
TECHNISCHE UNIVERSITÄT MÜNCHEN

TUM SCHOOL OF COMPUTATION, INFORMATION AND TECHNOLOGY

Improving Analysis and Optimization of
Finite-Precision Programs

Anastasia Isychev

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität Munchen zur Erlangung einer

Doktorin der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:
Prof. Tobias Nipkow, Ph.D.

Prüfer*innen der Dissertation:
1. Prof. Dr. Helmut Seidl
2. Prof. Dr. Eva Darulova
3. Prof. Dr. Zachary Tatlock

Die Dissertation wurde am 20.06.2023 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Technology
am 04.10.2023 angenommen.

Acknowledgments

First and foremost, I would like to thank my two advisers Eva Darulova and Helmut
Seidl, without whom my doctoral studies would not have been possible. Helmut always
had a fresh perspective on my ideas and kept me on my toes (in a good sense). Eva was
an incredible mentor and a role model, when I grow up (metaphorically) I want to be
like her: brave, talented, supportive and knowledgeable. I think it’s safe to say my life
would have been very different if she didn’t convince me to go for a PhD seven years
ago in Saarbrücken. I am forever grateful that she believed in me! I would further like
to thank Zach Tatlock for taking the time to review my thesis.

I was lucky to have not one, but two groups of colleagues to go through the ups
and downs of doctoral studies. I would like to thank Debasmita, Heiko and Rosa from
the AVA group at MPI-SWS for always being there to discuss the weirdness of finite-
precision computations and share some laughs. Even though we were in different towns,
they were just one Mattermost message away. I want to especially thank Debasmita for
reading my drafts and sharing the struggle of thesis writing!

My second home, TUM, was also full of nice people. All the past and present members
of the I2 and I7 labs made my years at TUM special. I am especially grateful to have
had amazing officemates Raphaela and Yannick, who created a warm atmosphere in our
shared 02.07.053 for both chatting and hard work. Special thanks to all German native
speakers at the I2 lab who put up with my (sometimes broken) German on a daily basis.

Apart from my work family, I want to thank my actual family, my mom, godmother
and my sister, who supported me in exploring student life (again) 3000km away from
them. My friends from Saint Petersburg—Tania, Vika, Julia—who encouraged and
celebrated me despite the (geographical) distance between us. They have always made
me feel at home again, whenever I returned to Saint Petersburg.

Academia so far has been a great source of friends. I am especially thankful to have met
Marijana, my soulsister, at the conference where I gave a talk about my first published pa-
per. She was always there to support me when I felt down and tell me I’m smart. I want
to thank my friends outside of academia—Toni, Vlad, Ira, Kati—for sharing the amazing
memories we’ve made together during my time in Munich. And special thanks to Ralf
who tolerated my long working hours and made sure I had dinner after a day of writing.

Finally, I am also thankful to a person who back in 2017 did not update the web
page of PUMA graduate program that falsely claimed there are 12 open PhD-student
positions, which led to me contacting Helmut. The rest is history.

Abstract

Numerical software has many forms: from smartphones and wearable devices that
analyze our heartbeat and sleeping behavior to complex robots performing tasks in
outer space, simulations predicting earthquakes, and many more. All of these programs
run on hardware with limited resources, therefore, real-valued algorithms have to be
approximated with finite-precision implementations. Naturally, this causes discrepan-
cies between ideal and finite-precision results, which are called rounding errors. While
some applications tolerate errors well, others require the computations to be performed
accurately, as the cost of getting the result wrong is high. For these programs, one needs
a guaranteed way to bound the errors.

Today’s tools can estimate guaranteed worst-case rounding errors. The computed error
bounds are used to assess an implementation (for instance, whether it is accurate enough)
and to optimize it. However, the analyses do not scale well to large programs and only
provide limited support for loops. These limitations extend to state-of-the-art optimiza-
tions; even for straight-line code, they have modest effects when optimizing programs
defined on a large input domain, or if they include mathematical library function calls.

In this thesis, we improve static analyses and optimizations of numerical programs
in different directions. We advance the analyses by handling bounded and unbounded
loops more efficiently. First, we improve the scalability of the rounding error analysis
on bounded loops over large vectors and matrices. Secondly, we introduce a method
that quickly generates tight inductive invariants for unbounded loops and has wider
applicability than state-of-the-art tools.

In the second part of the thesis, we improve sound optimizations of straight-line nu-
merical programs. We propose an optimization that speeds up numerical kernels by
customizing elementary function calls while providing a guarantee on the overall error.
We also introduce a method that boosts the existing sound optimizations for accuracy
and performance by applying them to small parts of a program’s (original) large input
domain, thus resulting in more aggressive optimizations.

We have developed open-source prototype tools for our techniques and evaluated
them on benchmarks from scientific computing, machine learning, and other domains.
Our results are encouraging and demonstrate a significant improvement in analyses’
scalability and applicability and a boost in the optimization objectives.

Keywords: finite precision, numerical software, static analysis, floating-point arith-
metic, fixed-point arithmetic, rounding errors, sound optimization, performance

iii

Zusammenfassung

Numerische Software gibt es in vielen Formen: von Smartphones und tragbaren Geräten,
die unseren Herzschlag und Schlafverhalten analysieren, bis hin zu komplexen Robotern,
die Aufgaben im Weltraum ausführen, Simulationen, die Erdbeben vorhersagen, und
viele mehr. Alle diese Programme werden auf Hardware mit begrenzten Ressourcen aus-
geführt, daher müssen reellwertige Algorithmen durch Implementierungen mit endlicher
Genauigkeit angenähert werden. Dies führt zu Abweichungen zwischen den idealen
und den endlichen Präzisionsergebnissen, die als Rundungsfehler bezeichnet werden.
Während einige Programme Fehler gut tolerieren, müssen andere die Berechnungen
genau durchführen, da die Folgen eines falschen Ergebnisses teuer sind. Für solche
Programme benötigt man eine Methode zur garantierten Beschränkung der Fehler.

Die heutigen Tools können garantierte Worst-Case-Rundungsfehler abschätzen. Die
berechneten Fehlergrenzen werden verwendet, um eine Implementierung zu bewerten
(z. B. ob sie genau genug ist), und um sie zu optimieren. Die Analysen lassen sich jedoch
nicht gut auf große Programme übertragen und bieten nur begrenzte Unterstützung
für Schleifen. Diese Einschränkungen gelten auch für Optimierungen; selbst für Ba-
sisblöcke haben sie nur schlichte Auswirkungen, wenn man Programme, die auf einer
großen Eingabedomäne definiert sind, oder Funktionsaufrufe aus der mathematischen
Bibliothek enthalten, optimieren möchte.

In dieser Arbeit verbessern wir statische Analysen und Optimierungen von nu-
merischen Programmen auf verschiedene Weisen. Wir verbessern die Analysen, indem
wir beschränkte und unbeschränkte Schleifen effizienter behandeln. Erstens, verbessern
wir die Skalierbarkeit der Rundungsfehleranalyse bei beschränkten Schleifen über große
Vektoren und Matrizen. Zweitens, stellen wir eine Methode vor, die strengere induktive
Invarianten für unbeschränkte Schleifen schnell generiert, und eine breitere Anwend-
barkeit als die besten bisherigen Methoden bietet.

Im zweiten Teil der Arbeit verbessern wir Optimierungen von geradlinigen nu-
merischen Programmen. Wir schlagen eine Optimierung vor, die numerische Kernel
durch Anpassung elementarer Funktionsaufrufe beschleunigt und gleichzeitig eine
Garantie für den Gesamtfehler bietet. Außerdem führen wir eine Methode ein, die die
bestehenden Optimierungen für Genauigkeit und Leistung verbessert, indem sie auf
kleine Teile der (ursprünglichen) großen Eingabedomäne eines Programms angewendet
werden, was zu aggressiveren Optimierungen führt.

Wir haben Open-Source-Prototypen für unsere Techniken entwickelt und sie anhand
von Benchmarks aus den Bereichen wissenschaftliches Rechnen, maschinelles Lernen
und anderen Bereichen bewertet. Unsere Ergebnisse sind vielversprechend und zeigen

v

Zusammenfassung

eine deutliche Verbesserung der Skalierbarkeit und Anwendbarkeit der Analysen sowie
der zu optimierenden Kennziffern.

Schlüsselworte: Endliche Genauigkeit, numerische Software, statische Analyse, Gleitkom-
maarithmetik, Festkommaarithmetik, Rundungsfehler, Optimierung, Leistung

vi

List of Original Publications

This thesis includes the content of these original publications:

1. Izycheva, A., Darulova, E., Seidl, H. Synthesizing Efficient Low-Precision Kernels.
In: Automated Technology for Verification and Analysis. ATVA 2019.
https://doi.org/10.1007/978-3-030-31784-3_17

2. Izycheva, A., Darulova, E., Seidl, H. Counterexample- and Simulation-Guided
Floating-Point Loop Invariant Synthesis. In: Static Analysis Symposium. SAS 2020.
https://doi.org/10.1007/978-3-030-65474-0_8

3. Rabe, R., Izycheva, A., Darulova, E. Regime Inference for Sound Floating-Point
Optimizations. In: ACM Transactions on Embedded Computing Systems, vol.20, 5s,
Special Issue ESWEEK 2021, Article 81 (EMSOFT 2021).
https://doi.org/10.1145/3477012

4. Isychev, A., Darulova, E. Scaling up Roundoff Analysis of Functional Data Structure
Programs. In: Static Analysis Symposium. SAS 2023.
https://doi.org/10.1007/978-3-031-44245-2_17

vii

https://doi.org/10.1007/978-3-030-31784-3_17
https://doi.org/10.1007/978-3-030-65474-0_8
https://doi.org/10.1145/3477012
https://doi.org/10.1007/978-3-031-44245-2_17

Contents

Acknowledgments i

Abstract iii

Zusammenfassung v

List of Original Publications vii

1. Introduction 1
1.1. State of the Art . 2
1.2. Contributions in Analysis of Programs with Loops 6
1.3. Contributions in Optimization of Numerical Kernels 8
1.4. Outline . 10

2. Preliminaries 13
2.1. Number Systems . 13

2.1.1. Floating-Point Numbers . 13
2.1.2. Fixed-Point Numbers . 14

2.2. Reasoning About Finite-Precision Programs 15
2.2.1. Range Arithmetic . 16
2.2.2. Rounding Error Analysis . 18
2.2.3. Optimization of Finite-Precision Programs 22

2.3. Daisy Framework . 24

I. Analysis of Programs With Loops 27

3. Large Bounded Loops 29
3.1. Baseline Rounding Error Analysis . 31
3.2. DSL for List-like Data Structures . 31

3.2.1. Benchmark Set . 31
3.2.2. A Functional DSL . 32
3.2.3. DSL Functions . 35

3.3. Data-Structure Guided Analysis . 38
3.3.1. DS-based Concrete Domain . 39
3.3.2. DS-based Abstract Domain . 39
3.3.3. DS Analysis . 41

ix

Contents

3.3.4. Optimized Evaluation of fold . 43
3.4. Implementation . 44
3.5. Experimental Evaluation . 45

3.5.1. State-of-the-Art Tools . 47
3.5.2. RQ1: Comparison to State-of-the-Art Tools 49
3.5.3. RQ2: Accuracy/Performance Tradeoff with DS-based Abstraction 52
3.5.4. RQ3: Adequacy of DS2L’s Error Bounds 55

3.6. Related Work . 56
3.7. Conclusion and Future Work . 57

4. Inductive Invariants for Unbounded Loops 61
4.1. Overview . 63
4.2. Problem Definition . 66
4.3. Algorithm . 67

4.3.1. Simulation . 68
4.3.2. Candidate Invariant Conjecture . 69
4.3.3. Reducing the Noise . 69
4.3.4. Checking a Candidate Invariant . 70
4.3.5. Generalizing from Counterexamples 70
4.3.6. Floating-Point Invariant . 71
4.3.7. Implementation . 72

4.4. Experimental Evaluation . 72
4.4.1. State-of-the-Art Techniques . 72
4.4.2. Experimental Setup . 73
4.4.3. RQ1: Comparison with State-of-the-Art 74
4.4.4. RQ2: Pine’s Efficiency . 75
4.4.5. RQ3: Parameter Sensitivity . 76

4.5. Related Work . 78
4.6. Conclusion and Future Work . 80

II. Optimization of Numerical Kernels 83

5. Optimizing Kernels with Elementary Functions 85
5.1. Background . 87
5.2. Our Optimization Algorithm . 88

5.2.1. High-level Algorithm . 89
5.2.2. Distributing the Global Error Budget 89
5.2.3. Distributing the Local Error Budget 91
5.2.4. Synthesizing the Approximation Polynomial 92
5.2.5. Assigning Finite Precision . 93
5.2.6. Alternative Algorithm Designs . 94

x

Contents

5.3. Experimental Evaluation . 94
5.3.1. RQ1: Accuracy vs Performance . 95
5.3.2. RQ2: Optimization Running Times 97

5.4. Related Work . 98
5.5. Conclusions and Future Work . 100

6. Meta-Optimization: Regime Inference 103
6.1. Example . 106
6.2. Regime Inference Algorithm . 109

6.2.1. Bottom-Up Phase . 110
6.2.2. Top-Down Phase . 112
6.2.3. Code Generation . 115

6.3. Optimizations . 116
6.3.1. Regime Inference for Mixed-Precision Tuning 116
6.3.2. Regime Inference for Rewriting . 118

6.4. Experimental Evaluation . 118
6.4.1. Benchmarks . 119
6.4.2. Comparison with Herbie . 119
6.4.3. Experimental Setup . 121
6.4.4. RQ 1: Improvements over Whole-Domain Optimizations 122
6.4.5. RQ 2: Evaluation of Two-Phase Approach 124

6.5. Related Work . 126
6.6. Conclusion and Future Work . 127

7. Conclusions and Future Work 129

List of Figures 131

List of Tables 133

Bibliography 135

A. Supplementary Material 155
A.1. Benchmarks with Loops over Data Structures 155

A.1.1. Benchmarks for DS2L . 155
A.1.2. Benchmarks formatted for Fluctuat 160

A.2. Experimental Data for DS2L . 177

xi

1. Introduction

Numerical software has a large variety of applications: scientific computations [1],
control of embedded systems and smart devices [2], modeling of physical and chemical
processes [3, 4], financial applications [5, 6], machine-learning classifiers [7], and many
more. Some of these numerical programs are used in high-risk scenarios, where the
integrity of the hardware, or even a human life depends on the correctness of the
computations and controls given by software [8, 9]. Ensuring correctness manually
is difficult, therefore, it is essential to have tools that support developers in writing
bug-free reliable numerical programs.

When implementing real-valued numerical algorithms in a program, developers have
to decide on the numbers’ representation. The tricky part is that computers only have
a finite number of bits to represent infinite-precision reals. Therefore, real numbers
must be approximated in some way. The choice of the finite-precision approximation
will influence the programs’ performance, accuracy, memory consumption, and code
readability [10]. For instance, an algorithm implemented in 8-bit fixed-point precision
is in general faster and requires less memory but is much less accurate than the same
algorithm implemented in double floating-point precision.

Even for small programs, choosing the right finite precision is a non-trivial task. We
illustrate it on an example. Consider a real-valued algorithm cartesianToPolar_radius

that converts Cartesian coordinates into polar and returns the value of radius:

x∈[1.0, 100.0]

y∈[1.0, 100.0]

radius:=

√
x2 + y2

When an algorithm is implemented in finite precision, it inevitably introduces rounding
errors that accumulate and propagate through the computations, and that may signif-
icantly affect the result. We measure the absolute errors for cartesianToPolar_radius

implemented in double floating-point precision on 105 random inputs and depict the
errors in Figure 1.1a, darker colors denote larger errors. We then change the precision
of just one input variable x from double to single floating point, sample the errors
again and plot them in Figure 1.1b. This seemingly small adjustment has a dramatic
effect on the distribution of errors. The largest errors originate in a different part of the
input domain, and the overall error has increased by seven orders of magnitude from
[7.22e-20, 2.56e-14] to [1.71e-13, 6.11e-06]. Predicting this effect without measuring errors
for each precision configuration is hard for an average user, and even for experts is next
to impossible when a program is larger than a few lines [12].

1

1. Introduction

0 20 40 60 80 100
x

0

20

40

60

80

100
y

[7.2e-20, 3.0e-15]
[3.0e-15, 6.0e-15]
[6.0e-15, 9.0e-15]
[9.0e-15, 1.2e-14]
[1.2e-14, 1.5e-14]

[1.5e-14, 1.8e-14]
[1.8e-14, 2.1e-14]
[2.1e-14, 2.4e-14]
[2.4e-14, 2.7e-14]
errors between
[7.22e-20, 2.56e-14]

(a) Double floating-point precision

0 20 40 60 80 100
x

0

20

40

60

80

100

y

[1.7e-20, 6.0e-07]
[6.0e-07, 1.2e-06]
[1.2e-06, 1.8e-06]
[1.8e-06, 2.4e-06]
[2.4e-06, 3.0e-06]
[3.0e-06, 3.6e-06]

[3.6e-06, 4.2e-06]
[4.2e-06, 4.8e-06]
[4.8e-06, 5.4e-06]
[5.4e-06, 6.0e-06]
errors between
[1.71e-13, 6.11e-06]

(b) x with single floating-point precision

Figure 1.1.: Sampled absolute errors in different precision configurations for
cartesianToPolar_radius. The errors are computed as the difference between
an implementation with the corresponding precision configuration and a
300-bit implementation using the MPFR library [11].

Moreover, as Figure 1.1 illustrates, the errors are not evenly distributed over the input
domain, and there are visible borders between sub-domains where the error jumps a
magnitude. Such discrete behavior is natural for finite-precision functions, but unintu-
itive for users, and requires tooling to reason about finite-precision implementations.

Before explaining the contributions of this thesis, we summarize the state of the art in
rounding error analysis and the optimizations based on these analyses. An overview
is shown in Table 1.1, where our contributions are marked with the puzzle symbol.
Sound rounding error analysis can be considered solved for numerical kernels (marked
with ‘+’) but is still work in progress for programs with loops (marked with ’+/-’),
such that even a partial solution of open challenges is a major advancement. Sound
optimizations for performance and accuracy can be improved for straight-line code
as well as programs with loops and branches (marked with ’+/-’). In this thesis, we
propose solutions to parts of these open problems and introduce our contributions in
section 1.2 and section 1.3.

1.1. State of the Art

To improve the understanding of how algorithms behave when implemented in a partic-
ular finite precision, there has been a continuous effort to analyze [13–18], repair [19–21]

2

1.1. State of the Art

Kernels Loops Branching

Analysis + +/-

Optimization +/- +/-

Table 1.1.: Overview of the state of the art in rigorous support for numerical programs.
This thesis’ contributions are marked with the puzzle symbol. State-of-the-
art methods (outside of our contributions) are marked with ‘+’ for solved
problems; ‘+/-’ marks problems that are only partially addressed and where
there is room for improvement.

and optimize numerical programs [22–25]. Many of these methods focus specifically on
floating-point programs, some support fixed points [13] and alternative finite precisions
(e.g., Bfloat16, TensorFloat, posits) [26].

Analyses State-of-the-art analyzers of finite-precision programs can detect out-of-
the-ordinary behaviors, such as division by zero, overflow, and operations with NaN
(not-a-number) and infinities [27, 28]. Beyond that, many analyzers compute rounding
error bounds using dynamic [28–35] and static methods [13–18]. Dynamic analysis in its
naive version is comparatively easy to perform. It can help estimate the magnitude of
the values of variables and errors on them (as we did for plotting the error distribution)
but does not provide any guarantees on the computed bounds, as it only reasons about
a set of sampled values.

To rigorously reason about an implementation’s safety and correctness, however, one
needs to know guaranteed (sound) worst-case error bounds that are computed with static
methods and take into account all possible values (of inputs, outputs and intermediate
computations). Ideally, the computed bound should be close to the actual maximum
error occurring in the program to avoid false-positive warnings about unsafe behavior.
Given a worst-case bound and a maximum allowed (or expected) error one could check
whether the implementation’s error meets this specification or potentially exceeds it.
The maximum allowed error may be derived from the sensitivity of actuators, or stability
proofs for controllers [36].

State-of-the-art tools successfully compute sound bounds for errors in straight-line
programs, however, they fall short when analyzing programs with conditionals and
loops [13]. Because of the rounding errors in conditional statements (in branching or exit
conditions for loops), the control flow can take different paths in the ideal real-valued
computation and in the finite-precision one. The difference in computation results due
to diverging paths is called a discontinuity error (alternatively, instability error). Some
existing methods can quantify discontinuity errors on if-then-else statements [13, 16, 37]
and compute the probability of the finite-precision computation taking the wrong
path [38], however, they often report pessimistic bounds or do not scale well.

3

1. Introduction

0 20 40 60 80 100
iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

er
ro

r w
ith

 d
ou

bl
e

1e 12

errors between
[0.00e+00, 1.75e-12](a) Errors are within [0.0, 1.75e− 12]

for i in range(0,100):

a[i] := randomValueIn(0.0, 100.0)

sum := 0

for i in range(0,100):

sum := sum + a[i]

(b) Example program

Figure 1.2.: Sampled absolute errors for a sum over 100 numbers in the range of
[0.0, 100.0]. The errors are computed as the difference between double
floating-point precision and a 300-bit precision implementation using the
MPFR library.

Moreover, even when the conditions do not include uncertainties, errors in loops are
hard to quantify. Consider a simple example program that computes a sum over array
elements and let us assume that each array element is a number from an arbitrarily
selected range [0.0, 100.0]. Figure 1.2 shows how errors change in the first 100 iterations
of the loop. The depicted error varies with every iteration, but the overall trend is
increasing (shown as the dashed line). As the example illustrates, errors in loops are
generally not bounded, and beyond that, the relation between the number of iterations
and the overall error is non-trivial to compute [13].

State-of-the-art tools handle loops by reducing them to straight-line code [13,16,39] in
one of the following ways. First, for some loops it is sufficient to analyze the loop body
once. This is the case if the errors do not propagate through iterations, for instance,
because every iteration reads a new sensor value. Secondly, loop iterations can be
unrolled. This strategy works if the number of iterations is known or can be deduced
statically. However, when loops have more than a few hundred iterations, the unrolled
straight-line program can become prohibitively large, such that today’s tools come to
their limits and time out (as evidenced by our experiments in section 3.5). Thirdly, when
loops cannot be unrolled one could abstract them using an inductive invariant. An
inductive invariant captures the ranges of variables’ values and errors on them before
the first iteration and after every consequent iteration. Such invariants do not always

4

1.1. State of the Art

exist, that is, not all loops converge to some stable state. And even for loops that do
stabilize after a finite number of iterations, finding a non-trivial inductive invariant
is challenging [40–43]. State-of-the-art tools attempt to simplify this hard problem by
relying on user-provided templates [44, 45] and target value ranges [46], or finding
invariants only for linear loops [47, 48].

In this thesis, we address some of these challenges in analyzing numerical loops. We
discuss our contributions in section 1.2.

Optimizations Beyond programs’ correctness and safety, which can be checked with
computed error bounds, one may be interested in a program’s efficiency. Numerical
software is often used in a setting where resources are limited [49]. For instance, when
building an embedded system the hardware computing control signals should work
fast and reliably with a limited amount of memory and CPU power that fits on a small
chip. For specialized hardware, like an FPGA, the size of the chip needed to execute
a program is directly influenced by the program’s complexity and size. Hence, it is
crucial to keep programs small such that they could be deployed on a smaller chip.
Moreover, the calculated control signals must be available when they are needed, thus,
computed quickly. Last but not least, the computed control must be accurate enough for
the smooth functioning of the whole system.

Each of these objectives is tied to one another and cannot be considered in isolation.
Using high finite precision to increase accuracy may cause a performance drop [22], using
mathematical libraries to decrease the size of the code may increase the performance for
some programs and decrease it for others, depending on the library implementation
and available precisions [50].

When optimizing numerical programs for any objective, it is important that the results
computed by the program remain meaningful, i.e. the errors potentially introduced
by the optimization must stay bounded. Prior work on optimizing numerical kernels
uses error bounds computed with both dynamic analysis [19–21, 51] and sound static
methods [22, 23, 25, 52] to guide the optimizations. In the scope of this work, we focus
only on sound optimizations, i.e. with respect to sound error bounds.

A popular choice for an optimization objective is performance, which can be improved
soundly, for instance, with mixed-precision tuning [22, 23, 25]. Executing programs with
low precision is generally faster than with high precision, and many arithmetic opera-
tions can tolerate some accuracy loss. Mixed-precision tuning finds a fast and accurate
enough precision configuration, where operations and variables are potentially assigned
different precisions (hence, mixed precision). This approach is implemented in several
sound optimizers and shows significant improvements in running time, especially when
the programs can tolerate relatively large errors [22, 23, 25].

Orthogonally to performance, one can optimize the accuracy of numerical programs.
Existing sound accuracy optimization tools make use of the fact that finite-precision
arithmetic does not obey the real-valued rules and different orders of evaluation result
in different errors [22, 52]. The rewriting optimization rearranges the original arithmetic

5

1. Introduction

expression according to real-valued identity rules and selects an expression with the
smallest rounding error.

In the scope of this thesis, we explore how today’s sound optimizations can be
improved and extended. A more detailed account of our contributions is given in the
following sections.

1.2. Contributions in Analysis of Programs with Loops

In this thesis, we improve analyses of bounded loops over large arrays and numerically
stable unbounded loops.

Contribution 1: Bounded loops. Loops over arrays appear frequently in embedded
systems [53], statistical computations [54] and image processing [55, 56]. When arrays
are small, loops over them can be easily unrolled and analyzed by state-of-the-art tools,
however, for large arrays full unrolling is not feasible: tools take too long, time out or
return a trivial error bound of [−∞, ∞] as a result (as confirmed by our experiments in
section 3.5).

In this work, we scale up rounding error analysis on loops over vectors and matri-
ces. Our key observation is that functional iterators carry implicit semantic information
about how data flows through the iterations. For instance, when applying a functional
map(λ x. f (x)), the function f is applied to each element of the data structure separately.
Thus, the values and the errors on them do not propagate to subsequent iterations,
which means that it is sufficient to analyze the iterator’s body once (per input range
of x). State-of-the-art tools would treat a map as any other loop and unroll it, effectively
losing the information about data flow and unnecessarily repeating the computations.

We propose to use the implicit semantic information from functional iterators to
reduce the re-computation of ranges during the analysis. To facilitate this we propose a
functional domain-specific language (DSL) that specifies higher-order functions over real-
valued vectors and matrices. Additionally, we introduce an abstraction that partitions
data structures’ elements based on their ranges. Combining the semantic information
about iterators with the data structure abstraction, our analysis computes sound error
bounds faster and for more programs than the state-of-the-art tools [39, 57].

For instance, given a simple program that computes an average of 10K vector elements,
state-of-the-art analyzers Fluctuat [39] and Satire [57] take 8.5 and 24 minutes, while our
approach reports error bounds in 2 seconds. Moreover, the error bound computed with
our approach for the example program is of the same order of magnitude as the ones
computed with Fluctuat and Satire (10−11).

Contribution 2: Unbounded loops. Unbounded loops cannot be fully unrolled and
have to be abstracted, for instance, by an inductive invariant. Importantly, finite-precision
inductive invariants only exist for numerically stable loops, for which a small error on an
input or an intermediate value does not cause a major change in the computation result.

Given an invariant, one can prove its inductiveness by showing for all values in the
invariant range I(x) that after one iteration of a loop L(x) the resulting values x′ are still

6

1.2. Contributions in Analysis of Programs with Loops

0.3 0.2 0.1 0.0 0.1 0.2

0.2

0.1

0.0

0.1

0.2

0.3

(a) An inductive invariant at the intersection
of the blue box with an ellipse. Green
points are simulated values of the loop.

0.6 0.4 0.2 0.0 0.2 0.4
0.4

0.2

0.0

0.2

0.4

0.6

(b) Multiple inductive invariants for the non-
linear dynamic system. Each color corre-
sponds to one invariant.

Figure 1.3.: Inductive invariants of the non-linear dynamic system. Red boxes mark the
input range x ∈ [0.0, 0.1], y ∈ [0.0, 0.1].

in that range: I(x) ∧ L(x) → I(x′). The exact representation of ranges in I may affect
whether or not the inductiveness can be proven. Ideally, I(x) should only include the
values that actually appear during the loop execution.

For instance, consider the following non-linear dynamic system with starting values
of x and y in [0.0, 0.1]:

while (true) {

x := x + 0.01 * (-2*x - 3*y + x*x)

y := y + 0.01 * (x + y)

}

The simulated values of the first 10K loop iterations, shown in green in Figure 1.3a,
indicate that the invariant has a shape of an ellipsoid. If we represent the ranges as a set
of intervals (a blue box), it will include additional values that do not appear during the
loop executions (white space inside the box). Proving that x ∈ [−0.3, 0.1]∧ y ∈ [−0.1, 0.2]
is an inductive invariant fails, but if we remove (some of) the values that do not occur
in the loop with an additional polynomial inequality constraint, we can prove that the
following invariant is inductive:

−0.03x− 0.13y + 0.35x2 + 0.7xy + y2 ≤ 0.01∧ x ∈ [−0.3, 0.1], y ∈ [−0.1, 0.2]

We propose a method that automatically generates an inductive invariant in the form
of a polynomial inequality P(x) ≤ 0 and a set of ranges Ri for each program variable
xi:

P(x1, ..., xn) ≤ 0∧ x1 ∈ R1 ∧ . . . ∧ xn ∈ Rn (1.1)

7

1. Introduction

From such invariants, one may compute rounding error bounds using complementary
techniques [13]. In this thesis, we focus on generating a finite-precision inductive
invariant itself and leave the error computation to future work.

A key observation behind our invariant synthesis method is that each loop has more
than one invariant, and we only need to find one of them. Our method generates an
invariant using a form of counterexample-guided synthesis (CEGIS) that proposes a
candidate invariant and repeatedly refines it using simulation and counterexamples.
We implemented the algorithm in an open-source Python library Pine. Pine requires
minimal input from users and, unlike state-of-the-art tools, derives tight invariants for
both linear and non-linear loops. On linear loops Pine generated invariants that are on
average 20x and 2.7x tighter than the state-of-the-art invariant generators SMT-AI [47]
and Pilat [48].

1.3. Contributions in Optimization of Numerical Kernels

Since analysis of complex programs is still an open problem, we focus on optimizing
straight-line numerical programs (kernels), for which sound analysis already exists.
Straight-line kernels appear frequently in embedded systems design [58], machine
learning models [7], etc. Optimizing kernels that are frequently called by the rest of
a program may bring significant improvements in performance and accuracy to the
overall results.

Contribution 3: Performance of elementary functions. Existing performance op-
timizations, such as mixed-precision tuning, handles arithmetic operations well but
has limited effects on library function calls. When implementing an algorithm that
contains an elementary function (sine, exponent, logarithm, etc.), most applications rely
on mathematical libraries, which implement each function only in a limited number of
precisions. Moreover, library implementations of elementary functions are designed to
produce accurate results on all inputs (modulo restrictions of the function itself, such as
only allowing non-negative inputs for a logarithm). At the call site, however, function
arguments can be limited to a rather small range and will not use the “full power” of
the library function. An implementation customized to a smaller range may therefore
be faster.

Let us illustrate the effect of elementary function calls with an example program. The
algorithm forwardk2jX converts the angles of two joints of a robotic arm into the X-axis
coordinate:

theta1 ∈ [0.01, 1.5]

theta2 ∈ [0.01, 1.5]

x:= 0.5 * cos(theta1) + 0.5 * cos(theta1 + theta2)

// allow max error 8.39e-07

Assume that a user has specified the maximum allowed error on this program to
be 8.39e− 07 and wants to generate a fast implementation with fixed-point precision.
The state-of-the-art tool Daisy [14] determines that 25 bits are sufficient to satisfy the

8

1.3. Contributions in Optimization of Numerical Kernels

target error with uniform precision, and with tuning it further lowers the precision of
two constants (while the rest stays the same). Compiled with the Vivado High-Level-
Synthesis (HLS) tool [59] for an FPGA chip, the kernels with both uniform and mixed
precision compute the value of x in 64 machine cycles. Unfortunately, mixed-precision
tuning failed to improve the performance of forwardk2jX.

Our key observation is that mathematical library function calls can be unnecessarily
accurate. Both implementations of forwardk2jX (uniform and mixed-precision) call the
library function cos() from hls_math.h that produces accurate results for all possible
inputs. However, the maximum range of all arguments to the cos() occurring in the
program is [0.01, 3.0], which is comparatively small, thus, the implementation of cos()
only needs to be accurate for this small input range.

In this thesis, we propose a method that replaces elementary function calls with
polynomial approximations. We tailor the approximations to the input ranges, thus
trading off accuracy for performance more efficiently than with mixed-precision tuning
alone. The user only has to specify the maximum allowed error for the whole program.
When a program contains multiple elementary function calls, our algorithm automati-
cally assigns a portion of the overall tolerated error to each call before generating an
approximation. Our method is not specific to a particular choice of finite precision, in
this work, we focus on fixed points to allow fine-grained tuning.

For the example program forwardk2jX our algorithm generates two approximate
versions of cos(), for inputs in [0.01, 1.5] for the first call of cos(), and [0.02, 3.0] for the
second. Our final implementation of forwardk2jX with the approximations finishes in
24 machine cycles (computed with the Vivado HLS tool), which is 2.6x faster than the
program using the library implementation of cos().

Contribution 4: Meta-Optimization. Existing sound optimizations—independent of
the objective—attempt to find a “one-size-fits-all” implementation that works for the
whole input domain. However, different parts of the input domain induce errors of
different magnitudes and may allow different optimization strengths.

Recall the error distribution of the example program cartesianToPolar_radius in Fig-
ure 1.1a. When optimized for performance, today’s mixed-precision tuning will try to
find a precision assignment that works on the whole domain. However, the top-right
corner with values of x,y close to 100 induces higher errors than the rest of the domain
and will therefore require higher precision. Since mixed-precision tuning optimizes with
respect to worst-case error, given a maximum allowed error of 2.5e-14 all operations are
assigned a uniform quad (128-bit float) precision even if it is unnecessary for most of
the inputs.

Our key observation is that small parts of the input domain may potentially block
sound optimizations. We propose to tailor sound optimizations to smaller parts of
the input domain and call this meta-optimization regime inference [19]. We show that
our regime inference improves optimization results for both performance and accuracy
optimizations also for numerically stable code, i.e. without irregularly large errors. For
instance, when applied to cartesianToPolar_radius and the same target error of 2.5e-14

9

1. Introduction

0 20 40 60 80 100
theta1

0

20

40

60

80

100

th
et

a2

[7.2e-20, 3.8e-15]
[3.8e-15, 7.6e-15]
[7.6e-15, 1.1e-14]

[1.1e-14, 1.5e-14]
errors between
[7.22e-20, 1.42e-14]

(a) Optimized with mixed-precision tuning -
uniform quad precision

0 20 40 60 80 100
theta1

0

20

40

60

80

100

th
et

a2
[7.2e-20, 3.8e-15]
[3.8e-15, 7.6e-15]
[7.6e-15, 1.1e-14]

[1.1e-14, 1.5e-14]
[1.5e-14, 1.9e-14]
errors between
[7.22e-20, 1.95e-14]

(b) Regime inference with mixed-precision
tuning

Figure 1.4.: Sampled absolute errors for the optimized versions of
cartesianToPolar_radius. The maximum allowed error for both opti-
mizations was set to 2.5e-14. The errors are computed with respect to the
300-bit MPFR implementation.

with existing mixed-precision tuning, our regime inference splits the input domain into
11 parts, each of which is assigned one of four generated precision configurations. We
plot the sampled errors for the program optimized with mixed-precision alone and with
regimes on top of mixed-precision tuning in Figure 1.4. Note the difference in error
behavior, for regime-based implementation there is a clear increase in error between
some sub-domains (for instance, with theta1 ∈ [60, 80], theta2 ∈ [60, 80]). The optimized
program with regimes runs 80% faster than the one optimized with mixed-precision
tuning alone.

1.4. Outline

This thesis extends rounding error analysis to handle programs with loops and improves
sound optimizations of numerical kernels. We have implemented these techniques in
research prototypes, evaluated them on (partially overlapping) sets of benchmarks, and
published them as open-source tools. The thesis is organized in two parts: analysis and
optimization. Precisely, the chapters are organized as follows:

10

1.4. Outline

Chapter 2 provides necessary background on finite-precision formats and existing
techniques for analyzing and optimizing finite-precision programs. We explain
the rounding error analysis and optimizations that we use as a starting point, and
build on top of these techniques in the later chapters.

Chapter 3 presents a scalable rounding error analysis of bounded loops over vectors
and matrices.
The work from this chapter is based on our publication at SAS’23 [60]. We have
performed an additional evaluation after submitting the paper and included it in
subsection 3.5.4.

Chapter 4 presents our inductive invariant synthesis algorithm for numerically stable
unbounded loops.
This chapter is based on our publication at SAS’20 [61]. We implemented the
algorithm in a Python library Pine available at https://github.com/izycheva/pine.

Chapter 5 describes our performance optimization where elementary function calls are
replaced by approximations.
The content of this chapter is based on our publication at ATVA’19 [50]. Source code
for our implementation is available under https://github.com/malyzajko/daisy/

tree/approx.

Chapter 6 describes our regime inference technique—a meta-optimization for sound
optimizations of finite-precision programs.
This chapter describes a joint work with a Bachelor student that has been pub-
lished at EMSOFT’21 [62]. My contribution to the publication includes generating
conceptual ideas for our method, providing support to the student when he
had questions regarding the implementation, and formulating the ideas into
a coherent text. The code for our implementation is available under https:

//github.com/malyzajko/daisy/tree/regimes.

This content of the thesis is based on the work published in peer-reviewed conferences
in the original papers listed in the preamble. I am the main author and a co-author in
all papers1, however, I will use the academic “we” throughout the thesis, because the
publications would not be the same without the work and support of my collaborators.

1In the course of my studies I have (officially) changed the spelling of my name from Anastasiia Izycheva
to Anastasia Isychev, some publications list me as an author with the old spelling.

11

https://github.com/izycheva/pine
https://github.com/malyzajko/daisy/tree/approx
https://github.com/malyzajko/daisy/tree/approx
https://github.com/malyzajko/daisy/tree/regimes
https://github.com/malyzajko/daisy/tree/regimes

2. Preliminaries

Before explaining the contributions of this thesis in detail, we provide the necessary back-
ground information. In particular, we summarize the representations of floating- and
fixed-point numbers and the state of the art in rounding error analysis and optimization.

2.1. Number Systems

Most numerical algorithms are designed with real-valued arithmetic in mind. How-
ever, implementing real numbers on hardware with a finite number of precision bits,
developers must decide on a finite representation.

There exist many alternative representations of numbers (or number systems) that
present a trade-off between precision with which numbers can be expressed using the
number system, and its efficiency when the code is being executed.

We review the two most frequently used number systems in numerical software:
floating-point and fixed-point numbers. While there exist alternative representations,
they are not as well-known and are used comparatively rarely [63]. We review the
alternative representations in chapter 7 and note how our methods can be used with
these representations. We start with the most popular choice for representing real
numbers in finite precision—floating points.

2.1.1. Floating-Point Numbers

Floating-point numbers are used widely by developers with different levels of expertise.
What makes floating points so attractive is their simplicity from a user perspective.
They allow to represent a (relatively) large range of values, and most languages support
floating-point arithmetic operations as well as a variety of mathematical libraries. Addi-
tionally, the behavior of floating-point operations is standardized and language-agnostic.
The IEEE-754 standard [64] describes how floating points should be implemented in
software and hardware, how the arithmetic operations should be evaluated, and how
real values and results of the operations must be rounded.

On a bit level, a floating-point value appears as:

sb e0 . . . ek m0 . . . ml , (2.1)

where sb is a sign bit, ei are bits used for the exponent, and mi are the significand (or
mantissa) bits.

Floating points include several special values, which are used when arithmetic oper-
ations on the operands cannot be evaluated to a number (NaN, not a number), if the

13

2. Preliminaries

single double quad
total bits 32 64 128

precision bits (p) 24 53 113
emax 127 1023 16383
emin -126 -1022 -16382

Table 2.1.: Binary floating-point precision parameters

value is larger or smaller than what precision can represent (±∞), and if the value is so
close to zero that it requires a different encoding (subnormal numbers). Each of these
values has an individual pattern in the exponent bits to signal that the represented value
is special. However, the majority of values represented in floating points are normal
numbers.

A normal floating-point number represented by a triple (sb, e, m) encodes a unique
value:

(−1)sb ·m · βe−p+1. (2.2)

Here, β represents the base of the encoding, and p stands for precision. The IEEE-754
standard defines floats for two possible bases β = 2 and β = 10, in this work we will
consider only binary floating-point numbers (with the base 2), as they are used much
more frequently than the decimal. The standard lists three “basic” precisions: single (32
bits), double (64 bits) and quad precision (128 bits), an IEEE-754-conform language must
implement at least one of them. Each floating-point precision is additionally specified by
the number of precision bits p and the maximum and minimum exponent values emax

and emin. Table 2.1 shows values of p, emax and emin for the three standard precisions.
Apart from the bit-level representation, an important part of operating with floats is

correct rounding. According to IEEE-754, a result of an operation is said to be correctly
rounded if it represents the value obtained by first performing the operation with infinite
precision and then rounding it to the floating-point precision with a given rounding
mode. In this thesis, we consider the default rounding “ties-to-even”—if the infinite-
precision value is equally near to two floating-point values, the one with an even least
significant digit will be selected.

Floating-point arithmetic can be efficiently executed on modern hardware thanks
to special floating-point units (FPU). Without such a unit, however, the conversion of
bits into rounded values has to be simulated in software (often the case for the quad
precision), which is costly.

2.1.2. Fixed-Point Numbers

In the absence of floating-point units, for instance, on accelerators, developers may
choose alternative number systems. Fixed-point numbers provide a good alternative.

While for floating-point numbers the position of the binary (or decimal) point changes
depending on the magnitude of the value (hence, floating point), in fixed-point numbers

14

2.2. Reasoning About Finite-Precision Programs

the binary point has a fixed position. We call a total number of bits used to represent a
number a fixed-point precision, and the distribution of bits between integer and fractional
parts a format. A fixed-point format is usually denoted as 〈W, I〉, where W is the total
number of bits, one bit is reserved for the sign, I for the integer part, and remaining
F = W − 1− I for the fractional part [65]. Because of this simple internal representation
fixed-points arithmetic can be efficiently executed by the hardware: arithmetic operations
on numbers with matching fixed precision are implemented the same way as on integer
numbers.

Another advantage of fixed-point numbers is their efficient usage of bits. While
floating points are limited to three standard precisions, and have a fixed number of bits
dedicated for mantissa, any positive number of bits can represent a valid fixed-point
precision. For programs operating on small ranges of values, using floating points
will effectively waste resources, as many of the bits will remain unused. Fixed points,
however, are more flexible: every operation can be implemented with as many bits (total
and fractional) as needed, which gives developers manual control over each operation.

However, manual control makes fixed-point programs less approachable by non-
expert users. The binary point, separating integer and fractional parts, must be fixed for
each intermediate value at compile time and cannot be dynamically changed. Therefore,
each variable and operation must be assigned a suitable precision and format in advance
such that values do not overflow and are sufficiently accurate. In order to do that, a
user has to know (or estimate) the potential values of all intermediate computations,
which is hard to do manually, so a user may assign higher precision(s) than actually
needed. Moreover, to facilitate efficient usage of bits, variables in the same program may
have different formats (number of integer and fractional bits). Whenever the formats of
two operands of an arithmetic operation do not match, the operands must be aligned
with respect to the binary point before performing the computation. Writing such
fixed-point programs manually requires a high level of numerical expertise, it is tedious
and error-prone. To automate code generation for fixed-point programs, value and
rounding error analyses are required [49]; we review them in the next section.

As all finite representations of infinite numbers, fixed-point formats have a rounding
mode and an overflow behavior. In this work, we consider the default modes for both:
truncation rounding and wrap-around overflow. Note that programs generated with
our techniques will not have an overflow, because the analyses presented in this thesis
will detect it and assign a suitable higher number of bits for precision.

2.2. Reasoning About Finite-Precision Programs

When representing real numbers, all finite precisions inherently introduce rounding
errors. The individual errors accumulate and propagate throughout the computations.
When accuracy of the computed result is crucial, one must ensure that the overall error
is small enough.

15

2. Preliminaries

A corresponding maximum error occurring in the program can be computed statically
or dynamically. Dynamic methods sample the program under analysis on multiple valid
inputs and check the computation results [28, 32, 33, 35, 66]. Since real-valued results are
usually not available, dynamic analysis computes errors with respect to an oracle, usually
some arbitrary high precision that simulates the real result. Such methods allow for a
quick estimate of error magnitude, however, they only reason about seen inputs and not all
possible valid inputs. As a consequence, dynamic methods alone are insufficient to reason
about safety-critical programs where it is crucial to have a guaranteed error bound.

Whenever a finite-precision implementation requires guarantees on errors, one must
employ rigorous analysis and optimization methods. In this thesis, we extend rigorous
support for finite-precision programs with both analysis and optimization techniques.
Rigorous support takes into account all valid inputs, where the validity of the inputs
is determined by whether the input value is in the user-specified range. In order to
compute with ranges one needs an appropriate range arithmetic.

2.2.1. Range Arithmetic

We briefly review different range representations with real numbers and how arithmetic
operations are defined for them. Note that these arithmetics are usually employed by
analysis to obtain the results of numerical function evaluation. We therefore assume
each variable is mapped to a range in one of the representations, and use notations
“operations on ranges” and “operations on variables” interchangeably.

Interval Arithmetic The most basic and intuitive way to represent ranges is with
intervals. An interval [l, u] denotes all values x such that l ≤ x ≤ u [67]. An interval for
which lower and upper bounds coincide [l, u], l = u is called a point interval. Evaluation
of arithmetic operations is done by computing the interval bounds and follows a general
pattern:

[l1, u1] ◦ [l2, u2] = [min
l∈R

l, max
u∈R

u]

where R = {l1 ◦ l2, l1 ◦ u2, l2 ◦ l1, l2 ◦ u1}
(2.3)

where an operator ◦ ∈ {+,−, ∗, /} is applied to pairs of lower and upper bounds and
the largest interval among all combinations is the result. Similarly, unary operations are
applied to both lower and upper bound of the argument.

Unfortunately, interval arithmetic often gives pessimistic results. The simple oper-
ations evaluation does not keep track of the correlations between variables and their
corresponding intervals, which results in over-approximation. For instance, for a vari-
able x ∈ [l, u] and a function f (x) = x− x the result of the function evaluation is always
zero. However, in interval arithmetic subtracting a range from itself will give a different
over-approximated result [l, u]− [l, u] = [l − u, l + u] 6= [0, 0].

16

2.2. Reasoning About Finite-Precision Programs

Despite its “bad reputation” interval arithmetic is easy to implement, and fast to
evaluate, which provides a good trade-off between accuracy and performance, which is
why it is frequently used by static analysis tools [13, 14, 27].

Affine Arithmetic When using intervals gives insufficiently accurate results, ranges
can be represented in different ways. One alternative is using affine forms [68]:

x̆ = x0 +
n

∑
i=1

xiεi, with εi ∈ [−1, 1] (2.4)

where x0 is the center of the range, and affine coefficients xi define the magnitude of the
i-th noise term around the central value. Range bounds of an affine representation in
Equation 2.4 can be computed as:

[x̆] = [x0 −
n

∑
i=1
|xi|, x0 +

n

∑
i=1
|xi|]. (2.5)

Linear operations are evaluated on pairs of terms, central values and the corresponding
i-th term εi for each operator. For a pair of affine ranges x̆ and y̆:

αx̆ + βy̆ = (αx0 + βy0) +
n

∑
i=1

(αxi + βyi)εi (2.6)

Because of the noise terms εi, that can be shared between the operands, affine
arithmetic can track linear correlations. The same example function, for which intervals
were imprecise, f (x) = x − x in affine arithmetic will be evaluated exactly to zero:
(x0 + x1ε1)− (x0 + x1ε1) = (x0 − x0) + (x1ε1 − x1ε1) = 0.

Affine representation is essentially a linear combination of terms, which is why
linear operations can be evaluated exactly. Non-linear operations, however, cannot be
exactly represented as a linear combination of source terms x0 and xiεi and must be
approximated [68]. For instance, a multiplication of two affine ranges x̆ and y̆ is defined
as:

x̆ · y̆ = x0 · y0 +
n

∑
i=1

(x0yi + y0xi)εi + ηεn+1 (2.7)

where ηεn+1 is a fresh error term that bounds the difference between inherently non-
affine x · y function and an affine approximation of it. The freshly introduced term
can be computed in different ways, however, it generally loses correlations with the
source terms and will be propagated in the subsequent computations. Other non-linear
operators are evaluated in a similar fashion [69].

Note that due to the potentially expensive evaluation of the approximate affine
parameters compared to simple intervals, intervals may be a better choice for estimating
ranges of non-linear operations.

17

2. Preliminaries

Both interval and affine arithmetic are frequently used to represent variables’ ranges
in rigorous rounding error analysis. In the remainder of this chapter, we review existing
rigorous methods to estimate the worst-case rounding error bounds, and provide details
on sound finite-precision optimizations guided by these analysis methods.

2.2.2. Rounding Error Analysis

The worst-case rounding errors can be specified in absolute or relative terms. For a real
input x and a result of a real-valued computation f (x), we define the finite-precision
version of this input as x̂ and the result of the corresponding finite-precision computation
as f̂ (x̂). Then, the worst-case absolute rounding error is:

eabs = max
x∈I
| f (x)− f̂ (x̂)| (2.8)

and the worst-case relative rounding error is:

erel = max
x∈I

∣∣∣∣∣ f (x)− f̂ (x̂)
f (x)

∣∣∣∣∣ (2.9)

for inputs x in some range I.
While relative errors may seem a more meaningful measure of the implementation’s

quality, they are only defined for algorithms where zero does not appear as a possible
value of f (x). There exist some methods to bound relative errors [70], however, the
majority of state-of-the-art tools focus on absolute errors. For fixed-point numbers
absolute errors are the only meaningful measure, because the number of bits for the
fractional part is fixed at compile time, therefore, the worst-case error is the same for all
values using the same fixed precision. In the rest of the thesis, we will only consider
absolute rounding errors and will refer to them simply as rounding errors.

Equation 2.8 measures the difference between a real value and a finite-precision value
directly, however, such a measurement is difficult to perform for a number of reasons.
First, the real-valued evaluation of the algorithm is not available for most inputs and
algorithms. Secondly, the finite-precision function f̂ (x̂) is highly discontinuous due to
the necessary rounding, since not every real number can be directly represented in finite
precision. Instead of bounding the absolute error expression from Equation 2.8 directly
state-of-the-art tools replace f̂ (x̂) with an abstraction.

For each basic arithmetic operation (◦ ∈ {+,−, ∗, /} and √) its finite-precision
counterpart ◦̂ can be modeled as a noisy version of the original operation. Given two
real operands x and y and their finite-precision versions x̂, ŷ, the following holds:

x̂ = x(1 + e) + d (2.10)

x◦̂y = (x ◦ y)(1 + e) + d (2.11)

ˆ
√

x =
√

x(1 + e) + d (2.12)

18

2.2. Reasoning About Finite-Precision Programs

where |e| ≤ εM, and the machine epsilon εM represents the maximum relative error
introduced by rounding at each operation. The value of εM depends on the number of
bits used for the fractional part of the finite-precision precision. For instance, for signed
fixed-point format 〈W, I〉 εM = 2I+1−W . For floating points the value is determined with
the number of bits used for significand, εM = 2−24 for single precision, εM = 2−53 and
εM = 2−113 for double and quad precisions.

The second error abstraction component |d| ≤ δ is only required for floating-point
numbers, and δ represents the maximum absolute error due to rounding on subnormals,
for fixed-point precisions d = 0.

Rewriting 2.10 to obtain the error term on the right-hand side of the equation we
obtain x̂− x = x · e + d. Similarly, for other operations, the rewritten equations clearly
show that the magnitude of an error directly depends on the magnitude of the values x
and y. Therefore all errors are computed only with respect to a given range for input
variables, the intermediate ranges are inferred using range arithmetic.

Using equations 2.10-2.12, a finite-precision function f̂ (x̂) can be abstracted as f (x, e, d)
by chaining the individual operations’ abstractions. Note that this abstraction is only
valid for (sub-)normal numbers, i.e., for all fixed-points and for floating-points exclu-
sively in the absence of infinities and NaNs. State-of-the-art tools detect the presence of
these special values and abort the error bound computation if they are detected. For
normal numbers the rounding error ε for inputs x ∈ I is bounded with:

ε ≤ max
x∈I,|e|∈εM ,|d|∈δ

| f (x)− f (x, e, d)| (2.13)

State-of-the-art tools use Equation 2.13 with some variations in the objective function.
There are two principally different approaches to bound ε: data-flow static analysis and
a global optimization-based approach.

Data-flow Error Analysis The worst-case error on the program can be estimated using
forward static analysis. Static analysis traverses the abstract syntax tree (AST) of an
input program and evaluates each node with transfer functions defined on some abstract
domain. Because in rounding error analysis we are interested in obtaining error bounds,
and the inputs are specified as ranges, the abstract domain of choice must represent
ranges of values (respectively, errors) for all nodes of the AST.

Data-flow error analysis is usually done in two phases:

1. compute real-valued ranges of the operation result, and

2. compute rounding error ranges. This parts includes the error committed by the latest
evaluated operation, as well as errors propagated from preceding computations.

While it is possible to compute ranges of finite-precision operations directly, it is
afterward hard to distinguish which part of the range is due to errors. Computing
the ranges separately makes this distinction more transparent and reduces the over-
approximation of the propagated errors. Additionally, separate computation allows

19

2. Preliminaries

a better efficiency/accuracy trade-off for the analysis as a whole: small error ranges
can be expressed using a precise and less efficient abstract domain, for instance, affine
representation [68], while (potentially) large value ranges can be tracked using more
efficient and less precise interval domain [67].

Both ranges and errors are usually computed in parallel for each node of the abstract
syntax tree. From the real-valued range and the propagated error range the analysis
determines the actual range of values that may appear in the finite-precision AST node.
For fixed-point programs this finite-precision range of each node is used to determine
the number of bits needed for integer and fractional parts.

The dataflow analysis tools differ from one another in several aspects. First, analyz-
ers use different abstract domains to represent value and error ranges. For example,
Rosa [13] and Daisy [14] use interval arithmetic for range computations and affine
arithmetic for errors, while Fluctuat [39] uses zonotopes (higher-dimension affine repre-
sentation) for both.

Secondly, analyzers employ different techniques to tighten computed ranges. Having
tight estimates on value ranges is a prerequisite for tight error bound computation. It
is especially important in the presence of non-linear operations, for which the over-
approximation is large with both interval and affine domains. Fluctuat uses range
sub-division and Taylor expansion (for unary non-linear operations). Both Rosa and
Daisy support sub-division as well and employ a complementary technique that uses
SMT solver to gradually tighten the bounds obtained with intervals.

Global Optimization-Based Analysis

Bounding the rounding error with Equation 2.13 can also be solved as an optimization
problem [16, 17, 57, 71]. For small finite-precision expressions, it is possible to compute
the maximum of the Equation 2.13 directly. However, for larger programs, the size of the
objective function becomes intractable for modern solvers. Therefore, optimization-based
tools relax the optimization objective.

FPTaylor [71] has introduced symbolic Taylor expansions, that uses Taylor approximation
to simplify f (x, e, d). For functions that are differentiable twice on some open area in
the domain of valid inputs x, the finite-precision function f (x, e, d) can be approximated
with:

f (x, e, d) = f (x, 0, 0) +
k

∑
i=1

∂ f
∂ei

(x, 0, 0)ei + R(x, e, d) (2.14)

where

R(x, e, d) =
1
2

2k

∑
i,j=1

∂2 f
∂yi∂yj

(x, p)yiyj +
k

∑
i=1

∂ f
∂di

(x, 0, 0)di

and y1 = e1, . . . , yk = ek, yk+1 = d1, . . . , y2k = dk and p ∈ R2k such that |pi| ≤ εM for
i = 1 . . . k and |pi| ≤ δ for i = k + 1 . . . 2k. The remainder term R bounds all higher
order terms and ensures soundness of the computed error bounds.

20

2.2. Reasoning About Finite-Precision Programs

A term f (x, 0, 0) denotes an exactly rounded function f (x) without errors e = d =

0. With this, the objective function | f (x) − f (x, e, d)| is further simplified, and the
optimization task becomes:

ε = max
x∈I,e≤|εM |,d≤δ

∣∣∣∣∣ k

∑
i=1

∂ f
∂ei

(x, 0, 0)ei

∣∣∣∣∣+ MR, (2.15)

where MR is an upper bound on the second-order term R(x, e, d). with respect to
inputs x ∈ I and terms e, d bounded for a particular precision.

FPTaylor bounds Equation 2.15 with two procedures: interval arithmetic for MR and
branch-and-bound optimization for the maximization term. A recent tool Satire [57]
uses the same approach and extends it with further abstractions to scale the analysis for
larger programs (though still limited to straight-line code).

Similar to FPTaylor and Satire, real2Float [17] uses symbolic Taylor expansion to
generate the maximization objective and splits the error into two parts (first- and
second-order terms). Unlike other tools, real2Float uses a semi-definite programming
optimization technique to solve the maximization problem.

PRECiSA [16] formulates the optimization objective in a slightly different fashion: it
uses the unit in the last place (ulp) to express the error on individual operations. All
operations complying with IEEE-754 must be correctly rounded, which means that for
the default rounding mode (to nearest) the maximum difference between floating-point
x̂ and real x is a half of the distance between two neighboring finite-precision values.
This distance is quantified by the unit in the last place. Thus, the error on a floating-point
computation is:

ε = max
x∈I

ε f (e) +
1
2

ulp(f (x± e)), (2.16)

where ε f (e) computes the function f on the propagated errors, and 1/2ulp(f (x± e))
estimates the error committed by the latest operation. Here, the function f (x ± e)
denotes a non-negative real-valued expression that over-approximates the application
of real f to rounded values of x. The terms ε f (e) and f (x ± e) are defined for each
arithmetic operation individually. The definitions closely match the ones obtained with
x(1 + e) + d abstraction, and only differ in how the error from previous computations is
propagated for some operations, for instance, for the square root:

ε√x =
√

ex +
1
2

ulp(
√

x + ex), for x ≥ 0∧ x̂ ≥ 0 (2.17)

where ε f (e) =
√

ex and f (x± e) =
√

x + ex, and ex is initial (propagated from previous
computations) error on x.

PRECiSA’s definition for newly committed error (per operation) is identical to the
standard abstraction in Equation 2.10: for normal numbers and the default rounding
mode (to nearest), rounding error is 1

2 ulp(x) = 1
2 β1−p = β1−p−1 = β−p = εM.

Similarly to other global optimization-based approaches, PRECiSA builds a symbolic
expression for the error first, and then applies a branch-and-bound solver to quantify

21

2. Preliminaries

the worst-case error bounds. For the computed errors PRECiSA produces correctness
certificates checked with an interactive theorem prover PVS [72].

Limitations

While these techniques compute tight error bound estimates for straight-line code, their
support beyond basic blocks is limited. Conditional statements are handled using
branch-by-branch evaluation [13, 37, 73] that often reports pessimistic results, or require
additional information on the error distribution [38] and do not scale well. Loops larger
than several hundreds of iterations that cannot be easily unrolled are beyond what
state-of-the-art can do. Daisy currently does not handle loops at all, Rosa only supports
a special form of loops: they must be non-nested, contain no conditionals, and the
ranges of variables inside the loops must be bounded and fixed statically [13]. For
many programs, however, these fixed finite-precision ranges are unlikely to be known in
advance (in contrast to real-valued ranges of input variables) and must be precomputed
using some complementary technique. Fluctuat can analyze loops of a more general
form, however, the resulting error bounds are often trivial ([−∞,+∞]) or take too long
to compute on large programs.

An additional limitation of the global optimization approach is that it is not directly
applicable to fixed-point programs. Unlike floats whose dynamic range allows them to
represent many values, fixed-points require the integer and fractional bits to be assigned
individually for each (sub-)expression. To do that, one needs to know the range of values
taken by a (sub-)expression. While it is technically possible to obtain this information
in advance (for instance, with some other analysis), this incurs a significant overhead.
Therefore, the global optimization-based approach is only applied to floating points.

2.2.3. Optimization of Finite-Precision Programs

The original goal of rounding error analysis is to obtain reachable states (in terms of
values of variables), and verify that none of them are unsafe (potentially with the help
of other tools). In addition to the verification aspect, analysis results can be further used
to identify optimization potential and improve programs. Guided by a sound error
analysis, numerical program optimizers target programs’ performance or accuracy. The
inverse relation between accuracy and performance makes any optimization challenging,
the goal of the optimizers is to find a suitable trade-off.

Accuracy - Rewriting Optimization

Finite-precision arithmetic does not exactly match the real-valued one. Many real
properties do not hold in the finite precision, for instance, a sum is non-associative (a +

b) + c 6= a + (b + c). While this makes writing programs in finite precision unintuitive,
it also provides an optimization opportunity: by rewriting the expression to be evaluated
in a different order, one can influence the resulting rounding error on the expression.

22

2.2. Reasoning About Finite-Precision Programs

Assuming that a numerical algorithm has been designed with real arithmetic in
mind, the rewriting optimization applies real semantics-preserving identities to a finite-
precision expression and chooses the one with the smallest total rounding error. The
semantics of the algorithm do not change, but the accuracy may be increased.

The challenge in this optimization is the huge search space, for an expression with
n arithmetic operations and k ways to pair the operands (i.e., put the brackets around
them), there are n! · k expression variations with different orders of evaluation. Some
of them may have the same end error, some different, enumerating all of them is not
feasible. Therefore, an optimizer needs an efficient strategy for selecting candidates.

The sound optimizer Daisy uses genetic programming to facilitate the search of a more
accurate order of evaluation [74]. The search is initialized with a predefined number
of copies of the original expression, this is the initial population. At each iteration of
the search the population is sorted based on their fitness (in this case, rounding error),
the fittest candidate’s order of evaluation is mutated (randomly, but according to the
real-valued identity rules), and the fitness is evaluated again. This process repeats for 30
iterations and reports the expression with the smallest found rounding error. Note that
this search is necessarily incomplete, but was shown to be effective [22].

Salsa [52] uses a combination of static analysis and Abstract Program Expression
Graphs (APEG): it groups expressions equivalent under real semantics into one class
and evaluates them using abstract semantics, at the end one candidate with the smallest
rounding error is selected per class. Salsa’s approach applies this transformation inter-
procedurally, beyond individual arithmetic expressions.

To the best of our knowledge Daisy and Salsa are the only sound optimizers that
implement rewriting. Other tools employ some forms of rewriting in order to repair
large errors [19–21], but do not provide guarantees on the resulting error. Since these
repair tools are not sound and have a different objective, we postpone the discussion
until section 5.4.

Performance - Mixed Precision Assignment

Numerical computations in many domains have to be executed frequently and require
the result quickly, for instance, when computing a control signal for a robotic arm,
deciding whether a heart rate pattern should be classified as life-threatening, or whether
a wearable device has detected that its user fell down [75]. When performance matters,
but computed results must remain meaningful, mixed-precision tuning [22, 23] can be
applied. The user can define how noisy the results can get to stay meaningful, and this
portion of accuracy will be sacrificed for improving performance.

Mixed-precision tuning is based on the premise that generally the higher the (finite)
precision used in a program, the slower it runs. Different arithmetic operations, however,
contribute to the final error differently—some magnify the propagated error significantly,
and some diminish it. Therefore, the individual sub-expressions may require different
accuracy and may be implemented in different precisions (hence, mixed precision). The
idea behind mixed precision tuning is to use low precision when possible and high

23

2. Preliminaries

precision when necessary. That said, if the lowest available uniform precision assignment
already satisfies the specified target error, no higher precision will be assigned.

As for rewriting, the search space for mixed-precision tuning is huge and requires
efficient search procedures. Sound state-of-the-art tools search through possible mixed-
precision assignments with delta debugging [22], a combination of forwards and back-
wards static analysis [25], or encode precision assignment as optimization problem [23]
and solve it using the industrial strength optimizer Gurobi [76]. Other tools use dynamic
analysis to guide precision assignment [10, 51, 77–79] and therefore do not provide
guarantees on resulting rounding errors.

2.3. Daisy Framework

Our analysis of loops over vectors and matrices (chapter 3) and two optimizations
(chapters 5, 6) are implemented as extensions of the open-source tool Daisy [14]. Here
we present the details about Daisy that are relevant for our extensions.

Input Format Daisy’s input is a real-valued specification of numerical algorithms writ-
ten in a subset of the functional language Scala [80]. Figure 2.1a shows an example
input file. It contains necessary library imports and a top-level object (RigidBody) with
potentially multiple algorithms to be analyzed and optimized. Each algorithm is defined
in a separate function (rigidBody2, anotherAlgorithm) and is handled by Daisy separately.

An example algorithm rigidBody2 describes a non-linear controller for the angular
velocity of a rigid body [81]. The function rigidBody2 takes three real-valued inputs x1, x2
and x3 with input ranges specified by the require clause in lines 6-7. It then computes one
output (line 8), for which the maximum tolerated error 0.01 is specified by the ensuring

clause (line 9). Note that this specification describes the ideal real-valued algorithm and
cannot be executed as-is.

Output The main functionality of Daisy is twofold: 1) analyze numerical programs for
worst-case rounding errors and 2) optimize them. When executed only in analysis mode,
Daisy reports absolute rounding error bounds, real-valued range of the resulting value,
and relative rounding error bounds for cases when the real range does not include zero.

When used to optimize programs, Daisy reports analysis results for the optimized
program and generates executable code in Scala or C (can be configured by the user).
The generated code includes the precision assignment (uniform or mixed), casts between
precisions (whenever needed for mixed-precision assignment), and the exact order of
evaluation (for example, the one obtained with the rewriting optimization). Figure 2.1c
shows the output Scala code generated for the example specification rigidBody with
mixed-precision tuning on floating points.

For fixed-point programs, an additional post-processing step may be required. When-
ever the operands of an arithmetic operation have different numbers of fractional bits,
Daisy automatically generates bit shifts to align the values for correct computation [49]

24

2.3. Daisy Framework

(Figure 2.1b) or uses the library implementations, such as ap_fixed format for Xilinx
Vivado [59].

Implementation Structure Daisy has a modular structure, it reads a set of flags and
parameters from the command line and builds the execution pipeline from the corre-
sponding components (called Phases in Daisy). For instance, to optimize a program
example.scala with Daisy’s mixed-precision tuning and rewriting one has to run the
following command in a terminal:

./daisy example.scala --mixed-tuning --rewrite

Such a structure makes extending the tool straight-forward, one needs to implement a
Phase that processes the AST (with analysis or transformation) and add it to the pipeline.

When processing inputs, Daisy internally uses Scala compiler’s front-end for pars-
ing and type-checking. The domain-specific language for real-valued operations on
the datatype Real is defined in the Real.scala file and imported as a library to each
specification file. Another mandatory library daisy.lang implements extraction of the
Daisy-specific abstract syntax tree (AST) and operations on it. These libraries can be
reused and extended. When implementing a new domain-specific language that oper-
ates on vectors and matrices, we created new types Vector and Matrix on top of the Real

type, and defined the operations on the new data types in daisy.lang.
More details on Daisy’s features can be found in the corresponding tool paper [14]

and in the online documentation [82].

25

2. Preliminaries

import daisy.lang._

2 import Real._

4 object RigidBody {

def rigidBody2(x1: Real, x2: Real, x3: Real): Real = {

6 require(-15.0 <= x1 && x1 <= 15 && -15.0 <= x2 && x2 <= 15.0 &&

-15.0 <= x3 && x3 <= 15)

8 2*(x1*x2*x3) + (3*x3*x3) - x2*(x1*x2*x3) + (3*x3*x3) - x2

} ensuring(res => res +/- 1e-2)

10

def anotherAlgorithm(...): Real = {

12 ...

}

14 }

(a) Input specification

#include <math.h>

2

long rigidBody2(long x1, long x2, long x3) {

4 long _tmp13 = ((x1 * x2) >> 31);

long _tmp14 = ((_tmp13 * x3) >> 31);

6 long _tmp16 = ((1073741824 * _tmp14) >> 30);

long _tmp15 = ((1610612736 * x3) >> 31);

8 long _tmp17 = ((_tmp15 * x3) >> 31);

long _tmp20 = (((_tmp16 << 3) + _tmp17) >> 3);

10 long _tmp18 = ((x1 * x2) >> 31);

long _tmp19 = ((_tmp18 * x3) >> 31);

12 long _tmp21 = ((x2 * _tmp19) >> 31);

long _tmp23 = ((_tmp20 - (_tmp21 << 3)) >> 3);

14 long _tmp22 = ((1610612736 * x3) >> 31);

long _tmp24 = ((_tmp22 * x3) >> 31);

16 long _tmp25 = (((_tmp23 << 6) + _tmp24) >> 6);

return (((_tmp25 << 12) - x2) >> 12);

18 } // [-58740.0, 58740.0] +/- 0.0003096703

(b) Output C code for uniform 32-bit fixed-
point precision with bit shifts

import scala.annotation.strictfp

2

@strictfp

4 object RigidBody {

def rigidBody2_32_05(x1: Double, x2: Double,

6 x3: Float): Double = {

val _const0: Float = 2f

8 val _const1: Double = 3

val _const2: Double = 3

10 val _tmp13: Double = (x1 * x2)

val _tmp14: Double = (_tmp13 * x3)

12 val _tmp16: Double = (_const0 * _tmp14)

val _tmp15: Double = (_const1 * x3)

14 val _tmp17: Double = (_tmp15 * x3)

val _tmp20: Double = (_tmp16 + _tmp17)

16 val _tmp18: Double = (x1 * x2)

val _tmp19: Double = (_tmp18 * x3)

18 val _tmp21: Double = (x2 * _tmp19)

val _tmp23: Double = (_tmp20 - _tmp21)

20 val _tmp22: Double = (_const2 * x3)

val _tmp24: Double = (_tmp22 * x3)

22 val _tmp25: Double = (_tmp23 + _tmp24)

(_tmp25 - x2)

24 }} // [-58740.0, 58740.0] +/- 0.0019097329

(c) Output Scala code with mixed floating-
point precision

Figure 2.1.: Daisy’s input/output for the rigidBody algorithm.

26

Part I.

Analysis of Programs With Loops

27

3. Large Bounded Loops

Estimation of rounding error bounds on programs with bounded loops is currently
limited by the size of the loop. Today’s tools successfully handle loops with reasonably
small bounds by unrolling them, but the same method does not work when a bounded
loop has more than a few hundred iterations. Such loops, however, are common in large
neural networks [7] and control systems that sample sensor values frequently and store
them before computing the actual control signal.

Recent efforts to address scalability of analyzers involve various abstractions. The
tool Satire [57] builds an incremental abstraction of numerical expressions in a form of a
directed acyclic graph, and uses symbolic Taylor terms [71] to compute tight rounding
error bounds. Similarly to FPTaylor [71], that introduced symbolic Taylor approximation
terms, Satire uses these terms to formulate error bound search as an optimization task.
While Satire handles larger programs than other state-of-the-art tools, it requires a user
to unroll all loops manually, which is a tedious an error-prone process.

Another state-of-the-art static analyzer Fluctuat [39] does not impose such strict
constraints on the input program, it handles general-form imperative programs and
takes care of loops automatically. Fluctuat provides several possibilities to handle loops:
compute a merge-over-all-paths (MOP) solution, which is essentially unrolling the loop,
or apply widening—in principle, an abstraction—, and a combination of both (widen
only after a certain fixed number of unrolled iterations). Fluctuat’s base analysis for
straight-line code is extremely fast, which allows it to handle larger programs with
unrolling as well, but also up to some limit. Widening allows the analysis to converge
to a fixpoint solution quickly, however, it is too imprecise for estimating rounding errors
and often returns a trivial bound of [−∞, ∞].

Therefore, there is a need for automated tools that handle large numerical loops and
do not require users to specify prohibitively long inputs. While handling loops of a
general form is still challenging, there are sub-classes of loops, where scalability of static
analysis can be improved with abstractions.

Many numerical programs operate on values stored in data structures such as N-
dimensional arrays. Numerical computations are then performed in some form of a loop
over such array. Loops of this form occur frequently in various application domains, for
instance, in statistical computations in data analyses, image and other signal processing,
Fourier and stencil transformations in embedded systems, computations in neural
networks, etc. State-of-the-art tools handle these loops by assigning an individual
variable to each array element, which is exactly the same as unrolling. An alternative
approach of abstracting the whole array as one unit that is applied in various static
analyses [83] does not work well for rounding error analysis. While this abstraction

29

3. Large Bounded Loops

speeds up the analysis, the inherent over-approximation is in general too coarse for
analysis where values should be computed as tightly as possible, and may lead to
unusable results. This chapter presents the first rounding error analysis with explicit
support for operations and loops over array-like data structures (i.e. vectors or lists
and matrices). To facilitate this analysis we design a functional domain-specific input
language (DSL) with operations over lists and matrices that allows to express many
commonly used patterns in numerical computing and that serves as the input to our tool.

The benefit of a functional input language is two-fold. First, it allows users to
succinctly express their computations and reduces the possibility of common (off-by-
one) indexing errors. More importantly, however, a functional language carries semantic
information that can be leveraged by the analysis, removing the need to unroll many
operations. For example, loops applying a function to each value in a list (functional
map(λx. f (x))) do not propagate errors between iterations, and a rounding error analysis
only has to analyze the loop body once. An unrolling of the loop would lose that
high-level information and effectively re-compute the analysis for each loop iteration.
For operations that do require unrolling, we show how to use the semantic information
to avoid recomputing analysis information that can be effectively over-approximated,
further reducing the burden on the analysis. Our abstraction is designed for rounding
errors and accounts for different variables’ ranges and thus provides a viable tradeoff
between analysis accuracy and performance.

We design our input DSL based on a new set of numerical benchmarks that we
collected from a variety of domains. We implement our rounding error analysis for this
DSL in a tool called DS2L and show that compared to a baseline analysis that unrolls
all operations, it can substantially reduce analysis time with little impact on analysis
accuracy.

Our focus in this work is on scalability and we thus compare DS2L against the two
most scalable (available) rounding error analysis tools Fluctuat [39] and Satire [57]. For
completeness, we create benchmarks with different data structure sizes. Our evaluation
shows that for smaller ones unrolling such as done by Fluctuat and Satire is preferable,
but for larger ones (the focus of this chapter), DS2L scales significantly better. While for
benchmarks with smaller data structure sizes DS2L has comparable running time than
Fluctuat [39], it can analyze 46% more large benchmarks (has fewer timeouts, overflows
and infinite error bounds), and is median 24x faster. Compared to Satire [57], DS2L can
handle 59% more large benchmarks and is median 260x faster.

While we evaluate DS2L only on floating-point code to permit a comparison with
existing tools, our analysis is general and extends to fixed-point arithmetic as well.

Contributions. In summary, this chapter makes the following contributions:

• a new finite-precision benchmark set to be released as open-source;

• a fully automated, sound rounding error analysis for programs written in a
functional-style DSL (section 3.3);

30

3.1. Baseline Rounding Error Analysis

• the open-source implementation of this analysis is available at https://github.com/
malyzajko/daisy/tree/ds2l (section 3.4);

• an evaluation against state-of-the-art analysis tools in terms of accuracy and time
(section 3.5).

3.1. Baseline Rounding Error Analysis

Our approach builds on top of the existing rounding error analysis tools that work
for straight-line code with arithmetic operations on scalar values. Our data-structure-
oriented analysis explained in section 3.3 reuses the straight-line code analysis as a
baseline for evaluating scalar expressions, and we use it also for comparison in the
evaluation (section 3.5).

We choose the baseline analysis to be of the dataflow type as implemented in Fluc-
tuat [39], Rosa [13] and Daisy [14]. The alternative analysis phrases the computation of
the rounding error as a global non-linear real-valued optimization problem [57, 71, 73].
We specifically choose a dataflow approach as our base analysis for several reasons.
First, it is unclear how to generate global error constraints in the presence of data
structures. Additionally, we identified optimization opportunities when the range in-
formation is available separately from the errors. Finally, even though in this paper
we focus on floating-point arithmetic for simplicity, dataflow analysis is immediately
applicable to fixed-point arithmetic as well, making our analysis more widely applicable.
Global optimization-based rounding error analysis, as it appears in state-of-the-art tools
FPTaylor [71] and Satire [57], analyzes floating-point programs only.

3.2. DSL for List-like Data Structures

Before designing our functional domain-specific language for numerical computations
(subsection 3.2.2), we collected a new set of benchmarks that informed the design of our
DSL, and specifically the set of supported operations (subsection 3.2.3).

3.2.1. Benchmark Set

Rounding error analysis on programs that contain operations on data structures such
as arrays and loops over them is an open challenge, and correspondingly there is
no standard benchmark set yet. The existing FPBench benchmarks [84] cover only
straight-line code and a few while-loops but no data structures. We therefore create a
new benchmark set that covers different domains where numerical computations are
frequent:

• statistical computations: avg, stdDeviation, variance

• linear and non-linear digital filters: roux1, goubault, harmonic and nonlin{1-3} [46]

31

https://github.com/malyzajko/daisy/tree/ds2l
https://github.com/malyzajko/daisy/tree/ds2l

3. Large Bounded Loops

• differential equations: lorenz, pendulum [13, 57]

• signal processing: alphaBlending (image mask), fftvector, fftmatrix (two versions of
forward Fourier transform)

• stencil computations: convolve2d_size3, sobel3, heat1d [13, 57]

• neural networks: lyapunov, controllerTora [7]

Some of the benchmarks from FPBench contain loop bodies of control loops, which
we rephrase as loops over arrays of sensor data. Other benchmarks have been collected
from scientific publications [7, 13, 46, 57] as well as open-source implementations in
different programming languages.

The benchmarks are available in the appendix, section A.1.

3.2.2. A Functional DSL

Many verification techniques face the dilemma of either adapting the verification tech-
niques to work on legacy code and (possibly) giving up some precision, or requiring to
rewrite the code with verification in mind and being able to reason about a program
in more detail. In this work, we choose the second option, and note that our domain-
specific language uses Scala syntax and is similar to other existing functional languages
and we thus expect it to be largely familiar to developers.

The goal of our DSL is to allow a convenient way to 1) write programs that perform
operations on array-like data structures and 2) to analyze them. Our main insight
is that a functional style of programming covers both aspects: it allows for a more
succinct representation of programs and it retains high-level semantic information of
the operations that can be leveraged by the analysis.

heat1d Example We illustrate the succinctness of our DSL on one of the benchmarks
that we collected from related work [57]. Figure 3.1 shows the function heat1d in the
input formats of two different tools. The heat1d function takes as input a temperature
distribution and computes the temperature at a coordinate x0 after 32 units of time. The
computation requires temperature values for neighboring coordinates which must be
repeatedly recomputed, which is essentially a stencil.

The original straight-line version of the heat1d benchmark comes from Satire ana-
lyzer [57] and includes 1094 lines of code, 67 of which specify input ranges of (individual)
variables, the rest are unrolled loops. Its representative parts are shown in Figure 3.1a.
Unrolled computations are not only lengthy, but also error-prone and unnatural for a
user to write. A more natural choice when implementing the same algorithm in an im-
perative style is to use two nested loops. Figure 3.1b shows the same algorithm written
in C formatted for the tool Fluctuat [39]. A loop representation is more succinct—14
lines of code with computations, however it requires loop bounds to be set manually
and may lead to index-out-of-bounds errors.

32

3.2. DSL for List-like Data Structures

1 INPUTS {

xm1_0 fl64 : (1,2) ;

3 xm2_0 fl64 : (1,2) ;

... // repeat until xm32_0

5 xm32_0 fl64 : (1,2) ;

x0_0 fl64 : (1,2) ;

7 xp1_0 fl64 : (1,2) ;

xp2_0 fl64 : (1,2) ;

9 ... // repeat until xp32_0

xp32_0 fl64 : (1,2) ;

11 }

OUTPUTS { x0_32; }

13

EXPRS {

15 xm31_1 rnd64 = (0.25*xm32_0 + 0.5*xm31_0 + 0.25*xm30_0);

xm30_1 rnd64 = (0.25*xm31_0 + 0.5*xm30_0 + 0.25*xm29_0);

17 ... // repeat until xm1_1

x0_1 rnd64 = (0.25*xm1_0 + 0.5*x0_0 + 0.25*xp1_0);

19 xp1_1 rnd64 = (0.25*x0_0 + 0.5*xp1_0 + 0.25*xp2_0);

... // repeat until xp31_1

21 xm31_2 rnd64 = (0.25*xm32_1 + 0.5*xm31_1 + 0.25*xm30_1);

xm30_2 rnd64 = (0.25*xm31_1 + 0.5*xm30_1 + 0.25*xm29_1);

23 ... // repeat until xm1_2

x0_2 rnd64 = (0.25*xm1_1 + 0.5*x0_1 + 0.25*xp1_1);

25 xp1_2 rnd64 = (0.25*x0_1 + 0.5*xp1_1 + 0.25*xp2_1);

... // repeat until xp31_2

27 // repeat until x0_31 is reached

x0_31 rnd64 = (0.25*xm1_30 + 0.5*x0_30 + 0.25*xp1_30);

29 xp1_31 rnd64 = (0.25*x0_30 + 0.5*xp1_30 + 0.25*xp2_30);

x0_32 rnd64 = (0.25*xm1_31 + 0.5*x0_31 + 0.25*xp1_31);

31 }

(a) Unrolled loop (Satire’s input)

1 #include <fluctuat_math.h>

#define N 33

3 // computations

double heat1d(double (*xm)[N],

5 double (*xp)[N], double* x0) {

for(int j=1;j<N; j++) {

7 for(int i=2; i<(N-j); i++) {

xm[j][i] = 0.25*xm[j-1][i+1] +

9 0.5*xm[j-1][i] + 0.25*xm[j-1][i-1];

xp[j][i] = 0.25*xp[j-1][i-1] +

11 0.5*xp[j-1][i]+0.25*xp[j-1][i+1];

}

13 xm[j][0]=0.25*xm[j-1][1]+0.5*xm[j-1][0]+0.25*x0[j-1];

xp[j][0]=0.25*xp[j-1][1]+0.5*xp[j-1][0]+0.25*x0[j-1];

15 x0[j]=0.25*xm[0][j-1]+0.5*x0[j-1]+0.25*xp[0][j-1];

}

17 return x0[N-1]; }

int main() {

19 int i,j;

double x0[N];

21 double xm[N][N];

double xp[N][N];

23 // specify input ranges

for(i=0; i<N; i++){

25 x0[i] = DBETWEEN(1.0, 2.0);

for(j=0; j<N; j++){

27 xm[i][j] = DBETWEEN(1.0, 2.0);

xp[i][j] = DBETWEEN(1.0, 2.0);

29 }}

heat1d(xm, xp, x0);

31 return 0; }

(b) Imperative loop (Fluctuat’s input)

1 def heat1d(ax: Vector): Real = {

require(1.0 <= ax && ax <= 2.0 && ax.size(33))

3 if (ax.length() <= 1) {

ax.head

5 } else {

val coef = Vector(List(0.25, 0.5, 0.25))

7 val updCoefs: Vector = ax.slideReduce(3,1)(v => (coef*v).sum())

heat1d(updCoefs)

9 }

}

(c) Functional style (our DSL)

Figure 3.1.: heat1d benchmark in input formats for different tools

We show the same function heat1d written in our functional DSL in Figure 3.1c. It
uses a sliding window over a list (slideReduce operation, explained in more detail in
subsection 3.2.3) and passes the new values into a recursive call. In contrast to alternative
implementations, a functional style program is much shorter—6 lines of code—and
eliminates index-out-of-bounds errors as it does not require users to explicitly write
elements’ indices.

33

3. Large Bounded Loops

DSL Design Our DSL is designed for writing numerical algorithms on array-like data
structures and was inspired by the popular libraries Lift [85] and TensorFlow [86]. It
includes commonly occurring operations on vectors and matrices from the collected
benchmarks. When naming DSL functions, we have re-used the names used by Lift
and TensorFlow whenever possible and attempted to make other functions’ names
self-explanatory. We do not expect our current DSL to exhaustively cover all possible
numerical programs; rather it serves as a starting point already covering a variety of
operations that can and should be extended in the future.

Data Types Following previous work in rounding error analysis, all values and opera-
tions in our DSL are real-valued (as opposed to finite precision), i.e. they have a Real

type. Real-valued algorithms are more intuitive for a user to write, and easier to analyze
as they provide a clear reference semantics. Our DSL provides two data types: a Vector

is an indexed sequence of Real scalar values, and a Matrix corresponds to a sequence
of vectors of the same length. In the following, we refer to lists (Vectors) as vectors,
and vectors and matrices as data structures (DSs), for simplicity. Our DSL is purely
functional, and as such all data structures are immutable.

Input Ranges Any rounding error analysis requires information on ranges of input
variables. Both scalar and DS input ranges can be specified using the require clause. The
specification should ideally be as precise as possible and provide tight ranges that can
be different for some DS elements. We therefore allow two ways to specify input ranges
for DSs. If all elements have the same input range, it is enough to specify the range
once for the whole DS (1.0 <= ax && ax <= 2.0). Additionally, it is possible to specify
individual input ranges for subsets of DS elements. For vector elements these ranges
are specified as a tuple ((loInd, hiInd), range), where loInd and hiInd are the smallest
and the largest index of consecutive elements with the input range range. For example,
to specify that the first and the second element of ax in heat1d have the input range
[0.0, 0.5], we would write ax.range(0, 1)(0.0, 0.5). We also allow individual range
specifications on matrices, however, specifying a lower and upper bound of an index
range is ambiguous for a matrix. Therefore, we choose a more natural way for specifying
special input ranges on matrices: a user has to list the indices of elements for that range.
For example, to convey that the first elements in the first and second row of a matrix
m should have the range [−0.5, 0.5], we write m.specM(Set(Set((0,0),(1,0)),(-0.5,0.5))).1

DS Size To analyze operations that traverse a DS, the analysis also needs to know the
number of elements in the DS. Our DSL allows to specify the expected maximum size of
an input data structure—length of a vector, number of rows and columns for a matrix.
Having the upper bound on the number of elements in the DS allows us to compute

1Admittedly, the Set() notation is not the most user-friendly way of input for small specifications. We use
it for simplicity of implementation; the notation can be improved with extensions to our parser.

34

3.2. DSL for List-like Data Structures

object Vector {

2 def zeroVector(i:Int): Vector

def zip(v1: Vector, v2: Vector): Matrix

4 }

case class Vector(data: List[Real]) {

6 // uncertainty on the vector

def +/-(x: Real): Boolean

8 // specify one range for the whole vector

def <=(x: Real): Boolean // also >=

10 // specify range for a subset of elements

def specV(ranges: Set[((Int, Int), (Real, Real))]):

12 Boolean

def size(i: Int): Boolean

14 // element-wise operations

def +(v: Vector): Vector // also -,*,/

16 // element-wise elementary functions

def log(): Vector // sin(), cos(), tan(), ctan(), etc.

18 // cross-product

def x(v: Vector): Vector

20 // operations with constants

def *(c: Real): Vector // also +, /

22 // non-arithmetic operations

def length(): Int

24 def at(i: Int): Real

def slice(i: Int, j: Int): Vector

26 def everyNth(i: Int, from: Int): Vector

// standard functions

28 def map(fnc: (Real) => Real): Vector

def fold(init: Real)(fnc: (Real,Real) => Real): Real

30 def filter(fnc: (Real) => Boolean): Vector

// sliding window

32 def slideReduce(size:Int, step: Int)(

fnc:(Vector) => Real): Vector

34 def enumSlideFlatMap(n: Int)(

fnc: (Int, Vector) => Vector): Vector

36 // add zeros padding around the vector

def pad(i: Int): Vector

38 def max(): Real // also min()

def sum(): Real // same as fold(0.0)(λa,x.a+x)
40 // concatenate and add elements

def ++(v: Vector): Vector

42 // also append :+(_), prepend +:(_)

}

44 object Matrix {

def zeroMatrix(i:Int, j:Int): Matrix

46 }

case class Matrix(data: List[List[Real]]) {

48 // < same as in Vector >

// element-wise operations and elem. functions

50 // operations with constants

// non-arithmetic operations

52 // basic functional ops

// < different from Vector >

54 // input spec for range and size

def specM(ranges: Set[(Set[(Int, Int)],

56 (Real, Real))]): Boolean

def size(i: Int, j: Int): Boolean

58 // +non-arithmetic operations

def row(i: Int): Vector

60 def slice(fromI:Int, fromJ:Int)

(toI:Int, toJ:Int): Matrix

62 def at(i:Int, j: Int): Real

def numRows(): Int

64 def numCols(): Int

// flip elements upside down

66 def flipud(): Matrix // also fliplr() left to right

def enumRowsMap(fnc: (Int, Vector) => Vector): Matrix

68 // operations on individual elements

def mapElements(fnc: (Real) => Real): Matrix

70 def foldElements(init: Real)(

fnc: (Real,Real) => Real): Real }

Figure 3.2.: DSL for numerical programs on data structures

sound results: reported ranges and rounding errors subsume the ranges and errors of
programs with input DSs smaller than the specified size.

3.2.3. DSL Functions

Our DSL uses Scala syntax, precisely it is an extension of the real-valued specification
language of Daisy. We show a representative subset of the DSL functions in Figure 3.2;
semantically we can roughly split its functions into four groups:

1. element-wise functions, such as arithmetic operations and transcendental functions
applied to individual elements of a DS;

2. standard higher-order functions, such as map, fold and filter;

3. domain-specific functions, e.g., stencil-like filters, matrix multiplication;

35

3. Large Bounded Loops

4. non-numerical operations, e.g., appending or flipping elements in DS.

Additionally, our DSL supports recursive calls with specific conditional statements. To
avoid rounding errors in conditional expressions, we currently limit them to (integer) DS
size comparisons, such as v.length <= c or m.numRows <= c. Next, we explain the concrete
semantics of the DSL functions using pseudocode that makes indices explicit (while they
are typically implicit in our DSL). We choose to present the semantics with pseudocode
(and not sets of rules), because it is more concise and because it expresses how the
operators are ultimately evaluated, which is important for the rounding error analysis.

Note that the semantics of most of our DSL operators are standard. Additionally, our
analysis does not depend on exactly this syntax and semantics of the DSL. We therefore
expect our analysis to be applicable to other (intermediate) representations or languages with
similar semantics. Such representation must (only) be purely functional (immutable
variables and DS, no side-effects) and provide a syntactic distinction between different
iterators, precisely, the functionality of an iterator must be unambiguous without an
additional analysis of the iterator’s body.

Element-wise Functions They cover arithmetic operations applied to a single DS or a
pair of DS, for instance v1 + v2, where v1, v2 are vectors. Semantically these operations
are the same as arithmetic operations on scalar numbers. The only difference is that for
binary operations on two DS, the operands must have the same dimensions. Element-
wise operations are defined for both vectors and matrices: the operation is applied to
the elements in the operand DSs with the same indices. We also define element-wise
operations with constants.

For all unary (uop) and binary (bop) arithmetic operations the semantics is:

a bop b = [a[i] bop b[i] | ∀i∈Indices(a), #Indices(a) == #Indices(b)]

uop(a) = [uop(a[i]) | ∀i∈Indices(a)]

In our example function heat1d in Figure 3.1c (line 8) the expression coef*v is an
element-wise multiplication of vectors coef and v. It will multiply each i-th element
of coef with the i-th element of v and put the result in the i-th element of an output vector.

Standard Higher-Order Functions Classic higher-order functions map, fold, filter

preserve their semantics. map and fold are defined on vector elements, and for a matrix
on both rows and elements. We add a function ds.sum() as syntactic sugar for fold with
an addition operator to compute a sum of DS elements. We also extend the map on
matrix rows to support indexed iterations with enumRowsMap(λi,x. f (i,x)). The function
maps over rows of the matrix and applies f to both row’s index and elements:

m.enumRowsMap(f) = [f(i, m[i,j]) | ∀i∈Rows(m), (i,j)∈Indices(m)]

filter is defined to apply the conditional to vector elements, and to matrix rows. We
do not allow a filter on individual matrix elements, as it may result in modified and

36

3.2. DSL for List-like Data Structures

uneven matrix dimensions.

Domain-Specific Functions Our DSL defines operations required for implementing
neural networks (i.e. matrix multiplication), stencils and image processing filters. We
describe the most interesting operations below.

Stencil operations usually require a more complex transformation than map or fold can
provide. The transformations involve an outlook of several elements before and after
the current element of a DS, as opposed to accessing a single element in one iteration of
map and fold. Such an outlook is commonly called a sliding window. Our DSL defines it
on vectors and matrices with ds.slideReduce(size, step)(λx. f (x)), where a window of
size size shifts by step indices at every iteration. For vectors a window is a subset of
consecutive elements of length size, for matrices a window is a matrix with dimensions
size×size. A user-supplied function f (x) is then applied to the created window, it
returns a scalar value that is saved at the corresponding index of the newly created DS.
Intuitively, it is similar to applying a fold to a sliding window.

Our example benchmark heat1d in Figure 3.1c creates a sliding window of 3 vec-
tor elements and shifts the window by 1 index at every iteration; the resulting vec-
tor updCoefs contains results of the sum() operation. The pseudocode below explains
ax.slideReduce(3,1)(f) using explicit indices of the vector ax:

k=0

∀ i∈ {1..size(ax)-2}:

v = [ax[i-1], ax[i], ax[i+1]]

// f(v) = (coef*v).sum()

updCoefs[k] = coef[0]*v[0] + coef[1]*v[1] + coef[2]*v[2]

k++

Note that the pseudocode contains two different indices: i is the index of elements in
the original DS ax, and k is the index of a sliding window over ax and the output vector
updCoefs.

Our DSL also allows a combination of a sliding window and a map, which is use-
ful for implementing signal filters such as the fast Fourier transform. The function
enumSlideFlatMap(n)(λi,x. f (i,x)), defined on vectors, creates a sliding window of size n
that shifts by n indices every iteration. The resulting windows are enumerated and a
function f (i, x) transforms every element in the window and saves the results into a
new vector. In the FFT implementation in Figure 3.3, the sliding window includes 2
elements of the vector evens and computes vectors resleft and resright of the same size
as evens. The window index k is used for accessing elements of the vector odds and for
computing the filtered values (lines 16 and 22). The pseudocode below explains with
explicit indices how evens.enumSlideFlatMap(2)(f(k,xv)) iterates over the vector evens:

k=0

∀ i∈ {0,2,4,...,size(evens)-2}:

xv = [evens[i], evens[i+1]]

37

3. Large Bounded Loops

def fftvector(vr: Vector, vi: Vector): Vector = {

2 // v: (real part of signal / Fourier coeff.,

// imaginary part of signal / Fourier coeff.)

4 require(vr >= 68.9 && vr <= 160.43 && vr.size(128) &&

vi >= -133.21 && vi <= 723.11 && vi.size(128))

6 if (vr.length() == 1)

Vector(List(vr.head, vi.head))

8 else {

val scalar: Real = 1; val Pi: Real = 3.1415926

10 val n:Int = vr.length(); val direction:Vector = Vector(List(0.0, -2.0))

val evens: Vector = fftvector(vr.everyNth(2, 0), vi.everyNth(2, 0))

12 val odds: Vector = fftvector(vr.everyNth(2, 1), vi.everyNth(2, 1))

val resleft: Vector = evens.enumSlideFlatMap(2)((k, xv) => {

14 val base: Vector = xv / scalar

val oddV: Vector = odds.slice(2 * k, 2 * k + 1)

16 val expV: Vector = (direction.*(Pi * k / n)).exp()

val offset: Vector = (oddV x expV) / scalar

18 base + offset })

val resright: Vector = evens.enumSlideFlatMap(2)((k, xv) => {

20 val base: Vector = xv / scalar

val oddV: Vector = odds.slice(2 * k, 2 * k + 1)

22 val expV: Vector = (direction.*(Pi * k / n)).exp()

val offset: Vector = (oddV x expV) / scalar

24 base - offset })

resleft ++ resright })

Figure 3.3.: Fast Fourier transform filter implemented in our DSL

tmp = f(k, xv) // where tmp is a vector

res[i] = tmp[0]; res[i+1] = tmp[1]

k++

Non-Numerical Such operations include obtaining a subset of elements (v.slice(i,j)),
reordering (m.flipud(), m.fliplr()), appending and prepending elements and rows
(v.+:(elt), m :+ v). Additionally, our DSL allows to add a zero-padding around a vector
or a matrix, and obtain smallest and largest elements of a DS. A special variant of a
subset operation ds.everyNth(n, fromInd) creates a new DS by taking every n-th element
of a vector (or row of a matrix) starting from the index f romInd. Our FFT benchmark in
Figure 3.3 uses the everyNth function to obtain subsets of signal values at even and odd
indices (lines 11 and 12).

3.3. Data-Structure Guided Analysis

While a baseline range and error analysis for straight-line code can handle unrolled
iterators, it does not make use of implicit additional information that is present in a
high-level specification. In an unrolled program each iteration makes up independent

38

3.3. Data-Structure Guided Analysis

expressions to be evaluated, regardless of whether values in consecutive iterations
depend on one another. This may result in redundant computations; for instance, a
map performs the same computation over all elements in a vector and when all those
elements have the same specified input range, we only need to analyze the rounding
error of the computation once. The same holds for matrix multiplication: each element
of the resulting matrix is computed with the same arithmetic expression, but it would
appear as a new independent computation if unrolled. When sets of involved elements
have the same ranges, it is sufficient to analyze the rounding error of the resulting matrix
element once.

We observe that while concrete DS inputs will in general not be the same, a specifi-
cation of a function to be analyzed will typically provide ranges that in practice often
tend to be identical for many inputs. We leverage this in our analysis and compute the
ranges and error bounds as rarely as possible. Even though it is not possible to directly
apply this approach to iterators where iteration values have dependencies, like fold, the
analysis can be optimized based on groups of elements with the same specification by
introducing suitable over-approximations (see subsection 3.3.4).

We first introduce our DS-based concrete and abstract domains before explaining how
expressions are analyzed and their analysis is optimized.

3.3.1. DS-based Concrete Domain

The goal of our analysis is to collect information about ranges and rounding error
bounds for groups of elements. To do so, our concrete domain tracks a tuple (r, f) for
each value in a program, where r is the ideal value if a program would be executed with
a real numbers semantics, and f is the same value if the program is executed with the
finite-precision semantics.

We denote all valid indices of data structures as Inds(n) = Nn, where n ≥ 0 is the
dimension of the DS: n = 1 for vectors and n = 2 for matrices. For scalar values the
set of indices is empty, n = 0. Using the indices we define elements of a DS as V(n) =

Inds(n) 7→ (R, F), where (R, F) denote sets of pairs of real and their corresponding
finite-precision values (r, f). Given a set of elements’ values V(n) we define our concrete
domain as C(n) = 2V(n)

, for each dimension of data structures n.

3.3.2. DS-based Abstract Domain

We then abstract each tuple (r, f) using a pair of intervals: α((r, f)) = (IR × IR), where
the first interval denotes a range of real values that contains r, and the second tightly
bounds the real-valued difference between r and f . Here the difference between a real
number r and a finite-precision number f represents the rounding error.

Lifted to the DS with dimension n we obtain abstract element’s values: D(n) =

Inds(n) ↪→ (IR × IR). Note that we are only interested in abstract values of elements
with valid indices (as opposed to all possible indices), and use a partial mapping ↪→ to
express it in our domain. For invalid indices the mapping is undefined. The abstract

39

3. Large Bounded Loops

domain for our analysis combines all D(n) with for scalar values, vectors and matrices:
D = (D(n))n≥0. Join and meet operators use standard definitions of join and meet on
intervals, and are lifted to all valid indices point-wise.

An abstract state D(n) soundly describes a concrete state C(n), that is: C(n) ⊆ γ(D(n)),
where concretization function is defined as follows. Given a set of indices S and a set of
mappings from these indices D(n) = {i 7→ (Ii, Ei)|i ∈ S}:

γ(D(n)) = {{i 7→ (rj, f j)|i ∈ S}|∀j.rj ∈ Ii, |rj − f j| ∈ Ei} (3.1)

Each transformation of the abstract state is parametrized with an expression to be
evaluated, a mapping of variables’ values and computes a new abstract state:

[[·]]] = Expr(n) → (Vars n7→ D∗)→ D(n), (3.2)

where n7→ is a type-preserving mapping that assigns D(0) values to scalar variables, and
D(1), D(2) values to vector and matrix literals respectively.

Theorem 1. Soundness. Given an abstract state D ∈ D(n), {i 7→ (R, E)} ∈ D there exists
no concrete state C ∈ C(n) such that C ⊆ γ(D), {i 7→ (r, f)} ∈ C and r 6∈ R ∨ |r− f | 6∈ E.
Moreover, if D ∈ α(C), [[e]]C = C′, and [[e]]]D = D′, then D′ ∈ α(C′).

Proof. (sketch) The theorem states that there is no unsound abstract state in our analysis,
and given a sound starting state, our abstract transformations result in a sound end
state. The first part follows directly from the definition of interval abstraction and
concretization.

The transformations [[.]]] on data structures are defined for each individual element,
which reduces them to transformations on basic blocks. The conditional expressions
allowed in the language do not introduce instabilities or discontinuity errors [13, 16],
all iterators are ultimately reduced to straight-line code (with abstraction or unrolling)
and thus do not require special treatment (explained in more detail later). Therefore,
soundness of our analysis follows from the soundness of the underlying baseline analysis
for straight-line code.

Our functional DSL defines all DS to be immutable, therefore each element of a DS
is only assigned once. Our abstract domain does not require updates to individual
element’s ranges, and all recursive calls are unrolled. Since our analysis handles only
bounded loops by design, we can unroll all operations, if needed, which is why we do not
provide an additional widening operator. While widening in general allows the analysis
to terminate quickly, for rounding error analysis the performance/accuracy trade-off
is too costly. As our experiments with Fluctuat show (Section 3.5.1), for rounding error
bounds, precision lost with widening cannot be recovered, hence an analyser that uses
widening in the vast majority of cases reports infinite error bounds, which is sound but
not especially meaningful.

40

3.3. Data-Structure Guided Analysis

3.3.3. DS Analysis

Both concrete and abstract domains partition DS elements in groups based on their
real value and value range respectively. Our implementation describes a group of
elements using a set of indices. The indices in one group need not be consecutive, the
only condition is that they correspond to unique and valid indices of DS elements. Thus
when analyzing an operator such as map, adding or multiplying by a constant, we only
need to run the analysis once per group.

The initial grouping of elements is defined by user range specifications on the input
DS. For intermediate variables in the computations, numerical indices for an abstraction
of DS elements are inferred during the analysis. Note that the grouping does not change
the semantics of functions and operators. As our DSL operates on real numbers, for
commutative operations on DS elements their order does not matter. Whenever the
analysis encounters an operation where the order of elements does matter, e.g. when
computing an accumulator value in fold, we sort and split the groups to only contain
consecutive elements’ indices.

Whenever the expression under analysis contains only scalar values and operations,
our analysis re-uses the baseline dataflow rounding error analysis, described in sec-
tion 3.1. We next describe how our analysis handles different kinds of DS operations.

Example We illustrate our abstraction using the running example program in Fig-
ure 3.4. This contrived example is not part of our benchmark set, we use it here
purely for demonstrating the relevant DSL details in a succinct way. Function fun

takes two input vectors x and y, both of size 5. An abstraction for vector x keeps track
of separate ranges for the first two elements and the remaining ones (with indices
2,3,4), i.e. D(1)

x = {{0, 1} 7→ [0.5, 1.5], {2, 3, 4} 7→ [0, 10]}. For the input vector y the
abstraction also has two groups, but indices in the first group are not consecutive:
D(1)

y = {{0, 4} 7→ [−1, 2], {1, 2, 3} 7→ [0, 1.5]}.

Map and Element-Wise Operations Our domains group elements that have the same
real range by their indices, such that we can perform range evaluation once for each
group. The most prominent example where such evaluation makes a difference for
performance is the map function, such as on line 4 in Figure 3.4. The program multiplies
all the elements of the list resulting from x + y by 2.0 and adds 1.5. The individual
multiplications and additions are independent of each other, i.e. they do not propagate
through iterations. For DS elements in one group we thus evaluate the range and error
of i*2.0 + 1.5 only once.

We use a similar approach for element-wise arithmetic operations between two vectors
(or two matrices), such as x + y in Figure 3.4. In contrast to map, element-wise operations
are binary and we need to take into account pairs of ranges. For each unique pair of
ranges of operands we compute the range (and error) once. In our example program, x
+ y is performed on 4 pairs of ranges:

41

3. Large Bounded Loops

def fun(x: Vector, y: Vector): Real = {

2 require(x>=0.0 && x<=10.0 && x.size(5) && x.range(0,1)(0.5,1.5) &&

y>= -1.0 && y<=2.0 && y.size(5) && y.range(1,3)(0.0,1.5))

4 val z = (x + y).map(i => i*2.0 + 1.5)

val r = z.fold(1.0)((acc: Real, i: Real) => acc * sqrt(i))

6 r / (x.length()) }

Figure 3.4.: Example program in our DSL

x + y indices x range y range
0 [0.5, 1.5] [−1.0, 2.0]
1 [0.5, 1.5] [0.0, 1.5]

2, 3 [0.0, 10.0] [0.0, 1.5]
4 [0.0, 10.0] [−1.0, 2.0]

Matrix Multiplication Evaluation of matrix multiplication is similar to the element-
wise operations, where we compute pairs of ranges. Except, for matrix multiplication
the elements, for which we need to know the ranges are located at the left-hand-side
matrix row and the right-hand-side matrix column. We construct an expression for
computing the resulting matrix elements internally. For each unique pair of ranges we
only evaluate this expression once.

Filter Filter also takes advantage of the element grouping; our analysis evaluates
the condition on each group of DS elements only once. However, filter is different
from the rest of the functions in our DSL, because its abstract semantics do not exactly
mirror the concrete. In the concrete semantics, ds.filter(λx. f (x)) partitions the DS ds

into two disjoint sets: elements that satisfy f(x), and that satisfy its negation. In the
abstract semantics these sets are not necessarily disjoint. Our evaluation eval returns
an over-approximation of a set of elements from ds: the elements that may satisfy the
condition f(x). Currently we limit expressions in f(x) to simple comparisons x ≤ c and
x ≥ c, where x is the DS element and c is a scalar variable or a constant. More complex
arithmetic operations are likely to introduce rounding error inside the condition itself,
which may lead to a discontinuity error—elements that would have satisfied f(x) in a
real-valued expression, do not satisfy it under floating-point semantics (or vice versa).
We note that complementary techniques for bounding this discontinuity error [13, 16]
exist that may be integrated into our analysis.

Unrolled Operations Naturally, not all operations can benefit from a grouping of DS
elements alone. The “once-per-range” evaluation cannot be applied on operations that
propagate values through multiple iterations (fold, slideReduce) or use fresh values at
each iteration (for example, loop counters in enumSlideFlatMap, enumRowsMap). For these
functions, the abstraction-guided analysis falls back to the baseline version. It unrolls
the iterators and performs range and error evaluation once for each iteration, we then

42

3.3. Data-Structure Guided Analysis

join the ranges (for values and, separately, for errors) to ensure that our results subsume
all evaluated iterations. Our analysis handles recursive calls in the same way and unrolls
each call as one iteration. Note that for our analysis to terminate, a recursive function
must contain an exit condition that uses the (decreasing) length of a DS.
In our running example the analysis unrolls z.fold and evaluates ranges and errors of
the unrolled expression:

1.0*sqrt(z.at(0))*sqrt(z.at(1))*sqrt(z.at(2))*sqrt(z.at(3))*sqrt(z.at(4)).

Non-Numerical Operations Operations that do not involve arithmetic computations
do not introduce new errors, however, they do affect our abstraction. For example,
a prepend operation x.+:(8.0) will add an element with index 0 and range [8, 8] to
the abstraction and shift all indices of x by one. If we apply x.+:(8.0) to the x in the
running example, the resulting abstraction will become D(1)

x = {{0} 7→ [8, 8], {1, 2} 7→
[0.5, 1.5], {3, 4, 5} 7→ [0, 10]}. Similarly, the pad operation adds elements with range
[0, 0] around a vector or matrix and re-scales the original elements’ indices. Another
interesting case of the non-numerical operations is the x.everyNth(n,k) function that
constructs a new DS by appending every n-th vector element (or every n-th matrix row)
starting from the index k and assigning new indices to them. Evaluating x.everyNth(2,0)

on the D(1)
x from our running example will result in D(1)

nth = {{0} 7→ [0.5, 1.5], {1, 2} 7→
[0, 10]}.

3.3.4. Optimized Evaluation of fold

The fold function cannot be evaluated only once per range group, since the accumulator’s
value changes at every iteration. For analysis, it would thus have to be unrolled. We
observed, however, that in many applications the function passed to fold has a rather
simple structure, such as summing up all elements of the DS. For such simple iterator
bodies, the explicit unrolling can be replaced with an optimized evaluation that benefits
from grouping of elements.

Our optimization over-approximates the accumulator, thereby effectively eliminating
the change in input values from iteration to iteration. The analysis then computes one
range per group of elements using a closed-form formula. In general, it is also possible
to use approximation of an accumulator and a DS element for the whole loop, not only
per group of elements with the same range. However, such a computation will introduce
an even larger over-approximation in the result. To keep the bounds reasonably tight,
we choose to apply over-approximations rarely.

We have implemented this optimization for the most common special cases of lambda
functions f() that follow next.

43

3. Large Bounded Loops

Linear loop In a linear loop, i.e. f (ac, el) = a · el + b · ac + c, if f is executed on a group
of elements with the same range range(el), then we can compute the resulting range
after n iterations with:

rangen = a · range(el) ·
n−1

∑
i=0

(bi) + bn · init + c ·
n−1

∑
i=0

(bi), (3.3)

where init is the initial value of the accumulator for the current group of elements.
The initial accumulator value changes from group to group: it starts with the input
parameter of fold and for each consecutive group it is replaced with the result of the
previous computation. To account for all combinations of signs of linear coefficients
a,b,c, we take their ranges to be symmetrical around zero. For generic linear loops, the
order of computations matters, therefore we sort and split the groups in the abstraction
D(n), such that each group only contains elements with consecutive indices, and the
computation is applied to each group in the natural order: starting with the group
containing index 0.

There is no simple closed-form equation to compute the rounding errors for linear
loops. We therefore unroll the loop for error computations, but we use the over-
approximated range of acc, pre-computed using Equation 3.3. Note that such an
evaluation is faster than the full unrolling, since we pre-compute the ranges necessary
for error computations.

Sum A sum of all elements in a vector or matrix is a special case of a linear loop,
but in the absence of linear coefficients the range computations are much simpler. For
a function f (acc, el) = acc + el, we compute one range per group of elements in D(n)

abstraction using the formula: n · range(el) + init, where n is the number of elements in
the group, and init is the initial value of the accumulator for the current group. Note
that here the order of groups does not matter, as our DSL specifies a program over real
numbers and real-valued sum is associative.

The error computation is performed similar to linear loops: we over-approximate the
value of acc and use the range to compute the error on the unrolled fold.

3.4. Implementation

We implement our analysis in a tool called DS2L as an extension of Daisy [14] written in
the Scala programming language. For performance reasons, we implement all internal
computations using intervals with arbitrary-precision bounds (with outwards rounding
for soundness), using the MPFR library [11] with 128 bits of precision. We use the
intervals for both range and error computation, and sacrifice some of the error accuracy
compared to affine arithmetic that is used by most state-of-the-art analyzers.

We choose to implement the partitioning using sets of indices, among other alternative
representations: linear inequalities [87, 88], difference-bound matrices [87], and sets of
other simple symbolic expressions [89]. We choose a set representation because it does

44

3.5. Experimental Evaluation

not depend on patterns to group the elements. We have empirically confirmed that on
our benchmarks the set representation of index groups performs better than symbolic
ranges of consecutive indices. This is because our range evaluation often needs to obtain
the range of a DS element with a given index2, which is a simple inclusion check for sets,
but requires additional computation of numerical bounds from symbolic expressions
in other representations.

In this chapter, we consider only the natural order of evaluation (left-to-right with
call-by-value), exactly as it syntactically appears in the program under analysis (modulo
operators precedence). For this natural order, DS2L generates executable Scala code and
for that code the analysis is sound. Our analysis can also be adapted to other, more
efficient, evaluation orders, but determining that order is an orthogonal issue.

3.5. Experimental Evaluation

We evaluate our DS-based analysis in DS2L in terms of performance and accuracy,
focusing on the following research questions:

RQ1 How does DS2L compare to state-of-the-art tools (on large programs)?

RQ2 How does DS-based abstraction affect the accuracy/performance tradeoff?

RQ3 Are error bounds reported by DS2L adequate?

Benchmarks We evaluate DS2L on the new benchmark set we collected (subsec-
tion 3.2.1). The original codes were written in different programming languages. We
have translated them into our functional-style DSL for the purpose of our evaluation and
validated our translation with testing. Table 3.1 displays in more detail which elements
of our DSL were used in which benchmarks. Many of the benchmarks operating on
vectors have been repurposed from controller loops used in previous work [84] and
therefore have similar structure. As an artifact of this translation, our vector-based
benchmarks use fold frequently.

For each benchmark, we create 12 variants by varying two parameters: size of the
input DS and the specification granularity.

Size of the input DS. Input vectors are assigned 100 (small), 1k (medium), or 10k
(large) elements. Input matrix sizes are 10x10 (small), 100x100 (medium) and 500x500
(large). For benchmarks where the size of a DS is predefined by the algorithm, we
take the sizes closest to 10, 100 and 500 (for example, the input matrix for fftmatrix has
8x2, 128x2 and 512x2 elements for the small, medium and large setting, respectively).
The benchmark input DS size influences the number of operations to be evaluated by
the analysis. To give an unambiguous measure of complexity of the programs under

2For instance, taking a single element’s range or a range of a group of elements when unrolling an iterator.

45

3. Large Bounded Loops

Benchmark
DSL usage max #ops Benchmark sizes

map fold slideRed. enum* rec matMul in line small medium large

vector benchmarks

avg X 1 101 1001 10001

variance X 3 202 2002 20002

stdDev. X 3 202 2002 20002

roux X 3 100 1k 10k

goubalt X 3 100 1k 10k

harmonic X 3 200 2k 20k

nonlin1 X 7 200 2k 20k

nonlin2 X 8 200 2k 20k

nonlin3 X 6 200 2k 20k

heat1d X X X 5 257 1025 65537

fftvector X X X X X 4 96 9596 48636

matrix benchmarks

pendulum X 4 404 4004 40004

alphaBlend. X 4 100 1k 250k

fftmatrix X X X X 8 64 6012 30204

conv.2d_sz3 X 1 162 1458 118098

sobel3 X 3 972 8748 708588

lorentz X 6 141 211 281

lyapunov X X (20,200,1000)† 11 101 501

control.Tora X X (20,200,1000)† 31 301 1501

Table 3.1.: Benchmarks description: usage of DSL functions and unrolled program sizes
for different DS size configurations (in lines of code)

† The benchmark contains matrix multiplication, the maximum number of arithmetic operations in one line of code
depends on the size of multiplied matrices. Reported values are for (small,medium,large) input DSs.

analysis, we report the sizes of unrolled programs in Table 3.1. The reported numbers
are lines of code if all operations on DSs would be unrolled to scalar operations, i.e.
the number of iterations times number of lines of code computing a scalar value inside
each iterator. Since in the absence of DSs there would be no need for non-numerical
functions as concatenation of vectors or changing the order of elements in a matrix, we
only count lines of code with numerical operations and let-statements. Such unrolled
programs could, for example, be used by state-of-the-art rounding error analyzers
that operate on straight-line code. Additionally we report the maximum number of
arithmetic operations in one line of unrolled code.

Our goal is to efficiently analyze large benchmarks. We include small and medium
sizes for completeness and to demonstrate scalability, but do not consider DS2L to be
necessarily the analysis tool of choice for these.

Range specification granularity. We vary the amount of individually specified ranges
per DS. The input ranges are specified with either one, i.e. the same, interval for all
elements (AllSame), different intervals for all elements (AllDiff), or for some. When spec-
ifying individual ranges for subsets of elements we vary the amount of new range speci-

46

3.5. Experimental Evaluation

fications to be 10% and 30% of the input DS size (Diff10P and Diff30P). For instance, if an
input vector has 100 elements Diff10P configuration will have 10 additional range specifi-
cations, each with an arbitrary amount of elements in it, and the Diff30P will have 30 addi-
tional range specifications. To avoid any bias by using input ranges that are easier for the
analyzer to compute with, we generate all input ranges randomly. Similarly, the amount
of elements in one group with special ranges is determined randomly. The smaller ranges
of more refined specifications are subsumed by the ranges in AllSame specification.

Experimental Setup To answer our research questions we evaluate differences in
accuracy and performance between a baseline analysis, our new DS abstraction-guided
analysis and state-of-the-art tools. To do so, we normalize the reported worst-case
rounding error and the running time of the analysis (separately) with respect to a
baseline (different for each comparison). Such a normalization is necessary since the
running times and error magnitudes vary widely between different benchmarks due
to their diverse complexity. We then evaluate the normalized worst-case errors and
analysis times.

As running time, we use the reported analysis time of each tool. This is a subset of the
total wall-clock running time and excludes, for instance, parsing of the input programs.
Since the formats of the input programs differ widely, we consider the analysis time a
more meaningful measure for a comparison. We report analysis time averaged over 3
runs. We consider that a tool failed on a benchmark if it either timed out with 30 minutes,
reported an infinite error bound, or encountered some other error. Timeouts were always
consistent across all runs on each configuration. Note that the timeout applies to the
total running time, including parsing, pre- and post-processing of the results.

As accuracy measure, we use reported absolute worst-case rounding error bounds of
each tool for double floating-point precision. For the 13 benchmarks where the return
type is a vector or a matrix we take the maximum error of all output DS elements.

All experiments were run on an Intel Xeon machine with 8 CPUs @ 3.50GHz, 32G of
RAM under the OS Ubuntu 22.04. We run both DS2L and a baseline straight-line code
analysis in a JVM with 2G memory and 1G stack space.

3.5.1. State-of-the-Art Tools

We compare DS2L against the state-of-the-art rounding error analyzers Fluctuat [39]
and Satire [57]. We choose these two tools specifically, because they are the only tools
that natively support data structures and loops over them (Fluctuat), or that analyze
straight-line code, but whose abstractions were designed specifically for large program
sizes (Satire). In these two dimensions that are relevant for our comparison, Fluctuat
and Satire are the state-of-the-art. Satire does include approximations such as not
considering higher-order terms that technically affect its soundness, but we ignore this
here. DS2L and Fluctuat are ‘fully sound’.

We note that an entirely fair comparison is not possible due to the different input
formats, as well as different implementation choices such as programming language

47

3. Large Bounded Loops

in which the tools themselves are implemented. Each of our high-level benchmarks
written in our functional DSL can be translated to Fluctuat’s and Satire’s imperative
formats in different ways that each may or may not affect the results (no guidelines
exist). We manually translate our benchmarks into the tool’s input formats by choosing
the way that we consider to be natural for a programmer, and so a regular user of the
tools would choose, and validate the translation with testing.

In our comparison, we use relative performance and accuracy as a measure of success.
DS2L and Fluctuat are deterministic and always report the same error bounds. On some
benchmarks Satire reported slightly different errors, we take the largest reported error
across the runs. Note that the differences were on the order of 10−12, and taking the
average or the smallest error across the runs does not affect the qualitative results.

Fluctuat

Fluctuat can both unroll loops internally and abstract the loop behavior by applying
widening. We use the latest available version of Fluctuat provided to us in October 2022.

Fluctuat takes C-programs as input and is itself implemented in C. When translating
our benchmarks, we tried to preserve as much functional-style semantics as possible, but
had to give up the DS immutability and replace all recursive calls by loops. Furthermore,
Fluctuat’s library did not support a max() function required for implementing the ReLU
function in the neural network benchmarks lyapunov and contr.Tora. We replaced the
call to max() with an explicit if-then-else statement. Fluctuat does not have a dedicated
way of specifying input ranges for data structures, only for scalar values. We therefore
assign a range to each element separately, and use loops to assign repeating ranges for
the AllSame specification. Each benchmark is implemented in a separate function that is
called from main. We compare DS2L with Fluctuat on all 19 benchmarks.

We run Fluctuat with several different settings:

1. loop iterations are evaluated separately, results joined (merge over all paths—
MOP—solution)

2. loops are unrolled until 50k iterations. The largest number of iterations in our
benchmarks is 62.5k, however, Fluctuat’s setting did not allow us to set the unroll
limit higher than 50k.

3. loops are abstracted by widening, nothing is unrolled

4. automatic setting, where Fluctuat finds a suitable number of loop unrollings before
applying joins and widening.

Out of all configurations the overall best results were achieved with MOP (which is
effectively unrolling) and the explicit unrolling configuration. Fluctuat with MOP and
unrolling has timed out less often than other configurations and whenever Flucutat com-
puted non-trivial error bounds, they were exactly the same for all settings. Surprisingly,
the automatic configuration of Fluctuat had the highest timeout rate: it failed to produce

48

3.5. Experimental Evaluation

results within 30 minutes on 33% of specifications. The pure widening configuration
performed better with only 16% rate of timeouts.

Since all other settings provided worse or the same results, we compare DS2L’s results
only to the MOP setting of Fluctuat.

Satire

We use the latest version of Satire available in the open-source GitHub repository in
April 20233. Satire’s open-source benchmark set contains pre-processed large unrolled
loops, but no original programs that were unrolled. Unfortunately, the original programs
with loops were not available (upon request). We have therefore reverse-engineered the
loops over data structures from their unrolled versions for two benchmarks lorenz, and
heat1d. Additionally, we translated some of our benchmarks into Satire’s input format,
which is an imperative DSL that specifies floating-point precision for each variable
assignment. We only compare the results on a subset of benchmarks, since we are
required to manually unroll the loops, and translate functional operators into imperative
code. This translation process is non-trivial, tedious and error prone, especially for
complex functions.

Overall, we translated 9 benchmarks that contain a fold over an input vector. For
these 9 benchmarks we used the same variations in configurations, described above:
small, medium, large input DS sizes, and AllSame, Diff10P, Diff30P, AllDiff specification
granularities. We took Satire’s original benchmarks as is: heat1d had only one version,
that corresponds to our input specification with small input DS and one input range
for all elements. The lorentz benchmark was available in three different sizes of input
DS (20, 30 and 40), and all of them had the same input range for all elements of DS
(AllSame). In total, we have compared our results on 112 benchmark variations.

We ran Satire with its default parameters and both with and without abstraction. The
version with abstraction predictably produced results faster and had fewer timeouts.
We therefore compare to the version of Satire with abstraction enabled.

3.5.2. RQ1: Comparison to State-of-the-Art Tools

We compare relative performance and accuracy of state-of-the-art tools normalized
against DS2L’s results and provide cumulative values in Table 3.2. The values greater
than 1 denote individual benchmarks where DS2L was faster (respectively, more accu-
rate) than the state-of-the-art tool. For instance, value 24.41 means that DS2L is median
24.41 faster than Fluctuat. As it is ambiguous to compute the relative value if one of the
tools did not report results, we do not include these cases into the minimum, median
and maximum values. Instead we report the number of failures per tool (timeouts,
infinite error bounds, overflows). We mark in bold the smaller number of fails per
comparison, and median values where DS2L did better than competitors. Note that

3To be precise, we use the version with the commit hash 8a4816aac6fad4fb86c2af8dc8e634bf02912b90.

49

3. Large Bounded Loops

Benchmark Accuracy Performance
fails

fails total

size min median max min median max DS2L of bench.

Fluctuat

Small 2.11e-07 0.557 3.55 0.07 0.36 7.22 2 10 76

Medium 2.83e-04 0.639 2.91 0.23 1.98 4636.52 22 12 76

Large 3.60e-02 0.555 2.91 0.66 24.41 339.55 60 25 76

Satire

Small 2.98e-07 0.737 3.54 6.33 24.68 449.33 6 6 38

Medium 2.07e-10 0.153 3.54 6.32 39.90 507.45 12 8 37

Large 3.94e-02 0.953 1.34 8.95 259.64 767.13 32 10 37

Table 3.2.: Relative accuracy/performance of state-of-the-art tools compared to DS2L
with DS abstraction.

we provide comparison on small and medium benchmarks for completeness, while our
focus lays on large benchmarks.

In addition to normalized values, we present absolute values of our experiments
on large benchmarks in Table 3.3. ‘TO’ denotes timeouts, other times are reported in
seconds. We additionally mark the benchmarks, for which a tool reported overflow or
an infinite error bound. For the original Satire benchmark lorentz, the missing configura-
tions Diff10P, Diff30P, AllDiff with individual ranges for input DS elements are marked
with ‘na’ (non-applicable). Another original benchmark heat1d is only defined for a
small size of input DS. We provide absolute experimental values for small and medium
benchmarks in the appendix, section A.2.

Accuracy

As expected, state-of-the-art tools often computed tighter error bounds on small and
medium benchmarks. However, DS2L was consistently more accurate on the stdDeviation
benchmark, and the larger (among the two in our set) neural network controllerTora. Ad-
ditionally, Fluctuat reports infinite errors on all medium and large-sized variations of the
FFT filter (fftvector, fftmatrix), while DS2L successfully computes rounding error bounds.
Both Fluctuat and DS2L implement—in principle—the same analysis on the unrolled
programs, and the DS abstractions alone do not affect accuracy (see subsection 3.5.3).
The differences in accuracy come from 1) the optimized evaluation of folds; 2) DS2L’s
use of intervals instead of affine arithmetic; and 3) internal implementation differences
that for the closed-source Fluctuat are not evident. We note that both Fluctuat’s and
DS2L’s reported errors are itself small, and thus practically useful.

Satire reported more accurate results for non-linear benchmarks. On two configura-
tions where DS2L reported overflow for the small input DS size (AllSame, Diff10P for
nonlin1 and Diff10P, Diff30P for nonlin2), Satire successfully reported rounding errors.
Predictably, on benchmarks where DS2L used over-approximation of folds Satire’s

50

3.5. Experimental Evaluation

AllSame Diff10P Diff30P AllDiff
Benchmark error time error time error time error time

DS2L
avg 5.82e-11 1.90 2.86e-11 5.48 1.87e-11 19.73 1.51e-11 157.63

variance 7.39e-05 119.28 1.92e-05 248.64 9.68e-06 412.39 6.37e-06 1144.74
stdDev. 9.01e+03 118.98 9.35e-06 244.51 4.86e-07 410.50 2.70e-07 1141.30

roux1 7.21e-14 3.86 2.46e-13 10.78 2.64e-13 29.88 2.32e-13 184.44
goubault 7.46e-14 3.93 8.39e-14 9.92 8.39e-14 27.98 8.39e-14 172.90

harmonic 3.64e-08 6.55 1.42e-08 28.40 1.13e-08 100.32 1.12e-08 713.85
nonlin1 overflow - overflow - overflow - overflow -
nonlin2 overflow - overflow - overflow - overflow -
nonlin3 1.08e+74 766.73 2.66e+73 1446.47 - TO - TO

pendulum 4.69e+81 1583.05 - TO - TO - TO
heat1d 1.14e-13 222.82 7.26e-14 830.00 7.14e-14 874.28 7.13e-14 857.08

conv.2d_size3 3.15e-10 63.29 2.88e-10 111.15 2.62e-10 158.94 - TO
sobel3 DivByZero - DivByZero - DivByZero - DivByZero -

fftmatrix 4.39e-08 325.93 4.24e-08 387.76 3.95e-08 386.29 2.97e-08 399.04
fftvector 2.02e-08 262.99 1.62e-08 266.15 1.13e-08 269.89 9.84e-09 278.46

lorentz 3.42e-12 2.33 3.27e-12 2.32 3.27e-12 2.21 1.25e-12 2.27
alphaBlend. 3.14e-13 1.83 3.14e-13 47.81 3.14e-13 225.50 - TO

contr.Tora 2.61e-04 386.38 - TO - TO - TO
lyapunov 7.02e-08 104.21 - TO - TO - TO

Fluctuat
avg 2.57e-11 516.00 1.83e-11 475.50 1.63e-11 462.00 1.51e-11 490.50

variance - TO - TO - TO - TO
stdDev. - TO - TO - TO - TO

roux1 2.10e-13 1310.00 2.10e-13 1302.00 7.52e-14 1212.50 1.09e-13 1295.50
goubault 6.50e-14 695.50 6.45e-14 726.50 6.45e-14 711.00 1.87e-14 716.50

harmonic - TO - TO - TO - TO
nonlin1 - TO - TO - TO - TO
nonlin2 - TO - TO - TO - TO
nonlin3 - TO - TO - TO - TO

pendulum - TO - TO - TO - TO
heat1d - TO - TO - TO - TO

conv.2d_size3 - TO - TO - TO - TO
sobel3 - TO - TO - TO - TO

fftmatrix ∞ 71.33 ∞ 71.33 ∞ 71.67 ∞ 71.00
fftvector ∞ 35.67 ∞ 37.67 ∞ 116.00 ∞ 107.33

lorentz 1.23e-13 2.00 1.21e-13 2.00 1.21e-13 2.00 1.02e-13 1.50
alphaBlend. - TO - TO - TO - TO

contr.Tora - TO - TO - TO - TO
lyapunov - TO - TO - TO - TO

Satire
avg 3.47e-11 1456.27 2.72e-11 1421.63 2.22e-11 1419.89 2.02e-11 1410.32

variance - TO - TO - TO - TO
stdDev. - TO - TO - TO - TO

roux1 - TO - TO - TO - TO
goubault - TO - TO - TO - TO

harmonic - TO - TO - TO - TO
nonlin1 - TO - TO - TO - TO
nonlin2 - TO - TO - TO - TO
nonlin3 - TO - TO - TO - TO
lorentz 1.35e-13 1327.65 na na na na na na

Table 3.3.: Experimental results on large benchmarks. Reported error bounds are
rounded to two digits after decimal point, time is in seconds. “TO” denotes a
timeout, “na” stands for non-applicable. Bold marks ‘winning’ values.

51

3. Large Bounded Loops

reported errors were also smaller. However, on all linear benchmarks except harmonic
DS2L’s accuracy could be recovered by using a non-optimized evaluation of fold (while
still being faster than Satire, but by a smaller factor). Despite the over-approximation,
DS2L was consistently more accurate on the linear goubault. Interestingly, DS2L was 3x
more accurate than Satire on its original benchmark heat1d 4.

Performance

The performance comparison shows that DS2L scales better to larger programs: it re-
ports results on 46% more large benchmarks than Fluctuat and on 59% more than Satire.
Additionally, DS2L is faster than Fluctuat on most large and medium-sized benchmarks
with a median speedup factor of 25x and 2x respectively. A notable outlier is alphaBlend-
ing, where DS2L is 4636x faster than Fluctuat. This is due to the benchmark’s internal
structure: it contains element-wise operations on matrices, where DS2L’s abstraction
is particularly efficient.

Satire timed out more often than DS2L on all sizes of benchmarks, and particularly
on large benchmarks where it failed to report results on all benchmarks except avg and
lorentz (see Table 3.3). Moreover, Satire was slower than DS2L by at least 6x and median
36x across different sizes of benchmarks including its original benchmarks heat1d and
lorentz.
RQ1 Conclusion: Based on our experimental data, we conclude that DS2L is signifi-
cantly faster than Satire and specifically scales better than Fluctuat and Satire to larger
programs and is consequently able to report an error for more and larger benchmarks.
While DS2L is often less accurate than Fluctuat and Satire, it still produces meaningful
accuracy bounds.

3.5.3. RQ2: Accuracy/Performance Tradeoff with DS-based Abstraction

Our analysis differs from the analysis of the unrolled programs in two main points: it
leverages the DS abstraction, and optimizes the evaluation of folds (subsection 3.3.4).
We evaluate the effect of these differences on both accuracy and performance. We split
this evaluation into two parts: first, we check the effect of the DS abstraction alone, then
we examine the benefits of the optimized folds.

DS Abstraction. First, we compare the DS abstraction-based analysis of DS2L to a
baseline analysis that works on unrolled code. To avoid confounding factors such as
programming language choice, analysis type etc., we do this comparison on a baseline
analysis that we implement within DS2L itself and that shares exactly its analysis for
straight-line code. We denote this baseline analysis by base. base internally unrolls
all operations, and thus just like DS2L does not explicitly construct an AST for the
entire program, as this may be unnecessarily costly and bias the results. Thus, when
comparing DS2L and base, the only difference consists in using the corresponding DS

4This comparison is with respect to the original version of heat1d that corresponds to AllSame configuration
and small size of benchmarks. The absolute values are available in Table A.2.

52

3.5. Experimental Evaluation

0.95

1.00

1.05

min: 0.002, avg: 0.84, med: 0.96, max: 1.11

Al
lS

am
eSmall Medium Large

0.95

1.00

1.05

Re
la

tiv
e

ac
cu

ra
cy

min: 0.006, avg: 0.92, med: 0.99, max: 1.09

Di
ff1

0P

0.95

1.00

1.05

min: 0.013, avg: 0.94, med: 0.99, max: 1.15

Di
ff3

0P

0.0 0.2 0.4 0.6 0.8 1.0

Relative performance

0.95

1.00

1.05

min: 0.822, avg: 1.00, med: 1.01, max: 1.09

Al
lD

iff

(a) DS2L with abstraction vs. the baseline anal-
ysis. Smaller values along X-axis are better.

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

opt-fold
is faster

opt-fold is
more accurate

Small
Medium
Large

(b) DS2L: Optimized fold vs. unrolled

Figure 3.5.: Relative performance/accuracy of DS2L in various configurations

abstractions during the analysis. For the purpose of DS abstraction evaluation we use
the version of DS2L without over-approximation on folds.

Specifically, we compare normalized analysis time and normalized computed worst-
case absolute rounding errors per benchmark for each of its 12 variants. Figure 3.5a
summarizes the results, smaller values on both axes are better. The x-axis shows relative
analysis time of the DS abstraction analysis to the baseline, values with x < 1 denote
benchmarks, on which DS2L was faster than base. The y-axis represents relative accu-
racy, values with y = 1 show that the worst-case rounding errors reported by DS2L were
exactly the same as for base. We provide average, median, minimum and maximum
relative analysis times for each specification.

For most benchmarks applying the DS abstraction has improved the analysis perfor-
mance. Predictably, the performance boost was stronger for coarser specifications and
close to none on the AllDiff specification that assigns each DS element an individual
input range. We manually checked the cases where DS2L was slower than base. For
these cases the absolute time difference is under 0.3 seconds on small and medium con-
figurations (up to 15% of analysis time), and under 72 seconds on large configurations
(at most 5% of the analysis time). We attribute this to the normal variation in running
times and do not see it as a systematic problem.

The computed errors were the same for DS2L and base on all benchmarks. This result
confirms our expectation that the DS abstractions (without fold optimizations) do not
change the semantics and therefore do not affect computed rounding errors.

53

3. Large Bounded Loops

0
100

101

102

103

104

105

106

|e
rr

 /
dy

na
m

ic
 e

rr
|

AllSame
Small
Medium
Large

Diff10P

sorted benchmarks

0
100

101

102

103

104

105

106

|e
rr

 /
dy

na
m

ic
 e

rr
|

Diff30P

sorted benchmarks

AllDiff

Figure 3.6.: Relative difference between worst-case errors by DS2L and dynamic errors

Optimized folds. We evaluate the effect of our fold optimization on top of DS abstraction
improvements in Figure 3.5b. We compare the relative accuracy and performance on
benchmarks with fold with and without the optimization. As expected, the optimized
fold evaluation is faster and less accurate on most benchmarks, these are the points
above the x-axis and to the left of the y-axis. The effect is more pronounced on the large
benchmarks. Interestingly, in some cases the optimized evaluation reported smaller error
bounds despite introducing an over-approximation of ranges. Upon closer inspection
we note that some of the randomly generated input range bounds cannot be exactly
represented in floating points, hence performing an unrolled error computation on such
ranges will include the bounds’ rounding error and magnify it (artificially) in subsequent
iterations. The accuracy can thus improve in cases where the over-approximated ranges
were exactly representable in floats, while corresponding element’s input ranges were
not.

RQ2 Conclusion: The DS abstraction alone improves the analysis’ performance while
having no effect on the accuracy. A user may further improve the performance by
providing a coarser specification or enabling the optimized evaluation of folds, which
trades off accuracy for performance.

54

3.5. Experimental Evaluation

3.5.4. RQ3: Adequacy of DS2L’s Error Bounds

We evaluate the adequacy of the error bounds reported by DS2L with respect to the
actual errors occurring in our benchmarks. To obtain an estimate of realistic errors
we have generated Scala code and ran it on all benchmarks in two variations: with
double floating-point precision and with 300-bit MPFR numbers, and computed the
difference between them. For every benchmark, we collected these dynamic errors on 105

inputs sampled from the individually specified ranges in each specification granularity
(AllSame,AllDiff,Diff10P, and Diff30P) and took the maximum value. Such dynamically
obtained errors provide a lower bound on the worst-case error and they are a good
measure for the magnitude of errors actually occurring in the program.

We plot the results of our comparisons on cactus plots, the results are sorted across
all benchmarks and two points with equal values on the X-axis do not necessarily corre-
spond to the same benchmark. Figure 3.6 shows sorted differences between dynamic
absolute errors and the errors reported by DS2L. Due to the variety in complexity of
our benchmarks, errors have different magnitudes, to have a better overview we show
the relative differences computed as |DS2L′s_error/dynamic_err|. Whenever DS2L did
not report an error, a comparison was not possible and we set the value to a dummy
y = −1.

Among the 181 benchmarks for which DS2L reported error bounds (excluding 47
timeouts and overflows), 89% of reported errors were within six orders of magnitude
from the under-approximated dynamic errors (below the y = 106). As expected, the
difference was larger for large benchmarks, since over-approximation generally accu-
mulates with every iteration. We also noticed a clear trend that the over-approximation
reduces for more fine-grained input specifications.

We have manually inspected the benchmarks where the differences between worst-
case errors reported by DS2L and their dynamic under-approximations were more
than six orders of magnitude. Expectedly, they were non-linear benchmarks: nonlin3,
pendulum, controllerTora. This is due to large over-approximations committed by the
baseline analysis of DS2L and is not specific to our method. These benchmarks contain
folds with non-linear bodies that are ultimately unrolled into a huge straight-line non-
linear program. Those are known to be challenging for state-of-the-art rounding error
analyses [13]. Another outlier stdDeviation contains a square root operator applied
to a range starting from zero, for which today’s rounding error analyses also report
pessimistic bounds.

RQ3 Conclusion: 89% of the errors reported by DS2L are reasonably close to the under-
approximated dynamic errors. Overall, we conclude that DS2L reports meaningful
and adequate error bounds.

55

3. Large Bounded Loops

3.6. Related Work

Static Analysis Besides Fluctuat [39] and Satire [57], several other tools exist for
computing guaranteed upper bounds on rounding errors; Gappa [90], Daisy [14],
FPTaylor [71], Real2Float [17], Rosa [13] and PRECiSA [73]. These either implement a
dataflow analysis based approach very similar to Fluctuat’s or an optimization-based
approach similar to Satire. Most of the research has focused on analyzing straight-line
numerical expressions as accurately as possible, i.e. computing error bounds as close to
the actual errors as possible. Of these, Satire has been shown to be most scalable [57].

A few of these tools can also handle limited programs beyond straight-line expressions.
As already discussed, Fluctuat [39] can handle loops via unrolling or with widening, but
as we observed widening has limited success with a complex analysis such as the one
used to analyze floating-point rounding errors. Rosa [13] provides a more efficient way
to bound rounding errors in bounded loops than complete unrolling for a specific type
of while loops, but requires invariants about the variable’s ranges to be given. Rosa [13],
Fluctuat [37] and PRECiSA [73] also support (simple) conditional branches where they
also compute the error due to diverging executions between then- and else-branches,
in addition to rounding errors of each individual branch. Alternative techniques exist
to detect how often a finite-precision computation takes the wrong path [38]. Such
techniques are complementary to DS2L’s handling of data structures.

Dynamic Analysis In contrast to sound analysis tools, dynamic analysis tools for
floating-point programs have fewer restrictions on the input programs and generally
handle whole programs, including loops, conditional branches and data structures. Ad-
ditionally, dynamic methods can be applied both on source code [33, 91] and on already
compiled binaries [28]. Typically, they execute a program on particular floating-point
inputs side-by-side with a shadow execution in a higher precision [28,30,32], for instance,
implemented using arbitrary-precision arithmetic that serves as an approximation of
the ideal real-valued execution. Shadow executions in high precision may, however,
incur a high overhead and alternative approaches were proposed to use as an oracle for
the ideal computation [29, 31, 33]. By their nature, dynamic analyses cannot compute
guaranteed bounds on errors, only an estimate of the errors for inputs tried. Several
tools use dynamic analysis to identify inputs that result in particularly large rounding
errors [30, 32–35]; they employ various techniques to minimize the likelihood of missing
interesting inputs [30, 32, 92]. Symbolic execution has also been used to find inputs that
cause overflow or large precision loss in floating-point programs [35, 93–95]. Recent
work also combines dynamic and static analysis for identifying, or showing conditional
absence of large rounding errors in larger floating-point programs [96].

Other Finite-Precision Analyses Naturally, quantifying the rounding errors is not the
only possible objective for analysis of finite-precision programs. Many of the methods
are concerned with detecting the presence of special floating-point values in the program,

56

3.7. Conclusion and Future Work

for instance, a deductive verifier KeY [97]. Abstract interpretation based analyzers such
as the industrial-strength Astrée [27], or implementations of different numerical domains
with varying performance characteristics [98] such as Apron [99] and ELINA [100] can
prove safety of floating-point programs, i.e. the absence of overflows, division-by-zero or
out-of-bounds errors by bounding the ranges of variables. They do not, however, report
rounding error bounds.

Functional Properties Apart from quantifying errors and detecting exceptions, one
can also verify functional properties of programs with loops over arrays. Such properties
state, for instance, that sorting algorithms indeed output monotone arrays [101, 102],
or assert particular relations between array cells [103]. Other tools generate symbolic
invariants to prove safety properties about ranges of array elements [104, 105] and verify
memory access permissions [106]. The abovementioned methods, however, are not
directly comparable with our analysis as they operate on integer programs, do not take
into account rounding errors and require that the target property is specified by users in
the form of an assertion.

Array Languages In this chapter, we proposed one possible input language with
functional iterators, however, one may consider alternative inputs. Several languages
have been created specifically for operations on arrays: APL [107] and its dialects [108,
109], BQN [110]. They specialize on the efficient execution of array operations, though
typically do not support multiple precisions and use an entirely different way of writing
the operations that may be unfamiliar to an average programmer with imperative and
functional languages background.

3.7. Conclusion and Future Work

We have shown that computing rounding errors over a functional representation of
floating-point list programs can be beneficial for analysis performance, by leveraging
implicit semantic information present in the high-level representation. Conceptually,
our idea appears simple — "just" use a functional input language — and yet, it has
not been pursued before. We view this simplicity as a strength, but also note that an
effective realization of this idea required a careful design of the DSL and the analysis,
as well as substantial implementation effort. Our analysis can generally handle more,
and especially larger benchmarks, though some of this performance benefit comes at a
trade-off with analysis accuracy.

Optimized Evaluation We could further improve scalability of our analysis by apply-
ing optimized evaluations of fold-like iterators more often. At the moment we only
optimize evaluation of folds if the loop body is a linear function. For a more general
case, we would have to instrument DS2L with an additional analysis computing a
closed-form equation for the loop body, some form of a summary [111]. Computing

57

3. Large Bounded Loops

useful summaries for functions is a challenging task and is likely to work only for some
restricted subset of functions. Whenever the summary analysis would succeed and
generate an equation, we could use it to over-approximate iterations on elements with
the same ranges.

Extended DSL Our functional DSL serves as a starting point for further development,
a natural direction of future work would be to extend the DSL with more operators.
One more possible extension would be to include data structures of higher dimensions.
Our analysis should be applicable to the N-dimensional immutable arrays (tensors) as-is
on most operators. Supporting additional operators requires engineering effort and an
extension of the analysis’ abstract transfer functions.

Alternative Input Formats While functional DSL is convenient for specifying new
algorithms, it may be difficult to translate legacy imperative code into it. A possible
solution may define parsers for alternative input formats. The hard constraints to use
our analysis are:

1. all variables and data structures must be immutable. This can be (partially)
achieved by bringing the code into a static single assignment (SSA) form [112].

2. Semantic information about iterators must be available, such as how data flows
between iterations and how it and its shape is modified. This information can
potentially be obtained by applying semantic analysis to the original code (for
instance, with a polyhedral model of a loop [113]) and then mapping the results to
the intermediate representation language of DS2L.

Note that the translation of imperative programs into functional is known to be
challenging [114].

Code Generation One more direction of future work could be to optimize code gener-
ated by DS2L after the analysis. At the moment, DS2L only generates functional Scala
code, which it performs by directly translating the DSL operators and inlining every
occurrence of every operator’s implementation. As a result, some of the generated code
is unnecessarily repetitive. A potential improvement would be to perform optimizing
transformations (for instance, loop fusion [115]) before generating the final code. Ideally,
we would like to generate efficient code for both functional and imperative programs, as
C frequently appears in embedded systems projects. A translation of functional code (as
in DS2L’s intermediate representation) into imperative is non-trivial; some functional
operations do not have a direct and unambiguous equivalent in C.

An important thing to keep in mind when optimizing the generated code (for both
functional and imperative programs) is that the order of evaluation in finite-precision op-
erations matters. To keep the guarantees on error bounds as reported by the analysis, the
order of computations has to match exactly the order in which operations were evaluated

58

3.7. Conclusion and Future Work

by the analysis. Existing work on efficient code generation from functional specifications
successfully deals with redundant intermediate data structures and operations, however,
it requires manual annotation [116–119] and potentially rearranges the operations [120].
The Stainless verification system [121], in contrast, focuses on preserving the properties
that it proved; it has been used to translate Scala code into imperative, but only for
integer programs with mutable data structures [122]. While these techniques and tools
are not directly applicable to DS2L, they present an interesting starting point for further
research.

59

4. Inductive Invariants for Unbounded
Loops

Providing a tight and sound estimate for rounding error bounds in the presence of
loops is challenging, because errors may grow indefinitely, and for a general case the
only sound bound is a trivial range of [−∞, ∞]. Various applications of numerical
loops involve a priori unbounded loops, for instance, when modeling and simulating
a continuous process, in scientific computing and embedded control systems. Since
infinite loops cannot be fully unrolled, they have to be abstracted, for example, with
inductive invariants [123]. An invariant is inductive if it holds before entering the loop
and after every iteration. Such invariants are needed to reason about a program’s safety
and they are a necessary ingredient for bounding rounding errors (on loops) with some
techniques [13].

Given an invariant, it is (relatively) easy to prove (or disprove) that it is inductive
using, for instance, existing SMT solvers [124,125]. Generating an invariant, on the other
hand, is a challenging task, both manually and with automated tools [40–43]. Moreover,
finding a finite-precision invariant is even harder (compared to real- or integer-valued)
because it has to account for overflows, rounding errors and special values (such as
infinity and not-a-number in floating points). Additionally, to be able to prove the
inductiveness of a finite-precision invariant and for it to be useful in a subsequent
rounding error estimation, the invariant should be tight, i.e. closely cover the actual
values appearing in the loop execution.

Many tools generate inductive invariants for programs over integers to prove a
program’s safety [43, 46, 126–128]. The safety property holds if user-specified unsafe
states (ranges of variables) are proven to be unreachable. As a by-product of this proof,
tools compute inductive invariants that over-approximate reachable ranges of variables,
but they necessarily use the unsafe states specification to guide the invariant search.
However, for finite-precision loops where the goal is to compute as tight invariants as
possible, specifying unsafe states essentially amounts to finding the invariant itself.

Alternatively, one could use static analysis with abstract interpretation that generally
does not require target ranges. However, some existing abstract interpretation tools still
require an approximate target range to compute tight invariants [46] and others do not
generalize well: they are limited to linear loops due to the underlying techniques [47],
do not always produce invariants that satisfy the precondition [48], or rely on user input,
such as invariant templates [44].

In this chapter, we propose a practical approach to synthesize inductive invariants
based on a loop’s simulation. Our invariant synthesis method handles both linear and

61

4. Inductive Invariants for Unbounded Loops

non-linear loops and requires minimal input from the user: only a loop body and input
ranges for variables. This generality, naturally, comes at a certain cost. Unlike other
approaches [46–48], our simulation-based approach does not provide completeness
guarantees, but instead it has wider applicability. Despite the absence of provable
completeness, we empirically observed our algorithm to be remarkably effective.

Our algorithm employs a combination of simulation and the counterexample-guided
synthesis approach (CEGIS). First, it randomly samples points from input ranges and
simulates several loop iterations. Given the simulated values, we use curve fitting to
propose the first invariant candidate. This candidate is checked with an off-the-shelf SMT
solver that either accepts the invariant or provides a counterexample. We cannot directly
query the solver for the invariant (or its coefficients), because that would require using
existential quantifiers, which today’s SMT solvers do not handle well for finite-precision
theories.

If a solver generates a counterexample, our synthesis algorithm incorporates the
counterexample into the next invariant candidate. Our algorithm generalizes the coun-
terexample and produces some additional points, repeats the simulation starting from
these counterexample points and fits the polynomial curve again. This process it re-
peated until either the invariant is confirmed, or the algorithm times out (with a custom
value, set to 20 minutes in our experiments).

The key idea behind our algorithm is that numerically stable loops can tolerate a certain
amount of noise. Because of this tolerance, there is no single “ground truth” invariant,
but rather multiple invariants of a similar form. We leverage this idea in the random
sampling and simulation, but also how we query SMT solver to check the invariant.

Modern SMT solvers are able to handle some floating-point queries and with some
preprocessing also fixed-point arithmetic (encoded as bit-vectors). However, such queries
are inefficient, especially when non-linear operations are involved. We therefore do not
use bit-vector or floating-point theories in the SMT queries. Instead, we first search
for a real-valued invariant, then add bounded non-deterministic noise that represents
rounding errors, and verify whether the invariant still holds with additional noise. This
approach accomplishes two things: 1) it allows us to use the reals theory for non-linear
computations in queries to SMT [129] that is generally more efficient than the finite-
precision theories, and 2) it decouples the loop under analysis from its implementation
details, i.e. the exact choice of finite precision. We determine the ranges for non-
deterministic terms by applying rounding error analysis to each loop statement. Our
algorithm is independent from the exact instance of the analysis; in the prototype
implementation we use the analysis from Daisy [14].

To compare with invariants generated by state-of-the-art tools, for the remainder
of this chapter we will focus on floating-point loops. Note that for synthesizing a
fixed-point invariant the required steps are exactly the same.

Following previous work, we generate inductive invariants that cover a wide range of
numerical loops—in a form of an ellipsoid. Our invariants have a form of a polynomial

62

4.1. Overview

x ∈ [0.0, 0.1]

y ∈ [0.0, 0.1]

while (true) {

x := x + 0.01 * (-2*x - 3*y + x*x)

y := y + 0.01 * (x + y)

}

(a) Example benchmark

−0.03x− 0.1y + 0.44x2 + xy + 0.86y2 ≤ 0.02

x ∈ [−0.5, 0.3]

y ∈ [−0.2, 0.4]

(b) Generated invariant

Figure 4.1.: Running example

inequality P(x) ≤ 0 in conjunction with intervals Ri for each individual variable xi:

P(x1, ..., xn) ≤ 0∧ x1 ∈ R1 ∧ . . . ∧ xn ∈ Rn

We implemented our synthesis algorithm in a Python library Pine and evaluated it on
30 numerical loops from various domains. Compared to the most closely related state-
of-the-art tools SMT-AI [48] and Pilat [46], Pine was able to produce tighter invariants
on 70% of linear benchmarks and generated invariants for 6 non-linear benchmarks
where other tools failed.

Contributions To summarize, this chapter describes the following contributions:

• the first general synthesis algorithm for inductive invariants that handles linear
and non-linear, floating-point and fixed-point unbounded loops

• the open-source implementation of the algorithm in the Python library Pine

available at https://github.com/izycheva/pine

• an extensive experimental evaluation of Pine and its comparison to state of the art.

4.1. Overview

Before explaining our invariant synthesis algorithm in detail, we illustrate it at a high-
level on an example. Figure 4.1a shows our example loop that simulates a dynamical
system together with the precondition on the loop variables.

Pine starts by simulating the loop to collect a set of concrete points that an inductive
invariant definitely has to include. For this, Pine samples m = 100 random values from
the input ranges x ∈ [0, 0.1] and y ∈ [0, 0.1], and executes the loop n = 1000 times for
each point. Sampled points are shown in light blue in figures 4.2a-4.2c. Since we are
looking for a convex invariant, Pine next computes the convex hull of the sampled
points. This reduces the number of points to consider and gives us an initial estimate of
the shape of the invariant.

63

https://github.com/izycheva/pine

4. Inductive Invariants for Unbounded Loops

0.3 0.2 0.1 0.0 0.1 0.2
0.2

0.1

0.0

0.1

0.2

0.3

(a) First candidate invariant

0.3 0.2 0.1 0.0 0.1 0.2
0.2

0.1

0.0

0.1

0.2

0.3

(b) Counterexample and symmetric points

0.3 0.2 0.1 0.0 0.1 0.2
0.2

0.1

0.0

0.1

0.2

0.3

(c) Second candidate invariant

0.6 0.4 0.2 0.0 0.2 0.4
0.4

0.2

0.0

0.2

0.4

0.6

(d) Multiple invariants

Figure 4.2.: Non-linear benchmark candidate invariants

We consider invariants that include variable ranges and a shape enclosing all values
expressed as an ellipsoid, i.e. a second degree polynomial inequality. We obtain the
polynomial coefficients by computing the minimum volume ellipsoid enclosing the
convex hull, and the variable bounds from the minimum and maximum values seen in
the sampled points:

−0.0009x− 0.004y + 0.0103x2 + 0.021xy + 0.0298y2 ≤ 5.4 · 10−5 ∧

x ∈ [−0.2098, 0.0976], y ∈ [−0.0159, 0.1723]

The computed ellipsoid is depicted in Figure 4.2a by blue dashed ellipse. We observe
that this candidate invariant is noisy, for instance, some sampled points are not included.
To remove (a part of) this noise, we scale and round the (normalized) polynomial
coefficients and the range bounds (the latter is rounded outwards). Obtained ellipsoid

64

4.1. Overview

and ranges form the first candidate invariant (marked green in Figure 4.2a):

−0.03x− 0.13y + 0.35x2 + 0.7xy + y2 ≤ 0.01∧ x ∈ [−0.3, 0.1], y ∈ [−0.1, 0.2]

Pine uses an off-the-shelf SMT solver (Z3) to check whether this candidate invariant
is inductive. For our candidate invariant the check fails and the solver returns a
counterexample C1 : (x = 0.0, y = −0.0542) (red dot in Figure 4.2b). By counterexample,
we mean a point that itself satisfies the candidate invariant, but after one loop iteration
results in a point for which the invariant no longer holds. In our example C1 satisfies the
candidate invariant, but after one iteration we obtain C′1 : (x = 0.001626, y = −0.054742)
that violates the invariant.

Pine uses this counterexample to refine the candidate invariant. However, instead of
recomputing the convex hull and ellipsoid shape immediately, we generate additional
counterexamples in order to not bias the shape in a single direction that is (randomly)
determined by the solver’s counterexample. In particular, Pine computes counterexam-
ples that are symmetric to C1 along the symmetry axes of the ellipsoid and satisfy the
candidate invariant. Figure 4.2b shows the counterexamples generated for our running
example (purple dots).

Pine then uses another round of simulation, starting from the set of counterexamples,
to obtain a new set of points that need to be included in an invariant (by transitivity,
if a counterexample point is included after one loop iteration, then the points after
additional iterations also have to be included). The new set of points is then used to
generate the next candidate invariant. Figure 4.2c shows simulated points in red, and
the new candidate invariant in green. Note that Figure 4.2c contains three simulation
traces - one for each counterexample, and the traces originated from the bottom left
counterexample and C1 coincide.

Pine repeats this iterative process until either an invariant is found, or a maximum
number of refinement iterations is reached. For our example, Pine finds an inductive
invariant (shown green in Figure 4.2d) after 6 iterations.

The invariant so found holds for a real-valued loop, i.e. when the loop body is
evaluated under real arithmetic. The last step of Pine’s algorithm is to verify that the
invariant also holds under a floating-point loop semantics. To do this, Pine uses an
off-the-shelf analysis tool to get the worst-case rounding error bound for each expression
in the loop body. The errors are then added as nondeterministic noise terms to the loop,
and the invariant is re-checked by the SMT solver. For our running example, this check
succeeds, and the following invariant is confirmed:

−0.03x− 0.1y + 0.44x2 + xy + 0.86y2 ≤ 0.02 ∧ x ∈ [−0.5, 0.3], y ∈ [−0.2, 0.4]

Figure 4.2d shows several invariants generated by Pine for our example, for different
parameters of its algorithm. Note that these invariants are similar, but differ slightly in
shape and volume. The range component of the invariant is shown by the green and
blue boxes; the red box denotes the input ranges.

65

4. Inductive Invariants for Unbounded Loops

4.2. Problem Definition

The input to our algorithm is a loop body together with a precondition. We consider
simple non-nested loops given by the following grammar:

L ::= while(true){ B }

B ::= if (G) S else S | S

S ::= ε | xi := p(x1, ..., xn) + uj; S

G ::= * | p ≤ 0

In each iteration, the loop updates a set of variables xi ∈ X . Note that this update is
atomic for the whole loop body, i.e. the update for the value of xi will only take effect in
the next loop iteration. The right-hand-side of each assignment consists of polynomial
expressions p in the loop variables together with an (optional) nondeterministic noise
term uj, which is bounded in magnitude. Note that uj in the input program does not
reflect rounding errors, it denotes any additional noise, e.g. input error from sensor
values. We model rounding errors in a similar fashion later in the algorithm, but a user
does not have to state them manually. The loop body can include a top-level conditional
statement, which can also be used to express the loop exit condition. The conditions of
the if-statement can either be nondeterministic choice or a polynomial inequality. We
note that adding support for more complex conditions as well as nested and chained
if-statements would only affect the way we parse the loop and encode it in the SMT
query and is not a fundamental limitation of our algorithm.

The precondition specifies the initial ranges for all variables xi, as well as bounds
on the nondeterministic noise variables: xi ∈ [ai, bi], uj ∈ [cj, dj]. The loop and noise
variables take values in the set F of floating-point values. Then the semantics of a loop
body b is given by the transformation [[b]] :: (X → F)→ 2(X→F), which is defined by

[[ε]] ρ = {ρ}
[[xi := p + uj; s]] ρ =

⋃{[[s]](ρ⊕ {xi 7→ p(ρ) + u}) | u ∈ [cj, dj]}
[[if(*) s1 else s2]] ρ = [[s1]] ρ ∪ [[s2]] ρ

[[if (p ≤ 0) s1 else s2]] ρ = {ρ1 ∈ [[s1]] ρ | p(ρ) ≤ 0} ∪
{ρ2 ∈ [[s2]] ρ | p(ρ) > 0}

Here, p(ρ) denotes the value of the polynomial p for the variable assignment ρ under
the floating-point arithmetic semantics specified by the IEEE 754 standard [64]. The set
of initial program states is given by

Init = {ρ : X → R | ∀xi ∈ X . ρ(xi) ∈ [ai, bi]}

Our goal is to find an inductive invariant I such that

Init ⊆ I ∧ ∀ρ ∈ I . [[b]] ρ ⊆ I (4.1)

i.e., I subsumes the initial states and is preserved by each iteration of the loop. We
consider convex invariants given by a polynomial inequality together with ranges for

66

4.3. Algorithm

variables:
I = {ρ | P(ρ) ≤ 0, ρ(xi) ∈ Ri = [li, hi]}

The goal is thus to find the coefficients of the polynomial P and the lower and upper
bounds (li, hi) for the variables of the loop. In this paper, we consider polynomials P
of degree two, although our algorithm generalizes to higher degrees. We observe that
second degree polynomials are already sufficient for a large class of loops.

Additionally, we are interested in finding as small an invariant as possible, where we
measure size by the volume enclosed by an invariant. We note that the ellipsoid (the
polynomial inequality), is not only needed to prove the inductiveness of many invariants,
but it can also enable more accurate verification based on our inductive invariants, for
instance by techniques relying on SMT solving. For this reason, we do not only measure
the volume as the size of the box described by R, but rather as the intersection between
the box and the ellipsoid shape, which can be substantially smaller.

4.3. Algorithm

Figure 4.3 shows a high-level view of our invariant synthesis algorithm. The input to the
algorithm is a loop together with a precondition on the loop variables, and the output
is a polynomial P and a set of ranges R, a range Ri for each program variable xi, that
define the synthesized invariant:

P(x1, ..., xn) ≤ 0∧ x1 ∈ R1 ∧ . . . ∧ xn ∈ Rn (4.2)

The key component of our algorithm is the invariant synthesis, which infers the
shape of the bounding polynomial and the variable ranges (lines 1-21). The algorithm
first synthesizes an invariant assuming a real-valued semantics for the loop body
(withrounding == False).

The synthesis starts by simulating the loop on a number of random inputs from
the precondition, keeping track of all the seen points, i.e. tuples (x1, ..., xn). From the
obtained points, the algorithm next guesses the shape of a candidate invariant, i.e. a
polynomial P and a set of rangesR (line 5-7). We check this candidate invariant using an
off-the-shelf SMT solver (line 12). If the candidate is not an invariant or is not inductive,
the solver returns a counterexample. The algorithm generalizes from the counterexample
(lines 16-20) and uses the newly obtained points to refine the candidate invariant. We
repeat the process until either an invariant is found, or we reach a maximum number of
iterations (empirically, all benchmarks required less than 100 iterations).

After the real-valued invariant is generated, the algorithm checks whether it also
holds for the floating-point implementation of the loop (line 29). Should this not be the
case, invariant synthesis is repeated taking floating-point rounding errors into account
in every refinement iteration. Since rounding errors are usually relatively small, this
recomputation is seldom necessary, so that Pine first runs real-valued invariant synthesis
for performance reasons.

67

4. Inductive Invariants for Unbounded Loops

def get_real_invariant(loop, init, withrounding):

2 pts = simulate(loop, random.sample(init, m), n)
// update pts iteratively

4 for i in range(0, max_iters):

pts = convexHull(pts)

6 ranges = round(min(pts), max(pts), precrange)

coefficients = getShape(pts, precpoly)

8 inv = (coefficients, ranges)

10 if withrounding:

loop = addrounding(loop, ranges)

12 cex = checkInvariant(loop, inv)

if cex is None:

14 return inv

else:

16 addCex = getAdditionalCex(loop, inv, cex, cex_num, d)
symPts = getSymmetricPts(cex, inv)

18 nearbyPts = getNearbyPts(cex, d, inv)

pts = pts ∪ cex ∪ addCex ∪ symPts ∪ nearbyPts

20 pts = simulate(loop, pts, k)
return None

22

def get_fp_invariant(loop, init):

24 inv = get_real_invariant(loop, init, withrounding=False)

if inv is None:

26 return None

else:

28 loopFP = addrounding(loop, inv.ranges)

cex = checkInvariant(loopFP, inv)

30 if cex is None:

return inv

32 else:

return get_real_invariant(loop, init, withrounding=True)

Figure 4.3.: High-level invariant synthesis algorithm (parameters are in cursive)

4.3.1. Simulation

The synthesis starts by simulating the loop execution. For this, Pine samples m values
from the variables’ input ranges Init uniformly at random, and concretely executes the
loop n times for every sample. As a result, we obtain m× n points, i.e. combinations of
variable values, that appear in the concrete semantics of the loop and thus have to be
included in an invariant. The sampled points provide a starting point for the invariant
search.

68

4.3. Algorithm

4.3.2. Candidate Invariant Conjecture

The invariant we are looking for has two parts: variable ranges R and a polynomial
shape P(x) enclosing all variable values. To obtain R and P(x), Pine first reduces the
number of samples by computing the convex hull of the sampled points. We consider
invariant shapes that are convex, therefore the values inside the shape can be safely
discarded.

The minimum and maximum values of each loop variable xi in the convex hull vertices
determine the range Ri.

Pine infers the shape P(x) enclosing the convex hull vertices using two optimization
methods: minimum volume enclosing ellipsoid (MVEE), and least squares curve fitting.
The minimum volume enclosing ellipsoid method computes a bounding ellipsoid such
that all points are inside the shape. Pine utilizes a library that computes MVEE by
solving the following optimization problem:

minimize log(det(E))

s.t.(xi − c)TE (xi − c) ≤ 1

where xi are the individual points, c is a vector containing the center of the ellipsoid
and E contains the information about the ellipsoid shape [130].

While MVEE computes the desired shape, the library that we use supports only
two dimensions, and it is furthermore possible that it diverges. To support higher-
dimensional loops, or when MVEE fails, we resort to using least squares. With the
method of least squares, we find coefficients such that the sum of the squares of the
errors w.r.t. to the given points is minimized. For a degree 2 polynomial in variables x
and y, Pine transforms the points into the matrix A with entries having the values of
[1, x, y, x2, xy], and a vector b which consists of the values of y2. By solving the system
of equations Az = b for z, we obtain the coefficients of the polynomial. By setting
b = y2, we set the last coefficient to 1 in order to avoid the trivial (zero) solution. Least
squares computes a tight fit, but will, in general, not include all of the points inside
the polynomial shape, so that we additionally have to enlarge the ‘radius’ such that
it includes all points. While we do not explore this further in this work, we note that
the above sketched least-squares approach also generalizes to fit polynomials of higher
degree than 2, using suitable constraints to ensure convex shapes [131].

4.3.3. Reducing the Noise

Both methods used to infer a shape are approximate, i.e. they find a polynomial that
is close to the actual shape up to a tolerance bound. Furthermore, they fit a set of
points that is incomplete in that it only captures a (random) subset of all of the possible
concrete executions. This makes the inferred polynomial shapes inherently noisy and
unlikely to be an invariant. We reduce the noise by first normalizing and then rounding
the polynomial coefficients to a predefined precision precpoly, i.e. to a given (relatively
small) number of digits after the decimal point. This effectively discards coefficients

69

4. Inductive Invariants for Unbounded Loops

(rounds to zero) whose magnitude is significantly smaller than the largest coefficient
found. For the remaining coefficients, it removes the—likely noisy—least significant
digits.

Similarly, the lower and upper bounds of the computed ranges R capture only the
values seen in simulation and are thus likely to be under-approximating the true ranges.
We round the lower and upper bounds outwards to a predefined precision precrange,
thus including additional values.

The precisions (number of decimal digits) chosen for rounding the polynomial coeffi-
cients and the ranges should be high enough to not lead to too large over-approximations,
but nonetheless small enough to discard most of the noise. We have empirically observed
that the polynomial coefficients should be more precise than the range bounds by one
digit, and that precpoly = 2 and precrange = 1 seems to be a good default choice.

4.3.4. Checking a Candidate Invariant

The obtained polynomial and variables ranges form a candidate invariant, which we
check for inductiveness using an off-the-shelf SMT solver by encoding the (standard)
constraint (Init → I(x)) ∧ (I(x) ∧ L → I(x′)), where I(x) = P(x) ≤ 0

∧
i xi ∈ Ri, L

is the loop body relating the variables x before the execution of the loop body to the
variables x′ after.

We translate conditional statements using the SMT command ite. Non-deterministic
terms receive fresh values from the user-defined range at every loop iteration. Since
their ranges do not change we add constraints on the ranges of non-deterministic terms
only to I and Init. We encode the above constraint in SMT-LIB using the real-valued
theory [129]. The SMT solver evaluates the query and returns a counterexample if
it exists. If no counterexample is returned, a candidate invariant is confirmed to be
inductive and returned.

4.3.5. Generalizing from Counterexamples

The counterexample returned by the SMT solver is added to the existing set of points
that the invariant has to cover. However, this additional point is arbitrary, depending
on the internal heuristics of the solver. In order to speed up invariant synthesis, and to
avoid biasing the search in a single direction and thus skewing the invariant shape, we
generate additional points that also have to be covered by the next invariant candidate.
We consider three different generalizations: additional counterexamples, symmetric
points and nearby points.

Pine obtains additional counterexamples from the solver by extending the SMT query
such that the initial counterexample is blocked and the new counterexample has to
be a minimum distance d away from it. Pine will iteratively generate up to cex_num
additional counterexamples, as long as the solver returns them within a (small) timeout
(cex_num is a parameter of the algorithm).

70

4.3. Algorithm

Our second generalization strategy leverages the fact that the candidate invariant
is an ellipsoid and thus has several axes of symmetry. Pine computes points that are
symmetric to the counterexample with respect to all axes of symmetry of the ellipsoid,
and adds them as additional points if they satisfy I or Init (i.e. they are also valid
counterexamples).

Nearby points are the points that are at a distance d to the counterexample. Pine

computes these points in all directions, i.e. xi ± d, and adds them to the set of points, if
they are valid counterexamples. The rationale behind this generalization is that points
in the vicinity of a counterexample are often also likely counterexamples. Adding the
nearby points allows us to explore an entire area, instead of just a single point.

Pine then performs a second simulation of the loop starting from the newly added
set of counterexamples for k iterations. All obtained points are added to the original
sampled values and we proceed to synthesize the next candidate invariant.

4.3.6. Floating-Point Invariant

We encode the SMT queries to check the inductiveness of our candidate invariants using
the real-valued theory. We note that it is in principle possible to encode the queries using
the floating-point theory, and thus to encode the semantics of the loop body, including
rounding errors, exactly. However, despite the recent advances in floating-point decision
procedures [132], we have observed that their performance is still prohibitively slow for
our purpose (CVC4’s state-of-the-art floating-point procedure [132] was several orders
of magnitude slower than Z3’s real-valued procedure [129]).

We thus use a real-valued SMT encoding and soundly over-approximate the rounding
errors in the loop body. We compute a worst-case rounding error bound rnd for each
expression in the loop body using an off-the-shelf rounding error analysis tool. We
use Daisy’s dataflow rounding error analysis [14] on the loop body. Daisy computes
rounding error bounds for loop-free code, which is sufficient for our purpose, since we
only need to verify that I(x) ∧ L→ I(x′), i.e. the executions of the (loop-free) loop body
remain within the bounds given by I.

The computed rounding error bound is added to the expression as a non-deterministic
noise term bounded by [−rnd, rnd]. Note that unlike in existing work [47] that derives
one general error bound for all programs assuming a large enough number of arithmetic
operations, our rounding error is computed on-demand for each particular candidate
invariant. The magnitude of rounding errors depends on ranges of inputs, and so by
computing the rounding error only for the invariant’s ranges, we are able to add only as
little noise as is necessary.

Our algorithm first finds a real-valued invariant and then verifies whether it also
holds under floating-point loop semantics. If not, we restart the invariant synthesis and
take rounding errors into account for each candidate invariant, recomputing a new tight
rounding error in each iteration of our algorithm (line 11). We do not include rounding
errors in the first run of the synthesis for better performance, since in practice, we rarely
need to recompute the invariant.

71

4. Inductive Invariants for Unbounded Loops

Except for the rounding error analysis, our algorithm is agnostic to the finite precision
used for the implementation of the loop. By choosing to compute rounding errors
w.r.t. different precisions, it thus supports in particular both single and double floating-
point precision, but also fixed-point arithmetic of different bit lengths [14], which is
particularly relevant for embedded platforms that do not have a floating-point unit.

4.3.7. Implementation

We have implemented the algorithm from Figure 4.3 in the tool Pine as a Python library
in roughly 1600 lines of code, relying on the following main libraries and tools: the
Qhull library for computing the convex hull1, a library for computing the minimum
volume ellipsoid2, the least-squares function from scipy (scipy.linalg.lstsq), the Python
API for the Z3 SMT solver version 4.8.7, and the Daisy tool [14] for computing rounding
errors. Simulations of the loop are performed in 64-bit floating-point arithmetic.

4.4. Experimental Evaluation

We evaluate Pine on a set of benchmarks from scientific computing and control theory
domains. We aim to answer the following research questions:

RQ1: How does Pine compare with state-of-the-art tools?

RQ2: How quickly does Pine generate invariants?

RQ3: How sensitive is Pine’s algorithm to parameter changes?

4.4.1. State-of-the-Art Techniques

We compare the invariants synthesized by Pine to those generated by two state-of-the-
art tools: Pilat [48] and SMT-AI [47]. These two tools are the only ones that compute
polynomial inequality invariants for floating-point loops without requiring a target
condition to be given.

Pilat reduces the generation of invariants of a loop body f to computing the eigenvec-
tor φ of f that is associated to the eigenvalue 1, i.e. f (φ) = φ and φ is thus an invariant.
Pilat can, in principle, handle non-linear loops by introducing a new variable for each
non-linear term and thus effectively linearizing it. This transformation is similar to how
we use least-squares to fit a polynomial (subsection 4.3.2). Pilat handles floating-point
rounding errors by (manually) including nondeterministic noise for each floating-point
operation that captures the rounding error: (x ◦ y) · δ, where ◦ ∈ {+,−,×, /} and
|δ| ≤ ε is bounded by the machine epsilon. For simplicity, we ignore errors due to
subnormal numbers.

1www.qhull.org
2https://github.com/minillinim/ellipsoid

72

www.qhull.org
https://github.com/minillinim/ellipsoid

4.4. Experimental Evaluation

SMT-AI [47] and Adje et al. [44] implement policy iteration using the ellipsoid abstract
domain. The approach by Adje et al. requires the ellipsoid template to be provided, while
SMT-AI generates templates automatically. For our comparison we therefore consider
the more general approach of SMT-AI. SMT-AI generates the ellipsoid templates from
Lyapunov functions [133], which are functions known from control theory for proving
that equilibrium points of dynamical systems are stable. These functions prove that a
loop is bounded and thus the shape effectively serves as an invariant. It is known that for
linear loops one can generate the polynomial shapes automatically using semi-definite
programming. Since such an automated method does not exist for non-linear functions,
SMT-AI is limited to linear loops. Semi-definite programming can compute different
polynomial shapes, and SMT-AI selects shapes to be tight using a binary search. SMT-AI
first computes a real-valued invariant, like Pine, and then verifies that it also satisfies a
floating-point loop. Unlike Pine, SMT-AI derives one generic rounding error bound for
all (reasonably-sized) loops, and does not recompute the invariant if the floating-point
verification fails. We were unfortunately not able to install SMT-AI, so that we perform
our comparison on the benchmarks used by SMT-AI, comparing to the (detailed) results
reported in the paper [47, 134].

Interproc [135] is a static analyzer based on abstract interpretation. It infers numerical
invariants using boxes, octagons, linear congruences and convex polyhedra. A user
can choose between two libraries that implement these domains: APRON [99] and
Parma Polyhedra Library [136]. We tried Interproc on our set of benchmarks, and on 2
benchmarks it produced some bounds for a subset of the program variables. However,
the invariants were not convex, and we could not compute their volume. We therefore
exclude Interproc from the comparison.

Another potential competitor is an approach by Mine et al. [46] that combines interval
and octagon abstract domains with constraint solving. The invariants discovered are ef-
fectively ellipsoids, i.e. second-degree polynomial inequalities. However, their approach
fundamentally requires target bounds. Since the goal of Pine is to find such tight bounds,
and not only prove that they are inductive, we do not compare with Mine et al. [46].

4.4.2. Experimental Setup

Our set of benchmarks contains both linear and non-linear loops and is available open-
source3. Each benchmark consists of a loop body which iterates an infinite number
of times. The linear benchmarks filter_goubault, filter_mine*, arrow_hurwicz, harmonic,
symplectic are taken from related work [44,46] and implement linear filters and oscillators.
Benchmarks ex* are taken from the evaluation of SMT-AI [134] and comprise linear
controllers, found for instance in embedded systems.

We additionally include the non-linear benchmark pendulum*, that simulates a simple
pendulum and rotation*, which repeatedly rotates a 2D vector by an (small) angle that is
nondeterministically picked in each iteration. Both benchmarks use the sine function,

3https://github.com/izycheva/pine/tree/master/benchmarks

73

https://github.com/izycheva/pine/tree/master/benchmarks

4. Inductive Invariants for Unbounded Loops

which we approximate using a Taylor approximation. The nonlin_example* are non-linear
dynamical systems collected from textbook examples on Lyapunov functions.

Three of our benchmarks contain operations on nondeterministic noise terms. Most
benchmarks are 2-dimensional, except for ex4*, which has 3 variables, ex2* and ex5*,
which have 4 variables, and ex6* that has 5 variables.

We run our evaluation on a MacBook Pro with an 3.1 GHz Intel Core i5 CPU, 16 GB
RAM, and macOS Catalina 10.15.3.

4.4.3. RQ1: Comparison with State-of-the-Art

Each tool generates an invariant with an elliptic shape, and Pine and SMT-AI provide
additionally ranges for variables. We compare the inductive invariants generated by
each tool based on their volume. The volume of an invariant is given by the set of points
satisfying P(x) ≤ 0 ∧ ∧i xi ∈ Ri, where the variable ranges may intersect with the
ellipsoid. We compute this intersection (approximately) using a Monte-Carlo simulation
with 3 · 106 samples, by comparing how many samples are within the invariant to how
many are inside the variable ranges (for the latter we know the volume exactly). Our
volume estimates are accurate to two decimal digits.

We run Pine with a default set of parameters, that we determined empirically (see sub-
section 4.4.5). In order to compare with other tools that only support single floating-point
precision, Pine computes rounding errors (and invariants) for 32-bit floats.

Columns 2-4 in Table 4.1 show the volumes of the invariants generated by SMT-AI,
Pilat, and Pine. ‘-’ denotes the cases where a tool did not generate an invariant. Bench-
marks for which we did not have data for SMT-AI are marked as ‘undef’. ‘PF’ denotes
cases where an invariant was generated, but it did not satisfy the given precondition.
‘TO’ marks cases when a tool took longer than 20 minutes to generate an invariant. Here,
smaller volume is better, the best volumes are marked bold.

Due to the inherent randomness in its algorithm, we run Pine 4 times and compute
the average volume and running time across the runs. The last column shows variations
in volume with respect to the average (i.e. (max - min)/average).

We observe that Pine produces the tightest invariants on 17/24 (70%) of the linear
benchmarks. Additionally, Pine generates invariants for all non-linear benchmarks in
our set, whereas Pilat was not able to generate invariants for any of them. Pine produces
invariants that are in the best case on average 20x tighter than the ones by SMT-AI,
and 2.7x tighter than the ones by Pilat (compared on the 6 benchmarks, for which it
was able to generate an invariant). In the worst case (observed over our 4 runs), the
factors decrease to 13.8x and 1.8x respectively. Only for the benchmarks ex6-butterworth
and filter-mine2-nondet, the worst-case volumes computed by Pine become 1.9x and 1.6x
larger than the ones computed by SMT-AI and Pilat, respectively, and are thus still of
the same order of magnitude.
RQ1 Conclusion: Based on our experimental results, we conclude that Pine generates
much tighter invariants than its competitors. Moreover, unlike other state-of-the-art
tools, Pine is applicable to both linear and non-linear loops.

74

4.4. Experimental Evaluation

Benchmark SMT-AI Pilat Pine

Pine

avg time, s
Volume
variation

N
on

-l
in

ea
r

pendulum-approx undef - 12.92 21.09 30.03%
rot.nondet-small undef - 5.97 30.13 16.25%
rot.nondet-large undef - 6.67 33.78 10.87%
nonlin-ex1 undef - 0.23 14.43 18.51%
nonlin-ex2 undef - 0.56 7.32 5.23%
nonlin-ex3 undef - 7.07 12.45 3.35%

Li
ne

ar

arrow-hurwitz undef - 4.40 4.75 7.00%
harmonic undef 18.41 3.52 10.81 9.70%
symplectic undef PF 2.32 7.71 12.11%
filter-goubault undef PF 1.84 4.94 1.31%
filter-mine1 undef PF 6.32 7.18 1.58%
filter-mine2 undef 1.16 0.49 4.48 71.92%
filter-mine2-nondet undef 4.92 4.45 10.70 66.38%
pendulum-small undef 12.53 9.10 7.11 7.51%
ex1- filter 475.06 498.37 - 43.61 -
ex1-reset-filter 475.98 - - 45.95 -
ex2-2order 17.37 1.07 4.92 7.45 46.73%
ex2-reset-2order 17.36 - 3.08 6.28 6.65%
ex3-leadlag - - - 46.68 -
ex3-reset-leadlag - - - 44.56 -
ex4-gaussian 0.61 - 0.22 16.93 46.16%
ex4-reset-gaussian 17.05 - 1.45 23.10 137.47%
ex5-coupled-mass 5,538.47 TO 100.61 8.63 9.48%
ex5-reset-coupled-mass 5,538.34 - 81.02 8.44 27.54%
ex6-butterworth 65.25 - 25.43 16.34 272.89%
ex6-reset-butterworth 700.06 - 10.30 219.34 0.00%
ex7-dampened 12.17 - 18.68 19.96 15.71%
ex7-reset-dampened 12.17 - - 39.70 -
ex8-harmonic 5.75 - 2.32 6.99 9.77%
ex8-reset-harmonic 5.75 - 2.85 7.15 28.08%
ex5+6 6,927.12 TO TO TO -

Table 4.1.: Volumes of invariants generated by Pine, Pilat and SMT-AI, Pine’s average
running time and variation in invariant volumes across 4 runs

4.4.4. RQ2: Pine’s Efficiency

Pine generates invariants in on average 25, and at most 220 seconds; the largest running
time is also the benchmark with the largest number of variables. Pine was able to
confirm the real-valued invariant also for the floating-point semantics for all but two
rotation* benchmarks, for which it had to recompute the invariants two out of four times.
We consider the running times to be acceptably low such that it is feasible to re-run
Pine several times for an input loop, in order to obtain a smaller invariant, if needed.

RQ2 Conclusion: Pine finds and confirms invariants quickly, therefore can be applied
multiple times until a desirably small invariant is generated. Its running time depends
on the benchmark’s complexity; even on larger benchmarks Pine finishes in under
a few minutes.

75

4. Inductive Invariants for Unbounded Loops

m n cex_num d k symPts nearbyPts volume

100 1000 0 0.5 500 X 2.283
100 1000 0 0.5 100 X 2.297
100 10000 5 0.25 100 X 2.311
100 1000 2 0.25 100 X 2.314
100 10000 1 0.5 500 X 2.335

Table 4.2.: Top-5 minimum volume configurations

4.4.5. RQ3: Parameter Sensitivity

We now evaluate the influence of different parameter settings on the performance of our
proposed algorithm in terms of its ability to find tight inductive invariants. For this, we
explored the parameter space of our algorithm on 13 of our benchmarks that include
(non-)linear infinite loops without branching. We evaluate the different combinations of
varying the following parameters:

• whether or not symmetric points are used

• whether or not nearby points are used

• number of random inputs and loop iterations for initial simulation (algorithm
parameter m-n): 100-1k, 1k-1k, 100-10k

• number of loop iterations for counterexamples simulation (k): 0, 100, 500

• number of additional counterexamples (cex_num): 0, 1, 2, 5 (when cex_num = 0,
no additional counterexample is generated)

• distance to nearby points (in % of the range) (d): 10%, 25%, 50%

• three different precisions for rounding: (precpoly = 1, precrange = 0), (precpoly =

2, precrange = 1), (precpoly = 3, precrange = 2), where precpoly, precrange give the
number of decimal digits for the polynomial coefficients and the variable ranges,
respectively.

In total, we obtain 1296 configurations. We run Pine with each of them once.

Default Configuration 185 parameter configurations were successful on all of the 13
benchmarks. From these, we select the configuration that generates invariants with the
smallest average volume across the benchmarks as our default configuration: precpoly =

2, precrange = 1, m = 100, n = 1000, k = 500. To generalize from counterexamples the
default configuration uses only symmetric points.

Table 4.2 shows the 5 best configurations, according to average volume (we normal-
ized the volume across benchmarks). We note that the differences between volumes
for successful configurations are small, so that we could have chosen any of these
configurations as the default.

76

4.4. Experimental Evaluation

�

��

���

���

���

SUHFLVLRQ �P��Q� FH[BQXP G N V\P3WV QHDUE\3WV

(2, 1)

(100,
1000)

(100,
 10k)

(1000,
1000)

0

1

2

5

0.1

0.25

0.5

100

500

✔

✔

✘

✘

Figure 4.4.: Proportion of parameters ap-
pearing in successful configu-
rations

Benchmark min avg max

pendulum-approx 9.88 12.03 20.21
rot.nondet-small 4.76 5.78 8.07
rot.nondet-large 6.27 6.92 11.43
nonlin-ex1 0.06 0.20 0.83
nonlin-ex2 0.55 0.56 0.59
nonlin-ex3 6.84 7.04 7.27
harmonic 3.28 3.84 4.46
symplectic 2.12 2.21 2.68
filter-goubault 1.82 1.83 1.85
filter-mine1 6.29 6.40 8.72
filter-mine2 0.28 1.03 3.83
filter-mine2-nondet 1.74 2.44 11.37
pendulum-small 8.61 10.14 24.55

Figure 4.5.: Volumes of invariants with
successful configurations

Successful Configurations We study the 185 successful configurations to see which
parameter values appear the most frequently, and thus seem most successful in finding
invariants. Figure 4.4 shows the distribution of the different parameters in the set of
successful configurations. For instance, nearby points are included in the generalization
in roughly half of the configurations, while the precisions (precpoly = 1, precrange = 0)
and (precpoly = 3, precrange = 2) do not appear at all in the successful configurations, i.e.
only (precpoly = 2, precrange = 1) was able to find invariants for all benchmarks.

From Figure 4.4, we conclude that simulating the loop starting from counterexamples
(line 21 in Figure 4.3) is crucial in finding an invariant - none of the configurations
without this additional simulation worked on all benchmarks. On the other hand,
whether this simulation runs 100 or 500 loop iterations seems to make less of a difference.

For the remaining parameters, we do not observe a strong significance; they are
roughly equally distributed among the successful configurations. From this we con-
clude that our algorithm is not sensitive to particular parameter settings, and will find
invariants successfully for many different parameter configurations.

The choice of parameters does, however, influence the size of the invariants generated,
at least for certain benchmarks. Figure 4.5 shows the minimum, maximum and average
volumes for each benchmark across successful configurations. While for some bench-
marks, the variation is small, for others the best configuration produces invariants that
are half the size from the worst one.

Across the 1296 configurations, we observe that if a real-valued invariant is found, it
is also confirmed in 89% of cases, and thus has to be re-computed in only 11% of cases.
The only outlier that needs recomputation more than once is rotation-nondet-large, which
rotates a vector by a larger angle, and therefore is understandably more sensitive to
enlarging the coordinates with some noise.

Last but not least, we changed the input precision parameter to 16-bit fixed points
to assess whether Pine can be applied to other finite precisions. We ran Pine with

77

4. Inductive Invariants for Unbounded Loops

its default configuration on all our 30 benchmarks (including ex*). The smaller bit
length results in larger rounding errors, so that Pine had to recompute an invariant
for 5 additional benchmarks (i.e. where the real-valued invariant was not confirmed),
but was able to find an inductive invariant for as many loops as with floating-point
implementation.
RQ3 Conclusion: Pine’s success in finding and confirming finite-precision inductive
invariants is independent from a particular parameter configuration. The essential
point is to use simulation and some generalization from counterexamples.

4.5. Related Work

Invariants with Abstract Interpretation Many tools and libraries [99] infer invariants
over program variables using abstract interpretation. The abstract domains range
from efficient and imprecise intervals [137], over octagons [138], to more expensive
and expressive polyhedra [136, 139]. For programs with elliptic invariants most linear
abstract domains are insufficient to express an invariant [47].

Ellipsoid domains have been defined to work for specific types of programs, e.g.
digital filters [140] and programs where variables grow linearly with respect to the
enclosing loop counters [141]. Performing abstract interpretation using policy iterations
instead of widening allows the use of the ellipsoid abstract domain more generally [44,
45]. This approach requires templates of the ellipsoids to be given, however. Recent
works [47, 48] are able to discover ellipsoid inductive loop invariants without the
need for templates, but being based on semidefinite programming and linear algebra,
respectively, are fundamentally limited to linear loops only. Alternatively, Bagnara
et.al. [142] have explored an abstract domain that approximates polynomial inequalities
by convex polyhedra and leverages the operations, including widening, of polyhedra.
Sankaranarayanan et.al. [143] show how to generate polynomial equality invariants by
reducing the problem to a constraint satisfaction problem.

Invariants for Integer Loops Our algorithm builds on several ideas that have been
explored in loop invariant synthesis previously, including the use of concrete executions
to derive polynomial templates and counterexample-based refinement. Floating-point
loops and in particular the uncertainties introduced due to rounding errors pose unique
challenges that existing techniques cannot handle, as we discuss next.

Several works have explored the use of machine-learning in teacher-learner frame-
works [43, 128]: the learner guesses a candidate invariant from a set of examples, and
the teacher checks whether the invariant is inductive. If it is not, the teacher provides
feedback to the learner in form of additional (counter)examples. These approaches
rely on a target property to be given (to provide negative examples) and are thus
not immediately applicable to synthesizing floating-point inequality invariants. The
framework C2I [127] employs a learner-teacher framework, but where the learner uses a
randomized search to generate candidate invariants. While surprisingly effective, the

78

4.5. Related Work

approach is, however, limited to a fixed search, e.g. linear inequalities with a finite set of
given constants as coefficients. Sharma et.al. [126] present a learning-based algorithm to
generate invariants that are arbitrary boolean combinations of polynomial inequalities,
but require a set of good and bad states and thus an assertion to be given.

The tool InvGen [144] generates integer linear invariants from linear templates, using
concrete program executions to derive constraints on the template parameters. The
tool NumInv [145] and the Guess-And-Check algorithm [146] generate polynomial
equality invariants using a similar approach. For integer programs and in particular
equality constraints, this approach is exact. In our setting with floating-point programs
and inequalities such constraints cannot be solved exactly and thus require a different,
approximate, approach. NumInv and Guess-And-Check furthermore employ counterex-
amples returned by the solver for refinement of the invariant. These counterexamples are
program inputs, however, due to the complexity of the floating-point or real-arithmetic
decision procedures, this technique does not scale to our target numerical programs. We
are thus restricted to counterexamples to the invariant property.

Abductive inference in the tool Hola [41] and enumerative synthesis in FreqHorn [104,
105] are two further techniques that have been used to generate invariants for numerical
programs, but are unfortunately not applicable to generate the invariants we are looking
for. Hola relies on quantifier elimination which solvers do not support (well) for floating-
points and reals; FreqHorn generates the invariant grammar from the program’s source
code, but for our invariants their components do not explicitly appear in the program
itself.

Chakraborty et al. [147] introduced an induction technique for finding an invariant for
full programs without explicitly generating invariants for each loop. This technique per-
forms non-trivial transformations that potentially reorder computations and is therefore
not directly applicable to floating-point code where the order of computation affects the
rounding errors.

Allamigeon et. al. [148] extend ellipsoidal analyses to generate disjunctive and non-
convex invariants for switched linear systems. We do not consider disjunctive invariants
in this work and leave their exploration to future work.

Recurrence-based techniques [149, 150] generate loop invariants that exactly capture
the behavior of a numerical integer loop. While these techniques work for arbitrary
conditional branches, imperative code and nested loops, they generate invariants of a
different form, i.e. in general not polynomial inequalities and are thus orthogonal to our
approach.

Preconditions Besides inductive loop invariants, one can also infer other interesting
properties for programs, for instance, floating-point preconditions [151] to reason about
valid inputs to a function. Most of the work applicable to numerical loops, however,
focuses on integer preconditions [152, 153] and does not take into account uncertainties
introduced by floats; or uses sampling and therefore does not provide sound guar-
antees [154, 155]. Precondition inference is not directly comparable to our work as it

79

4. Inductive Invariants for Unbounded Loops

reasons about a program in a backward way and therefore usually requires a target
end-state to be given by users.

4.6. Conclusion and Future Work

We presented a novel algorithm for synthesizing polynomial inequality invariants for
finite-precision loops. For this, we show how to extend the well-know technique of
counterexample-guided invariant synthesis to handle the uncertainties arising from
finite-precision arithmetic. The key insight to make our iterative refinement work is
that a single counterexample is not sufficient and the algorithm has to explore the
space of counterexamples more evenly in order to successfully generalize. While the
resulting algorithm is heuristic in nature, it proved to be remarkably effective on existing
benchmarks as well as on handling benchmarks out of reach of existing tools.

Alternative Shapes of Invariants One possible extension of our synthesis algorithm
is to include other shapes of invariants beyond ellipsoids. The hard constraint is only
that it must be possible to encode in an SMT query. In this chapter, we focused on
convex shapes but given a suitable curve fitting function, in principle, it is also possible
to generate non-convex invariants.

Another possibility would be to allow several disconnected shapes in the invariant,
for instance, a disjunction of two separate ellipsoids (in addition to variables’ ranges).
The candidate invariant could be proposed, for instance, by first applying a clustering
algorithm to the sampled points and then fitting the individual shapes. However, one
has to carefully design SMT queries that check the invariants for inductiveness, as
queries containing a disjunction operator are potentially more expensive to evaluate,
which may affect Pine’s performance.

Bounded Loops In this chapter, we focused on unbounded numerically stable loops.
Though our input program grammar allows specifying bounded loops, we currently
do not provide an explicit support for them. Using the grammar defined in section 4.2
bounded loops could be encoded as:

if (i <= c) {

x_i := expression

i := i+1

} else {

x_i:= x_i

i := i

}

x_i\in [lo, up]

i\in [0.0, 0.0]

80

4.6. Conclusion and Future Work

where the if-branch describes the loop body and the else-branch denotes the stable state,
where the values no longer change after the loop counter i has reached its bound c.

The current implementation of Pine treats the counter i as if it was another real-valued
variable. The solver is unaware that the counter cannot take arbitrary values in the
range [0, c], but can only be one of the values in {0, 1, ..., c} and therefore finds fractional
counterexamples that cannot actually occur in the program.

To mitigate this issue we could introduce explicit support for bounded loops and
instrument our SMT queries to include additional information about counter variables.

Use the Invariants Another meaningful direction of future work is to use the synthe-
sized invariants to compute rounding errors for loops. For instance, we could use the
closed-form equation from Rosa [13] to derive rounding error after k iterations of the
loop: ∣∣∣ f k(x)− f̃ k(x̃)

∣∣∣ ≤ Kkλ((I − K)−1(I − Kk))σ

Here, K is the matrix of propagation coefficients, I is the identity matrix, λ is the vector
of initial errors and σ is the vector of rounding errors committed in one iteration. To
compute the matrix K and the vector σ Rosa’s method requires a real-valued invariant
for the variables in the loop and a finite-precision invariant, which we could provide
with Pine.

81

Part II.

Optimization of Numerical Kernels

83

5. Optimizing Kernels with Elementary
Functions

Many numerical applications can tolerate a certain amount of noise and still compute
useful results [156]. When the results do not need to be computed exactly, one may
intentionally introduce noise in the implementation thus trading off a controlled portion
of accuracy for performance (or another optimization objective). In this chapter, we
explore this trade-off through approximations.

Approximations can have different flavors. When using reals [157] is prohibitively
expensive, fixed-point- and IEEE-754 floating-point numbers [64] provide a convenient
and practical approximation: finite precision enables an efficient execution, at the
expense of rounding errors and thus reduced accuracy. This kind of approximation is
leveraged, for instance, by mixed-precision tuning.

A more aggressive flavor of approximations is replacing a (sub-)expression with a syn-
tactically different expression that is easier or faster to evaluate. A prominent example
of such approximations are polynomials of a variable degree, Taylor series [158], Cheby-
shev polynomials [159], etc. Polynomials are particularly useful when approximating
elementary functions (trigonometric functions, exponent, logarithm) that by definition
can be represented as a finite sequence of operations and functions [160]. By varying
the degree and the coefficients of the polynomials, one can influence how closely they
model elementary functions.

Finding appropriate approximations that improve performance is challenging. The
space of possible approximations is huge: every function can be approximated with
multiple polynomials, and each of these polynomials can be implemented in different
finite precision, affecting the magnitude of the introduced error. Additionally, to be able
to provide guarantees on the overall error of the optimized program, we need to verify
the program together with all proposed approximations before we can decide whether
the approximations are suitable.

In this chapter, we present the first sound optimization method that automatically
synthesizes efficient numerical kernels with approximate elementary functions that have
guaranteed accuracy. The user specifies an ideal, real-valued program together with a
maximum error bound. Our technique generates an efficient finite-precision implemen-
tation with polynomial approximations of elementary functions.

The numerical kernels we handle cover widely used applications in various domains,
to name a few: embedded control to compute rotations of robotic components, scientific
computing simulations to determine the state of a periodic event, and machine learning
models with sigmoid activation functions. By default, programmers implement the

85

5. Optimizing Kernels with Elementary Functions

elementary functions in these kernels using library implementations. While these are
convenient and optimized, they usually provide only a limited set of accuracies, for
example, only for 32 and 64-bit precisions, which may lead to using unnecessarily
accurate versions of the function call. Moreover, library functions are designed to
produce accurate results on all valid inputs, many of which may never occur in the
program.

When our algorithm replaces a function call with a (piecewise-) polynomial approxi-
mation it has a fine-grained control over the resulting accuracy. First, our polynomial
approximations are tailored to ranges of elementary function arguments occurring in
the program. This allows the optimization to use polynomials of (relatively) low degrees
and find fast implementations. Secondly, when implementing the polynomials our
algorithm can choose a suitably low or high precision to match the desired accuracy.

Our algorithm is not specific to one type of finite precision, however, the potential of
approximations can be better explored in combination with fixed points. Fixed-point
implementations allow arbitrary bit-widths for individual arithmetic operations and
provide more options in the accuracy/performance tradeoff. On the other hand, higher
flexibility means a significantly larger search space compared to floating-point precisions,
which makes finding a solution to the optimization problem more challenging.

Our algorithm distributes the maximum allowed error specified by the user among
different sources of errors—rounding and approximation—and generates an efficient
and sound finite-precision implementation with polynomial approximations. The key
observation behind our algorithm is that errors of a different nature behave similarly:
the approximation and rounding errors will accumulate and propagate together. This
observation allows us to repurpose a finite precision assignment procedure as an error
budget distribution algorithm. Given this distribution, we then generate approximations
with a combination of existing polynomial approximation technique [161] and rounding
error analysis [14].

We implemented our algorithm inside the tool Daisy and evaluate it on several embed-
ded, scientific computing and machine learning kernels. Compared to implementations
using default library functions, our synthesized programs take on average 2.23x less
machine cycles to execute on FPGAs.

Contributions To summarize, this chapter describes the following contributions:

• the first sound performance optimization that replaces elementary function calls
with fixed-point polynomial approximations,

• an experimental evaluation using 13 benchmarks from various application do-
mains,

• a prototype implementation of the synthesis algorithm, which we released as
open-source: https://github.com/malyzajko/daisy/tree/approx.

86

https://github.com/malyzajko/daisy/tree/approx

5.1. Background

5.1. Background

Before describing our algorithm, we briefly review important details about elementary
functions and polynomial approximations. For information on fixed-point arithmetic
and rounding error analysis we refer the reader to chapter 2.

Elementary Functions Elementary functions are defined as mathematical functions
that can be represented by a finite composition of constants, arithmetic operations,
algebraic, exponential and logarithmic functions [160]. They include all trigonometric
functions, exponent and logarithm, and are implemented by standard mathematical
libraries for both floating-point and fixed-point arithmetic. Here, we focus on the
implementation provided and used by Xilinx Vivado compiler [59], which we use in our
experiments and which is widely used for compiling code for accelerators. We note,
however, that our approach is not tied to a particular choice of fixed-point compiler.

Xilinx Vivado supports 32-bit fixed-point implementations for sine, cosine and log-
arithm, and 8 or 16-bit versions of the exponential function. The compiler further
supports automated conversion to floating-point arithmetic, such that floating-point
implementations of elementary function calls can be used within fixed-point arithmetic
programs. These are provided for precisions 16, 32, and 64 bit. Thus, while some
support for elementary functions is provided, it is only available for a small variety of
precisions, effectively limiting optimization options.

Polynomial Approximation in Metalibm

Polynomials are a common choice for approximating complex functions. The approxi-
mation accuracy largely depends on the degree of the polynomial, larger degrees being
more accurate, but incurring a higher execution cost. State-of-the-art tool Metalibm [161]
finds a polynomial of a suitable degree fully automatically. To generate the approxi-
mation, Metalibm requires a specification that consists of an elementary function, an
input domain and a target error which the approximation has to satisfy. It employs
Remez’ algorithm [162], which guarantees the best possible polynomial approximation.
It additionally performs domain splitting [163], which allows different polynomials and
degrees to be used on different parts of the input domain, and supports a number of
further features such as generation of tables for table lookup and range reduction.

Metalibm currently generates double floating-point C implementations which can
outperform highly optimized library implementations [164]. It can be applied to
individual or compound elementary functions as long as they are univariate (Remez’
algorithm only supports univariate functions), though it usually times out after several
hours on more complex compound functions. To summarize, Metalibm generates
efficient individual floating-point approximations, but cannot be applied to entire
programs and it does not support fixed-point arithmetic.

87

5. Optimizing Kernels with Elementary Functions

def xu1(x1: Real, x2: Real): Real = {

2 require(0.01 <= x1 && x1 <= 0.75 && 0.01 <= x2 && x2 <= 1.5)

2 * sin(x1) + 0.8 * cos(2 * x1) + 7 * sin(x2) - x1

4 } ensuring(res => res +/- 4.24e-06)

Figure 5.1.: Example input program with elementary function calls

5.2. Our Optimization Algorithm

We illustrate the optimization process with an example program xu1 shown in Figure 5.1,
which is taken from the benchmark set of the CORPIN project [165]. The input spec-
ification for the optimization consists of: an ideal real-valued algorithm with three
elementary function calls sin(x1), cos(2*x1) and sin(x2), input ranges for variables
in the require clause, and the maximum tolerated absolute error for the program in the
ensuring clause: 4.24e-6.

Given this specification, our goal is to automatically find an optimized program which
approximates the expensive elementary function calls and implements the arithmetic
operations in a suitable fixed-point precision, while respecting the specified error bound.

The specified maximum tolerated error for the program can be seen as a budget, which
has to be distributed between all the different sources of errors in the program, namely
the elementary function approximations as well as the finite-precision arithmetic. Note
that the approximation polynomials themselves have to be implemented in fixed-point
arithmetic as well. In our example we thus need to assign a roundoff error budget to the
four multiplications, two additions and one subtraction of the top-level program, as well
as to the yet unknown polynomial approximations of sin(x1), cos(2*x1) and sin(x2).

Thus, in order to synthesize an approximate program which satisfies the specified
error bound, we need to:

1. distribute the error budget, specified for the whole program, between arithmetic
operations in the top-level function, potentially multiple elementary function calls,
and the finite-precision implementation of the polynomials,

2. find a (piecewise-) polynomial approximation for every elementary function which
stays within limits of the assigned approximation error budget, and

3. assign a finite precision to each arithmetic operation of the top-level function, as
well as the polynomial approximations.

Each of the above challenges involves finding a solution in a large search space, and
the search is furthermore complicated by the fact that individual errors interact in
non-linear and discrete ways. Every error introduced at one point in the program gets
propagated through the remaining part of the computation, in the course of which it
may be magnified, or diminished.

88

5.2. Our Optimization Algorithm

Because we are explicitly aiming to synthesize a more efficient program, we further-
more have to keep in mind the accuracy-efficiency trade off. If we assign a significant
portion of the error budget to elementary function calls, we might need to use a higher,
and thus more expensive, precision for the rest of the operations in order to satisfy the
error budget for the whole program. Thus, performance gained by approximation might
be negated by the need for high finite precision. This is a multiple-objective optimization
task, which is known to be difficult in general.

Previous work provides only partial solutions to some of these challenges, which
only exist in isolation. While Metalibm generates polynomial solutions with guaranteed
bounds, it requires the user to provide range bounds and target errors at the call site
and thus does not consider the full program and error propagation. Additionally,
Metalibm only generates double-precision floating-point implementations. State-of-the-
art rounding error analyzers can assign uniform or mixed fixed-point precisions to
arithmetic computations and function calls but do not consider their approximations.

5.2.1. High-level Algorithm

In this chapter, we provide a complete solution for the above-mentioned challenges and
propose a push-button optimization that takes into account the interactions between
different errors and synthesizes efficient numerical kernels, which are guaranteed to be
accurate up to a specified total error bound. 1

We distinguish two error budgets. The global budget covers errors of elementary
function calls and roundoffs of arithmetic operations in the original program. The
local budget covers the approximation error of individual elementary function calls and
roundoff errors introduced by their polynomial approximations.

Figure 5.2 shows our high-level algorithm. The algorithm operates top-down. It
first distributes the global error budget (subsection 5.2.2), which assigns local error
budgets to individual elementary function calls. The local budget is distributed itself in
a feedback loop between approximation and implementation errors (subsection 5.2.3).
The approximation error, as well as other information obtained using static analysis
is used to call Metalibm to generate polynomial approximations (subsection 5.2.4).
Finally, the implementation error budget is used to assign fixed-point precisions to the
approximation polynomials (subsection 5.2.5). We discuss alternatives to this top-down
approach in subsection 5.2.6.

5.2.2. Distributing the Global Error Budget

Given the global error budget εg we first distribute it to local budgets for each arithmetic
operation, variable and elementary function call, taking into account error propagation.
Our key observation for this distribution is that the accuracy of the elementary function
calls is unlikely to be very different from the other arithmetic operations, otherwise, the

1We optimize for running time, but our algorithm is also applicable to other objectives such as energy,
with an appropriate cost function. We note that running time often correlates with energy.

89

5. Optimizing Kernels with Elementary Functions

Input: S - all variables, arithmetic operations and elementary function calls;

se f - elementary function calls; εg - global error budget

1. ∀s ∈ S assign precision ps wrt. cost of s and εg

2. Based on ps assign local budget εi to all se f

3. ∀se f and k.0 ≤ k ≤ 5 REPEAT:

• Split εi into εi_approx and εi_ f p, for k = 0 εi_approx = εi_ f p, k ≥ 1: εi_ f p =

εi_ f p ◦ δ, where δ = εi/2k+1, ◦ ∈ {+,−}
• Call Metalibm to generate a polynomial approximation wrt. εi_approx

• Generate a finite-precision implementation, such that e f p ≤ εi_ f p

• Compute cost ck of the obtained finite-precision implementation ik

• Consider following cases:

– ck > ck−1: if k = 1 choose the opposite ◦ ∈ {+,−}, else RETURN ik−1

– ck = ck−1: if k = 1 REPEAT, else RETURN ik

– ck < ck−1: if k < 5 REPEAT, else RETURN ik

Figure 5.2.: High-level synthesis algorithm

errors they introduce would dominate the overall error. Based on this observation, we
treat the approximation errors introduced by elementary functions as a kind of roundoff error of
a given finite precision. With this assumption, we can leverage a precision assignment
algorithm to distribute the global error budget.

In particular, we use the two assignment strategies implemented in the tool Daisy,
which provide a uniform- or mixed-precision assignment. They assign a fixed-point
precision to every arithmetic operation and elementary function call. For elementary
functions, we interpret the associated roundoff error with this fixed-point format as the
local error budget.

Daisy’s uniform precision assignment performs a linear search and selects the smallest
uniform precision which satisfies the provided overall error bound. Mixed-precision
tuning is more involved, as it introduces cast operations which incur a certain cost.
Unlike uniform precision assignment, mixed-precision tuning thus requires a cost
function to choose between efficient programs. However, at this point, we do not know
the actual implementation of the elementary function approximations. Furthermore,
the performance of fixed-precision implementations on an accelerator depends on the
compilation algorithm, which is a highly complex, and generally unknown function (e.g.
the commercial Xilinx Vivado compiler). Thus the cost function has to estimate the cost
of elementary function calls and arithmetic operations as well as possible.

We extend Daisy’s mixed-precision tuning to be parametric in the cost function, which
allows us to explore different options. We consider three cost functions:

90

5.2. Our Optimization Algorithm

1) an area-based [166] one used by Daisy previously, that predicts the area size of a chip
that would be able to execute the program,

2) one obtained with machine learning, and

3) an equally weighted combination of 1) and 2). The implementations of all cost func-
tions are available under https://github.com/malyzajko/daisy/blob/approx/src/main/

scala/daisy/opt/CostFunctions.scala.

For 2), we learned a multi-layer perceptron regressor [167] from random precision
assignments on a set of benchmarks, for which we obtained actual performance data
by compiling them to an FPGA with Xilinx Vivado. We furthermore extended both
the area-based and the machine-learned cost function so that elementary function calls
incur twice the cost of arithmetic operations. The factor 2 has been found empirically;
it confirms our intuition that the error introduced by the elementary function call is
comparable to errors of arithmetic operations.

We have empirically determined that the weighted combination (i.e. option 3) works
best in general. We have also observed that whether uniform or mixed precision is
best is highly application specific. Thus, our algorithm tries both a uniform and a
mixed-precision assignment with a weighted cost function and returns a better result.
For our running example, uniform precision assignment performs best overall and
assigns precision Fixed(26) to sin(x1), cos(2*x1) and sin(x2). From this, we obtain
local error budgets ε0 = ε1 = ε2 = 5.96e-8.

5.2.3. Distributing the Local Error Budget

Once a local error budget εi is assigned to each individual elementary function call, we
have to decide how much of εi will be spent on the approximation εi_approx and how
much on the finite-precision implementation of the approximation polynomial εi_ f p.

To find an optimal split between the two local budgets we use a refinement loop
guided by the cost function. We start with an equal split, i.e. εi_approx = εi_ f p = 0.5εi,
synthesize a polynomial approximation respecting εi_approx and assign finite precision
such that εi_ f p is satisfied (see sections below). We then estimate a cost c0 of the obtained
implementation using a cost function.

Then, our algorithm increases εi_ f p by δ = εi/2k+1, where k is the number of steps
taken in one direction, and decreases εi_approx respectively. We repeat synthesis of a
polynomial and finite-precision assignment for the new values of εi_ f p and εi_approx and
compute the updated cost ck. The obtained cost ck is used to determine the fitness of the
local error budget distribution. We accept an implementation found at the step k− 1 if
ck > ck−1 ∧ k > 1. In case the cost increases at the very first step, we change the direction
of the search, i.e. decrease εi_ f p, reset k to 0 and repeat the refinement. If the cost has not
changed ck = ck−1 at the beginning of the search (k = 1), we make one more refinement
iteration, for k > 1 the k-th implementation is accepted. If after the k-th step we have
ck < ck−1, this indicates that the performance of the implementation at the step k has

91

https://github.com/malyzajko/daisy/blob/approx/src/main/scala/daisy/opt/CostFunctions.scala
https://github.com/malyzajko/daisy/blob/approx/src/main/scala/daisy/opt/CostFunctions.scala

5. Optimizing Kernels with Elementary Functions

improved. We then repeat the refinement until the (k− 1)-step implementation has been
accepted. To ensure termination we set the maximum number of steps to k = 5.

The quality of refinement depends on how accurately a cost function reflects the actual
compiler behavior, i.e. how well it can predict the circuit that will be implemented. Our
approach is parametric in the cost function, which allows flexibility in optimization
for different objectives and hardware. Similarly to global budget distribution with
mixed-precision tuning, we evaluated an area-based, machine-learned and a combined
cost function, and found that an equally weighted combination of the area-based and
machine-learned cost function had best performance overall.

For our running example, the refinement loop needed two iterations for sin(x1),
meaning that the optimal distribution found was ε0_ f p = 3ε0_approx. The corresponding
values are: ε0_ f p =4.47e-8 and ε0_approx= 1.49e-8. For cos(2*x1) and sin(x2) the initial
equal split already had a minimum cost, i.e. εi_ f p = εi_approx = 2.98e-8 for i ∈ {1, 2}.

5.2.4. Synthesizing the Approximation Polynomial

For finding a polynomial approximation of each individual elementary function we
leverage the tool Metalibm. To generate an approximation, we need to specify the
folllowing parameters: a) the elementary function f (x) to be approximated, b) the
domain x ∈ I, on which f (x) will be approximated, c) the assigned local approximation
error budget εi_approx, and d) the maximum polynomial degree. Note that domain I is
not the input domain specified by the user, but the local input domain of the function’s
parameter x. This domain should be computed as tightly as possible, as this may allow
Metalibm to use polynomials of smaller degree or less internal domain subdivisions. In
general, determining these domains is challenging to do manually. Our algorithm uses
static analysis of ranges and finite-precision errors using interval and affine arithmetic
to compute this information fully automatically. Whenever a program contains the same
elementary function call several times, we check whether we have already synthesized
an approximation for a given range and assigned local error budget εi. In this case, we
reuse already generated approximation.

We have empirically found a suitable value for the maximum polynomial degree to be
7. This limit influences how Metalibm refines the search for a suitable polynomial. When
an approximation found at some intermediate step is insufficiently accurate, Metalibm
will either increase the polynomial degree or subdivide the domain and search for
approximations in each subdomain separately. The limit of 7, therefore, does not imply
that all polynomials will have this degree, but only means that the domain of the
function under approximation should be reduced. We leave the remaining parameters
of Metalibm to their default values.

Metalibm generates the approximation as code optimized for double floating-point
precision. Since we target fixed-point precisions instead, most of the implemented
optimizations for range reduction, expression decomposition and meta-splitting are
not applicable to our fixed-point implementations. Our implementation thus does not
reuse the generated C code. Instead, it extracts the abstract syntax tree of the generated

92

5.2. Our Optimization Algorithm

def cos_0_02to1_5_err2_9802322387695312em08(x: Real): Real = {

2 require((0.02 <= x) && (x <= 1.5))

if ((x < 1.165)) {

4 c0 + (c1 + (c2 + (c4 + (c6 + (c7 + c8*x)* x)* x*x)* x)* x)* x*x

} else {

6 let t = (x - 1.33) in

b0 + (b1 + (b2 + (b3 + (b4 + b5*t)* t)* t)* t)* t

8 }

} ensuring (res => res +/- 2.9802322387695312e-08) // finite-precision budget

Figure 5.3.: Approximation polynomial parsed from Metalibm output.

piece-wise polynomial from the code and adds it to our top-level program as a separate
function. The elementary function call is then replaced by the call to the generated
function.

We currently do not support automated range reduction; for some of our benchmarks,
we have reduced ranges manually during preprocessing. In general, many programs
implemented in fixed-point arithmetic will not need automatic range reduction, as many
kernels have by design limited ranges. For other cases, adding the automatic range
reduction is possible with some engineering effort, since we already handle all necessary
operations and have the ranges computed by Daisy.

Figure 5.3 shows the extracted polynomial approximating cos (2*x1) over the input
domain [0.02, 1.5] with an approximation target error of 2.98e-8 for our running example.

5.2.5. Assigning Finite Precision

Once the approximation polynomial has been generated, our algorithm assigns a finite
precision to the generated polynomials. The goal is to find an assignment that satis-
fies the local roundoff error budget εi_ f p, but uses as coarse precision as possible for
performance reasons. The generated polynomials contain branching, but the branches
are always at the top-level. For this simple structure there are no discontinuity errors,
i.e. errors due to diverging control-flow between the finite-precision and real-valued
execution, so that we can safely handle each branch separately.

For assigning the lowest possible finite precision to obtained polynomials, such that
their roundoff error e f p satisfies εi_ f p, we again leverage the uniform or mixed-precision
assignment of Daisy. Finally, we re-run the roundoff error analysis on the whole program,
where elementary function errors are replaced by the sum of e f p and eapprox. This error
is potentially smaller than the originally allocated local error budget, as Metalibm or
the precision assignment usually cannot exhaust the budget due to complex, discrete
constraints. That is, our tool in the end reports the actually achieved error of the final
implementation.

93

5. Optimizing Kernels with Elementary Functions

5.2.6. Alternative Algorithm Designs

Alternatively to the proposed error distribution strategy, we could have designed our
algorithm bottom-up: first assign local error budgets for both approximation and
roundoff errors for elementary function calls, generate their approximations, then
distribute what is left of the global error budget between other operations and variables.
Or, we could first assign an approximation error budget to each elementary function
call, generate approximations, then use the rest of the global error budget to assign
finite-precisions to the entire generated program at once.

We note that for these alternatives it is unclear how to distribute the initial error
budgets. Crucial information about the actual overall error on the polynomials becomes
available only later, when they are implemented. It may happen that the polynomials
have used up too much of the initial error budget and there is not enough left to
implement the arithmetic operations of the original program. In this case, backtracking
would be necessary, which may be costly.

In our top-down approach, we still have to distribute the global error budget in the
first step, but we do so on the top-level program, ensuring that all operations will have a
sufficient portion of the error budget to be implemented in some finite precision (unless
the overall specified error is already too small for the accurate implementation of the
program).

5.3. Experimental Evaluation

We implemented our algorithm on top of the tools Daisy and Metalibm and evaluate
it on several benchmarks from scientific computing, embedded and machine learning
domains. In particular, we answer the following research questions:

RQ1: How do the approximations affect the accuracy/performance trade-off?

RQ2: Can kernels be optimized in reasonable time?

Benchmarks Our set of benchmarks contains programs with up to 5 elementary
function calls in straight-line code (all benchmarks are available open-source2). The
number of elementary function calls for each benchmark is shown in Table 5.2. The
benchmarks predictGaussianNB, predictSVC and predictMLPLogistic are machine learning
classifiers generated by the python scikit-learn library on the standard Iris data set. The
benchmarks forwardk2j* are taken from the Axbench approximate computing bench-
mark suite [168] and compute a forward kinematics expression. We have created the
benchmarks axisRotation*, rodriguesRotation, which rotate coordinate axes and a vector
respectively. The pendulum* benchmarks come from the Rosa project for analysis of
finite-precision code [13]. Finally, benchmarks xu* and sinxx10 are from the CORPIN
project [165].

2https://github.com/malyzajko/daisy/tree/approx/testcases/approx

94

https://github.com/malyzajko/daisy/tree/approx/testcases/approx

5.3. Experimental Evaluation

Experiments setup We evaluate our approach on a commonly used FPGA board
(Xylinx Zync 7000 with 10ns clock period), but note that our technique is not specific to
any particular hardware and believe that our results qualitatively carry over. Generation
of optimized programs has been performed on a MacBook Pro with an 3.1 GHz Intel
Core i5 processor and 16 GB RAM, macOS Mojave 10.14.

We perform all experiments for two different sets of target errors—small and large.
To obtain these error bounds, we first run roundoff analysis on the benchmarks with
uniform fixed-point precision with 32 bits. Small and large target errors are by two
orders of magnitude smaller, resp. larger than these computed roundoff errors. Both
target errors are reported in Table 5.1.

For performance measurements we compile our generated programs using Xilinx
Vivado HLS v.2019.1, which reports the minimum and maximum number of machine
cycles of the compiled design, and thus provides an exact performance measurement.
We do not measure actual running time as such a measurement is necessarily noisy.

The baseline programs against which we compare correspond to the programs a user
can implement with today’s state of the art: by running Daisy on the input program
without approximations to assign a uniform precision to all operations and then by
compiling the generated code using Xilinx’ elementary function library. The compiled
programs can use either the fixed-point or the floating-point versions of library functions
(this is decided by the compiler). For our baseline, we evaluate all valid versions (those
which satisfy the overall error bound), and use the smallest number of cycles obtained.

5.3.1. RQ1: Accuracy vs Performance

The main goal of our optimization is to increase performance, therefore, we first evaluate
performance improvements.

Performance Improvements

Table 5.1 compares the running time in terms of machine cycles of programs synthesized
by our approach (columns 3 and 7) with the baseline implementation (columns 2 and 6)
for small and large target errors. A pair ‘52-60’ denotes minimum and maximum cycles;
whenever these values coincide, we show only one number. We report the number of
cycles for the fastest approximated program, obtained by distributing the global error
budget using either uniform or mixed-precision assignment.

For all benchmarks, except predictGaussianNB, we observe a significant performance
improvement when elementary function calls are replaced with piecewise-polynomial
approximations. Our optimized approximate programs run on average 2.23x faster than
the baseline, and up to 4.64x (4.46x) faster for small (large) target errors respectively.

For 10 out of 13 of the benchmarks, the largest speedup was achieved when using
uniform precision assignment for both top-level program and polynomial approxima-
tions. For three predict* benchmarks the best performance has been achieved using
mixed-precision tuning. We believe that mixed-precision can be improved further by

95

5. Optimizing Kernels with Elementary Functions

Target errors small large
Benchmark baseline approx target actual baseline approx target actual

axisRot.X 52-60 24 1.49e-10 7.52e-11 30-34 14 1.49e-6 5.5e-7
axisRot.Y 52-60 24 1.49e-10 7.52e-11 30-34 14 1.49e-6 5.5e-7
fwdk2jX 97-113 23 8.39e-11 2.98e-11 30-34 24 8.39e-7 2.41e-7
fwdk2jY 94-110 22 4.89e-11 1.49e-11 30-34 12 4.89e-7 1.06e-7
xu1 97-113 43 1.89e-10 2.47e-10 53-61 14 1.89e-6 1.93e-6
xu2 96-112 44 1.88e-10 2.3e-10 54-62 13 1.88e-6 1.86e-6
rodriguesRot. 52-60 25 1.70e-8 1.11e-8 31-35 14 1.70e-4 9.07e-5
sinxx10 52-60 28 2.51e-9 1.61e-9 31-35 15 2.51e-5 1.26e-5
pendulum1 33-37 27 4.79e-11 3.74e-11 32-36 16 4.79e-7 3.06e-7
pendulum2 53-61 26 1.07e-10 8.11e-11 32-36 15 1.07e-6 6.64e-7
pred.Gaus. 84 119-125 4.15e-7 4.07e-7 58 77 4.15e-3 4.08e-3
pred.SVC 22 20-28 1.46e-6 1.47e-7 21 21 1.46e-2 6.82e-4
pred.MLPLog. 195 191 2.15e-6 4.14e-10 143 126 2.15e-2 7.21e-7

Table 5.1.: Running time in machine cycles of baseline and synthesized programs, and
error budgets together with the achieved accuracy

using a more accurate cost function. Disabling the refinement loop produced slower
programs for 3 benchmarks and did not change results for the rest. We observed the
largest speedup when using a combination of the area-based and the machine-learned
cost functions.

We noticed that on the benchmark predictGaussianNB the baseline programs run faster
than the synthesized ones. We suspect the reason is that predictGaussianNB repeatedly
calls the log function on slightly different, but largely overlapping, domains. Our
implementation generates a different polynomial for each call, when in this scenario
reusing the code seems to be beneficial. We leave the detection of such cases to future
work. We noticed that the largest improvements are observed for benchmarks with sin,

cos, whereas for the exp function in the predictMLPLogistic improvements are smaller,
and for predictSVC, our approach cannot improve the running time. We suspect this
effect is due to an efficient implementation of exp in the Xilinx math library.

Accuracy Comparison

In Table 5.1 we also show the target errors (columns 4 and 8), as well as the errors of the
best synthesized approximated programs (columns 5 and 9), for both the small and large
error setting. We observe that not all of the available error budget is used up by our
optimized programs. This is to be expected, as the space of precisions is not continuous.
The coarser a finite precision gets, the greater becomes the difference between roundoff
errors computed for two neighboring precisions, and a leftover portion of the budget
might be insufficient for implementing the program with precision even 1 bit lower. This
is reflected in our experimental results, where small error budgets are used up more

96

5.3. Experimental Evaluation

Benchmark
elem.

fnc calls
Small errors Large errors

time # arith. ops time # arith. ops

axisRot.X 2 3m 13.26s 142 41.54s 48
axisRot.Y 2 3m 1.61s 142 40.66s 48
fwdk2jX 2 5m 56.5s 222 1m 35.33s 102
fwdk2jY 2 1m 29.16s 71 24.75s 24
xu1 3 3m 50.24s 168 50.97s 61
xu2 3 6m 56.96s 212 1m 31.22s 73
rodriguesRot. 2 2m 40.15s 126 30.73s 45
sinxx10 1 1m 38.28s 71 25.8s 24
pendulum1 1 2m 18.36s 71 27.64s 22
pendulum2 1 1m 43.24s 71 23.98s 24
pred.Gaus. 5 1h 45m 27.7s 708 4m 26.231s 255
pred.SVC 1 21m 33.35s 247 1m 51.62s 95
pred.MLPLog. 1 3h 19m 48.57s 399 57m 29.185s 170

Table 5.2.: Size of the generated polynomials and the running times for optimization

than large ones: for small error budgets the average usage is 62.33%, while for large
budgets it is only 41.12%.

Size of Generated Approximations

Replacing library function calls with locally defined functions naturally increases the
size of the program. Table 5.2 shows the number of elementary functions and the size of
the generated polynomials (sum over all elementary functions) per benchmark (for the
setting with the largest performance improvement, as reported in Table 5.1). Factors that
influence the reported total size are: a) the number of elementary function calls with
distinct input ranges and local error budgets, because we generate an approximation
for each of them; b) the local error budget and thus approximation error budget, which
influences the size of each polynomial inversely, the smaller the error budget, the larger
the polynomial satisfying this budget needs to be. The largest generated program has in
total 708 arithmetic operations, which is still reasonable for embedded systems.

RQ1 Conclusion: Based on our experimental data, we conclude that our optimization
is efficient: by using on average half of the user-defined error tolerance (budget)
our optimization generated 2.23x faster kernels. Our optimization performs best on
programs with transcendental functions, in particular when original programs contain
multiple calls to the same function with the same arguments’ ranges.

5.3.2. RQ2: Optimization Running Times

Table 5.2 shows the synthesis times of our implementation. As expected, our optimiza-
tion is significantly slower on programs with small target errors than with large ones.

97

5. Optimizing Kernels with Elementary Functions

Smaller target errors usually require polynomial approximations with larger degrees
and result in larger programs. Additionally, to satisfy smaller roundoff error bounds,
finite-precision tuning has to consider higher precisions, thus searching a larger space
for a suitable precision assignment.

We expect the optimization to be run once before a program is deployed onto the chip.
Running time of a few hours is a reasonable price to pay for the performance boost
when running the optimized programs.

RQ2 Conclusion: Our experiments confirm that the optimization running time is
inversely proportional to the size of the assigned error budgets. Optimizing kernels
with small target errors is on average 5x slower than with large budgets (while
the smaller budgets are on average 7270x smaller than the large ones). However,
optimization times for both budgets are reasonable for a one-time cost.

5.4. Related Work

Approximate Computing Our optimization trades acceptable accuracy loss for re-
source savings. This idea has been extensively pursued under the name of approximate
computing [156, 169]. Techniques in this domain span all layers of the computing stack
from approximate hardware [170] to software-based approximations such as skipping
loop iterations [171], removing synchronization [172], delaying control computations
for embedded systems plants [58], lossy compression of images [173], neural network
quantization at the training [174] and deploying stage [175].

Most related to our work from this domain is another combination of Daisy and
Metalibm [176]. However, it only considers floating-point arithmetic and, unlike our
tool, uses the polynomials generated by Metalibm directly without optimizing them.
A more recent tool OpTuner [177] also considers floating-point elementary function
implementations with reduced accuracy. Unlike our approach and the combination of
Daisy and Metalibm for floating points, OpTuner starts from a collection of different
approximations and evaluates which of them are best suitable for the program un-
der optimization. Instead of producing a single optimized implementation, OpTuner
outputs a Pareto curve that depicts the accuracy/performance trade-off for several
best combinations and leaves the final choice of the optimal solution to the developer.
One more approximate computing tool Chisel [24] optimizes arithmetic programs by
selecting which operations can be run on approximate hardware. Its error analysis is a
slightly simplified version of ours in this work. While Chisel considers also probabilistic
specifications, it only optimizes arithmetic operations.

Apart from Metalibm there exist other approximation generators, such as FloPoCo [178]
that optimizes the implementation of mathematical operators to a specific FPGA design
and then generates the VHDL code. If we were to replace Metalibm with FloPoCo in
our algorithm, it would require transforming the code optimized for VHDL into our
intermediate representation, which may offset some of the improvements suggested by
FloPoCo.

98

5.4. Related Work

Other work allows programmers to specify several versions of a program with different
accuracy-efficiency tradeoffs, and let a specialized compiler autotune a program to a
particular environment [179]. While this approach handles programs of larger size
than ours, it requires the library writer to provide the different versions, together with
accuracy specifications. A programming framework Green [180] focuses on energy-
efficient implementations that are re-calibrated dynamically to use approximations.
However, Green uses sampling to check for accuracy loss and only provides statistical
(unsound) guarantees.

Approximations can be particularly efficient when run on custom hardware, such
as neural processing units, for which one can learn an approximate program which
mimics the original imperative one [181]. Verification is again performed only on a
limited set of test inputs. STOKE is an autotuner that operates on low-level machine
code and has also been applied to generate approximate floating-point programs [182].
Its scalability is limited as it considers low-level code, and furthermore it also cannot
guarantee accuracy.

Finally, approximations can naturally also be applied manually, e.g. for obtaining
efficient, low-resource heartbeat classifiers [183]. This particular work has approximated
an exponential function by a piece-wise linear function, but due to the manual process
without accuracy guarantees.

Numerical Program Analysis We reviewed sound rounding error analysis tools in sub-
section 2.2.2; all of them assume fixed library implementations when analyzing programs
with elementary functions and do not optimize for efficiency. Consequently, mixed-
precision tuning approaches guided by these analyses achieve limited performance
improvements when dealing with elementary function calls, especially those that only
consider floating-point precisions [23,25]. Our presented work leverages the much larger
tradeoff space of fixed-point arithmetic and elementary function approximations and
achieves significantly larger performance savings.

Mathematical Libraries While the goal of our approach is to reduce the accuracy of
elementary function calls, the results are correct modulo assigned error budget. Previous
work has also verified accuracy of existing library functions [184] and compared different
library implementations [185]. Alternatively, libraries have been designed with correct
rounding in mind for single [186] and double floating-point precision [187] and for
several alternative precisions [26].

Program Synthesis Program synthesis [188] aims to automatically generate programs
from (possibly declarative) specifications, and has had considerable success to generate
programs from a variety of domains [189–196]. One can view optimizations as a form
of synthesis, where the original program and an optimization metric form an input
specification. However, the vast majority of the synthesis techniques require that the

99

5. Optimizing Kernels with Elementary Functions

generated program satisfies the user-given specification exactly. Furthermore, most
approaches do not explicitly optimize for a non-correctness metric.

A branch of program synthesis – automated repair – allows to modify parts of a
program to satisfy given criteria. The tools AutoRNP [20], Herbie [19, 197] and the tool
by Wang et.al. [21] repair numerical programs by detecting an input subdomain that
triggers high floating-point errors and rewriting expressions with approximations on
this subdomain. Opposite to our approach, repair tools aim to increase accuracy and
often introduce time overhead for repaired programs [20]. A recent modification of
Herbie [197] combines accuracy optimization with precision tuning and improves the
running time as well.

The Metasketches framework [198] searches for an optimal program with smallest
cost according to a cost function. It has been used for synthesizing polynomial approx-
imations, however, the accuracy of the generated programs is only verified based on
a small set of test inputs, and thus without accuracy guarantees. In contrast, Metal-
ibm’s polynomial approximation algorithm is guaranteed to find the best polynomial
approximation, and our entire approach guarantees end-to-end accuracy.

Dynamic Optimizations Apart from the already mentioned dynamic tools AutoRNP,
Herbie and the work of Wang et.al, multiple other optimizers improve performance
metrics with precision tuning: HiFPTuner [77], FloatSmith [10], the tool by Lam et.
al [78], Precimonious [51], STOKE-Float [182], TAFFO [79]. Furthermore, precision
tuning has also been applied to improve accuracy of mathematical functions with
FPDebug [199]. However, these tools are guided by dynamic analysis and inherently
cannot provide soundness guarantees unless they are additionally combined with sound
methods [200, 201].

5.5. Conclusions and Future Work

We presented a performance optimization for numerical kernels with elementary func-
tion calls. Our optimization trades off a controlled portion of accuracy (the assigned
error budget) for performance and replaces elementary function calls with piece-wise
polynomial approximations. Our main contribution is the algorithm that automatically
distributes the error budget among all sources of errors in the program: rounding errors
on the operations in the original program, approximations of elementary functions and
rounding errors in the approximating polynomials. The key observation that inspired
our algorithm is that errors of different origins behave similarly and therefore can be
distributed together.

Using Up Error Budget Another observation we made was that due to the discrete
nature of errors in finite precision implementations, it is difficult to use up the whole
error budget. It is more challenging for larger budgets because the difference in accuracy
between neighboring precisions is larger when the precision is already coarse.

100

5.5. Conclusions and Future Work

However, there are ways to improve the usage of the error budget. For instance, when
a polynomial is already fixed and the approximation error is known, if it is smaller than
the assigned budget, we could add the leftover part to the finite-precision budget.

Secondly, we could improve the polynomial approximation generation by implement-
ing range reduction [163, 177] for fixed-point approximations. The range reduction in
Metalibm is designed specifically for floating points and cannot be directly applied to
fixed points. Moreover, since we target numerical kernels to be executed on FPGAs,
the optimal approximation for fast executions may look different from those targetting
regular CPUs and floats [202].

Equivalent Function Calls Another way of improving approximations is to scale back
on how much we customize the polynomials for each call. Our experimental evaluation
revealed that our method can be improved on benchmarks with multiple calls of the
same function. Currently, we only reuse the approximating polynomials for repeated
function calls if both local error budget and the range of the arguments match exactly for
the call occurrences. For the benchmark predictGaussianNB this strategy does not bring
much, because the repeated calls to the log function have slightly different argument
ranges. This can be improved by reusing the cached approximations more often, for
instance, by introducing a margin around arguments’ ranges to make several function
call occurrences virtually equivalent. However, one has to choose the margin magnitude
carefully, since too small of a margin will keep similar calls apart, and a too-large margin
may significantly increase the input domain for the approximation and require complex
and expensive-to-evaluate polynomials.

Handling Complex Control-Flow Another direction of future work is to extend our
optimization method beyond straight-line kernels. Currently, we only optimize the
kernels because the error budget distribution algorithm requires an appropriate finite-
precision assignment method that is not available for complex control-flow statements.
Even a uniform precision assignment is challenging in the presence of loops and
conditionals since it depends on the rounding error analysis, which is a difficult problem
in itself.

The problem is even more complex for mixed precision as different iterations may
require different precision assignments. One possible solution would be to assign the
precision to stay constant across iterations, but it may be suboptimal, because values’
magnitudes may differ significantly across iterations. Another possibility would be to
detect the iterations that require extraordinarily fine (respectively, coarse) precision and
move them out of the loop. This, however, may lead to splitting a single original loop
into several loops and make the end code less readable.

101

6. Meta-Optimization: Regime Inference

Existing sound optimizations of finite-precision programs target different sides of the
accuracy-performance trade-off spectrum. For instance, our approximation synthesis
method, described in the previous chapter, gives up a controlled amount of accuracy for
better performance. A similar principle is the basis of mixed-precision tuning [22, 23, 51]
that reduces accuracy by using low precision on a subset of operations and keeps the
overall error bound below some user-specified value. On a different side of the spectrum
are optimizations that target accuracy, for instance, by rewriting them [19–22, 49] using
real-valued identities or approximations.

Since rounding errors depend on the magnitude of an expression’s variables, such
optimizations are necessarily specialized for a particular user-defined input domain.
However, most current tools consider the specified input domain as a whole, that is,
they generate one optimized expression for the entire domain. This often leads to
suboptimal results, because rounding errors typically vary across the input domain, and
so the optimized expression may not be the ideal choice for a large part of the input
domain. Recall, for instance, the program carthesianToPolar_radius and its error profile
(for uniform double precision) that we presented earlier and depict again in Figure 6.1.
The plot shows the absolute errors of the function’s results for different inputs; darker
color depicts larger rounding errors. The plot indicates that inputs from the top right
corner induce higher rounding errors, and thus sub-domains closer to the top-right
corner will require a higher (mixed) precision assignment than bottom-left parts of the
domain, and may require a different rewriting than other parts of the domain.

A few recent tools [19–21] propose to generate regimes—a partition of the input domain
into sub-domains, each with a different optimized version of the program. These tools
apply rewrites in order to repair high rounding errors in certain parts of the domain.
While they can successfully improve programs that suffer from large numerical issues,
they estimate errors using a dynamic analysis (sampling) and thus do not provide
accuracy guarantees. Furthermore, they are not immediately applicable for optimizing
numerically stable code, i.e. without particularly large rounding errors.

In this chapter, we present the first regime inference for sound floating-point optimiza-
tions1, i.e. for optimizations whose accuracy analysis computes guaranteed worst-case
error bounds for all possible (specified) inputs. Our approach partitions the input do-
main and optimizes each part separately with an existing sound mixed-precision tuning
or rewriting optimization routine, improving performance or accuracy, respectively. By
doing so, we provide a significant benefit also for numerically stable code.

1We discuss extensions to other formats later in section 6.6.

103

6. Meta-Optimization: Regime Inference

1 def carthesianToPolar_radius(x: Real, y: Real): Real = {

require(((1 <= x && x <= 100) && (1 <= y && y <= 100)))

3 sqrt(((x * x) + (y * y)));

} ensuring(res => (res +/- 2.51e-14))

(a) Source code of carthesianToPolar_radius. The
require clause specifies the input domain.

Error magnitude legend:

0 20 40 60 80 100
x

0

20

40

60

80

100

y

[4.1e-22, 5.8e-15]
[5.8e-15, 1.2e-14]
[1.2e-14, 1.7e-14]
[1.7e-14, 2.3e-14]
[2.3e-14, 2.9e-14]

0 20 40 60 80 100

x

0

20

40

60

80

100

y

error: [4.1e-22,2.9e-14]

(b) Error profile for
carthesianToPolar_radius

Figure 6.1.: Example program carthesianToPolar_radius that computes polar ‘radius’
from Cartesian coordinates

Inferring effective regimes for sound optimizations is nontrivial. In particular, we
cannot simply take partitions derived by a dynamic analysis from one of the existing
tools [19–21]. While the error profile in Figure 6.1b, which was also obtained with a
dynamic analysis, appears to suggest certain partitions, these do not necessarily lead
to partitions for which sound optimizations will provide any improvement. This is
because we need to find regimes for which a sound optimization routine can prove that
a particular error bound holds. Since sound error analyses necessarily abstract rounding
errors, they commit over-approximations that are hard to predict a priori, and that
make it difficult to guess a regime by sampling. Furthermore, the space of possible
optimizations is highly discontinuous. For instance, mixed-precision tuning considers
only a small number of distinct precisions for each variable, and changing the precision
of only a single variable can have a disproportionate impact on the overall error (recall
Figure 1.1b).

In principle, there are infinitely many possible regimes and enumerating all of them
is infeasible, especially because today’s sound optimizations are relatively expensive.
Furthermore, each domain split results in at least one conditional statement in the final
generated code, which introduces an additional cost at runtime and decreases code
readability. Moreover, for multivariate programs splitting along one variable’s domain
can be more beneficial than splitting along the other.

Due to the inherent complexity, we do not attempt to infer optimal regimes. Instead,
we focus on finding regimes with interval sub-domains and combine two heuristic ap-
proaches inspired by techniques that have been successful in the area of floating-point
analysis. Interval sub-domains allow to keep the regimes’ cost low, as lower and upper
bounds of each variable can be efficiently checked for at runtime.

104

Our algorithm first starts generating regimes bottom-up. Inspired by interval subdi-
vision [14, 39], it splits the input domains of all variables to create a fixed number of
sub-domains. It optimizes each separately and then attempts to merge sub-regimes with
the same optimized expressions. Next, the algorithm proceeds in a top-down fashion
inspired by branch-and-bound techniques [15]. Starting with the sub-domains generated
by the bottom-up phase, the algorithm iteratively splits some of them on-demand, in
each iteration selecting the variable to split based on the optimization objective. This
combined technique allows to explore the space of regimes in both breadth as well as
depth and avoids getting stuck at a local optimum.

Our regime inference algorithm is generic in the optimization and the optimizer. In this
chapter, we instantiate it with the currently available sound optimizations for floating-
point arithmetic: rewriting and two mixed-precision tuning routines from Daisy [22] and
FPTuner [23]. These tools can optimize straight-line numerical expressions consisting
of arithmetic and elementary operations. Unfortunately, no sound tool exists that
can directly optimize loops since even bounding rounding errors in loops is a largely
unsolved orthogonal problem [13]. That said, errors in embedded control loops are often
handled with control-theoretic techniques [36], so that the loop body can be optimized in
isolation, and thus by our approach. For loops with a limited number of iterations, our
approach can be applied to the unrolled loop, at the expense of (significantly) increased
program size.

Here, we only consider IEEE-754 floating-point arithmetic, which is supported by
both Daisy and FPTuner. However, our approach is also applicable to other arithmetics.
Provided a suitable hardware-specific cost function, our algorithm can infer regimes
for fixed-points programs (e.g., using Daisy, FPTuner does not support fixed-point
arithmetic). For more complicated arithmetics, like mixed integer and finite-precision
programs, currently there are no tools to perform sound optimizations directly (i.e.
without approximating integers by floating-points), but once such tools appear, they can
be immediately used within our framework (together with an appropriate cost function).

We evaluate our approach on 100 benchmarks from the standard benchmark set
FPBench [84] and show that our algorithm infers regimes that on average improve
performance by 65% and accuracy by 54%, compared to Daisy’s whole-domain opti-
mizations, and by 52% compared to FPTuner’s mixed-precision optimizations.

Contributions In summary, this chapter describes the following contributions:

• we present the first sound regime inference algorithm,

• that we implement in a prototype tool called Regina, available open-source at
https://github.com/malyzajko/daisy/regimes, and

• extensively evaluate it using mixed-precision tuning and rewriting optimizations
and show that regime inference is highly beneficial for sound floating-point
optimizations.

105

https://github.com/malyzajko/daisy/regimes

6. Meta-Optimization: Regime Inference

def azimuth(lat1: Real,lat2: Real,lon1: Real,lon2: Real):Real = {

2 require(((0.0 <= lat1) && (lat1 <= 0.4) &&

(0.5 <= lat2) && (lat2 <= 1.0) &&

4 (0.0 <= lon1) && (lon1 <= 3.142) &&

(-3.142 <= lon2) && (lon2 <= -0.5)))

6

val dLon: Real = (lon2 - lon1)

8 val slat1: Real = sin(lat1)

val clat1: Real = cos(lat1)

10 val slat2: Real = sin(lat2)

val clat2: Real = cos(lat2)

12 val sdLon: Real = sin(dLon)

val cdLon: Real = cos(dLon)

14 atan((clat2 * sdLon) / ((clat1 * slat2) - ((slat1 * clat2) * cdLon)))

} ensuring((res) => (res +/- 4.57e-14)) // 0.5x double error

16 // ensuring((res) => (res +/- 9.15e-15)) // 0.1x double error

Figure 6.2.: Source code of the azimuth benchmark

6.1. Example

Before explaining our regime inference algorithm in detail, we provide a high-level
overview. Consider the function azimuth in Figure 6.2 that computes the angle between an
observer and a point of interest with a reference plane. Similar computations frequently
appear in domains such as cyber-physical systems or robotics, where they are executed
often, so should run fast, but where they may also need high accuracy. The example
is specified as a real-valued function, together with a precondition (require clause on
line 2) that bounds the possible input values, as well as a postcondition (the ensuring

clause in line 15) that specifies a maximum absolute error on the result. In practice, the
input domain would be, for instance, determined from valid ranges of sensors, and the
maximum allowed error from the sensitivity of actuators, or stability proofs in the case
of controllers [36].

Regina’s goal is to find an effective partition of the program’s input domain such that
the program can be soundly optimized on each sub-domain separately, leading to an
overall reduction in a given cost metric. In this paper, we consider two optimizations,
mixed-precision tuning and rewriting, that consider running time and accuracy of the
generated code as the cost metric, respectively. We call an optimized expression together
with the sub-domain it has been optimized on a sub-regime. A set of non-overlapping
sub-regimes covering the whole input domain is called a regime, and the size of regime
denotes the number of sub-regimes.

Mixed-Precision Tuning Recall mixed-precision tuning optimization [22, 23, 51] that
assigns (potentially different) finite-precision types to each variable and arithmetic

106

6.1. Example

operation to increase performance while satisfying a user-defined error bound. Suppose
that a user has specified that the worst-case absolute error of the function azimuth should
be 4.57e-14. The sound roundoff error analysis tool Daisy [14] determines a worst-case
error of 9.15e-14 when all operations are in uniform double floating-point precision,
which is not enough to meet the target error bound. Since the error is close to the target
error (less than an order of magnitude), it might be enough to increase the precision
for only a subset of variables. Unfortunately, when Daisy’s mixed-precision tuning
algorithm [22] optimizes the program on the whole specified input domain, it assigns
quad precision 2 to all but the input variables. The resulting program is as slow as the
uniform quad precision implementation.

Our regime inference tool Regina, parametric in the optimization and optimizer, can
be used on top of Daisy’s mixed-precision tuning to find a faster program than Daisy
alone. First, Regina subdivides the input domain into 24 sub-domains, and runs Daisy’s
mixed-precision tuning on each of them separately. This optimization results in the
same precision assignment on several sub-domains, which are subsequently (partially)
merged. For the target error of 4.57e-14, the 24 original sub-domains are merged into 5.
In a second step, our top-down phase starts from these 5 sub-domains and attempts to
find additional splits that reduce the (abstract) cost. In our example, Regina finds one
more beneficial split and returns 6 sub-domains. In fact, Regina finds that only a single
sub-domain (out of the resulting 6) actually requires mixed-precision:

lat1 ∈ [0.2, 0.4], lat2 ∈ [0.5, 0.625], lon1 ∈ [2.094, 3.142], lon2 ∈ [−3.142,−1.821]
Regina encodes the sub-domains using if-then-else statements. We show the structure

of the resulting generated program in Figure 6.3a, and the code generated for the one
mixed-precision sub-domain in Figure 6.3b. The remaining 5 sub-domains use uniform
double precision. The generated C code meets the user-specified error bound and runs
93% faster than the mixed-precision implementation that Daisy alone generates.

For a tighter error bound of 9.15e-15 as on line 16 in Figure 6.2 (an order of magnitude
smaller than the uniform double error), Regina generated 11 sub-regimes of which
5 need mixed precision and the remaining ones can still be implemented in uniform
double precision. The bottom-up phase again generates 24 sub-domains initially, and
merges these into 10. The top-down phase subsequently splits one of these so that 11
sub-regimes are generated overall. The generated code runs 84% faster than the uniform
quad implementation that Daisy alone generates.

Rewriting We further instantiate Regina’s regime inference with the rewriting opti-
mization (also provided by Daisy) that attempts to improve the worst-case absolute
error bound of an expression using real-valued equivalence rules (i.e. the cost metric
is accuracy). For our example, such rewriting can be applied on the computation on
line 14 in Figure 6.2. Assuming uniform double precision, Daisy’s rewriting applied to
the whole domain is only able to improve the maximum error by 1%.

2IEEE quad precision has 128 bits, but libraries, such as GCC’s quadmath [203] that we use often provide
slightly less precision for increased performance.

107

6. Meta-Optimization: Regime Inference

if ((lat2 <= 0.75)) {

2 if ((lat2 <= 0.625)) {

if ((lon1 <= 2.0943951)) {

4 // uniform double

} else {

6 if ((lon2 <= -1.820796325)) {

if ((lat1 <= 0.2)) {

8 // uniform double

} else {

10 // **mixed-precision**

}

12 } else {

// uniform double

14 }

}

16 } else {

// uniform double

18 }

} else {

20 // uniform double

}

(a) Structure of generated code

1 __float128 dLon = ((__float128)lon2 - (__float128)lon1);
__float128 slat1 = sinq((__float128)lat1);

3 __float128 clat1 = cosq((__float128)lat1);
__float128 slat2 = sinq((__float128)lat2);

5 __float128 clat2 = cosq((__float128)lat2);

double sdLon = (double)sinq(dLon);

7 double cdLon = (double)cosq(dLon);

double _tmp3 = (double)(clat2 * (__float128)sdLon);

9 double _tmp1 = (double)(clat1 * slat2);

double _tmp = (double)(slat1 * clat2);

11 double _tmp2 = (_tmp * cdLon);

double _tmp4 = (_tmp1 - _tmp2);

13 double _tmp5 = (_tmp3 / _tmp4);

return atan(_tmp5);

(b) Mixed-precision sub-regime

Figure 6.3.: Sub-regimes in C generated for azimuth benchmark

Regina generates 23 sub-regimes with 11 unique rewritten expressions, including, for
instance:

1 sdLon * (clat2 / ((slat2 * clat1) - (clat2 * (cdLon * slat1))))

2 (clat2 * sdLon) / ((clat1 * slat2) - (slat1 * (clat2 * cdLon)))

3 clat2 * (sdLon / ((clat1 * slat2) - ((slat1 * cdLon) * clat2)))

The inferred regime has only 11 distinct rewritings, because sub-regimes with the same
rewritten expression are not necessarily neighboring each other and thus cannot be
merged. Note that we did not limit the number of branches for this optimization, since
we optimized for accuracy, though it is straight-forward to customize Regina to limit
the number of branches, if needed. We observed the cost of our simple conditional
branches to be very small, especially compared to the additional cost that rewriting
may introduce due to additional operations (e.g. when applying distributivity). The
generated code has a (proven) worst-case error that is 36% smaller than the expression
which Daisy generates for the whole domain.

108

6.2. Regime Inference Algorithm

Regina

Optimization

Program

Cost Fnc

Bottom-Up
Phase

Simple
Search

Genetic
Search

Top-Down Phase

Code
Generation

Optimized
Program

Figure 6.4.: Regime inference algorithm

6.2. Regime Inference Algorithm

We focus on sound floating-point optimizations that guarantee or optimize a worst-
case rounding error bound that holds for all specified inputs. Since the magnitude of
rounding errors heavily depends on the domain of an expression’s variables, different
domains allow for different optimizations. While it is possible to partition an input
domain using complex expressions, in this work we focus on sub-domains described by
intervals for two main reasons. First, at runtime a program needs to evaluate partition
conditions to decide which optimized version (sub-regime) to execute. Evaluating
complex expressions takes longer than a simple interval bounds check, and may offset
the performance improvements of each sub-regime (when optimizing for performance
with mixed-precision tuning). Lastly, complex conditional expressions may themselves
introduce rounding errors, for which we would have to account; which by itself is a
non-trivial task [38]. Secondly, the rounding error analysis in state-of-the-art sound
numerical programs’ optimizers [14, 23] is fundamentally interval-based and thus does
not leverage non-interval sub-domains well.

Interval sub-domains can be checked for efficiently with conditional statements
(see subsection 6.2.3). While such checks incur a negligible cost compared to the rest
of the execution, we nonetheless want to limit the number of sub-regimes—to improve
readability of the generated code and to reduce the running time of our regime inference
procedure itself.

Regina’s algorithm works in two phases: first running the bottom-up phase to
explore the sub-domains up to an initial depth, and then the top-down phase that
explores the space further, on demand, with one of two available search procedures.
Figure 6.4 illustrates the high-level algorithm. The bottom-up phase, explained in de-
tail in subsection 6.2.1, exhaustively subdivides the input space and then attempts to
merge sub-regimes with equal optimizations. The top-down phase, explained in subsec-
tion 6.2.2, includes two alternative search procedures, each of which divides the given
domain on demand, guided by a (static) cost function. Both phases are motivated by

109

6. Meta-Optimization: Regime Inference

two techniques that have been successful in reducing over-approximations in rounding
error analysis in the tools Daisy and FPTuner, respectively.

Our approach is generic w.r.t. the floating-point optimization and the cost metric that is
being optimized. In the following, we will thus use the function optimize to stand for some
optimization routine that takes as input a domain, an expression and possibly a target
rounding error bound and that returns a new, optimized expression. The cost function
takes an expression and its domain as input and returns a numeric value reflecting the
optimization objective; we will assume that lower cost is better. In section 6.3, we show
how we instantiate these algorithms with two different optimizations, mixed-precision
tuning and rewriting, that optimize performance and accuracy, respectively.

We illustrate our algorithm using a running example, in which we infer a regime
for mixed-precision tuning on the carthesianToPolar_radius function from Figure 6.1a. In
our example, the optimize function uses Daisy’s mixed-precision tuning, and cost stati-
cally estimates the abstract performance of each tuned regime of carthesianToPolar_radius.
cost does not estimate the actual running time, but rather an abstract cost that only
needs to distinguish which of two regimes is likely to be faster. The detailed instan-
tiation of optimize and cost for mixed-precision tuning is described in subsection 6.3.1.
In contrast to our approach, Daisy’s mixed-precision tuning alone applied on the
carthesianToPolar_radius’s whole input domain (x∈ [1.0, 100.0], y∈ [1.0, 100.0]) did not
result in any measurable performance improvements.

6.2.1. Bottom-Up Phase

The regime inference algorithm starts by exploring possible regimes in a bottom-up
phase. It is inspired by interval subdivision, a technique that has been used in static
rounding error analysis tools to reduce over-approximations [14, 39].

Figure 6.5 shows the pseudo-code of the bottom-up phase. First, it subdivides the
input domain uniformly into smaller pieces and optimizes each one individually. We
split the each variable’s interval into equal pieces, as it is not obvious up front, i.e.
before running the actual optimization, which sub-division will be beneficial. The
number of initial sub-regimes clearly influences the possible improvements of regime
inference, however, calling optimization on too many sub-regimes is expensive. In our
implementation we currently limit the maximum number of sub-regimes that a method
can generate to 32. Hence, depending on the number of input variables, we subdivide
each variable’s domain between 16 and 2 times3. We found empirically that larger initial
sub-division size only increases the algorithm’s running time, and does not change
resulting regimes significantly. Understandably, on sufficiently small sub-domains an
optimizer can no longer improve an individual sub-regime cost (e.g. in mixed-precision
it already uses the lowest available precision).

The obtained optimized expressions on individual sub-domains form the initial regime.
We have observed that often the optimized program bodies in sub-regimes are equal in

3For programs with more than 5 variables we subdivide the 5 largest input intervals in half and leave the
rest unchanged.

110

6.2. Regime Inference Algorithm

def bottom_up_phase(inputRanges, program, target):

2 // produce regimes

subdomains = splitTillMax(inputRanges)

4 // run optimization

regime = []

6 for sub in subdomains:

optProgram = optimize(sub, program, target)

8 regime = regime ∪ (sub, optProgram)

// merge sub-regimes

10 regime = mergeSameBodies(regime)

return regime

12

// merge sub-regimes with the same bodies

14 def mergeSameBodies(regime):

subdomains = regime.subdomains

16 for sub1, sub2 in neighbors(subdomains)

if programIn(regime,sub1) == programIn(regime,sub2):

18 upd = sub1 ∪ sub2

expr = programIn(regime,sub1)

20 toRemove = {(sub1,expr),(sub2,expr)}

regime = regime ∪ (upd,expr) \ toRemove
22 subdomains = subdomains ∪ {upd} \ {sub1,sub2}

Figure 6.5.: Bottom-up phase

20 40 60 80 100
x

20

40

60

80

100

y

D A A A B

A A A B B

A A A B B

A B C B C

C C C C C

(a) Input regime

20 40 60 80 100
x

20

40

60

80

100

y
D A A A B

A A A B B

A A A B B

A B B

C

C C

(b) Optimal

20 40 60 80 100
x

20

40

60

80

100

y

D A A A B

A A A B B

A A A B B

A B B

C
C

C
C

(c) Sub-optimal

Figure 6.6.: Merge strategy

this initial regime. In the second step, our algorithm tries to find a smaller regime by
merging the neighboring sub-domains whose body is the same (function mergeSameBodies

in Figure 6.5). We call two sub-domains (and the corresponding sub-regimes) neighboring
if they differ in ranges for exactly one variable, and after merging these ranges the new
sub-domain does not overlap with any existing sub-domain. Having a smaller regime
(i.e. fewer sub-regimes) is beneficial for readability of the generated code, as well as

111

6. Meta-Optimization: Regime Inference

for the running time of our tool, as the running time of the successive top-down phase
heavily depends on size of the given regime.

The initial regime for our running example is shown in Figure 6.6a. Here, the input
domain is split into 25 sub-domains (splitting the interval for both variables x and y

into 5 equal-sized intervals), and the labels A-D denote different optimized expressions:
A - all operations and intermediate results are assigned a double precision, B - one
intermediate result is assigned quad precision, the rest use double, in C two variables
have quad precision, and in D - four.

Finding the optimal merge with minimum number of resulting sub-regimes is an
exact set cover problem, which is known to be NP-complete. Hence, our algorithm uses
a heuristic to decide which neighbors should be merged: it starts with the first input
variable (as they appear in the source code) and performs all possible merges along this
variable, then repeats for the rest of input variables. The algorithm merges along each
variable once. Depending on the order of variables in the source code such a heuristic
can overlook beneficial joins. Consider an initial regime in Figure 6.6a that contains
10 sub-regimes with the optimized expression C. Red squares mark sub-regimes that
have neighbors with the same optimized expressions along two variables: x and y.
Merging along the variable x (horizontal axis) is clearly beneficial, as it will result in
fewer sub-regimes in total (see Figure 6.6b). However, if the variable y appears in the list
of function arguments before x, the algorithm will first merge along y (vertically) and
create a sub-optimal result shown in Figure 6.6c.

For our running example the bottom-up phase produces a regime that includes 11
sub-regimes, as shown in Figure 6.7a. Compared to the version of carthesianToPolar_radius
optimized on the whole specified domain, a program with this regime runs 45% faster.
Starting from this regime, our algorithm will try to further improve performance in the
top-down phase.

6.2.2. Top-Down Phase

The next phase is inspired by the branch-and-bound technique that is being used by
FPTuner [15] to find a domain-specific optimum of an arithmetic expression. Since
the errors are not necessarily distributed uniformly over the input domain, it is often
beneficial to sub-divide on-demand along selected variables. Our top-down phase starts
from the regime found by the bottom-up phase (in Figure 6.7a) and tries to find a
regime with even lower cost by repeatedly splitting variables’ domains. We consider
two approaches: ‘simple’ and genetic searches. Both search approaches are guided by
a static cost function, they stop if either no further cost improvement is possible in a
single split, or when the algorithm has reached some maximum number of iterations.

For multivariate programs it is non-trivial to choose how to split a domain. One can
split along one variable—split the range of one variable, while keeping ranges of the
other variables intact—split along a subset of variables or all of them. Furthermore, we
need to select a split point on each of the ranges. As for the merging strategies of the
bottom-up phase, there is no way to know in advance which direction of split will be

112

6.2. Regime Inference Algorithm

20 40 60 80 100
x

20

40

60

80

100

y

A

B

B

C

A

D

B C

A

B

C

(a) Bottom-Up Phase

20 40 60 80 100
x

20

40

60

80

100

y

A

B

B

C

A

D

B C

A

B

C

(b) Bottom-Up + Top-Down
Simple

20 40 60 80 100
x

20

40

60

80

100

y

A

A

B

B

C

A

B C

A

B

C

(c) Bottom-Up + Genetic

Figure 6.7.: Regimes inferred at different stages of the algorithm.

Error magnitude legend:

0 20 40 60 80 100
x

0

20

40

60

80

100

y

[4.1e-22, 5.8e-15]
[5.8e-15, 1.2e-14]
[1.2e-14, 1.7e-14]
[1.7e-14, 2.3e-14]
[2.3e-14, 2.9e-14]

20 40 60 80 100
x

20

40

60

80

100

y F E

(a) Top-Down Simple Search

20 40 60 80 100
x

20

40

60

80

100

y
F

E

(b) Top-Down Genetic Search

Figure 6.8.: Regimes inferred by top-down phase starting with the whole input domain.

beneficial. Similarly, finding the most beneficial split point would require additional
analysis of the domain and is expensive.

Simple Search Due to this inherent complexity, our simple search procedure attempts
to find a lower-cost regime using a heuristic: split only along one variable in the middle
of its range.

The pseudo-code for the top-down phase with the simple search is shown in the Fig-
ure 6.9. The algorithm attempts to split across each variable separately, then selects
the split with the lowest cost and disregards the others. As a result, at every step the
algorithm splits along one variable that provides the largest cost improvement. Such
a strategy allows us to create regimes that are at least as good as the starting point
(according to the cost function).

The algorithm terminates if it found a regime, upon which it cannot improve by
splitting further. In general, the top-down algorithm is not guaranteed to terminate,
therefore we limit the depth of splitting by a constant maxDepth.

113

6. Meta-Optimization: Regime Inference

def top_down_phase(bUpRegime, program, target):

2 def simpleSearch(regime, oldCost, depth):

candidates = []

4 depth += 1

for var in program.inputVars:

6 newRegime = []

newSplit = splitInHalf(regime.subdomain, var)

8 for sub in newSplit:

newProgram = optimize(sub, program, target)

10 newRegime = newRegime ∪ {(sub, newProgram)}

newCost = cost(newRegime)

12 candidates = candidates ∪ (newRegime, newCost)

// regime with the smallest cost

14 bestRegime, bestCost = sortByCostAsc(candidates).head

// check for improvement

16 if bestCost < oldCost:

if depth < maxDepth

18 return simpleSearch(bestRegime, bestCost, depth)

else:

20 return bestRegime // the depth is exhausted

else:

22 return regime // previous regime

24 bUpCost = cost(bUpRegime)

return simpleSearch(bUpRegime, bUpCost, 0)

(a) Top-down phase with simple search

def geneticSearch(regimes, counter):

candidates = []

for r in regimes:

newCost = cost(r)

candidates = candidates∪{(r, newCost)}
sortedRegimes = sortByCostAsc(candidates)

if counter > maxGenerations:

bestRegime, bestCost = sortedRegimes.head

return bestRegime

else:

nextPopulation = []

for i in range(0 until populationSize):

// mutate regimes

regToMutate = rankedChoice(sortedRegimes)

vars = regToMutate.inputVars

sortedVars = sortByRangeWidth(vars)

varToMutate = rankedChoice(sortedVars)

newSplit = splitRandomly(regToMutate,

varToMutate)

newProgram = optimize(newSplit,program,target)

newRegime = (newSplit, newProgram)

nextPopulation = nextPopulation ∪ newRegime

return geneticSearch(nextPopulation, counter+1)

(b) Genetic search procedure

Figure 6.9.: Top-down phase with alternative regime search procedures

For our running example the inferred regime has not changed after applying the
simple search (see Figure 6.7b), splitting either of sub-domains in the middle did not
improve the cost.

Genetic Search Note that the regime returned by the top-down phase is not necessarily
optimal. As illustrated by our running example, the search can give up too early, when
a single split exactly in the middle of a variable’s range does not improve the cost, but a
different (potentially deeper) split would. To allow different splits and help overcome
the local minima problem, we propose an alternative search procedure geneticSearch from
Figure 6.9b that uses randomization in form of a genetic algorithm. Unlike the simple
search, the genetic approach allows for multiple possible regimes to exist in parallel and
selects sub-domains to be split and a split point randomly.

We instantiate the genetic algorithm framework in the following way: a regime
represents an individual to be mutated, a collection of regimes is a population, and
splitting the range of a variable is a mutation. As in the simple top-down search we
start from the regime returned by the bottom-up phase, this regime forms the initial
population. In every generation, the algorithm chooses a regime and variable that will

114

6.2. Regime Inference Algorithm

be mutated using ranked choice [204]. First, all regimes are sorted based on their cost
and one is selected. Inside the selected regime, the variables are ranked according to the
width of their range. Once the variable is selected, the algorithm splits the range at a
random point (but at least 5% of the width).

Note that selecting a regime and variable to be mutated with ranked choice is simply
an instantiation of randomness and can be replaced by any other heuristic. Because of
the randomness and multiple regimes existing in parallel, the genetic search is less likely
to get stuck in a local minimum, compared to the simple search that at each iteration
keeps only one regime with the smallest cost and splits sub-domains exactly in the
middle of variable’s range.

We use a population size of 10 and repeat the loop for 10 generations (we have
not observed a noticeable improvement in the results with larger values). On the
final population the algorithm performs a post-processing step that merges identical
neighbors using the mergeSameBodies function from bottom-up algorithm.

Starting from the results of the bottom-up phase the genetic top-down phase has
inferred a regime for our running example shown in Figure 6.7c.4 While it is largely
similar to the results of the bottom-up phase with and without the simple top-down
search, a slight shift of the sub-domain bounds (bottom left corner) allows a sound opti-
mizer to prove smaller error bounds and assign lower precision, thus further increasing
the performance gain by 10%. A version of carthesianToPolar_radius with the resulting
regime in Figure 6.7c runs 54% faster than the whole-domain optimized version.

Input Regime The quality of regimes produced by the top-down phase with both
simple and genetic search clearly depends on the starting point, i.e. input regime. While
it is also possible to start from the whole domain (the program’s initial input ranges)
even with randomization the top-down phase is likely to give up too early when it
gets stuck in a local optimum. To illustrate this, we have applied the top-down phase
with both search procedures to our running example’s whole domain. It inferred 2 sub-
regimes shown in Figure 6.8, both of which are using at least 5 variables in quad precision.
Even though with more fine-grained regime it is possible to use lower precision (as
illustrated in Figure 6.7), the top-down phase was not able to find a lower-cost regime
with one split. The bottom-up phase, on the other hand, has already explored the
domain up to a certain depth. For many benchmarks this preliminary exploration is
sufficient to overcome the local optimum.

6.2.3. Code Generation

Once a regime was found, our tool Regina generates code that uses conditional branches
to select the appropriate expressions at runtime. A naive approach to generating the

4Our heuristic merging strategy could not merge two neighboring sub-regimes with expression A in the
bottom-left corner. mergeSameBodies merges along each variable only once, here, first x, then y. When
merging along x, the sub-domain x∈ [1.0, 10.9],y∈ [1.0, 19.8] was further split along y and therefore did
not satisfy the definition of a neighboring sub-domain.

115

6. Meta-Optimization: Regime Inference

output code for a regime of size n would be to output a linear succession of conditional
statements that cover exactly one sub-regime each. However, this approach requires
O(kn) number of tests, where k is the number of input variables, and n is the size of a
regime.

Instead, Regina generates nested conditional statements leading to the individual
regime bodies, where in each test we check the value of only a single variable. The
asymptotic behavior of the number of tests performed is now O(log(n)), keeping the
cost of conditional branches low, especially since every test itself is relatively cheap.

While for a single input variable it is always possible to generate one path for each
sub-regime, this does not hold in general for multivariate functions. By generating
nested conditionals, we generate code with more paths than the number of sub-regimes.
That is, a sub-regime may be described by a union of several paths. Regina generates
the conditional branches one input dimension at a time, starting with the variable for
which there exists a sub-regime with the largest sub-domain.

For mixed-precision tuning, code generation furthermore needs to account for the fact
that different sub-regimes may assign different precisions to the function’s input and
output variables. To preserve soundness, Regina assigns for each input variable and the
return expression the highest precision that one of the sub-regimes has assigned. For
each regime part where the input or return precisions do not exactly match the upper
bound of all input and return precisions, we introduce downcasts. Note that this casting
procedure is also accounted for in the cost function in order to penalize inferred regimes
that necessitate many casts.

6.3. Optimizations

We instantiate regime inference in our implemented tool Regina with two optimizations:
mixed-precision tuning and rewriting that optimize for average running time and worst-
case absolute error, respectively. Note that our regime inference algorithms can be
instantiated with any optimization objective. For instance, one could optimize the
regimes with respect to worst-case performance, or average rounding error. The only
adjustment necessary to change the objective is to provide an appropriate cost function.

6.3.1. Regime Inference for Mixed-Precision Tuning

For mixed-precision tuning we consider the two existing openly available sound tuning
tools Daisy and FPTuner.

Daisy We first instantiate Regina with Daisy’s mixed-precision tuning routine [22], by
calling Daisy as the optimize function. Daisy uses delta-debugging, a kind of divide-and-
conquer algorithm, to search through different mixed-precision assignments, and calls a
dataflow analysis to compute the rounding error of each.

116

6.3. Optimizations

FPTuner Separately, we instantiate Regina with FPTuner’s mixed-precision optimiza-
tion [23], which uses a fundamentally different technique. FPTuner formulates the
search for a mixed-precision assignment as an optimization problem, which it solves
using a sound branch-and-bound interval solver. While this technique often produces
better results (programs with lower running time) [22], the tuning process is also more
expensive than the one in Daisy.

Cost Function For instantiating our regime inference algorithms, we further need a
cost function that reflects the optimization objective and that will guide the search and
compare the quality of regimes. We choose to optimize the average performance of a
program and assume that a program’s inputs are uniformly distributed in the input
domain. We assume a uniform distribution for convenience and simplicity, and note that
it is possible to take into account a different distribution by adjusting the parameters
of the cost function. We optimize for average, instead of worst-case, performance,
because often one of the sub-regimes will need to use the highest precision, and thus no
optimizations would be possible under a worst-case metric. That said, it is possible to
account for the worst-case execution time by estimating it additionally and pruning the
regimes that do not satisfy a constraint.

To estimate the (abstract) average performance of a program with regime, our cost
function first computes an abstract arithmetic cost on each individual sub-regime. We use
the term arithmetic cost to denote the performance of a floating-point expression without
branches (i.e. on a single sub-domain). To compute the arithmetic cost, we use Daisy’s
existing simple mixed-precision cost function. It assigns to each 128-bit arithmetic and
cast operation twice the cost of the same operation in 64 bits, and has been shown to
work well for mixed-precision tuning between double and quad precision [22]. Note
that it is also possible to tune between any other pairs of precisions (e.g. 64 and 32 bits),
provided a suitable arithmetic cost function. For computing the arithmetic cost, we are
deliberately using an existing cost function previously shown to be adequate, as it is
Regina’s parameter and not a contribution of this work.

Since the goal is to increase average performance, next, the cost function computes a
weighted average arithmetic cost of each sub-regime. Finally, the cost function adds an
offset for the number of sub-regimes to account for branching. The final cost of a regime
is thus computed as follows:

costmp(regime) =
n

∑
i=1

wi Ai + (n− 1)

where n is the number of sub-regimes, wi is an ith sub-regime’s weight that corresponds
to the sub-domain’s volume normalized to the whole domain’s volume5, and Ai is an
arithmetic cost of the ith sub-regime. Even though evaluation of branching conditions

5For non-uniformly distributed inputs the weight wi can reflect the probability of the i-th sub-regime
being executed.

117

6. Meta-Optimization: Regime Inference

is cheap, we still add a small offset (n− 1) to avoid inferring branches with negligible
performance improvements.

6.3.2. Regime Inference for Rewriting

For rewriting, Regina calls Daisy’s rewriting routine [22] as the optimize function. This
optimization searches for an order of evaluation that is equivalent to the original
expression under a real-valued semantics, but for which Daisy can prove a smaller
rounding error bound (using its sound analysis). Since floating-point arithmetic does not
satisfy common real-valued identities such as associativity and distributivity, reordering
a computation in general leads to different results (and roundoff errors), even though
the expression is equivalent under the reals. Daisy searches through the different
evaluation orders using a genetic algorithm, applying real-valued identities as the
mutation operation.

The goal of our regime inference for sound rewriting is to minimize the worst-case
rounding error across sub-regimes. Accordingly, Regina uses a regime’s maximum
rounding error as the cost function. First, the cost function computes the arithmetic cost
of an individual sub-regime. We use Daisy’s worst-case rounding error analysis with
the interval abstract domain to bound variables’ ranges and affine arithmetic for errors.
The overall cost is the maximum error seen across all sub-regimes:

costrw(regime) = max
i∈[1,n]

erri

where n is the number of sub-regimes, and erri is the worst-case absolute rounding error
of the i-th sub-regime. Since we are optimizing for accuracy and not performance, and
testing inputs’ bounds does not affect accuracy of the computed value, we do not add
any cost to prune additional branches. The regime inference algorithms themselves limit
a total number of sub-regimes, so the resulting program will not have unreasonably
many branches, and the branches generated can be evaluated efficiently. If needed,
the cost function can straight-forwardly be extended to also account for the increased
running time.

6.4. Experimental Evaluation

We evaluate Regina on a standard benchmark set for floating-point analysis, and
compare sound optimizations with and without regime inference. In particular, we
focus on the following research questions:

RQ1: Does regime inference improve over whole-domain optimizations?

RQ2: Is the two-phase approach beneficial over each one separately?

118

6.4. Experimental Evaluation

:precision binary64

:pre x ∈ [0.001, 1.5]
1
x −

1
tan(x)

(a) Input expression

:precision binary64

:pre x ∈ [0.001, 1.5]
if (1.0

x −
1.0

tan(x) ≤ 0.008964) { x · 0.3(3) + (0.02(2) · x3 +

0.002116 · x5) }

else {
1.0·((tan(x))3−x3)

x·(tan(x))3 + (x·tan(x)) · (x+tan(x)) }

(b) Herbie’s optimized expression with regime

Figure 6.10.: NMSE-example-3.9 benchmark

6.4.1. Benchmarks

We evaluate regime inference on the FPBench benchmark set [84], a standard benchmark
set for floating-point verification and optimization tools. For those benchmarks that
originally contain loops, we generate a new version that consists of the loop body only
(i.e. corresponds to one loop iteration). We exclude benchmarks that contain conditional
statements, as well as benchmarks for which Daisy is not able to compute a roundoff
error, e.g. when Daisy’s analysis is not precise enough to show that a division is safe, i.e.
does not divide by zero.

Many FPBench benchmarks already come with preconditions that bound the ranges
of inputs. We use these as the initial domains for our optimization. When a precondition
is missing or does not provide a closed range for all variables, we add input range
bounds ourselves. For a few benchmarks, Daisy is not able to compute the roundoff
error for the original precondition, but it is able to do so for a slightly modified—
more constrained—one. In these cases, we consider the modified precondition for our
experiments. In total, we consider 100 out of the 131 FPBench benchmarks, including
32 that contain elementary function calls and 15 that contain square root operations.
All benchmarks with the pre- and post-conditions that we used for the evaluation are
available open-source6.

The existing and chosen input variable domains cover realistic preconditions, but are
relatively small in the sense that they do not contain e.g. very large values close to the
maximum possible values (for instance, double floating-point precision supports expo-
nents of up to 21023). With such preconditions, most of the benchmarks are numerically
stable in the sense that the committed rounding errors are not very large, as computed
by state-of-the-art sound rounding error analysis tools [14, 71].

6.4.2. Comparison with Herbie

Regina is the first tool that infers regimes for sound floating-point optimizations, i.e.
those that guarantee that the rounding error of an optimized program does not exceed

6https://github.com/malyzajko/daisy/tree/regimes/testcases/regime-inference

119

https://github.com/malyzajko/daisy/tree/regimes/testcases/regime-inference

6. Meta-Optimization: Regime Inference

a specified bound. In contrast, today’s state-of-the-art tools that infer regimes [19–21]
use dynamic analysis to estimate rounding errors and therefore do not provide rounding
error guarantees. Hence, there is no regime inference tool that we can directly compare
to.

For completeness, we nonetheless perform a comparison with the dynamic analysis-
based tool Herbie [19] that is closest to Regina in terms of the optimization that is being
applied. Herbie’s goal is to reduce (large) rounding errors by rewriting an arithmetic
expression. Error guarantees aside, the goal is similar to when Regina is instantiated
with Daisy’s rewriting optimization.

First, Herbie randomly samples points and identifies which inputs cause large round-
ing errors, then it isolates these inputs into a sub-domain, and, when possible, improves
the errors on this sub-domain with rewriting. Unlike Daisy, Herbie rewrites not only
using real-valued identities, but also polynomial approximations (that are not real-
semantics preserving). As a consequence, Herbie’s greedy rewriting often provides
larger accuracy improvements, while Daisy’s sound rewriting improves by a smaller
factor but on more programs [200].

Two other tools—AutoRNP [20] and the tool by Wang et.al. [21]—are further away
from Regina’s goal. Like Herbie, they identify large rounding errors using a dynamic
analysis, but their rewrite rules are more specialized or do not preserve real-valued
semantics, i.e they only use approximations. Since the more specialized rules are largely
not applicable to the general-purpose FPBench benchmarks, and it is not meaningful
to compare error bounds obtained on semantically different expressions, we do not
compare Regina’s results with AutoRNP and the tool by Wang et.al.

We run Herbie on all of our benchmarks four times to account for randomness, since
it is using heuristic search and randomly sampled inputs. Herbie created regimes
only for two benchmarks out of 100. In all four runs, Herbie created a regime for the
nmse_example_3.9 benchmark, the example regime is shown in Figure 6.10b (exact output
slightly differs among the runs). Additionally, in one of the runs Herbie also found a
regime for a second benchmark, nmse_example_3.3. For both benchmarks Herbie used
rewrite rules that do not preserve real-valued semantics, thus, we cannot compare the
optimized expression’s rounding error with Regina’s results (the same reason we do
not compare with AutoRNP, Wang et.al).

These limited results are not particularly surprising, given that Herbie’s stated goal is
to repair large rounding errors—numerical instabilities. The results confirm that regime
inference for—especially sound—floating-point optimizations of numerically stable code
is missing.

We conclude that Herbie (and the other existing repair techniques [20,21]) are comple-
mentary to Regina’s goal: they can be used to first repair a program with large errors,
so that Regina can optimize branches of the resulting program.

120

6.4. Experimental Evaluation

6.4.3. Experimental Setup

Mixed-Precision Tuning

The goal of mixed-precision tuning is to reduce the running time of an arithmetic
expression as compared to a uniform precision implementation, while nonetheless
meeting a user-provided error bound. For our evaluation, we thus have to define target
error bounds, the precisions that we consider for tuning, as well as a suitable comparison
baseline.

Following previous work7, we generate two sets of target error bounds. We first compute
the rounding error for a given benchmark assuming uniform 64 bit double precision,
and then multiply this error by 0.5 or 0.1 to obtain the target error bound. We choose
two error bounds for each benchmark, because different bounds provide for different
optimization opportunities. Choosing a smaller target error (using the factor 0.1), we
generally expect less opportunities for mixed-precision tuning, and less improvements
w.r.t. a uniform precision baseline. We will denote the benchmark set with error factor
0.5 by half-double benchmarks, and the benchmark set with factor 0.1 by order benchmarks
(for an order-of-magnitude smaller error).

For comparison with Daisy’s mixed-precision tuning, we compute the 64 bit double
precision errors using Daisy, and for the comparison with FPTuner we compute the
baseline errors correspondingly with FPTuner (since they use different techniques, the
errors generally differ). It is not a goal of this paper to compare Daisy’s or FPTuner’s
tuning, rather we want to show that regime inference is beneficial for both techniques.

As in previous work [23], we consider mixed-precision tuning with double and quad
precision, where quad is implemented by the GCC quadmath library [203]. The goal is
to improve the running time over a uniform quad precision implementation of each
benchmark. For hardware platforms where single and double precision (32 and 64 bit)
have different running times, tuning would be equally possible (with an appropriate
cost function).

We compare the running time of programs generated by Regina against the running
time of programs generated by Daisy’s mixed-precision tuning. To ensure a fair com-
parison, we run Daisy’s tuning using its subdivision method for computing ranges,
using the same number of subdivisions as in the bottom-up phase. By doing so, we
avoid seemingly improving over Daisy simply by using a more accurate range computa-
tion method. We compare Regina instantiated with FPTuner’s mixed-precision tuning
routine against FPTuner alone.

Mixed-precision programs are generated as C code that is compiled with g++ 9.3 with
the flags -O2 -fPIC and whose running time we measure using C’s high_resolution_clock

on 106 uniformly distributed random inputs. We repeat the measurement three times and
take the average of those three runs for comparisons. We compute the improvements as
(baselineTime - regimeTime)/baselineTime. We checked that performance improvements

7It has been observed that mixed-precision tuning is most useful when the target error bound is just below
a uniform precision error [14, 23].

121

6. Meta-Optimization: Regime Inference

computed this way are accurate within 0.02, hence we count a benchmark’s performance
as improved if the improvement is larger than 0.02.

Rewriting

We evaluate regime inference instantiated with Daisy’s rewriting and compare the
accuracy improvements w.r.t. to rewriting without regimes. Similarly to mixed-precision
tuning experiments, we run Daisy’s vanilla rewriting with the subdivision method for
computing the ranges for a fair comparison. We compute the improvement in worst-case
absolute error as (baselineError− regimeError)/baselineError.

Hardware Details

Because FPTuner requires Ubuntu, we run our mixed-precision tuning experiments on
a compute cluster node with a dual-core Intel Xeon E5 v2 processor at 3.3 GHz and
16x16GB RAM running Ubuntu 16.04.7. We run the experiments with the rewriting
optimization on a Mac mini with an 6-core Intel i5 processor at 3 GHz with 16 GB RAM
running macOS Catalina, because the rewriting optimization runs in parallel and runs
significantly faster on a 6-core machine.

We set a timeout of 30min per benchmark for all experiments.

6.4.4. RQ 1: Improvements over Whole-Domain Optimizations

Table 6.1 summarizes our experimental results for the three different optimizations:
Daisy’s mixed-precision tuning, FPTuner’s mixed-precision tuning and Daisy’s rewriting.
We have marked in bold the overall best results. For FPTuner, we report only results
of the first or the second phase of our algorithm alone, because the running time of
FPTuner’s mixed-precision tuning is very high, and running the two-phase algorithm
led to timeouts for most benchmarks.

Regina improves running time over Daisy’s mixed-precision tuning for 73 half-double
benchmarks with an average improvement of 65.7%, and improves 46 order benchmarks
with an average improvement of 65.6%. Regina also improves over FPTuner’s mixed-
precision tuning for up to 31 half-double benchmarks with an average improvement of
52.2%, and for 18 order benchmarks with an improvement of 56.3%. The number of
order benchmarks improved is lower, as expected, since a smaller error bound provides
less opportunities for optimizations.

Regina with rewriting is able to improve the worst-case error for 62 out of 100
benchmarks with an average improvement of 54.4%. That is, with regime inference, we
are able to essentially half the optimized (proven) error at compile time.

The improvements by regime inference that we report in Table 6.1 are w.r.t. to the al-
ready optimized baseline. For comparison, Daisy’s vanilla mixed-precision tuning without
regimes improves performance over a uniform quad precision baseline by only 28% and
25%, respectively for half-error and order benchmarks, and Daisy’s rewriting without

122

6.4. Experimental Evaluation

method
improv.
>0.02

avrg.
improv.

best
regime
size
>1

avrg.
regime
size

avrg.
runtime (s)

TO

D
ai

sy
m

ix
ed

-t
un

in
g

half-double
bottom+genetic 73 65.7% 54 57 5.3 67.8 14
bottom+top 74 64.4% 56 62 5.6 50.0 14
bottomUp 74 63.5% 39 63 5.2 52.2 13
topDown 64 60.6% 35 60 3.9 66.5 11
genetic 72 62.5% 37 60 3.1 93.9 9
order-error
bottom+genetic 46 65.6% 35 52 4.8 160.5 21
bottom+top 45 65.6% 28 55 5.0 141.9 24
bottomUp 47 58.5% 21 56 4.6 133.9 21
topDown 40 52.4% 21 37 2.5 55.4 10
genetic 45 61.1% 28 38 2.0 181.7 11

FP
Tu

ne
r

half-double
bottomUp 31 52.2% - 50 7.8 665.6 23
topDown 27 44.5% - 30 2.7 677.8 19
order-error
bottomUp 18 56.3% - 30 5.3 656.6 35
topDown 18 43.3% - 25 3.2 574.1 18

R
ew

ri
ti

ng

bottom+genetic 62 54.4% 59 45 7.2 383.5 15
bottom+top 53 40.5% 48 48 7.4 191.4 7
bottomUp 43 44.3% 43 45 7.0 279.8 7
topDown 43 52.5% 39 56 7.9 212.0 11
genetic 58 48.1% 41 54 4.7 306.5 11

Table 6.1.: Summary statistics for different optimizations, comparing regime inference
against optimizations without regimes. Column 2 gives the number of bench-
marks for which there is an improvement over the optimized baseline without
regimes, column 3 gives the average improvement over those benchmarks,
column 4 gives the number of benchmarks for which a method produces an
improvement that is within 2% of the best result among all methods. We do
not report the number of the best results per method for FPTuner (marked
’-’), as it is not meaningful for comparing only two methods. Columns 5
and 6 give the number of benchmarks where generated regime has multiple
sub-regimes, and the average size of regimes. Columns 7 and 8 give the
average running time of regime inference and the number of benchmarks that
timed out.

regimes improves accuracy w.r.t. the original expressions by only 13%. We conclude
that regime inference with Regina provides significant performance improvements
over mixed-precision tuning without regimes, as well as accuracy improvements over
rewriting.

123

6. Meta-Optimization: Regime Inference

Details: Mixed-Precision Tuning In fact, e.g. the bottom-up approach generates uni-
form double precision code for 24 half-double benchmarks, i.e. does not use mixed
precision at all. The reason why Daisy was not able to discover this uniform precision
is that even though we run Daisy with the interval subdivision method for computing
accurate ranges, the optimization itself nonetheless considers the entire domain at once,
which leads to over-approximations. For the order benchmarks, Regina generates
uniform double precision code for 6 benchmarks. Hence, an additional side-effect of
regime inference is that it reduces inherent over-approximations of the static analysis
for individual optimizations.

Details: Rewriting The bottom part of Table 6.1 further shows that the number of
benchmarks with regime size greater than one, i.e. with several sub-regimes, is smaller
than the number of benchmarks improved overall. This is due to the fact that during
regime inference, the verification is performed on smaller sub-domains, which leads to
a smaller overall computed error bound, which in turn may help to discover a suitable
rewriting. Since Regina merges sub-regimes with equal expressions in the end, we may
end up with just a single expression. Thus, the ‘on-demand’ splitting performed by the
bottom+genetic, bottom+top and genetic methods helps to find sub-domains for which
suitable rewriting can be found (and proven).

RQ1 Conclusion: Our experiments confirm that our regime inference algorithm is
general with respect to floating-point optimizer and optimization. It reliably improves
performance using sound optimizers Daisy and FPTuner, which internally use different
techniques, and accuracy using Daisy’s rewriting. Our regime inference provided
improvements for a significant portion of the benchmarks—over a baseline that has
already run an optimization.

6.4.5. RQ 2: Evaluation of Two-Phase Approach

Table 6.1 also lists a number of variations of regime-inference methods. Our full
two-phase algorithm (as described in section 6.2) runs the bottom-up then the top-
down phase with genetic or simple search and is denoted by ‘bottom+genetic’ and
‘bottom+top’, respectively. Furthermore, we evaluate each of the two phasess separately:
‘bottomUp’ method stands for applying the bottom-up phase alone, and ‘topDown’ and
‘genetic’ methods are results of applying the top-down phase with a corresponding
search procedure to the whole specified input domain (as opposed to resulting regime
of the bottom-up phase). Note that we limit the number of regimes that the top-down
and genetic methods are allowed to consider to the same number of subdivisions that
the bottom approach generates for a fair comparison.

We compare the performance of these methods visually in the cactus plots in Fig-
ure 6.11 and Figure 6.12, for Daisy’s mixed-precision tuning and rewriting optimizations,
respectively. That is, we have sorted the performance and accuracy improvements for
each method individually, hence vertically aligned points do not always correspond

124

6.4. Experimental Evaluation

0 20 40 60 80 100
benchmarks

0.0

0.2

0.4

0.6

0.8

1.0

im
pr

ov
em

en
t o

ve
r b

as
el

in
e

bottom+genetic
bottom+top
bottomUp
topDown
genetic

(a) Half-double benchmarks

0 20 40 60 80 100
benchmarks

0.0

0.2

0.4

0.6

0.8

im
pr

ov
em

en
t o

ve
r b

as
el

in
e

bottom+genetic
bottom+top
bottomUp
topDown
genetic

(b) Order benchmarks

Figure 6.11.: Performance improvements of Regina over Daisy’s mixed-precision tuning
(cactus plot). Series of values higher and more to the right are better.

to the same benchmark. Values below 0.0 in Figure 6.11 correspond to timeouts and
slowdowns. For clarity, Figure 6.12 shows only those benchmarks for which one of the
methods provides some accuracy improvement.

Overall, we observe that the combined approach (bottom+genetic and bottom+top)
performs better than each phase of the algorithm alone (bottomUp, topDown and
genetic). The top-down phase with the simple search procedure alone (topDown
method), while still outperforming Daisy, performs worst overall. Our hypothesis is that
it gets stuck in a local optimum, whereas the top-down phase with genetic search and
combined phases overcome these local optima thanks to randomization and an initial
exploration of the domain.

The effectiveness of the combined two-phase approach comes at the expense of
increased running time to compute the regime inference, and correspondingly also more
timeouts (> 30min). We have not observed memory to be an issue for Regina.

Since the genetic search procedure relies on randomization, we evaluated the influence
of different random seeds on the generated performance over three runs. We observe
that the variation in generated performance improvements is small (e.g. averages are
within 2%), hence we conclude that the genetic method is able to improve performance
reliably.

125

6. Meta-Optimization: Regime Inference

0 10 20 30 40 50 60 70
benchmarks

0.0

0.2

0.4

0.6

0.8

1.0

im
pr

ov
em

en
t o

ve
r b

as
el

in
e

bottomGenetic
bottomTop
bottomUp
topDown
genetic

Figure 6.12.: Accuracy improvements of Regina over Daisy’s whole-domain rewriting
optimization. Series of values higher and more to the right are better.

RQ2 Conclusion: Based on our experimental results, we conclude that the regime
inference algorithm performs best when it uses the two-phase approach: a combination
of breadth-first and depth-first searches. Initial exploration using the bottom-up
(breadth-first) strategy overcomes local minima; the discovered sub-domains can be
further specialized and improved with either of the top-down strategies (simple or
genetic).

6.5. Related Work

Regime Inference As discussed before, closest to our work are tools Herbie [19],
AutoRNP [20] and the tool by Wang et al. [21]. They use a dynamic analysis to locate
inputs with large rounding errors and based on these, infer regimes on which different
types of repairs are applied: piecewise-quadratic or Taylor-based approximations [19,20],
or expression rewrites based on real-valued identities [19, 21]. Herbie has recently been
extended with a new set of rewriting rules inferred by the tool Ruler [205]; additionally,
a Pareto version of Herbie combines rewriting with precision tuning [197], which is
similar in goal to Regina with Daisy’s combination of these optimizations [22]. By
relying on a dynamic analysis, these techniques fundamentally target and generate a
different kind of regime. Specifically, for numerically stable expressions, i.e. those where
rounding errors do not vary widely, it is—by definition—difficult for dynamic analysis
to identify problematic inputs and thus to find partitions.

It is also not straight-forwardly possible to use a dynamic analysis to determine input
domain partitions and then to run a sound optimization technique. Since sound tools

126

6.6. Conclusion and Future Work

inherently need to use abstractions, they will likely only be able to prove (and optimize)
very different input partitions than the one identified by dynamic analysis.

Domain Partitioning Sound piece-wise polynomial approximations as used in our
performance optimization described in chapter 5 and in related tools [163, 176] can
also be viewed as a special form of regime inference. Precisely, the sub-domains of the
piece-wise polynomial and their individual polynomials on each sub-domain form a
regime. However, such regimes are limited to a single input variable.

Partitioning of programs’ input domain is widely used by sound verification tools
to reduce the over-approximation on error abstractions. Existing techniques apply to
floating-point programs [14, 39] as well as a mixture of floating-point code with bit-level
operations [206–208].

Floating-Point Optimizations We instantiated our regime inference for mixed-precision
tuning with optimization routines of Daisy and FPTuner. Daisy and FPTuner are us-
ing sound dataflow analysis and branch-and-bound optimizers to find their precision
assignments. Alternatively, one might consider mixed-precision tuning that uses a
combination of backward static analysis and SMT solving [25] and rewriting with ab-
stract equivalence graphs in Salsa [52]. For programs where soundness guarantees
are not required, our regime inference could also be instantiated with optimizations
guided by dynamic analysis, as in Precimonious [51], STOKE-Float [182] or algorithmic
differentiation in ADAPT [209] recently applied by FloatSmith [10] and other dynamic
optimizations [12, 77, 78, 197, 210–213]. Another target for regime inference may be
optimizing techniques applied to numerical programs in the context of approximate
computing, such as arithmetic operations that with a certain probability return an
erroneous value [24] (for more details on approximate computing see section 5.4).

Opposite to the fully automated approaches proposed in this thesis, one may want
to involve developers in crafting optimized code. A recent tool Odyssey [214] has
introduced an interactive mode where users can learn about especially problematic
inputs obtained with dynamic analysis, modify the input domains on the fly and tune
the optimized expressions.

6.6. Conclusion and Future Work

In this chapter, we have shown that regime inference is beneficial not only for repairing
large floating-point rounding errors, but for sound floating-point optimizations targeting
numerically stable code as well.

Even though we consider relatively simple interval-based regimes, these have proven
to be remarkably successful in optimizing the performance and accuracy of straight-
line expressions. The success comes exactly because of this simplicity: interval-based
regimes allow for efficient runtime checks and are well-supported by today’s sound
floating-point analyzers.

127

6. Meta-Optimization: Regime Inference

We observe that the major cost in sound regime inference are the individual optimiza-
tions themselves, and we show that a combination of breadth-first and depth-first search
is an effective strategy for exploring input domains.

Other Optimizations Regime inference may also be beneficial for other optimizations
beyond rewriting and mixed tuning. For instance, one could instantiate regime inference
with the performance optimization introduced in chapter 5 or the similar combination of
Daisy and Metalibm for floats [176]. Applying regime inference may reduce the degrees
of polynomials needed for the approximations since inputs for elementary function
calls will be subdivided. However, the approximation synthesis technique by itself is
relatively slow and may lead to long optimization times when applied with Regina.

Fixed-Point Precision To use regime inference with the exact version of our perfor-
mance optimization from chapter 5 we first need to extend the inference algorithm to
fixed-point precisions. A crucial difference between floats and fixed points is floating-
point’s dynamic range. Because the fractional bits for fixed-points are allocated (flexibly)
at compile time, we cannot simply merge neighboring sub-domains with the same
optimized bodies. When the sub-domains are merged, the range of values that have to
be represented by the selected precisions grows. Hence, the fixed-point format used
on the merged domain may need to be adjusted to avoid overflow, and precision (total
number of bits) may have to be increased. We therefore have to account for this change
when merging and splitting the sub-regimes.

Programs with Complex Control Flow Due to the limitations of the optimizations,
with which we parametrized regime inference, it currently works only on straight-line
kernels. When methods for sound optimizations of numerical programs with loops and
conditionals appear, our regime inference algorithm could be applied on top of it.

128

7. Conclusions and Future Work

Implementing numerical software is hard; a developer has to get a lot of details right for
a program to compute the expected result. Luckily, there exist plenty of tools to support
developers in this challenging task.

Solving the general problem of analyzing and optimizing all numerical programs with
arbitrary control-flow components is hard, so instead we break it down into smaller sub-
problems, for which solutions are possible. In this thesis, we described our contributions
that improve sound analyses and optimizations of numerical programs. We summarize
our key takeaway points.

Takeaway 1 A functional way of specifying numerical algorithms can help scale up
the rounding error analysis while still reporting reasonably tight error bounds.
The use of semantic information from the functional specifications is particularly
efficient when it is combined with abstractions.

Takeaway 2 The "noise" introduced by finite-precision implementations can be viewed
as a positive thing. When analyzing a noisy program, the candidate solutions
do not have to be exact. We can benefit from efficiency of (unsound) heuristics
and use them to come up with a good starting point for analyses (for instance, a
candidate invariant), and later confirm them with sound methods.

Takeaway 3 Errors of different origins behave similarly in numerical programs. For
instance, both polynomial approximation and finite-precision errors propagate
through kernel’s computations together. Therefore, we can controllably increase
different sources of errors and create fast approximate implementations in more
than one way.

Takeaway 4 Specializing to small parts of a program’s input domain allows better opti-
mizations. This approach is beneficial for increasing accuracy and performance
(both with polynomial approximations and mixed-precision tuning). The special-
ization allowed us to generate simpler approximations and go around worst-case
errors blocking the optimization without sacrificing soundness.

To summarize, we have improved sound methods for reasoning about finite-precision
programs and made a significant step toward supporting developers in writing efficient
and accurate implementations of numerical algorithms.

That said, there are many things to discover yet.

129

7. Conclusions and Future Work

Outlook Apart from the important sub-problems solved in this thesis, other classes
of programs are yet to be handled. For instance, to improve the scalability of analyses
beyond loops with data structures and explore ways of keeping the computed sound
error bounds tight when scaling up. The optimization support for loops and conditionals
is also limited and can be further advanced.

In this thesis, we considered popular floating- and fixed-point number systems.
However, there exist many alternative representations. Specialized for performance
for machine learning Bfloat16 [215], TensorFloat32 [216] and MSFP (Microsoft Floating
Point) [217] representations have been used alone and in a combination with IEEE-754
floats [215,216]. A different flavor of finite precision is implemented in the posit number
system [63, 218]. Unlike IEEE-754 floating points, posits dynamically adjust the number
of precision bits depending on the represented value, but fundamentally also provide
only finite precision.

These formats are likely to result in different error profiles in a program’s input do-
main, i.e. largest and smallest errors may appear for different inputs than with IEEE-754
floats. However, our methods are independent of a particular error profile. Therefore,
with some modifications, for instance, with a proper selection of the relative error
parameter in the abstraction (Equation 2.13), we expect our analyses and optimizations
to be useful also for alternative-precision programs.

As pointed out by a recent study [219], numerical computations become increasingly
heterogeneous on both software and hardware levels. As the heterogeneity of systems
increases so does the need to adapt analysis and optimization tools beyond IEEE-754
floats and regular CPUs. One direction for improving existing analyses and optimiza-
tions is to explicitly take into account differences in hardware, for instance, when a part
of the program is executed on a GPU.

Another interesting direction of work would be to make the tools for rigorous support
of numerical software interactive. As a recent experience of the tool Odyssey [214]
suggests, numerical experts working together with the automated approaches can craft
more efficient and accurate code than the automated tools or the developers alone.
While Odyssey uses Herbie’s (unsound) dynamic analysis, it would be interesting to
extend the approach with sound methods as well.

With all that, we would be able to create better software with reliable and efficient
numerical computations!

130

List of Figures

1.1. Sampled absolute errors in different precision configurations for cartesianToPolar_radius.
The errors are computed as the difference between an implementation
with the corresponding precision configuration and a 300-bit implemen-
tation using the MPFR library [11]. 2

1.2. Sampled absolute errors for a sum over 100 numbers in the range of
[0.0, 100.0]. The errors are computed as the difference between double
floating-point precision and a 300-bit precision implementation using the
MPFR library. 4

1.3. Inductive invariants of the non-linear dynamic system. Red boxes mark
the input range x ∈ [0.0, 0.1], y ∈ [0.0, 0.1]. 7

1.4. Sampled absolute errors for the optimized versions of cartesianToPolar_radius.
The maximum allowed error for both optimizations was set to 2.5e-14.
The errors are computed with respect to the 300-bit MPFR implementation. 10

2.1. Daisy’s input/output for the rigidBody algorithm. 26

3.1. heat1d benchmark in input formats for different tools 33
3.2. DSL for numerical programs on data structures 35
3.3. Fast Fourier transform filter implemented in our DSL 38
3.4. Example program in our DSL . 42
3.5. Relative performance/accuracy of DS2L in various configurations 53
3.6. Relative difference between worst-case errors by DS2L and dynamic errors 54

4.1. Running example . 63
4.2. Non-linear benchmark candidate invariants 64
4.3. High-level invariant synthesis algorithm (parameters are in cursive) . . . 68
4.4. Proportion of parameters appearing in successful configurations 77
4.5. Volumes of invariants with successful configurations 77

5.1. Example input program with elementary function calls 88
5.2. High-level synthesis algorithm . 90
5.3. Approximation polynomial parsed from Metalibm output. 93

6.1. Example program carthesianToPolar_radius that computes polar ‘radius’
from Cartesian coordinates . 104

6.2. Source code of the azimuth benchmark . 106
6.3. Sub-regimes in C generated for azimuth benchmark 108

131

List of Figures

6.4. Regime inference algorithm . 109
6.5. Bottom-up phase . 111
6.6. Merge strategy . 111
6.7. Regimes inferred at different stages of the algorithm. 113
6.8. Regimes inferred by top-down phase starting with the whole input domain.113
6.9. Top-down phase with alternative regime search procedures 114
6.10. NMSE-example-3.9 benchmark . 119
6.11. Performance improvements of Regina over Daisy’s mixed-precision tun-

ing (cactus plot). Series of values higher and more to the right are better. 125
6.12. Accuracy improvements of Regina over Daisy’s whole-domain rewriting

optimization. Series of values higher and more to the right are better. . . 126

132

List of Tables

1.1. Overview of the state of the art in rigorous support for numerical pro-
grams. This thesis’ contributions are marked with the puzzle symbol.
State-of-the-art methods (outside of our contributions) are marked with
‘+’ for solved problems; ‘+/-’ marks problems that are only partially
addressed and where there is room for improvement. 3

2.1. Binary floating-point precision parameters 14

3.1. Benchmarks description: usage of DSL functions and unrolled program
sizes for different DS size configurations (in lines of code) 46

3.2. Relative accuracy/performance of state-of-the-art tools compared to DS2L
with DS abstraction. 50

3.3. Experimental results on large benchmarks. Reported error bounds are
rounded to two digits after decimal point, time is in seconds. “TO”
denotes a timeout, “na” stands for non-applicable. Bold marks ‘winning’
values. 51

4.1. Volumes of invariants generated by Pine, Pilat and SMT-AI, Pine’s average
running time and variation in invariant volumes across 4 runs 75

4.2. Top-5 minimum volume configurations . 76

5.1. Running time in machine cycles of baseline and synthesized programs,
and error budgets together with the achieved accuracy 96

5.2. Size of the generated polynomials and the running times for optimization 97

6.1. Summary statistics for different optimizations, comparing regime infer-
ence against optimizations without regimes. Column 2 gives the number
of benchmarks for which there is an improvement over the optimized
baseline without regimes, column 3 gives the average improvement over
those benchmarks, column 4 gives the number of benchmarks for which
a method produces an improvement that is within 2% of the best result
among all methods. We do not report the number of the best results per
method for FPTuner (marked ’-’), as it is not meaningful for comparing
only two methods. Columns 5 and 6 give the number of benchmarks
where generated regime has multiple sub-regimes, and the average size
of regimes. Columns 7 and 8 give the average running time of regime
inference and the number of benchmarks that timed out. 123

133

List of Tables

A.1. Experimental results on medium benchmarks. Reported error bounds are
rounded to two digits after decimal point, time is in seconds. “TO” denotes a
timeout, “na” stands for non-applicable. 178

A.2. Experimental results on small benchmarks. Reported error bounds are rounded
to two digits after decimal point, time is in seconds. “TO” denotes a timeout,
“na” stands for non-applicable. 179

134

Bibliography

[1] P. Gervasio, A. Quarteroni, and F. Saleri, Scientific Computing with MATLAB and
Octave, vol. 2. 03 2014. → page 1

[2] C. P. C. Woodford, Numerical Methods with Worked Examples: Matlab Edition.
Springer, 2 ed., 2012. → page 1

[3] Journal of Mathematical Chemistry, vol. 61. Springer, 2023. → page 1

[4] J.D.Murray, Mathematical Biology. Springer, 3 ed., 2002. → page 1

[5] K. Quinn, “Ever had problems rounding off figures? this stock exchange has,” The
Wall Street Journal, p. 37, 1983. → page 1

[6] P. Mark J. Nigrini, “Round numbers: A fingerprint of fraud,” 2018. → page 1

[7] T. T. Johnson, D. M. Lopez, P. Musau, H.-D. Tran, E. Botoeva, F. Leofante, A. Maleki,
C. Sidrane, J. Fan, and C. Huang, “Arch-comp20 category report: Artificial intel-
ligence and neural network control systems (ainncs) for continuous and hybrid
systems plants,” in International Workshop on Applied Verification of Continuous and
Hybrid Systems (ARCH20), vol. 74, pp. 107–139, 2020. → pages 1, 8, 29, 32

[8] J.-L. Lions, L. Luebeck, J.-L. Fauquembergue, G. Kahn, W. Kubbat, S. Levedag,
L. Mazzini, D. Merle, and C. O’Halloran, “Ariane 5 flight 501 failure report by the
inquiry board,” 1996. → page 1

[9] General Accounting Office Washington DC Information Management and Tech-
nology Div., “Patriot missile defense: Software problem led to system failure at
dhahran, saudi arabia.” https://apps.dtic.mil/sti/citations/ADA344865, 02 1992.
→ page 1

[10] M. O. Lam, T. Vanderbruggen, H. Menon, and M. Schordan, “Tool integration
for source-level mixed precision,” in 2019 IEEE/ACM 3rd International Workshop on
Software Correctness for HPC Applications (Correctness), pp. 27–35, 2019. → pages
1, 24, 100, 127

[11] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, “MPFR: A
Multiple-Precision Binary Floating-Point Library with Correct Rounding,” ACM
Trans. Math. Softw., vol. 33, pp. 13–es, jun 2007. → pages 2, 44, 131

135

Bibliography

[12] N. Ho, E. Manogaran, W. Wong, and A. Anoosheh, “Efficient floating point
precision tuning for approximate computing,” in ASP-DAC’17, 2017. → pages
1, 127

[13] E. Darulova and V. Kuncak, “Towards a Compiler for Reals,” TOPLAS, vol. 39,
no. 2, 2017. → pages 2, 3, 4, 8, 17, 20, 22, 31, 32, 40, 42, 55, 56, 61, 81, 94, 105

[14] E. Darulova, A. Izycheva, F. Nasir, F. Ritter, H. Becker, and
R. Bastian, “Daisy - Framework for Analysis and Optimiza-
tion of Numerical Programs,” in TACAS, 2018. → pages
2, 3, 8, 17, 20, 24, 25, 31, 44, 56, 62, 71, 72, 86, 105, 107, 109, 110, 119, 121, 127

[15] A. Solovyev, M. Baranowski, I. Briggs, C. Jacobsen, Z. Rakamarić, and G. Gopalakr-
ishnan, “Rigorous estimation of floating-point round-off errors with symbolic
taylor expansions,” vol. 41, no. 1, 2018. → pages 2, 3, 105, 112

[16] L. Titolo, M. A. Feliú, M. Moscato, and C. A. Muñoz, “An abstract interpreta-
tion framework for the round-off error analysis of floating-point programs,” in
Verification, Model Checking, and Abstract Interpretation (I. Dillig and J. Palsberg,
eds.), (Cham), pp. 516–537, Springer International Publishing, 2018. → pages
2, 3, 4, 20, 21, 40, 42

[17] V. Magron, G. Constantinides, and A. Donaldson, “Certified Roundoff Error
Bounds Using Semidefinite Programming,” ACM Trans. Math. Softw., vol. 43, no. 4,
2017. → pages 2, 3, 20, 21, 56

[18] N. Damouche, M. Martel, and A. Chapoutot, “Improving the numerical accuracy
of programs by automatic transformation,” STTT, vol. 19, no. 4, pp. 427–448, 2017.
→ pages 2, 3

[19] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock, “Automatically
Improving Accuracy for Floating Point Expressions,” in PLDI’15, 2015. → pages
2, 5, 9, 23, 100, 103, 104, 120, 126

[20] X. Yi, L. Chen, X. Mao, and T. Ji, “Efficient Automated Repair of High Floating-
Point Errors in Numerical Libraries,” Proceedings of the ACM on Programming
Languages, vol. 3, no. POPL, 2019. → pages 2, 5, 23, 100, 103, 104, 120, 126

[21] X. Wang, H. Wang, Z. Su, E. Tang, X. Chen, W. Shen, Z. Chen, L. Wang,
X. Zhang, and X. Li, “Global Optimization of Numerical Programs via Pri-
oritized Stochastic Algebraic Transformations,” in ICS’19, 2019. → pages
2, 5, 23, 100, 103, 104, 120, 126

[22] E. Darulova, S. Sharma, and E. Horn, “Sound mixed-precision optimization with
rewriting,” in ICCPS, 2018.→ pages 3, 5, 23, 24, 103, 105, 106, 107, 116, 117, 118, 126

136

Bibliography

[23] W.-F. Chiang, M. Baranowski, I. Briggs, A. Solovyev, G. Gopalakrishnan, and
Z. Rakamarić, “Rigorous Floating-Point Mixed-Precision Tuning,” in POPL, 2017.
→ pages 3, 5, 23, 24, 99, 103, 105, 106, 109, 117, 121

[24] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard, “Chisel: Reliability-
and accuracy-aware optimization of approximate computational kernels,” in
OOPSLA, 2014. → pages 3, 98, 127

[25] N. Damouche and M. Martel, “Mixed precision tuning with salsa,” in PECCS,
pp. 185–194, SciTePress, 2018. → pages 3, 5, 24, 99, 127

[26] J. P. Lim, M. Aanjaneya, J. Gustafson, and S. Nagarakatte, “An approach to
generate correctly rounded math libraries for new floating point variants,” Proc.
ACM Program. Lang., vol. 5, jan 2021. → pages 3, 99

[27] A. Miné, L. Mauborgne, X. Rival, J. Feret, P. Cousot, D. Kästner, S. Wilhelm, and
C. Ferdinand, “Taking Static Analysis to the Next Level: Proving the Absence of
Run-Time Errors and Data Races with Astrée,” in ERTS, 2016. → pages 3, 17, 57

[28] F. Benz, A. Hildebrandt, and S. Hack, “A Dynamic Program Analysis to Find
Floating-Point Accuracy Problems,” in Programming Language Design and Imple-
mentation (PLDI), 2012. → pages 3, 16, 56

[29] Z. Fu, Z. Bai, and Z. Su, “Automated backward error analysis for numerical code,”
in Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2015, (New York, NY,
USA), pp. 639–654, Association for Computing Machinery, 2015. → pages 3, 56

[30] W. Chiang, G. Gopalakrishnan, Z. Rakamaric, and A. Solovyev, “Efficient search
for inputs causing high floating-point errors,” in PPoPP’14, 2014. → pages 3, 56

[31] T. Bao and X. Zhang, “On-the-fly detection of instability problems in floating-point
program execution,” in Proceedings of the 2013 ACM SIGPLAN International Con-
ference on Object Oriented Programming Systems Languages& Applications, OOPSLA
’13, (New York, NY, USA), pp. 817–832, Association for Computing Machinery,
2013. → pages 3, 56

[32] D. Zou, R. Wang, Y. Xiong, L. Zhang, Z. Su, and H. Mei, “A Genetic Algorithm
for Detecting Significant Floating-Point Inaccuracies,” in International Conference
on Software Engineering (ICSE), 2015. → pages 3, 16, 56

[33] D. Zou, M. Zeng, Y. Xiong, Z. Fu, L. Zhang, and Z. Su, “Detecting floating-point
errors via atomic conditions,” Proc. ACM Program. Lang., vol. 4, dec 2019. → pages
3, 16, 56

[34] Y. Xia, S. Guo, J. Hao, D. Liu, and J. Xu, “Error detection of arithmetic expressions,”
The Journal of Supercomputing, vol. 77, no. 6, pp. 5492–5509, 2021. → pages 3, 56

137

Bibliography

[35] A. Sanchez-Stern, P. Panchekha, S. Lerner, and Z. Tatlock, “Finding root causes
of floating point error,” in Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2018, (New York, NY,
USA), pp. 256–269, Association for Computing Machinery, 2018. → pages 3, 16, 56

[36] A. Anta, R. Majumdar, I. Saha, and P. Tabuada, “Automatic verification of control
system implementations,” in EMSOFT’10, 2010. → pages 3, 105, 106

[37] E. Goubault and S. Putot, “Robustness analysis of finite precision implementa-
tions,” in Programming Languages and Systems (C.-c. Shan, ed.), (Cham), pp. 50–57,
Springer International Publishing, 2013. → pages 3, 22, 56

[38] D. Lohar, E. Darulova, S. Putot, and E. Goubault, “Discrete choice in the presence
of numerical uncertainties,” IEEE TCAD, Nov 2018. → pages 3, 22, 56, 109

[39] E. Goubault and S. Putot, “Static Analysis of Finite Precision Computations,” in
Verification, Model Checking, and Abstract Interpretation (VMCAI), 2011. → pages
4, 6, 20, 29, 30, 31, 32, 47, 56, 105, 110, 127

[40] A. R. Bradley, “Sat-based model checking without unrolling,” in Verification, Model
Checking, and Abstract Interpretation, VMCAI, pp. 70–87, 2011. → pages 5, 61

[41] I. Dillig, T. Dillig, B. Li, and K. L. McMillan, “Inductive invariant generation via
abductive inference,” in Proceedings of the 2013 ACM SIGPLAN International Con-
ference on Object Oriented Programming Systems Languages & Applications, OOPSLA,
pp. 443–456, 2013. → pages 5, 61, 79

[42] G. Fedyukovich, S. J. Kaufman, and R. Bodík, “Sampling invariants from frequency
distributions,” in FMCAD (Formal Methods in Computer Aided Design), 2017. →
pages 5, 61

[43] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “ICE: A robust framework for
learning invariants,” in Computer Aided Verification (CAV), 2014. → pages 5, 61, 78

[44] A. Adjé, S. Gaubert, and E. Goubault, “Coupling policy iteration with semi-definite
relaxation to compute accurate numerical invariants in static analysis,” Logical
Methods in Computer Science, vol. 8, no. 1, 2012. → pages 5, 61, 73, 78

[45] T. M. Gawlitza and H. Seidl, “Numerical invariants through convex relaxation
and max-strategy iteration,” Formal Methods Syst. Des., vol. 44, no. 2, pp. 101–148,
2014. → pages 5, 78

[46] A. Miné, J. Breck, and T. W. Reps, “An algorithm inspired by constraint solvers
to infer inductive invariants in numeric programs,” in Programming Languages and
Systems (ESOP), 2016. → pages 5, 31, 32, 61, 62, 63, 73

138

Bibliography

[47] P. Roux and P. Garoche, “Practical policy iterations - A practical use of policy
iterations for static analysis: the quadratic case,” Formal Methods Syst. Des., vol. 46,
no. 2, pp. 163–196, 2015. → pages 5, 8, 61, 62, 71, 72, 73, 78

[48] S. de Oliveira, S. Bensalem, and V. Prevosto, “Synthesizing invariants by solving
solvable loops,” in Automated Technology for Verification and Analysis (ATVA), 2017.
→ pages 5, 8, 61, 62, 63, 72, 78

[49] E. Darulova, V. Kuncak, R. Majumdar, and I. Saha, “Synthesis of fixed-point
programs,” in Proceedings of the Eleventh ACM International Conference on Embedded
Software, EMSOFT ’13, IEEE Press, 2013. → pages 5, 15, 24, 103

[50] A. Izycheva, E. Darulova, and H. Seidl, “Synthesizing efficient low-precision
kernels,” in ATVA, 2019. → pages 5, 11

[51] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan, K. Sen,
D. H. Bailey, C. Iancu, and D. Hough, “Precimonious: Tuning Assistant for
Floating-point Precision,” in SC, 2013. → pages 5, 24, 100, 103, 106, 127

[52] N. Damouche and M. Martel, “Salsa: An automatic tool to improve the numerical
accuracy of programs,” in Automated Formal Methods (N. Shankar and B. Dutertre,
eds.), vol. 5 of Kalpa Publications in Computing, pp. 63–76, EasyChair, 2018. →
pages 5, 23, 127

[53] P. Prusaczyk, W. Kaczmarek, J. Panasiuk, and K. Besseghieur, “Integration of
robotic arm and vision system with processing software using tcp/ip protocol in
industrial sorting application,” in AIP Conference Proceedings, vol. 2078, p. 020032,
AIP Publishing LLC, 2019. → page 6

[54] X. Wan, W. Wang, J. Liu, and T. Tong, “Estimating the sample mean and standard
deviation from the sample size, median, range and/or interquartile range,” BMC
medical research methodology, vol. 14, pp. 1–13, 2014. → page 6

[55] P. Heckbert, “Fourier transforms and the fast fourier transform (fft) algorithm,”
Computer Graphics, vol. 2, pp. 15–463, 1995. → page 6

[56] T. Yu, K. Song, P. Miao, G. Yang, H. Yang, and C. Chen, “Nighttime single image
dehazing via pixel-wise alpha blending,” IEEE Access, vol. 7, pp. 114619–114630,
2019. → page 6

[57] A. Das, I. Briggs, G. Gopalakrishnan, S. Krishnamoorthy, and P. Panchekha,
“Scalable yet rigorous floating-point error analysis,” in International Conference for
High Performance Computing, Networking, Storage and Analysis (SC), 2020. → pages
6, 20, 21, 29, 30, 31, 32, 47, 56

[58] A. Anta and P. Tabuada, “To sample or not to sample: Self-triggered control for
nonlinear systems,” IEEE Transactions on Automatic Control, vol. 55, no. 9, pp. 2030–
2042, 2010. → pages 8, 98

139

Bibliography

[59] Xilinx, “Vivado design suite.” https://www.xilinx.com/products/design-tools/

vivado.html, 2018. → pages 9, 25, 87

[60] A. Isychev and E. Darulova, “Scaling up roundoff analysis of functional data
structure programs,” in Static Analysis (M. V. Hermenegildo and J. F. Morales,
eds.), (Cham), pp. 371–402, Springer Nature Switzerland, 2023. → page 11

[61] A. Izycheva, E. Darulova, and H. Seidl, “Counterexample- and simulation-guided
floating-point loop invariant synthesis,” in Static Analysis (D. Pichardie and
M. Sighireanu, eds.), (Cham), pp. 156–177, Springer International Publishing,
2020. → page 11

[62] R. Rabe, A. Izycheva, and E. Darulova, “Regime inference for sound floating-point
optimizations,” ACM Trans. Embed. Comput. Syst., vol. 20, sep 2021. → page 11

[63] Gustafson and Yonemoto, “Beating floating point at its own game: Posit arith-
metic,” Supercomput. Front. Innov.: Int. J., vol. 4, no. 2, 2017. → pages 13, 130

[64] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2019 (Revision of
IEEE 754-2008), pp. 1–84, 2019. → pages 13, 66, 85

[65] S. L. Harris and D. Harris, “5 - Digital Building Blocks,” in Digital Design and
Computer Architecture (S. L. Harris and D. Harris, eds.), pp. 236–297, Morgan
Kaufmann, 2022. → page 15

[66] M. O. Lam, J. K. Hollingsworth, and G. Stewart, “Dynamic floating-point can-
cellation detection,” Parallel Computing, vol. 39, no. 3, pp. 146–155, 2013. High-
performance Infrastructure for Scalable Tools. → page 16

[67] R. Moore, Interval Analysis. Prentice-Hall, 1966. → pages 16, 20

[68] L. H. de Figueiredo and J. Stolfi, “Affine Arithmetic: Concepts and Applications,”
Numerical Algorithms, vol. 37, no. 1-4, 2004. → pages 17, 20

[69] E. Darulova and V. Kuncak, “Trustworthy numerical computation in scala,” in
Proceedings of the 2011 ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’11, (New York, NY, USA), pp. 325–
344, Association for Computing Machinery, 2011. → page 17

[70] A. Izycheva and E. Darulova, “On sound relative error bounds for floating-point
arithmetic,” in Formal Methods in Computer Aided Design (FMCAD), 2017. → page
18

[71] A. Solovyev, C. Jacobsen, Z. Rakamaric, and G. Gopalakrishnan, “Rigorous Esti-
mation of Floating-Point Round-off Errors with Symbolic Taylor Expansions,” in
FM, 2015. → pages 20, 29, 31, 56, 119

140

https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

Bibliography

[72] S. Owre, J. M. Rushby, , and N. Shankar, “PVS: A prototype verification sys-
tem,” in 11th International Conference on Automated Deduction (CADE) (D. Kapur,
ed.), vol. 607 of Lecture Notes in Artificial Intelligence, (Saratoga, NY), pp. 748–752,
Springer-Verlag, jun 1992. → page 22

[73] M. Moscato, L. Titolo, A. Dutle, and C. Muñoz, “Automatic Estimation of Verified
Floating-Point Round-Off Errors via Static Analysis,” in SAFECOMP, 2017. →
pages 22, 31, 56

[74] R. Poli, W. Langdon, and N. Mcphee, A Field Guide to Genetic Programming. 01
2008. → page 23

[75] N. Fossati, D. Cattaneo, M. Chiari, S. Cherubin, and G. Agosta, “Automated
Precision Tuning in Activity Classification Systems: A Case Study,” in Proceedings
of the 11th Workshop on Parallel Programming and Run-Time Management Techniques
for Many-Core Architectures / 9th Workshop on Design Tools and Architectures for Mul-
ticore Embedded Computing Platforms, PARMA-DITAM’2020, (New York, NY, USA),
Association for Computing Machinery, 2020. → page 23

[76] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. → page
24

[77] H. Guo and C. Rubio-González, “Exploiting community structure for floating-
point precision tuning,” in Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2018. → pages 24, 100, 127

[78] M. O. Lam, J. K. Hollingsworth, B. R. de Supinski, and M. P. Legendre, “Au-
tomatically adapting programs for mixed-precision floating-point computation,”
in Proceedings of the 27th International ACM Conference on International Conference
on Supercomputing, ICS ’13, (New York, NY, USA), pp. 369–378, Association for
Computing Machinery, 2013. → pages 24, 100, 127

[79] D. Cattaneo, M. Chiari, N. Fossati, S. Cherubin, and G. Agosta, “Architecture-
aware precision tuning with multiple number representation systems,” in 2021
58th ACM/IEEE Design Automation Conference (DAC), pp. 673–678, 2021. → pages
24, 100

[80] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud, N. Mihaylov,
M. Schinz, E. Stenman, and M. Zenger, “An overview of the scala programming
language,” 2004. → page 24

[81] C. I. Byrnes and A. Isidori, “New results and examples in nonlinear feedback
stabilization,” Systems & Control Letters, vol. 12, no. 5, pp. 437–442, 1989. → page
24

141

Bibliography

[82] E. Darulova, S. Sharma, E. Horn, D.Lohar, H.Becker, E.Postan, F. Ritter, A.Izycheva,
R. Monat, F. Nasir, R. Bastian, A.Volkova, R. Bankanal, R. Rabe, J. Bard, A.Gupta,
“Daisy - open-source repository.” → page 25

[83] P. Cousot and R. Cousot, “Basic concepts of abstract interpretation,” in Building
the Information Society: IFIP 18th World Computer Congress Topical Sessions 22–27
August 2004 Toulouse, France, pp. 359–366, Springer, 2004. → page 29

[84] N. Damouche, M. Martel, P. Panchekha, C. Qiu, A. Sanchez-Stern, and Z. Tatlock,
“Toward a standard benchmark format and suite for floating-point analysis,” in
NSV’16, 2016. → pages 31, 45, 105, 119

[85] B. Hagedorn, L. Stoltzfus, M. Steuwer, S. Gorlatch, and C. Dubach, “High per-
formance stencil code generation with lift,” in Proceedings of the 2018 International
Symposium on Code Generation and Optimization, CGO 2018, (New York, NY, USA),
pp. 100–112, Association for Computing Machinery, 2018. → page 34

[86] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015. Software available from tensorflow.org.
→ page 34

[87] T. Cheng and X. Rival, “An Abstract Domain to Infer Types over Zones in Spread-
sheets,” in SAS’12 - 19th International Static Analysis Symposium (A. Miné and
D. Schmidt, eds.), vol. 7460 of Lecture notes in computer science, (Deauville, France),
pp. 94–110, Springer, Sept. 2012. → page 44

[88] N. Halbwachs and M. Péron, “Discovering properties about arrays in simple
programs,” in Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’08, (New York, NY, USA), pp. 339–348,
Association for Computing Machinery, 2008. → page 44

[89] P. Cousot, R. Cousot, and F. Logozzo, “A parametric segmentation functor for fully
automatic and scalable array content analysis,” in Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’11, (New York, NY, USA), pp. 105–118, Association for Computing Machinery,
2011. → page 44

[90] F. De Dinechin, C. Q. Lauter, and G. Melquiond, “Assisted Verification of Elemen-
tary Functions Using Gappa,” in ACM Symposium on Applied Computing, 2006. →
page 56

142

Bibliography

[91] I. Laguna, “Fpchecker: Detecting floating-point exceptions in gpu applications,”
in Proceedings of the 34th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’19, pp. 1126–1129, IEEE Press, 2020. → page 56

[92] X. Yi, L. Chen, X. Mao, and T. Ji, “Efficient global search for inputs triggering
high floating-point inaccuracies,” in 2017 24th Asia-Pacific Software Engineering
Conference (APSEC), pp. 11–20, IEEE, 2017. → page 56

[93] D. Liew, D. Schemmel, C. Cadar, A. F. Donaldson, R. Zähl, and K. Wehrle,
“Floating-Point Symbolic Execution: A Case Study in N-Version Programming,” in
ASE, 2017. → page 56

[94] H. Guo and C. Rubio-González, “Efficient Generation of Error-Inducing Floating-
Point Inputs via Symbolic Execution,” in International Conference on Software Engi-
neering (ICSE), 2020. → page 56

[95] E. T. Barr, T. Vo, V. Le, and Z. Su, “Automatic detection of floating-point exceptions,”
in Principles of Programming Languages (POPL), 2013. → page 56

[96] D. Lohar, C. Jeangoudoux, J. Sobel, E. Darulova, and M. Christakis, “A two-phase
approach for conditional floating-point verification,” in Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2021. → page 56

[97] R. Abbasi, J. Schiffl, E. Darulova, M. Ulbrich, and W. Ahrendt, “Deductive ver-
ification of floating-point java programs in key,” in Tools and Algorithms for the
Construction and Analysis of Systems (J. F. Groote and K. G. Larsen, eds.), (Cham),
pp. 242–261, Springer International Publishing, 2021. → page 57

[98] G. Gange, Z. Ma, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey, “A
fresh look at zones and octagons,” ACM Trans. Program. Lang. Syst., vol. 43, sep
2021. → page 57

[99] B. Jeannet and A. Miné, “Apron: A library of numerical abstract domains for
static analysis,” in Computer Aided Verification, 21st International Conference, CAV,
pp. 661–667, 2009. → pages 57, 73, 78

[100] G. Singh, M. Püschel, and M. T. Vechev, “Fast polyhedra abstract domain,” in
Principles of Programming Languages (POPL), 2017. → page 57

[101] M. Journault and A. Miné, “Inferring functional properties of matrix manipulating
programs by abstract interpretation,” Formal Methods in System Design, vol. 53,
no. 2, pp. 221–258, 2018. → page 57

[102] S. Kumar, A. Sanyal, R. Venkatesh, and P. Shah, “Property checking array programs
using loop shrinking,” in Tools and Algorithms for the Construction and Analysis of
Systems (D. Beyer and M. Huisman, eds.), (Cham), pp. 213–231, Springer Interna-
tional Publishing, 2018. → page 57

143

Bibliography

[103] L. Bin, T. Zhenhao, and Z. Jianhua, “Invariant synthesis for programs manipulating
arrays with unbounded data,” in Proceedings of the 7th Asia-Pacific Symposium on
Internetware, Internetware ’15, (New York, NY, USA), pp. 195–198, Association for
Computing Machinery, 2015. → page 57

[104] G. Fedyukovich and R. Bodík, “Accelerating syntax-guided invariant synthesis,”
in Tools and Algorithms for the Construction and Analysis of Systems (TACAS), 2018.
→ pages 57, 79

[105] G. Fedyukovich, S. Prabhu, K. Madhukar, and A. Gupta, “Quantified invariants
via syntax-guided synthesis,” in Computer Aided Verification (I. Dillig and S. Tasiran,
eds.), (Cham), pp. 259–277, Springer International Publishing, 2019. → pages
57, 79

[106] J. Dohrau, A. J. Summers, C. Urban, S. Münger, and P. Müller, “Permission
inference for array programs,” in Computer Aided Verification (H. Chockler and
G. Weissenbacher, eds.), (Cham), pp. 55–74, Springer International Publishing,
2018. → page 57

[107] A. D. Falkoff and K. E. Iverson, “The evolution of apl,” SIGPLAN Not., vol. 13,
pp. 47–57, aug 1978. → page 57

[108] APL Wiki, “Main Page — APL Wiki,,” 2022. [Online; accessed 9-June-2023]. →
page 57

[109] C. Hoekstra, “Combinatory logic and combinators in array languages,” in Pro-
ceedings of the 8th ACM SIGPLAN International Workshop on Libraries, Languages and
Compilers for Array Programming, ARRAY 2022, (New York, NY, USA), pp. 46–57,
Association for Computing Machinery, 2022. → page 57

[110] M. Lochbaum, “BQN: Big Question Notation Lanugage,” 2022. → page 57

[111] S. Gulwani and A. Tiwari, “Computing procedure summaries for interprocedu-
ral analysis,” in Programming Languages and Systems: 16th European Symposium
on Programming, ESOP 2007, Held as Part of the Joint European Conferences on The-
ory and Practics of Software, ETAPS 2007, Braga, Portugal, March 24-April 1, 2007.
Proceedings 16, pp. 253–267, Springer, 2007. → page 57

[112] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Efficiently
computing static single assignment form and the control dependence graph,”
ACM Trans. Program. Lang. Syst., vol. 13, pp. 451–490, oct 1991. → page 58

[113] A. Sukumaran-Rajam and P. Clauss, “The polyhedral model of nonlinear loops,”
ACM Transactions on Architecture and Code Optimization (TACO), vol. 12, no. 4,
pp. 1–27, 2015. → page 58

144

Bibliography

[114] B. Mariano, Y. Chen, Y. Feng, G. Durrett, and I. Dillig, “Automated transpilation
of imperative to functional code using neural-guided program synthesis,” Proc.
ACM Program. Lang., vol. 6, apr 2022. → page 58

[115] A. Darte, “On the complexity of loop fusion,” in 1999 International Conference
on Parallel Architectures and Compilation Techniques (Cat. No.PR00425), pp. 149–157,
1999. → page 58

[116] Z. Lin and C. Dubach, “From functional to imperative: Combining destination-
passing style and views,” in Proceedings of the 8th ACM SIGPLAN International
Workshop on Libraries, Languages and Compilers for Array Programming, ARRAY 2022,
(New York, NY, USA), pp. 25–36, Association for Computing Machinery, 2022. →
page 59

[117] M. v. d. Oever, L. E. Grimley, and R. M. Veras, “Using Q-Learning to Select
the Best among Functionally Equivalent Implementations,” in Proceedings of the
8th ACM SIGPLAN International Workshop on Libraries, Languages and Compilers for
Array Programming, ARRAY 2022, (New York, NY, USA), pp. 37–45, Association
for Computing Machinery, 2022. → page 59

[118] A. Shaikhha, A. Fitzgibbon, S. Peyton Jones, and D. Vytiniotis, “Destination-
passing style for efficient memory management,” in Proceedings of the 6th ACM
SIGPLAN International Workshop on Functional High-Performance Computing, FHPC
2017, (New York, NY, USA), pp. 12–23, Association for Computing Machinery,
2017. → page 59

[119] J. Ragan-Kelley, A. Adams, D. Sharlet, C. Barnes, S. Paris, M. Levoy, S. Ama-
rasinghe, and F. Durand, “Halide: Decoupling algorithms from schedules for
high-performance image processing,” Commun. ACM, vol. 61, pp. 106–115, dec
2017. → page 59

[120] C. Schlaak, T.-H. Juang, and C. Dubach, “Optimizing Data Reshaping Opera-
tions in Functional IRs for High-Level Synthesis,” in Proceedings of the 23rd ACM
SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for
Embedded Systems, LCTES 2022, (New York, NY, USA), pp. 61–72, Association for
Computing Machinery, 2022. → page 59

[121] V. Kuncak and J. Hamza, “Stainless verification system tutorial,” in 2021 Formal
Methods in Computer Aided Design (FMCAD), pp. 2–7, IEEE, 2021. → page 59

[122] M. Bucev and V. Kunčak, “Formally Verified Quite OK Image Format,” in Proceed-
ings of the 22nd Conference on Formal Methods in Computer-Aided Design–FMCAD
2022, no. CONF, pp. 343–348, TU Wien, 2022. → page 59

[123] O. Padon, N. Immerman, S. Shoham, A. Karbyshev, and M. Sagiv, “Decidability of
inferring inductive invariants,” ACM SIGPLAN Notices, vol. 51, no. 1, pp. 217–231,
2016. → page 61

145

Bibliography

[124] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), 2008. → page 61

[125] C. W. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King,
A. Reynolds, and C. Tinelli, “CVC4,” in Computer Aided Verification - 23rd Interna-
tional Conference, CAV, pp. 171–177, 2011. → page 61

[126] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, and A. V. Nori, “Verification as
learning geometric concepts,” in Static Analysis Symposium (SAS), 2013. → pages
61, 79

[127] R. Sharma and A. Aiken, “From invariant checking to invariant inference using
randomized search,” in Computer Aided Verification (CAV), 2014. → pages 61, 78

[128] H. Zhu, S. Magill, and S. Jagannathan, “A data-driven CHC solver,” in Program-
ming Language Design and Implementation (PLDI), 2018. → pages 61, 78

[129] D. Jovanovic and L. M. de Moura, “Solving non-linear arithmetic,” in Automated
Reasoning - 6th International Joint Conference, IJCAR, 2012. → pages 62, 70, 71

[130] N. Moshtagh, Minimum Volume Enclosing Ellipsoid, 2020 (retrieved May 21, 2020).
→ page 69

[131] A. Magnani, S. Lall, and S. Boyd, “Tractable fitting with convex polynomials via
sum-of-squares,” in Proceedings of the 44th IEEE Conference on Decision and Control,
2005. → page 69

[132] M. Brain, F. Schanda, and Y. Sun, “Building better bit-blasting for floating-point
problems,” in Tools and Algorithms for the Construction and Analysis of Systems,
TACAS, pp. 79–98, 2019. → page 71

[133] K. J. Astrom and R. M. Murray, Feedback Systems: An Introduction for Scientists and
Engineers. Princeton University Press, 2008. → page 73

[134] P. Roux and P. Garoche, “Integrating policy iterations in abstract interpreters,” in
Automated Technology for Verification and Analysis (ATVA), 2013. → page 73

[135] B. J. Gal Lalire, M. Argoud, “A web interface to the interproc analyzer.” → page
73

[136] R. Bagnara, P. M. Hill, and E. Zaffanella, “The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems,” Science of Computer Programming, vol. 72, no. 1, pp. 3 – 21,
2008. → pages 73, 78

[137] P. Cousot and C. Radhia, “Static determination of dynamic properties of programs,”
in ISOP, pp. 106–130, 1976. → page 78

146

Bibliography

[138] A. Miné, “The octagon abstract domain,” High. Order Symb. Comput., vol. 19, no. 1,
pp. 31–100, 2006. → page 78

[139] G. Singh, M. Püschel, and M. Vechev, “A practical construction for decomposing
numerical abstract domains,” Proc. ACM Program. Lang., vol. 2, no. POPL, 2017.
→ page 78

[140] J. Feret, “Static analysis of digital filters,” in Programming Languages and Systems
(ESOP), 2004. → page 78

[141] M. Oulamara and A. J. Venet, “Abstract interpretation with higher-dimensional
ellipsoids and conic extrapolation,” in Computer Aided Verification (CAV), 2015. →
page 78

[142] R. Bagnara, E. Rodríguez-Carbonell, and E. Zaffanella, “Generation of basic semi-
algebraic invariants using convex polyhedra,” in Static Analysis, 2005. → page
78

[143] S. Sankaranarayanan, H. B. Sipma, and Z. Manna, “Non-linear loop invariant
generation using gröbner bases,” in Principles of Programming Languages, POPL,
2004. → page 78

[144] A. Gupta and A. Rybalchenko, “InvGen: An Efficient Invariant Generator,” in
Computer Aided Verification (CAV), 2009. → page 79

[145] T. Nguyen, T. Antonopoulos, A. Ruef, and M. Hicks, “Counterexample-guided
approach to finding numerical invariants,” in Foundations of Software Engineering
(ESEC/FSE), 2017. → page 79

[146] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and A. V. Nori, “A data
driven approach for algebraic loop invariants,” in Programming Languages and
Systems (ESOP), 2013. → page 79

[147] S. Chakraborty, A. Gupta, and D. Unadkat, “Full-program induction: verifying
array programs sans loop invariants,” International Journal on Software Tools for
Technology Transfer, vol. 24, no. 5, pp. 843–888, 2022. → page 79

[148] X. Allamigeon, S. Gaubert, E. Goubault, S. Putot, and N. Stott, “A fast method
to compute disjunctive quadratic invariants of numerical programs,” ACM Trans.
Embedded Comput. Syst., vol. 16, no. 5s, pp. 166:1–166:19, 2017. → page 79

[149] Z. Kincaid, J. Cyphert, J. Breck, and T. W. Reps, “Non-linear reasoning for invariant
synthesis,” Proc. ACM Program. Lang., vol. 2, no. POPL, pp. 54:1–54:33, 2018. →
page 79

[150] L. Kovács, “Reasoning Algebraically About P-Solvable Loops,” in Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), 2008. → page 79

147

Bibliography

[151] J. Krämer, L. Blatter, E. Darulova, and M. Ulbrich, “Inferring interval-valued
floating-point preconditions,” in Tools and Algorithms for the Construction and Anal-
ysis of Systems (D. Fisman and G. Rosu, eds.), (Cham), pp. 303–321, Springer
International Publishing, 2022. → page 79

[152] M. N. Seghir and D. Kroening, “Counterexample-guided precondition inference,”
in Programming Languages and Systems (M. Felleisen and P. Gardner, eds.), (Berlin,
Heidelberg), pp. 451–471, Springer Berlin Heidelberg, 2013. → page 79

[153] Y. Moy, “Sufficient preconditions for modular assertion checking,” in Verification,
Model Checking, and Abstract Interpretation (F. Logozzo, D. A. Peled, and L. D. Zuck,
eds.), (Berlin, Heidelberg), pp. 188–202, Springer Berlin Heidelberg, 2008. → page
79

[154] K. Claessen, N. Smallbone, and J. Hughes, “QuickSpec: Guessing Formal Spec-
ifications Using Testing,” in Tests and Proofs (G. Fraser and A. Gargantini, eds.),
(Berlin, Heidelberg), pp. 6–21, Springer Berlin Heidelberg, 2010. → page 79

[155] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,
and C. Xiao, “The Daikon system for dynamic detection of likely invariants,”
Science of Computer Programming, vol. 69, no. 1, pp. 35–45, 2007. Special issue on
Experimental Software and Toolkits. → page 79

[156] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A survey,” IEEE
Design Test, vol. 33, pp. 8–22, Feb 2016. → pages 85, 98

[157] H.-J. Boehm, “Towards an API for the Real Numbers,” in Programming Language
Design and Implementation, PLDI 2020, (New York, NY, USA), pp. 562–576, Associ-
ation for Computing Machinery, 2020. → page 85

[158] R. D. Wolfinger and X. Lin, “Two taylor-series approximation methods for non-
linear mixed models,” Computational Statistics & Data Analysis, vol. 25, no. 4,
pp. 465–490, 1997. → page 85

[159] M. Hernández, “Chebyshev’s approximation algorithms and applications,” Com-
puters & Mathematics with Applications, vol. 41, no. 3-4, pp. 433–445, 2001. → page
85

[160] T. Y. Chow, “What is a closed-form number?,” The American mathematical monthly,
vol. 106, no. 5, pp. 440–448, 1999. → pages 85, 87

[161] O. Kupriianova and C. Lauter, “Metalibm: A mathematical functions code genera-
tor,” in ICMS, 2014. → pages 86, 87

[162] N.Briesbarre and S.Chevillard, “Efficient polynomial L-approximations,” in
ARITH, 2007. → page 87

148

Bibliography

[163] O. Kupriianova and C. Lauter, “A domain splitting algorithm for the mathematical
functions code generator,” in Asilomar, 2014. → pages 87, 101, 127

[164] N. Brunie, F. d. Dinechin, O. Kupriianova, and C. Lauter, “Code generators for
mathematical functions,” in ARITH, 2015. → page 87

[165] “Project CORPIN.” https://www-sop.inria.fr/corpin/logiciels/ALIAS/Benches/.
→ pages 88, 94

[166] D. U. Lee, A. A. Gaffar, R. C. Cheung, O. Mencer, W. Luk, and G. A. Constantinides,
“Accuracy-guaranteed bit-width optimization,” TCAD, vol. 25, pp. 1990–2000, Oct.
2006. → page 91

[167] “Python sklearn - multi-layer perceptron regressor.” https://scikit-learn.org/

stable/modules/generated/sklearn.neural_network.MLPRegressor.html, 2019. → page
91

[168] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran, “AxBench:
A Multiplatform Benchmark Suite for Approximate Computing,” IEEE Design
Test, vol. 34, no. 2, 2017. → page 94

[169] S. Cherubin and G. Agosta, “Tools for reduced precision computation: A survey,”
ACM Comput. Surv., vol. 53, apr 2020. → page 98

[170] S. Lee, L. K. John, and A. Gerstlauer, “High-level synthesis of approximate hard-
ware under joint precision and voltage scaling,” in DATE, pp. 187–192, 2017. →
page 98

[171] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard, “Managing
performance vs. accuracy trade-offs with loop perforation,” in ESEC/FSE, 2011.
→ page 98

[172] L. Renganarayana, V. Srinivasan, R. Nair, and D. Prener, “Programming with
relaxed synchronization,” in RACES, pp. 41–50, 2012. → page 98

[173] R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola, “TTHRESH: Tensor Compression
for Multidimensional Visual Data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 26, no. 9, pp. 2891–2903, 2020. → page 98

[174] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quantized
neural networks: Training neural networks with low precision weights and activa-
tions,” The Journal of Machine Learning Research, vol. 18, no. 1, pp. 6869–6898, 2017.
→ page 98

[175] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of deep convo-
lutional networks,” in International conference on machine learning, pp. 2849–2858,
PMLR, 2016. → page 98

149

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html

Bibliography

[176] E. Darulova and A. Volkova, “Sound approximation of programs with elementary
functions,” in CAV, 2018. → pages 98, 127, 128

[177] I. Briggs and P. Panchekha, “Choosing mathematical function implementations
for speed and accuracy,” in Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, PLDI 2022, (New
York, NY, USA), pp. 522–535, Association for Computing Machinery, 2022. →
pages 98, 101

[178] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths with
FloPoCo,” IEEE Design & Test of Computers, vol. 28, pp. 18–27, July 2011. → page
98

[179] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski, A. Edelman, and S. Amarasinghe,
“Language and compiler support for auto-tuning variable-accuracy algorithms,”
in CGO, 2011. → page 99

[180] W. Baek and T. M. Chilimbi, “Green: A framework for supporting energy-
conscious programming using controlled approximation,” in Proceedings of the
31st ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’10, (New York, NY, USA), pp. 198–209, Association for Computing
Machinery, 2010. → page 99

[181] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceleration for
general-purpose approximate programs,” in MICRO, 2012. → page 99

[182] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic Optimization of Floating-Point
Programs with Tunable Precision,” in PLDI’14, 2014. → pages 99, 100, 127

[183] D. R.Braojos, G.Ansaloni, “A methodology for embedded classification of heart-
beats using random projections,” in DATE, EPFL, 2013. → page 99

[184] W. Lee, R. Sharma, and A. Aiken, “On automatically proving the correctness of
math.h implementations,” in POPL, 2018. → page 99

[185] V. Innocente and P. Zimmermann, “Accuracy of mathematical functions in single,
double, extended double and quadruple precision,” 2023. → page 99

[186] J. P. Lim and S. Nagarakatte, “One polynomial approximation to produce cor-
rectly rounded results of an elementary function for multiple representations and
rounding modes,” Proc. ACM Program. Lang., vol. 6, jan 2022. → page 99

[187] C. Daramy-Loirat, D. Defour, F. de Dinechin, M. Gallet, N. Gast, C. Lauter, and
J.-M. Muller, “CR-LIBM A library of correctly rounded elementary functions in
double-precision,” research report, LIP,, Dec. 2006. → page 99

[188] R. Bodik and B. Jobstmann, “Algorithmic program synthesis: introduction,” STTT,
vol. 15, no. 5, pp. 397–411, 2013. → page 99

150

Bibliography

[189] E. Kneuss, I. Kuraj, V. Kuncak, and P. Suter, “Synthesis modulo recursive functions,”
in OOPSLA, 2013. → page 99

[190] R. Alur, A. Radhakrishna, and A. Udupa, “Scaling enumerative program synthesis
via divide and conquer,” in TACAS, pp. 319–336, Springer, 2017. → page 99

[191] L. D’Antoni, R. Samanta, and R. Singh, “Qlose: Program repair with quantitative
objectives,” in CAV, pp. 383–401, Springer, 2016. → page 99

[192] C. Loncaric, E. Torlak, and M. D. Ernst, “Fast synthesis of fast collections,” ACM
SIGPLAN Notices, vol. 51, no. 6, pp. 355–368, 2016. → page 99

[193] A. V. Nori, S. Ozair, S. K. Rajamani, and D. Vijaykeerthy, “Efficient synthesis of
probabilistic programs,” in PLDI, ACM, 2015. → page 99

[194] Y. Feng, R. Martins, Y. Wang, I. Dillig, and T. W. Reps, “Component-based synthesis
for complex apis,” in POPL, 2017. → page 99

[195] S. Gulwani, “Automating string processing in spreadsheets using input-output
examples,” in POPL, 2011. → page 99

[196] D. Neider, S. Saha, and P. Madhusudan, “Compositional synthesis of piece-wise
functions by learning classifiers,” ACM Trans. Comput. Logic, vol. 19, pp. 10:1–10:23,
May 2018. → page 99

[197] B. Saiki, O. Flatt, C. Nandi, P. Panchekha, and Z. Tatlock, “Combining preci-
sion tuning and rewriting,” in 2021 IEEE 28th Symposium on Computer Arithmetic
(ARITH), pp. 1–8, 2021. → pages 100, 126, 127

[198] J. Bornholt, E. Torlak, D. Grossman, and L. Ceze, “Optimizing Synthesis with
Metasketches,” in POPL, 2016. → page 100

[199] R. Wang, D. Zou, X. He, Y. Xiong, L. Zhang, and G. Huang, “Detecting and
fixing precision-specific operations for measuring floating-point errors,” in Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2016, (New York, NY, USA), pp. 619–630, Association
for Computing Machinery, 2016. → page 100

[200] H. Becker, P. Panchekha, E. Darulova, and Z. Tatlock, “Combining tools for
optimization and analysis of floating-point computations,” in Formal Methods
(K. Havelund, J. Peleska, B. Roscoe, and E. de Vink, eds.), (Cham), pp. 355–363,
Springer International Publishing, 2018. → pages 100, 120

[201] E. Darulova and V. Kuncak, “Certifying solutions for numerical constraints,” in
Runtime Verification (S. Qadeer and S. Tasiran, eds.), (Berlin, Heidelberg), pp. 277–
291, Springer Berlin Heidelberg, 2013. → page 100

[202] R. Green, “Even faster math functions,” 2020. → page 101

151

Bibliography

[203] “GCC libquadmath,” 2020. → pages 107, 121

[204] D. Whitley, “The genitor algorithm and selection pressure: Why rank-based
allocation of reproductive trials is best,” in Proceedings of the Third International
Conference on Genetic Algorithms, 1989. → page 115

[205] C. Nandi, M. Willsey, A. Zhu, Y. R. Wang, B. Saiki, A. Anderson, A. Schulz,
D. Grossman, and Z. Tatlock, “Rewrite rule inference using equality saturation,”
Proc. ACM Program. Lang., vol. 5, oct 2021. → page 126

[206] A. Miné, “Abstract domains for bit-level machine integer and floating-point
operations,” in ATx’12/WInG’12: Joint Proceedings of the Workshops on Automated
Theory eXploration and on Invariant Generation, 2012. → page 127

[207] W. Lee, R. Sharma, and A. Aiken, “Verifying bit-manipulations of floating-point,”
in PLDI’16, 2016. → page 127

[208] E. Goubault, S. Putot, P. Baufreton, and J. Gassino, “Static analysis of the accuracy
in control systems: Principles and experiments,” in Formal Methods for Industrial
Critical Systems, 2008. → page 127

[209] H. Menon, M. Lam, D. Osei-Kuffuor, M. Schordan, S. Lloyd, K. Mohror, and
J. Hittinger, “Adapt: Algorithmic differentiation applied to floating-point pre-
cision tuning,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, 2018. → page 127

[210] K. Seetharam, L. C. T. Keh, R. Nathan, and D. J. Sorin, “Applying reduced
precision arithmetic to detect errors in floating point multiplication,” in 2013 IEEE
19th Pacific Rim International Symposium on Dependable Computing, 2013. → page
127

[211] P. Kotipalli, R. Singh, P. Wood, I. Laguna, and S. Bagchi, “Ampt-ga: Automatic
mixed precision floating point tuning for gpu applications,” in ICS’19, 2019. →
page 127

[212] S. Graillat, F. Jézéquel, R. Picot, F. Févotte, and B. Lathuilière, “Auto-tuning for
floating-point precision with discrete stochastic arithmetic,” Journal of Computa-
tional Science, vol. 36, 2019. → page 127

[213] M. O. Lam and J. K. Hollingsworth, “Fine-grained floating-point precision anal-
ysis,” The International Journal of High Performance Computing Applications, vol. 32,
no. 2, 2018. → page 127

[214] E. Misback, C. Chan, B. Saiki, E. Jun, Z. Tatlock, and P. Panchekha, “Odyssey: An
interactive workbench for expert-driven floating-point expression rewriting,” 2023.
→ pages 127, 130

152

Bibliography

[215] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benin, “A transprecision
floating-point platform for ultra-low power computing,” in DATE’18, IEEE, 2018.
→ page 130

[216] NVIDIA, “Tensorfloat-32 in the a100 gpu accelerates ai training.”
https://blogs.nvidia.com/blog/2020/ 05/14/tensoroat-32-precision-format/,
2020. → page 130

[217] B. Darvish Rouhani, D. Lo, R. Zhao, M. Liu, J. Fowers, K. Ovtcharov, A. Vino-
gradsky, S. Massengill, L. Yang, R. Bittner, A. Forin, H. Zhu, T. Na, P. Patel,
S. Che, L. Chand Koppaka, X. SONG, S. Som, K. Das, S. T, S. Reinhardt, S. Lanka,
E. Chung, and D. Burger, “Pushing the limits of narrow precision inferencing
at cloud scale with microsoft floating point,” in Advances in Neural Information
Processing Systems (H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
eds.), vol. 33, pp. 10271–10281, Curran Associates, Inc., 2020. → page 130

[218] P. Behnam and M. Bojnordi, “Posit: A Potential Replacement for IEEE 754,” 2020.
→ page 130

[219] G. Gopalakrishnan, I. Laguna, A. Li, P. Panchekha, C. Rubio-González, and
Z. Tatlock, “Guarding numerics amidst rising heterogeneity,” in 2021 IEEE/ACM
5th International Workshop on Software Correctness for HPC Applications (Correctness),
pp. 9–15, 2021. → page 130

153

A. Supplementary Material

A.1. Benchmarks with Loops over Data Structures

We provide the benchmark set we collected for the experimental evaluation of DS2L
in section 3.5. We only provide the AllSame variation of the specification, where all
data structure elements have the same input range, other configurations are available
upon request (we will publish all variations open-source once the double-blind review
phase of our paper submission is over). The data structure size in the require clause
corresponds to large benchmarks, small and medium sizes are shown in the comments.

A.1.1. Benchmarks for DS2L

import daisy.lang._

2 import Real._

import daisy.lang.Vector._

4 object ds2lBenchmarks {

// Vector Benchmarks

6 def avg(x: Vector): Real = {

require(x >= -62.54 && x <= 15.02 && x.size(10000)) // small 100; medium 1000

8 val n: Real = x.length()

val z = x.fold(0.0)((acc: Real, i: Real) => acc + i)

10 z / n

}

12 def variance(x: Vector): Real = {

require(x >= -252.68 && x <= 72.42 && x.size(10000)) // small 100; medium 1000

14

val n: Real = x.length()

16 val y = x.fold(0.0)((acc: Real, i: Real) => acc + i)

val avg = y / n

18 val z = x.fold(0.0)((acc: Real, i: Real) => acc + pow(i - avg, 2))

z / n

20 }

def stdDeviation(x: Vector): Real = {

22 require(x >= -160.06 && x <= 360.98 && x.size(10000)) // small 100; medium 1000

val n: Real = x.length()

24 val y = x.fold(0.0)((acc: Real, i: Real) => acc + i)

val avg = y / n

26 val z = x.fold(0.0)((acc: Real, i: Real) => {

acc + pow((i - avg), 2)

28 })

155

A. Supplementary Material

sqrt(z / n)

30 }

def roux(x: Vector): Real = {

32 require(x >= -58.25 && x <= 61.32 && x.size(10000)) // small 100; medium 1000

x.fold(0.0)((y: Real, i: Real) => {1.5 * i - 0.7 * y})

34 }

def goubault(x:Vector, y: Real): Real = {

36 require(54.86 <= y && y <= 359.03

&& x >= -270.01 && x <= 385.38 && x.size(10000)) // small 100; medium 1000

38 x.fold(y)((acc: Real, xi: Real) => {0.75 * xi - 0.125 * acc})

}

40 def harmonic(x: Vector, y: Vector): Vector = {

require(x >= -5.32 && x <= 725.6 && x.size(10000) // small 100; medium 1000

42 && y >= -432.12 && y <= 78.94 && y.size(10000))

//x1 := x1 + 0.01 * x2

44 val x1: Real = y.fold(x.head)((acc: Real, xi: Real) => {acc + 0.01* xi})

//x2 := -0.01 * x1 + 0.99 * x2

46 val x2: Real = x.fold(y.head)((acc: Real, xi: Real) => {-0.01 * xi + 0.99 * acc})

Vector(List(x1, x2))

48 }

def nonlin1(x: Vector, y: Vector): Vector = {

50 require(x >= 0.0 && x <= 1.0 && x.size(10000) // small 100; medium 1000

&& y >= 0.0 && y <= 1.0 && y.size(10000))

52 //x := x + 0.01 * (-2*x - 3*y + x*x)

val x1: Real = y.fold(x.head)((acc: Real, yi: Real) => {acc + 0.01 * (-2*acc - 3*yi + acc*acc)})

54 //y := y + 0.01 * (x + y)

val y1: Real = x.fold(y.head)((acc: Real, xi: Real) => {acc + 0.01 * (xi + acc)})

56 Vector(List(x1, y1))

}

58 def nonlin2(x: Vector, y: Vector): Vector = {

require(x >= 0.0 && x <= 1.0 && x.size(10000) // small 100; medium 1000

60 && y >= 0.0 && y <= 1.0 && y.size(10000))

//x := x + 0.01 * (-x + 2*x*x + y*y)

62 val x1: Real = y.fold(x.head)((acc: Real, yi: Real) => {acc + 0.01 * (-acc + 2*acc*acc + yi*yi)})

//y := y + 0.01 * (-y + y*y)

64 val y1: Real = x.fold(y.head)((acc: Real, xi: Real) => {acc + 0.01 * (-acc + acc*acc)})

Vector(List(x1, y1))

66 }

def nonlin3(x: Vector, y: Vector): Vector = {

68 require(x >= 0.0 && x <= 1.0 && x.size(10000) // small 100; medium 1000

&& y >= 0.0 && y <= 1.0 && y.size(10000))

70 // x := x + 0.01 * (-x + y*y)

val x1: Real = y.fold(x.head)((acc: Real, yi: Real) => {acc + 0.01 * (-acc + yi*yi)})

72 // y := y + 0.01 * (-2.0*y + 3.0*x*x)

val y1: Real = x.fold(y.head)((acc: Real, xi: Real) => {acc + 0.01 * (-2.0*acc + 3.0*xi*xi)})

74 Vector(List(x1, y1))

}

76 def heat1d(ax: Vector): Real = {

156

A.1. Benchmarks with Loops over Data Structures

require(ax >= 1.0 && ax <= 2.0 && ax.size(513)) // small 33; medium 65

78

if (ax.length() <= 1) {

80 ax.head

} else {

82 val coef = Vector(List(0.25, 0.5, 0.25))

val updCoefs: Vector = ax.slideReduce(3,1)(v => (coef*v).sum())

84 heat1d(updCoefs)

}

86 }

def fftvector(vr: Vector, vi: Vector): Vector = {

88 require(vr >= 68.9 && vr <= 160.43 && vr.size(512) // small 4, medium 128

&& vi >= -133.21 && vi <= 723.11 && vi.size(512))

90 /* v: (real part of signal / Fourier coeff., imaginary part of signal / Fourier coeff.) */

if (vr.length() == 1)

92 Vector(List(vr.head, vi.head))

else {

94 val scalar: Real = 1

val Pi: Real = 3.1415926

96 val n: Int = vr.length()

val direction: Vector = Vector(List(0.0, -2.0))

98 val evens: Vector = fftvector(vr.everyNth(2, 0), vi.everyNth(2, 0))

val odds: Vector = fftvector(vr.everyNth(2, 1), vi.everyNth(2, 1))

100 val resleft: Vector = evens.enumSlideFlatMap(2)((k, xv) => {

val base: Vector = xv / scalar

102 val oddV: Vector = odds.slice(2 * k, 2 * k + 1)

val expV: Vector = (direction.*(Pi * k / n)).exp()

104 val offset: Vector = (oddV x expV) / scalar

base + offset

106 })

val resright: Vector = evens.enumSlideFlatMap(2)((k, xv) => {

108 val base: Vector = xv / scalar

val oddV: Vector = odds.slice(2 * k, 2 * k + 1)

110 val expV: Vector = (direction.*(Pi * k / n)).exp()

val offset: Vector = (oddV x expV) / scalar

112 base - offset

})

114 resleft ++ resright

}

116 }

// Matrix Benchmarks

118 def pendulum(t: Vector, w: Vector): Vector = {

require(t >= -2.0 && t <= 2.0 && t.size(10000) // small 10; medium 1000

120 && w >= -5.0 && w <= 5.0 && w.size(10000))

val h: Real = 0.01

122 val L: Real = 2.0

val g: Real = 9.80665

124 val iter = Vector.zip(t,w) // into a Matrix

157

A. Supplementary Material

val init = Vector(List(t.head, w.head))

126 iter.fold(init)((acc, x) => {

val kt = acc.at(1)

128 val kw = -g/L * sin(acc.head)

val v = Vector(List(kt,kw))

130 acc + v*h

})

132 }

def alphaBlending(b: Matrix, c: Matrix, alpha: Real): Matrix = {

134 require(0.0 <= alpha && alpha <= 1.0

&& b >= 223.35 && b <= 530.05 && b.size(500,500) // small (10,10); medium (100,100)

136 && c >= -253.26 && c <= -108.41 && c.size(500,500)

)

138 b * alpha + c * (1 - alpha)

}

140

def fftmatrix(m: Matrix): Matrix = {

142 require(m >= -326.68 && m <= 677.57 && m.size(512,2)) // small (4,2), medium (128,2)

/* m: (real part of signal / Fourier coeff., imaginary part of signal / Fourier coeff.) */

144 if (m.numRows() == 1)

m

146 else {

val scalar: Real = 1

148 val Pi: Real = 3.1415926

val n: Int = m.numRows() /* signal length, has to be power of 2 */

150 val direction: Vector = Vector(List(0.0, -2.0))

val evens: Matrix = fftmatrix(m.everyNth(2, 0))

152 val odds: Matrix = fftmatrix(m.everyNth(2, 1))

val resleft: Matrix = evens.enumRowsMap((k:Int, x:Vector) => {

154 val base: Vector = x / scalar

val offset: Vector = (direction.*(Pi * k / n)).exp() x odds.row(k) / scalar

156 base + offset

})

158 val resright: Matrix = evens.enumRowsMap((k:Int, x:Vector) => {

val base: Vector = x / scalar

160 val offset: Vector = (direction.*(Pi * k / n)).exp() x odds.row(k) / scalar

base - offset

162 })

resleft ++ resright

164 }

}

166 def convolve2d_size3(image: Matrix, kernel: Matrix): Matrix = {

require(image >= -153.55 && image <= 291.35 && image.size(81,81) // small (3,3), medium (9,9)

168 && kernel >= -104.89 && kernel <= 57.21 && kernel.size(3, 3))

val flippedK: Matrix = (kernel.flipud()).fliplr()

170 val padded: Matrix = image.pad(1,1)

val output: Matrix = padded.slideReduce(3, 1)(m => {

172 val tmp: Matrix = flippedK.*(m)

158

A.1. Benchmarks with Loops over Data Structures

tmp.foldElements(0.0)((acc, x) => acc + x)

174 })

output

176 }

def sobel3(im: Matrix): Matrix = {

178 require(im >= 251.34 && im <= 341.89 && im.size(81,81)) // small (3,3), medium (9,9)

val kh: Matrix = Matrix(List(List(-1, 0, 1), List(-2, 0, 2), List(-1, 0, 1)))

180 val kv: Matrix = Matrix(List(List(1, 2, 1), List(0, 0, 0), List(-1, -2, -1)))

val padded: Matrix = im.pad(1,1)

182 // inlined convolve 2d for kh

val flippedKh: Matrix = (kh.flipud()).fliplr()

184 val gx: Matrix = padded.slideReduce(3, 1)(m => {

val tmp: Matrix = flippedKh * m

186 tmp.foldElements(0.0)((acc, x) => acc + x)

})

188 // inlined convolute 2d for kv

val flippedKv: Matrix = (kv.flipud()).fliplr()

190 val gy: Matrix = padded.slideReduce(3, 1)(m => {

val tmp: Matrix = flippedKv * m

192 tmp.foldElements(0.0)((acc, x) => acc + x)

})

194 val pre: Matrix = gx * gx + gy * gy

val g: Matrix = pre.sqrt()

196 g * 255.0 / g.max()

}

198 def lorentz(m:Matrix): Vector = {

require(m >= 1.0 && m <= 2.0 && m.size(41,3)) // small (21,3); medium (31,3)

200 val init: Vector = m.row(0)

m.fold(init)((acc, v) => {

202 val x:Real = acc.at(0)

val y:Real = acc.at(1)

204 val z:Real = acc.at(2)

val tmpx:Real = x + 10.0*(y - x)*0.005

206 val tmpy:Real = y + (28.0*x - y - x*z)*0.005

val tmpz:Real = z + (x*y - 2.666667*z)*0.005

208 Vector(List(tmpx,tmpy,tmpz))

})

210 }

def lyapunov(x: Vector, weights1: Matrix, weights2: Matrix,

212 bias1: Vector, bias2: Real): Vector = {

require(0.5307131 <= bias2 && bias2 <= 0.5307131

214 && x >= -6.0 && x <= 6.0 && x.size(500)

// small 10; medium 100 for vectors

216 && bias1 >= -0.8746956 && bias1 <= 1.1860801 && bias1.size(500)

// small (10,10); medium (100,100)

218 && weights1 >= -0.6363012 && weights1 <= 1.0211772 && weights1.size(500,500)

&& weights2 >= -0.80846876 && weights2 <= 1.1081733 && weights2.size(1,500))

220 val layer1: Vector = (weights1.x(x) + bias1).map(el => {

159

A. Supplementary Material

val relu = Vector(List(el, 0.0))

222 relu.max()

})

224 val layer2: Vector = (weights2.x(layer1) + bias2).map(el => {

val relu = Vector(List(el, 0.0))

226 relu.max()

})

228 layer2

}

230 def controllerTora(x: Vector, weights1: Matrix, weights2: Matrix,

weights3: Matrix, weights4: Matrix, bias1: Vector,

232 bias2: Vector, bias3: Vector, bias4: Real): Vector = {

require(10.197819 <= bias4 && bias4 <= 10.197819

234 && x >= -2.0 && x <= 2.0 && x.size(500)

// small 10; medium 100 for vectors

236 && bias1 >= 0.040232 && bias1 <= 0.341392 && bias1.size(500)

&& bias2 >= 0.082624 && bias2 <= 0.318763 && bias2.size(500)

238 && bias3 >= 0.096189 && bias3 <= 0.297542 && bias3.size(500)

// small (10,10); medium (100,100) for matrices

240 && weights1 >= -0.374036 && weights1 <= 0.319683 && weights1.size(500,500)

&& weights2 >= -0.426394 && weights2 <= 0.323056 && weights2.size(500,500)

242 && weights3 >= -0.582338 && weights3 <= 0.566423 && weights3.size(500,500)

&& weights4 >= -0.293298 && weights4 <= 0.311236 && weights4.size(1,500))

244 val layer1 = (weights1.x(x) + bias1).map(el => {

val relu = Vector(List(el, 0.0))

246 relu.max()

})

248 val layer2 = (weights2.x(layer1) + bias2).map(el => {

val relu = Vector(List(el, 0.0))

250 relu.max()

})

252 val layer3 = (weights3.x(layer2) + bias3).map(el => {

val relu = Vector(List(el, 0.0))

254 relu.max()

})

256 val layer4 = (weights4.x(layer3) + bias4)

layer4

258 }

}

Listing A.1: DS2L’s benchmarks

A.1.2. Benchmarks formatted for Fluctuat

The benchmarks formatted for Fluctuat include its own mathematical library fluctuat_math.h.
The range of inputs [low, hi] is denoted by the command DBETWEEN(low, hi); that pro-
vides a single (scalar) double floating-point value. The size of input data structures is
set in the variable N using the #define instruction.

160

A.1. Benchmarks with Loops over Data Structures

1 # include <fluctuat_math.h>

#define N 10000 // small 100, medium 1000

3 double avg(double* xin) {

double res, acc;

5 int i;

acc = 0.0; // init

7 for(i=0; i<N; i++) {

acc = acc + xin[i];

9 }

res = acc / N;

11 return res;

}

13 int main() {

int i;

15 double res;

double x[N];

17 // specify input ranges

for(i=0; i<=99; i++) {

19 x[i] = DBETWEEN(-62.54, 15.02);

}

21 res = avg(x);

}

Listing A.2: avg

#include <fluctuat_math.h>

2 #define N 10000 // small 100, medium 1000

double variance(double* x) {

4 double res, acc1, acc2, avg;

int i;

6 acc1 = 0.0; // init

for(i=0; i<N; i++) {

8 acc1 = acc1 + x[i];

}

10 avg = acc1 / N;

acc2 = 0.0; // init

12 for(i=0; i<N; i++) {

acc2 = acc2 + pow(x[i] - avg, 2);

14 }

res = acc2 / N;

16 return res;

}

18 int main() {

int i;

20 double res;

double x[N];

22 // specify input ranges

for(i=0; i<=99; i++) {

24 x[i] = DBETWEEN(-252.68, 72.42);

161

A. Supplementary Material

}

26 res = variance(x);

}

Listing A.3: variance

1 # include <fluctuat_math.h>

#define N 10000 // small 100, medium 1000

3 double stdDeviation(double* x) {

double res, acc1, acc2, avg;

5 int i;

acc1 = 0.0; // init

7 for(i=0; i<N; i++) {

acc1 = acc1 + x[i];

9 }

avg = acc1 / N;

11 acc2 = 0.0; // init

for(i=0; i<N; i++) {

13 acc2 = acc2 + pow(x[i] - avg, 2);

}

15 res = sqrt(acc2 / N);

return res;

17 }

int main() {

19 int i;

double res;

21 double x[N];

for(i=0; i<N; i++) {

23 x[0] = DBETWEEN(-160.06, 360.98);

}

25 res = stdDeviation(x);

}

Listing A.4: stdDeviation

include <fluctuat_math.h>

2 #define N 10000 // small 100, medium 1000

double roux(double* x) {

4 //x.fold(0.0)((y: Real, i: Real) => {1.5 * i - 0.7 * y})

double acc;

6 int i;

acc = 0.0; // init

8 for(i=0; i<N; i++) {

acc = 1.5*x[i] - 0.7*acc;

10 }

return acc;

12 }

int main() {

14 int i;

162

A.1. Benchmarks with Loops over Data Structures

double res;

16 double x[N];

// specify input ranges

18 for(i=0; i<=99; i++) {

x[i] = DBETWEEN(-58.25, 61.32);

20 }

res = roux(x);

22 }

Listing A.5: roux

#include <fluctuat_math.h>

2 #define N 10000 // small 100, medium 1000

double goubault(double x[], double y) {

4 // x.fold(y)((acc: Real, xi: Real) => {0.75 * xi - 0.125 * acc})

double acc;

6 int i;

acc = y; // init

8 for(i=0; i<N; i++) {

acc = 0.75*x[i] - 0.125*acc;

10 }

return acc;

12 }

int main() {

14 int i;

double y, res;

16 double x[N];

// specify input ranges

18 for(i=0; i<=99; i++) {

x[i] = DBETWEEN(-270.01, 385.38);

20 }

22 y = DBETWEEN(-1.0,0.0);

res = goubault(x, y);

24 }

Listing A.6: goubault

#include <fluctuat_math.h>

2 #define N 10000 // small 100, medium 1000

void harmonic(double x[N], double y[N], double *res) {

4 //x1 := x1 + 0.01 * x2

// val x1: Real = y.fold(x.head)((acc: Real, xi: Real) => {acc + 0.01* xi})

6 //x2 := -0.01 * x1 + 0.99 * x2

// val x2: Real = x.fold(y.head)((acc: Real, xi: Real) => {-0.01 * xi + 0.99 * acc})

8 double x1, x2;

int i;

10 x1 = 0.0;

x2 = 0.0;

163

A. Supplementary Material

12 for(i=0; i<N; i++) {

x1 = x1 + 0.01 * y[i];

14 x2 = -0.01 * x[i] + 0.99 * x2;

}

16 res[0] = x1;

res[1] = x2;

18 }

int main() {

20 int i;

double res[2];

22 double x[N], y[N];

// specify input ranges

24 for(i=0; i<=99; i++) {

x[i] = DBETWEEN(-5.32, 725.6);

26 }

for(i=0; i<=99; i++) {

28 y[i] = DBETWEEN(-432.12, 78.94);

}

30 harmonic(x, y, res);

}

Listing A.7: harmonic

1 #include <fluctuat_math.h>

#define N 10000 // small 100, medium 1000

3 void nonlin1(double x[], double y[], double* res) {

double x1, y1;

5 int i;

x1 = x[0];

7 y1 = y[0];

for(i=0; i<N; i++) {

9 x1 = x1 + 0.01 * (-2*x1 - 3*y[i] + x1*x1);

y1 = y1 + 0.01 * (x[i] + y1);

11 }

res[0] = x1;

13 res[1] = y1;

}

15 int main() {

int i;

17 double res[2];

double x[N], y[N];

19 // specify input ranges

for(i=0; i<=99; i++) {

21 x[i] = DBETWEEN(0.0, 1.0);

}

23 for(i=0; i<=99; i++) {

y[i] = DBETWEEN(0.0, 1.0);

25 }

nonlin1(x, y, res);

164

A.1. Benchmarks with Loops over Data Structures

27 }

Listing A.8: nonlin1

1 #include <fluctuat_math.h>

#define N 10000 // small 100, medium 1000

3 void nonlin2(double x[], double y[], double* res) {

double x1, y1;

5 int i;

x1 = x[0];

7 y1 = y[0];

for(i=0; i<N; i++) {

9 x1 = x1 + 0.01 * (-x1 +2*x1*x1 + y[i]*y[i]);

y1 = y1 + 0.01 * (-y1 + y1*y1);

11 }

res[0] = x1;

13 res[1] = y1;

}

15 int main() {

int i;

17 double res[2];

double x[N], y[N];

19 // specify input ranges

for(i=0; i<=99; i++) {

21 x[i] = DBETWEEN(0.0, 1.0);

}

23 for(i=0; i<=99; i++) {

y[i] = DBETWEEN(0.0, 1.0);

25 }

nonlin2(x, y, res);

27 }

Listing A.9: nonlin2

1 #include <fluctuat_math.h>

#define N 10000 // small 100, medium 1000

3 void nonlin3(double x[], double y[], double* res) {

double x1, y1;

5 int i;

x1 = x[0];

7 y1 = y[0];

for(i=0; i<N; i++) {

9 x1 = x1 + 0.01 * (-x1 + y[i]*y[i]);

y1 = y1 + 0.01 * (-2.0*y1 + 3.0*x[i]*x[i]);

11 }

res[0] = x1;

13 res[1] = y1;

}

15 int main() {

165

A. Supplementary Material

int i;

17 double res[2];

double x[N], y[N];

19 // specify input ranges

for(i=0; i<=99; i++) {

21 x[i] = DBETWEEN(0.0, 1.0);

}

23 for(i=0; i<=99; i++) {

y[i] = DBETWEEN(0.0, 1.0);

25 }

nonlin3(x, y, res);

27 }

Listing A.10: nonlin3

1 #include <fluctuat_math.h>

#define N 513 // small 33, medium 65

3 double heat1d(double (*xm)[N], double (*xp)[N], double* x0) {

int i,j;

5 for(j=1;j<N; j++) {

for(i=2; i<(N-j); i++) {

7 xm[j][i] = 0.25 * xm[j-1][i + 1] + 0.5 * xm[j-1][i] + 0.25 * xm[j-1][i - 1];

xp[j][i] = 0.25 * xp[j-1][i - 1] + 0.5 * xp[j-1][i] + 0.25 * xp[j-1][i + 1];

9 }

xm[j][0] = 0.25 * xm[j-1][1] + 0.5 * xm[j-1][0] + 0.25 * x0[j-1];

11 xp[j][0] = 0.25 * xp[j-1][1] + 0.5 * xp[j-1][0] + 0.25 * x0[j-1];

x0[j] = 0.25*xm[0][j-1] + 0.5*x0[j-1] + 0.25*xp[0][j-1];

13 }

// Satire takes x0_32

15 return x0[N-1];

}

17 int main() {

int i,j;

19 double res;

double x0[N];

21 double xm[N][N];

double xp[N][N];

23 double ax[N];

// specify input ranges

25 for(i=0; i<=32; i++) {

ax[i] = DBETWEEN(1.0, 2.0);

27 }

29 // assign the ranges to match scala benchmark

for(i=0; i<N; i++){

31 x0[i] = ax[i];

for(j=0; j<N; j++){

33 xm[i][j] = ax[j];

xp[i][j] = ax[j];

166

A.1. Benchmarks with Loops over Data Structures

35 }

}

37 heat1d(xm, xp, x0);

}

Listing A.11: heat1d

#include <fluctuat_math.h>

2 #define N 512 // small 4; medium 128

#define FFTLOGSIZE 9 // small 2; medium 7

4 void fftvector(double* vr, double* vi) {

double scalar = 1.0;

6 double pi = 3.1415926;

int n = N; //LEN(m);

8 double direction[2] = {0.0,2.0};

int i,j,c;

10 for(c=FFTLOGSIZE-1;c>0;c--){

for(j=0;j<pow(2,c-1);j+=1) {

12 int k=0;

for(i=j;i<N;i+=pow(2,c)){

14 int oddindex = i+ pow(2,c-1);

double base[2] = {vr[i]/scalar, vi[i]/scalar};

16 double tmp[2], offset[2];

18 tmp[0] = exp(direction[0]*pi*k / n);

tmp[1] = exp(direction[1]*pi*k / n);

20

// val firstElt = Minus(Times(a,c), Times(b,d))

22 // val secondElt = Plus(Times(a,d), Times(b,c))

offset[0] = (tmp[0] * vr[oddindex] - tmp[1] * vi[oddindex]) / scalar;

24 offset[1] = (tmp[0] * vi[oddindex] - tmp[1] * vr[oddindex]) / scalar;

// lefts

26 vr[i] = base[0] + offset[0];

vi[i] = base[1] + offset[1];

28 // rights

vr[oddindex] = base[0] - offset[0];

30 vi[oddindex] = base[1] - offset[1];

k++;

32 }

}

34 }

}

36 int main() {

int i,j;

38 double vr[N];

double vi[N];

40 // specify input ranges

for(i=0; i<=3; i++) {

42 vr[i] = DBETWEEN(68.9, 160.43);

167

A. Supplementary Material

}

44 for(i=0; i<=3; i++) {

vi[i] = DBETWEEN(-133.21, 723.11);

46 }

fftvector(vr, vi);

48 }

Listing A.12: fftvector

#include <fluctuat_math.h>

2 #define N 10000 // small 100; medium 1000

void pendulum(double t[N], double w[N], double* res){

4 int i;

double g,h,L;

6 g = 9.80665;

h = 0.01;

8 L = 2.0;

for(i=1; i<N; i++){

10 double kt = w[i-1];

double kw = -g/L * sin(t[i-1]);

12 w[i] = w[i-1] + kw*h;

t[i] = t[i-1] + kt*h;

14 }

res[0] = t[N-1];

16 res[1] = w[N-1];

}

18 int main() {

int i;

20 double res[2];

double t[N], w[N];

22 // specify input ranges

for(i=0; i<=99; i++) {

24 t[i] = DBETWEEN(-2.0, 2.0);

}

26 for(i=0; i<=99; i++) {

w[i] = DBETWEEN(-5.0, 5.0);

28 }

pendulum(t, w, res);

30 }

Listing A.13: pendulum

#include <fluctuat_math.h>

2 #define N 500 // small 10, medium 100

void alphaBlending(double b[N][N], double c[N][N], double alpha, double (*res)[N]) {

4 int i,j;

// b * alpha + c * (1 - alpha)

6 for(i=0; i<N; i++)

for(j=0; j<N; j++) {

168

A.1. Benchmarks with Loops over Data Structures

8 res[i][j] = b[i][j] * alpha + c[i][j]* (1-alpha);

}

10 }

int main() {

12 int i,j;

double alpha;

14 double b[N][N];

double c[N][N];

16 double res[N][N];

alpha = DBETWEEN(0.0, 1.0);

18 for(i=0; i<N; i++)

for(j=0; j<N; j++) {

20 b[i][j] = DBETWEEN(223.35, 530.05);

}

22 for(i=0; i<N; i++)

for(j=0; j<N; j++) {

24 c[i][j] = DBETWEEN(-253.26, -108.41);

}

26 alphaBlending(b, c, alpha, res);

}

Listing A.14: alphaBlending

1 #include <fluctuat_math.h>

#define N 512 // small 4; medium 128

3 #define FFTLOGSIZE 9 // small 2; medium 7

void fftmatrix(double m[N][2]){

5 double scalar = 1.0;

double pi = 3.1415926;

7 int n = N; //LEN(m);

double direction[2] = {0.0,2.0};

9 int i,j,c;

for(c=FFTLOGSIZE-1;c>0;c--){

11 // left

for(j=0;j<pow(2,c-1);j+=1) {

13 int k=0;

for(i=j;i<N;i+=pow(2,c)){

15 int oddindex = i+ pow(2,c-1);

double base[2] = {m[i][0]/scalar, m[i][1]/scalar};

17 double tmp[2], offset[2];

19 tmp[0] = exp(direction[0]*pi*k / n);

tmp[1] = exp(direction[1]*pi*k / n);

21

// val firstElt = Minus(Times(a,c), Times(b,d))

23 // val secondElt = Plus(Times(a,d), Times(b,c))

offset[0] = (tmp[0]*m[oddindex][0] - tmp[1]*m[oddindex][1]) / scalar;

25 offset[1] = (tmp[0]*m[oddindex][1] - tmp[1]*m[oddindex][0]) / scalar;

169

A. Supplementary Material

27 // lefts

m[i][0] = base[0] + offset[0];

29 m[i][1] = base[1] + offset[1];

// rights

31 m[oddindex][0] = base[0] - offset[0];

m[oddindex][1] = base[1] - offset[1];

33 k++;

}

35 }

}

37 }

int main() {

39 int i,j;

double m[N][2];

41 // specify input ranges

for (i=0; i < N; i++) {

43 for (j=0; j < N; j++) {

m[i][j] = DBETWEEN(-326.68, 677.57);

45 }

}

47 fftmatrix(m);

}

Listing A.15: fftmatrix

#include <fluctuat_math.h>

2 #define N 81 // small 3; medium 9

#define M 3

4 void convolve2d_size3(double image[N][N], double kernel[M][M], double (*res)[N]) {

// output

6 double padded[N+2][N+2];

double flippedK[M][M];

8 int i,j,k,l;

// flip upside down and left to right

10 for(i=0; i<=(M)/2; i++){

for(j=0; j<=(M)/2; j++) {

12 flippedK[i][j] = kernel[M-i-1][M-j-1];

flippedK[M-i-1][j] = kernel[i][M-j-1];

14 flippedK[M-i-1][M-j-1] = kernel[i][j];

flippedK[i][M-j-1] = kernel[M-i-1][j];

16 }

}

18

// pad

20 for(i=0; i<N+2;i++)

for(j=0; j<N+2;j++) {

22 if (1<= i && i <= N && 1<= j && j <= N)

padded[i][j] = image[i-1][j-1];

24 else

170

A.1. Benchmarks with Loops over Data Structures

padded[i][j]=0.0;

26 }

// slide + reduce

28 for(i=0; i<N; i++)

for(j=0; j<N; j++) {

30 double tmp = 0.0;

for(k=0;k<M;k++)

32 for(l=0;l<M;l++){

// reduce body

34 tmp = tmp + padded[i+k][j+l] * flippedK[k][l];

}

36 res[i][j] = tmp;

}

38 }

int main() {

40 int i,j;

double image[N][N];

42 double kernel[M][M];

double res[N][N];

44 // specify input ranges

for (i=0; i < N; i++) {

46 for (j=0; j < N; j++) {

image[i][j] = DBETWEEN(-153.55, 291.35);

48 kernel[i][j] = DBETWEEN(-104.89, 57.21);

}

50 }

convolve2d_size3(image, kernel, res);

52 }

Listing A.16: convolve2d_size3

#include <fluctuat_math.h>

2 #define N 81 // small 3; medium 9

#define M 3

4 void sobel3(double image[N][N], double (*res)[N]) {

double kh[M][M],kv[M][M], flippedKh[M][M], flippedKv[M][M];

6 int i,j,k,l;

//kh initialize

8 kh[0][0] = -1.0; kh[0][1] = 0.0; kh[0][2] = 1.0;

kh[1][0] = -2.0; kh[1][1] = 0.0; kh[1][2] = 2.0;

10 kh[2][0] = -1.0; kh[2][1] = 0.0; kh[2][2] = 1.0;

//kv initialize

12 kv[0][0] = 1.0; kv[0][1] = 2.0; kv[0][2] = 1.0;

kv[1][0] = 0.0; kv[1][1] = 0.0; kv[1][2] = 0.0;

14 kv[2][0] = -1.0; kv[2][1] = -2.0; kv[2][2] = -1.0;

double padded[N+2][N+2];

16 for(i=0; i<N+2;i++)

for(j=0; j<N+2;j++) {

18 if (1<= i && i <= N && 1<= j && j <= N)

171

A. Supplementary Material

padded[i][j] = image[i-1][j-1];

20 else

padded[i][j]=0.0;

22 }

double gx[N][N], gy[N][N];

24 // flip upside down and left to right

for(i=0; i<=(M)/2; i++){

26 for(j=0; j<=(M)/2; j++) {

flippedKh[i][j] = kh[M-i-1][M-j-1];

28 flippedKh[M-i-1][j] = kh[i][M-j-1];

flippedKh[M-i-1][M-j-1] = kh[i][j];

30 flippedKh[i][M-j-1] = kh[M-i-1][j];

}

32 }

// slide + reduce

34 for(i=0; i<N; i++)

for(j=0; j<N; j++) {

36 double tmp = 0.0;

for(k=0;k<M;k++)

38 for(l=0;l<M;l++){

// reduce body

40 tmp = tmp + padded[i+k][j+l] * flippedKh[k][l];

}

42 gx[i][j] = tmp;

}

44 // flip upside down and left to right

for(i=0; i<=(M)/2; i++){

46 for(j=0; j<=(M)/2; j++) {

flippedKv[i][j] = kv[M-i-1][M-j-1];

48 flippedKv[M-i-1][j] = kv[i][M-j-1];

flippedKv[M-i-1][M-j-1] = kv[i][j];

50 flippedKv[i][M-j-1] = kv[M-i-1][j];

}

52 }

// slide + reduce

54 for(i=0; i<N; i++)

for(j=0; j<N; j++) {

56 double tmp = 0.0;

for(k=0;k<M;k++)

58 for(l=0;l<M;l++){

// reduce body

60 tmp = tmp + padded[i+k][j+l] * flippedKv[k][l];

}

62 gy[i][j] = tmp;

}

64 double g[N][N];

double maxg = -1.7e+308;

66 for(i=0; i<N; i++)

172

A.1. Benchmarks with Loops over Data Structures

for(j=0; j<N; j++) {

68 g[i][j] = sqrt(gx[i][j] * gx[i][j] + gy[i][j] * gy[i][j]);

if (g[i][j] > maxg)

70 maxg = g[i][j];

}

72 for(i=0; i<N; i++)

for(j=0; j<N; j++) {

74 res[i][j] = g[i][j] * 255.0 / maxg;

}

76 }

int main() {

78 int i,j;

double im[N][N];

80 double res[N][N];

// specify input ranges

82 for (i=0; i < N; i++) {

for (j=0; j < N; j++) {

84 im[i][j] = DBETWEEN(251.34, 341.89);

}

86 }

88 sobel3(im, res);

}

Listing A.17: sobel3

1 #include <fluctuat_math.h>

#define N 41 // small 21; medium 31

3 void lorentz(double x, double y, double z, double* res){

int i;

5 for(i=0;i<N;i++){

double tmpx,tmpy,tmpz;

7 tmpx = (x + 10.0*(y - x)*0.005);

tmpy = (y + (28.0*x - y - x*z)*0.005);

9 tmpz = (z + (x*y - 2.666667*z)*0.005);

x = tmpx;

11 y = tmpy;

z = tmpz;

13 }

res[0] = x;

15 res[1] = y;

res[2] = z;

17 }

int main() {

19 int i,j;

double res[3];

21 double m[N][3];

// specify input ranges

23 for (i=0; i < N; i++) {

173

A. Supplementary Material

for (j=0; j < N; j++) {

25 m[i][j] = DBETWEEN(1.0, 2.0);

}

27 }

double xin,yin,zin;

29 xin = m[0][0];

yin = m[0][1];

31 zin = m[0][2];

lorentz(xin, yin, zin, res);

33 }

Listing A.18: lorentz

1 #include <fluctuat_math.h>

#define N 500 // small 10; medium 100

3 double lyapunov(double x[N], double weights1[N][N],

double weights2[1][N], double bias1[N], double bias2[1]) {

5 int i,j;

double layer1[N];

7 double layer2;

for (i=0; i < N; i++) {

9 double _dot_tmp = 0;

for (j=0; j < N; j++) {

11 _dot_tmp = _dot_tmp + weights1[i][j] * x[j];

}

13 double _bias_tmp = _dot_tmp + bias1[i];

if (_bias_tmp < 0)

15 layer1[i] = 0.0;

else

17 layer1[i] = _bias_tmp;

}

19 double _dot_tmp = 0;

for (j=0; j < N; j++) {

21 _dot_tmp = _dot_tmp + weights2[0][j] * layer1[j];

}

23 double _bias_tmp = _dot_tmp + bias2[0];

if (_bias_tmp < 0)

25 layer2 = 0.0;

else

27 layer2 = _bias_tmp;

return layer2;

29 }

int main() {

31 int i,j;

double res;

33 double x[N];

double weights1[N][N];

35 double weights2[1][N];

double bias1[N];

174

A.1. Benchmarks with Loops over Data Structures

37 double bias2[1];

// specify input ranges

39 for (i=0; i < N; i++) {

bias1[i] = DBETWEEN(-0.8746956, 1.1860801);

41 x[i] = DBETWEEN(-6.0, 6.0);

for (j=0; j < N; j++) {

43 weights1[i][j] = DBETWEEN(-0.6363012, 1.0211772);

weights2[i][j] = DBETWEEN(-0.80846876, 1.1081733);

45 }

}

47 res = lyapunov(x, weights1, weights2, bias1, bias2);

}

Listing A.19: lyapunov

#include <fluctuat_math.h>

2 #define N 500 // small 10; medium 100

double controllerTora(double x[N], double weights1[N][N], double weights2[N][N],

4 double weights3[N][N], double weights4[1][N], double bias1[N],

double bias2[N], double bias3[N], double bias4[1]) {

6 double layer1[N];

double layer2[N];

8 double layer3[N];

double layer4;

10 int i,j;

for (i=0; i < N; i++) {

12 double _dot_tmp = 0;

for (j=0; j < N; j++) {

14 _dot_tmp = _dot_tmp + weights1[i][j] * x[j];

}

16 double _bias_tmp = _dot_tmp + bias1[i];

if (_bias_tmp < 0)

18 layer1[i] = 0.0;

else

20 layer1[i] = _bias_tmp;

}

22 for (i=0; i < N; i++) {

double _dot_tmp = 0;

24 for (j=0; j < N; j++) {
_dot_tmp = _dot_tmp + weights2[i][j] * layer1[j];

26 }

double _bias_tmp = _dot_tmp + bias2[i];

28 if (_bias_tmp < 0)

layer2[i] = 0.0;

30 else

layer2[i] = _bias_tmp;

32 }

34 for (i=0; i < N; i++) {

175

A. Supplementary Material

double _dot_tmp = 0;

36 for (j=0; j < N; j++) {
_dot_tmp = _dot_tmp + weights3[i][j] * layer2[j];

38 }

double _bias_tmp = _dot_tmp + bias3[i];

40 if (_bias_tmp < 0)

layer3[i] = 0.0;

42 else

layer3[i] = _bias_tmp;

44 }

46 double _dot_tmp = 0;

for (j=0; j < N; j++) {

48 _dot_tmp = _dot_tmp + weights4[0][j] * layer3[j];

}

50 layer4 = _dot_tmp + bias4[0];

return layer4;

52 } // [-80.75012614511054, 125.34998463158972] +/- 4.989472734247575e-05

int main() {

54 int i,j;

double res;

56 double x[N];

double weights1[N][N];

58 double weights2[N][N];

double weights3[N][N];

60 double weights4[1][N];

double bias1[N];

62 double bias2[N];

double bias3[N];

64 double bias4[1];

// specify input ranges

66 for (i=0; i < N; i++) {

bias3[i] = DBETWEEN(0.096189, 0.297542);

68 bias2[i] = DBETWEEN(0.082624, 0.318763);

bias1[i] = DBETWEEN(0.040232, 0.341392);

70 x[i] = DBETWEEN(-2.0, 2.0);

for (j=0; j < N; j++) {

72 weights1[i][j] = DBETWEEN(-0.374036, 0.319683);

weights2[i][j] = DBETWEEN(-0.426394, 0.323056);

74 weights3[i][j] = DBETWEEN(-0.582338, 0.566423);

weights4[i][j] = DBETWEEN(-0.293298, 0.311236);

76 }

}

78 res = controllerTora(x, weights1, weights2, weights3, weights3, bias1, bias2, bias3, bias4);

}

Listing A.20: controllerTora

176

A.2. Experimental Data for DS2L

A.2. Experimental Data for DS2L

We provide the additional experimental results for small and medium benchmarks used
to evaluate DS2L in section 3.5. As the amount of data points is too large to be included
in one table, we split the results by size of the input DS.

Whenever a tool has failed to report the error bound we use “-” to denote it, we
also indicate reported overflow explicitly, we write ∞ if the reported error bounds were
[−∞, ∞]. We use “TO” to denote 30-minute timeouts and any other other tool failures.
Reported time is the analysis time in seconds. “na” in Satire’s results denotes that we
did not run Satire on these variations of heat1d or lorentz, as we only took the original
benchmarks that had same ranges for all input DS elements.

177

A. Supplementary Material

AllSame Diff10P Diff30P AllDiff
Benchmark error time error time error time error time

DS2L
avg 3.65e-12 0.51 3.41e-12 0.59 2.01e-12 0.85 1.52e-12 2.18

variance 4.64e-06 4.90 2.23e-06 7.18 6.66e-07 8.57 4.85e-07 14.24
stdDev. 1130 4.93 2.00e-07 7.09 2.59e-08 8.67 2.54e-08 14.13

roux1 7.21e-14 0.77 1.40e-13 1.17 1.22e-13 1.83 1.85e-13 4.01
goubault 7.46e-14 0.78 7.85e-14 1.03 8.03e-14 1.65 7.90e-14 3.74

harmonic 4.56e-10 1.22 1.94e-10 1.99 1.71e-10 3.01 1.59e-10 9.64
nonlin1 overflow - overflow - overflow - overflow -
nonlin2 overflow - overflow - overflow - overflow -
nonlin3 4.32e-05 31.44 2.91e-05 40.22 1.63e-05 49.39 1.16e-05 75.38

pendulum 1.16e-04 28.29 5.50e-05 39.36 5.50e-05 49.78 6.65e-05 86.38
heat1d 1.27e-14 7.10 8.34e-15 10.46 8.22e-15 10.50 8.22e-15 10.13

conv.2d_size3 3.15e-10 0.84 1.68e-10 1.11 2.62e-10 1.43 6.76e-11 2.26
sobel3 5.50 2.94 6.15 3.46 5.55 4.00 1.78 5.24

fftmatrix 3.71e-09 54.83 3.66e-09 56.50 3.58e-09 57.28 2.56e-09 57.85
fftvector 1.84e-09 39.54 1.48e-09 39.58 1.12e-09 39.59 1.05e-09 40.87

lorentz 2.28e-13 1.93 2.17e-13 1.82 1.53e-13 1.80 1.84e-13 1.79
alphaBlend. 3.14e-13 0.20 3.14e-13 1.07 3.14e-13 2.19 3.14e-13 785.51

contr.Tora 8.75e-08 6.93 6.14e-08 480.16 4.06e-08 496.04 7.33e-09 1016.20
lyapunov 5.88e-10 3.23 4.16e-10 97.30 3.37e-10 101.95 1.04e-10 210.29

Fluctuat
avg 2.37e-12 3.75 2.06e-12 4.00 1.75e-12 3.00 1.49e-12 3.50

variance - TO - TO - TO - TO
stdDev. - TO - TO - TO - TO

roux1 2.10e-13 8.67 8.16e-14 8.00 5.15e-14 8.00 9.86e-14 8.00
goubault 6.50e-14 5.00 6.50e-14 4.67 6.09e-14 5.00 5.91e-14 5.00

harmonic 1.68e-10 16.00 1.34e-10 14.67 1.16e-10 15.00 1.09e-10 16.00
nonlin1 - TO - TO - TO - TO
nonlin2 - TO - TO - TO - TO
nonlin3 2.21e-08 29.67 8.24e-09 30.00 6.02e-09 32.33 6.92e-09 35.50

pendulum 1.12e-04 13.00 5.22e-05 13.67 5.22e-05 16.33 6.33e-05 20.00
heat1d 6.66e-16 236.33 4.44e-16 249.33 4.44e-16 248.33 4.44e-16 247.33

conv.2d_size3 1.24e-10 1.00 1.07e-10 1.33 1.24e-10 1.00 4.09e-11 1.33
sobel3 91.9 6.67 90.3 6.33 86.3 6.67 54.4 6.33

fftmatrix ∞ 2.67 ∞ 2.67 ∞ 2.67 ∞ 2.67
fftvector ∞ 0.99 ∞ 2.67 ∞ 2.67 ∞ 2.33

lorentz 5.41e-14 0.73 5.28e-14 0.73 4.73e-14 0.73 4.84e-14 0.83
alphaBlend. 1.56e-13 744.67 1.56e-13 843.67 1.56e-13 820.33 1.55e-13 743.67

contr.Tora - TO - TO - TO - TO
lyapunov 5.69e-10 264.00 4.01e-10 270.50 3.03e-10 269.00 7.89e-11 258.00

Satire
avg 3.49e-12 18.70 2.84e-12 15.66 2.34e-12 14.45 2.05e-12 15.99

variance 1.83e-08 476.62 1.09e-08 457.62 6.11e-09 455.67 4.61e-09 458.18
stdDev. - TO - TO - TO - TO

roux1 2.55e-13 126.46 1.19e-13 118.79 7.00e-14 122.02 1.64e-13 120.40
goubault 1.14e-13 90.19 1.14e-13 83.96 1.10e-13 82.39 9.79e-14 82.82

harmonic 1.62e-11 93.69 1.29e-11 90.72 1.07e-11 89.45 1.03e-11 90.97
nonlin1 - TO - TO - TO - TO
nonlin2 - TO - TO - TO - TO
nonlin3 9.17e-15 491.27 6.04e-15 496.15 4.13e-15 468.28 4.94e-15 482.47
lorentz 3.50e-14 875.69 na na na na na na

Table A.1.: Experimental results on medium benchmarks. Reported error bounds are rounded
to two digits after decimal point, time is in seconds. “TO” denotes a timeout, “na”
stands for non-applicable.

178

A.2. Experimental Data for DS2L
AllSame Diff10P Diff30P AllDiff

Benchmark error time error time error time error time
DS2L

avg 4.62e-13 0.15 2.60e-13 0.18 1.59e-13 0.17 1.42e-13 0.23
variance 5.98e-07 0.92 2.62e-07 1.05 7.53e-08 1.09 4.98e-08 1.23
stdDev. 145 1.03 2.71e-08 1.12 2.05e-09 1.15 3.40e-09 1.20

roux1 7.21e-14 0.20 2.20e-13 0.28 1.88e-13 0.37 1.60e-13 0.54
goubault 7.46e-14 0.21 8.04e-14 0.29 4.25e-14 0.31 6.59e-14 0.56

harmonic 1.15e-11 0.30 5.84e-12 0.41 5.81e-12 0.55 5.82e-12 1.02
nonlin1 overflow - overflow - 1.17e-07 4.05 1.06e-09 4.29
nonlin2 overflow - overflow - overflow - overflow -
nonlin3 7.82e-14 3.73 3.72e-14 4.21 3.18e-14 4.11 2.78e-14 4.49

pendulum 2.27e-13 2.73 2.27e-13 2.72 7.51e-14 3.29 1.73e-13 3.75
heat1d 6.44e-15 2.61 4.32e-15 3.12 4.22e-15 3.94 4.47e-15 3.46

conv.2d_size3 3.15e-10 0.23 1.51e-10 0.29 1.51e-10 0.29 4.07e-11 0.42
sobel3 5.50 0.86 4.42 0.89 4.42 0.88 6.72e-01 0.96

fftmatrix 4.29e-12 0.95 4.29e-12 1.01 4.29e-12 1.03 1.88e-12 0.96
fftvector 2.85e-12 0.83 2.40e-12 0.82 1.32e-12 0.79 1.86e-12 0.79

lorentz 4.33e-14 1.32 4.33e-14 1.30 2.55e-14 1.32 3.77e-14 1.27
alphaBlend. 3.14e-13 0.06 3.14e-13 0.10 3.14e-13 0.16 3.13e-13 0.80

contr.Tora 1.42e-12 0.45 1.42e-12 1.22 1.20e-12 1.77 1.74e-13 1.53
lyapunov 9.90e-13 0.28 8.87e-13 0.54 6.64e-13 0.86 1.68e-13 0.68

Fluctuat
avg 2.62e-13 0.11 1.99e-13 0.07 1.62e-13 0.07 1.41e-13 0.07

variance 1.15e-09 6.33 6.17e-10 6.00 3.25e-10 6.00 2.16e-10 6.00
stdDev. 516 6.67 1.35e-11 6.00 5.38e-12 6.00 7.13e-12 6.00

roux1 2.10e-13 0.16 1.83e-13 0.12 1.46e-13 0.12 6.80e-14 0.12
goubault 6.50e-14 0.13 6.50e-14 0.09 2.43e-14 0.09 4.67e-14 0.09

harmonic 2.92e-12 0.34 2.47e-12 0.21 2.25e-12 0.21 2.11e-12 0.21
nonlin1 3.07e-14 16.33 2.78e-14 13.00 2.48e-14 13.00 2.73e-14 13.67
nonlin2 ∞ 16.67 2.83e-12 16.33 1.86e-13 16.67 ∞ 14.33
nonlin3 7.84e-15 0.55 4.29e-15 0.36 3.53e-15 0.38 3.44e-15 0.48

pendulum 2.15e-13 0.36 2.15e-13 0.20 6.67e-14 0.23 1.63e-13 0.24
heat1d 6.66e-16 12.67 4.44e-16 12.33 4.44e-16 12.67 4.44e-16 12.67

conv.2d_size3 1.24e-10 0.08 6.23e-11 0.08 6.23e-11 0.08 1.56e-11 0.08
sobel3 91.9 0.24 61.6 0.24 61.6 0.24 31.0 0.24

fftmatrix 1.09e-12 0.01 1.09e-12 0.01 1.09e-12 0.01 6.92e-13 0.01
fftvector 6.93e-13 0.01 6.93e-13 0.01 3.46e-13 0.01 6.90e-13 0.00

lorentz 2.16e-14 0.23 2.16e-14 0.23 1.55e-14 0.22 1.90e-14 0.23
alphaBlend. 1.56e-13 0.11 1.56e-13 0.12 1.56e-13 0.12 1.55e-13 0.12

contr.Tora 2.28e-12 0.57 1.80e-12 0.58 1.25e-12 0.56 1.17e-13 0.49
lyapunov 8.07e-13 0.09 7.08e-13 0.09 4.58e-13 0.10 9.34e-14 0.10

Satire
avg 3.65e-13 1.74 2.93e-13 2.22 2.47e-13 2.07 1.93e-13 1.83

variance 1.92e-09 12.22 1.19e-09 16.23 7.57e-10 16.04 4.97e-10 16.54
stdDev. - TO - TO - TO - TO

roux1 2.55e-13 11.61 2.26e-13 13.39 1.88e-13 13.27 8.58e-14 13.18
goubault 1.14e-13 13.44 1.14e-13 15.37 4.97e-14 14.77 9.74e-14 14.55

harmonic 7.90e-12 19.48 5.01e-12 21.31 4.66e-12 20.48 4.90e-12 20.74
nonlin1 4.28e-14 655.23 3.99e-14 678.74 3.49e-14 687.85 3.87e-14 700.75
nonlin2 - TO 1.94e-15 100.92 1.94e-15 89.29 - TO
nonlin3 8.43e-15 32.45 5.62e-15 27.50 4.90e-15 26.09 3.86e-15 28.80
lorentz 9.68e-15 577.99 na na na na na na
heat1d 1.98e-14 92.76 na na na na na na

Table A.2.: Experimental results on small benchmarks. Reported error bounds are rounded to
two digits after decimal point, time is in seconds. “TO” denotes a timeout, “na”
stands for non-applicable.

179

	Acknowledgments
	Abstract
	Zusammenfassung
	List of Original Publications
	Contents
	Introduction
	State of the Art
	Contributions in Analysis of Programs with Loops
	Contributions in Optimization of Numerical Kernels
	Outline

	Preliminaries
	Number Systems
	Floating-Point Numbers
	Fixed-Point Numbers

	Reasoning About Finite-Precision Programs
	Range Arithmetic
	Rounding Error Analysis
	Optimization of Finite-Precision Programs

	Daisy Framework

	Analysis of Programs With Loops
	Large Bounded Loops
	Baseline Rounding Error Analysis
	DSL for List-like Data Structures
	Benchmark Set
	A Functional DSL
	DSL Functions

	Data-Structure Guided Analysis
	DS-based Concrete Domain
	DS-based Abstract Domain
	DS Analysis
	Optimized Evaluation of fold

	Implementation
	Experimental Evaluation
	State-of-the-Art Tools
	RQ1: Comparison to State-of-the-Art Tools
	RQ2: Accuracy/Performance Tradeoff with DS-based Abstraction
	RQ3: Adequacy of DS2L's Error Bounds

	Related Work
	Conclusion and Future Work

	Inductive Invariants for Unbounded Loops
	Overview
	Problem Definition
	Algorithm
	Simulation
	Candidate Invariant Conjecture
	Reducing the Noise
	Checking a Candidate Invariant
	Generalizing from Counterexamples
	Floating-Point Invariant
	Implementation

	Experimental Evaluation
	State-of-the-Art Techniques
	Experimental Setup
	RQ1: Comparison with State-of-the-Art
	RQ2: Pine's Efficiency
	RQ3: Parameter Sensitivity

	Related Work
	Conclusion and Future Work

	Optimization of Numerical Kernels
	Optimizing Kernels with Elementary Functions
	Background
	Our Optimization Algorithm
	High-level Algorithm
	Distributing the Global Error Budget
	Distributing the Local Error Budget
	Synthesizing the Approximation Polynomial
	Assigning Finite Precision
	Alternative Algorithm Designs

	Experimental Evaluation
	RQ1: Accuracy vs Performance
	RQ2: Optimization Running Times

	Related Work
	Conclusions and Future Work

	Meta-Optimization: Regime Inference
	Example
	Regime Inference Algorithm
	Bottom-Up Phase
	Top-Down Phase
	Code Generation

	Optimizations
	Regime Inference for Mixed-Precision Tuning
	Regime Inference for Rewriting

	Experimental Evaluation
	Benchmarks
	Comparison with Herbie
	Experimental Setup
	RQ 1: Improvements over Whole-Domain Optimizations
	RQ 2: Evaluation of Two-Phase Approach

	Related Work
	Conclusion and Future Work

	Conclusions and Future Work
	List of Figures
	List of Tables
	Bibliography
	Supplementary Material
	Benchmarks with Loops over Data Structures
	Benchmarks for DS2L
	Benchmarks formatted for Fluctuat

	Experimental Data for DS2L

