural gas

Ammonia Hydrogen production Natural gas v

Table 2
Categorization of CO5 sources by combinations of the primary fuel inputs and combustion technologies.
Boiler/Furnace Combined cycle Clinker production Hydrogen production
Coal Coal cp
0il Qil
NG NG NG-CC HP
SPG SPG
Non-energy-related CO, v v

NG: natural gas, SPG: steel process gas, CP: clinker production, HP: hydrogen production. Note: CO, sources emitting non-energy-related CO, are identified apart from other
combustion technologies.

» Basic industry uses abundant amount of fossil fuels
» The future needs a change in paradigm towards sustainable energy carriers Source: [6]
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