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"The underlying physical laws necessary for the math-
ematical theory of a large part of physics and the whole
of chemistry are thus completely known, and the dif-
ficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble."

– Paul Dirac, 1929

:





Abstract

Molecular dynamics (MD) simulations are a cornerstone of material science: By enabling
experiments in-silico, MD simulations can support the screening of a large database of
candidate compounds for applications in material design and drug discovery. However, the
accuracy and reliability of MD simulations depends critically on the choice of the potential
energy function that defines molecular interactions. Neural network (NN) potentials are
promising due to their ability to represent many-body interactions and their large model
capacity. Their accuracy is primarily limited by the quality and quantity of the available
training data.

This thesis presents a series of methodological advancements aimed at maximizing
the information gain from the available training data and allowing for trustworthy NN
potential-based MD simulations: The first paper introduces the Differentiable Trajectory
Reweighting (DiffTRe) method that facilitates training NN potentials on experimental
data. In particular, DiffTRe allows the combination of experimental and first principles
data, which is particularly relevant for larger systems that are inaccessible to accurate
computational quantum mechanics simulations.

The second paper demonstrates that training NN potentials via relative entropy (RE)
minimization is a highly data efficient training scheme that also corrects for numerical
errors by sampling from the NN potential via an MD simulation during training. Thus,
RE minimization enables more accurate coarse-grained MD simulations while reducing the
computational effort for data generation.

The third paper shows that scalable uncertainty quantification (UQ) schemes for NN
potentials allow the estimation of reliable credible intervals of MD observables. Specifically,
both the Deep Ensemble method and stochastic gradient Markov chain Monte Carlo (SG-
MCMC) with multiple Markov chains are found to be reliable UQ schemes in this context.
However, it was also shown that further research into SG-MCMC schemes is needed in
order to leverage the theoretical advantage of additional sampling of the posterior volume.
To this end, the fourth paper introduced the JaxSGMC library, which aims to accelerate
the development of novel SG-MCMC samplers through reusable algorithmic building blocks.
Additionally, JaxSGMC promotes Bayesian UQ of NNs by providing an easy-to-use interface
to state-of-the-art SG-MCMC samplers.

The fifth and final paper presents the Energy Minimized Atomistic Insertion (EMATI)
method, which reduces interface artefacts in the Adaptive Resolution Scheme. EMATI
achieves this by inserting atoms based on the local chemical environment rather than
randomly. Minimizing interface artefacts is a prerequisite for using accurate NN potentials
in concurrent multiscale MD simulations, such that large interface errors do not outweigh
the increased accuracy of NN potentials.

In sum, the methodological advancements presented in this thesis pave the way towards
accurate and reliable NN potential-based MD simulations, which support real-world decision-
making in a broad range of material science applications.
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Kurzfassung

Moleküldynamiksimulationen (MD) sind ein Eckpfeiler der Materialwissenschaften, weil
durch in-silico Experimente das Screening von großen Datenbanken von Materialkandidaten
unterstützt werden kann. Dies lässt sich für Anwendungen im Materialdesign und in der
Arzneimittelentdeckung nutzen. Die Genauigkeit und Zuverlässigkeit von MD-Simulationen
hängt jedoch entscheidend von der Wahl der potenziellen Energiefunktion ab, welche
die molekularen Wechselwirkungen definiert. Neuronale Netzwerkpotentiale (NNPs) sind
vielversprechend, da sie in der Lage sind, Mehrkörper-Wechselwirkungen darzustellen und
eine große Modellkapazität aufweisen. Ihre Genauigkeit wird in erster Linie durch die
Qualität und Quantität der verfügbaren Trainingsdaten begrenzt.

In dieser Dissertation werden eine Reihe von methodischen Entwicklungen vorgestellt, die
darauf abzielen, den Informationsgewinn aus den verfügbaren Trainingsdaten zu maximieren
und vertrauenswürdige, auf NNPs basierende MD-Simulationen zu ermöglichen: Der erste
Forschungsartikel stellt die Differentiable Trajectory Reweighting (DiffTRe) Methode vor,
die das Training von NNPs anhand experimenteller Daten erleichtert. DiffTRe ermöglicht
insbesondere die Kombination von experimentellen und Quantenmechaniksimulationsdaten,
was besonders für größere Systeme von Bedeutung ist, für die genaue computergestützte
quantenmechanische Simulationen nicht durchführbar sind.

Im zweiten Artikel wird gezeigt, dass das Training von NNPs durch Minimierung der
relativen Entropie (RE) ein äußerst dateneffizientes Trainingsverfahren ist, das außerdem nu-
merische Fehler korrigiert, indem während des Trainings das NNP für MD-Simulationen ver-
wendet wird. Somit ermöglicht die RE-Minimierung genauere grobskalige MD-Simulationen
bei gleichzeitiger Reduzierung des Rechenaufwands für die Datenerzeugung.

Das dritte Paper zeigt, dass skalierbare Verfahren zur Unsicherheitsquantifizierung (UQ)
für NNPs die Prädiktion zuverlässiger Glaubwürdigkeitsintervalle für MD-Observables
ermöglichen. Insbesondere die Deep-Ensemble-Methode und die Stochastische-Gradienten-
Markov-Ketten-Monte-Carlo-Methode (SG-MCMC) mit mehreren Markov-Ketten erweisen
sich in diesem Zusammenhang als zuverlässige UQ-Verfahren. Es wurde jedoch auch gezeigt,
dass weitere Forschung zu SG-MCMC Methoden erforderlich ist, um den theoretischen
Vorteil der zusätzlichen Auflösung des Posterior-Volumens zu nutzen. Zu diesem Zweck
wurde im vierten Artikel die Softwarebibliothek JaxSGMC vorgestellt, die die Entwicklung
neuartiger SG-MCMC-Sampler durch wiederverwendbare algorithmische Bausteine beschleu-
nigen soll. Darüber hinaus fördert JaxSGMC die bayessche UQ von neuronalen Netzwerken,
indem es eine einfach zu bedienende Schnittstelle für moderne SG-MCMC-Sampler bietet.

Im fünften und letzten Artikel wird die Energy Minimized Atomistic Insertion (EMATI)
Methode vorgestellt, die Artefakte an der Schnittstelle der Auflösungen im Adaptive
Resolution Scheme reduziert. EMATI erreicht dies, indem es die Atome nicht zufällig sondern
basierend auf der lokalen chemischen Umgebung einfügt. Die Minimierung von Artefakten
an der Auflösungsschnittstelle ist eine Voraussetzung für die Verwendung von präzisen
NNPs in Mehrskalen-MD-Simulationen, sodass große Fehler an der Auflösungsschnittstelle
die erhöhte Genauigkeit der NNPs nicht überlagern.
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Zusammenfassend lässt sich sagen, dass die in dieser Dissertation vorgestellten metho-
dischen Fortschritte den Weg hin zu genauen und zuverlässigen, auf NNPs basierenden
MD-Simulationen ebnen, die reale Entscheidungsprozesse in einem breiten Spektrum an
materialwissenschaftlichen Anwendungen unterstützen können.
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1. Introduction

Designing materials tailored to specific applications is a long-standing vision in material
science. For instance, highly customizable materials such as Metal-organic frameworks
(MOFs) [7], Perovskites [8, 9] and Zeolites [10] promise significant progress in applications
including hydrogen storage, high-efficiency photovoltaics and catalysis. Due to the vast
chemical design space of these materials, finding the optimal compound via exhaustive
synthesis and experimentation is intractable. Hence, compounds need to be investigated
in-silico, which allows screening a large database of candidate materials to maximize target
properties while satisfying application-specific constraints [11–15]. If successful, only a small
number of the most promising candidates need to be investigated experimentally, resulting in
substantial savings in development time and cost [16, 17]. The screening of a large database
of potential small-molecule inhibitors against SARS-CoV-2 represents a recent high-impact
application example [18]. However, the success of this in-silico screening approach hinges
on the quality of the employed computational models predicting material properties [17].
Hence, accurate and reliable molecular modeling is critical for decision-making in practice.

1.1. Molecular Modeling

Materials can be modeled at various resolutions, where the specific modeling technique
determines the accessible time and length scales of the simulation (fig. 1.1).

Molecular Modeling Scales

Small systems can be represented by their sub-atomic components and treated quantum-
mechanically. The approximate solution of the Schrödinger equation via computational
quantum mechanics (CQM) enables computation of the potential energy of the system.
This potential energy can be used in a molecular dynamics (MD) simulation to compute
the time evolution of the modeled system. As the potential energy is computed from first
principles, this approach is referred to as ab initio molecular dynamics (AIMD) [21, 22].
AIMD enables the prediction of material properties from first principles only [23], but the
size of the investigated systems is significantly limited by the costly CQM simulation at
each MD time step [24].

To reduce the large computational effort from CQM, atomistic (AT) models approximate
the potential energy of the system via a so-called semi-empirical potential energy function.
This potential energy function depends on atomic properties only, i.e. there is no dependence
on sub-atomic particles. Given that the evaluation of the semi-empirical potential energy
function requires orders of magnitude less computational effort than a CQM simulation,
AT MD simulations can access much larger time and length scales (fig. 1.1), rendering
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Figure 1.1.: Typical time and length scales for different modeling techniques [19, 20]. The
typical flow of information for molecular modeling is visualized via blue (top-
down) and gray arrows (bottom-up).

it a method of choice to investigate structural, thermodynamic, mechanic and dynamic
properties of materials [25].

To model even larger systems and longer time scales, e.g. biophysical systems [20], groups
of atoms can be coarse-grained (CG) into effective interaction beads [26]. The speed-up over
AT models results from the smaller number of CG particles reducing the computational
cost per potential energy evaluation and a larger admissible MD time step due to smoother
dynamics [27].

The potential energy function is at the core of AT and CG MD simulations because it
encodes the way particles interact. Hence, designing accurate and computationally efficient
potentials is at the center of molecular modeling. The two main building blocks that define
the potential energy function are the training data and the employed functional form.

Potential: Training Data

In principle, there are two sources of information available to optimize the parameters of
the potential energy function: the potential energy computed from first principles as well
as experimental data. To optimize the potential based on the former, a large data set of
molecular structures needs to be generated, ideally containing molecular states at different
thermodynamic state points [26, 28]. Due to a favourable trade-off between accuracy and
computational cost, density-functional theory (DFT) [29, 30] is typically employed to label
the data set, i.e., to approximate the potential energy and forces of the molecular state.
For CG modeling, it is common to consider a well-tested AT force field as the ground truth
model. Then, given the labelled data set, the most widespread scheme to optimize the
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1.2. Research Objectives

parameters of the potential is energy [28] and/or force matching (FM) [31–33], where the
optimal potential minimizes the difference between the predicted energy/forces and the
target energy/forces for each molecular state in the data set.

In contrast to matching the predictions of a data-generating high-fidelity simulation
(bottom-up learning), the goal of top-down learning is to parametrize the potential such that
when used in an MD simulation, the result matches the reference experiments (typically
conducted at the continuum scale) [26, 34]. Hence, leveraging information gathered at
different scales is the heart of AT and CG molecular modeling (fig. 1.1).

Potential: Functional Form

The functional form of the potential determines the computational cost as well as the
maximum achievable accuracy of an MD simulation by defining which molecular interactions
can be represented. Classical force fields such as AMBER [35] and GROMOS [36] at the
AT scale as well as MARTINI [37] at the CG scale are composed of physics-inspired
terms such as the Lennard-Jones potential for non-bonded interactions as well as harmonic
bonds, angles and dihedrals for intramolecular interactions. Classical force fields are
computationally efficient and have been applied successfully to model a wide range of
systems [38]. However, in some cases, obtained results differ significantly from experiments,
in particular for chemically complex systems with strong polarization effects, bond breaking,
etc. [38–40]. Even through reactive [41] and polarizable [42, 43] force fields address some
of these shortcomings, classical force fields remain inherently limited by their rather simple
functional form, which limits its ability to represent the higher body-order terms of solutions
of the Schrödinger equation [44, 45].

Machine learning (ML) potentials promise much higher accuracy by replacing functional
forms based on physical heuristics by highly flexible many-body function approximators.
The most common ML potentials are based on Gaussian Processes (GP) [46–50] and neural
networks (NN) [51, 52]. While GPs have the advantage of providing an uncertainty estimate
of the predicted potential energy at no additional cost, they do not scale well to large data
sets [46, 49] common in molecular modeling [53, 54]. Hence, this thesis focuses on NN
potentials, which have found great success within the last few years, both in terms of method
development [55–61] and in terms of enabling novel computational studies [44, 62–65]. In
particular, NN potentials have delivered on the promise of providing functional forms with
very high model capacity, with recent NN potentials achieving two orders of magnitude
smaller test errors within the training data distribution compared to the expected DFT
error [66, 67].

1.2. Research Objectives

In principle, the large model capacity of NN potentials enables modeling of molecular systems
at unprecedented accuracy. However, there are several issues in practical application of NN
potentials that hamper more widespread adoption: First, NN potentials are data-driven
black-box models. Their flexible functional form comes at the cost of losing physically-
reasonable constraints of classical models. Thus, when applied outside their training domain,
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1. Introduction

NN potential predictions can be highly inaccurate or even qualitatively unphysical [2, 68, 69].
As a consequence, practitioners may prefer less accurate, but more constrained potentials
in practice [70].

Second, generating sufficiently large data sets with broad coverage is challenging due to
the high dimensionality of chemical space and the computational cost of labelling molecular
states via DFT [61, 69, 71]. This problem is exacerbated by the property of MD simulations
to evolve the simulation state along the adversarial direction of the potential, preferentially
sampling chemical space where the NN is least accurate [57]. Accordingly, NN potentials
are typically data-constrained, i.e. the availability of accurate data sets relevant for the
molecular system at hand tends to be more important for model performance than the
specific NN architecture.

Third, the vast majority of NN potentials are trained bottom-up. For bottom-up
training, the maximum accuracy of NN potentials is limited to the accuracy of the data-
generating high-fidelity simulation. Given that DFT only provides approximate solutions
to Schrödinger’s equation, some deviation from experimental results is to be expected,
even in the limit of infinite training data and NN model capacity. While more accurate
CQM methods such as coupled cluster CCSD(T) [72], quantum Monte Carlo [73, 74] and
NN-based methods [75, 76] can be expected to reduce the deviation from experiments, they
are significantly more expensive, exacerbating the data-coverage issue [64, 77]. Hence, the
goal of this thesis is to address the following research questions:

• Training on Experimental Data

Top-down learning circumvents the problem of the limited accuracy of the data-
generating simulation by directly matching experimental observations. The importance
of top-down training has been recognized in the development of classical MD force
fields, which typically optimize both bottom-up and top-down objective functions
[35–38]. While classical force fields can be optimized via gradient-free optimization
schemes [78, 79], NN potential training requires gradient information due to the curse
of dimensionality associated with the large amount of learnable NN parameters. To
leverage the power of top-down training in the context of NN potentials, it is therefore
imperative to develop an efficient gradient-based training scheme that also integrates
well with auto-differentiable NN frameworks such as PyTorch [80], Tensorflow [81] or
JAX [82].

• Leveraging Alternative Training Schemes

For bottom-up training, the majority of NN potentials are trained via energy matching
and/or FM [28]. This training scheme is computationally efficient and straightforward
to implement in NN frameworks, but it features drawbacks when applying the learned
NN potential in MD simulations. Given that data sets for bottom-up training are
often generated via MD simulations, they usually contain predominantly states close
to energy minima, but less high-energy states and no unphysical configurations. Con-
sequently, phase-space regions further away from energy minima may be insufficiently

4



1.3. Structure

represented in the data set. As FM training relies on sufficient sampling of all relevant
phase-space regions, this renders FM comparatively data inefficient [83]. Additionally,
FM training cannot constrain the potential in unphysical phase-space regions that are
not included in the training data. To avoid entering unphysical phase-space regions
during an MD simulation, NN potentials trained via FM heavily rely on physics-
inspired prior potentials that assign high potential energy to unphysical configurations
[68, 69]. To achieve higher data efficiency and less dependence on prior potentials
compared to FM, alternative training schemes that leverage MD simulations during
training need to be investigated.

• Evaluating Predictive Uncertainty

Active learning (AL) [84, 85] promises efficient generation of more diverse data sets.
Instead of labelling every state along an MD trajectory, AL is an iterative method
that only labels molecular states for which the estimated uncertainty of the model
exceeds a predefined threshold. Afterwards, these high uncertainty states are added to
the existing data set, the potential is retrained and a new MD trajectory is generated
using the retrained model. The AL loop ends once the uncertainties of all generated
states are below the uncertainty threshold. As a side effect, AL guarantees that the
generated MD trajectory only sampled low-uncertainty phase-space regions, increasing
the trustworthiness of obtained MD results. AL has been applied successfully in
practice [65, 86, 87], but the efficiency of AL critically depends on the quality of
uncertainty estimates. In particular, the most common uncertainty quantification
(UQ) scheme for NN potentials, Deep Ensembles [88, 89], was attributed rather poor
uncertainty estimates for active learning applications [90].

While AL is an efficient means to generate data sets and reliable MD results when the
application is known at training time [65], practitioners may be interested in directly
applying pre-trained NN potentials without any re-training. Given that NN potentials
are unreliable outside the training data distribution and estimating whether the
conducted MD simulation visited out-of-distribution phase-space regions is non-trivial,
obtaining uncertainty estimates of MD observables is essential to establish trust in
NN potential-based MD results. Hence, investigating the quality of UQ schemes for
NN potentials is essential, both for efficient AL as well as for reliable UQ of MD
observables. The latter are a prerequisite for using NN potential-based MD simulation
results in industrial decision-making.

1.3. Structure

This cumulative dissertation is structured as follows: Chapter 2 outlines main components of
parametrizing molecular force fields with corresponding theory and a focus on NN potentials.
This molecular modeling framework provides the foundation for the contributions of the
research papers summarized and embedded in chapter 3. Finally, chapter 4 summarizes
and discusses the contributions of this thesis and provides an outlook on further research
directions.
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2. Methods

This chapter introduces the main components of the molecular modeling framework (fig. 2.1),
which form the basis of the contributions in chap. 3.

Figure 2.1.: Molecular modeling framework. Overview of the relationships between the
main molecular modeling components discussed in this thesis.

MD simulations are at the center of this framework. An MD simulation numerically
integrates Newton’s equation of motion in time (sec. 2.1). The potential energy function Uθ

defines the dynamics of the system via the forces f (i). In the context of this thesis, graph
NN potentials are typically used to model Uθ (sec. 2.2). Training the NN potential, i.e.
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2. Methods

finding an approximation to the optimal parameter set θ̄, can be achieved by minimizing
a loss function L(θ) that results from the bottom-up or top-down training scheme (sec.
2.2.1). Rather than betting on a single parameter set, Bayesian modeling approximates the
posterior predictive distribution, which promises more accurate predictions and enables UQ
of MD observables (sec. 2.4). Instead of operating on an AT representation of the system,
NN potentials can also be trained for CG systems (sec. 2.3). If both an AT and a CG
model are available for the system of interest, concurrent multiscale simulations allow to
combine the different resolutions (sec. 2.5).

2.1. Molecular Modeling

In this section, I review the basics of MD simulations with an emphasis on the potential
energy function to introduce the notation for the rest of the thesis. For a more detailed
outline of statistical mechanics and MD, refer to refs. [25, 91].

2.1.1. Molecular Dynamics Simulation

Fundamentally, an MD simulation integrates Newton’s second law to compute the time
evolution of the system under investigation:

m(i)d
2r(i)

dt2
= f (i) with f (i) =

dUθ(r)

dr(i)
, (2.1)

where r ∈ Rn×3 is a matrix containing the position vectors of all atoms and n is the total
number of atoms in the system. For each atom i, m(i) is its constant mass, r(i) is its position
and f (i) is the force acting on its center of mass (COM). The forces are typically computed
as the gradient of the potential energy function Uθ(r), which ensures that the resulting
force field is conservative and the sum of the forces is 0 [91]. Uθ(r) is parametrized by a
vector of model parameters θ.

Starting from an initial state, the time evolution of the system can be computed by
numerical integration. To this end, eq. (2.1) can be re-written in terms of first order
ordinary differential equations (ODEs) by introducing p(i), the momentum of particle i :

dr(i)

dt
= p(i)/m(i) ;

dp(i)

dt
= f (i) . (2.2)

Then, the Velocity Verlet [92] time integration scheme approximates the state of the system
S = {r,p} after a time step ∆t, where p ∈ Rn×3 is a matrix containing the momentum
vectors of all atoms in the system:

p(i)(t+ 0.5∆t) = p(i)(t) + 0.5∆tf (i)(t)

r(i)(t+∆t) = r(i)(t) + ∆tp(i)(t+ 0.5∆t)/m(i) (2.3)

p(i)(t+∆t) = p(i)(t+ 0.5∆t) + 0.5∆tf (i)(t+∆t) .

The Velocity Verlet algorithm is one of the most popular time integration schemes in MD
because it is exactly time reversible, symplectic (sec. 2.1.2) and features a second order
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2.1. Molecular Modeling

global error, while only requiring a single computationally expensive force computation per
time step.

In principle, an MD simulation consists of the following steps: Starting from an initial
state, the time integration scheme is applied iteratively to generate the trajectory of the
system {S(i)}Ni=1. From this trajectory, any observable of interest can be computed, including
structural (e.g. distribution of bond lengths and dihedral angles [93, 94], radial distribution
function [95] and angular distribution function), thermodynamic (e.g. temperature, pressure
[96]), mechanic (e.g. stress [97] and stiffness tensors [98]) and dynamic quantities (e.g.
diffusion coefficients). The obtained observables can then be compared to experimental
observations [99–101] to evaluate the quality of the MD simulation [26, 38, 79].

2.1.2. Statistical Mechanics Ensembles

Statistical mechanics links macroscopic equilibrium observables ⟨O⟩ to microscopic states S

via the ensemble average [91]

⟨O⟩ =
∫

S
O(S, Uθ)p(S)dS ≃ 1

N

N∑

i=1

O(Si, Uθ) ;Si ∼ p(S) , (2.4)

where O(S, Uθ) is the instantaneous value of the observable function. Given that the
integral in eq. (2.4) is typically very high-dimensional, it is approximated by a Monte
Carlo estimate. Hence, computing observables requires sampling of microscopic states S

according to the distribution p(S), which depends on the chosen ensemble [91].

The remainder of this section introduces the microcanonical and canonical equilibrium
ensembles. The isothermal-isobaric equilibrium ensemble is also of great importance, as it
most closely corresponds to typical experimental setups. While the choice of the ensemble
impacts MD results, this difference vanishes in the thermodynamic limit (n→ ∞) [91].

Microcanonical Ensemble

The microcanonical ensemble subsumes all states S of an isolated system, which cannot
exchange mass or energy with its surroundings. Consequently, the total energy of the
system E is constant [91]. The microcanonical ensemble is also referred to as NVE ensemble
because the isolated system features constant number of particles n, constant volume V ,
and constant total energy E.

The total energy (or Hamiltonian) of a state Hθ(S) is the sum of the potential energy
Uθ(r) and the kinetic energy K(p):

Hθ(S) = Uθ(r) +K(p) with K(p) =
n∑

i=1

||p(i)||2
2m(i)

. (2.5)

In the NVE ensemble, all states have the same Hamiltonian Hθ(S) = E. All states accessible
to the isolated system are assumed to be equally probable [91]. Thus, states in the NVE
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2. Methods

ensemble are uniformly distributed with probability

p(S) =
1

Ω(N,V,E)
, (2.6)

where Ω(N,V,E) is the microcanonical partition function, which measures the amount of
phase-space accessible to the system [91].

Given that exact time integration of the ODEs in eq. (2.12) conserves Hθ(S), an
MD simulation samples states from the NVE ensemble with E = Hθ(Sinit). Under the
assumption of ergodicity, i.e. the property of a system to visit all of its accessible states in
the limit of an infinite amount of time, the ensemble average in eq. (2.4) can be substituted
by a time average over the MD trajectory:

⟨O⟩ ≃ 1

N

N∑

i=1

O(Si, Uθ) . (2.7)

Due to small values of ∆t necessary to sustain numerical stability of the MD simulation,
subsequent states are highly correlated. To save memory and improve the statistical
efficiency in eq. (2.7), states are typically only saved in the order of magnitude of every
1000 time steps.

Canonical Ensemble

The canonical ensemble, also referred to as NVT ensemble, corresponds to a system with
constant density and temperature T . Hence, the NVT ensemble includes all microscopic
states S of a closed system within a heat-bath, which cannot exchange mass with its
surroundings, but exchanges thermal energy with the heat bath [91]. Due to the heat
transfer, the Hamiltonian Hθ(S) is not constant but depends on the state S.

To be able to use an MD simulation to sample from the NVT ensemble, a thermostat
must be added to the ODEs in eq. (2.12) such that the instantaneous temperature

T̄ (S) =
2K(p)

NDOFkB
(2.8)

is kept constant rather than Hθ(S), where kB is the Boltzmann constant and NDOF is the
number of degrees of freedom. The Langevin and Nose-Hoover chain thermostats [102] are
two popular options. The former controls the temperature by adding a friction term and
random forces, while the latter is a deterministic thermostat.

States in the NVT ensemble follow the Boltzmann distribution

p(S) =
e−βHθ(S)

Ω(N,V, T )
, (2.9)

where Ω(N,V, T ) is the canonical partition function and β = 1/(kBT ). An MD simulation
with a well-chosen thermostat can be used to sample the Boltzmann distribution under the
assumptions of ergodicity and thermodynamic equilibrium. The latter can be satisfied by
retaining states after an initial equilibration phase only.
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2.1. Molecular Modeling

As an alternative to MD, the Boltzmann distribution can be directly sampled via
Metropolis-Hastings (MH) [103] Markov chain Monte Carlo (MCMC). However, while MD
also predicts dynamical properties of the system, MCMC only yields equilibrium properties
[91]. Both approaches can be combined by running short MD simulations to generate
proposal states with high acceptance probability (Hamiltonian or hybrid Monte Carlo [104]).
Hamiltonian Monte Carlo has received renewed attention in the last decade in the context
of efficient sampling of high-dimensional posterior distributions for Bayesian modeling
[105, 106] (chapter 2.4.1).

2.1.3. Classical Potentials

So far, the potential energy function Uθ(r) was assumed to be given. However, the
selection of an appropriate Uθ(r) is the main modeling choice in MD, since Uθ(r) defines the
dynamics of the system. Additionally, computation of the forces is the computationally most
demanding part of the time integration scheme (eq. (2.3)). Therefore, a good potential
Uθ(r) must be accurate enough to model all relevant atomic interactions, while being
computationally inexpensive to generate sufficiently long trajectories.

To improve physical interpretability, Uθ(r) can be decomposed into intra-molecular and
non-bonded interactions as well as into a series of increasing body-order interactions:

Uθ(r) = U intra
θ (r) + Unon−bonded

θ (r)

=
∑

i

uθ(ri) +
∑

i,j>i

uθ(ri, rj) +
∑

i,j>i,k>j

uθ(ri, rj , rk) + ... (2.10)

The rationale of the body-order decomposition is that the magnitude of interactions tends
to decrease for increasing body-order. Hence, classical potentials usually truncate the series
beyond 2-body non-bonded interactions and 4-body intra-molecular interactions [35–37].

The remainder of this subsection introduces the main building blocks used by many
classical force fields to build Uθ(r). Classical intra-molecular potentials typically include
harmonic bonds, angles and dihedrals, representing 2, 3 and 4-body interactions:

U intra
θ (r) =

Nbonds∑

i=1

Kb
i [bi−b̂i]2+

Nangles∑

j=1

Kα
i [αi−α̂i]

2+

Ndihedrals∑

k=1

Kω
i [1+cos(nω,iωi−ω̂i)] , (2.11)

where bi are the bond lengths, αi are enclosed angles of triplets of bonded atoms, and ωi

are dihedral angles. The energy scale of the interactions Ki, the equilibrium bond lengths
b̂i, the equilibrium angles α̂i, the dihedral multiplicities nω,i, and the dihedral phase shifts
ω̂i depend on the atom types involved and represent parameters in θ.

Non-bonded interactions are computationally more expensive given that the number
of 2-body pairs in the system scales as O(n2), 3-body triplets as O(n3), etc. Hence, the
non-bonded part of classical potentials often consists of 2-body Lennard Jones (LJ) and
Coulomb potentials only [35–37], modeling steric repulsion, Van-der-Waals attraction and
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electrostatic interactions:

Unon−bonded
θ (r) =

∑

i,j>i

4ϵij

[(
σij
dij

)12

−
(
σij
dij

)6
]
+
∑

i,j>i

qiqj
4πϵ0dij

, (2.12)

where dij is the Euclidean distance between a pair of atoms and ϵ0 is the vacuum permittivity.
The partial charge of an atom type qi and LJ parameters ϵij and σij are degrees of freedom of
θ. The LJ parameters depend on the atom types of atoms i and j via geometric combination
rules [107].

Given that the LJ potential is a short-range interaction, a cut-off radius rcut can be
introduced beyond which the potential energy of the pair interaction is set to 0. Electrostatic
interactions can be cut-off analogously using the generalized reaction field method [108].
Restricting the potential to local interactions significantly reduces the computational effort
as only neighbors within the cut-off need to be considered. Introducing cell and neighbor
lists then reduces the computational complexity of force computations to O(n log n) [25, 91].
Sophisticated classical force fields introduce further modifications to the components outlined
above, such as 1-4 LJ interactions as well as mixed atom type pairs [36], but these are
beyond the scope of this methodological outline.

2.1.4. Reweighting

Knowledge of the probability distributions of different ensembles (sec. 2.1.2) allows the
reuse of a previously generated MD trajectory to estimate the resulting observables for
slightly perturbed simulation parameters. To this end, thermodynamic perturbation theory
[109] replaces the time average in eq. (2.7) with a weighted average over the trajectory

⟨O⟩ ≃
N∑

i=1

wiO(Si, Uθ) with wi =
p(Si)/p̂(Si)∑N
j=1 p(Sj)/p̂(Sj)

, (2.13)

where the weight wi depends on the probability of Si in the perturbed simulation p(Si)

relative to the probability in the existing reference system p̂(Si). Without perturbation
(p(S) = p̂(S)), eq. (2.13) is identical to eq. (2.7). In the NVT ensemble, the Boltzmann
distribution (eq. (2.9)) defines p(S).

An example application of reweighting is changing the temperature of the system.
Assuming an NVT ensemble, the weights wi evaluate to

wi =
e−(β−β̂)Uθ(Si)

∑N
j=1 e

−(β−β̂)Uθ(Sj)
, (2.14)

where β̂ = 1/(kBT̂ ) is the inverse temperature of the reference trajectory and β is the target
inverse temperature.

Another important application of reweighting is the optimization of Uθ(S). For this
application, it is important to obtain observables that correspond to a potential Uθ given a
trajectory generated from the reference potential Uθ̂. Assuming the NVT ensemble and
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2.2. Neural Network Potentials

inserting the Boltzmann distribution into eq. (2.13) yields the weights

wi =
e−β(Uθ(Si)−Uθ̂(Si))

∑N
i=j e

−β(Uθ(Sj)−Uθ̂(Sj))
, (2.15)

which can be used to reduce the number of necessary trajectory generations during opti-
mization [110–112] (sec. 2.3.3).

Due to the generality of the reweighting principle, it is useful in a wide range of applications
including estimation of free energy differences [113, 114], switching between different
ensembles [115], simulating phase equilibria [116–118], and unbiasing trajectories generated
from enhanced sampling schemes [119]. The main caveat of reweighting is the reduction of
the effective sample size [120]

Neff ≈ e−
∑N

i=1 wi ln(wi) (2.16)

due to significantly reduced contribution of states that are unlikely given the target
distribution. This increases the statistical estimation error in eq. (2.13) and restricts the
applicability of reweighting to small perturbations such that the expected statistical error
remains below a certain threshold.

2.1.5. Numerical Integration Errors

Finally, sampling the NVE ensemble via an MD simulation relies on the fact that exact
time integration of eq. (2.12) with a conservative force field conserves Hθ(S) along the
trajectory. However, due to truncation errors of the numerical integration scheme, Hθ(S)

is not conserved for finite ∆t. In this case, a trajectory obtained from the numerical
integration scheme is the solution of a modified differential equation [121], which includes
time step-dependent terms that vanish for ∆t→ 0. In the case of a symplectic integration
scheme (e.g. eq. (2.3)), the integrator exactly conserves a shadow Hamiltonian H̃θ(S,∆t)

[122, 123]. For sufficiently small ∆t, H̃θ(S,∆t) remains close to Hθ(S) along the trajectory,
bounding the numerical error [91].

In the case of the NVT ensemble (with Nose-Hoover chain thermostat [102]), a symplectic
integrators exactly conserves a shadow temperature T̃ (S,∆t) [124]. Analogous to the NVE
ensemble, the deviation of T̃ (S,∆t) from T (S) is bounded for sufficiently small ∆t. For
both ensembles, the numerical error scales as (∆t)2 for second order accurate integration
schemes such as the Velocity Verlet integrator [124].

2.2. Neural Network Potentials

NN potentials differ from classical potentials by featuring a flexible functional form and a
high-dimensional set of parameters θ. Due to this difference, there are several considerations
to account for when designing and training NN potentials, which will be outlined in this
section.
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2.2.1. Training

Once the functional form of the potential Uθ(S) has been fixed (for the functional form of
classical potentials, see section 2.1.3; for NN potentials, section 2.2.5), the goal of training
is to obtain an optimal parametrization

θ̄ = argmin
θ

L(θ) , (2.17)

such that the obtained model minimizes a loss function L(θ). The training approaches
discussed below are suitable for both classical and NN potentials as the minimization
problem in eq. (2.17) will be solved by gradient-based optimization. While classical
potentials can be optimized via trial-and-error [125] or gradient-free optimizers [126–128],
gradients are a necessity to train larger NNs due to the curse of dimensionality associated
with the large NN parameter set.

Bottom-Up Training

Most commonly, AT NN potentials are optimized to match the potential energy Ui and
forces fi ∈ Rn×3 of a training data set {ri, Ui, fi}Nbox

i=1 containing Nbox molecular states
[28]. The labels Ui and fi are computed from a high-fidelity model, typically a CQM
scheme [53, 129, 130], and are considered the ground truth. Matching the predictions of
the high-fidelity model can be achieved by minimizing the mean squared error (MSE) loss

LAT(θ) =
1

Nbox

Nbox∑

i=1

[Ui − Uθ(ri)]
2 +

γ

Nbox

Nbox∑

i=1

∣∣∣∣
∣∣∣∣fi +

dUθ(ri)

dri

∣∣∣∣
∣∣∣∣
2

, (2.18)

where ||...|| is the Frobenius norm and γ is a hyperparameter controlling the relative
contribution of errors in the energies and forces. If force targets are available, it is
advantageous to include them in eq. (2.18) because of the much larger information content
per data point and their importance to the dynamics of subsequent MD simulations [67, 131].

Given the loss function LAT(θ), the potential Uθ can be trained using stochastic gradient
descent optimization: The gradient ∇θL(θ) is approximated by a stochastic estimator based
on a subset (called mini-batch) of the data set and computed via automatic differentiation
(AD) [132]. This estimate of the gradient is then passed to a stochastic optimizer such as
RMSProp [133] or Adam [134] to update θ. The computation of the gradient estimates and
the updating of the parameters is then repeated until convergence. Finally, it is important
to test the trained model on a held-out test data set as an estimate for performance on
unseen data.

Top-Down Training

For top-down learning, the following MSE loss can be minimized to match a set of K
experimental observables Õk:

LTD(θ) =
1

K

K∑

k=1

[
⟨Ok(Uθ)⟩ − Õk

]2
. (2.19)

14



2.2. Neural Network Potentials

However, unlike the potential energy and forces, ⟨Ok(Uθ)⟩ is connected to Uθ only indirectly
via an MD simulation, as reflected in the following equation:

LTD(θ) =
1

K

K∑

k=1

[
Ok(Simulation(Uθ))− Õk

]2
. (2.20)

Straightforward computation of ∇θL(θ) via AD requires backpropagation through the MD
simulation (eq. (2.20), fig. 2.2), which is enabled by recently developed differentiable MD
simulation codes such as JAX, M.D. [135] and TorchMD [136].

Sinit S1 Si SN

…

S2

…

Si+1

…

⟨Ok(Uθ)⟩ Õk

ℒ(θ)

fi = − ∂Uθ(ri)
∂ri

Trajectory Generation
Backward Pass

productionequilibration

subsampled states

Figure 2.2.: Direct backpropagation schematic. Visualization of the forward and backward
pass for computing the gradient of the top-down loss LTD(θ) via direct back-
propagation through the simulation.

Learning Uθ by backpropagation through a differentiable MD simulation has been achieved
in recent works [135–139]. However, this approach is restricted to small trajectory lengths
[139] due to the curse of chaos [140]: The gradient of eq. (2.20) indicates the direction in
which Uθ must be updated to direct the MD trajectory such that the resulting ⟨Ok(Uθ)⟩
improves. This is an ill-posed problem in chaotic systems such as MD [141]. The exponential
increase of the sensitivity of the final simulation state on the initial conditions in time, in
particular beyond the Lyaponov time scale [142], results in exploding and uninformative
gradients [137].

Instead of capturing the dependence of ⟨Ok(Uθ)⟩ on Uθ via the dynamics of the system
(eq. (2.3), fig. 2.2), the gradient can also be computed via thermodynamic fluctuation
formulas from ensemble averages of the gradient of observables [143–145], circumventing
the curse of chaos. However, this approach requires significant implementation effort to
combine gradients from different observables, especially for observables that are not mere
averages of instantaneous quantities.
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2.2.2. Prior Potential

When training NN potentials in a bottom-up manner via eq. (2.18), the data set is often
generated by sampling states from the ground truth model, e.g. via a MD simulation. In
this case, the obtained data set contains few high potential energy states and no unphysical
states. As a result of the flexible functional form and data-driven nature of NNs, the NN
potential UNN

θ (r) is only constrained in phase-space regions resolved by the training data.
However, MD simulations using the trained UNN

θ (r) might be able to unphysically cross
an energy barrier and sample from unphysical phase-space regions. This results in highly
inaccurate simulation outcomes [68, 69] or even numerical instability [50, 61].

In order to counteract this phenomenon, UNN
θ (r) can be combined with a fixed, "prior"

potential Uprior(r) with a physics-inspired functional form [68, 69, 146]:

Uθ(r) = UNN
θ (r) + Uprior(r) . (2.21)

Suitable choices for Uprior are usually available from the literature, e.g. the Embedded Atom
Model (EAM) [147] for metals or AMBER [35] for bio-molecules. The ansatz in eq. (2.21)
can be interpreted as ∆-learning [148], where the goal of Uprior is to yield qualitatively
correct predictions outside the training data distribution and UNN

θ (r) can correct Uprior in
phase-space regions where training data are available. Hence, Uprior can be considered a
physics-based initialization of the combined potential Uθ. In particular, Uprior(r) is distinct
from the prior in Bayesian modeling (sec. 2.4.1).

2.2.3. Physical Requirements

There are several requirements for Uθ entailed by physics: First, energy conservation
requires Uθ to be continuously differentiable at rcut such that the resulting force is 0. For
gradient-based learning of Uθ with force targets (eq. (2.18)), Uθ should be C2 everywhere
such that gradients ∇θ are continuous. Second, Uθ needs to be invariant to translation and
rotation of the coordinate system as well as to permutation of the numbering of particles
given that the potential energy of the system remains unaffected by these changes (fig. 2.3).
While classical potentials fulfil these requirements by design of the considered functional

1
2

3
x

y

2
1

3

x
y

=
Figure 2.3.: Physical invariances. Invariance of the potential energy of a molecular system

to translation, rotation and permutation.
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forms, more care needs to be taken to build a NN potential architecture with analogous
properties.

In principle, these invariances can also be learned by data augmentation [149]. However,
this decreases data efficiency by 3 orders of magnitude [150] and the predictions of Uθ

will only approximately lie on the manifold defined by the physical invariances. Therefore,
explicitly encoding these invariances has been found to be key to data-efficient learning [51].

2.2.4. Feature Extraction

The most straightforward approach to encoding the physical invariances into NN potentials
is given by the Behler-Parinello architecture [51]. In a first step, invariant features of the
local chemical environment of each atom are extracting via fixed descriptor functions such
as the atomic cluster expansion (ACE) [151, 152] or atom-centred symmetry functions
[153–155]. In a second step, for each atom, the extracted features are the input of a
multilayer perceptron (MLP) predicting the potential energy contribution of the atom
U

(i),NN
θ (r). Finally, the potential energy of the system

UNN
θ (r) =

n∑

i=1

U
(i),NN
θ (r) (2.22)

is the sum of all atom-wise potential energy contributions [51].
Analogous to computer vision [156], hand-crafted feature extractors are the accuracy

bottleneck of the Behler-Parinello architecture. Accordingly, replacing the descriptors by
continuous convolution layers [55] that learn to extract expressive features in an end-to-end
fashion improves performance considerably [64, 157]. In this case, the physcial invarances
are obeyed by representing the molecular configuration as a graph with invariant features
(fig. 2.4 (a)), typically nodes (atoms) and edges (pairwise distances of atoms within rcut
of each other). The resulting graph neural network (GNN) architecture [158] operates on
the molecular graph by iterative pairwise message-passing [159], extracting higher-body
features with each consecutive message-passing step.

2.2.5. Message-Passing Neural Network Architecture

This sections outlines main building blocks of invariant GNNs that are used across multiple
NN potential architectures. The concrete implementation of these components and their
combination with other building blocks strongly depends on the respective architecture,
which has led to a large number of proposed GNN potentials [55, 59, 67–69, 159–164].

The input of invariant GNN potentials is the molecular graph, which typically consists
of the atomic numbers Z(i) and pairwise distances d(ij) for particles within rcut. GNN
potentials usually consist of four main components: basis functions, embedding layer,
message-passing layers and an output layer. In order to reduce the correlation between
different convolutional filters and to speed up training [55], scalar properties are usually
embedded into vector-values quantities. To this end, the embedding layer builds a vector-
representation for Z(i) and different basis functions represent d(ij). Given this vector-valued
graph representation, repeated application of the message-passing layer extracts features
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Figure 2.4.: Graph neural network. (a) Sketch of a graph neural network with cut-off
around a central atom (adapted from [2]). (b) n̂th radial Bessel basis function
b̂RBF,n̂(d) times envelope function e(d) as a function of the pairwise distance d.

of the chemical environment of each atom. The output layer then further processes these
features and predicts per-atom potential energies, which are summed to obtain the potential
energy of the system.

Basis Functions

Schütt et al. [55] proposed Gaussian radial basis functions to represent each d(ij). Inspired by
the functional form of solutions to Schrödinger’s equation, Klicpera et al. [67] later proposed
a Fourier-Bessel basis to expand d(ij) (and triplet angles α(ijk)). The n̂ ∈ [1, .., NRBF] radial
Bessel functions (RBF) b̂RBF,n̂(d) take the following form:

b̂RBF,n̂(d) =

√
2

rcut

sin(n̂πd/rcut)

d
. (2.23)

To enforce that the contribution to the potential energy by an atom pair converges to 0 at
rcut in a continuously differentiable manner, each RBF is multiplied by an envelope function

ê(d) = 1− (p̂+ 1)(p̂+ 2)

2

(
d

rcut

)p̂

+ p̂(p̂+ 2)

(
d

rcut

)p̂+1

− p̂(p̂+ 1)

2

(
d

rcut

)p̂+2

, (2.24)

where p̂ = 6 is the default choice [67]. The resulting representation of d(ij) is a NRBF

dimensional vector e(ij) = ê(d(ij))b̂RBF(d
(ij)) (fig. 2.4 (b)). The radial Bessel basis has

been shown to be more efficient than the Gaussian basis because it requires a smaller
number of basis functions while increasing accuracy [67].
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Embedding Layer

A common embedding method for Z(i) employs a randomly initialized and learnable
look-up-table Tθ [55, 67, 161], which stores for each atom type a Nembed-dimensional vector

h
(i)
0 = Tθ(Z

(i)) . (2.25)

Alternatively, the node embedding can be predicted by a linear layer with the one-hot
encoded Z(i) as input [165].

Message Passing Layer

The standard message-passing formalism can be described via two update functions [166]:
First, each atom accumulates messages from all connected atoms in the graph N (fig. 2.4 (a))
to generate the total message

m
(i)
k =

∑

j∈N(i)

Mk,θ(h
(i)
k ,h

(j)
k , e(ij)) , (2.26)

which is used to update the hidden node state

h
(i)
k+1 = Hk,θ(h

(i)
k ,m

(i)
k ) . (2.27)

Mk,θ and Hk,θ are two arbitrary learnable functions for each message-passing step k, which
typically consist of MLPs and ResNet-type [167] skip connections [55, 67, 161, 165].

Output Layer

Afterwards, the hidden node states h
(i)
k are used to predict the per-atom potential energy

contributions

U
(i),NN
θ =

K∑

k=1

Fk,θ(h
(i)
k ) , (2.28)

where Fk,θ are learnable output functions. Eq. (2.28) corresponds to the general case in
which all intermediate hidden node states are used [67, 161]. Finally, the predicted U (i),NN

θ

are summed analogous to eq. (2.22) to obtain the potential energy prediction of the system
UNN
θ (r).

2.3. Coarse-Graining

So far, the methodological review has focused on AT systems. However, for many bio-
physical systems of interest, relevant time and lengths scales cannot be reached by AT MD
simulations; thus, CG models are required [26]. Hence, this section covers the basics of CG
modeling as well as relevant bottom-up training schemes for CG NN potentials.

At the core of CG modeling is the mapping function M:

R = M(r) . (2.29)
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M maps the coordinates of an AT molecular configuration r onto CG coordinates R ∈ RNCG×3

(NCG < n, fig. 2.5). The remainder of this section assumes that M is a linear function and
that both AT and CG systems are NVT equilibrium ensembles. For generalizations to a
non-linear M(r) and non-equilibrium systems, refer to [168, 169].

Figure 2.5.: Coarse-graining mapping function. Visualization of a coarse-graining mapping
function from an atomistic (r) to a coarse-grained configuration of water (R).
Adapted from [2].

2.3.1. Training Coarse-Grained Potentials

CG models can be trained top-down [170] analogous to AT models (eq. (2.19)). However,
the bottom-up training scheme (eq. (2.18)) needs to be adjusted to train CG models given
that the target CG potential energy is not available. Ideally, the obtained CG model
should be consistent with the data-generating AT model. In this case, the configurational
distribution of the CG model pCG

θ (R) equals the configurational distribution of the AT
model when mapped to CG coordinates pAT(R) [32]. If the CG potential UCG

θ (R) equals
the many-body potential of mean force (PMF)

UPMF(R) = − 1

β
ln pAT(R) + C , (2.30)

where C as an arbitrary additive constant, then pCG
θ (R) = pAT(R) [32, 171]. The most

popular training schemes that approximate the PMF are force matching (FM) [32] and
relative entropy (RE) minimization [171], which are introduced in the next two subsections.

2.3.2. Force Matching

FM [31–33, 172] is closely related to the AT energy-matching scheme in eq. (2.18). Given
that no potential energy targets are available, only target forces FAT ∈ RNCG×3 can be
matched:

LFM (θ) =
1

Nbox

Nbox∑

i=1

∣∣∣∣
∣∣∣∣FAT

i +
dUCG

θ (Ri)

dRi

∣∣∣∣
∣∣∣∣
2

. (2.31)

FAT is computed by summing the instantaneous AT forces of all atoms corresponding to
the same CG particle [32].

Note that in the limit of infinite data, the loss in eq. (2.31) can be decomposed into the
loss of the PMF LFM (θPMF) plus the deviation of UCG

θ (R) from UPMF(R) [32]. Unlike for
LAT (θ) (eq. (2.18)), there exists an unknown lower bound of the loss LFM (θPMF) > 0 as
a result of the information loss due to the non-injective CG mapping M(r). LFM (θPMF)
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2.3. Coarse-Graining

only depends on M(r) and is not a function of θ. Hence, in the limit of infinite data and
model capacity, minimization of LFM (θ) causes UCG

θ (R) to converge to UPMF(R).

2.3.3. Relative Entropy Minimization

The Kullback-Leibler (KL) divergence [173]

DKL(p||q) =
∫

x
p(x) ln

(
p(x)

q(x)

)
dx (2.32)

is a measure of the distance between two distributions p(x) and q(x). Due to Gibbs’
inequality, DKL(p||q) ≥ 0. Hence, DKL(p||q) = 0 is the global minimum of the KL
divergence, which is obtained if and only if p(x) = q(x). In the context of CG modeling,
the KL divergence is referred to as relative entropy and inserting pAT(R) and pCG

θ (R) for
p(x) and q(x) leads to

Srel(θ) =

∫

R
pAT(R) ln

(
pAT(R)

pCG
θ (R)

)

︸ ︷︷ ︸
Φθ(R)

dR . (2.33)

Hence, assuming infinite data and model capacity, minimizing Srel(θ) [171, 174–176] yields
a CG model that is consistent with the underlying AT model.

Inserting the configurational probabilities corresponding to the NVT ensemble into eq.
(2.33) yields [171, 177]

LRE(θ) = Srel(θ) = β⟨UCG
θ (M(r))− UAT(r)⟩AT − β(ACG

θ −AAT) + Smap , (2.34)

where ⟨...⟩AT denotes an ensemble average with respect to the AT ensemble. Smap is
independent of θ and only depends on M(r) [177]. Due to the difficulty of computing
the difference in Helmholtz free energies ACG

θ −AAT, evaluating Srel(UCG
θ ) is non-trivial.

However, gradient descent optimization only requires the gradient ∇θSrel(θ), which can be
estimated by time averages over AT and CG trajectories [177]:

∇θSrel(θ) =
β

Nbox

Nbox∑

i=1

∇θU
CG
θ (M(ri))−

β

N

N∑

j=1

∇θU
CG
θ (Rj) . (2.35)

The first term in eq. (2.35) is an average over the AT data set. The computationally
expensive part of computing ∇θSrel(θ) is the second term, which averages over a trajectory
generated by the current potential UCG

θ . Hence, after every gradient descent update, the CG
trajectory needs to be re-generated. In order to reduce the computational effort, reweighting
(eq. (2.15)) can be employed to re-use CG trajectories [171, 177, 178].

The relationship between FM and RE minimization has been studied extensively [168,
177, 179, 180]. In particular, RE and FM minimize a different functional of Φθ(R) (eq.
(2.33)), which causes convergence to different loss minima for finite model capacity. As a
result, the converged RE model reproduces all structural correlations of pAT(R) conjugate
to the basis functions of the potential [177], while no similar guarantees exist for FM [179].
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2.4. Probabilistic Molecular Modeling

The goal of the training schemes introduced so far was to approximate the optimal parameter
set θ̄ (eq. (2.17)). However, by considering multiple parameter sets {θi}Nmodels

i=1 , the mean
prediction from different models may be more robust and the distribution of predictions can
be used for UQ. This section first outlines the Bayesian modeling framework in a generic
learning problem with training data set D = {xi,yi}Nobs

i=1 of size Nobs. Then, the likelihood
and the prior distributions will be tailored to the case of molecular energy matching with a
NN potential.

2.4.1. Bayesian Uncertainty Quantification

Bayesian statistics provides the mathematical foundation of UQ. In this framework, a
probabilistic model p(y|x,θ) predicts the distribution of the output y as a result of aleatoric
uncertainty, i.e. stochastic noise inherent to the modeled process that is irreducible. For
example, if the aleatoric uncertainty is independent, homoscedastic and Gaussian with
variance σ2, then p(y|x,θ) ∼ N (µθ, σ

2I), where the mean µθ is predicted by the (ML)
model. Additionally, Bayesian modeling quantifies the epistemic uncertainty [70, 181], i.e.
uncertainty due to a finite data set, which can be reduced by gathering more data. To
this end, Bayesian UQ marginalizes over θ [182], weighting the prediction of each model
p(y|x,θi) by its posterior probability p(θi|D). Thus, Bayesian inference aims to estimate
the posterior predictive distribution

p(y|x,D) =

∫
p(y|x,θ)p(θ|D)dθ , (2.36)

which needs to be approximated by the Monte Carlo method due to the high dimensionality
of θ:

p(y|x,D) ≈ 1

Nmodels

Nmodels∑

i=1

p(y|x,θi) ; θi ∼ p(θ|D) . (2.37)

The Monte Carlo method requires sampling from p(θ|D), which is given by Bayes’ theorem

p(θ|D) =
p(D|θ)p(θ)

p(D)
∝ exp (−U(θ)) , (2.38)

where p(D|θ) is referred to as likelihood and p(θ) is referred to as prior. In the second
expression, p(θ|D) is re-written as a Boltzmann-type distribution [105] (eq. (2.9)), with
posterior potential energy

U(θ) = −
N∑

i=1

log p(yi|xi,θ)− log p(θ) . (2.39)

Due to the assumption of independently distributed data points, the likelihood p(D|θ) is
the product of the probability of each observation of the data set given θ. In analogy
to statistical mechanics, the Boltzmann-type form of the posterior enables sampling via
Hamiltonian (also called hybrid [104]) Monte Carlo (HMC) [105] techniques. HMC leverages
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2.5. Adaptive Resolution Simulation

the gradient ∇θU(θ) to perform short Hamiltonian simulations in parameter space to
generate a decorrelated proposal with high MH [103] acceptance probability, which is
necessary in order to scale to high-dimensional θ [105].

2.4.2. Bayesian Molecular Modeling

In the case of an AT energy matching task, the probabilistic model is p(U |r,θ) ∼
N (Uθ(r), σ

2
H), under the assumption of independent Gaussian homoscedastic aleatoric

uncertainty with variance σ2H. In this case, the likelihood evaluates to [90]

p(D|θ) =
Nbox∏

i=1

1√
2πσ2H

exp

(
− [Ui − Uθ(ri)]

2

2σ2H

)

=


 1√

2πσ2H




Nbox

exp

(
−
∑Nbox

i=1 [Ui − Uθ(ri)]
2

2σ2H

)
.

(2.40)

The aleatoric uncertainty is usually small for energy matching given that it corresponds to
uncertainty of the energy labels as predicted by the data-generating model. However, the
scale σH is unknown a priori and is typically modeled as a learnable parameter. Consequently,
the prior p(θ) = p(w)p(σH) is composed of a prior for the potential energy model, e.g. NN
potential weights and biases w, and a prior for σH.

In molecular modeling, the data set is usually large and NN potentials are comparatively
expensive to evaluate. Given that the computation of ∇θU(θ) for a single step of the
Hamiltonian simulation of HMC requires the evaluation of the NN potential over the
whole data set, this renders HMC computationally intractable for learning NN potentials
[90]. Hence, more scalable UQ schemes are required in this case: Stochastic gradient
MCMC (SG-MCMC) [183–187] and Stochastic Variational Inference [188, 189] operate on
mini-batches of data, analogous to stochastic gradient descent, enabling scalable Bayesian
UQ. However, also the non-Bayesian [70, 89, 181, 190] Deep Ensemble [88, 89] method is
applicable to NN potentials [90, 191]

2.5. Adaptive Resolution Simulation

In the case where both an AT and a CG model are available for a system of interest,
concurrent multiscale modeling provides an attractive method to combine the accuracy
and high resolution of the AT model with the computational efficiency of the CG model
[192]. This approach can be interpreted as a computational magnifying glass [193], where a
local region of interest, e.g. near a binding site [194] or near an interaction with a lipid
membrane [195], is fully resolved while only large scale behaviour of the rest of the system
is modeled. Hence, concurrent multiscale modeling can be useful to identify the necessary
components of a system essential to the physical process under investigation [193].

Concurrent multiscale simulations can be distinguished into constant [196–199] and
adaptive [200–202] resolution methods. This section focuses on the latter, as they have the
advantage of allowing free diffusion of particles and, accordingly, online change of resolution.
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In particular, the Adaptive Resolution Scheme [200, 203–206] (AdResS) will be discussed,
which divides the simulation domain into AT and CG regions with a hybrid (∆) region in
between (fig. 2.6).

Figure 2.6.: Adaptive Resolution Scheme. Visualization of the hybrid region (∆) between
the atomistic (AT) and coarse-grained (CG) regions in the Adaptive Resolution
Scheme.

In an AdResS simulation, the following relation describes the force Fi acting on molecule i
[200]:

Fi =
∑

j∈N(i)

λ(Ri)λ(Rj)F
AT
ij +

∑

j∈N(i)

[1− λ(Ri)λ(Ri)]F
CG
ij + FTD(Ri)

with λ(R) =





1 if R ∈ AT

0 if R ∈ CG

0 < λ(R) < 1 if R ∈ ∆

.

(2.41)

The interaction between a pair of molecules is defined by the weight λ(R). If both molecules
are within the CG (AT) region, they interact exclusively via the CG force field FCG

ij (AT
force field FAT

ij ). In all other cases, λ(R) smoothly interpolates between the AT and CG
forces. Additionally, the external thermodynamic force FTD(R) compensates the difference
in chemical potential between the AT and CG force fields. It is obtained in an a-priori
iterative optimization to achieve a constant density profile across the resolution interface.

The ∆ region enables a smooth transition from one resolution to another. However, this
comes at the cost of incorrect predictions within the ∆ region [193] as well as increased
computational effort as both AT and CG models need to be evaluated [207, 208].
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This chapter introduces the peer-reviewed research papers this cumulative dissertation
builds upon.

3.1. Training Neural Network Potentials

First, research articles are presented that improve training of NN potentials. The common
denominator of these articles is the incorporation of MD simulations into the training
pipeline, which allows to match experimental data (sec. 3.1.1) and improve the reliability
and accuracy of obtained NN potentials (sec. 3.1.2).

3.1.1. Learning neural network potentials from experimental data via
Differentiable Trajectory Reweighting

Thaler, S. & Zavadlav, J. Learning neural network potentials from experimental data via
Differentiable Trajectory Reweighting. Nat. Commun. 12, 6884 (2021), DOI: 10.1038/s41467-
021-27241-4.

Summary

The large model capacity of recently developed NN potential architectures enables molecular
modeling at quantum chemical accuracy. With model capacity becoming an increasingly
less restrictive factor, the performance of NN potentials hinges on the quality of the training
data. Even though, in principle, NN potentials can be optimized via bottom-up or top-down
learning, the vast majority of works relies on bottom-up training. End-to-end differentiation
of MD observables with respect to potential energy parameters by backpropagating through
the dynamics of MD simulations enables top-down training of NN potentials. However,
this direct backpropagation approach results in excessive memory usage and is prone to
exploding gradients.

This article addresses the need for NN potentials trained on experimental data by
introducing the Differentiable Trajectory Reweighting (DiffTRe) method. DiffTRe offers
end-to-end automatic gradient computation and circumvents the need to differentiate
through the MD simulation by re-formulating the learning problem. At the core of DiffTRe
is the reweighting scheme, which establishes a direct functional relation between MD
observables and the NN potential parameters. By differentiating through the reweighting
scheme rather than through the dynamics of the MD simulation, DiffTRe avoids exploding
gradients and reduces the computational effort of gradient computations by around two
orders of magnitude. Due to the comparatively large computational cost of generating
MD trajectories during training, DiffTRe has to converge within a few hundred parameter
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updates compared to typically millions of updates in bottom-up learning. In order to
speed-up convergence, we augment the NN potential by a prior potential, which encodes
a-priori known physical principles – lowering the burden to learn these relations from
scratch. This is a different purpose compared to energy and/or force matching, where the
prior potential should enforce reasonable predictions outside the training data distribution.

We empirically verify the theoretically expected computational speed-up, memory savings
and superior gradient stability compared to backpropagation through the simulation based
on a toy example of ideal gas particles in a double-well potential. We showcase the
broad applicability of DiffTRe by training a DimeNet++ graph NN potential for two
real-world systems of water and diamond. The learned models yield MD simulation results
in unprecedented agreement with a diverse set of target experimental observables, including
thermodynamic, structural and mechanical properties.

Main advantages of DiffTRe include its general applicability and simplicity: DiffTRe
enables training CG and AT models of arbitrary functional form. Additionally, practitioners
are only required to provide a MD simulation and target observables, while DiffTRe com-
putes gradients conveniently in an end-to-end fashion. Furthermore, DiffTRe generalizes
structural CG methods such as iterative Boltzmann inversion to higher body-order correla-
tions, extending their applicability to many-body potentials. Finally, the demonstrated
computational efficiency of DiffTRe promotes its application to larger systems in the future.
DiffTRe provides a means to systematically enhance NN potentials with experimental data,
which is particularly relevant for larger systems where CQM data are unavailable.
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ARTICLE

Learning neural network potentials from
experimental data via Differentiable Trajectory
Reweighting
Stephan Thaler 1✉ & Julija Zavadlav 1,2✉

In molecular dynamics (MD), neural network (NN) potentials trained bottom-up on quantum

mechanical data have seen tremendous success recently. Top-down approaches that learn

NN potentials directly from experimental data have received less attention, typically facing

numerical and computational challenges when backpropagating through MD simulations. We

present the Differentiable Trajectory Reweighting (DiffTRe) method, which bypasses differ-

entiation through the MD simulation for time-independent observables. Leveraging ther-

modynamic perturbation theory, we avoid exploding gradients and achieve around 2 orders of

magnitude speed-up in gradient computation for top-down learning. We show effectiveness

of DiffTRe in learning NN potentials for an atomistic model of diamond and a coarse-grained

model of water based on diverse experimental observables including thermodynamic,

structural and mechanical properties. Importantly, DiffTRe also generalizes bottom-up

structural coarse-graining methods such as iterative Boltzmann inversion to arbitrary

potentials. The presented method constitutes an important milestone towards enriching NN

potentials with experimental data, particularly when accurate bottom-up data is unavailable.

https://doi.org/10.1038/s41467-021-27241-4 OPEN

1 Professorship of Multiscale Modeling of Fluid Materials, TUM School of Engineering and Design, Technical University of Munich, Munich, Germany.
2Munich Data Science Institute, Technical University of Munich, Munich, Germany. ✉email: stephan.thaler@tum.de; julija.zavadlav@tum.de

NATURE COMMUNICATIONS |         (2021) 12:6884 | https://doi.org/10.1038/s41467-021-27241-4 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

3.1. Training Neural Network Potentials

27



Molecular modeling has become a cornerstone of many
disciplines, including computational chemistry, soft
matter physics, and material science. However, simu-

lation quality critically depends on the employed potential energy
model that defines particle interactions. There are two distinct
approaches for model parametrization1,2: Bottom-up approaches
aim at matching data from high-fidelity simulations, providing
labeled data of atomistic configurations with corresponding target
outputs. Labeled data allow straightforward differentiation for
gradient-based optimization, at the expense of inherently limiting
model accuracy to the quality imposed by the underlying data-
generating simulation. On the other hand, top-down approaches
optimize the potential energy model such that simulations match
experimental data. From experiments, however, labeled data on
the atomistic scale are not available. Experimental observables are
linked only indirectly to the potential model via an expensive
molecular mechanics simulation, complicating optimization.

A class of potentials with tremendous success in recent years
are neural network (NN) potentials due to their flexibility and
capacity of learning many-body interactions3,4. The vast majority
of NN potentials are trained via bottom-up methods5–16. The
objective is to match energies and/or forces from a data set, most
commonly generated via density functional theory (DFT) for
small molecules in vacuum17. Within the data set distribution,
state-of-the-art NN potentials have already reached the accuracy
limit imposed by DFT, with the test error in predicting potential
energy being around two orders of magnitude smaller than the
corresponding expected DFT accuracy11,18. In the limit of a
sufficiently large data set without a distribution shift19,20 with
respect to the application domain (potentially generated via active
learning approaches21), remaining deviations of predicted
observables from experiments are attributable to uncertainty in
DFT simulations11—in line with literature reporting DFT being
sensitive to employed functionals22. More precise computational
quantum mechanics models, e.g., the coupled cluster CCSD(T)
method, improve DFT accuracy at the expense of significantly
increased computational effort for data set generation23,24.
However, for larger systems such as macromolecules, quantum
mechanics computations will remain intractable in the foresee-
able future, preventing ab initio dataset generation altogether.
Thus, the main obstacle in bottom-up learning of NN potentials
is the currently limited availability of highly precise and suffi-
ciently broad data sets.

Top-down approaches circumvent the need for reliable data-
generating simulations. Leveraging experimental data in the
potential optimization process has contributed greatly to
the success of classical atomistic25,26 and coarse-grained27 (CG)
force fields1. Training difficulties have so far impeded a similar
approach for NN potentials: Only recent advances in automatic
differentiation (AD)28 software have enabled end-to-end differ-
entiation of molecular dynamics (MD) observables with respect
to potential energy parameters29,30, by applying AD through the
dynamics of a MD simulation29–32. This direct reverse-mode AD
approach saves all simulator operations on the forward pass to be
used during gradient computation on the backward pass, result-
ing in excessive memory usage. Thus, direct reverse-mode AD for
systems with more than hundred particles and a few hundred
time steps is typically intractable29–32. Numerical integration of
the adjoint equations33,34 represents a memory-efficient alter-
native that requires to save only those atomic configurations that
directly contribute to the loss. However, both approaches back-
propagate the gradient through the entire simulation, which
dominates computational effort and is prone to exploding gra-
dients, as stated by Ingraham et al.31 and shown below.

Addressing the call for NN potentials trained on experimental
data1, we propose the Differentiable Trajectory Reweighting

(DiffTRe) method. DiffTRe offers end-to-end gradient compu-
tation and circumvents the need to differentiate through the
simulation by combining AD with previous work on MD
reweighting schemes35–38. For the common use case of time-
independent observables, DiffTRe avoids exploding gradients and
reduces the computational effort of gradient computations by
around two orders of magnitude compared to backpropagation
through the simulation. Memory requirements are comparable to
the adjoint method. We showcase the broad applicability of
DiffTRe on three numerical test cases: First, we provide insight
into the training process on a toy example of ideal gas particles
inside a double-well potential. Second, we train the state-of-the-
art graph neural network potential DimeNet++11,12 for an ato-
mistic model of the diamond from its experimental stiffness
tensor. Finally, we learn a DimeNet++model for CG water based
on pressure, as well as radial and angular distribution functions.
The last example shows how DiffTRe also generalizes bottom-up
structural coarse-graining methods such as the iterative Boltz-
mann inversion39 or inverse Monte Carlo40 to many-body cor-
relation functions and arbitrary potentials. DiffTRe allows to
enhance NN potentials with experimental data, which is parti-
cularly relevant for systems where bottom-up data are unavailable
or not sufficiently accurate.

Results
Differentiable Trajectory Reweighting. Top-down potential
optimization aims to match the K outputs of a molecular
mechanics simulation O to experimental observables ~O. There-
fore, the objective is to minimize a loss function L(θ), e.g., a
mean-squared error (MSE)

LðθÞ ¼ 1
K

∑
K

k¼1
hOkðUθÞi � ~Ok

� �2
; ð1Þ

where 〈〉 denotes the ensemble average, and 〈Ok(Uθ)〉 depends on
the potential energy Uθ parametrized by θ. We will focus on the
case where a MD simulation approximates 〈Ok(Uθ)〉—with
Monte Carlo41 being a usable alternative. With standard
assumptions on ergodicity and thermodynamic equilibrium, the
ensemble average 〈Ok(Uθ)〉 is approximated via a time average

hOkðUθÞi ’
1
N

∑
N

i¼1
OkðSi;UθÞ ; ð2Þ

where fSigNi¼1 is the trajectory of the system, i.e., a sequence of N
states consisting of particle positions and momenta. Due to the
small time step size necessary to maintain numerical stability in
MD simulations, states are highly correlated. Subsampling, i.e.,
only averaging over every 100th or 1000th state, reduces this
correlation in Eq. (2).

As the generated trajectory depends on θ, every update of θ
during training would require a re-computation of the entire
trajectory. However, by leveraging thermodynamic perturbation
theory42, it is possible to re-use decorrelated states obtained via a
reference potential θ̂. Specifically, the time average is reweighted
to account for the altered state probabilities pθ(Si) from the
perturbed potential θ35,36,42:

hOkðUθÞi ’ ∑
N

i¼1
wiOkðSi;UθÞ with wi ¼

pθðSiÞ=pθ̂ðSiÞ
∑N

j¼1 pθðSjÞ=pθ̂ðSjÞ
:

ð3Þ
Assuming a canonical ensemble, state probabilities follow the
Boltzmann distribution pθðSiÞ � e�βHðSiÞ, where H(Si) is the
Hamiltonian of the state (sum of potential and kinetic energy),
β= 1/(kBT), kB Boltzmann constant, T temperature. Inserting
pθ(Si) into Eq. (3) allows computing weights as a function of θ
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(the kinetic energy cancels)

wi ¼
e�βðUθðSiÞ�U θ̂ðSiÞÞ

∑N
i¼j e

�βðUθðSjÞ�U θ̂ðSjÞÞ
: ð4Þ

For the special case of θ ¼ θ̂, wi= 1/N, recovering Eq. (2). Note
that similar expressions to Eq. (4) could be derived for other
ensembles, e.g., the isothermal–isobaric ensemble, via respective
state probabilities pθ(Si). In practice, the reweighting ansatz is
only applicable given small potential energy differences. For large
differences between θ and θ̂, by contrast, few states dominate the
average. In this case, the effective sample size37

Neff � e�∑N
i¼1 wiln ðwiÞ ð5Þ

is reduced and the statistical error in 〈Ok(Uθ)〉 increases (Eq. (3)).
Reweighting can be exploited for two purposes that are linked

to speedups in the forward and backward pass, respectively: first,
reweighting reduces computational effort as decorrelated states
from previous trajectories can often be re-used37. Second, and
most importantly, reweighting establishes a direct functional
relation between 〈Ok(Uθ)〉 and θ. This relation via w provides an
alternative end-to-end differentiable path for computing the
gradient of the loss ∇θL: differentiating through the reweighting
scheme replaces the backward pass through the simulation.
Leveraging this alternative differentiation path, while managing
the effective sample size Neff, are the central ideas behind the
DiffTRe method.

The workflow of the DiffTRe algorithm consists of the
following steps: first, an initial reference trajectory is generated
from the canonical ensemble, e.g., via a stochastic or deterministic
thermostat, from an initial state Sinit and reference potential θ̂
(Fig. 1a). Initial equilibration states are disregarded and the
following states are subsampled yielding decorrelated states
fSigNi¼1. Together with their reference potential energies
fU θ̂ðSiÞgNi¼1, these states are saved for re-use during reweighting.
In the next step, the reweighting scheme is employed to compute
∇θL with respect to current parameters θ, where initially θ ¼ θ̂.
An optimizer subsequently uses ∇θL to improve θ. This
procedure of reweighting, gradient computation and updating is

repeated as long as the statistical error from reweighting is
acceptably small, i.e., Neff is larger than a predefined �Neff . As soon
as Neff < �Neff , a new reference trajectory needs to be sampled
using the current θ as the new θ̂. At least one θ update per
reference trajectory is ensured because initially Neff=N. Using
the last generated state SN as Sinit for the next trajectory
counteracts overfitting to a specific initial configuration. In
addition, pθ̂ðSinitÞ is reasonably high when assuming small update
steps, reducing necessary equilibration time for trajectory
generation. Saving only fSigNi¼1 and fU θ̂ðSiÞgNi¼1 from the
simulation entails low-memory requirements similar to the
adjoint method. DiffTRe assumes that deviations in predicted
observables are attributable to an inaccurate potential Uθ rather
than a statistical sampling error. Accordingly, N and the
subsampling ratio n need to be chosen to yield a sufficiently
small statistical error. Optimal values for N and n depend on the
specific system, target observables, and the thermodynamic-state
point.

Computation of ∇θL via reverse-mode AD through the
reweighting scheme comprises a forward pass starting with
computation of the potential Uθ(Si) and weight wi for each Si (Eq.
(4); Fig. 1a). Afterward, reweighted observables 〈Ok(Uθ)〉 (Eq. (3))
and the resulting loss L(θ) (Eq. (1)) are calculated. The
corresponding backward pass starts at L(θ) and stops at
parameters θ in the potential energy computation Uθ(Si). The
differentiation path defined by the reweighting ansatz is therefore
independent of the trajectory generation.

Evaluation of Uθ(Si) (Fig. 1b) involves computing the pairwise
distance matrix D from atom positions of Si, that are fed into a
learnable potential Umodel

θ and a prior potential Uprior. Both
potential components are combined by adding the predicted
potential energies

UθðSiÞ ¼ Umodel
θ ðDÞ þ UpriorðDÞ: ð6Þ

In subsequent examples of diamond and CG water, Umodel
θ is a

graph neural network operating iteratively on the atomic graph
defined by D. Uprior is a constant potential approximating a
priori-known properties of the system, such as the Pauli exclusion
principle (e.g., Eq. (12)). Augmenting NN potentials with a prior

Fig. 1 Differentiable Trajectory Reweighting (DiffTRe). a Based on an initial state Sinit and reference potential parameters θ̂, a reference trajectory is
generated, of which only subsampled states are retained (blue diamonds), while the majority of visited states are discarded (gray diamonds). For each
retained state Si (represented by a generic molecular system), the potential energy Uθ(Si) and weight wi are computed under the current potential
parameters θ. wi allow computation of reweighted observables 〈Ok(Uθ)〉, the loss L(θ), its gradient ∇θL and subsequently, updating θ via the optimizer. The
updating procedure is repeated until the effective sample size Neff < �Neff, at which point a new reference trajectory needs to be generated starting from the
last sampled state SN. b Computation of Uθ(Si) from the pairwise distance matrix D, which is fed into the learnable potential Umodel

θ (e.g., a graph neural
network—GNN) and Uprior (e.g., a pairwise repulsive potential).
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is common in the bottom-up coarse-graining literature8,10 to
provide qualitatively correct behavior in regions of the potential
energy surface (PES) not contained in the dataset, but reachable
by the CG model. By contrast, DiffTRe does not rely on pre-
computed data sets. Rather, the prior serves to control the data
(trajectory) generation in the beginning of the optimization. In
addition, Uprior reformulates the problem from learning Umodel

θ
directly to learning the difference between Uprior and the optimal
potential given the data10. A well-chosen Uprior therefore
represents a physics-informed initialization accelerating training
convergence. Suitable Uprior can often be found in the literature:
Classical force fields such as AMBER25 and MARTINI27 define
reasonable interactions for bio-molecules and variants of the
Embedded Atom Model43 (EAM) provide potentials for metals
and alloys. Note that Uprior is not a prior in the Bayesian sense
providing a pervasive bias on learnable parameters in the small
data regime. If Uprior is in contradiction with the data, Umodel

θ will
correct for Uprior as a result of the optimization. In the next
section, we further illustrate for a toy problem the interplay
between prior, gradients and the learning process in DiffTRe, and
provide a comparison to direct reverse-mode AD through the
simulation.

Double-well toy example. We consider ideal gas particles at a
temperature kBT= 1 trapped inside a one-dimensional double-
well potential (Fig. 2a) parametrized by

UðxÞ ¼ kBT � 2500ðx � 0:5Þ6 � 10ðx � 0:55Þ2� �
: ð7Þ

The goal is to learn θ such that UθðxÞ ¼ Umodel
θ ðxÞ þ UpriorðxÞ

matches U(x). We select a cubic spline as Umodel
θ , which acts as a

flexible approximator for twice continuously differentiable func-
tions. The cubic spline is parametrized via the potential energy

values of 50 control points fxj;Ujg50j¼1
evenly distributed over

x∈ [0, 1]. Analogous to NN potentials in subsequent problems,
we randomly initialize Uj � N ð0; 0:012kBTÞ. Initializing Uj= 0
leads to largely identical results in this toy problem. The har-
monic single-well potential Uprior(x)= λ(x − 0.5)2, with scale
λ= 75, encodes the prior knowledge that particles cannot escape
the double-well. We choose the normalized density profile ρ(x)/ρ0
of ideal gas particles as the target observable. The resulting loss
function is

L ¼ 1
K

∑
K

k¼1

hρðxkÞi
ρ0

� ~ρðxkÞ
ρ0

� �2

; ð8Þ

where ρ(x) is discretized via K bins. 〈ρ(xk)〉 are approximated
based on N= 10,000 states after skipping 1000 states for equili-
bration, where a state is retained every 100 time steps. We
minimize Eq. (8) via an Adam44 optimizer with learning rate
decay. For additional DiffTRe and simulation parameters, see
Supplementary Method 1.1.

Initially, ρ/ρ0 resulting from Uprior(x) deviates strongly from
the target double-well density (Fig. 2b). The loss curve illustrates
successful optimization over 200 update steps (Fig. 2c). The wall-
clock time per parameter update Δt clearly shows two distinct
levels: at the start of the optimization, update steps are rather
large, significantly reducing Neff. Hence a new reference trajectory
generation is triggered with each update (average Δt ≈ 39.2 s).
Over the course of the simulation, updates of Umodel

θ ðxÞ become
smaller and reference trajectories are occasionally re-used
(average Δt ≈ 2.76 s). After optimization, the target density is
matched well. The learned potential energy function Uθ(x)
recovers the data-generating potential U(x) (Supplementary
Fig. 1a); thus, other thermodynamic and kinetic observables will
match reference values closely. However, this conclusion does not

Fig. 2 Double-well toy example. a Sketch of the double-well and prior potential with corresponding example states of ideal gas particles (green circles).
The learned potential results in a normalized density ρ/ρ0 (over the normalized position x/X) that matches the target closely (b). Successful learning is
reflected in the loss curve L, where a significant reduction in wall-clock time per parameter update Δt towards the end of the optimization is achieved
through re-using previously generated trajectories (c). Gradients computed via DiffTRe have constant magnitudes while gradients obtained from direct
reverse-mode automatic differentiation through the simulation suffer from exploding gradients for longer trajectories (d).
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apply in realistic applications, where learned potentials are in
general not unique2 due to the limited number of target
observables that can be considered in practice.

The effect of Uprior on the training process is twofold: First, by
encoding prior knowledge, it simplifies convergence, as Umodel

θ ðxÞ
only needs to adapt the single-well prior instead of learning large
energy barriers from scratch. Second, Uprior also impacts the
information content of the gradient by controlling the generation
of trajectories in the beginning of the optimization (Eq. (15)). The
local support of the cubic spline allows analyzing this relation
empirically (Supplementary Fig. 2): The gradient is nonzero only
in regions of the PES that are included in the reference trajectory.
Hence, other regions of the PES are not optimized despite
delivering a nonzero contribution to the loss. A well-chosen prior
potential should therefore yield trajectories that are as close as
possible to trajectories sampled from the true potential. However,
satisfactory learning results can be obtained for a sensible range of
prior scales (Supplementary Fig. 3).

We study the robustness of our results by varying the random
seed that controls the initialization of the spline as well as the
initial particle positions and velocities. Results from the variation
study in Supplementary Fig. 4 demonstrate that the predicted
ρ(x)/ρ0 is robust to the random initialization. The corresponding
Uθ(x) exhibits some variance at the left well boundary, mirroring
difficult training in this region due to vanishing gradients for
vanishing predicted densities (Supplementary Fig. 2) and minor
influence of the exact wall position on the resulting density profile
(Supplementary Fig. 4a).

For comparison, we have implemented gradient computation
via direct reverse-mode AD through the simulation. This
approach clearly suffers from the exploding gradients problem
(Fig. 2d): The gradient magnitude increases exponentially as a
function of the simulation length. Without additional modifica-
tions (e.g., as implemented by Ingraham et al.31), these gradients
are impractical for longer trajectories. By contrast, gradients
computed via DiffTRe show constant magnitudes irrespective of
the simulation length.

To measure the speed-up over direct reverse-mode AD
empirically, we simulate the realistic case of an expensive
potential by substituting the numerically inexpensive spline with
a fully connected neural network with two hidden layers and 100
neurons each. We measure speedups of sg= 486 for gradient
computations and s= 3.7 as overall speed-up per update when a
new reference trajectory is sampled. However, these values are
rather sensitive to the exact computational and simulation setup.
Memory overflow in the direct AD method constrained trajectory
lengths to ten retained states and a single state for equilibration (a
total of 1100 time steps). Measuring speed-up for one of the real-
world problems below would be desirable, but is prevented by the
memory requirements of direct AD.

The measured speed-up values are in line with theoretical
considerations: While direct AD backpropagates through the
whole trajectory generation, DiffTRe only differentiates through
the potential energy computation of decorrelated states fSigNi¼1
(Fig. 1). From this algorithmic difference, we expect speed-up
values that depend on the subsampling ratio n, the number of
skipped states during equilibration Nequilib and the cost multiple
of backward passes with respect to forward passes G (details in
Supplementary Method 2)

sg � Gn 1þ Nequilib=N
� �

; s � Gþ 1 : ð9Þ

For this toy example setup, the rule-of-thumb estimates in Eq. (9)
yield sg= 330 and s= 4, agreeing with the measured values. In the
next sections, we showcase the effectiveness of DiffTRe in real-
world, top-down learning of NN potentials.

Atomistic model of diamond. To demonstrate the applicability of
DiffTRe to solids on the atomistic scale, we learn a DimeNet++12

potential for diamond from its experimental elastic stiffness tensor
C. Due to symmetries in the diamond cubic crystal, C only consists
of three distinct stiffness moduli ~C11 ¼ 1079 GPa, ~C12 ¼ 124 GPa
and ~C44 ¼ 578 GPa45 (in Voigt notation). In addition, we assume
the crystal to be in a stress-free state σ= 0 for vanishing infinite-
simal strain ϵ= 0. These experimental data define the loss

L ¼ γσ
9

∑
i¼3;j¼3

i¼1;j¼1
σ2ij þ

γC
3

ðC11 � ~C11Þ
2 þ ðC12 � ~C12Þ

2 þ ðC44 � ~C44Þ
2

� �
;

ð10Þ
where loss weights γσ and γC counteract the effect of different
orders of magnitude of observables. To demonstrate learning, we
select the original Stillinger–Weber potential46 parametrized for
silicon as Uprior. We have adjusted the length and energy scales to
σSW= 0.14 nm and ϵSW= 200 kJ/mol, reflecting the smaller size of
carbon atoms. We found learning to be somewhat sensitive to
Uprior in this example because weak prior choices can lead to
unstable MD simulations. Simulations are run with a cubic box of
size L ≈ 1.784 nm containing 1000 carbon atoms (Fig. 3a) to match
the experimental density (ρ= 3512 kg/m3)45 exactly. The tem-
perature in the experiment (T= 298.15 K45) determines the
simulation temperature. Each trajectory generation starts with
10 ps of equilibration followed by 60 ps of production, where a
decorrelated state is saved every 25 fs. We found these trajectories
to yield observables with acceptably small statistical noise. The
stress tensor σ is computed via Eq. (13) and the stiffness tensor C
via the stress fluctuation method (Eq. (14)). Further details are
summarized in Supplementary Method 4.

Figure 3 visualizes convergence of the stress (b) and stiffness
components (c). Given that the model is only trained on rather
short trajectories, we test the trained model on a trajectory of
10 ns length to ensure that the model neither overfitted to initial
conditions nor drifts away from the targets. The resulting stress
and stiffness values σ1= 0.29 GPa, σ4= 0.005 GPa, C11= 1070
GPa, C12= 114 GPa, and C44= 560 GPa are in good agreement
with respective targets. These results could be improved by
increasing the trajectory length, which reduces statistical
sampling errors. The corresponding inverse stress–strain relation
is given by the compliance tensor S=C−1, which can be
constructed from by Young’s modulus E= 1047 GPa, shear
modulus G= 560 GPa, and Poisson’s ratio ν= 0.097. The
training loss curve and wall-clock time per update Δt are
displayed in Supplementary Fig. 5a.

Computing the stress–strain curve (Supplementary Fig. 5b)
from the trained model in the linear regime (ϵi < 0.005) verifies
that computing C via Eq. (14) yields the same result as explicitly
straining the box and measuring stresses. In addition, this
demonstrates that the DimeNet++ potential generalizes from the
training box (ϵ= 0) to boxes under small strain. We also strained
the box beyond the linear regime, creating a distribution
shift19,20, to test generalization to unobserved state points.
The predicted stress–strain curve in Fig. 3d shows good
agreement with DFT data47 for medium-sized natural strains
e1 ¼ log ð1þ ϵ1Þ< 0:02. For large strains, the deviation quickly
increases, including an early fracture. These incorrect predictions
of the learned potential are due to limited extrapolation capacities
of NN potentials: states under large strain are never encountered
during training, leading to large uncertainty in predicted forces.
Incorporating additional observables linked to states of large
strain into the optimization, such as the point of maximum stress,
should improve predictions.

To test the trained DimeNet++ potential on held-out
observables, we compute the phonon density of states (PDOS).
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The predicted PDOS deviates from the experiment48, analogous
to a Stillinger–Weber potential optimized for diamond49

(Supplementary Fig. 5c). The evolution of the predicted PDOS
over the course of the optimization is shown in Supplementary
Fig. 5d. Deviations of held-out observables are expected given that
top-down approaches allow learning potentials that are consistent
with target experimental observables but lack theoretical
convergence guarantees of bottom-up schemes (in the limit of a
sufficiently large data set and a sufficiently expressive model)2. In
principle, we expect sufficiently expressive top-down models to
converge to the true potential in the limit of an infinite number of
matched target observables. In practice, however, many different
potentials can reproduce a sparse set of considered target
observables, rendering the learned potential non-unique2. In this
particular example, we show that many different potentials can
reproduce the target stress and stiffness, but predict different
PDOSs: While predicted stress and stiffness values are robust to
random initialization of NN weights and initial particle velocities
within the statistical sampling error, the corresponding predicted
PDOSs vary to a great extent (Supplementary Fig. 6). Incorporat-
ing additional observables more closely connected to
phonon properties into the loss function could improve the
predicted PDOS.

Coarse-grained water model. Finally, we learn a DimeNet++
potential for CG water. Water is a common benchmark problem
due to its relevance in bio-physics simulations and its pro-
nounced 3-body interactions, which are challenging for classical
potentials50. We select a CG-mapping, where each CG particle is
centered at the oxygen atom of the corresponding atomistic
water molecule (Fig. 4a). This allows using experimental
oxygen–oxygen radial (RDF) and angular distribution functions
(ADF) as target observables. Given that the reference

experiment51 was carried out at ambient conditions
(T= 296.15 K), we can additionally target a pressure ~p ¼ 1 bar.
Hence, we minimize

L ¼ 1
G

∑
G

g¼1
ðRDFðdg Þ � ~RDFðdg ÞÞ

2 þ 1
M

∑
M

m¼1
ðADFðαmÞ � ~ADFðαmÞÞ

2 þ γpðp� ~pÞ2:

ð11Þ
As the prior potential, we select the repulsive term of the
Lennard–Jones potential

UpriorðdÞ ¼ ϵR
σR
d

� �12
: ð12Þ

Drawing inspiration from atomistic water models, we have cho-
sen the length scale of the SPC52 water model as σR= 0.3165 nm
as well as a reduced energy scale of ϵR= 1 kJ/mol to counteract
the missing Lennard–Jones attraction term in Eq. (12). We build
a cubic box of length 3 nm with 901 CG particles, implying a
density of ρ= 998.28 g/l, to match the experimental water density
of ρ= 997.87 g/l at 1 bar. Trajectory generation consists of 10 ps
of equilibration and 60 ps of subsequent production, where a
decorrelated state is saved every 0.1 ps. For additional details, see
Supplementary Method 2.3.

Figure 4b–d displays properties predicted by the final trained
model during a 10 ns production run: DiffTRe is able to train a
DimeNet++ potential that simultaneously matches experimental
oxygen RDF, ADF, and pressure to the line thickness. The
evolution of predicted RDFs and ADFs as well as the loss and
wall-clock times per update are displayed in Supplementary
Fig. 7a–c. The learning process is robust to weak choices of Uprior:
DiffTRe is able to converge to the same prediction quality as with
the reference prior even if σR is misestimated by ±0.1 nm
(approximately ±30%) compared to the classical SPC water model
(Supplementary Fig. 8a, b). This represents a large variation given

Fig. 3 Atomistic model of the diamond. The simulation box consists of five diamond unit cells in each direction, whose primary crystallographic directions
[1, 0, 0], [0, 1, 0] and [0, 0, 1] are aligned with the x, y, and z axes of the simulation box (a). Stress σi (b) and stiffness values Cij (c) converge to their
respective targets during the optimization. These results are robust to long simulation runs of 10 ns (marked with crosses). The stress–strain curve over
normal natural strains e1 agrees with density functional theory (DFT) data47 for medium-sized strains (e1 <= 0.02), but deviates for large strains due to
limited extrapolation capabilities of neural network potentials (d).
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that within common atomistic water models, σR varies by
<0.5%53.

To test the learned potential on held-out observables, we
compute the tetrahedral order parameter q54 and the self-
diffusion coefficient D. q ≈ 0.569 matches the experimental value
of ~q ¼ 0:576 closely. This is expected as q considers the structure
of four nearest neighbor particles, which is closely related to the
ADF. The learned CG water model predicts a larger self-diffusion
coefficient than were experimentally measured (D= 10.91 μm2/
ms vs. ~D ¼ 2:2 μm2=ms)55. With the same simulation setup, a
single-site tabulated potential parametrized via iterative Boltz-
mann inversion39 with pressure correction39,56 predicts
D= 14.15 μm2/ms. These results are in line with the literature:
Due to smoother PESs, CG models exhibit accelerated dynamical
processes compared to atomistic models2. For CG water models
specifically, diffusion coefficients decrease with increasing
number of interaction sites57. In this context, the decreasing
diffusion coefficients over the course of the optimization
(Supplementary Fig. 7d) could indicate that Uθ acts effectively
as a single-site model in the beginning, while learning 3-body
interactions during the optimization casts Uθ more similar to
multisite CG models. Obtained results are robust to random
initialization of NN weights and initial particle velocities, both for
predicted target (Supplementary Fig. 8c, d) and held-out
observables (D= 10.93 ± 0.20 μm2/ms).

The accuracy of predicted 2 and 3-body interactions (Fig. 4c,
d) showcases the potency of graph neural network potentials in
top-down molecular modeling: capturing 3-body interactions is
essential for modeling water given that pair potentials trained via
force matching fail to reproduce both RDF and ADF of the
underlying high-fidelity model50. Other top-down CG water
models with simple functional form tend to deviate from the

experimental RDF58,59. Deviations from experimental structural
properties, albeit smaller in size, also arise in DFT
simulations22,60, limiting the accuracy of bottom-up trained
NN potentials8.

Discussion
In this work, we demonstrate numerically efficient learning of NN
potentials from experimental data. The main advantages of our
proposed DiffTRe method are its flexibility and simplicity: Diff-
TRe is applicable to solid and fluid materials, coarse-grained and
atomistic models, thermodynamic, structural and mechanical
properties, as well as potentials of arbitrary functional form. To
apply DiffTRe, practitioners only need to set up a MD simulation
with corresponding observables and a loss function, while gra-
dients are computed conveniently in an end-to-end fashion via
AD. The demonstrated speedups and limited memory require-
ments promote application to larger systems.

Without further adaptations, DiffTRe can also be applied as a
bottom-up model parametrization scheme. In this case, a high-
fidelity simulation, rather than an experiment, provides target
observables. For CG models, DiffTRe generalizes structural
coarse-graining schemes such as iterative Boltzmann inversion39

or Inverse Monte Carlo40. DiffTRe overcomes the main limita-
tions of these approaches: First, structural coarse-graining is no
longer restricted to one-dimensional potentials, and matching
many-body correlation functions (e.g., ADFs) is therefore feasible.
Second, the user can integrate additional observables into the
optimization without relying on hand-crafted iterative update
rules, for instance for pressure-matching39,56. This is particularly
useful if an observable needs to be matched precisely (e.g., pres-
sure in certain multiscale simulations61). Matching many-body

Fig. 4 Coarse-grained model of water. Coarse-grained particles representing water molecules are visualized as blue balls in the simulation box (a). The
pressure p converges quickly toward its target of 1 bar during optimization and the subsequent 10 ns simulation (black cross; p≈ 12.9 bar) verifies the result
(b). Over a 10 ns simulation, the learned potential reconstructs the experimental radial distribution function (RDF) and angular distribution function (ADF)
well (c, d).
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correlation functions will likely allow structural bottom-up
coarse-graining to take on significance within the new para-
digm of many-body CG potentials8–10.

For the practical application of DiffTRe, a few limitations need
to be considered. The reweighting scheme renders DiffTRe
invariant to the sequence of states in the trajectory. Hence,
dynamical properties cannot be employed as target observables.
In addition, the NN potential test cases considered in this work
required a reasonably chosen prior potential. Lastly, two distinct
sources of overfitting when learning from experimental data for a
single system need to be accounted for1: To avoid overfitting to a
specific initial state, DiffTRe uses a different initial state for each
reference trajectory. Moreover, increasing the system size and
trajectory length ensures representative reference trajectories.
Irrespective of overfitting, generalization to different systems,
observables, and thermodynamic-state points remains to be
addressed, for instance via training on multi-systemic experi-
mental data sets. To this end, an in-depth assessment of out-of-
sample properties of top-down learned NN potentials is required.

From a machine learning (ML) perspective, DiffTRe belongs to
the class of end-to-end differentiable physics approaches62–64.
These approaches are similar to reinforcement learning in that
the target outcome of a process (here a MD simulation) repre-
sents the data. A key difference is the availability of gradients
through the process, allowing for efficient training. Differentiable
physics approaches, increasingly popular in control
applications34,65–67, enable direct training of the ML model via
the physics simulator, advancing the ongoing synthesis of ML and
physics-based methods.

Finally, the combination of bottom-up and top-down
approaches for learning NN potentials, i.e., considering infor-
mation from both the quantum and macroscopic scale, represents
an exciting avenue for future research. For top-down approaches,
pre-training NN potentials on bottom-up data sets can serve as a
sensible extrapolation for the PES in areas unconstrained by the
experimental data. In DiffTRe, a pre-trained model could also
circumvent the need for a prior potential. Bottom-up trained NN
potentials, on the other hand, can be enriched with experimental
data, which enables targeted refinement of the potential. This is
particularly helpful for systems in which DFT accuracy is insuf-
ficient or the generation of a quantum mechanical data set is
computationally intractable.

Methods
Differentiable histogram binning. To obtain an informative gradient ∂L∂θ, predicted
observables need to be continuously differentiable. However, many common
observables in MD, including density and structural correlation functions, are
computed by discrete histogram binning. To obtain a differentiable observable, the
(discrete) Dirac function used in binning can be approximated by a narrow
Gaussian probability density function (PDF)34. Similarly, we smooth the non-
differentiable cutoff in the definition of ADFs via a Gaussian cumulative dis-
tribution function (CDF) centered at the cutoff (details on differentiable density,
RDF, and ADF in Supplementary Method 3).

Stress–strain relations. Computing the virial stress tensor σV for many-body
potentials, e.g., NN potentials, under periodic boundary conditions requires special
attention. This is due to the fact that most commonly used formulas are only valid
for non-periodic boundary conditions or pairwise potentials68. Therefore, we resort
to the formulation proposed by Chen et al.69, which is well suited for vectorized
computations in NN potentials.

σV ¼ 1
Ω

� ∑
Np

k¼1
mkvk � vk � FTRþ ∂U

∂h

� �T

h

" #
; ð13Þ

where Np is the number of particles,⊗ represents the dyadic or outer product, mk

and vk are mass and thermal excitation velocity of particle k, R and F are (Np × 3)
matrices containing all particle positions and corresponding forces, h is the (3 × 3)
lattice tensor spanning the simulation box, and Ω ¼ detðhÞ is the box volume.

Due to the equivalence of the ensemble-averaged virial stress tensor 〈σV〉 and
the Cauchy stress tensor σ70, we can compute the elastic stiffness tensor from MD

simulations and compare it to continuum mechanical experimental data (details in
Supplementary Method 5). In the canonical ensemble, the isothermal elastic
stiffness tensor C can be calculated at constant strain ϵ via the stress fluctuation
method71:

Cijkl ¼
∂hσVij i
∂ϵkl

¼ hCB
ijkli �Ωβ hσBijσBkli � hσBijihσBkli

� �
þ Np

Ωβ
δikδjl þ δilδjk

� �
; ð14Þ

with the Born contribution to the stress tensor σBij ¼ 1
Ω

∂U
∂ϵij
, the Born contribution to

the stiffness tensor CB
ijkl ¼ 1

Ω
∂2U

∂ϵij∂ϵkl
and Kronecker delta δij. Eq. (14) integrates well

into DiffTRe by reweighting individual ensemble average terms (Eq. (3)) and
combining the reweighted averages afterwards. Implementing the stress fluctuation
method in differentiable MD simulations is straightforward: AD circumvents
manual derivation of strain-derivatives, which is non-trivial for many-body
potentials72.

Statistical mechanics foundations. Thermodynamic fluctuation formulas allow
to compute the gradient ∂L

∂θ from ensemble averages73–75. Specifically, considering a
MSE loss for a single observable O(Uθ) in the canonical ensemble73,

∂L
∂θ

¼ 2ðhOðUθÞi � ~OÞ ∂OðUθÞ
∂θ

� 	
� β OðUθÞ

∂Uθ

∂θ

� 	
� hOðUθÞi

∂Uθ

∂θ

� 	� �
 �
:

ð15Þ
It can be seen that the AD routine in DiffTRe estimates ∂L

∂θ by approximating
ensemble averages in Eq. (15) via reweighting averages (Derivation in Supple-
mentary Method 5). End-to-end differentiation through the reweighting scheme
simplifies optimization by combining obtained gradients from multiple obser-
vables. This is particularly convenient for observables that are not merely averages
of instantaneous quantities, e.g., the stiffness tensor C (Eq. (14)).

DimeNet++. We employ a custom implementation of DimeNet++11,12 that fully
integrates into Jax MD29. Our implementation takes advantage of neighbor lists for
efficient computation of the sparse atomic graph. We select the same NN hyper-
parameters as in the original publication12 except for the embedding sizes, which
we reduced by factor 4. This modification allowed for a significant speed-up while
retaining sufficient capacity for the problems considered in this work. For dia-
mond, we have reduced the cutoff to 0.2 nm yielding an atomic graph, where each
carbon atom is connected to its four covalently bonded neighbors. A compre-
hensive list of employed DimeNet++ hyperparameters is provided in Supple-
mentary Method 6.

Data availability
Simulation setups and trained DimeNet++ models have been deposited in https://
github.com/tummfm/difftre. The data generated in this study are provided in the paper
or in the Supplementary information file.

Code availability
The code for DiffTRe and its application to the three test cases is available at https://
github.com/tummfm/difftre76.
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3.1.2. Deep coarse-grained potentials via relative entropy minimization

Thaler, S., Stupp, M. & Zavadlav, J. Deep coarse-grained potentials via relative entropy
minimization. J. Chem. Phys. 157, 244103 (2022), DOI: 10.1063/5.0124538.

Summary

For CG systems, employing NN potentials promises highly accurate MD simulation results
due their ability to approximate the many-body terms of the PMF. Even though RE
minimization is the standard alternative to FM for the parametrization of classical CG
potentials, bottom-up trained CG NN potentials have so far almost exclusively been trained
via the latter scheme. Unlike classical CG potentials, limited capacity of the functional form
is not the main accuracy bottleneck for CG NN potentials. Consequently, other error sources
become dominant, especially finite data size effects. CG NN potentials trained via FM have
been found to be prone to these effects: Given that FM NN potentials are unconstrained in
phase-space regions that are unresolved by the training data, they rely heavily on prior
potentials to avoid unphysical predictions and numerical instability. Additionally, FM
models have been found to be weak in reconstructing the reference free energy surface
(FES) as given by the AT training data.

This article demonstrates the applicability of RE minimization to train CG NN potentials
and showcases that RE training is more data efficient than FM, reducing errors from finite
data size significantly. First, a thought experiment shows that sensitivity with respect to
rarely sampled transition regions can be the reason for suboptimal FES predictions of FM
NN potentials and that the potential energy-based loss function of RE minimization is not
susceptible to this error mechanism.

Second, the benchmark problem of CG liquid water represents the case when errors from
limited model capacity and finite data size are small. In this case, both FM and RE yield
highly accurate CG NN potentials, in particular compared to classical 2-body CG potentials.
This is expected given that the obtained potential from both training schemes converges
to the PMF for infinite data and model capacity. Interestingly, given that the two main
error sources – limited model capacity and finite data size effects – are less pronounced in
this problem, numerical errors can become the dominant error component. Unlike FM, RE
minimization optimizes the potential with respect to the resulting distribution of the CG
MD simulation. Hence, RE minimization can correct for numerical errors of the simulation,
enabling larger time steps in CG MD simulations without compromising accuracy.

Finally, the benchmark problem of CG alanine dipeptide tests both training schemes
in a finite data size setting. Here, unlike FM, RE is able to accurately reproduce the
reference FES. This outperformance can be partially attributed to higher data efficiency of
RE minimization, which achieves its accuracy maximum already at a fraction of the data
required for FM. Additionally, RE is less dependent on prior potentials given that sampling
of unphysical phase-space results in a large Srel, which can be corrected by subsequent
gradient descent updates.

These results highlight the importance of including MD simulations into the training
pipeline of NN potentials for improved accuracy and robustness. Developing novel CG NN
potential training schemes beyond FM is a promising direction for future research.
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ABSTRACT

Neural network (NN) potentials are a natural choice for coarse-grained (CG) models. Their many-body capacity allows highly accurate
approximations of the potential of mean force, promising CG simulations of unprecedented accuracy. CG NN potentials trained bottom-
up via force matching (FM), however, suffer from finite data effects: They rely on prior potentials for physically sound predictions outside
the training data domain, and the corresponding free energy surface is sensitive to errors in the transition regions. The standard alterna-
tive to FM for classical potentials is relative entropy (RE) minimization, which has not yet been applied to NN potentials. In this work,
we demonstrate, for benchmark problems of liquid water and alanine dipeptide, that RE training is more data efficient, due to accessing
the CG distribution during training, resulting in improved free energy surfaces and reduced sensitivity to prior potentials. In addition, RE
learns to correct time integration errors, allowing larger time steps in CG molecular dynamics simulation, while maintaining accuracy. Thus,
our findings support the use of training objectives beyond FM, as a promising direction for improving CG NN potential’s accuracy and
reliability.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0124538

I. INTRODUCTION

Molecular dynamics (MD) simulations are a popular tool
for studying bio-physical processes at the nanoscale. For atom-
istic (AT) simulations, time and length scales of many processes
of interest are still out of reach in currently available computa-
tional hardware. Coarse-graining1–8 (CG) - grouping of AT particles
into effective interaction beads is a common approach to model
these systems as larger spatiotemporal scales can be reached due
to a reduced number of interactions and an increased time step
size.7

The fidelity of CG simulations strongly depends on the
employed CG potential energy function that defines particle inter-
actions. In the classical CG literature, potentials follow simple func-
tional forms.3,7 Recent years have seen an increased use of neural
network (NN) potentials9–19 for CG models, both—for bottom-up
learning, to match properties of AT models,20–26 and for top-down
learning, to match experimental data.27 In the following, we focus on
the bottom-up learning case, with the aim of obtaining a CG model

that is consistent with an existing AT model. Consistency is achieved
if the distribution of CG states sampled from the CG model equals
the distribution generated by the AT model when mapping the AT
states to CG coordinates.4 In this case, the CG potential equals
the many-body potential of mean force (PMF).4 Consequently, NN
potentials are a natural choice for CG potential energy functions:
Their many-body nature28 allows for a more accurate approximation
of the PMF than classical CG models, promising CG simulations of
unprecedented accuracy.

So far, most bottom-up CG NN potentials have been trained
via force matching (FM).20–24 FM minimizes the difference between
CG force predictions and corresponding target AT forces for a
given dataset,4,21 typically generated by an AT MD simulation. FM
training, while computationally inexpensive and straightforward to
implement, suffers from two problems caused by the low availabil-
ity of high energy states.29 First, reproducing the ratio of different
metastable states proves difficult for CG NN potentials trained via
FM.24,26 The CG potential is thought to be susceptible to errors
in the rarely sampled transition regions, which affects the global

J. Chem. Phys. 157, 244103 (2022); doi: 10.1063/5.0124538 157, 244103-1
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accuracy of the free energy surface (FES).26 Second, NN poten-
tials are physics-free universal function approximators. Thus, they
rely heavily on prior potentials that enforce qualitatively correct
force predictions outside the training data distribution, to avoid
unphysical states, e.g., particle overlaps.21,23 Both problems can
cause erroneous results in subsequent CG MD simulations, but crit-
ically, their extent is not reflected in the FM validation error during
training.26

Given these drawbacks of FM in practice, recent efforts focused
on training schemes beyond FM, including noise-contrastive
estimation25,30 and flow-matching.26 Another alternative to FM is
relative entropy (RE) minimization,5 which has frequently been used
to optimize classical CG models,31–34 but has not yet been applied
to CG NN potentials. The main conceptual difference between RE
and FM lies in the availability of molecular states during training:
While FM trains exclusively on states provided by the AT model, RE
additionally samples states from the CG model.5,35 Sampling the CG
model at each update step is computationally expensive, but it gives
direct access to the CG distribution during training. Thus, deviations
from the AT distribution can be accessed and subsequently corrected
via gradient descent optimization—subject to the functional form of
the CG model and the statistical sampling error. Thus, in the con-
text of CG NN potentials, RE counters suboptimal global FESs and
sensitivity to prior potentials.

In this work, we demonstrate the effectiveness of optimizing
CG NN potentials via RE minimization. To this end, we train the
CG DimeNet++13,14 graph NN potential for the benchmark prob-
lems of liquid water and alanine dipeptide. For liquid water, both
FM and RE yield highly accurate CG potentials, but RE allows larger
time steps in subsequent CG MD simulations, without compromis-
ing on accuracy. For alanine dipeptide, the RE method results in a
more accurate FES and is more robust to the choice of prior poten-
tial compared to FM. Finally, we showcase that pre-training via FM
allows us to reduce the computational cost of RE training. Hence,
the exploitation of training targets beyond FM is a promising path
toward next generation CG NN potentials.

II. METHODS

We reiterate the fundamentals of FM4,36–38 and RE
minimization5,35,39–42 theory, based on which we discuss spe-
cific properties of both methods in the context of CG NN potentials.
The starting point for CG modeling is the selection of a mapping
function M,

R =M(r), (1)

that maps AT coordinates r ∈ R3n onto a lower-dimensional set of
CG coordinates R ∈ R3N , with N < n. In the following, we assume
canonical (NVT) ensembles in equilibrium and M to be a linear
function, even though generalizations to non-equilibrium systems43

and non-linear mappings44 exist.
The CG model is consistent with the underlying AT model,

if the configurational equilibrium distribution of the CG model
p CG
θ (R) equals pAT(R); the configurational equilibrium distribution

of the AT model pAT(r), when mapped to CG coordinates4 is

pAT(R) = ⟨δ[R −M(r)]⟩AT, (2)

where ⟨⋅ ⋅ ⋅⟩AT indicates an AT ensemble average. p CG
θ (R) depends

on the model parameters θ via the CG potential U CG
θ (R). The CG

model is consistent with the AT model if the CG potential equals the
many-body potential of mean force (PMF)4,5

UPMF(R) = − 1
β

ln pAT(R) + C, (3)

where β = 1/(kBT), with Boltzmann’s constant kB and temperature
T. C is an arbitrary constant that we omit in the following. To
approximate the PMF, the most popular methods are the FM4,36,37

and the RE minimization5 methods.

A. Force matching
FM—also known as multiscale coarse-graining4,36,37—aims to

match the CG forces −∇RU CG
θ (R) to the instantaneous forces act-

ing on CG particles FAT , computed from the AT system. Thus, FM
minimizes the mean squared error (MSE) loss function

χ2(U CG
θ ) = ⟨∥FAT +∇RU CG

θ (M(r))∥2⟩
AT

, (4)

where ∥ ⋅ ⋅ ⋅ ∥ is the Frobenius norm. In practice, the AT ensemble
average is approximated by the mean over a reference dataset of AT
configurations, typically generated by an AT MD simulation.37 Min-
imizing the loss in Eq. (4) represents a standard supervised learning
problem, which is solved by computing the gradient∇θχ2(U CG

θ ) via
automatic differentiation for a mini-batch of AT configurations and
updating θ via a stochastic optimizer.21

To connect U CG
θ to the PMF, Eq. (4) can be reformulated4 as

χ2(U CG
θ ) = ⟨∥∇RU CG

θ (M(r)) − ∇RU PMF(M(r))∥2⟩AT

+ ⟨∥FAT +∇RUPMF(M(r))∥2⟩AT´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶≡χ2(U PMF)
. (5)

Note that χ2(UPMF) depends on the CG mapping M, but cannot
be optimized via θ. Thus, FM minimizes the first term, resulting in
the force predictions of the CG potential to approximate the forces
of the PMF. For infinite data and model capacity, U CG

θ , therefore,
converges to UPMF (up to an additive constant). From an ML per-
spective, the second term in Eq. (5) corresponds to the noise term in
a regression problem.21 Physically, the noise term results from the
fact that multiple AT states with different FAT map to the same CG
configuration. Hence, the noise term is irreducible and constitutes
the lower bound of the loss.

B. Relative entropy minimization
The relative entropy—known as the Kullback–Leibler diver-

gence45 in information theory—is commonly used to quantify the
distance between two distributions. In the context of CG modeling,
these two distributions are pAT(R) and p CG

θ (R), defining the relative
entropy Srel as41,42,46
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Srel(U CG
θ ) = ∫ pAT(R) ln( pAT(R)

p CG
θ (R))dR. (6)

Due to Gibbs’s inequality, Srel(U CG
θ ) ≥ 0. Consequently, Srel(UPMF)= 0 is the global minimum, reached if pAT(R) = p CG

θ (R) and U CG
θ= U PMF.46 Thus, minimization of Srel(U CG

θ ) provides a means to
approximate UPMF.

Inserting the configurational probabilities of the canonical
ensemble into Eq. (6) yields5,35,42

Srel(U CG
θ ) = β⟨U CG

θ (M(r)) −UAT(r)⟩AT − β(A CG
θ − AAT) + Smap,

(7)
where A is the Helmholtz free energy, and Smap depends on the map-
ping function M, but is independent of θ.35,42 For classical CG poten-
tials, Srel(U CG

θ ) is typically minimized via the Newton–Raphson
scheme.5,32,35,39 In this work, we follow standard deep learning prac-
tice and optimize the NN potential via a first order optimizer. This
approach avoids the high memory cost of computing the Hessian of
the NN parameter set. While computing Srel(U CG

θ ) is non-trivial due
to the difference in the Helmholtz free energies A CG

θ − AAT [Eq. (7)],
minimizing Srel(U CG

θ ) via first order optimizers only requires the
computation of its gradient35

∇θSrel(U CG
θ ) = β⟨∇θU CG

θ (M(r))⟩AT − β⟨∇θU CG
θ (R)⟩CG. (8)

In practice, the first term in Eq. (8) is approximated by an average
over the AT reference dataset. The second term is computation-
ally more expensive, as the distribution corresponding to the CG
potential needs to be sampled on-the-fly, typically via a CG MD sim-
ulation. The gradient∇θU CG

θ (R) can be computed conveniently via
automatic differentiation.

C. Linking force matching and relative entropy
minimization

A large body of literature has studied the relationship between
FM and RE,35,42,44,46 which we reiterate in parts in the following.
Defining the quantity45

Φθ(R) = ln( pAT(R)
p CG
θ (R)) (9)

allows reformulating the optimization objectives of RE [Eq. (6)] and
FM [Eq. (5)]46 to

Srel = ∫ pAT(R)Φθ(R)dR,

χ2(U CG
θ ) = (kBT)2

3n ∫ pAT(R)∥∇RΦθ(R)∥2dR + χ2(UPMF). (10)

Hence, both FM and RE minimize a functional of Φθ(R). Differ-
ences in the learned CG potential result from minimizing an average
of Φθ(R) in RE, compared to an average of ∥∇RΦθ(R)∥2 in FM.

Thus far, the comparison of FM and RE has generally focused
on the case of finite model capacity and infinite AT data: FM reaches
the minimum of χ2(U CG

θ ) [Eq. (5)] if U CG
θ is the projection of UPMF

onto the function space spanned by the CG potential basis set.37,38

However, the resulting U CG
θ is not guaranteed to reproduce any AT

correlation function mapped to CG coordinates.46 In contrast, the
CG potential that minimizes Srel(U CG

θ ) is guaranteed to reproduce
all mapped AT structural correlation functions that are conjugate to
basis functions of the CG potential.35 For example, if the CG poten-
tial includes a flexible parameterization of pairwise interactions, the
radial distribution function (RDF) of the mapped AT system will be
matched.

D. Finite data size effects
In the following, we compare FM and RE in the context of NN

potentials, where we expect a reduced impact of the finite functional
basis set, but a larger contribution from finite data size effects. We
assume the common case of a dataset generated by an equilibrium
AT MD simulation. Consequently, the dataset primarily contains
states in potential energy minima, but rarely high energy states.29

This gives rise to two issues in training CG NN potentials via FM: the
difficulty of obtaining a globally accurate FES24,26 and the reliance on
prior potentials21,23 (discussed in Sec. II E).

Inaccurate FESs can be caused by sensitivity of the learned
potential to errors in sparsely sampled transition regions, as recently
hypothesized.26 We illustrate this idea through a thought exper-
iment, where a system is coarse-grained to a 1D CG coordinate
X (Fig. 1). We consider a specific CG potential U CG

θ̄ that differs from
UPMF within the transition region 𝒯 . Outside 𝒯 , U CG

θ̄ is only shifted
with respect to UPMF. If we assume that the AT dataset does not
contain any states within 𝒯 , the validation FM loss of U CG

θ̄ is iden-
tical to the validation FM loss of UPMF, given that the forces outside
𝒯 are identical. However, the probabilities of samples generated by

FIG. 1. Coarse-graining thought experiment. If the atomistic dataset (brown
crosses) contains no states within the transition region 𝒯 , a candidate poten-
tial U CG

θ̄ , whose shape only differs from the potential of mean force UPMF within

𝒯 , yields the same force matching validation loss as UPMF, despite resulting in a
different coarse-grained distribution p CG

θ̄ (R) ≠ pAT(R).
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both potentials differ, e.g., U CG
θ̄ preferentially samples the left mini-

mum. FM needs to infer the free energy difference between minima
by integrating the mean-force along the transition path, which is
unavailable in this thought experiment. In real-world applications,
this mean-force integral is determined by few and noisy21 transition
states in the AT dataset, which explains the reported difficulty in
reproducing the correct relative sampling probabilities of different
metastable states.24,26 Since the transition states are comparatively
rare in the training data, they only have a small impact on the FM
validation loss.29 Therefore, the FM validation loss is not a useful
metric to assess the global quality of the FES.24

In contrast, the incorrect CG distribution p CG
θ̄ (R) generated

by U CG
θ̄ results in a large Srel [Eq. (6)]. Thus, RE minimization will

adjust the potential, such that both metastable configurations are
sampled equally, matching UPMF, where AT data are available. This
is consistent with the interpretation that optimizing Srel(U CG

θ )min-
imizes the difference between the potential energy surfaces of the AT
and CG models,40 i.e.,

Srel(U CG
θ ) = ln ⟨eΔθ(r)−⟨Δθ(r)⟩AT⟩

AT
,

with

Δθ(r) ≡ β[UAT(r) −U CG
θ (M(r))], (11)

where a constant offset between the potential energy surfaces is
captured by ⟨Δθ(r)⟩AT. In sum, RE is better suited to reproduce
the global FES, especially if the phase-space is resolved inhomoge-
neously by the training data, making RE minimization more data
efficient.26

E. Prior potentials
Classical CG potentials typically use physics-based functional

forms,3,7 which enforce qualitatively correct behavior, irrespective
of the specific parameter values at hand; for example, Lennard-Jones
interactions encode the Pauli exclusion principle at short distances
and van der Waals forces at longer distances. To encode physically
meaningful behavior in a similar way, the flexible functional form
of NN potentials can be combined with a physics-informed prior
potential Uprior(R):21,23,24,26,27

U CG
θ (R) = U NN

θ (R) +U prior(R). (12)

In this formulation, training the NN potential U NN
θ (R) can be

interpreted as Δ-learning47–49 with respect to Uprior(R).21

Note that the role of Uprior(R) differs significantly for FM
compared to RE minimization: Since the dataset is obtained via
physically sound principles in an AT MD simulation, it does not
contain any unphysical configurations, such as overlapping particles.
In such unphysical regions of phase-space, the CG NN potential,
therefore, operates in the extrapolation regime, and can easily pre-
dict short-range attraction instead of physically sound repulsion. For
FM, a well-chosen Uprior(R), therefore, enforces qualitative correct
predictions outside the training data, to drive the CG MD simula-
tion back into the AT data distribution where U NN

θ (R) is accurate.
Hence, FM requires careful selection of Uprior(R), given that weak
choices can lead to unphysical CG MD simulation results.50

In contrast, a strong deviation of p CG
θ (R) from pAT(R) caused

by an unphysical trajectory leads to a large Srel(U CG
θ ), which can

be corrected by the optimizer during training. Rather than stabi-
lizing the CG MD simulation, the role of Uprior(R) in RE min-
imization is to speed up training convergence. Without a prior,
physical principles need to be learned from the AT reference data,
which significantly increases the number of update steps until
convergence.27

F. Finite time step effects
So far, we have implicitly assumed ideal sampling of the

Boltzmann distribution corresponding to a specific potential, i.e.,
assuming an infinitesimal MD simulation time step Δt. However,
in practice, the AT distribution pAT

Δt AT
(r) results from the time

step-dependent shadow Hamiltonian51 of the reference AT simula-
tion26 (with the shadow temperature52 representing the conserved
quantity in the NVT ensemble). Thus, RE learns a CG potential
whose shadow Hamiltonian yields a CG distribution p CG

θ,Δt CG
(R) that

approximates pAT
Δt AT
(R). Consequently, assuming infinite data and

model capacity, the optimal RE potential differs from the true PMF
as a function of ΔtAT and ΔtCG. On the other hand, FM models
train on a dataset of forces computed from the true AT potential.
Hence, the ideal FM potential equals the true PMF, but the resulting
CG distribution p CG

θ,Δt CG
(R) will differ from the analytic pAT(R) as a

function of the production time step ΔtCG.

G. Neural network potential
We use our previously published implementation27 of the

graph NN DimeNet++13,14 as U NN
θ , with graph cut-off radius rcut= 0.5 nm. We set all hyperparameters to the default values of the

original implementation,14 except for embedding sizes, which we
reduce by a factor of 4. With the default of four interaction blocks,
DimeNet++ captures up to eight-body correlations,28 as angles are
a direct input quantity that already captures three-body proper-
ties. This high-body interaction capacity promises highly accurate
approximations to the PMF.

III. RESULTS
A. Liquid water

We choose the classical benchmark problem of CG liquid
water to test FM and RE in a setting where AT reference data are
abundantly available. We generate a 10 ns AT trajectory of the
TIP4P/200553 water model at a temperature Tref = 298 K, which we
subsample, to retain a state every 1 ps. Each state consists of a cubi-
cal simulation box of length l = 3.129 nm, containing 1000 water
molecules. The first 8 ns are used for training, the subsequent 0.8 ns
for validation, and the last 1.2 ns are retained as a test set.

We select a CG mapping, where each water molecule is mapped
to a CG particle located at its center of mass. To the DimeNet++
U NN
θ (R), we add the pairwise repulsive part of the Lennard-Jones

potential as prior

U prior(R) = N pair∑
i=1

ε( σ
di
)12

, (13)

J. Chem. Phys. 157, 244103 (2022); doi: 10.1063/5.0124538 157, 244103-4

Published under an exclusive license by AIP Publishing

3. Publications

42



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

where we sum over all Npair pairs with distance di < rcut, [Eq. (12)].
Analogous to our previous work,27 we choose ε = 1 kJ/mol and
σ = 0.3165 nm, which is the length scale of the SPC54 water model.

The FM model is trained for 100 epochs, with a batch size of ten
states (for loss curves, see supplementary material Fig. 1). We select
the model with the smallest validation loss, which is computed after
each training epoch. The validation set is exclusively used in FM
for this purpose, giving FM a small advantage over RE in terms of
data usage. We train the RE model for 300 update steps. To sam-
ple p CG

θ (R) during training, we run 70 ps simulations, including
5 ps of equilibration, with a time step of 2 fs. Each trajectory starts
from the last state of the previous trajectory, to reduce equilibration
time. For more technical details, see the supplementary material,
Method 1.

We evaluate the quality of force predictions of both trained
models, based on the held-out test dataset (Fig. 2). Compared to
AT NN potentials, predicted forces exhibit larger errors, due to the
noise resulting from the non-injective CG mapping [Eq. (5)]. The
FM model yields slightly better force predictions (R2 = 0.695) than
the RE model (R2 = 0.670). Apart from possible overfitting of the
FM model onto forces, this result likely stems from the finite time
step effects discussed above:26 The reference forces are computed
from the true AT potential, which is consistent with the optimiza-
tion objective of the FM method. In contrast, the RE potential
needs to account for the shadow Hamiltonians of the AT and CG
simulations.

To test the capabilities of the models in an application context,
we perform CG MD simulations with a time step of ΔtCG = 2 fs and
a trajectory length of 1.1 ns, where the first 0.1 ns are discarded
for equilibration. We compute the RDF and angular distribution
function (ADF),55 as well as the equilateral triplet correlation func-
tion (TCF),56–58 to assess different structural correlations in the
generated CG distribution. The RE model matches the AT refer-
ences to the line thickness (Fig. 3). This is in line with theoretical
expectations that RE reproduces all structural correlation functions

for which conjugate terms in the CG potential exist.35 FM is in
better agreement with the AT reference pressure pref = −6.2 MPa
(pFM = 212.2 MPa, pRE = 311.0 MPa) at the expense of slightly larger
errors in the structural correlation functions. These results are insen-
sitive to the specific choice of prior potential, which we tested
by selecting a softer prior ( σd )6 [Eq. (13); supplementary material
Fig. 2].

Additionally, we compare the DimeNet++ model to a classical
two-body cubic spline model. The spline model is computation-
ally inexpensive compared to the DimeNet++ model (184.5 vs
7.3 ps/min), at the expense of reduced accuracy: In contrast to the
FM spline model, the RE spline model matches the target RDF
(supplementary material Fig. 3),reproducing literature results.39,59

However, as expected, both models fail to match three-body correla-
tions. Adding three-body terms improves those classical models,60

but the accuracy still remains limited, compared to the DimeNet++ model. Overall, these results suggest that the difference between
models obtained via FM and RE tends to increase for decreasing
adequacy of the functional basis set for a given system—in line with
previous computational studies.61

Given that computational speed-up is the principal motiva-
tion for CG modeling, we evaluate trained FM and RE models for
the real-world case of larger production CG MD time step sizes
ΔtCG (Fig. 4). The resulting MSE values of FM models increase
significantly for larger ΔtCG, which we attribute to increased time
integration errors. Presumably, the impact of the CG shadow Hamil-
tonian becomes noticeable for FM CG NN potentials, as errors
from an incomplete basis set and finite data size effects are small
in this problem. By contrast, the MSE values of RE models increase
only slightly for larger ΔtCG, when using the same time step dur-
ing training. Given that RE optimizes the empirical CG distribution
p CG
θ,Δt CG

(R), we presume that the RE potential learns to correct for
the time step-dependent terms in the CG shadow Hamiltonian. To
test this hypothesis, we apply the RE models trained with 10 fs in
CG MD simulations with ΔtCG = 2 fs. In line with our hypothesis,

FIG. 2. Liquid water force predictions on test data. Each data point corresponds to a predicted force component for a coarse-grained particle in the test dataset, compared
to its atomistic reference for models trained via (a) force matching and (b) relative entropy minimization.
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FIG. 3. Structural correlation functions in liquid water. Resulting (a) radial distribution function (RDF) and (b) angular distribution function (ADF),55 as well as (c) equilateral
triplet correlation function (TCF)57,58 of models trained via force matching (FM) and relative entropy (RE) minimization, compared to the atomistic reference.

FIG. 4. Time step variation. Mean squared error (MSE) of resulting (a) radial (RDF) and (b) angular distribution functions (ADF), as well as (c) equilateral distribution function
(TCF) for different time step sizes ΔtCG in subsequent molecular dynamics simulations. The plotted mean and standard deviation values are computed from five models,
with different random seeds for neural network parameter initialization and velocity distribution of the initial simulation state. For force matching (FM), the same five models
are used for different simulation time steps. For relative entropy (RE) minimization, the models are retrained such that the training time step matches ΔtCG. An exception is
models trained with 10 fs, which are additionally run with ΔtCG = 2 fs (light blue).
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FIG. 5. Ramachandran diagrams. Resulting density histograms of the dihedral angles ϕ and ψ from (a) the AT reference simulation and from the CG models trained via (b)
force matching and (c) relative entropy minimization.

this combination yields larger MSE values than RE models with
consistent time steps (Fig. 4): If the RE model learns to correct
large time step-dependent terms in the shadow Hamiltonian, this
biases CG simulations that exhibit only small time integration errors.
Hence, RE minimization provides a means to mitigate the accuracy
degradation of larger production time steps ΔtCG.

B. Alanine dipeptide
Alanine dipeptide62,63 is a standard problem to benchmark CG

methods in reconstructing an FES with multiple metastable states.
We generate a 100 ns AT reference trajectory at Tref = 300 K, from
which a state is retained every 0.2 ps, resulting in 5 ⋅ 105 data points.
The training dataset consists of the first 80 ns, the FM validation
set of the subsequent 8 ns, and the final 12 ns forms the test set.
We select a CG mapping that retains all ten heavy atoms of ala-
nine dipeptide, but drops hydrogen atoms and water molecules. The
CG particles representing CH3, CH, and C are encoded as different
particle types. Following the Δ-learning ansatz in Eq. (12), we select
a prior potential

Uprior(R) = N bonds∑
i=1

Uharmonic(bi) + N angles∑
j=1

Uharmonic(αj)
+ N dihedrals∑

k=1
Uproper(ωk),

Uharmonic(xi) = k BT
2Var[xi] (xi − ⟨xi⟩AT)2,

with

Var[xi] = ⟨(xi − ⟨xi⟩AT)2⟩AT,

Uproper(ωi) = kω(1 + cosnωi − ω0), (14)

where we sum over all Nbonds harmonic bonds with bond lengths
bi, all Nangles harmonic angles with triplet angles αj and all Ndihedrals
proper dihedral angles ωk. The dihedral force constant kω, the multi-
plicity n, and the phase constant ω0 are taken from the AMBER0364

force field.
We train the FM model for 100 epochs, with a batch size of 500

states, and select the model that yields the smallest validation loss

FIG. 6. Dihedral angle density. Distribution of dihedral angles (a) ϕ and (b) ψ, as predicted from the CG models trained via force matching (FM) and relative entropy (RE)
minimization, compared to the atomistic reference. The mean and standard deviation (shaded area) are computed from 50 trajectories of 100 ns lengths.
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FIG. 7. Training data variation. Mean squared error (MSE) of the ϕ − ψ dihedral
density histograms of force matching (FM) and relative entropy (RE) minimization
models for varying training data sizes. The mean and standard deviation values
are computed from 50 trajectories of 100 ns lengths.

(for loss curves, see supplementary material Fig. 4). For RE training,
we sample the CG distribution through 50 vectorized CG MD sim-
ulations starting from different initial states, which improves the
computational efficiency of GPUs. Each parallel simulation gener-
ates a 1 ns trajectory, of which 5 ps are discarded for equilibration.
The simulations restart from the last obtained state of the previous
trajectory, and we train the RE model for 300 updates. Addi-
tional technical details are available in the supplementary material,
Method 2.

First, we compare the force prediction quality of the FM and RE
models on the test dataset (scatter plots in supplementary material
Fig. 5). Analogous to the liquid water example, the FM model
yields better force predictions (R2 = 0.780) than the RE model

(R2 = 0.717). However, in the case of alanine dipeptide, we are
mostly interested in an accurate reproduction of the FES. Hence,
we sample 100 ns CG trajectories with the trained RE and FM
models, such that the number of generated states equals the AT
reference data.

The resulting 2D density histograms of the dihedral angles ϕ
and ψ62,63 are shown in Fig. 5 (corresponding FESs in supplementary
material Fig. 6). The FESs obtained via the DimeNet++ potential
compare favorably to previously reported results with a classical,
generalized Born65 implicit solvent model of alanine dipeptide.24

The Ramachandran diagram of the RE model matches the AT refer-
ence well, but the FM model oversamples the α′′R configuration. The
1D projections of the dihedral density are shown in Fig. 6. Despite
the smaller test set error with respect to forces, the FM model fails to
accurately reproduce the ratio of metastable states. This result sup-
ports the notion that the FM validation error is not a useful metric
to judge the global quality of the learned FES.26

Assuming that insufficient resolution of transition regions
caused the suboptimal FES of the FM model, increasing the amount
of training data should improve the FES: We generate a 1 μs AT
trajectory, increasing the amount of training data by a factor of 10.
Using this dataset, the error of the FM model decreases as expected,
but is still inferior to the RE model (Fig. 7). Note that numerical
errors of the CG simulations also contribute to the FM MSE, which
cannot be reduced by enlarging the training dataset. To test the data
requirement limits of RE, we reduce the 100 ns training dataset by
a factor of 10. In this case, RE still results in a smaller error than
FM with the largest dataset, despite using only 1% of the train-
ing data, which highlights the data efficiency of RE for reproducing
the FES.

By combining FM and RE, we aim to exploit their respective
strengths—data efficiency of RE and computational inexpensiveness
of FM. Based on the 100 ns dataset, we optimize the FM potential
by additional RE updates. As depicted in Fig. 8, few RE updates
are sufficient to significantly improve the FES. With 30 updates, the
obtained dihedral densities are comparable to the randomly initial-
ized 300 update RE model (Fig. 6), and significantly better than a

FIG. 8. Convergence of relative entropy correction steps. (a) ϕ and (b) ψ dihedral angle distributions corresponding to potentials obtained by different numbers of relative
entropy (RE) updates, when being initialized to the force matching (FM) potential. The lines represent the mean computed from 50 trajectories of 100 ns lengths.
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FIG. 9. Prior potential ablation. Distribution of dihedral angles (a) ϕ and (b) ψ resulting from the force matching (FM) model, when only considering bonds in the prior
potential. These are compared to the atomistic reference and to a model that optimizes the FM potential via 300 relative entropy (RE) update steps. The mean and standard
deviation (shaded area) are computed from 50 trajectories of 100 ns lengths.

randomly initialized 30 update RE model (supplementary material
Fig. 7). Consequently, initializing RE minimization with the FM
model allows us to reduce the number of necessary RE updates
significantly.

Finally, we test the robustness of both methods with respect to
prior potentials, by considering only harmonic bonds in Uprior(R)
[Eq. (14)]. In this case, the FM potential significantly oversamples
αL configurations (Fig. 9, supplementary material Fig. 8), despite
superior validation force predictions (R2 = 0.762), compared to the
reference RE model above. Conversely, when optimizing the result-
ing FM model via 300 additional RE update steps, the dihedral
density is in close agreement with the AT reference. Hence, RE
minimization also helps correcting weak choices of prior potentials.

IV. DISCUSSION AND CONCLUSION

In this work, we have demonstrated the effectiveness of training
CG NN potentials via the RE minimization scheme: For water, the
difference between FM and RE minimization is significantly reduced
when training CG NN potentials, compared to classical two-body
CG potentials.60 This is expected, as the learned potential converges
toward the PMF for increasing model capacity with both meth-
ods, given sufficient amount of data.4,35,46 For alanine dipeptide, RE
results in a more accurate FES than FM. The discrepancy in the FES
increases for decreasing quality of the prior, to the point that the FM
CG NN potential is no longer competitive with classical CG models.
Sampling the CG model during training probes its robustness with
respect to data generated on-the-fly. As a consequence, the RE train-
ing scheme can recognize and correct undesired model properties,
which reduces the sensitivity in the prior potential.

For liquid water, RE allows larger time steps in subsequent
CG MD simulations, without compromising on accuracy. We pre-
sume that RE is able to learn to correct the time integration error
of the underlying CG MD simulation, by training directly on the
sampled CG distribution. Given that computational speed-up is the
primary objective of CG modeling, a larger simulation time step is as

important as an accurate approximation of the PMF. Consequently,
CG NN potentials trained via RE may reach larger time scales in
production CG simulations, with less impact from time integration
errors.

The advantages of RE minimization come at the cost of
increased computational effort during training, which can, how-
ever, be reduced: As demonstrated in this work, pre-training via
FM is a computationally efficient way to reduce the number of
necessary RE updates through a better parameter initialization. Fur-
thermore, histogram reweighting,31,42,66–69 frequently used in RE
minimization,5,32,35 is also applicable to NN potentials.27 Reweight-
ing allows previously generated trajectories to be reused, increasing
the number of gradient descent steps per trajectory computation.
Additionally, it seems reasonable to increase the trajectory length
during the course of the optimization. In the beginning of training,
where the model error significantly exceeds the statistical error of
trajectories, short trajectories can save computational time. Toward
the end of training, longer trajectories with reduced statistical noise
allow fine-tuning of the model. This scheme matches well with
reweighting: Initial trajectories cannot be used for reweighting, irre-
spective of their length, due to large changes in the potential, while
expensive trajectories toward the end of training may be reused for
multiple updates. Moreover, we argue that in the realistic scenario
of an expensive AT model with a, by design, orders of magnitude
cheaper CG model, the computational bottleneck is AT training
data generation, rather than CG model optimization. Finally, NN
potential architectures optimized for computational efficiency, such
as the ultra-fast force fields,70 are well-suited for CG applications.
These architectures allow to capture many-body features of the PMF,
while reducing the computational overhead of the more expensive
DimeNet++14 model used in this work. Evaluating the computa-
tional cost–accuracy trade-off between different computationally
efficient CG NN potentials and classical CG models is an interest-
ing avenue for future research. Additionally, the merits of CG NN
potentials should be examined for more complex systems than those
considered in this work.
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The presented results can also be interpreted in terms of data
efficiency. In CG applications, an accurate representation of the FES
is usually of higher interest than accurate force predictions in energy
minima. RE is well suited to reproduce the FES, in practice, by
directly minimizing the difference between the potential energy sur-
faces of the AT and CG models [Eq. (11)]. By contrast, FM requires
a sufficient resolution of transition areas, to learn a globally accu-
rate FES.26 This requires a large amount of AT training data, which
is expensive to obtain. Long AT MD trajectories do not seem effi-
cient in this regard, due to the repetitive sampling of energy minima
and sparse sampling of high energy states.29 Accordingly, enhanced
sampling schemes, such as metadynamics29,71,72 or normal mode
sampling,73,74 may improve data efficiency of FM, by spreading the
sampling more evenly across the phase space.

In line with the literature on simulation-based optimization
schemes for classical CG models,2,6 our results suggest that includ-
ing MD simulations in the training process can be considered as
a means to improve the reliability and accuracy of NN potentials,
allowing to address recent concerns about their stability.75,76 Active
learning NN potentials,77,78 recognized as a major building block
in achieving stable and transferable models,22,79,80 can be similarly
interpreted as an incorporation of MD simulations into the FM
training scheme: Performing MD simulations and screening visited
molecular states for high-uncertainty configurations allows us to
augment the dataset iteratively in phase space regions that are reach-
able by the NN potential, but still sparsely represented in the dataset.
Alternatively, MD simulations can also be inserted directly into the
training pipeline27,81–84 using auto-differentiable MD codes.82,84 We
expect that the benefits of using ML in simulations and, inversely,
simulations for ML training will continue to drive the ongoing syn-
thesis of ML and physical simulations in molecular modeling and
beyond.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional computational
details, force matching loss curves, liquid-water prior variation and
two-body cubic spline models, alanine dipeptide force predictions,
free energy surface, and additional dihedral density histograms.
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3.2. Uncertainty Quantification for Neural Network Potentials

This section presents research articles advancing UQ for MD potentials via SG-MCMC
methods. This includes a comparative study of SG-MCMC for NN potentials (sec. 3.2.1)
and a modular library that simplifies application and development of novel SG-MCMC
schemes (sec. 3.2.2).

3.2.1. Scalable Bayesian Uncertainty Quantification for Neural Network
Potentials: Promise and Pitfalls

Thaler, S., Doehner, G. & Zavadlav, J. Scalable Bayesian Uncertainty Quantification for
Neural Network Potentials: Promise and Pitfalls. J. Chem. Theory Comput. 19, 4520–4532
(2023), DOI: 10.1021/acs.jctc.2c01267.

Summary

The flexible functional form of NN potentials allows to train highly accurate potential
energy models. At the same time, this flexibility casts NN potentials unreliable outside
the training data distribution, where potential energy predictions can be highly inaccurate.
For practical application of these models in MD simulations, it is imperative to quantify
whether the obtained results are trustworthy. The Bayesian posterior predictive distribution
allows to quantify the aleatoric and epistemic uncertainty of predictions. Its evaluation
involves sampling from the posterior distribution, which is infeasible for real-world NN
potentials using classical MCMC schemes such as HMC due to the required full-dataset
likelihood evaluations.

This paper investigates the quality of scalable UQ schemes for NN potentials, specifically
SG-MCMC and the non-Bayesian Deep Ensemble method. As a representative of SG-
MCMC schemes, we selected the preconditioned Stochastic Gradient Langevin Dynamics
(pSGLD) method with RMSprop. Additionally, this work compares the impact of using a
single Markov chain (S-pSGLD) versus multiple Markov chains (M-pSGLD).

In a toy example of a LJ potential with training data points within the potential energy
well, both M-pSGLD and the Deep Enesmble method yield high quality approximations
of the posterior predictive distribution as predicted by the No-U-Turn Sampler (NUTS),
a gold-standard HMC scheme. In contrast, S-pSGLD significantly underestimates the
epistemic uncertainty outside the training data distribution because it only samples a single
posterior mode. Interestingly, also the NUTS with a single Markov chain fails to sample
multiple posterior modes. This indicates that sampling multiple posterior modes with a
singe Markov chain is difficult in the molecular energy-matching task, even for sophisticated
posterior exploration schemes.

Next, we used the scalable UQ schemes to train the DimeNet++ model for CG liquid
water via FM. In this case, M-pSGLD and the Deep Ensemble method quantify the epistemic
uncertainty accurately. The true values are contained within the MD observable credible
intervals, both within the training data distribution as well as under temperature shift.
However, the latter is only possible if the NN potential can account for the state-point
dependency of the PMF. Otherwise, the error from the state-point change cannot be
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captured due to model misspecification, resulting in unquantified systematic uncertainty.
Lastly, the problem of CG alanine dipeptide demonstrates the value of UQ in the case of

insufficient training data. All considered UQ schemes predict very large epistemic uncertainty
when models sample unphysical phase-space regions. This signals to practitioners that the
obtained results are not yet trustworthy and that more data needs to be gathered in order
to sufficiently constrain the NN potential. Hence, scalable UQ also proves valuable during
the NN training process.

In all of the considered test cases, S-pSGLD yielded overconfident uncertainty estimates.
This highlights the importance of sampling multiple posterior modes, which can be achieved
most reliably by de-correlation of the NN potentials via different random initializations.
Additionally, cold posteriors proved beneficial to Bayesian training of NN potentials,
reducing the required amount of training data significantly. However, uncovering the source
of this cold posterior effect requires further research. Furthermore, the results show that
the Deep Ensemble method quantifies epistemic uncertainty as well as M-pSGLD, while
requiring less training and hyperparameter tuning. This is in contrast to prior research that
suggests that the Deep Ensemble method was prone to overconfidence and less reliable than
Bayesian methods. Rather, the Deep Ensemble method can be interpreted as Bayesian
model averaging, where the posterior predictive distribution is approximated via multiple
approximate maximum a-posteriori points. Finally, NN potentials are well suited for UQ
given that many-body interactions and state-point dependency can be included by default.
Consequently, systematic uncertainties can be minimized, which allows for the prediction
of accurate credible intervals. Hence, quantifying the uncertainty of MD observables is an
important building block for trustworthy NN potential-based MD simulations.
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ABSTRACT: Neural network (NN) potentials promise highly
accurate molecular dynamics (MD) simulations within the computa-
tional complexity of classical MD force fields. However, when
applied outside their training domain, NN potential predictions can
be inaccurate, increasing the need for Uncertainty Quantification
(UQ). Bayesian modeling provides the mathematical framework for
UQ, but classical Bayesian methods based on Markov chain Monte
Carlo (MCMC) are computationally intractable for NN potentials.
By training graph NN potentials for coarse-grained systems of liquid
water and alanine dipeptide, we demonstrate here that scalable
Bayesian UQ via stochastic gradient MCMC (SG-MCMC) yields
reliable uncertainty estimates for MD observables. We show that
cold posteriors can reduce the required training data size and that for
reliable UQ, multiple Markov chains are needed. Additionally, we find that SG-MCMC and the Deep Ensemble method achieve
comparable results, despite shorter training and less hyperparameter tuning of the latter. We show that both methods can capture
aleatoric and epistemic uncertainty reliably, but not systematic uncertainty, which needs to be minimized by adequate modeling to
obtain accurate credible intervals for MD observables. Our results represent a step toward accurate UQ that is of vital importance for
trustworthy NN potential-based MD simulations required for decision-making in practice.

1. INTRODUCTION
Molecular dynamics (MD) simulations are the computational
tool of choice to describe complex molecular phenomena.
Their computational effort and accuracy depend on the chosen
potential energy model. Neural network (NN) potentials,1−7

which model many-body interactions,8,9 promise MD simu-
lations at ab initio accuracy4,10 within the computational
complexity of classical molecular mechanics force fields.

The quality of NN potentials is limited by the scarcity of
suitable training data,11 given that data generation via
computational quantum mechanics simulations and/or experi-
ments is resource intensive. Hence, potentials are commonly
applied outside their training domain due to the high-
dimensional chemical space. As NN potentials are data-driven
black box models, predictions outside the training domain may
be inaccurate or even unphysical.12−14 This may hinder more
widespread adoption of NN potentials in practical applications
where less powerful but physically more constrained models
are preferred.15

Uncertainty quantification (UQ) can provide a remedy, as it
enables practitioners to quantify the trustworthiness of MD
simulation predictions.16−18 Additionally, the availability of a
UQ metric enables more efficient training data generation via
active learning,14,19−23 as well as an adaptive combination of
NN potentials with established classical force fields.24 Bayesian
statistics provides a mathematically rigorous approach to UQ.

However, classical Bayesian inference schemes based on
Markov Chain Monte Carlo (MCMC), such as Hamiltonian
(or hybrid25) Monte Carlo (HMC),26 require an evaluation of
the likelihood over the whole data set for each parameter
update. Frequent full likelihood evaluations are prohibitively
expensive for computationally demanding NNs and large data
sets.27 Stochastic gradient MCMC (SG-MCMC) schemes28−32

enable scalable Bayesian UQ of NNs by computing stochastic
estimates of the gradient of the likelihood on a mini-batch of
data. Stochastic variational inference33,34 represents another
scalable Bayesian UQ method, while the Deep Ensemble35,36

method is a popular non-Bayesian15,36−38 alternative.
In the context of NN potentials, the Deep Ensemble method

is in fact the most common UQ scheme,5,24,27 but Dropout
Monte Carlo39 and last-layer Gaussian Mixture Models40 have
also been applied. In view of the poor performance of the Deep
Ensemble method in an active learning context, Kahle and
Zipoli27 recently hypothesized that Bayesian approaches may
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provide more reliable uncertainty estimates for NN potentials.
However, a comprehensive assessment of Bayesian UQ in the
context of NN potentials is still outstanding.

In this work, we investigate scalable Bayesian UQ of MD
observables for simulations utilizing NN molecular models. To
this end, we first compare the UQ quality of a SG-MCMC
method to the popular Deep Ensemble method and a gold-
standard15,31,32,41 HMC sampler based on a Lennard-Jones
(LJ) system with a 2-body toy NN potential. We then extend
the comparison by learning graph NN potentials for coarse-
grained (CG) systems of water and alanine dipeptide,
demonstrating the practical applicability of SG-MCMC
methods to fully-Bayesian modeling of graph NN potentials.
Additionally, we investigate the influence of so-called cold
posteriors38 and the number of MCMC chains on the quality
of Bayesian UQ. Finally, we advocate distinguishing between
different sources of uncertainty; in particular, we highlight the
importance of minimizing systematic uncertainties to obtain
reliable credible intervals of MD observables.

2. METHODS
In the following, we briefly summarize the employed SG-
MCMC sampler as well as the Deep Ensemble method and
continue with an outline of the Bayesian molecular modeling
problem considered in this work.

2.1. Sources of Uncertainty. The uncertainty in physical
modeling can be divided into aleatoric, epistemic and
systematic uncertainty.15 Aleatoric uncertainty refers to the
inherent stochastic nature of the modeled process, which can
be interpreted as randomness in the labels y for a given input
x.41,42 Epistemic uncertainty refers to the uncertainty about the
true hypothesis (model) within the considered hypothesis
space (model family). In contrast to aleatoric uncertainty,
epistemic uncertainty can be reduced by gathering more data.
Finally, systematic uncertainty is caused by model misspeci-
fication, i.e., when the true data-generating process is not
contained within the hypothesis space. Systematic uncertainty
manifests itself in an inconsistency between the data and the
hypothesis space.42

2.2. Bayesian Modeling. A probabilistic model p(y|x, θ)
predicts the distribution of y reflecting the aleatoric
uncertainty, given a training data set = { } =x y,i i i

N
1 of size

N. Bayesian UQ additionally aims to quantify the epistemic
uncertainty resulting from the model fit to a finite amount of
data.15,37 Instead of selecting a single set of model parameters
θ, the Bayesian approach promises more robust predictions by
marginalizing over θ.43 Hence, the goal of Bayesian UQ is to
compute the posterior predictive distribution

| = | |p p p dy x y x( , ) ( , ) ( ) (1)

where |p( ) is the posterior distribution. The integral in eq 1
is typically approximated by the Monte Carlo method:

| |
=

p
N

py x y x( , )
1

( , )
n

N

n
1 (2)

where θn represents the nth model parameter set drawn from
the posterior. Evaluating eq 2 requires sampling from the
posterior distribution

| = |
p

p p
p

( )
( ) ( )

( )
exp

( )i
k
jjjj

y
{
zzzz (3)

with likelihood |p( ) and prior p(θ). In analogy to statistical
mechanics, the posterior can be rewritten to allow sampling
from a Boltzmann-type distribution,26 with posterior potential
energy

= |
=

p py x( ) log ( , ) log ( )
i

N

i i
1 (4)

and posterior temperature , which is introduced as an
additional hyperparameter. = 1 corresponds to the Bayesian
posterior, while < 1 are sharper44 cold posteriors.38

The gold-standard HMC25,26 method leverages the gradient
( ) to simulate Hamiltonian dynamics to generate

parameter proposals for the Metropolis Hastings45 (MH)
acceptance step, which guarantees that the equilibrium
distribution of the Markov chain corresponds to |p( ).
The computation of ( )26 requires an evaluation of the
(NN) model for the whole training data set (eq 4),
rendering HMC computationally intractable for training NN
potentials.27,46

2.3. Stochastic Gradient MCMC. Stochastic gradient
MCMC (SG-MCMC) methods28−31 achieve enormous
computational speed-ups by replacing ( ) by a stochastic
estimate over a mini-batch of data

= |
=

N
B

p py x( ) log ( , ) log ( )
i

B

i i
1 (5)

where B is the mini-batch size.
The simplest SG-MCMC scheme is the Stochastic Gradient

Langevin Dynamics (SGLD) method,28 which updates
parameters according to

= ++ 0 I
2

( ) ; ( , )k k
k

t t k1

(6)

The learning rate λk is decreasing as a function of update step
k, and ηt is a learning rate-dependent Gaussian noise vector. λk
typically follows a polynomial schedule:28,47

= +a k( 1)k (7)

where a is the initial learning rate and γ is the decay rate. To
reduce the bias due to the omitted MH acceptance step, it is
necessary to sample only below a certain learning rate
threshold, given that the acceptance probability asymptotically
converges to 1 for λ → 0. Hence, SGLD smoothly transitions
from stochastic posterior maximization to asymptotically
unbiased sampling from |p( ) during training.28,47 In our
experiments, we employ a preconditioned version of SGLD
(pSGLD),30 which uses a RMSProp48 preconditioner to
simplify sampling the highly nonconvex posterior of
NNs,30,49 as implemented in jax-sgmc.50

2.4. Deep Ensemble Method. Analogous to the Monte
Carlo approximation in Bayesian UQ (eq 2), the Deep
Ensemble method35,36 estimates epistemic uncertainty from
the statistics of predictions from an ensemble of NNs.
However, instead of sampling models from the posterior, the
ensemble of NNs is generated by minimizing a loss function
via stochastic gradient descent, starting from different random

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c01267
J. Chem. Theory Comput. 2023, 19, 4520−4532

4521

3. Publications

54



NN weight initializations. If desired, aleatoric uncertainty can
be quantified by additionally predicting standard deviations
and minimizing a negative log-likelihood loss.36 While most
authors consider the Deep Ensemble method non-Baye-
sian,15,36−38 Wilson and Izmailov43 compellingly argue that it
can also be interpreted as Bayesian model averaging.

2.5. Neural Network Posterior Landscape. The
posterior distribution of NNs is high-dimensional, nonconvex
and multimodal.43,44,49,51 The NNs of the Deep Ensemble
typically converge to different posterior modes due to the
strong decorrelation effect of different random weight
initializations.43,51 Hence, the Deep Ensemble method
performs a Bayesian model average of NNs corresponding to
different approximate maximum a-posteriori (MAP) points on
the NN posterior (assuming regularization terms that mimic
the prior).43 The Deep Ensemble method therefore exploits
the NN posterior multimodality to estimate the uncertainty. By
contrast, most scalable Bayesian methods, including single-
chain SG-MCMC and stochastic variational inference, have
been found to typically approximate a single posterior mode
only.37,41,43 However, sampling multiple posterior modes is
essential for robust UQ.43

2.6. Multichain SG-MCMC. Sampling the posterior with
multiple randomly initialized SG-MCMC chains appears to be
a promising approach. It combines Bayesian posterior
exploration along the Markov chain with strong decorrelation
from different random initializations, the benefits of which
have been shown to be complementary.44,51 Multichain SG-
MCMC can be interpreted as a custom trade-off between the
number of approximated posterior modes and the amount of
Bayesian exploration per mode, with single-mode Bayesian
methods and the Deep Ensemble method representing the two
extreme cases.

The computational training cost of the Deep Ensemble
method and SG-MCMC can be estimated as C * nsteps * nchains,
where nchains is the number of ensemble members (chains),
nsteps is the number of parameter updates per ensemble
member (chain), and C is the cost per update. Training the
different ensemble members (chains) can be parallelized
trivially, if desired.

2.7. Probabilistic Molecular Modeling. 2.7.1. Maximum
Likelihood Molecular Modeling. The most common training
scheme for atomistic (AT) NN potentials is to match the
potential energy (possibly also forces and virial) of an
underlying high-fidelity model, usually a computational
quantum mechanics scheme,52 given a training data set of
Nbox molecular states.8 This can be achieved by minimizing the
mean-squared error loss function

= [ ]
=

L
N

U U( )
1

i

N

i i
box 1

,
2

box

(8)

where Ui and Ui,θ are the target and predicted potential
energies of molecular state i, respectively. The predicted
potential energy Uθ(r) depends on atom positions r.

Similarly, for CG systems, the NN potential can be trained
via force matching (FM),53−56 i.e., matching the instantaneous
force components Fj acting on each CG particle as computed
from the AT force field:

= [ ]
=

L
N

F F( )
1

j

N

j j
F 1

,
2

F

(9)

where NF is 3 times the number of CG particles in the training
data set. The predicted force components are computed from
the CG NN potential Fθ = −∇RUθ

CG(R), which acts on CG
coordinates R = M(r). M is a linear function that maps from
AT to CG coordinates. For infinite data and model capacity,
Uθ

CG(R) converges to the potential of mean force (PMF).
Given that multiple AT configurations map to the same CG
configuration, there exists a lower bound of the loss in eq 9,
which corresponds to the loss of the PMF.12,54

2.7.2. Bayesian Molecular Modeling. Assuming independ-
ent Gaussian homoscedastic aleatoric uncertainty with variance
σH

2 , the probabilistic model of the energy matching task is
|p U Ur r( , ) ( ( ), )H

2 . In this case, the likelihood can be
written similar to eq 8 as27
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(10)

The probabilistic model and the likelihood for the FM task
follow analogously. The loss minima in eqs 8 and 9 correspond
to the likelihood maxima in eq 10.

The aleatoric uncertainty is uncertainty inherent to the data.
When learning atomistic models from simulation data, the
aleatoric uncertainty stems from the data-generating simulation
and is typically small. For CG systems, the noninjective CG
mapping contributes significantly to the aleatoric uncertainty.
The variance of the aleatoric uncertainty σH

2 is typically
unknown a priori, and we model it as a learnable parameter.
Thus, the prior p(θ) = p(w)p(σH) is the product of a prior for
the NN potential weights and biases w and a prior for the
aleatoric uncertainty scale.

Figure 1. Visualization of numerical test case systems: (a) Lennard-Jones potential, (b) coarse-grained liquid water (Adapted with permission from
ref 13. Copyright The Authors 2021.), (c) coarse-grained alanine dipeptide.
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2.8. Neural Network Potential. We choose a graph NN
potential, which is a state-of-the-art NN architecture that learns
to extract predictive features from the molecular configuration
in an end-to-end manner instead of relying on hand-crafted
descriptors.2,3 Specifically, we select our previously published
implementation13 of the DimeNet++4,5 potential. We set all
hyperparameters to their default values, including the graph
cutoff radius of rcut = 0.5 nm, except for embedding sizes,
which we reduce by factor 4 for computational speed-up. We
select a Gaussian prior over all learnable weights and biases
p w 0 I( ) ( , 10 )2 , except for the radial Bessel frequencies,4

which we model by a uniform distribution.
Given that DimeNet++ trained via FM tends to yield

unstable MD simulations,57 we augment the NN potential with
a fixed, physics-informed ”prior” potential Uprior(R):12,58,59

= +U U UR R R( ) ( ) ( )CG NN prior (11)

Note that Uprior(R) is not a prior in the Bayesian sense but
rather a physics-informed initialization that enforces physically
reasonable predictions in phase-space regions unconstrained
by the training data12,13,60 (see Supplementary Methods 1 for
more details).

3. RESULTS
We present three examples (Figure 1) to distinguish between
different sources of uncertainty: A LJ toy example features
epistemic uncertainty only, while the following two CG
systems include a significant amount of aleatoric uncertainty.

We additionally show the effects of systematic uncertainty for
liquid water and for alanine dipeptide.

3.1. Lennard-Jones Potential. We learn a LJ potential
(σLJ, ϵ) with a pairwise additive NN potential to benchmark
the scalable UQ methods against a HMC scheme. As the
reference method, we select the No-U-Turn Sampler
(NUTS),61 which selects the number of HMC integration
steps on-the-fly. Additionally, a window adaption warm-up
scheme62,63 automatically selects an appropriate mass matrix
and step size, such that no hyperparameter tuning is required
for the NUTS. The NN potential predicts the pairwise
potential energy U(d) given pairwise particle distance d and
consists of a single hidden layer with 64 neurons and swish
activation, where d is represented by six radial Bessel
functions4 with a cutoff rcut = 2.5σLJ. We choose a Gaussian
prior for weights and biases p w 0 I( ) ( , ) and an
exponential prior with scale 1 for the aleatoric uncertainty
p(σH). For all Bayesian methods, we sample 100 models from
the Bayesian posterior ( = 1), evenly distributed over all
considered Markov chains. The training data consists of 100
randomly drawn training data points from the well of the LJ
potential d/σLJ ∈ [1.0615, 1.1800] (Supplementary Figure 1).
Additional technical details are provided in Supplementary
Methods 2.

In the following, we benchmark pSGLD with a single chain
(S-pSGLD), pSGLD with 10 chains (M-pSGLD), and a Deep
Ensemble consisting of 10 NNs against a 10 chain NUTS. The
obtained mean potentials and corresponding standard
deviation intervals are visualized in Figure 2. The mean
potentials of all considered methods fit the LJ potential very

Figure 2. Distribution of NN potentials. Predicted mean potential with ±σ and ±2σ intervals of the single chain pSGLD (a), the multichain
pSGLD (b), the Deep Ensemble method (c) and the multichain No-U-Turn Sampler (NUTS, d), compared to the Lennard-Jones reference.
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well where training data were generated: On held-out data
within the training interval, we obtained low root-mean-
squared errors (RMSE/ϵ) of 0.011 (S-pSGLD), 0.014
(NUTS), 0.023 (M-pSGLD), and 0.025 (Deep Ensemble).

Bayesian methods estimate the scale of the aleatoric
uncertainty to σH/ϵ ≈ 10−3. Such low estimates are expected
given that the aleatoric uncertainty of the LJ data set is zero
and the NN potential has sufficient capacity to interpolate the
training data. Hence, we neglect the contribution of the
aleatoric uncertainty in the following uncertainty predictions
and only show the epistemic uncertainty. The S-pSGLD
method samples a single posterior mode only, yielding highly
overconfident potential energy predictions outside the training
interval. By contrast, the other methods using multiple
randomly initialized models sample multiple posterior modes,
such that they can capture a significant amount of epistemic
uncertainty. Accordingly, the obtained credible intervals
include the reference potential across a broad range of
distances. Both M-pSGLD and the Deep Ensemble method
provide good approximations to the NUTS reference
distribution. However, compared to the NUTS reference, the
Deep Ensemble method underestimates uncertainty at short
distances and M-pSGLD overestimates uncertainty at medium
distances.

All UQ methods sampling multiple modes exhibit a similar
shape of the predicted epistemic uncertainty. Local uncertainty
maxima are located between 1.4σLJ < d < 1.8σLJ, and the
uncertainty significantly increases for d < 0.9σLJ. This
uncertainty shape is the result of the NN potential architecture
and the location of the training data set: On the one hand, the
radial Bessel representation4 of d smoothly shrinks the NN
potential toward 0 at rcut. On the other hand, the training data
constrains the potential for 1.06σLJ < d < 1.18σLJ. Hence, these
results are consistent with the expectation that the epistemic
uncertainty should increase with the distance from points that
constrain the potential.

We further investigate the effect of the number of randomly
initialized models (number of Markov chains for MCMC) on
UQ quality. The miscalibration area (MCA)64−66 quantifies
the agreement between the predicted standard deviation and
the true error. For all methods, the MCA shows a decreasing
trend with increasing number of randomly initialized models
(Figure 3a). This reflects the importance of sampling multiple
posterior modes for robust UQ,43 which can be achieved
comparatively easily by exploiting the strong decorrelation

effect of random NN initializations.43,51 Different posterior
modes represent different potentials, all of which are consistent
with the training data but differ significantly where there is no
data available, thus capturing the epistemic uncertainty (Figure
3b).

The inability to sample multiple posterior modes using a
single Markov chain is not unique to pSGLD. A single chain of
the NUTS also samples a single posterior mode only, and the
captured epistemic uncertainty increases with additional chains
(see also Supplementary Figure 3). This suggests that sampling
multiple posterior modes with a single Markov chain is difficult
to achieve when training NN potentials, even for sophisticated
posterior exploration schemes. Finally, we note that by
artificially fixing σH to a large value as in ref 27, the single
chain NUTS predicts large epistemic uncertainty outside the
training interval (Supplementary Figure 3). However, this
comes at the cost of a larger error within the training interval
(RMSE/ϵ = 0.044 for σH/ϵ = 0.05) given that models with
poorer fit also appear probable due to the allegedly large
aleatoric noise in the data.

3.2. Coarse-Grained Liquid Water. We apply pSGLD
and the Deep Ensemble method to CG liquid water, a classic
benchmark problem, to test their respective performance both
within the training distribution as well as under distribution
shift. The reference data consists of 100 cubic boxes of length l
= 3.129 nm containing 1000 water molecules each, sampled
every 1 ps from the TIP4P/200567 model at a temperature Tref
= 298 K, resulting in a pressure pref = −6.2 MPa. We divide the
data into training, validation and test with a 80%-8%-12% split.
Each water molecule is modeled by a CG particle positioned at
its center of mass.

We select the repulsive part of the LJ potential as prior
potential

=
=

U
d

R( )
i

N

i

prior

1
w

w
12pair i

k
jjjjj

y
{
zzzzz (12)

with ϵw = 1 kJ/mol and σw = 0.3165 nm, where σw corresponds
to the length scale of the SPC water model.68 This corresponds
to the Uprior used in our previous works, where we found
DimeNet++ results to be insensitive to the specific prior
potential chosen.13,60 We account for the thermodynamic state
point dependency of the PMF54,69,70 by augmenting the edge
embedding of DimeNet++ by two learnable 16 dimensional
vectors, one multiplied and one divided by kBT. This dual

Figure 3. Posterior mode analysis. (a) Miscalibration area (MCA) of the No-U-Turn Sampler (NUTS), the pSGLD, and the Deep Ensemble
methods as a function of the number of randomly initialized models. The MCA includes both within and out-of-distribution test data. (b) All
predicted potentials of the Deep Ensemble method with resulting mean compared to the Lennard-Jones reference.
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embedding ensures that the temperature dependency effect
vanishes for neither high nor low kBT.

The models are trained with a batch size of 5 boxes, an
initial learning rate a = 5 × 10−4 and a polynomial learning rate
decay schedule (eq 7) with γ = 0.55. We generate a Deep
Ensemble of 8 models and train each for 100 epochs with the
Adam71 optimizer with default parameters. For each training
trajectory, we select the model parameters with the smallest
validation loss, giving the Deep Ensemble method a slight
advantage in terms of data usage over the Bayesian methods.
For Bayesian modeling, we select a prior distribution p(σH) ∼
Γ(5, 27), incorporating the prior knowledge that σH > 0 due to
the noise from the noninjective CG mapping.56 By default, we
select a posterior temperature = 0.01. Each pSGLD chain is
run for 10000 epochs, 8000 of which are discarded as burn-in.
We randomly subsample the remaining models such that a
total of 40 models are selected, evenly distributed over all
available chains (8 chains for M-pSGLD, 1 chain for S-
pSGLD). One chain of the M-pSGLD method yielded poor
potentials, and we omitted it for a more balanced comparison.

First, we evaluate the mean force predictions on the test
data. The Deep Ensemble method with a RMSE of 135.8 kJ/
(mol nm) is more accurate than S-pSGLD and M-pSGLD with
RMSE = 137.2 kJ/(mol nm) and RMSE = 136.6 kJ/(mol nm),
respectively. We were unable to find a set of pSGLD
hyperparameters that closed the error differential to the
Deep Ensemble method. The force error is dominated by the
large aleatoric uncertainty, which is estimated as σH = 136.6
kJ/(mol nm) by S-pSGLD.

We run CG MD simulations at a temperature T = Tref to
investigate the resulting observables without a distribution
shift. All CG MD simulations use a time step of 2 fs and are
equilibrated for 10 ps, followed by 100 ps of production, where
a state is retained every 0.1 ps. The CG MD simulation
averages over the aleatoric uncertainty resulting from the CG
mapping. Consequently, the predicted standard deviation of
observables σ includes the epistemic uncertainty as well as a
small amount of MD sampling uncertainty due to finite
trajectory lengths. Figure 4 shows the resulting distributions of
angular distribution functions (ADFs). The mean prediction of
the Deep Ensemble method matches the AT reference well
and is slightly more accurate than the S-pSGLD and M-
pSGLD schemes, reflecting the lower test set RMSE.
Additionally, the 2σ credible interval of the Deep Ensemble
method covers the AT reference, and areas with higher
uncertainty correspond to areas with larger error. M-pSGLD
captures slightly more variance than S-pSGLD, but both
schemes are overconfident. The overconfidence of M-pSGLD
seems to be primarily attributable to a larger deviation of the
predicted mean ADF from the reference curve (in line with the
larger test set RMSE) and only secondarily to less captured
epistemic uncertainty compared to the Deep Ensemble
method. The conclusions drawn from the radial distribution
function (RDF) predictions are identical (Supplementary
Figure 4).

We investigate the impact of the Gaussian prior for weights
and biases by retraining the NN potential with an improper
uniform distribution. The obtained results for S-pSGLD are
largely identical to the Gaussian prior case (Supplementary
Figure 5). However, the Gaussian prior appears to improve the
learning robustness: With the uniform distribution, a total of 4
M-pSGLD Markov chains yielded models with large errors in
the mean predictions, compared to only a single Markov chain

with the Gaussian prior. Having verified that neither of the
priors p(w) and p(σH) are too restrictive, we hypothesize that
the higher RMSEs of the pSGLD schemes may be the result of
the training, where the coupling of learning rate and additive
random noise might impede convergence to models with the
highest likelihood.

Next, we investigate the impact of the posterior temperature
on pSGLD models (Figure 5). With the Bayesian posterior
= 1, S-pSGLD requires a large data set (1000 boxes) to

sample accurate models. For a medium data set size (300
boxes), the obtained models are highly inaccurate compared to
using the cold posterior = 0.01. For smaller data set sizes,
models sampled with the Bayesian posterior result in unstable

Figure 4. Angular distribution functions (ADFs) at T = Tref. Resulting
mean ADFs with ±σ and ±2σ intervals as predicted by the Deep
Ensemble method (a), the single chain pSGLD (b) and the
multichain pSGLD (c) schemes at a temperature T = Tref, compared
to the atomistic reference.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c01267
J. Chem. Theory Comput. 2023, 19, 4520−4532

4525

3. Publications

58



CG MD simulations. By contrast, the cold posterior allows us
to sample accurate models with only a fraction of the data (30
boxes). Moreover, the accuracy of pSGLD models hinges on a
sufficient amount of burn-in epochs to reduce the learning rate
(Supplementary Figure 6). Consequently, the pSGLD schemes
require significantly more computational training effort in this
example than the Deep Ensemble method. Still, the Deep
Ensemble method yields more accurate models for all data set
sizes considered in Figure 5.

To test the quality of UQ under distribution shift, we apply
the obtained models at a temperature T = 260 K. The mean
predictions of the considered UQ schemes are very similar to
each other and, as expected, deviate from the respective TIP4P
results (Figure 6). While S-pSGLD results in highly over-
confident predictions, both M-pSGLD and the Deep Ensemble
method provide accurate credible intervals, with a slight
advantage for the latter. The predicted RDFs allow for identical
conclusions (Supplementary Figure 7). The accurate ADF
credible intervals we obtained with the M-pSGLD and the
Deep Ensemble method stand in contrast to previous findings
with a 2-body cubic spline model:72 Given that the 2-body
spline cannot model many-body effects, uncertainty with
respect to 3-body interactions cannot be captured in the
epistemic uncertainty. This model misspecification results in
systematic uncertainty not included in the credible interval.
This highlights the advantage of the many-body capabilities of
NN potentials in a UQ context.

Finally, we study the impact of the kBT-dependent edge
embedding. In the first step, we match the AT reference
pressure at Tref during the FM training (details in
Supplementary Methods 3). Using the Deep Ensemble
method, we then compute the density ρ as a function of
temperature with and without the kBT-dependent embeddings
(Figure 7). As desired, the credible interval includes the AT
reference and the uncertainty increases with the distance from
the training temperature Tref for the kBT-dependent model. By
contrast, without kBT-dependent embedding, the predicted
uncertainty barely increases with the distance from Tref,
resulting in overconfident predictions due to model mis-
specification. Given that the kBT dependence enables a broader
range of outcomes at T ≠ Tref, the mean predictions also
change significantly and yield smaller errors further away from
Tref. These results highlight the potency of scalable UQ

methods to quantify errors resulting from applying CG models
at different thermodynamic state points than during training.

3.3. Coarse-Grained Alanine Dipeptide. We consider
the benchmark problem of learning the free energy surface
(FES) of alanine dipeptide,73,74 which has recently been shown
to be a challenging task for NN potentials trained via FM.57,60

Here, we investigate the sources of these challenges using the
scalable UQ toolbox. We build on the computational setup of
our previous study:60 The CG map retains all 10 heavy atoms
of alanine dipeptide, dropping hydrogen atoms and water
molecules. The CG particles modeling CH3, CH and C are
encoded as different particle types. The training data set
consists of a 100 ns AT trajectory at Tref = 300 K, which is

Figure 5. Cold posterior effect. Root-mean-squared error (RMSE) of
the mean predicted angular distribution function (ADF) at T = Tref of
the Deep Ensemble method and the single chain pSGLD scheme with

= 1 and = 0.01 for different data sizes. Note that pSGLD = 1
yields unstable MD simulations for data sizes of 30 and 100 boxes.

Figure 6. Out-of-distribution angular distribution functions (ADF) at
T = 260 K. Resulting mean ADFs with ±σ and ±2σ intervals as
predicted by the Deep Ensemble (a), the single chain pSGLD (b) and
the multichain pSGLD (c) schemes at a temperature T = 260 K,
compared to the atomistic reference.
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subsampled to 5 × 105 data points by retaining a state every
0.2 ps. The first 80 ns form the training set, and the subsequent
8 ns, the validation set. To counteract the instability of
DimeNet++ in CG MD simulations of alanine dipeptide,57 we
add a prior potential Uprior(R) (eq 11) that consists of
harmonic bonds and angles, as well as proper dihedrals. For
more technical details on Uprior and the AT reference data, we
refer to our previous work.60

We train all models with an initial learning rate a = 10−3 and
a polynomial learning rate decay schedule (eq 7) with γ = 0.55,
as well as a batch size of 512 configurations. The 8 models of
the Deep Ensemble method are trained for 1000 epochs, using
the Adam71 optimizer with default parameters. For each
training trajectory, we select the model parameters with the
smallest validation loss. pSGLD chains are run for 3000
epochs, with the first 2500 epochs discarded as burn-in. We
randomly subsample the remaining models such that a total of
40 models are selected, evenly distributed over all available
chains (8 chains for M-pSGLD, 1 chain for S-pSGLD). We
select a prior distribution p(σH) ∼ Γ(10, 40) and a posterior
temperature = 0.05.

We initially evaluate the performance of the considered
methods on the test set: The S-pSGLD (RMSE = 414.12 kJ/
(mol nm)), M-pSGLD (RMSE = 414.01 kJ/(mol nm)) and
Deep Ensemble methods (RMSE = 413.84 kJ/(mol nm)) yield
very similar accuracy, with a slight advantage for the Deep
Ensemble method. This is in line with the aleatoric uncertainty
scale σH = 414.69, estimated by S-pSGLD.

We perform a 100 ns CG MD production simulation for all
sampled models in order to compute the FES. To obtain the
same number of trajectories as with the pSGLD schemes, each
of the 8 Deep Ensemble models generates 5 trajectories, all
starting from different initial states. Despite using a prior
potential, some models became stuck in unphysical potential
energy ”holes”,14 i.e. deep potential energy minima in rarely
sampled phase-space regions, which also led to instability in
some cases. These potential energy holes might be avoided by
employing better prior potentials or by incorporating MD
simulations into training, e.g. via active learning14,19 or
alternative training schemes such as relative entropy (RE)
minimization.60,75,76 We note that using the Bayesian posterior

= 1 significantly increased the number of unphysical
trajectories (tested for S-pSGLD). For = 1, we observed

results of comparable quality to = 0.05 only when
increasing the data set to 1 μs.

First, we investigate UQ results after removing unphysical
trajectories that mainly sampled configurations in a potential
energy hole. To this end, we removed 1, 7, and 13 trajectories
from the S-pSGLD, the M-pSGLD and the Deep Ensemble
methods, respectively. The resulting means and standard
deviations of the dihedral angles ϕ and ψ73,74 are shown in
Figure 8. The mean predictions of S-pSGLD and M-pSGLD
are very similar, but�consistent with the examples above�S-
pSGLD significantly underestimates the epistemic uncertainty.
The Deep Ensemble method yields similar mean predictions in
ϕ and a slightly improved mean prediction in ψ. The M-
pSGLD predicts larger epistemic uncertainty in ϕ, while the
Deep Ensemble method predicts larger uncertainty in ψ.
However, all considered methods show that the epistemic
uncertainty is not sufficiently large to fully account for the
deviation from the AT reference in this case.

To contextualize this result, we replace the FM training by
RE minimization. Given that the RE model trained on the
same data set can match the AT FES accurately,60 insufficient
model capacity is not the main limiting factor. Additionally, a
poor approximation of the posterior by the considered UQ
methods, which would result in an incorrect size of the
predicted credible interval, can also be ruled out: The posterior
probability ratio of the RE model and the last model sampled
by the S-pSGLD FM scheme is | | =p p( )/ ( ) eRE FM

25872

. This is in line with previous findings showing that the error
on held-out force data is smaller for FM than for RE for alanine
dipeptide.60 Given that the posterior probability ratio of the
RE model is numerically zero, UQ schemes with a FM-based
posterior cannot sample the RE model.

Multiple mechanisms may contribute to the comparatively
weak FES prediction of FM models. First, the FES of a FM
model is sensitive to predictions in sparsely resolved transition
regions.60 Second, if a CG MD simulation is able to reach
unphysical phase-space regions, sampling such configurations
yields an erroneous FES. Both of these mechanisms result in
very large epistemic uncertainty. We empirically show this
effect when we include trajectories that sampled potential
energy holes in the evaluation of the FES distribution
(Supplementary Figure 8). In particular, the predicted credible
intervals of M-pSGLD and the Deep Ensemble method mostly

Figure 7. Water density profile. Resulting mean density ρ at pressure p = 1 bar with ±σ and ±2σ intervals as predicted by the Deep Ensemble
method using the kBT-dependent reference model (a) and the same model without the kBT-dependent edge embedding (b), compared to the
atomistic reference.
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cover the reference FES in this case. Hence, these UQ methods
can signal to practitioners that the obtained results are not yet
trustworthy.

Rather, more data needs to be generated to further constrain
the learned models. We increased the data set size by a factor
of 10 by generating an AT trajectory of 1 μs length.
Interestingly, simply generating more Boltzmann-distributed
training data did not solve the potential energy hole problem,
nor did it significantly reduce the deviation of the mean
prediction when neglecting trajectories stuck in potential
energy holes (Supplementary Figure 9). Hence, generating
more diverse, non-Boltzmann distributed data sets, e.g. via

enhanced sampling schemes77,78 or active learning,14,19 seems
to be a more promising approach.

The remaining deviation of the mean prediction from the
reference FES that is not captured by the predicted epistemic
uncertainty (Figure 8) suggests that other, likely systematic
sources of error exist. For finite model capacity, a systematic
difference between FM and RE minimization is the objective
function: RE training minimizes the difference between the
potential energy surfaces of the AT and CG models,79 which is
directly related to the FES. In contrast, the optimum of a force-
based training objective might trade off accuracy in the FES for
improved accuracy in other (e.g., thermodynamic60) observ-
ables, resulting in systematic uncertainty in the predicted FES.

Figure 8. Dihedral angle density histograms. Resulting mean distribution of dihedral angles ϕ (left column) and ψ (right column) with ±σ and ±2σ
intervals as predicted by the single chain pSGLD (a, b), the multichain pSGLD (c, d) and the Deep Ensemble (e, f) methods, compared to the
atomistic reference.
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Additionally, numerical errors introduced by the CG MD
simulation, similar to the shadow Hamiltonian effect,80,81 can
be corrected for by RE minimization.60 In FM models, these
numerical errors manifest as unquantifiable systematic
uncertainty. However, for a comprehensive analysis of the
relative impact of each error mechanism, further research is
needed.

4. DISCUSSION AND CONCLUSION
Our results show that M-pSGLD is well suited to estimate the
epistemic uncertainty of MD observables. This method enables
fully-Bayesian UQ for NN potentials. All experiments highlight
the importance of sampling multiple posterior modes.
Exploiting the strong decorrelation effect of multiple random
NN initializations via multiple Markov chains is an effective
means to this end. In the graph NN examples, cold posteriors
proved beneficial to sample both stable and accurate models,
reducing the required amount of training data significantly.
Hence, we found the number of Markov chains to be the most
important additional M-pSGLD hyperparameter, followed by
the posterior temperature, the prior distributions and the
number of samples per chain.

Both the Deep Ensemble and the M-pSGLD methods
provided good approximations to the epistemic uncertainty
estimated by the NUTS61 in the LJ example. In addition, the
Deep Ensemble method yielded similar UQ quality to M-
pSGLD, although it required less training and hyperparameter
tuning effort. We found no evidence that the Deep Ensemble
method was prone to overconfident predictions, contrasting
prior research in an active learning setting.27 Instead, our
results suggest that the Deep Ensemble method quantifies
epistemic uncertainty effectively, both within and out of the
training distribution.

M-pSGLD promises accurate UQ by leveraging the
complementary benefits from sampling multiple posterior
modes and additional Bayesian exploration of each
mode.43,44,51 However, further research into SG-MCMC
schemes is required before routine application in practice: In
our experiments, a single MCMC chain (both pSGLD28 and
NUTS61) sampled a single posterior mode only. Hence, the
development of methods that sample multiple posterior modes
with a single chain, e.g., by leveraging cyclical step size
schedules82 or parallel tempering,83 is important. Additionally,
automatic hyperparameter tuning with a computationally
efficient metric could improve the SG-MCMC efficiency;
e.g., the popular Stein’s discrepancy84 scales quadratically with
the data set size.31 Finally, recent SG-MCMC samplers such as
AMAGOLD82 or SGGMC85 include infrequent Metropolis-
Hastings acceptance steps to avoid the bias of SGLD.28,30

Consequently, these samplers use constant learning rates,
which may counteract the increased training time of SGLD
that results from its small learning rate requirement.47,82

We observed a clear cold posterior effect38 in our
experiments with the graph NN potential. For image
classification tasks, cold posteriors have demonstrated superior
performance in practice.38,86,87 However, this performance
increase is mainly attributed to data augmentation,44 which
increases the effective data size without increasing the data size
considered in the likelihood. Analogously, the effective data
size might be underestimated by the likelihood in eq 10, which
the cold posterior may correct for: When learning the potential
energy of a molecular state, the effective data size is clearly
larger than a single data point. For instance, in the case of a

pairwise additive potential, the effective data size corresponds
to the total number of particle pairs within a cutoff. For FM,
the data size per box considered in the likelihood in eq 10
equals 3 times the number of CG particles, but whether the
effective data size exceeds this value is less clear. More research
into the nature of the cold posterior effect is required�ideally
resulting in likelihood formulations that better consider the
effective data size.

Our results corroborate that for successful UQ, a sufficiently
large hypothesis space is necessary: Effects describable by the
model can be quantified reliably as epistemic uncertainty, but
effects beyond the model capacity become hard to quantify
systematic uncertainties.15,42 For instance, if a potential lacks
important many-body interactions or a CG model lacks state
point dependency, the resulting uncertainty estimates are
overconfident. Consequently, NN potentials are attractive
models in a UQ context, given that they model many-body
interactions inherently.

To obtain uncertainty estimates for MD observables, we
performed a dedicated MD simulation for every sampled NN
potential. This approach is rigorous, as both epistemic
uncertainty and MD sampling uncertainty are captured,18 but
also computationally expensive. The computational effort for
MD simulations scales linearly with the number of sampled
potentials, but the simulations can be parallelized. Distilling the
mean potential energy prediction into a single model via
student−teacher30,88,89 learning could improve computational
efficiency. With this approach, one could obtain uncertainty
estimates for time-averaged observables using a single MD
simulation and a reweighting scheme.24 Concerning the
development of computationally more efficient UQ schemes
for NN potentials,40 we have demonstrated that both M-
pSGLD and the Deep Ensemble method can serve as reliable
baseline schemes. Efficient UQ schemes may pave the way for
more reliable MD simulations based on NN potentials to
support simulation-based decision-making in health care and
material science industries.18
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T. How robust are modern graph neural network potentials in long
and hot molecular dynamics simulations? Mach. Learn.: Sci. Technol.
2022, 3, 045010.

(12) Wang, J.; Olsson, S.; Wehmeyer, C.; Pérez, A.; Charron, N. E.;
De Fabritiis, G.; Noé, F.; Clementi, C. Machine Learning of Coarse-
Grained Molecular Dynamics Force Fields. ACS Cent. Sci. 2019, 5,
755−767.

(13) Thaler, S.; Zavadlav, J. Learning neural network potentials from
experimental data via Differentiable Trajectory Reweighting. Nat.
Commun. 2021, 12, 6884.

(14) van der Oord, C.; Sachs, M.; Kovács, D. P.; Ortner, C.; Csányi,
G. Hyperactive Learning (HAL) for Data-Driven Interatomic
Potentials. arXiv 2022, DOI: 10.48550/arXiv.2210.04225.

(15) Gal, Y.; Koumoutsakos, P.; Lanusse, F.; Louppe, G.;
Papadimitriou, C. Bayesian uncertainty quantification for machine-
learned models in physics. Nat. Rev. Phys. 2022, 4, 573−577.

(16) Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P.
Bayesian uncertainty quantification and propagation in molecular
dynamics simulations: a high performance computing framework. J.
Chem. Phys. 2012, 137, 144103.

(17) Zavadlav, J.; Arampatzis, G.; Koumoutsakos, P. Bayesian
selection for coarse-grained models of liquid water. Sci. Rep. 2019, 9,
99.

(18) Wan, S.; Sinclair, R. C.; Coveney, P. V. Uncertainty
quantification in classical molecular dynamics. Philos. Trans. Royal
Soc. A 2021, 379, 20200082.

(19) Smith, J. S.; Nebgen, B.; Lubbers, N.; Isayev, O.; Roitberg, A. E.
Less is more: Sampling chemical space with active learning. J. Chem.
Phys. 2018, 148, 241733.

(20) Zhang, L.; Lin, D.-Y.; Wang, H.; Car, R.; Weinan, E. Active
learning of uniformly accurate interatomic potentials for materials
simulation. Phys. Rev. Mater. 2019, 3, 023804.

(21) Loeffler, T. D.; Patra, T. K.; Chan, H.; Sankaranarayanan, S. K.
Active learning a coarse-grained neural network model for bulk water
from sparse training data. Mol. Syst. Des. Eng. 2020, 5, 902−910.

(22) Smith, J. S.; Nebgen, B.; Mathew, N.; Chen, J.; Lubbers, N.;
Burakovsky, L.; Tretiak, S.; Nam, H. A.; Germann, T.; Fensin, S.; et al.
Automated discovery of a robust interatomic potential for aluminum.
Nat. Commun. 2021, 12, 1257.

(23) Xie, S. R.; Rupp, M.; Hennig, R. G. Ultra-fast Force Fields
(UF3) framework for machine-learning interatomic potentials. In
American Physical Society March Meeting, Chicago, IL, USA, Mar. 14−
18, 2021.

(24) Imbalzano, G.; Zhuang, Y.; Kapil, V.; Rossi, K.; Engel, E. A.;
Grasselli, F.; Ceriotti, M. Uncertainty estimation for molecular
dynamics and sampling. J. Chem. Phys. 2021, 154, 074102.

(25) Duane, S.; Kennedy, A. D.; Pendleton, B. J.; Roweth, D. Hybrid
Monte Carlo. Phys. Lett. B 1987, 195, 216−222.

(26) Neal, R. M. In Handbook of Markov Chain Monte Carlo, 1st ed.;
Brooks, S., Gelman, A., Jones, G. L., Meng, X.-L., Eds.; Chapman and
Hall/CRC: New York, USA, 2011; Chapter MCMC using
Hamiltonian Dynamics, pp 139−188.

(27) Kahle, L.; Zipoli, F. Quality of uncertainty estimates from
neural network potential ensembles. Phys. Rev. E 2022, 105, 015311.

(28) Welling, M.; Teh, Y. W. Bayesian learning via stochastic
gradient Langevin dynamics. In Proceedings of the 28th International
Conference on Machine Learning, Bellevue, WA, USA, Jun. 28−Jul. 2,
2011, pp 681−688.

(29) Chen, T.; Fox, E.; Guestrin, C. Stochastic gradient Hamiltonian
Monte Carlo. In Proceedings of the 31st International Conference on
Machine Learning, Beijing, China, Jun. 21−26, 2014, pp 1683−1691.

(30) Li, C.; Chen, C.; Carlson, D. E.; Carin, L. Preconditioned
Stochastic Gradient Langevin Dynamics for Deep Neural Networks.
In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
Phoenix, AZ, USA, February 12−17, 2016, pp 1788−1794.

(31) Nemeth, C.; Fearnhead, P. Stochastic gradient Markov chain
Monte Carlo. J. Am. Stat. Assoc. 2021, 116, 433−450.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c01267
J. Chem. Theory Comput. 2023, 19, 4520−4532

4530

3.2. Uncertainty Quantification for Neural Network Potentials

63



(32) Lamb, G.; Paige, B. Bayesian Graph Neural Networks for
Molecular Property Prediction. In Machine Learning for Molecules
Workshop at NeurIPS, Online, Dec. 12, 2020.

(33) Graves, A. Practical Variational Inference for Neural Networks.
In Advances in Neural Information Processing Systems, Granada, Spain,
Dec. 12−14, 2011.

(34) Hoffman, M. D.; Blei, D. M.; Wang, C.; Paisley, J. Stochastic
Variational Inference. J. Mach. Learn. Res. 2013, 14, 1303−1347.

(35) Hansen, L.; Salamon, P. Neural Network Ensembles. IEEE
Trans. Pattern Anal. Machine Intell. 1990, 12, 993−1001.

(36) Lakshminarayanan, B.; Pritzel, A.; Blundell, C. Simple and
Scalable Predictive Uncertainty Estimation using Deep Ensembles. In
Advances in Neural Information Processing Systems, Long Beach, CA,
USA, Dec. 4−9, 2017.

(37) Ovadia, Y.; Fertig, E.; Ren, J.; Nado, Z.; Sculley, D.; Nowozin,
S.; Dillon, J.; Lakshminarayanan, B.; Snoek, J. Can you trust your
model’s uncertainty? Evaluating predictive uncertainty under dataset
shift. In Advances in Neural Information Processing Systems, Vancouver,
BC, Canada, Dec. 8−14, 2019.

(38) Wenzel, F.; Roth, K.; Veeling, B. S.; Swikatkowski, J.; Tran, L.;
Mandt, S.; Snoek, J.; Salimans, T.; Jenatton, R.; Nowozin, S. How
Good is the Bayes Posterior in Deep Neural Networks Really?. In
Proceedings of the 37th International Conference on Machine Learning,
Online, Jul. 13−18, 2020, pp 10248−10259.

(39) Wen, M.; Tadmor, E. B. Uncertainty quantification in
molecular simulations with dropout neural network potentials. npj
Comput. Mater. 2020, 6, 124.

(40) Zhu, A.; Batzner, S.; Musaelian, A.; Kozinsky, B. Fast
Uncertainty Estimates in Deep Learning Interatomic Potentials.
arXiv 2022, DOI: 10.48550/arXiv.2211.09866.

(41) Gustafsson, F. K.; Danelljan, M.; Schon, T. B. Evaluating
Scalable Bayesian Deep Learning Methods for Robust Computer
Vision. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, Seattle, WA, USA, Jun.
14−19, 2020, 1289−1298.
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Summary

Trustworthy predictions with uncertainty-aware MD simulations and increased data ef-
ficiency via active learning are promising avenues for progress in NN potentials. These
approaches address main weaknesses of NN potentials, but their effectiveness critically
depends on the quality of UQ estimates. As shown in sec. 3.2.1, for reliable UQ of NN
potentials, it is insufficient to sample a single NN posterior mode only, as is typically the
case with the Stochastic Variation Inference or Dropout Monte Carlo methods. The popular
Deep Ensemble scheme captures different posterior modes, but neglects the uncertainty con-
tribution from the volume of the posterior. In contrast, SG-MCMC, especially with multiple
Markov chains, can sample multiple modes as well as the volume of the posterior. Despite
this theoretical advantage, SG-MCMC schemes are still underused in practice - in part due
to two main problems: First, SG-MCMC schemes lack a comprehensive and easy-to-use
library that implements state-of-the-art SG-MCMC samplers to promote their application
to ML problems in practice. Second, sec. 3.2.1 has shown that simple SG-MCMC schemes
such as pSGLD cannot fully take advantage of the additional exploration of the posterior
volume. Hence, further research into SG-MCMC samplers with more sophisticated posterior
exploration capabilities is needed.

To address these issues, this paper presents JaxSGMC, a library for SG-MCMC in JAX.
JaxSGMC reduces the barriers for switching from stochastic optimization to SG-MCMC
sampling by providing a common API (alias.py) for several state-of-the-art SG-MCMC
samplers. The implemented samplers can replace stochastic optimizers without modifications
to the JAX NN model, making recently developed SG-MCMC schemes available to a broader
user base. The software architecture of JaxSGMC focuses on modularity to accelerate
research into novel SG-MCMC schemes by increasing the re-usability of SG-MCMC building
blocks as well as boilerplate Bayesian modeling code. Additionally, inspired by optax, this
modular structure allows users to combine these SG-MCMC building blocks to construct
custom samplers tailored to the ML problem at hand.

Two standard ML problems showcase the use of the library: First, a linear regression prob-
lem illustrates data loading and building a custom sampler. Second, an image classification
task for CIFAR-10 demonstrates the ease of use of pre-built SG-MCMC samplers in deep
learning applications in practice. In sum, JaxSGMC aims to promote uncertainty-aware
ML via SG-MCMC in molecular modeling and beyond.
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Abstract

We present JaxSGMC, an application-agnostic library for stochastic gradient
Markov chain Monte Carlo (SG-MCMC) in JAX. SG-MCMC schemes are
uncertainty quantification (UQ) methods that scale to large datasets and
high-dimensional models, enabling trustworthy neural network predictions
via Bayesian deep learning. JaxSGMC implements several state-of-the-art
SG-MCMC samplers to promote UQ in deep learning by reducing the barriers
of entry for switching from stochastic optimization to SG-MCMC sampling.
Additionally, JaxSGMC allows users to build custom samplers from standard
SG-MCMC building blocks. Due to this modular structure, we anticipate
that JaxSGMC will accelerate research into novel SG-MCMC schemes and
facilitate their application across a broad range of domains.

Keywords: SGMCMC, Bayesian Inference, Machine Learning

Email address: julija.zavadlav@tum.de (Julija Zavadlav )
1contributed equally

Preprint submitted to SoftwareX June 15, 2023

3. Publications

68



Code Metadata

Nr. Code metadata description Please fill in this column
C1 Current code version v0.1.3
C2 Permanent link to code/repository

used for this code version
https://github.com/tummfm/jax-
sgmc

C3 Code Ocean compute capsule None
C4 Legal Code License Apache-2.0
C5 Code versioning system used git
C6 Software code languages, tools, and

services used
Python

C7 Compilation requirements, operat-
ing environments & dependencies

JAX

C8 If available Link to developer docu-
mentation/manual

https://jax-sgmc.readthedocs.io

C9 Support email for questions stephan.thaler@tum.de

Table 1: Code metadata

1. Motivation and significance

Deep learning models have seen enormous success in many scientific fields
over the last decade, including disciplines as diverse as natural language pro-
cessing [1], autonomous driving [2], health care [3] and physics-based model-
ing [4, 5, 6]. However, neural networks (NNs) are data-driven black-box mod-
els – their predictions can be highly inaccurate when applied outside their
training distribution. Uncertainty Quantification (UQ) provides a means to
evaluate the trustworthiness of predictions, which is imperative for applying
NNs in practice, in particular for safety-critical applications.

Bayesian statistics is the mathematical foundation of UQ, but classical
Bayesian UQ methods based on Markov chain Monte Carlo (MCMC) [7, 8]
are intractable for computationally expensive NNs and large datasets [9].
Stochastic gradient (SG) MCMC schemes [9, 10, 11, 12, 13] circumvent the
need for a full evaluation of the likelihood per parameter update of classical
MCMC by leveraging a stochastic estimate of the gradient of the likelihood
over a mini-batch of data. This results in a large computational speed-up,
enabling Bayesian deep learning.

The landscape of UQ libraries is fragmented: There are domain-dependent
libraries such as NeuralUQ [14] on the one hand and domain-independent li-
braries on the other hand. TensorFlow Probability [15] and Pyro [16] are the
most popular domain-independent UQ libraries for Tensorflow and PyTorch,
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respectively. Both focus on classical Hamiltonian Monte Carlo [7] schemes
and Stochastic Variational Inference [17], while Stochastic Gradient Langevin
Dynamics (SGLD) is the only implemented SG-MCMC sampler. Thus, ded-
icated SG-MCMC libraries have been developed for Tensorflow [18], Theano
[19] and JAX [20]. However, the structure of these libraries currently does
not allow for recently proposed SG-MCMC building blocks such as parallel
tempering [21] and amortized Metropolis Hastings (MH) acceptance steps
[22, 23]. Hence, many newly developed SG-MCMC samplers are published
as stand-alone code [24, 21, 22] and do not take advantage of these existing
libraries, which slows adoption of novel SG-MCMC samplers in practice.

In this work, we introduce the domain-independent JaxSGMC library.
JaxSGMC implements several state-of-the-art SG-MCMC samplers such as
replica exchange SG-MCMC [21] and AMAGOLD [22]. The implemented
SG-MCMC schemes follow a common application programming interface
(API), which simplifies switching between samplers and reduces the bar-
riers of entry to UQ for practitioners. The SG-MCMC samplers are designed
in a modular fashion, which allows re-using standard SG-MCMC building
blocks. Additionally, the samplers can be compiled end-to-end just-in-time
(jit), which improves their computational efficiency.

2. Software description

2.1. Bayesian Modeling
A model consists of an architecture M and parameters θ. In deep learn-

ing, these models are NNs, such as ResNet [25], with millions of parameters.
The frequentist machine learning (ML) approach selects a good model via
stochastic optimization of a loss function to obtain an optimal set of pa-
rameters θ̄ that best fits a dataset D (e.g. CIFAR-10 [26]). The selected θ̄
critically determines the model performance and reliability.

In contrast, the Bayesian approach studies the posterior predictive distri-
bution

p(y|x,D,M) =

∫
p(y|x,θ,M)p(θ|D,M)dθ , (1)

which encodes the uncertainty in the model prediction y given an input x.
Instead of betting on a single parameter set θ̄, eq. (1) considers an infinite
number of models weighted according to their agreement with the dataset
given by the posterior distribution p(θ|D,M). This integral is analytically
intractable, but can be estimated via Monte Carlo integration employing a
finite number of models

p(y|x,D,M) ≈ 1

Nmodels

Nmodels∑

i=1

p(y|x,θi,M); θi ∼ p(θ|D,M) (2)
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drawn from the posterior distribution. Bayes formula relates the posterior

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)
∝ exp (−U(θ)) (3)

to the likelihood p(D|θ,M), prior p(θ|M) and model evidence p(D|M),
which normalizes the distribution. The likelihood is the probability that a
model could have generated the data. Complementary, the prior encodes
beliefs about the model, independent of the data. Likelihood and prior are
closely connected to loss functions and regularization techniques commonly
used in the frequentist ML approach. However, no known method exists that
can generate independent samples from arbitrary distributions.

Instead, modern MCMC algorithms propose sequences of samples by sim-
ulating physical processes such as Hamiltonian or Langevin dynamics, which
are driven by the gradient of the potential U(θ) (eq. (3)). An additional MH
step accepts or rejects each proposal such that the equilibrium distribution
of the Markov chain agrees with the posterior distribution [27]. Extending
gradient-based MCMC approaches to big data applications is computation-
ally infeasible due to the dependence of the gradient∇U(θ) on all data points,
which needs to be computed at each timestep of the simulation.

Similar to stochastic gradient descent (SGD) schemes, SG-MCMC meth-
ods resort to a noisy estimate of the potential

U(θ) ≈ −N

n

n∑

i=1

log p(yi|xi,θ,M)− log p(θ|M) (4)

based on a random mini-batch of n data points [9]. However, these ap-
proximate dynamics bias the equilibrium distribution and render the con-
ventional MH corrections inapplicable [9, 23]. Nevertheless, classical SG-
MCMC schemes achieve an asymptotically correct equilibrium distribution
by adequately annealing the simulation timestep ∆t → 0 and adding the
right amount of noise to the stochastic gradient [9, 28].

More recent SG-MCMC schemes offer enhanced MH steps to sample from
the unbiased distribution at finite ∆t. These MH steps accept or reject
multiple consecutive proposals, while requiring a full potential evaluation
only once [22, 23]. Other schemes aim to improve the mixing behavior of
the Markov chain on highly curved NN posteriors by extending stochastic
optimization algorithms, such as Adam and preconditioned SGD, to SG-
MCMC [29, 11]. Additionally, tempered and multi-chain algorithms enhance
exploratory capabilities to address high posterior multi-modality, e.g. by
cyclically annealing temperature and timestep size [30] or swapping samples
between tempered and non-tempered chains [21].
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Figure 1: Software architecture of JaxSGMC. The modules are ordered hierarchically from
left to right, and the specificity of a module to the machine learning problem increases
from top to bottom.

2.2. Software Architecture

Fig. 1 visualizes the relationship between the software modules in JaxSGMC.
Each module contains algorithmic building blocks that form a SG-MCMC
sampler. Concisely, an SG-MCMC sampler repeats the following steps: (a)
Retrieve the current process parameters (∆t, temperature, . . . ), (b) simulate
the process via the potential U starting from the current sample θi, (c) pro-
cess the obtained proposal and (d) save the new sample θi+1. The specific
implementation of these steps defines the SG-MCMC sampler.

Each sampler builds on a user-provided model, which can be any JAX-
transformable function, e.g. a NN. The model is part of the log-likelihood,
which – together with the log-prior – forms the potential U(θ) (eq. (4)).
U(θ) represents the statistical model and links the model and the sampler.
Although sometimes plainly referred to as likelihood and prior, all computa-
tions rely on log-transformed values for computational reasons. Due to the
(assumed) independence of observations in the dataset, the user-provided
log-likelihood function computes the log-probability p(yk|xk,θi,M) of the
current model θi for a single observation (xk, yk) ∈ D drawn from the
dataset. The functions in the potential.py module then apply the log-
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probability to mini-batches of data to compute U(θi) or its stochastic esti-
mate (eq. (4)). By designing JaxSGMC in a functional programming style,
we leverage JAX’s function transformations and automatic differentiation
throughout the framework to perform these batched evaluations of the log-
likelihood, to calculate the (stochastic) gradients ∇U(θ) and run multiple
Markov chains.

JaxSGMC focuses on the big data case, where storing the whole dataset
on the device (GPU) is inefficient or impossible due to memory limitations.
Yet, functions relying on data should support JAX transformations. To this
end, the data.py module offers an API around the host-callback module of
JAX to efficiently insert data from so-called DataLoaders into jit-compiled
computations. By providing different DataLoaders, we support multiple
mini-batch assembly methods as well as straightforward data integration
from different sources. Similarly, already a small number of parameter sam-
ples θi of deep NNs can fill up the device memory. Accordingly, we designed
the io.py module analogously to the data.py module to efficiently store the
gathered samples. Hence, JaxSGMC enables collecting many samples from
within the jit-compiled SG-MCMC algorithm and saving them to different
file formats.

The adaption.py module, which supports the adaption of process quan-
tities to the learning problem, together with the data.py and potential.py

modules, provide all relevant components for the core of a SG-MCMC algo-
rithm. This core lies in the sampling section simulating the physical process
(step (b)) and processing the proposals (step (c)). In line with the modular-
ity design principle, JaxSGMC subsequently separates the former into the
integrator.py module and the latter into the solver.py module.

The scheduling part of the algorithm builds on top of the sampling process
(fig. 1). The scheduling section includes boilerplate code, which provides a
general entry point to run a constructed algorithm. In particular, it interfaces
the schedules of the process parameters (step (a)) in scheduler.py with the
Markov chain (steps (b) and (c)) and saves the current solver state or the
collected samples (step (d)). Typically, the schedules are static and thus
independent of the sampling process, but JaxSGMC also supports a feedback
loop to enable adaptive step-size schemes.

2.3. Software Functionalities

We implemented two API levels: First, we built a high-level interface to
popular SG-MCMC samplers in alias.py, including (preconditioned) SGLD
[9, 11], stochastic gradient Hamiltonian Monte Carlo (SGHMC) [10], replica
exchange SG-MCMC (reSGLD) [21], AMAGOLD [22], and stochastic gradi-
ent guided Monte Carlo (SGGMC) [23]. This interface aims to enable users
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Module Content
adaption.py Algorithms: RMSProp [32], online covariance estima-

tion, Fisher Information estimation [33]
integrator.py Process simulators: OBABO [23], time-reversible

leapfrog [22], leapfrog with friction [10], Langevin dif-
fusion [9]

scheduler.py Schedules: adaptive step size [8], polynomial step size
with optimal decay [34], constant temperature, initial
burn-in, random thinning

potential.py Potentials: stochastic potential, true potential
data.py Data sources: numpy/JAX arrays, TensorFlow

dataset, HDF5
Data batching: mini-batching (drawing / shuffling
/ shuffling in epochs), batched mapping across full
dataset

io.py Output formats: numpy/JAX arrays, JSON, HDF5
solvers.py Lower-level interface to solvers in alias.py

Table 2: Overview of algorithmic building blocks in each JaxSGMC module.

with an existing dataset and a JAX model to easily switch from stochas-
tic optimizers to SG-MCMC samplers, while still providing flexibility in the
dataset format and stochastic potential evaluation strategy.

A second API level is inspired by the stochastic optimization library Op-
tax [31]. It allows more advanced users to combine SG-MCMC building
blocks to create custom samplers tailored to the individual problem. Table 2
gives an overview of the currently implemented algorithmic building blocks
and supported data formats. In addition, the implemented DataLoaders
enable end-to-end jit-compilation of learning algorithms for maximum com-
putational efficiency, even beyond the scope of SG-MCMC.

3. Illustrative Examples

We provide two ML examples, each illustrating a different use-case of
JaxSGMC : building a custom sampler in a linear regression problem and
using a pre-built sampler in an image classification problem. The interested
reader may refer to the examples in the GitHub repository for more details.

3.1. Linear Regression

Many of the functionalities of JaxSGMC can be introduced with a simple
linear regression model. Dataset arrays can be passed as keyword arguments

7

3. Publications

74



to a DataLoader (data.py). The DataLoader stores the dataset on the host
(CPU) and can orchestrate sending mini-batches to the device (e.g. GPU)
as they are requested (listing 1).

1 from jax_sgmc.data.numpy_loader import NumpyDataLoader

2 from jax_sgmc.data import random_reference_data

3

4 data_loader = NumpyDataLoader(x=training_data_x ,

5 y=training_data_y)

6

7 data_fn = random_reference_data(data_loader ,

8 mb_size=batch_size ,

9 cached_batches_count =100)

Listing 1: Loading a dataset with JaxSGMC.

The next step is to define the linear model with weights w, as well as
log-likelihood and log-prior. The log-likelihood follows from the assump-
tion that the data includes Gaussian-distributed noise with mean 0 and a
(learned) homoscedastic standard deviation σ. The log-prior consists of an
(improper) uniform distribution forw and an exponential distribution for the
σ parameter. Log-likelihood and log-prior define the (mini-batch) potential
(potential.py, eq. (4), listing 2).

1 from jax_sgmc import potential

2

3 def model(sample , observations):

4 weights = sample["w"]

5 predictors = observations["x"]

6 return jnp.dot(predictors , weights)

7

8 def log_likelihood(sample , observations):

9 sigma = jnp.exp(sample["log_sigma"])

10 y = observations["y"]

11 y_pred = model(sample , observations)

12 return jax.scipy.stats.norm.logpdf(y - y_pred , loc=0, scale=sigma)

13

14 def log_prior(sample):

15 return 1 / jnp.exp(sample["log_sigma"])

16

17 potential_fn = potential.minibatch_potential(prior=log_prior ,

18 likelihood=log_likelihood)

Listing 2: Defining the stochastic potential function from the log-likelihood and log-prior.

The MemoryCollector (io.py) stores the sampled models in the host’s work-
ing memory. We implement the RMSProp [32] preconditioned Stochastic
Gradient Langevin Dynamics (pSGLD) method [11], which can be defined
using RMSProp from the adaption.py module, a Langevin diffusion simula-
tor (integrator.py) and a solver that accepts each sample unconditionally
(solver.py). The schedulers in the scheduler.py module operate indepen-
dently from the solver and manage the stepsize, burn-in and thinning along
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the Markov chain. The combination of these building blocks to obtain the
pSGLD sampler is shown in listing 3.

1 from jax_sgmc import io, adaption , integrator , solver

2 from jax_sgmc.scheduler import polynomial_step_size_first_last ,

initial_burn_in , random_thinning , init_scheduler

3

4 my_data_collector = io.MemoryCollector ()

5 save_fn = io.save(data_collector=my_data_collector)

6

7 rms_prop_adaption = adaption.rms_prop ()

8

9 ld_integrator = integrator.langevin_diffusion(potential_fn=potential_fn ,

10 batch_fn=data_fn ,

11 adaption=rms_prop_adaption)

12

13 rms_prop_solver = solver.sgmc(ld_integrator)

14

15

16 #Initialize the solver by providing initial values for the latent variables

17 init_sample = {"log_sigma": jnp.array (0.0), "w": jnp.zeros(N)}

18

19 init_state = rms_prop_solver [0]( init_sample)

20

21 step_size_schedule = polynomial_step_size_first_last(first =0.05,

22 last =0.001 ,

23 gamma =0.33)

24 burn_in_schedule = initial_burn_in (2000)

25 thinning_schedule = random_thinning(step_size_schedule=step_size_schedule ,

26 burn_in_schedule=burn_in_schedule ,

27 selections =1000)

28

29 schedule = init_scheduler(step_size=step_size_schedule ,

30 burn_in=burn_in_schedule ,

31 thinning=thinning_schedule)

32

33 mcmc = solver.mcmc(solver=rms_prop_solver ,

34 scheduler=schedule ,

35 saving=save_fn)

Listing 3: Building the preconditioned Stochastic Gradient Langevin Dynamics sampler
from its building blocks.

Now the SG-MCMC sampling procedure can be performed. Afterwards,
the saved samples can be accessed for postprocessing (listing 4).

1 # Take the result of the first chain

2 results = mcmc(init_state , iterations =10000) [0]

3

4 print(f"Collected {results[’sample_count ’]} samples")

5

6 sigma_rms = onp.exp(results["samples"]["variables"]["log_sigma"]

7 w_rms = results["samples"]["variables"]["w"]

Listing 4: Sampling and accessing the results.

We visualize the sampled parameters and compare the resulting distri-
bution to a gold-standard Hamiltonian Monte Carlo scheme implemented in
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the NumPyro library [35, 16] (fig. 2). The obtained distributions of both
methods agree reasonably well, in line with expectations.

Figure 2: Left: Sampled standard deviation σ parameters (blue) compared to the data-
generating value (orange). Middle and right: First and second (Middle) and third and
fourth (right) components of weights wi sampled with the pSGLD scheme (blue scatter
plot) compared to contour plots of Gaussians obtained from the Hamiltonian Monte Carlo
(HMC) method (red) implemented in NumPyro [35, 16].

3.2. Image Classification on CIFAR-10

Next, we provide an example more typical for recent deep learning models.
In particular, we consider an image classification task with the CIFAR-10
dataset [26], which we split into a training, validation and test set containing
50000, 5000 and 5000 images, respectively. For the architecture of the NN, we
use the 2.1 million parameter Haiku [36] implementation of MobileNet version
1 [37] without batch normalization. Given that the MobileNet architecture
shows superior performance with larger images, we resized the images from
32x32 to 112x112 pixels using bilinear interpolation. The log-likelihood for
a multiclass classification problem corresponds to the negative cross entropy.
As prior distribution over NN weights and biases w, we select a Gaussian
centered at 0 with standard deviation of 10. With these components, the
potential function can be defined (listing 5).

1 import haiku as hk , optax , tree_math

2 from jax import tree_map

3 from functools import partial

4 from jax_sgmc import potential

5

6 def init_mobilenet ():

7 @hk.transform

8 def mobilenetv1(batch , is_training=True):
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9 images = batch["image"]. astype(jnp.float32)

10 mobilenet = hk.nets.MobileNetV1(num_classes=num_classes ,

11 use_bn=False)

12 logits = mobilenet(images , is_training=is_training)

13 return logits

14 return mobilenetv1.init , mobilenetv1.apply

15

16 init_mobilenet , apply_mobilenet = init_mobilenet ()

17

18 def log_likelihood(sample , observations):

19 logits = apply_mobilenet(sample["w"], None , observations)

20 log_likelihood = -optax.softmax_cross_entropy_with_integer_labels(

21 logits , observations["label"])

22 return log_likelihood

23

24 def log_gaussian_prior(sample):

25 gaussian = partial(jscipy.stats.norm.logpdf , loc=0, scale =10)

26 priors = tree_map(gaussian , sample["w"])

27 return tree_math.Vector(priors).sum()

28

29 potential_fn = potential.minibatch_potential(prior=log_gaussian_prior ,

30 likelihood=log_likelihood ,

31 is_batched=True ,

32 strategy=’vmap’)

Listing 5: Creating a MobileNet version 1 [37] NN model using Haiku [36] and defining
log-likelihood, log-prior, and the (mini-batch) potential functions.

We use a pSGLD sampler with RMSProp preconditioner [11], which can
be set up with the ready-to-use sampler interface of the alias.py module
(listing 6). To initialize the sampler, the potential function, the DataLoader,
and a set of hyperparameters need to be passed. We cache 10 batches of data
in the device memory and set the batch size to 256 images. The learning rate
is initially set to 0.001 and controlled by a polynomial step size scheduler.

1 from jax_sgmc import alias

2

3 sampler = alias.sgld(potential_fn=potential_fn ,

4 data_loader=train_loader ,

5 cache_size=cached_batches ,

6 batch_size=batch_size ,

7 first_step_size=lr_first ,

8 last_step_size=lr_last ,

9 burn_in=burn_in_size ,

10 accepted_samples=accepted_samples ,

11 rms_prop=True ,

12 progress_bar=True)

13

14 results = sampler(sample , iterations =39000)

15 results = results [0][’samples ’][’variables ’]

Listing 6: Defining a SG-MCMC sampler via the alias.py API with subsequent sampling.

We sample for 39000 iterations - corresponding to 200 epochs - and retain
20 NN models via random thinning after a burn-in period of 35100 iterations.
This results in a training accuracy of 65.25%, a validation accuracy of 55.72%
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and a test accuracy of 57.32%, which is evaluated via soft voting of the
ensemble [38].

We validate this result by comparing it to a deterministic model with
the same model architecture and hyperparameters, and find a comparable
performance. Furthermore, the runtimes of the SG-MCMC sampling and
the stochastic optimization are comparable.

An advantage of using SG-MCMC is that the distribution of predictions
from the sampled models can readily be used for UQ. As an example, we
take five random images from the testset and visualize the distribution of
the logits of each class in a box plot (fig. 3).
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Figure 3: Obtained distributions of logits for five randomly selected images from the testset
visualized as box plots. The true labels for the images in the order above are: 0, 7, 1, 6,
6.

Finally, we can assess the quality of the obtained uncertainty estimates
by computing the testset accuracy for images, where the certainty of the
prediction exceeds a specific threshold. We employ a hard voting-based [38]
estimate of the prediction certainty, i.e. the percentage of all sampled mod-
els that predicted the majority class. As expected, the accuracy increases
with increasing prediction certainty (table 3). However, for higher certainty
thresholds, the obtained models are overconfident.

certainty ≥ 50% ≥ 60% ≥ 70% ≥ 80% ≥ 90% = 100%
validation accuracy 58.89 61.72 64.61 67.60 71.64 77.95

test accuracy 60.11 63.06 66.59 70.20 74.65 80.81

Table 3: Accuracy depending on the certainty of the ensemble.

In this example, we opted for pSGLD [11], a comparatively simple SG-
MCMC scheme. The accuracy and the quality of UQ could probably be
increased by leveraging more advanced SG-MCMC components provided by
JaxSGMC, including running multiple Markov chains [39]. However, this is
beyond the scope of this illustrative example.
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4. Impact and Conclusion

Trustworthy predictions via uncertainty-aware ML [40] and increasing
data efficiency via active learning [41] represent highly promising avenues in
deep learning. However, the effectiveness of these approaches critically de-
pends on the quality of UQ estimates. To this end, it is insufficient to sample
only a single NN posterior mode [42], e.g. when using Stochastic Variation
Inference [17] or Dropout Monte Carlo [43]. While the popular Deep En-
semble [44, 45] scheme captures different posterior modes, it neglects the
uncertainty contribution from the volume of the posterior. In contrast, SG-
MCMC, especially when using multiple Markov chains, can sample multiple
modes as well as the volume of the posterior.

Despite this theoretical advantage, SG-MCMC schemes are still under-
used in practice, in part due to a lack of easy-to-use libraries that implement
state-of-the-art SG-MCMC samplers. JaxSGMC simplifies switching from
stochastic optimization to Bayesian sampling by providing a common API
(alias.py) for SG-MCMC samplers, which can replace stochastic optimizers
[31] without modifications to the JAX NN model. Hence, JaxSGMC makes
recently developed SG-MCMC samplers available to a broader user base.
Additionally, by building custom samplers, the SG-MCMC schemes can be
tailored to the ML problem at hand.

JaxSGMC is an domain-independent library. As such, we selected classi-
cal ML benchmark problems for the examples presented in this paper, but the
provided code can also be used for other applications such as physics-based
modeling. A recent example is the training of NN potentials [46], where
the jit-compatible DataLoaders of JaxSGMC are used to improve compu-
tational performance and simplify implementation by integrating data load-
ing into the jit-compiled parameter update function. Furthermore, the pre-
implemented SG-MCMC samplers of JaxSGMC have been used to switch
from stochastic optimization to Bayesian inference for cases of molecular
modeling with classical [47] and NN potentials [39]. These studies have
shown that pSGLD does not yet fully exploit the theoretical advantage of
additional exploration of the posterior volume [39]. Thus, further research
into SG-MCMC samplers with more sophisticated posterior exploration ca-
pabilities is required, which can be accelerated with JaxSGMC. We envision
that JaxSGMC will promote uncertainty-aware ML and active learning ap-
plications in physical modeling and beyond.
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3. Publications

3.3. Augmented Adaptive Resolution Scheme

This section presents a research article that improves the AT-CG interface in an AdResS
simulation, which paves the way for leveraging more accurate AT and CG NN potentials in
AdResS with reduced interface artefacts.

3.3.1. Back-mapping augmented adaptive resolution simulation

Thaler, S., Praprotnik, M. & Zavadlav, J. Back-mapping augmented adaptive resolution
simulation. J. Chem. Phys. 153, 164118 (2020), DOI: 10.1063/5.0025728.

Summary

AdResS enables accurate and at the same time computationally efficient MD simulations by
concurrent application of AT and CG models in different regions of the simulation box. In
the standard AdResS formulation, the ∆ region is necessary to maintain numerical stability
at the interface. When a molecule diffuses from the CG region into the AT region, AdResS
inserts AT DOFs randomly. The ∆ region enables a gradual increase of the contribution
from the AT force field, avoiding numerical instability due to a possible overlap of AT DOFs
with neighboring atoms. However, this comes at the cost of unphysical results within the ∆

region as well as increased computational effort. Consequently, previous work proposed to
shrink the size of the ∆ region to 0, switching resolutions abruptly. To maintain numerical
stability, force capping (FC) at the interface was required.

This article proposes to tackle the numerical instability issue at its root-cause by re-
inserting AT DOFs in a manner that respects the chemical environment of the molecule.
To this end, we introduce the Energy Minimized AT (DOF) Insertion method (EMATI).
Instead of inserting AT particles randomly, EMATI selects the AT configuration such that
the potential energy of the AT molecule is minimal while obeying the COM constraint given
by the CG model. The EMATI algorithm consists of the following steps: All molecules are
screened whether they diffused from the CG into the AT region during the last time step.
If AT DOFs need to be inserted, the positions of AT particles are optimized iteratively by
gradient descent minimization of the potential energy. After each gradient descent update,
the position of the molecule is shifted such that its COM coincides with the COM given by
the CG model. Convergence of the energy minimization is achieved if the variance of the
forces in a moving window falls below a threshold value. The AT configuration is accepted
if the maximum force on the AT molecule is below a target value. Otherwise, the AT
molecule is rotated randomly and the minimization is repeated with the goal of obtaining a
better local minimum.

The paper introduces a metric called overlap severity to estimate for which systems
EMATI is most beneficial. In particular, the severity of overlaps increases for less spherical
molecules as single site CG models of solvents enforce a spherically symmetric minimum
distance of the COM to the COM of other molecules. Consequently, liquid butane is chosen
as a system with high overlap severity, which would yield numerical instability for an
AdResS simulation without the ∆ region and FC. By employing the EMATI algorithm, the
simulation remains stable even without FC. Compared to AdResS with FC, the temperature
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artifact at the interface is smaller. Consequently, EMATI allows using standard thermostat
friction values while FC requires a stronger thermostat to remove the heat introduced by
large, capped forces from overlapping atoms.

Instead of modifying the dynamics of all molecules inside the ∆ region, EMATI only
modifies single molecules during the AT DOF insertion. Consequently, EMATI reduces
the computational effort compared to standard AdREsS with the ∆ region. Additionally,
structural properties at the interface are not affected by EMATI. Hence, EMATI extends
the applicability of direct-coupling AdResS to systems for which FC is inadequate.
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ABSTRACT

Concurrent multiscale techniques such as Adaptive Resolution Scheme (AdResS) can offer ample computational advantages over con-
ventional atomistic (AT) molecular dynamics simulations. However, they typically rely on aphysical hybrid regions to maintain numer-
ical stability when high-resolution degrees of freedom (DOFs) are randomly re-inserted at the resolution interface. We propose an
Energy Minimized AT (DOF) Insertion (EMATI) method that uses an informed rather than random AT DOF insertion to tackle
the root cause of the issue, i.e., overlapping AT potentials. EMATI enables us to directly couple AT and coarse-grained resolu-
tions without any modifications of the interaction potentials. We exemplify AdResS-EMATI in a system of liquid butane and show
that it yields improved structural and thermodynamic properties at the interface compared to competing AdResS approaches. Fur-
thermore, our approach extends the applicability of the AdResS without a hybrid region to systems for which force capping is
inadequate.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0025728., s

I. INTRODUCTION

Biomolecular processes are challenging for computational
modeling as they involve a vast span of time and length scales
as the macroscopic properties of interest emerge from a molec-
ular origin. While coarse-grained (CG) representations can reach
larger spatiotemporal scales,1,2 these models lack the accuracy and
detail of atomistic (AT) models. Several multiscale approaches aim
at resolving these conflicting objectives including back-mapping
methods,3–7 resolution replica exchange methods,8,9 and concur-
rent multiscale simulations. The latter approach incorporates an
intriguing idea of a computational magnifying glass: preserving
atomistic accuracy and detail around a region of interest while
reducing the remainder of the system to its essential degrees of
freedom (DOFs).10 Prototypical applications are processes where
atomistic details are of interest only in a localized region, e.g.,
binding processes11 and interactions of antimicrobial peptides with

lipid membranes.12 The coupling of AT and CG representations can
be utilized either with constant resolution methods13–16 or adaptive
resolution methods.10,17–26

In the Adaptive Resolution Scheme17 (AdResS), the simula-
tion domain is separated into an AT and a CG region. Particles can
diffuse freely between both regions, changing their DOFs on the
fly. To allow for a smooth change in the resolution of the transi-
tioning particles, a hybrid (HY) region is introduced at the inter-
face of the AT and CG regions. However, the inclusion of the HY
region is computationally demanding as it requires the computa-
tion of forces from both AT and CG potentials.27,28 Furthermore,
structural properties deviate in the HY region even if they match in
the AT and CG regions.29 First attempts to overcome these draw-
backs were made in a recent paper by Krekeler et al.,28 where the
AdResS was employed in the limiting case of no HY region and
sizable computational speed-ups over the standard AdResS were
reported.
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However, direct coupling of different resolutions results in
interface difficulties that are in the standard AdResS alleviated by
the HY region. A central hindrance is due to potentially overlap-
ping AT particles when CG sites migrate from the CG into the
AT region.28 The current implementations of the AdResS in GRO-
MACS28,30 and Espresso++31 insert AT DOFs randomly. Due to
this random scheme, atoms are sometimes inserted unphysically
close to existing atoms in the AT region, resulting in fatally high
forces from steric repulsion that ultimately make the simulation
numerically unstable.

To avoid these fatally large forces, Krekeler et al.28 simply
capped forces above a specified threshold, even though the authors
noted that a method yielding proper AT DOFs might be necessary
in certain cases. Up to now, the method was only applied to small
and/or rather spherical solvent molecules.21,28,32 Spherical molecules
do not tend to yield severe overlaps as a spherical CG potential
can be a good approximation to the AT molecule.25 By contrast,
non-spherical AT molecules can extend significantly beyond the van
der Waals (VdW) volume enforced by the CG potential as we dis-
cuss in this paper. For these systems, random placement of DOFs
at the interface can be detrimental to the AdResS even with the
HY region.25 For example, in an AdResS simulation of alkane sys-
tems,25 the Lennard-Jones (LJ) potential needed to be substituted
by a soft-core potential in the HY region that gradually blends back
to the original LJ potential toward the AT region. Such modifica-
tions for the sake of avoiding fatally large forces, however, alter the
AT force field and hence also the properties close to the AT-CG
interface.

In this paper, we propose the Energy Minimized AT (DOF)
Insertion (EMATI) method that avoids fatally overlapping poten-
tials by using an informed rather than random AT DOF insertion.
We, therefore, tackle the root cause of the numerical instability
instead of inserting DOFs randomly and ad hoc mitigating the con-
sequences of occasional overlaps. To solve the problem of find-
ing valid AT DOFs based on the center of mass (COM) and the
surrounding chemical environment, we transfer methods from the
closely related back-mapping multiscale approach3–6 to the AdResS.
We demonstrate that direct coupling of AT and CG resolutions
without the HY region with AdResS-EMATI eliminates numeri-
cal instability in a system of liquid butane without requiring force
capping or AT potential modifications. By contrast, simulations
with force capping become numerically unstable because occasion-
ally more energy is introduced into the system at the interface
than can be dissipated by the thermostat for common friction val-
ues. Additionally, we showcase improved interface properties with
our method compared to both the standard AdResS with the HY
region (subsequently referred to as AdResS) and AdResS without
the HY region using force capping28 (subsequently referred to as
AdResS-FC).

II. METHODS

A. Adaptive resolution simulation

The AdResS17 divides the simulation domain in an AT, a CG,
and a HY region. The total force Fα acting on a molecule α is

Fα = ∑
β≠αw(Rα)w(Rβ)FATαβ +∑

β≠α[1 − w(Rα)w(Rβ)]FCGαβ + FTDα ,

with w(R) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if R ∈ AT
0 if R ∈ CG
0 < w(R) < 1 if R ∈ HY,

(1)

where R is a molecule’s COM, FATαβ and FCGαβ are forces acting between
molecules α and β via the AT and CG force fields, respectively, and
w(R) is a smooth resolution weighting function. FTD is a thermody-
namic force, which compensates differences in chemical potentials
between both resolutions22,29,33 and is typically applied in a close
neighborhood of the resolution interface.

Shrinking the size of the HY region to 0 (Fig. 1) conceptu-
ally transforms w(R) into the Heaviside step function,28 reducing
its purpose to a switching function that sorts molecules into AT
or CG resolution. In this case, Eq. (1) implies that two molecules
with the same resolution interact via the force field of the respec-
tive resolution, whereas molecules with different resolutions interact
via the CG force field. Such a coupling definition is reminiscent of
constant resolution multiscale methods,13–16 whose common fea-
ture is direct interaction of molecules at different resolutions. In
particular, the virtual sites approach14,34 models the AT-CG inter-
action via the unaltered CG force field, equivalently to the AdResS
without the HY region, albeit not allowing molecules to change
their resolution. Furthermore, without the HY region, the AdResS17

becomes a Hamiltonian method.24 As already mentioned, omit-
ting the HY region can cause the simulation to become numeri-
cally unstable unless the AT DOFs are inserted in a proper way.
Section II B describes the EMATI scheme.

B. EMATI scheme

The aim of the presented EMATI method is to insert AT DOFs
at sensible locations such that no fatally large forces occur in an
AdResS simulation without the HY region. For each molecule enter-
ing the AT region, EMATI therefore needs to propose valid AT
DOFs based on neighboring atoms in the AT region and given a

FIG. 1. Visualization of the interface of the AdResS for liquid butane without a HY
region. The AT region resolves butane molecules atomistically (orange), while the
CG region only resolves the COM of each molecule (blue). Random DOF inser-
tion may yield potential overlaps (red molecule). EMATI proposes DOFs based on
surrounding AT molecules avoiding severe overlaps (yellow molecule).
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fixed COM position defined by the CG site. A well-known algo-
rithm for on-the-fly insertion of molecules into dense fluids for
open system simulations is USHER.35 A generalization of USHER36

achieves molecule insertion at prescribed potential energy values by
simultaneously moving the COM and rigidly rotating the molecule
using a steepest descent iterator. However, this approach relies on
adjusting the COM of molecules to be inserted to find an appro-
priate insertion position. USHER is therefore not applicable to
the AdResS, where the COM of the molecule is fixed. Further-
more, in its original formulation,36 it does not generalize to non-
rigid molecules. The insertion task in the AdResS resembles much
more closely the central problem of the back-mapping multiscale
approach,3,4 where the AT detail needs to be back-inserted into
a given skeleton of CG sites. Two of the most common ingredi-
ents of back-mapping algorithms are random initial insertion of
atoms5,6 and energy minimization to avoid overlapping AT poten-
tials,3,4,6,7 which serve as the main components of the EMATI
method.

Our AdResS-EMATI approach tracks when a molecule has
migrated from the CG into the AT region and applies EMATI
(Fig. 2) to each of those CG sites. The first step of EMATI is to
retrieve all neighboring AT atoms within a cutoff rcut around the
CG site position R. This retrieval of neighbors is only required
once as all particle positions are fixed, except for the molecule
whose AT DOFs we are inserting (subsequently referred to as
the central molecule). Note that rcut can be chosen smaller than
the cutoff of the AT potential to increase computational effi-
ciency because a small number of nearest atoms dominate repulsive
forces.

FIG. 2. Energy minimized AT DOF insertion (EMATI) algorithm.

The inner gradient-based constrained potential energy mini-
mization loop is the core of EMATI. It serves to find a local mini-
mum of the potential energy for the central molecule while satisfying
the CG site position constraint. As the starting configuration for the
energy minimization {r0

i }Ni=1, where N is the number of AT particles
per molecule, we choose the pseudo-random insertion provided by
the AdResS implementation. The pseudo-randomness emerges from
AdResS implementations that do not delete AT DOFs upon leaving
the AT region. Inside the CG region, AT particles travel along with
the CG site and simply re-appear at their current positions upon
re-entering the AT region. We additionally implemented a truly ran-
dom initial insertion but found no measurable effect on results. We
opt for a steepest descent energy minimization scheme with step size
α. The potential energy gradient is computed from forces acting on
the central molecule from AT inter- and intra-molecular interac-
tions. Displacing the current atom positions of the central molecule{rki }Ni=1 along the steepest descent direction yields the configuration
of the next iteration step,

rk+1
i = rki +

αFi
mi max(1,Fmax/Fthresh) , (2)

where mi is the mass of the particle i and Fi is the force on parti-
cle i exerted by the neighboring atoms. To avoid overshooting local
minima, we re-scale all forces if the magnitude of the maximum
force Fmax = max({∥Fi∥}Ni=1) exceeds a prescribed threshold force
Fmax > Fthresh. This gradient re-scaling guarantees a constant max-
imum atomic displacement per iteration step. Updating AT posi-
tions according to Eq. (2) changes the COM of the central molecule
to Rnew. To fulfill the “mapping condition,”4 i.e., that the central
molecule COM coincides with the CG site position, we move the
central molecule back to the original R in each iteration, exactly
fulfilling this constraint.

We define the convergence criterion of the constrained energy
minimization based on the variance of the gradient: A local min-
imum is obtained when the standard deviation of the magnitude
of the COM force FCOM = ∥∑N

i=1 Fi∥ of the last nwindow steps is
smaller than the target σtarget. This variance-based convergence cri-
terion is more suitable than directly dictating a maximum FCOM

because it allows detection of local minima where further energy
minimization would not yield a significantly better configuration,
thus saving computational effort. A convergence criterion similar to
Ref. 35 based on the potential could also be formulated. However,
we opt for the above-mentioned criterion based on forces to avoid
the additional computation of potential values. A convergence cri-
terion based on the displacement of the central molecule might be a
reasonable alternative.

The outer resetting loop checks if the obtained local minimum
is acceptable, i.e., if FCOM < Ftarget. Otherwise, the molecule is reset
randomly to yield new initial atom positions {r0

i }Ni=1 to search for
a better local minimum. We save {ri}Ni=1 that yielded the smallest
FCOM to continue the simulation with the best obtained configu-
ration in case none of the obtained configurations yields a FCOM

< Ftarget. In our simulations, we found this resetting scheme to be
necessary for numerical stability as it avoids being stuck in unac-
ceptable local minima, a known phenomenon in USHER35,36 and
back-mapping problems.6 Theoretically, a series of nresets unfor-
tunate random resets that all lead to local minima with fatally
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large forces would be possible. However, increasing nresets signif-
icantly reduces the probability of this rare event. Note that this
situation did not occur in our implementation of EMATI, even
for simulations of 10 ns length with more than 300 000 EMATI
executions.

The presented method shows similarities to the rejection cri-
terion in Monte Carlo Simulations in the sense that the unlikely
configuration from random insertion is rejected and the higher
likelihood configuration output from EMATI is accepted.28

C. Simulation setup

We choose liquid butane as an exemplary solvent to demon-
strate the effectiveness of AdResS-EMATI. We use the GRO-
MOS53A537 force field with flexible bond lengths to represent AT
butane. The CG potential was derived via Iterative Boltzmann Inver-
sion (IBI) including pressure correction38 with the STOCK coarse-
graining kit.39 We performed a 10 ns AT reference simulation
in a 5 × 5 × 5 nm3 box to compute the target AT radial dis-
tribution function (RDF) and pressure. The obtained CG poten-
tial is shown in Fig. 3. Both AT and CG potentials are cut off at
1.4 nm.

We perform all simulations in the NVT ensemble in an
orthorhombic simulation box with periodic boundary conditions
using the Espresso++ 2.0.2.31 package. We use a velocity Verlet time
integration scheme with a 2 fs time step in accordance with the
GROMOS37 force field and a Langevin thermostat to maintain a tar-
get temperature of 323 K. We choose a friction coefficient of γ = 1/ps
unless stated otherwise.

For multiscale simulations, we use the box size of 20 × 5× 5 nm3 containing 3174 molecules, which corresponds to a den-
sity of 612.7 kg/m3. For AdResS-EMATI and AdResS-FC, the sim-
ulation box is split along the x axis with an AT region of length
10 nm in the center and two connected CG regions (due to peri-
odicity) of 5 nm (Fig. 1). For AdResS simulations, we choose an
AT region width of 7.2 nm and a HY region length of 1.4 nm such

FIG. 3. CG potential of liquid butane obtained by iterative Boltzmann inversion. We
defined σCG analogous to the LJ potential.

that the explicit HY region coincides with the interface region of
AdResS-EMATI, where AT molecules are influenced by AT and
CG force fields. All simulations are run for 10 ns to generate the
data.

FTD acts in a close neighborhood of the resolution interface and
guarantees a uniform particle density distribution by construction.
It is obtained iteratively before the production run FTDi+1(x) = FTDi (x)− C∇ρi(x), where C is a convergence-driven, tunable constant.29,40

We performed 30 iterations of length 1 ns each to reach a con-
verged FTD for AdResS-EMATI and AdResS-FC, while 50 iterations
were necessary for the AdResS. An iteration constant C = 2.2 ⋅ 10−3

(kJ m3)/(mol kg) was selected.
To maintain numerical stability with the AdResS and AdResS-

FC, we cap forces component-wise at Fcap = 5000 kJ/(mol nm).
For the AdResS-EMATI, we track the migration of molecules
across the resolution regions via the Heaviside switching function
w(R). The EMATI scheme is triggered for all molecules whose
w switches from 0 to 1. The scheme is applied after the veloc-
ity Verlet position update that caused the resolution change but
before the force re-computation, where valid AT DOFs are nec-
essary. We implement EMATI with the following parameters: α
= 28.125 fs2, rcut = rcut,AT/2 = 0.7 nm, Fthresh = 2000 kJ/(mol nm),
σtarget = 5 kJ/(mol nm), nwindow = 5, Ftarget = 1000 kJ/(mol nm),
and nresets = 10. The random resetting function rotates the cen-
tral molecule rigidly around a randomly drawn axis by a ran-
dom angle between 45○ and 135○. This range of angles ensures a
large rotation to avoid staying inside the same insufficient local
minimum.

III. RESULTS AND DISCUSSION

A. AdResS-EMATI

We demonstrate that AdResS-EMATI fulfills three central
requirements: AT and CG regions are in equilibrium, it reproduces
structural properties of a reference AT simulation, and the resolu-
tion interface does not act as an artificial diffusion barrier. Figure 4
visualizes the normalized density profile (NDP) of AdResS-EMATI
with FTD as a function of the distance from the AdResS center d.
For the employed FTD, see Fig. 8. A maximum error of less than
2.5% in the NDP confirms good convergence of FTD. This minor
density deviation together with a close to homogeneous tempera-
ture profile (discussed below) shows that AT and CG regions are in
equilibrium.

We analyze the quality of reproducing structural properties
by computing the COM–COM RDF (Fig. 5). The RDF in the AT
region matches the reference full AT RDF perfectly, and the very
well fit of the RDF in the CG region confirms convergence of the
IBI. Note that both AT and CG RDFs are computed based on struc-
tural data from their whole respective domain, without ignoring
particles in a neighborhood around the resolution interface. Shrink-
ing the HY region to 0, therefore, significantly increases the size
of the domain usable for structural analyses. For a more detailed
discussion of the structural quality in the interface region, see
Fig. 9.

Figure 6 demonstrates the absence of an artificial diffusion bar-
rier in AdResS-EMATI. Particles in the AT region up to 1 nm left of
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FIG. 4. Normalized density profile (NDP) of AdResS-EMATI with FTD. The gray line
visualizes the AT-CG interface.

the interface are marked at t = 0, and the probability density func-
tions (PDFs) of marked particles over time are visualized. The larger
PDF tails in the CG region reflect the higher diffusion constant in
the CG region due to smoother dynamics from a lack of fluctuating
forces that are missing AT DOFs.41 The PDFs clearly show undis-
turbed Brownian motion, confirming that EMATI does not hinder
diffusion.

B. Comparison to AdResS-FC and AdResS

AdResS-FC does not yield numerically stable simulations for
γ ≤ 5 because, occasionally, more energy is introduced into the sys-
tem at the interface from capped overlap forces than the thermostat
can dissipate. This monotonically rising temperature makes the sim-
ulation numerically unstable. We therefore show results for γ = 6
in order to compare to AdResS-FC, even though such high val-
ues can affect the dynamics and viscosity of the system.42,43 The
common friction values for butane multiscale simulations in the
literature are, e.g., γ = 0.1/ps44 or γ = 1/ps.14 Note that we addi-
tionally tested AdResS-FC with the MARTINI CG potential and
γ = 1, resulting in the same type of fatal temperature rise. By contrast,

FIG. 5. COM–COM RDFs of AdResS-EMATI in the AT and CG region compared
to a reference full AT simulation.

FIG. 6. Particle diffusion across the resolution interface for AdResS-EMATI. The
AT-CG interface is visualized by a gray line. Particles in the AT region next to the
interface are marked at t = 0, and the PDFs of marked particles over time are
visualized.

AdResS-EMATI yields numerically stable simulations with both CG
potentials even for γ = 0.1/ps, showing no evidence of these fatally
rising temperatures.

A constant temperature profile is as important as a constant
density profile for AT and CG regions to be in equilibrium.22,29,33,45

We compare the normalized temperature profile (NTP) of AdResS-
EMATI and AdResS-FC in Fig. 7 for γ = 6 to allow a comparison
on equal terms. For the AdResS-EMATI, γ = 6 simulation, we reuse
FTD derived for γ = 1. Despite the large friction coefficient of γ = 6,
AdResS-FC yields a peak temperature deviation of 10.8%, while
AdResS-EMATI only yields a maximum deviation of 0.6% for the
same friction value. For γ = 1, AdResS-EMATI yields a temperature
error of 3.6%, which is on the same order as the density deviation
of 2.4%.

FIG. 7. Normalized temperature profile (NTP) of AdResS-EMATI and AdResS-FC.
The temperature is computed based on CG DOFs in the CG region and AT DOFs
in the AT region. The gray line visualizes the AT-CG interface.
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As the temperature deviation is primarily controlled by the
Langevin thermostat, a dedicated γ for the region around the resolu-
tion interface might improve AdResS-FC: The effect of a necessarily
larger γ would be limited to this region, while the AT and CG regions
could be simulated with a more desirable, smaller γ. Nonetheless, the
above conclusions from our simulations with a constant γ still hold
in the sense that AdResS-FC always requires a much larger γ in the
interface region than AdResS-EMATI for the same maximum devi-
ation threshold. This larger than desired impact of the thermostat
might eventually alter structural and/or thermodynamic properties
around the interface.

Figure 8 displays FTD and the NDP without FTD for AdResS-
EMATI and AdResS-FC. NDP and FTD are very similar for
both methods except for a very narrow region around the inter-
face, hinting at a strictly local impact of EMATI and force cap-
ping. The most striking difference in NDP is a larger density
well directly at the interface for AdResS-FC, presumingly due to
large forces from overlaps (capped at Fcap) causing both overlap-
ping molecules to quickly diffuse away from the interface. The
same phenomenon emerges in FTD as it needs to compensate for
this density well, resulting in larger force extrema close to the
interface.

While achieving a constant NTP is not problematic in the
AdResS, the smoothing inside the HY region comes at the cost
of structural deviations in this region. Figure 9 compares the
COM–COM RDF of AdResS-EMATI at the region that coin-
cides with the HY region of the AdResS. The agreement with
the AT reference RDF is very good for AdResS-EMATI (and
for AdResS-FC, not shown). By contrast, the AdResS yields an

FIG. 8. Normalized density profile (NDP) and FTD of AdResS-EMATI and AdResS-
FC. The gray line visualizes the AT-CG interface.

FIG. 9. COM–COM RDFs of AdResS-EMATI in the interface (INT) region com-
pared to the AdResS in the HY region and to the reference full AT simulation.

RDF in the HY region that significantly deviates from the AT
reference.

Our results demonstrate that AdResS-EMATI yields well
matching thermodynamic as well as structural properties at the
interface. Matching additional properties beyond density and tem-
perature at the interface increases numerical accuracy in AT and
CG regions by reducing coupling artifacts.29 For example, match-
ing the COM–COM RDF in the interface implies that the PDF
in the AT region matches the PDF of a full AT simulation at
least up to second order,22,29 while even third-order accuracy
has been shown empirically.22 This characteristic of reduced AT-
CG coupling artifacts makes AdResS-EMATI a prime choice in
a computational magnifying glass setting where the CG region
serves to deliver a coarse but informative representation of the
system.

C. Estimation of overlap severity

We propose a coarse measure based on the solvent geometry
and both the AT and CG force fields to a priori estimate the possi-
ble severity of overlapping potentials at the interface. This measure
might be helpful in identifying systems for which augmenting the
AdResS with EMATI (or some other similar back-mapping method)
is necessary. Note that we neglect electrostatic forces in this discus-
sion as steric repulsion forces from the LJ potential are dominant for
small atom distances.

The superposition of the VdW volumes of all likely occur-
ring AT configurations that correspond to a given COM position
yields a sphere of radius rAT that determines the maximum extent
of inserted AT molecules [Fig. 10(a)]. We approximate rAT as a sum
of the VdW radius of the outermost AT atom σAT/2 and its distance
from the COM position in the equilibrium configuration46 rCOM, i.e.,
rAT ≈ rCOM + σAT/2. The difference between the radius of this AT
sphere and the VdW radius of the CG potential (rδ = rAT − σCG/2)
determines the likelihood and severity of overlaps for random
insertion, where we estimate σCG analogously to the LJ potential
(Fig. 3).

We define a measure for overlap severity ν by considering the
worst possible scenario [Fig. 10(b)]. Suppose two neighboring CG
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FIG. 10. Sketch of the severity of overlap estimation. Panel (a) visualizes the origin
of the sphere of maximum AT extent for butane. The VdW volume of a sample
butane molecule in orange significantly extends beyond the VdW volume of the
CG potential in blue. Superposition of all possible AT configurations yields the gray
sphere of maximum AT extent. Panel (b) sketches the configuration of the worst
case overlap estimation with two molecules being σCG apart. This configuration
yields overlapping AT spheres shaded dark gray. If both AT molecules happen to
point exactly toward each other, their most outward VdW spheres overlap by 2rδ .

sites are separated by a distance σCG. Coincidentally, the AT DOFs
are inserted such that the outermost AT atoms of the two CG sites
are facing each other, i.e., they are at the minimal mutual dis-
tance equal to r = σCG − 2rCOM = σAT − 2rδ . The overlap severity
ν is

ν = FAT ∣r=σAT−2rδ

FAT ∣r=σAT

, (3)

where FAT = ∥FAT∥ is the force magnitude computed from the AT
potential of the molecule’s outermost AT atom.

In the case of SPC water, where ν is not excessively large
(rδ = 0.026 nm, ν = 17.1), even this worst case insertion sce-
nario does not create fatally large forces. Therefore, force cap-
ping is not necessary for SPC water in the AdResS without the
HY region,47 which we confirmed with test simulations. Larger,
non-spherical molecules are more challenging for the AdResS,
given that a spherical CG potential is not a good approximation25

and rAT increases with the maximum distance of the outermost
atoms from the COM position rCOM. Thus, alkane chains, includ-
ing butane,44 require a method to handle overlapping AT poten-
tials, even with the HY region.25 The issue is even worse without
the HY region with ν of butane (rδ = 0.10 nm, ν = 5.4 ⋅ 104) being
more than three orders of magnitude larger than in the case of SPC
water.

Any back-mapping method that augments the AdResS implic-
itly relies on the assumption that the COM of the central
molecule is sensible, given the surrounding AT neighbors. Exam-
ples that clearly violate this assumption are the recent appli-
cations of the AdResS without the HY region modeling CG
molecules as ideal gas particles:21,32 Ideal gas particles in the
CG region do not enforce a minimum distance between CG
molecules (σCG = 0); hence, the COM of the central molecule
can be arbitrarily close to neighboring AT atoms. Consequently,
there does not always exist an AT configuration of the central
molecule that is consistent with the given COM and simultane-
ously yields non-fatal forces, necessitating force capping, even for
water.32

The main drawback of EMATI is its reliance on energy min-
imization. Energy minimization is prone to yield over-stabilized
structures in back-mapping problems such that additional molecu-
lar dynamics steps are often required to obtain structures at a target
state point.4 However, we did not experience large over-stabilization
effects in our simulations. If, however, application of EMATI would
result in unacceptably large over-stabilization, increasing σtarget
should shift the potential energy distribution toward larger energies
counteracting this effect.

Energy minimization steps also increase computational effort,
generating a computational overhead over AdResS-FC. The extra
computational effort is proportional to the number of CG sites
migrating into the AT region, hence scaling with the resolution
interface area. In our simulations, EMATI is applied approximately
once every 17 time steps. Computation per migrated CG site, i.e.,
per EMATI execution, is limited to a small hemisphere of radius
rcut around the central molecule and is mainly controlled by the
EMATI parameters rcut, σtarget, Ftarget, and nresets. On the other
hand, AdResS-EMATI reduces the overhead due to the exclusion
of the HY region. The related speed-up scales with the volume
of the HY region and depends on the employed force fields. For
example, Ref. 28 reported a speed-up of 1.4 for a system of two
micelles in water. We refer the reader to Refs. 27 and 28 for a
detailed discussion of the computational implications of the HY
region. In our numerical experiments, the overhead of EMATI,
with the parameters given in Sec. II C, was approximately the
same as the overhead from the HY region. For this proof of con-
cept study, we neither optimized EMATI nor its parameters for
numerical efficiency. As a test, we also changed EMATI’s param-
eters toward numerical efficiency (e.g., reducing rcut) and found a
significant reduction in overhead, hence outperforming the AdResS.
The numerical efficiency could also be improved by considering
more advanced methods, e.g., the Fast Inertial Relaxation Engine
(FIRE).48

IV. CONCLUSION

In this work, we proposed EMATI, an interface DOF insertion
method for the AdResS without the need of a HY region sandwiched
in between the AT and CG regions. AdResS-EMATI is conceptu-
ally similar to the method introduced in Ref. 28. However, it largely
extends the applicability of the direct AT/CG coupling. In particu-
lar, it enables the direct resolution coupling to systems with non-
spherical molecules, e.g., butane, for which simple force capping
does not suffice. Numerical stability in AdResS-EMATI is achieved
without requiring force capping or changing the AT potential at
the interface. AdResS-EMATI directly tackles the root cause of the
numerical instability issue, i.e., overlapping AT potentials, by insert-
ing AT DOFs based on the minimized interacting energy with sur-
rounding atoms. We demonstrated the applicability of our method
in a system of liquid butane, for which AdResS-FC results in a fatal
temperature rise for common thermostat friction values. We fur-
ther showcased reduced temperature artifacts over AdResS-FC while
also removing the structural discrepancies observed for the standard
AdResS in the HY region.

We chose the IBI CG potential to showcase excellent struc-
tural properties in the interface region (Fig. 9). However, there
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are many CG potentials that would work with AdResS-EMATI as
well, e.g., a potential derived from the multiscale coarse-graining
method49–51 would be a reasonable alternative. We additionally
implemented the MARTINI52 CG force field and found the same
numerical stability preserving properties of AdResS-EMATI, even
though the RDFs of the MARTINI and AT force fields do not
match. AdResS-EMATI is in principle applicable to polar and apolar
solvents and arbitrary CG force fields, as long as the CG poten-
tial enforces a sufficiently large VdW volume such that an accept-
able AT molecule configuration exists. It could also be applied to
coarse-grained models of molecules with several CG particles, i.e.,
coarse-grained models of polymers. In this case, the calculation
of the forces used for the EMATI scheme needs to also include
the bonded interactions (bonds, angles, and dihedrals) between the
atoms belonging to different CG sites in the AT region of the same
molecule.

EMATI might also prove valuable to the standard AdResS
with the HY region, e.g., for macromolecular systems,25 as an alter-
native to the soft-core potential substitution method. Augmenta-
tion of the AdResS without the HY region by a back-mapping
method represents one step toward its applicability as a computa-
tional magnifying glass by improving numerical stability and reduc-
ing artifacts from overlaps in the interface. To improve the method
further, replacing the energy minimization in EMATI by a more
advanced back-mapping scheme53–57 might be a next step worth
investigating.
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20J. Zavadlav, J. Sablić, R. Podgornik, and M. Praprotnik, “Open-boundary molec-
ular dynamics of a DNA molecule in a hybrid explicit/implicit salt solution,”
Biophys. J. 114, 2352–2362 (2018).
21J. Whittaker and L. Delle Site, “Investigation of the hydration shell of a mem-
brane in an open system molecular dynamics simulation,” Phys. Rev. Res. 1,
033099 (2019).
22H. Wang, C. Hartmann, C. Schütte, and L. Delle Site, “Grand-canonical-
like molecular-dynamics simulations by using an adaptive-resolution technique,”
Phys. Rev. X 3, 011018 (2013).
23A. Agarwal, H. Wang, C. Schütte, and L. Delle Site, “Chemical potential of liq-
uids and mixtures via adaptive resolution simulation,” J. Chem. Phys. 141, 034102
(2014); arXiv:1311.6982.
24R. Potestio, S. Fritsch, P. Español, R. Delgado-Buscalioni, K. Kremer,
R. Everaers, and D. Donadio, “Hamiltonian adaptive resolution simulation for
molecular liquids,” Phys. Rev. Lett. 110, 108301 (2013).
25J. H. Peters, R. Klein, and L. Delle Site, “Simulation of macromolecular liq-
uids with the adaptive resolution molecular dynamics technique,” Phys. Rev. E
94, 023309 (2016).
26A. Chaimovich, C. Peter, and K. Kremer, “Relative resolution: A hybrid formal-
ism for fluid mixtures,” J. Chem. Phys. 143, 243107 (2015); arXiv:1903.04755.
27C. Junghans, A. Agarwal, and L. Delle Site, “Computational efficiency and
Amdahl’s law for the adaptive resolution simulation technique,” Comput. Phys.
Commun. 215, 20–25 (2017).
28C. Krekeler, A. Agarwal, C. Junghans, M. Praprotnik, and L. Delle Site, “Adap-
tive resolution molecular dynamics technique: Down to the essential,” J. Chem.
Phys. 149, 024104 (2018); arXiv:1806.09870.
29H. Wang, C. Schütte, and L. Delle Site, “Adaptive resolution simulation
(AdResS): A smooth thermodynamic and structural transition from atomistic to
coarse grained resolution and vice versa in a grand canonical fashion,” J. Chem.
Theory Comput. 8, 2878–2887 (2012).

J. Chem. Phys. 153, 164118 (2020); doi: 10.1063/5.0025728 153, 164118-8

Published under license by AIP Publishing

3.3. Augmented Adaptive Resolution Scheme

95



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

30M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E.
Lindahl, “GROMACS: High performance molecular simulations through multi-
level parallelism from laptops to supercomputers,” SoftwareX 1-2, 19–25
(2015).
31H. V. Guzman, N. Tretyakov, H. Kobayashi, A. C. Fogarty, K. Kreis, J. Krajniak,
C. Junghans, K. Kremer, and T. Stuehn, “ESPResSo++ 2.0: Advanced methods for
multiscale molecular simulation,” Comput. Phys. Commun. 238, 66–76 (2019);
arXiv:1806.10841.
32L. Delle Site, C. Krekeler, J. Whittaker, A. Agarwal, R. Klein, and F. Höfling,
“Molecular dynamics of open systems: Construction of a mean-field particle
reservoir,” Adv. Theory Simul. 2, 1900014 (2019).
33S. Poblete, M. Praprotnik, K. Kremer, and L. Delle Site, “Coupling different
levels of resolution in molecular simulations,” J. Chem. Phys. 132, 114101 (2010).
34Y. Liu, A. H. De Vries, J. Barnoud, W. Pezeshkian, J. Melcr, and S. J. Marrink,
“Dual resolution membrane simulations using virtual sites,” J. Phys. Chem. B 124,
3944–3953 (2020).
35R. Delgado-Buscalioni and P. V. Coveney, “USHER: An algorithm for parti-
cle insertion in dense fluids,” J. Chem. Phys. 119, 978–987 (2003); arXiv:0303366
[cond-mat].
36G. De Fabritiis, R. Delgado-Buscalioni, and P. V. Coveney, “Energy controlled
insertion of polar molecules in dense fluids,” J. Chem. Phys. 121, 12139 (2004).
37C. Oostenbrink, A. Villa, A. E. Mark, and W. F. Van Gunsteren, “A biomolecular
force field based on the free enthalpy of hydration and solvation: The GROMOS
force-field parameter sets 53A5 and 53A6,” J. Comput. Chem. 25, 1656–1676
(2004).
38D. Reith, M. Pütz, and F. Müller-Plathe, “Deriving effective mesoscale potentials
from atomistic simulations,” J. Comput. Chem. 24, 1624–1636 (2003).
39S. Bevc, C. Junghans, and M. Praprotnik, “STOCK: Structure mapper and online
coarse-graining kit for molecular simulations,” J. Comput. Chem. 36, 467–477
(2015).
40S. Fritsch, S. Poblete, C. Junghans, G. Ciccotti, L. Delle Site, and K. Kremer,
“Adaptive resolution molecular dynamics simulation through coupling to an
internal particle reservoir,” Phys. Rev. Lett. 108, 170602 (2012); arXiv:1112.3151.
41S. Matysiak, C. Clementi, M. Praprotnik, K. Kremer, and L. Delle Site, “Model-
ing diffusive dynamics in adaptive resolution simulation of liquid water,” J. Chem.
Phys. 128, 024503 (2008).
42K. Kremer and G. S. Grest, “Dynamics of entangled linear polymer melts: A
molecular-dynamics simulation,” J. Chem. Phys. 92, 5057–5086 (1990).
43C. Junghans, M. Praprotnik, and K. Kremer, “Transport properties controlled
by a thermostat: An extended dissipative particle dynamics thermostat,” Soft
Matter 4, 156–161 (2008).

44J. Zavadlav, M. N. Melo, A. V. Cunha, A. H. de Vries, S. J. Marrink, and
M. Praprotnik, “Adaptive resolution simulation of MARTINI solvents,” J. Chem.
Theory Comput. 10, 2591–2598 (2014).
45M. Praprotnik, K. Kremer, and L. Delle Site, “Adaptive molecular resolution via
a continuous change of the phase space dimensionality,” Phys. Rev. E 75, 017701
(2007).
46Allowing for flexible bonds and angles will increase rAT in practice.
47B. Duenweg, J. Castagna, S. Chiacchiera, H. Kobayashi, and C. Krekeler
(2018). “Meso- and multi-scale modelling E-CAM modules II,” Zenodo.
https://doi.org/10.5281/zenodo.1210075 (2018).
48E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch, “Structural
relaxation made simple,” Phys. Rev. Lett. 97, 170201 (2006).
49S. Izvekov and G. A. Voth, “A multiscale coarse-graining method for biomolec-
ular systems,” J. Phys. Chem. B 109, 2469–2473 (2005).
50W. G. Noid, J.-W. Chu, G. S. Ayton, V. Krishna, S. Izvekov, G. A. Voth, A. Das,
and H. C. Andersen, “The multiscale coarse-graining method. I. A rigorous
bridge between atomistic and coarse-grained models,” J. Chem. Phys. 128, 244114
(2008).
51W. G. Noid, P. Liu, Y. Wang, J.-W. Chu, G. S. Ayton, S. Izvekov, H. C. Andersen,
and G. A. Voth, “The multiscale coarse-graining method. II. Numerical imple-
mentation for coarse-grained molecular models,” J. Chem. Phys. 128, 244115
(2008).
52S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. De Vries,
“The MARTINI force field: Coarse grained model for biomolecular simulations,”
J. Phys. Chem. B 111, 7812–7824 (2007).
53L.-J. Chen, H.-J. Qian, Z.-Y. Lu, Z.-S. Li, and C.-C. Sun, “An automatic coarse-
graining and fine-graining simulation method: Application on polyethylene,”
J. Phys. Chem. B 110, 24093–24100 (2006).
54J. Krajniak, Z. Zhang, S. Pandiyan, E. Nies, and G. Samaey, “Reverse map-
ping method for complex polymer systems,” J. Comput. Chem. 39, 648–664
(2018).
55J. Peng, C. Yuan, R. Ma, and Z. Zhang, “Backmapping from multiresolution
coarse-grained models to atomic structures of large biomolecules by restrained
molecular dynamics simulations using Bayesian inference,” J. Chem. Theory
Comput. 15, 3344–3353 (2019).
56G. Zhang, A. Chazirakis, V. A. Harmandaris, T. Stuehn, K. C. Daoulas, and
K. Kremer, “Hierarchical modelling of polystyrene melts: From soft blobs to
atomistic resolution,” Soft Matter 15, 289–302 (2019).
57W. Li, C. Burkhart, P. Polińska, V. Harmandaris, and M. Doxastakis, “Backmap-
ping coarse-grained macromolecules: An efficient and versatile machine learning
approach,” J. Chem. Phys. 153, 041101 (2020).

J. Chem. Phys. 153, 164118 (2020); doi: 10.1063/5.0025728 153, 164118-9

Published under license by AIP Publishing

3. Publications

96



4. Summary and Discussion

Section 4.1 summarizes the main results of the thesis. Subsequently, section 4.2 discusses
important findings and provides an outlook on further research questions.

4.1. Summary

This thesis presents a body of work that promotes the more widespread adoption of NN
potential-based MD simulations in support of decision-making in practice. First, the
proposed DiffTRe algorithm facilitates training NN potential on experimental data. This
represents a major step towards highly accurate NN potentials necessary for reliable in-silico
analyses. DiffTRe also integrates well into existing ML frameworks as it only requires
to encode the forward pass of the computation of MD observables, whereas the resulting
gradient can be obtained via AD.

Second, the thesis demonstrated that NN potentials can be trained effectively via RE
minimization. This CG NN potential training scheme proved to be more data efficient and
less sensitive to the choice of prior potential. In contrast to FM, the RE objective function
considers phase-space regions not included in the data set as improbable and assigns them
a high potential energy if visited during training. In addition, RE minimization enables the
correction of numerical errors in CG MD simulations and thus a speed-up due to larger
simulation time steps without sacrificing accuracy.

Third, results showed that both M-pSGLD as well as the Deep Ensemble method enable
reliable UQ of MD observables. To achieve this goal, it is central to sample multiple
posterior modes and minimize difficult-to-quantify systematic uncertainties. However, while
Bayesian UQ methods have the theoretical advantage of being able to sample the volume
of the posterior, the employed pSGLD method was unable to capitalize on this. To address
this, the jax-sgmc library aims to foster research on more effective SG-MCMC samplers
that are capable of harnessing the power of fully-Bayesian UQ.

Last, the introduced EMATI method reduces the disturbance of the interface of AdResS
simulations without ∆ region since the AT DOFs are inserted based on the chemical
environment of the molecule rather than randomly. These reduced interface artefacts are a
prerequisite for using NN potentials in an AdResS simulation. Otherwise, the benefit of
more accurate potentials may be outweighed by errors in the interface region, either due to
incorrect structural properties within a ∆ region or excess energy introduced by capped
potential overlaps without a ∆ region.
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4.2. Discussion and Outlook

The results of this thesis show that NN potentials allow to model molecular systems
at unprecedented accuracy: The DimeNet++ models of water and diamond trained via
DiffTRe are in excellent agreement with all target experimental quantities. In addition,
the bottom-up trained models of CG water approximate the PMF sufficiently well such
that numerical errors become the dominant error component for larger time steps. This
represents a remarkable level of accuracy given that for classical potentials, numerical errors
are usually considered to be small enough to be neglected. This large model capacity is made
possible by the flexible functional form of NN potentials, which, however, involves the loss
of physical constraints built into classical potentials. Therefore, NN potential predictions
can be highly inaccurate and even numerically unstable when applied outside the training
data distribution, which hinders the application of NN potentials in MD simulations in
practice and limits the trustworthiness of the obtained MD results.

This thesis proposed several means to address this issue: First, all NN potentials
considered in this body of work were augmented by prior potentials, which significantly
improved their numerical stability and, in the case of FM training, the quality of the
obtained MD results. Second, the inclusion of MD simulations into the training pipeline,
e.g. by incorporating top-down optimization objectives via DiffTRe or a RE-based loss
function, reduced the tendency of NN potentials to enter unphysical phase-space regions.
In this case, the optimization can correct the sampling of unphyscial configurations, as
this results in a large increase in the loss. In this context, the prior potential serves as
a well-chosen initialization of the NN potential to accelerate training. Lastly, scalable
UQ techniques were shown to be well suited to provide reliable credible intervals for the
obtained MD observables, which increases trustworthiness. Scalable UQ schemes also signal
the practitioners cases where the model has been applied outside the training data domain
and more data needs to be collected.

In sum, these molecular modeling techniques highlight the advantage of combining ML
and physics-based methods: NN potentials provide unprecedented model accuracy, while
physics-based methods can enforce first-principle knowledge and improve extrapolation
capabilities. Therefore, the results of this thesis represent a major step towards accurate
and reliable application of NN potentials in MD simulations in practice, benefiting a broad
range of applications that profit from expedited material design via in-silico experimentation.

The remainder of this section discusses specific results of the thesis through the lens of
the following topics:

4.2.1. Neural Network Potentials: Architectural Considerations

The articles outlined in this thesis mainly build on the DimeNet++ [67, 161] potential.
Hence, the obtained results should be interpreted with the following architectural consider-
ations in mind:
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Equivariance

DimeNet++ [161] and its successor GemNet [164] are invariant graph NN potentials.
Invariant NN potentials rely on the explicit computation of triplet angles as well as dihedral
angles of all quadruplets in order to achieve universal approximation of functions that are
invariant to translation and rotation as well as equivariant to permutation [164]. However,
explicitly computing and storing all of these angles is computationally inefficient. Instead
of operating on invariant graph features only, equivariant graph NNs [165, 209–211] achieve
universality by using higher order internal representations such as vectors, tensors, etc.
[212]. Consequently, equivariant NNs are more memory efficient. Additionally, they have
been found to be more data efficient [150, 165].

Scalability

Most graph NN architectures exhibit a large receptive field given that the maximum
interaction distance is given by the graph cut-off rcut times the number of message-passing
iterations [166], e.g. 4× 0.5nm in the case of DimeNet++. This large effective cut-off is
disadvantageous for the parallelizability of NN potential-based MD simulations due to the
large amount of ghost atoms stored across compute nodes, which hampers the scaling to
large molecular systems and longer simulation times. Consequently, more recent graph
NN potentials reduce the effective interaction radius by restricting message-passing to the
local neighborhood of each central atom [166] or by significantly reducing the number of
message-passing iterations by passing high body-order messages [213].

Stability

Fu et al. [61] define stability of NN potentials as MD simulation time elapsed before the
potential samples unphysical configurations. Stability of NN potentials is essential for their
applicability in MD simulations, but this property has only recently gained attention as an
important metric when designing new NN architectures. Interestingly, the functional form
of the potential defined by the graph NN architecture impacts stability significantly: While
NequIP [165] outperforms other architectures consistently, DimeNet becomes unstable
already after 30 ps of an AT water simulation [61]. Given that CG water simulations in
this thesis have been shown to be stable for up to 10 ns with the DimeNet++ potential
[2, 3], this indicates that a well-chosen prior potential may increase stability by orders
of magnitude. However, this thesis shows that using a prior potential is no guarantee
for stability, as evidenced by some unstable pSGLD and Deep Ensemble trajectories (sec.
3.2.1).

In the case of DimeNet++, sampling unphysical phase-space regions is connected to
numerical instability via the Bessel basis [67]: If two atoms approach a pairwise distance
d ≈ 0, the numerical implementation of the Bessel functions diverges, even though the
analytic Bessel basis is finite at d = 0. In this case, the predicted potential energy diverges
and the trajectory becomes NaN from this point forward. This is particularly problematic
for simulation-based training such as DiffTRe or RE, where untrained models inevitably
sample configurations with atom overlaps. Consequently, another important objective of the
prior potential is to avoid numerical instabilities during simulation-based training. Hence,
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solving the problem of the numerical instability of the Bessel basis or developing stable
basis sets are important directions for future research.

Short-Range Interactions

The majority of ML potentials, both descriptor- and message passing-based, only model
short-range interactions. For the systems considered in this thesis, short-range interactions
modeled by DimeNet++ were shown to be sufficient for an accurate description of the
potential energy. However, for other systems, modeling long-range interactions can be
imperative, e.g. long-range electrostatics for ionic systems [214]. To this end, environment-
dependent partial charges can be predicted for each atom [214–216] and the electrostatic
contribution to the potential energy can be obtained via standard Ewald summation [217].
However, given that this approach uses local features to predict partial charges, it cannot
account for long-range charge transfer [59]. Recent works address this issue either by
improving locally predicted partial charges via a global charge equilibration scheme [59]
or by directly learning long-range interactions in Fourier space via Ewald message passing
[218].

Cost-Accuracy Trade-Off

DimeNet++ with 4 message-passing iterations models up to 8-body interactions [219].
This large model capacity comes at the cost of significant computational effort for force
computations in MD simulations, especially compared to classical force fields. For many
systems, these high body-order interactions may not be necessary to obtain a sufficiently
accurate potential energy model [220]. Consequently, the availability of different model
families along the cost-accuracy Pareto front is beneficial for practitioners, who can select
the cheapest model that is sufficiently accurate for the problem at hand.

Ultra-Fast Potentials [220] are an example for computationally efficient potentials, which
model 2- and 3-body non-bonded interactions via B-splines. Such ML potentials are
promising models for CG systems, where the high capacity of NN potentials developed
for training on CQM data may be unnecessary. In addition, cheaper NN potentials can
promote the use of simulation-based training schemes by further shifting the bottleneck of
the ML pipeline from training to data generation.

4.2.2. Machine Learning and Concurrent Multiscale Modeling

Highly accurate CG NN potentials such as DimeNet++ are computationally more demanding
than classical AT force fields. Consequently, combining expensive CG NN potentials with
classical AT force fields via AdResS seems unattractive. However, as AT NN potentials
become more widespread, the same relative speed-up considerations as in the classical case
argue for the concurrent combination of AT NN potentials with efficient CG ML potentials
in the future.

ML methods could also improve the interface accuracy in AdResS simulations: After
minimizing interface artefacts caused by AT DOF insertion via back-mapping approaches
such as EMATI (assuming no ∆ region), the remaining error at the interface can be linked
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to clustering effects due to the difference in solvation free energy of the CG and AT models
[197]. Consequently, by integrating the interface density error into the loss function, DiffTRe
could optimize the AT-CG interaction in a differentiable AdResS simulation. Alternatively,
when using AT and CG NN potentials, the interface errors may be reduced by augmenting
the FM training with randomly drawn AT-CG interfaces. In this case, the NN potential
can learn to approximate the target AT forces acting on AT atoms and CG particles given
a box of heterogeneously resolved particles as input.

4.2.3. DiffTRe as a Structural Coarse-Graining Method

Iterative Boltzmann inversion [221] and Inverse Monte Carlo [222] are popular CG training
methods that optimize pairwise potentials to match structural correlation functions, typically
the radial distribution function [223]. Analogously, DiffTRe can be used to match pair, triplet
and higher body-order correlation functions. Thus, DiffTRe enables structural CG training
of NN potentials, which require higher body-order correlations to constrain their high body-
order interactions. However, explicitly computing non-bonded, high body-order correlation
functions at each optimization step is computationally demanding. Hence, RE minimization
appears to be a more suitable approach for bottom-up structural coarse-graining of NN
potentials because it matches all structural correlation functions conjugate to the basis
functions of the potential without computing the correlations explicitly [177]. Nonetheless,
combining RE and DiffTRe can be useful in order to match important thermodynamic
quantities such as the pressure or the solvation free energy exactly. Furthermore, DiffTRe
is needed to match experimentally obtained structural correlations.

4.2.4. Non-Uniqueness of Top-Down Neural Network Potentials

Experimental measurements are typically sparsely available only, leaving NN potentials
trained via DiffTRe under-determined. This results in large epistemic uncertainty with
respect to held-out observables, as evidenced with the Deep Ensemble [88, 89] method for the
case of the phonon density of state in the diamond example in the original DiffTRe paper [2].
Given that many NN parameter sets θ can match a sparse set of target observables, the
maximum entropy principle [224] suggests to select the potential that yields the distribution
with the maximum entropy [225]. Whether this maximum entropy model yields improved
predictions for held-out observables is an open research question.

4.2.5. Uncertainty-Aware Molecular Dynamics Simulations

As demonstrated in sec. 3.2.1, M-pSGLD and the Deep Ensemble method enable reliable
quantification of the epistemic uncertainty of MD observables. In addition to assessing
the trustworthiness of ML potential-based MD simulation results, UQ for MD observables
also facilitates top-down active learning: When the uncertainty of an observable of interest
exceeds a pre-specified threshold, a new experiment can be conducted and included into
the top-down training data set, maximizing the information-gain per experiment [17].

The paper presented in sec. 3.2.1 generated a dedicated MD trajectory for each parameter
set θi. Running an ensemble of simulations in parallel is recommended to ensure the
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reproducibility of MD results [226]. This approach allows to estimate the uncertainty
resulting from using the MD time average as an approximation to the ensemble average for
finite trajectory lengths. This uncertainty can be significant given that stimulation times
for systems of interest are often much shorter than the Poincaré recurrence time [226]. In
practice, running multiple parallel simulations often exceeds the available computational
budget. In this case, UQ for MD observables can be achieved via reweighting based on a
single MD trajectory generated by the mean potential energy function [191].

Estimating the uncertainty of the potential energy at each MD time step without a
large computational overhead is useful for bottom-up active learning [50, 84, 85, 130] as
well as on-the-fly combination of ML potentials with classical force fields [191]. For these
applications, the Monte Carlo-based UQ schemes discussed in this thesis are impractical
due to their computational cost, but they can serve as a reliable baseline for benchmarking
more computationally efficient UQ methods: GPs [46] are a natural choice given that they
provide an uncertainty estimate for potential energy as a by-product [49]. However, GPs
with hand-crafted kernels do not achieve the same predictive accuracy as state-of-the-art
GNNs [164, 165]. Consequently, future research should aim at integrating GNN backbones
into sampling-free UQ methods [227], e.g., via Deep Kernel Learning [228].

4.2.6. Synthesis of Machine Learning and Molecular Dynamics

Up until the late 2010s, the relationship between ML and MD was primarily characterized
by ML improving the accuracy of MD simulations through powerful ML potentials, typically
trained via energy or force matching as a preprocessing step [44, 51, 59, 68, 69, 153, 154, 216].
More recently, this feed-forward ML pipeline, ranging from data generation to training and
subsequent application of the learned potential in an MD simulation, has been increasingly
extended to include multiple feedback loops (fig. 4.1).

Data ML MD
SimulationPotential ⟨O⟩

AL

DiffTRe

FM

RE

Figure 4.1.: Molecular machine learning pipeline. The standard feed-forward pipeline (black
arrows) trains the machine learning (ML) potential via energy or force matching
(FM). The ML potential is the input to the molecular dynamics (MD) simulation
that predicts the observables ⟨O⟩. Additional feedback loops (turquoise arrows)
include data generation via active learning (AL) and simulation-based training
schemes such as Differentiable Trajectory Reweighting (DiffTRe) or relative
entropy (RE) minimization.

Simulation-based training schemes such as DiffTRe and RE integrate MD simulations
into NN potential training. Additionally, AL [84, 85] leverages MD simulations for efficient
data generation. Recent works extend this ML pipeline with additional components by
introducing coarse CQM simulations for on-the-fly feature generation, [229], GANs for
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training CG potentials [56, 230] and accelerated active learning [231], autoencoders for
learning non-linear CG mappings [232, 233] as well as normalising flows [234–236] for
enhanced sampling from the Boltzmann distribution [237], NN potential training [83, 238]
and free energy computations [239]. As a result, ML and physics simulations are becoming
increasingly intertwined, aided by differentiable simulators [135, 136] that allow seamless
integration into gradient-based training and inference pipelines [2, 95, 137, 240].

4.2.7. Towards Next-Generation Neural Network Potentials

Significant advances in ML tasks have often involved the use of large computational resources
to train high-capacity models that can learn from large amounts of high quality data [156,
241]. Within the training data distribution, current GNN architectures already achieve test
set errors that are significantly smaller than the expected DFT error [66, 67]. Additionally,
recently developed GNN components improve upon these models by providing high-order
equivariant activations [165], scalability [166, 213], efficient long-range interactions [218] and
higher model capacity [242]. Thus, architectures that enable next-generation NN potentials
are within reach.

The quantity and quality of available training data is therefore increasingly emerging
as the main limiting factor for the accuracy and transferability of NN potentials. Thus,
the development of a platform that curates available [53, 54, 243] and newly generated
CQM data represents a major opportunity in this context. For maximal utility, such a
novel QCM data platform could be integrated with a platform for experimental data [244],
which would also simplify access to available experimental databases [245–247]. As an
additional benefit, custom queries to open access databases could address the inevitable
trade-off between model generality and computational cost for inference: Training smaller,
application-specific models that are accurate within a small part of chemical space, e.g. by
only considering atom types present in the physical process of interest, could speed up NN
potential-based MD simulations. In this context, uncertainty-aware MD simulations are
particularly important to ensure that a special-purpose potential is not applied outside its
range of validity.

Considering both experimental and CQM data allows to combine the advantages of
both sources of information: Bottom-up training improves transferability by providing
broad phase-space coverage, while top-down training fine-tunes the model using available
experimental data to correct for CQM errors. In addition, top-down optimization, e.g.
via DiffTRe, enables training on large molecular systems, which is important given that
CQM will remain limited to rather small system sizes in the foreseeable future. This hybrid
modeling approach is facilitated by recently developed NN potential training libraries that
support reweighting-based top-down optimization combined with bottom-up training [248].

Leveraging CQM data at different modeling levels (DFT [29, 30], coupled cluster CCSD(T)
[72], quantum Monte Carlo [73, 74]) requires training schemes that account for the different
levels of uncertainty associated with the different data sources. Specifically, accelerated
bottom-up active learning methods [50, 231, 249] can play an important role in training
high-accuracy models using CCSD(T) data while maintaining sufficient data-coverage.
Furthermore, bottom-up active learning could be combined with top-down active learning:
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Depending on the current state of the model, the combined active learning scheme could
select which type of data to add (experimental, CCSD(T) or DFT) to maximize model
accuracy and optimally utilize available experimental and computational resources. The
development of such an algorithm represents a task of major importance for future research.
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A. Supplementary Information

A.1. Learning neural network potentials from experimental
data via Differentiable Trajectory Reweighting

The following section contains the supporting information for ref. 2 embedded in section
3.1.1.

125



Learning neural network potentials from experimental data via

Differentiable Trajectory Reweighting: Supplementary Information

Stephan Thaler1 and Julija Zavadlav1,2

1Professorship of Multiscale Modeling of Fluid Materials,
TUM School of Engineering and Design, Technical University of Munich, Germany

2Munich Data Science Institute, Technical University of Munich, Germany

Contents

Supplementary Methods 1
1. DiffTRe and simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Double-well toy example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Atomistic model of diamond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Coarse-grained water model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Speed-up considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. Continuously differentiable binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
4. Stress-strain relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
5. Derivation of the gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
6. DimeNet++ hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Supplementary Figures 5

Supplementary References 13

Supplementary Methods

1. DiffTRe and simulation parameters

First, we summarize DiffTRe parameters relevant to all examples before we list problem-specific parameters below.
We have set N̄eff = 0.9N as the threshold above which re-using a trajectory is allowed. We employ an Adam
optimizer [1] with exponentially decaying learning rate. Adam hyperparameters β1 = 0.1 and β2 = 0.4 are chosen
to account for training with rather large step sizes and only few parameter updates. All examples are initialized
with a global random seed 0, which controls the random initialization of θ and the initial simulation state. We
observed that despite setting random seeds, results are not matched exactly across different re-runs – even when
running JAX on reproducibility configuration. We tackle this issue by reporting results for varying random seeds
that also capture variability from non-deterministic operations. All computations are run on a single Nvidia RTX
3090 GPU with the exception of computations with the cubic spline potential in the double-well toy example. As the
numerically inexpensive spline cannot saturate the GPU, computations were faster on an AMD Ryzen Threadripper
3070X CPU.

1.1. Double-well toy example

Simulations consist of Np = 2000 ideal gas particles of mass m = 1 within a box of size X = 1 and time step
δt = 0.001. The constant temperature of kBT = 1 in the canonical ensemble is enforced by a Nose-Hoover
chain thermostat [2] with 5 chains and time scale τ = 0.02. The initial state Sinit is constructed by randomly
drawing particles uniformly from x ∈ [0, 1]. Sinit for the final production run consists of particles drawn uniformly
from x ∈ [0.5, 0.51] to test convergence to the target density distribution, even from a state far from equilibrium.
Density distributions are computed via the differentiable density function in Supplementary Eq. (4) with bin width

1
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∆x = 0.01. During optimization, the initial learning rate η = 0.5 of Adam [1] is decayed exponentially by a factor
of 0.01 over 200 update steps. The target and final predicted densities ρ̃(x)/ρ0 and ρ(x)/ρ0 are computed based on
a production run of 100000 states following 10000 skipped states for equilibration.

1.2. Atomistic model of diamond

Simulations are run with a time step size of δt = 0.5 fs. The temperature is controlled by a Langevin thermostat
with friction coefficient γ = 4/ ps, which corresponds to a coupling time scale of 250fs. These values are common
in simulations of diamond in the literature [3]. Carbon atoms have a mass m = 12.011 u. The loss weights
γσ = 5 · 10−8( kJ

mol nm3 )−2 and γC = 10−10( kJ
mol nm3 )−2 balance the impact of both observables, i.e. stress σ and

stiffness values Cij . Optimization starts with an initial Adam learning rate η = 0.002 that is exponentially decayed
by a factor of 0.01 over 500 steps.

In computation of phonon density of states (PDOS), we minimize the potential energy via 500 steps of the
Fast Inertial Relaxation Engine (FIRE) [4]. PDOS is computed afterwards via the finite displacement method as
implemented in Phonopy [5] with displacement length 0.001 nm.

1.3. Coarse-grained water model

Coarse-grained water is simulated with a time step size of δt = 2 fs. Water molecules (and CG water particles
correspondingly) have a mass m = 18.0154 u. A Nose-Hoover chain thermostat [2] with chain length 5 and time
scale τ = 200 fs enforces the target temperature. We approximate radial (RDF) and angular distribution functions
(ADF) with the differentiable versions presented in Supplementary Eq. (5) and (6). The RDF is discretized by 300
bins of width ∆x = 1

300 nm. The ADF is discretized by 200 bins of width ∆α = π
200 rad and triplets are cut off

at rc = 0.318 nm analogous to the experimental evaluation [6]. The loss weight γp = 10−7( kJ
mol nm3 )−2 accounts for

the larger magnitude of pressure versus the RDF and ADF. The initial Adam learning rate η = 0.003 is decayed
exponentially by a factor of 0.01 over 200 steps.

The tetrahedral order parameter q [7] is computed via the triplet angles αijk spanned by neighboring particles
i and k of a central particle j. i and k are indices running over the 4 nearest neighbors of particle i and

q = 1− 3

8

3∑

i=1

4∑

k=i+1

(
cosαijk +

1

3

)2

. (1)

We compute the self-diffusion coefficient D via the Green-Kubo relation from the velocity auto-correlation
function (VACF)

D =
1

3

∫ tcut

0

〈
1

Np

Np∑

i=1

vi(t0) · vi(t0 + τ)

〉

t0

dτ , (2)

where we cut the VACF at tcut = 1 ps to reduce the effect of spurious long-term non-zero correlations. Np is the
number of particles in the box.

2. Speed-up considerations

Assuming a numerically expensive (NN) potential dominating computational effort, sg is determined by the cost of
necessary force evaluations during trajectory generation per retained state energy computation: As forces for NN
potentials are computed by backpropagating potential energy values, they are approximately G times as expen-
sive as energy computations. The provided rule-of-thumb formula in the main text overestimates sg for expensive
observables, but systematically underestimating sg by ignoring the cost of backpropagating through time integra-
tor operations. Recognizing that gradient computation costs with DiffTRe are negligible compared to reference
trajectory generation costs (under the same assumption of numerically cheap observables), s ∼ G + 1 reflects the
cost of trajectory generation plus backward pass versus only the trajectory generation in the case of DiffTRe. We
presumed a value of G ≈ 3 for the given estimates in the toy example, which mirrors that gradient computation in
the adjoint method requires integrating 3 ordinary differential equations backwards in time [8].

2
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3. Continuously differentiable binning

The (discrete) Dirac function used in binning can be substituted by a Gaussian probability density function (PDF)
centered at position xk of binned entity k. The value of bin bk(x) centered at x can be computed as

bk(x) = ∆x ∗ sk(x) with sk(x) =
1√

2πδ2
e−

(x−xk)2

2δ2 , (3)

where ∆x is the bin width. The implied discrete integral over a PDF guarantees an overall contribution of unity
for each binned entity. We set the Gaussian standard deviation δ = ∆x. For a fine grid δ → 0, the Dirac function
is recovered.

Eq. (3) allows defining a normalized differentiable density function

ρ(x) ' 1

Np

Np∑

k=1

bk(x) , (4)

where xk is the position of each particle in the simulation and Np is the number of particles in the box. Analogously,
we can define

RDF (d) ' Ω

V (d)N2
p

Npair∑

k=1

bk(d) , (5)

where V (d) is the volume of the sphere shell of bk(d) and Ω is the simulation box volume.
The ADF is a probability density function (PDF) over triplet angles αijk for all particle triplets ijk within a

cut-off radius rc of central particle j. We smooth the radial cut-off via a Gaussian cumulative distribution function
(CDF) Φ(r; rc, σ

2) centered at rc with variance σ2.

ADF (α) ' ADF (α)∫ π
0
ADF (α)dα

with ADF (α) =

Ntriplet∑

k=1

(1− Φ(rk,max; rc, σ
2))bk(α) , (6)

where rk,max = max(rij , rkj).

4. Stress-strain relations

Voigt notation provides a convenient way to describe the stress-strain relation by reducing pairs of indices to single
digits: 11 7→ 1, 22 7→ 2, 33 7→ 3, 23 7→ 4, 13 7→ 5, and 12 7→ 6. Generalized Hooke’s law can then be written as

σi = Cijεj with σ =




σ1

σ2

σ3

σ4

σ5

σ6




=




σ11

σ22

σ33

σ23

σ13

σ12




; ε =




ε1
ε2
ε3
ε4
ε5
ε6




=




ε11

ε22

ε33

2ε23

2ε13

2ε12



, (7)

assuming σ = 0 for ε = 0. Due to the symmetry in the diamond cubic crystal system, Eq. (7) simplifies to only 3
distinct values in C 



σ1

σ2

σ3

σ4

σ5

σ6




=




C11 C12 C12 0 0 0
C11 C12 0 0 0

C11 0 0 0
C44 0 0

sym C44 0
C44







ε1
ε2
ε3
ε4
ε5
ε6



. (8)

The inverse relation is defined by the compliance tensor S = C−1, which is usually given in terms of Young’s
modulus E, shear modulus G and Poisson’s ratio ν




ε1
ε2
ε3
ε4
ε5
ε6




=




1
E

−ν
E

−ν
E 0 0 0

1
E

−ν
E 0 0 0
1
E 0 0 0

1
G 0 0

sym 1
G 0

1
G







σ1

σ2

σ3

σ4

σ5

σ6



. (9)
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The stress-strain curves are computed by deforming the box in two separate modes that yield states of pure
normal and shear strain, respectively [9]. In the normal mode, we transform the box according to



X
Y
Z


→



X(1 + ξ)

Y
Z


 , (10)

which yields the non-zero strain ε1 = ε11 = ξ in the strain vector ε = (ε1, 0, 0, 0, 0, 0). A pure shear mode is given
by the transformation 


X
Y
Z


→




X
Y + Zξ
Z


 , (11)

which yields ε4 = 2ε23 = ξ in the strain vector ε = (0, 0, 0, ε4, 0, 0). These elementary deformations [9] allow probing
C such that a single component of C describes the relation between εi and measured σj (Eq. (8))

σ1 = C11ε1 ; σ2 = C12ε1 ; σ4 = C44ε4 . (12)

5. Derivation of the gradient

L(θ) = (〈O(Uθ)〉 − Õ)2 '
(

N∑

i=1

wiO(Si, Uθ)− Õ
)2

= L̄(θ) (13)

∂L̄

∂θ
= 2

( N∑

i=1

wiO(Si, Uθ)

︸ ︷︷ ︸
'〈O(Uθ)〉

−Õ
)
∂

∂θ

N∑

i=1

wiO(Si, Uθ) (14)

N∑

i=1

∂

∂θ
(wiO(Si, Uθ)) =

N∑

i=1

∂wi
∂θ

O(Si, Uθ) +

N∑

i=1

wi
∂O(Si, Uθ)

∂θ
︸ ︷︷ ︸

'〈 ∂O(Uθ)

∂θ 〉

(15)

∂wi
∂θ

=
∂

∂θ

(
e−β(Uθ(Si)−Uθ̂(Si))

∑N
j=1 e

−β(Uθ(Sj)−Uθ̂(Sj))

)

=
e−β(Uθ(Si)−Uθ̂(Si))

∑N
j=1 e

−β(Uθ(Sj)−Uθ̂(Sj))

︸ ︷︷ ︸
wi

(
−β ∂Uθ(Si)

∂θ

)
+

e−β(Uθ(Si)−Uθ̂(Si))

−
(∑N

j=1 e
−β(Uθ(Sj)−Uθ̂(Sj))

)2

∗
N∑

j=1

[
e−β(Uθ(Sj)−Uθ̂(Sj))

(
−β ∂Uθ(Sj)

∂θ

) ∑N
k=1 e

−β(Uθ(Sk)−Uθ̂(Sk))

∑N
k=1 e

−β(Uθ(Sk)−Uθ̂(Sk))

]
(16)

= wi

(
−β ∂Uθ(Si)

∂θ

)
+

e−β(Uθ(Si)−Uθ̂(Si))

−
(∑N

j=1 e
−β(Uθ(Sj)−Uθ̂(Sj))

)2

∗
N∑

k=1

e−β(Uθ(Sk)−Uθ̂(Sk))
N∑

j=1

[(
−β ∂Uθ(Sj)

∂θ

)
e−β(Uθ(Sj)−Uθ̂(Sj))

∑N
k=1 e

−β(Uθ(Sk)−Uθ̂(Sk))

︸ ︷︷ ︸
wj

]

= wi

(
−β ∂Uθ(Si)

∂θ

)
+

e−β(Uθ(Si)−Uθ̂(Si))

−∑N
j=1 e

−β(Uθ(Sj)−Uθ̂(Sj))

︸ ︷︷ ︸
−wi

∗
N∑

j=1

wj

(
−β ∂Uθ(Sj)

∂θ

)
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N∑

i=1

∂wi
∂θ

O(Si,θ) =
N∑

i=1

wi

(
−β ∂Uθ(Si)

∂θ

)
O(Si,θ) +

N∑

i=1

−wiO(Si,θ)
N∑

j=1

wj

(
−β ∂Uθ(Sj)

∂θ

)
(17)

' 〈−β ∂Uθ

∂θ
O(Uθ)〉+ 〈−O(Uθ)〉〈−β ∂Uθ

∂θ
〉 (18)

⇒ ∂L̄

∂θ
' 2(〈O(Uθ)〉 − Õ)

[
〈∂O(Uθ)

∂θ
〉 − β

(
〈O(Uθ)

∂Uθ

∂θ
〉 − 〈O(Uθ)〉〈∂Uθ

∂θ
〉
)]

=
∂L

∂θ
(19)

6. DimeNet++ hyperparameters

We refer the reader to the original DimeNet / DimeNet++ publications [10, 11] for a detailed description of the
neural network architecture. We reduced embedding sizes by factor 4: The standard embedding size then becomes
32, the output embedding size 64, the triplet and atom-type embedding size becomes 16 and the Bessel-basis
embedding remains at a size of 8. All other hyperparameters are unchanged: A cut-off length of 0.5 nm (0.2 nm for
diamond), 4 interaction layers, 3 fully-connected output layers, 1 residual block before and 2 residual blocks after
the skip connection, 6 radial and 7 angular Bessel embedding function with a continuously differentiable envelope
function of order 6 and a swish [12] activation function. Weights are initialized via an orthogonal Glorot[13, 10]
scheme.

Supplementary Figures

0.0 0.2 0.4 0.6 0.8 1.0
x / X

1.0

0.5

0.0

0.5

1.0

1.5

2.0

U
/k

B
T

a

Prior
Iteration 1
Iteration 7
Learned
Data-generating

0.0 0.2 0.4 0.6 0.8 1.0
x / X

0

1

2

3

4

/
0

b
Prior
Iteration 1
Iteration 7
Prediction
Target

Figure 1: Double-well toy example across optimization. By learning the normalized density, DiffTRe adjusts Umodel
θ

such that Uprior + Umodel
θ eventually recovers the data-generating potential (a). Accordingly, the corresponding

predicted normalized densities converge to the target (b). Potentials in panel a are shifted vertically for visualization
purposes such that all potentials coincide at x/X = 0.5.
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Figure 2: Double-well toy example vanishing gradients. There are areas on the potential energy surface (PES)
where the effect of the gradient on the PES ∆U = U(θ −∇θL)− U(θ) = 0, even though these areas contribute to
the loss (ρ− ρ̃ 6= 0). This is due to the reference trajectory that contains no states in these areas of the PES (ρ = 0
and ∇θρ = 0; compare Supplementary Eq. (19)).

6

131



0 50 100 150 200
Update step

10 4

10 3

10 2

10 1

100

L

c

0.0 0.2 0.4 0.6 0.8 1.0
x / X

0.0

0.5

1.0

1.5

2.0

2.5

/
0

a

0.0 0.2 0.4 0.6 0.8 1.0
x / X

1.0

0.5

0.0

0.5

1.0

1.5

2.0

U
/k

B
T

b

= 50
= 60
= 70
= 80
= 90
= 100

Target

Figure 3: Double-well prior variation study. Resulting density (a) and learned potential (b) with respective targets
for varying prior scales λ. The prior loss curves (c) show the impact of the prior on the initial loss value L(0) and
optimization convergence. Many possible λ lead to satisfactory learning outcomes (a− b).
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Figure 4: Random initialization study for the double-well toy example. A mean matching the target and small
standard deviations (shaded area) when re-starting the optimization with random seeds from 0− 99 demonstrates
that the learned normalized density profile is robust with respect to initialization of the spline and the initial
simulation state (a). The corresponding learned potential exhibits larger standard deviations at the left well
boundary due to difficult training in this region (b). Potentials are shifted vertically for visualization purposes such
that all potentials coincide at x/X = 0.5.
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Figure 5: Supplementary results for the diamond model. The large reduction in the loss L confirms successful
learning (a). Reduction in wall-clock time per parameter update ∆t in the second half of the optimization is
achieved through re-using previously generated trajectories. Panel b displays an alternative stiffness computation
method, explicit box deformation. Assuming a linear stress-strain relationship for small ε and a perfect alignment
of the learned potential with experimental σ̃ = 0 and C̃ij , all measured σi lie on the respective dashed lines. Hence,
both methods for computing stiffness tensor C give equivalent results and the neural network potential generalizes
from the un-strained training box to boxes under small strain. Panel c compares the predicted phonon density of
states (PDOS) with the experiment [14] and a Stillinger-Weber potential optimized for diamond [15]. The evolution
of predicted PDOS over the course of the training is shown in panel d.
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Figure 6: Random initialization study for diamond. For random seeds from 0 to 4 (controlling random initialization
of neural network weights as well as initial particle velocities), the predicted observables are distributed closely
around their respective targets (a). Corresponding predicted phonon densities of states (PDOSs) vary largely across
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Additionally, predicted target observables are robust to random initialization of NN weights and initial particle
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A.2. Deep coarse-grained potentials via relative entropy minimization

A.2. Deep coarse-grained potentials via relative entropy
minimization

The following section contains the supporting information for ref. 3 embedded in section
3.1.2.
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We train all models via the Adam optimizer [1] with default parameters, except for the learning rate. We decay
the initial learning rate η0 by an exponential decay schedule such that the η0 is reduced by a factor 0.01 at the
end of the training. For force matching (FM), we set η0 = 0.001, the default value of the Adam optimizer. For
relative entropy (RE) minimization, we choose a larger step size η0 = 0.003 as the model needs to converge within
a significantly smaller number of updates. All CG simulations are run in JAX, M.D. [2] on a single Nvidia RTX
3090 GPU.

1. Liquid Water

To generate the atomistic (AT) reference data, we run a LAMMPS [3] simulation with time step 2 fs. Initially, the
box size is set by a 1 ns NPT simulation with target pressure of 1 atm. After equilibrating the system for 1 ns in
the NVT ensemble, we generate the 10 ns data trajectory.

All CG simulations use a Nose-Hoover [4] thermostat with a chain length of 3, 3 Suzuki-Yoshida steps and a
coupling time of 200 fs. We subsample generated trajectories such that a state is retained every 0.1 ps.

For RE training, we approximate the AT average (first term) in eq. 8 via an average over random batches
consisting of 700 states from the AT data set. This reduces the overhead from averaging over the whole AT data
set significantly. Given that we average over the same number of states as generated by the CG MD simulation,
we do not expect a meaningful increase in the statistical error of the computed gradient. Increasing the number of
states considered in both averages offers a systematic way to decrease the statistical noise, if necessary.

We discretize the radial distribution function (RDF) with 300 bins, the triplet correlation function (TCF) with
50 bins in each direction and the ADF with 150 bins. For the ADF, we select a triplet cut-off value of 0.318 nm,
which is consistent with experimental evaluations [5].

2. Alanin Dipeptide

We generate the AT reference trajectory via a NVT simulation in GROMACS [6] using the AMBER03 [7] force
field, which resolves hydrogen atoms. The protein is solvated in TIP3P water. The simulation employs a veloctiy-
rescaling thermostat [8] with a time constant τ = 0.1 ps and a time step of 2 fs. We equilibrate the system for 1 ns
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in the NVT ensemble and 1 ns in the NPT ensemble with a barostat pressure of 1 bar, before generating the 100 ns
reference trajectory in the NVT ensemble.

All CG simulations use a Langevin thermostat with γ = 100 ps−1 and a time step ∆t = 2 fs. Generated
trajectories are subsampled such that a state is retained every 0.2 ps. We discretize the ϕ and ψ density histograms
and free energy surfaces via 60 bins each. The data set variation study in fig. 7 follows the default training scheme
detailed above with 100 training epochs, except for the small 10 ns data set, which we train for 1000 epochs to
have the same number of updates as with the 100 ns reference data set. For the convergence analysis in fig. 8, we
increase the learning rate decay factor to 0.1 due to the even smaller number of updates. We note that in practice,
a smaller initial learning rate than η0 = 0.003 might be appropriate to avoid changing the FM potential beyond the
necessary.
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Figure 1: Liquid water loss curves. Per-epoch training and validation loss χ2 for force matching training of the
liquid water model.
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Figure 2: Liquid water prior variation. Resulting (a) radial (RDF) and (b) angular distribution function (ADF)
[5] as well as (c) equilateral triplet correlation function (TCF) [9, 10] of models with a prior exponent of 6 trained
via force matching (FM) and relative entropy (RE) minimization compared to the atomistic reference.

3

A. Supplementary Information

142



0.0 0.2 0.4 0.6 0.8
r in nm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

RD
F

a

0.20 0.25 0.30 0.35 0.40 0.45 0.50
r in nm

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

TC
F

c
0.0 0.5 1.0 1.5 2.0 2.5 3.0

 in rad

0.0

0.2

0.4

0.6

0.8

AD
F

b

Reference
Spline FM
Spline RE

Figure 3: Liquid water spline models. Resulting (a) radial (RDF) and (b) angular distribution function (ADF) [5]
as well as (c) equilateral triplet correlation function (TCF) [9, 10] of 2-body cubic spline models trained via force
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Figure 4: Alanine dipeptide loss curves. Per-epoch training and validation loss χ2 for force matching training of
the alanine dipeptide model.
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Figure 5: Alanin dipeptide force predictions on test data. Each data point corresponds to a predicted force
component for a coarse-grained particle in the test data set compared to its atomistic reference for models trained
via (a) force matching and (b) relative entropy minimization.
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Figure 6: Free energy surface. Resulting free energy surface of the dihedral angles ϕ and ψ from (a) the AT reference
simulation and from the CG models trained via (b) force matching and (c) relative entropy minimization.
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Figure 7: Dihedral angle density. Distribution of dihedral angles (a) ϕ and (b) ψ as predicted from CG models
trained via 30 relative entropy (RE) updates, compared to the atomistic reference. One model is initialized with
random parameters and the other one is initialized to the parameters obtained from force matching (FM) pre-
training. The mean and standard deviation (shaded area) are computed from 50 trajectories of 100 ns length.
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A.3. Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls

A.3. Scalable Bayesian Uncertainty Quantification for Neural
Network Potentials: Promise and Pitfalls

The following section contains the supporting information for ref. 4 embedded in section
3.2.1.
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1. Prior Potential

In the common case of generating a data set by sampling from the Boltzmann distribution defined by the underlying
high-fidelity model, e.g. via a molecular dynamics (MD) simulation, the resulting data set contains mostly states
near energy minima, few high-energy states and no unphysical states such as overlapping atoms. Due to their
data-driven nature, NN potentials are unconstrained in phase-space regions not contained in the training data set.
When using such a NN potential in MD simulations, the simulation state may reach these unconstrained phase-
space regions, resulting in unphysical or highly inaccurate potential energy predictions [1, 2] that often result in
numerical instability [3]. This is exacerbated for CG potentials, which are designed to reach time and length scales
inaccessible to the data-generating AT model.

Classical potentials avoid this problem by using physics-inspired functional forms [4, 5] that encode a priori
known physical principles. For example, the Lennard Jones potential encodes repulsion due to the Pauli exclusion
principle at close distances and Van-der-Walls attraction at larger distances. Eq. (11) in the main text casts
training the NN potential as ∆-learning [6], where the NN potential corrects an a priori chosen classical potential in
phase-space regions where training data are available. With this ansatz, the goal of the prior potential is to enforce
qualitatively correct predictions where the NN potential is unconstrained, especially for (unphysical) high-energy
states, in order to drive the MD simulation back into the training data distribution, where the NN potential is
accurate [7].

For the considered examples with the DimeNet++ [8, 9] potential, the prior potential increases simulation
stability significantly compared to the case without it [3]. We found that the specific parameters of the prior
potential typically have a minor effect on simulation results [10, 7], assuming the chosen prior successfully restricted
the MD simulation from entering unphysical phase-space regions.

2. Lennard Jones Training

We generate 7500 samples using the No-U-Turn Sampler (NUTS) [11], of which 4100 are discarded during warm-up.
For the Deep Ensemble [12, 13] and the preconditioned Stochastic Gradient Langevin Dynamics (pSGLD) methods,
we employ a batch size of 1 as well as an initial learning rate of 0.01 and a final learning rate of 5 · 10−5, with all
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intermediate learning rates being set via a polynomial step size schedule [14]. We train models of the former for
10000 epochs and run chains for 10000 epochs for the latter, where 8000 were discarded as burn-in.

3. Pressure Matching

The pressure P can be computed from the following relation [15]:

P =
NDOFkBT

3V
+

⟨W ⟩
3V

, (1)

with temperature T , Boltzmann constant kB, volume V , ensemble averaged internal virial ⟨W ⟩ and number of
degrees of freedom in the system NDOF. We augment the FM loss with a virial-matching term [16], which we
weight by wP = 0.1

L(θ) =
1

NF

NF∑

j=1

[Fj − Fj,θ]
2 +

wp

Nbox

Nbox∑

k=1

[
W i

k

3V
− Wk,θ

3V

]2
, (2)

where W i
k/(3V ) is the target instantaneous internal virial term, Wk,θ/(3V ) is the internal virial term of state k

predicted by the NN potential with parameters θ and the definition of the first term is given in eq. (9) in the main
text.

Similar to approaches in the literature [17], we employ an iterative pressure matching scheme. We adjust the
internal virial values of the atomistic (AT) trajectory WAT

k to account for the smaller kinetic energy of the CG
system to obtain the initial targets:

W 0
k

3V
=
WAT

k

3V
+
kBT

3V
(NAT

DOF −NCG
DOF) . (3)

The iterative scheme then accounts for differences in the pressure due to the distribution shift between the mapped
AT trajectory and the trajectory sampled by the CG model:

W i+1
k

3V
=
W i

k

3V
+ PAT − P i,CG

θ , (4)

where PAT is the AT reference pressure and P i,CG
θ is the pressure obtained from a CG MD simulation with model

parameters θ at iteration i. We obtained acceptable models after the third iteration.
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Supplementary Figures

Figure 1: Lennard Jones potential. Data-generating Lennard Jones potential with sampled training data points
and zoom on the training interval.
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Figure 2: Chain convergence of the No-U-Turn Sampler. Predicted mean potential with ±σ and ±2σ intervals of
the No-U-Turn Sampler (NUTS) with samples collected from 1 (a), 5 (b), 8 (c) and 10 chains (d) – compared to
the Lennard Jones reference.
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Figure 3: Single chain No-U-Turn Sampler (NUTS) with fixed σH = 0.05. Predicted mean potential with ±σ and
±2σ intervals compared to the Lennard Jones reference.
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Figure 4: Radial distribution functions (RDF) at T = Tref . Resulting mean RDF with ±σ and ±2σ intervals as
predicted by the Deep Ensemble (a), the single chain pSGLD (b) and the multi-chain pSGLD (c) schemes at a
temperature T = Tref , compared to the atomistic reference.

6

153



Figure 5: Angular distribution functions (ADF) with uniform weight prior for S-pSGLD. Resulting mean ADF
with ±σ and ±2σ intervals as predicted by the S-pSGLD method with uniform prior over weights and biases at a
temperature T = Tref (a) and T = 260 K (b), compared to the atomistic reference.

Figure 6: pSGLD chain length variation. Root mean squared error (RMSE) of the mean predicted angular dis-
tribution function (ADF) of models sampled by the pSGLD scheme with a single chain of different total lengths.
The models are randomly retained after a burn-in period, which is 1000 epochs shorter than the total chain length.
Exceptions are chains with lengths of 200, 500 and 1000 epochs, which feature a burn-in period of 200, 400 and 500
epochs, respectively.
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Figure 7: Radial distribution functions (RDF) at T = 260 K. Resulting mean RDF with ±σ and ±2σ intervals
as predicted by the Deep Ensemble (a), the single chain pSGLD (b) and the multi-chain pSGLD (c) schemes at a
temperature T = 260 K, compared to the atomistic reference.
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Figure 8: Dihedral angle density histograms including potential energy holes. Resulting mean distribution of
dihedral angles ϕ (left column) and ψ (right column) with ±σ and ±2σ intervals as predicted by the single chain
pSGLD (a, b), the multi-chain pSGLD (c, d) and the Deep Ensemble (e, f) methods based on the 100 ns reference
data set, compared to the atomistic reference. No trajectories were removed, except when a potential energy hole
resulted in a divergent trajectory. The number of diverged trajectories are 0, 6 and 7 for single chain pSGLD,
multi-chain pSGLD, and the Deep Ensemble method, respectively.
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Figure 9: Resulting dihedral angle density histograms from 1µs training data set. Resulting mean distribution of
dihedral angles ϕ (left column) and ψ (right column) with ±σ and ±2σ intervals as predicted by the single chain
pSGLD (a, b), the multi-chain pSGLD (c, d) and the Deep Ensemble (e, f) methods, compared to the atomistic
reference. Analogous to the results in the main text, we removed 2, 10 and 28 trajectories due to potential energy
holes from S-pSGLD, M-pSGLD and the Deep Ensemble method, respectively.
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