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Chapter 1
Introduction

“On 28 November 1967, it came
again, a string of pulses
one-and-a-third seconds apart.”

– Jocelyn Bell

In England’s cold and windy countryside, Jocelyn Bell, a graduate student at the Uni-
versity of Cambridge, discovered a new type of astronomical object on 28 November 1967.
With her astounding observability, Jocelyn Bell noticed the odd signal among the vast
amount of data collected daily and could distinguish its pulsating nature. Jocelyn Bell
and her supervisor Antony Hewish jokingly called the signal LGM-1 for “little green men”.
Little did they know, this signal did not come from an alien civilization or any other
human-made source but was the first discovery of an unknown object; a pulsating radio
source or pulsar (Hewish et al., 1968). This was the first discovery of a pulsar, which is a
highly-magnetized and rotating neutron star, and the first observation of a neutron star.

Neutron stars, predicted by Baade & Zwicky (1934), are tightly connected to core-
collapse supernovae which are luminous explosions of massive stars that can outshine a
whole galaxy and leave behind a remnant that can either be a neutron star or a black hole.
Even though the first observed supernova in recorded history might be in 4500±1000 BC,
as the rock carvings found in the Burzahama region in Kashmir, India, indicate (Joglekar
et al., 2011), the earliest widely observed supernova explosion was in 1054 by Chinese
astronomers (Clark & Stephenson, 1977). This is associated with the supernova remnant
named the Crab Nebula and hosts a neutron star that has been widely studied (e.g.,
Comella et al., 1969).

In this thesis, I aim to explore a different kind of“explosion”that has yet to be observed,
but it is considered to also give birth to neutron stars, namely the accretion-induced collapse
(AIC) of white dwarfs to neutron stars.
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1.1 Neutron Stars

Neutron stars, together with black holes, are one of the most dense objects in the observable
Universe. Being the compact remnants of violent explosions, they present much interest
across different fields of physics and astrophysics. Neutron stars have masses of ∼ 1.4 −
2.3 M⊙ (e.g., Hartle, 1978; Romani et al., 2022), and mean radii of a few tens of kilometers,
implying an extreme density of the matter. They mainly consist of free neutrons, and
the degeneracy pressure of neutrons prevents them from collapsing under their gravity.
Neutron stars are characterized by rapid rotation with spin periods ranging from 1.4ms
to 30 s and strong magnetic fields of the order of ∼ 108 − 1015 G (e.g., Manchester et al.,
2005).

Neutron stars are probes of extreme physics, formed under very strong gravity, and are
perfect laboratories to study the equation of state of nuclear matter. Matter under these
conditions cannot be found on Earth. Thus neutron stars are an excellent environment to
study and test theories of nuclear physics and condensed matter. For example, neutron star
observations that infer their radii and masses can constrain the equation of state of nuclear
matter (e.g., Burgio et al., 2021; Lattimer, 2012; Lattimer & Swesty, 1991). Gravitational
wave emission was observed when two neutron stars collided. In fact, the first observation
of such a collision came with the direct gravitational wave signal in the event named
GW170817 (Abbott et al., 2017), for which Kip Thorne, Rainer Weiss and Barry C. Barish
were awarded the Nobel Prize in Physics of the same year for their contributions to said
observation with the LIGO1 detector.

Understanding neutron stars is an essential part of astrophysics. Neutron stars are the
endpoints of stellar evolution for massive stars, are involved in nucleosynthesis, and are
responsible for various high-energy phenomena, such as gamma-ray bursts or X-ray bina-
ries. The study of neutron stars can lead us to gain insight into stellar evolution or heavy
element production and, therefore, continue building the puzzle of how the Universe works.
To comprehend better the nature of these extreme objects, it is crucial to understand and
investigate the different systems in which neutron stars are born and evolve. Neutron stars
are formed during the core collapse of massive stars, via the accretion-induced collapse of
white dwarfs, and also via existing neutron stars that merge. A schematic overview of the
different formation channels of neutron stars is shown in figure 1.1.

1.1.1 Neutron stars from core-collapse supernovae

Neutron stars are the end products of stellar evolution for most massive stars with initial
mass ≳ 8 M⊙. Massive stars evolve by burning hydrogen (H) in their cores to form helium
(He) and heavier elements. The low end of massive stars, i.e., ZAMS2 mass of 8 − 10 M⊙,
develop an oxygen-neon-magnesium (ONeMg) core via carbon (C) burning before they
start to burn neon (Ne). Massive stars above ∼ 10 M⊙ continue to burn heavier elements to

1LIGO; Laser Interferometer Gravitational-Wave Observatory
2Zero Age Main Sequence; where the stars start burning H in their cores
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Figure 1.1: Schematic representation of neutron star (NS) formation channels. Neutron stars are mainly
formed in the core collapse of massive stars with masses ≥ 8 M⊙ that have evolved through the advanced
nuclear-burning stages to create an onion-shell structure. Apart from the massive stellar collapse, they are
also formed in the accretion-induced collapse of ONeMg white dwarfs. However, existing ones in a binary
neutron star system can merge and also give birth to a new neutron star. Sizes are not shown in scale.

form an onion-shell structure with lighter-element mass shells surrounding layers of heavier
elements and cores consisting of Fe and Fe-group chemical elements. In ONeMg or Fe cores
of evolved stars, the gravitational instability, which initiates the core collapse, is triggered
by electron captures on nuclei and free protons and by the photodissociation of Fe and
Fe-group elements into α particles and free nucleons (e.g., Janka et al., 2007; Langanke &
Schatz, 2013). The collapsing core is suddenly reversed when the density of the core reaches
nuclear saturation densities (ρ ≥ 2.7 · 1014 g/cm3) (see, e.g., Janka, 2012), the equation of
state (EoS) stiffens, the adiabatic index rises, and the matter reaches a new equilibrium
state, that of nuclear matter. In the center, a proto-neutron star (PNS) is formed, and
a shock wave is launched, propagating outwards. Initially, the launched shock wave was
thought to be the driver of the supernova explosion (Colgate & Johnson, 1960). However,
the shock wave is not energetic enough to propagate through the infalling material of the
star and stalls. It was only in 1966 when Colgate & White (1966) investigated the role of
neutrinos in the re-launching of the shock wave. They proposed that some of the emitted
neutrinos are reabsorbed and deposit energy in the post-shock region. The heating of the
reabsorbed neutrinos can launch the stalled shock that eventually powers the explosion.
This is the so-called delayed-neutrino mechanism of core-collapse supernovae (CCSNe) and
can explain the majority of the observed explosions, see Burrows (2013); Foglizzo et al.
(2015); Janka (2012, 2017a); Kotake et al. (2006) for reviews.
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1.1.2 Neutron stars from double neutron star mergers

One possible way to form a binary neutron star system is by tidal capture of a neutron
star by another companion. Should the companion meet the conditions to end up as a
neutron star, the system will create a double neutron star binary that will merge. The
tidal capture of a neutron star is possible to occur in a dense stellar environment such as
globular clusters (Clark, 1975). For a detailed discussion of the possible outcomes of such
a scenario, we refer to the review by Canal et al. (1990).

Another way to form neutron star binaries is by neutron stars belonging to a binary
system that survive the supernova explosions and remain bound to the system. The grav-
itational wave emission makes them lose energy that will shrink their orbit, and therefore,
they can merge to form a new neutron star or a black hole. After the famous observation of
the gravitational wave signal GW170817 (Abbott et al., 2017), which was emitted during
the coalescence of a binary neutron star system, neutron star mergers became a topic of
intense research. They are progenitors of kilonovae3 and are considered to be a significant
site for heavy-element nucleosynthesis (see, e.g., Metzger, 2019, for a review).

Given the binary neutron star population of our Galaxy, Margalit & Metzger (2019)
estimated that the vast majority of neutron star mergers would form a hypermassive neu-
tron star (HMNS) or a supramassive neutron star (SMNS). HMSNs have masses Mtot ≳
1.2 MTOV

4 and are supported by differential rotation. They are unlikely to survive for more
than a few hundred milliseconds after the merger and before collapsing into a black hole
because of the gravitational wave emission and internal hydro-magnetic torques, which
lead to the loss of the differential rotation (Duez et al., 2006; Shibata & Taniguchi, 2006;
Siegel et al., 2013). SMSNs have masses ∼ 1 − 1.2 MTOV, and they are supported by solid
body rotation. Therefore, they need a longer time to lose their rotation via spin-down
mechanisms, such as magnetic dipole radiation, and they survive for ≫ 300ms before they
collapse into a black hole. HMSNs account for ∼ 0 − 79% of mergers while SMNSs for
∼ 18 − 65% (Margalit & Metzger, 2019; Metzger, 2019). For neutron star mergers with
total mass Mtot ≳ 1.3 − 1.6 MTOV the remnant neutron star undergoes prompt collapse to
a black hole on the dynamical time of milliseconds (e.g., Bauswein et al., 2013a; Shibata
& Uryū, 2000). This scenario is estimated to be up to 30% of the neutron star merger
outcome(s). Finally, on the lower mass end, with a total binary mass of Mtot < MTOV, a
stable neutron star will be formed that will not collapse to a black hole (Giacomazzo &
Perna, 2013; Metzger et al., 2008b). The probability for a stable neutron star formation
from binary neutron star mergers represents only a ∼ 3% of the neutron star mergers in
our Galaxy (Metzger, 2019).

3Kilonovae are transients that mainly come from neutron star mergers, and they are powered by the
radioactive decay of isotopes synthesized during the merger.

4MTOV or the Tolman–Oppenheimer–Volkoff limit is an upper bound to the mass of cold, non-rotating
neutron stars.
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1.1.3 Neutron stars from the accretion-induced collapse of white dwarfs

An alternative scenario for direct neutron star formation, apart from the massive stellar
collapse, is the collapse of white dwarfs to neutron stars, which is the topic of this Thesis.

White dwarfs are the end stages of stellar evolution for low-mass stars (≲ 8 M⊙) that
evolved to develop a degenerate core mainly consisting of CO or ONeMg. White dwarfs
represent the end phases for 97% of the stars in our Galaxy (e.g., Fontaine et al., 2001).
They are often found in binaries, and in a fraction of these systems, mass transfer from a
companion star onto the white dwarf can occur. If the mass of the white dwarf grows to
exceed the Chandrasekhar mass limit (Chandrasekhar, 1931, 1935), then the white dwarf
collapses to form a neutron star. This is widely called the Accretion-Induced Collapse of
white dwarfs to neutron stars or AIC in short. AICs can also occur after the merger of two
white dwarfs in a binary system. The latter case is often called “merger-induced collapse”,
but we will use the widely accepted term “accretion-induced collapse” to describe both
scenarios.

The formation of neutron stars via the AIC channel in close binaries is an idea first
proposed by Bailyn & Grindlay (1990) to explain the discrepancy in the birthrates of
low-mass binary pulsars, which is profoundly lower than their progenitor systems, i.e., the
low-mass X-ray binaries. Additionally, AICs have been suggested to explain young neutron
stars in older globular clusters (e.g., Boyles et al., 2011), the large population of neutron
stars in globular clusters (e.g., Bailyn & Grindlay, 1990; Dessart et al., 2006; Kitaura
et al., 2006), as an alternative scenario for millisecond pulsars (e.g., Bhattacharya & van
den Heuvel, 1991; Hurley et al., 2010; Ivanova et al., 2008), or to explain mass-accreting
neutron stars with strong magnetic fields in low-mass X-ray binaries and some pulsars with
He white dwarf companion (e.g., Li & Wang, 1998; Taam & van den Heuvel, 1986).

An extensive set of conditions is needed to make an AIC occur. The appropriate
composition of the white dwarf, the accreted material, and the accretion rate must transpire
so that explosive nuclear burning of the white dwarf material does not occur. The explosive
ignition would lead to a thermonuclear explosion called a SN type Ia. Both AICs and SN
type Ia could occur during accretion onto the white dwarf from a companion star and
from double white dwarf mergers. The conditions to distinguish between the two scenarios
were first explored by Nomoto & Kondo (1991) but are still under debate (e.g., Schwab
et al., 2016). Traditionally, two classes of progenitors can form neutron stars via the AIC
channel or lead to the complete disruption of the white dwarf together with a SN type Ia
explosion. The single-degenerate scenario includes a white dwarf (i.e., degenerate star) and
a companion star, and the double-degenerate scenario describes the merging of two white
dwarfs in a binary system. In the following, we summarize the two scenarios for AICs and
SN type Ia, highlighting the differences that distinguish the fate of the progenitor systems.

Single-degenerate scenario for SN type Ia Mass accretion from a companion star to a
CO white dwarf has long been theorized to be the progenitor of SN type Ia (Hillebrandt
& Niemeyer, 2000; Whelan & Iben, 1973). The companion star could be a main sequence



6 1. Introduction

(MS) star, a red giant (RG), or a He star (e.g., Hachisu et al., 1996; Han & Podsiadlowski,
2004; Langer et al., 2000; Li & van den Heuvel, 1997). In this case, mass accretion onto
the white dwarf occurs if the companion star fills its Roche Lobe, or in the case of a RG
companion, the mass accretion could occur from the stellar wind. In the single-degenerate
model, the white dwarf grows in mass via accretion of H/He-rich material by the companion
star, which burns into C and O on the surface of the white dwarf while it grows in mass.
Should central carbon burning be initiated via this process, the white dwarf will explode
as type Ia, leaving no compact remnant behind.

Double-degenerate scenario for SN type Ia Another path to form SN type Ia is the double
degenerate scenario which involves the merger of two CO white dwarfs (Iben & Tutukov,
1984; Webbink, 1984). Gravitational-wave radiation drives the orbital inspiral of the two
white dwarfs that eventually merge. The merger of the two white dwarfs whose total mass
exceeds the Chandrasekhar mass leads to the central ignition of C burning and, thus, to
a thermonuclear SN type Ia. In the double degenerate scenario, the lower-mass white
dwarf fills its Roche Lobe, and dynamically unstable mass transfer occurs to the heavier
white dwarf while the mass donor (i.e., the low-mass white dwarf) is tidally disrupted.
This process initiates central carbon burning, which could result in carbon detonation that
subsequently explodes the white dwarf as a SN type Ia (Hillebrandt & Niemeyer, 2000;
Webbink, 1984). However, the off-center ignition of C in CO white dwarfs converts it to a
ONeMg white dwarf and does not explode as Type Ia (e.g., Schwab et al., 2015). The exact
outcome of a double CO white dwarf merger depends on various conditions, such as the
mass of the He-layer on the surface of the two white dwarfs, and is still under consideration
(e.g., Han & Webbink, 1999; Kromer et al., 2013; Pakmor et al., 2022; Schwab et al., 2016;
Taubenberger et al., 2013; Wu et al., 2019; Yoon et al., 2007). Another path to form SN
type Ia from double CO white dwarf binaries is the violent merger scenario, which assumes
the dynamical driven of a detonation that could lead to the thermonuclear explosion (e.g.,
Pakmor et al., 2010, 2012; Raskin et al., 2014; Ruiter et al., 2013).

Single-degenerate scenario for white dwarf collapse In the single-degenerate scenario,
the ONeMg white dwarf grows in mass when accretion occurs from the companion star.
The crucial difference for white dwarf collapse compared to type Ia is that the white dwarf
consists of ONeMg instead of CO. The companion star can be a main-sequence star or red
giant (e.g., Bailyn & Grindlay, 1990; Nomoto & Kondo, 1991; Wang, 2018; Wang & Liu,
2020). However, off-center C ignition of an accreting CO white dwarf could also lead to the
formation of an ONeMg white dwarf that will collapse to form a neutron star according to
the AIC scenario (e.g., Brooks et al., 2016; Nomoto & Iben, 1985; Saio & Nomoto, 1985;
Wang et al., 2017). Recent studies (e.g., Tauris et al., 2013; Wang et al., 2017) show that
mass accretion from a He-star onto an ONeMg white dwarf or a CO white dwarf could also
lead to an AIC. ONeMg white dwarfs with high central densities (∼ 4 · 109 g/cm3, Nomoto
& Kondo, 1991) undergo electron captures which reduces the effective Chandrasekhar mass
and thermonuclear O burning occurs which forms a deflagration. The final outcome of the
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white dwarf (explosion or collapse) is determined by the competition of nuclear burning
and electron captures which heavily depends on the exact central density that the nuclear
burning is initiated. The current understanding is that the ONeMg white dwarfs will lead
to collapse and form a neutron star (e.g., Isern et al., 1991; Jones et al., 2014; Nomoto,
1984; Nomoto & Kondo, 1991; Schwab et al., 2015).

In the case of rapidly rotating white dwarfs, the Chandrasekhar mass limit increases
substantially (e.g., Ostriker & Bodenheimer, 1968; Wang et al., 2014; Yoon & Langer,
2005), allowing for more massive progenitor models. The single degenerate scenario that
leads to the white dwarf collapse to form a neutron star could present a channel for double
neutron star binaries.

Double-degenerate scenario for white dwarf collapse In the case of a double white dwarf
system, the orbital period shrinks after the orbital energy losses due to gravitational waves
emission, as was already discussed in the progenitors of SN type Ia. This evolutionary
scenario for neutron star formation via the AIC mechanism mainly includes double ONeMg
white dwarfs, the merger of an ONeMg with a CO white dwarf but also the merger of double
CO white dwarfs (see, e.g., Wang & Liu, 2020, for a review). If the white dwarf mergers
include an ONeMg white dwarf, the collapse occurs due to the high central temperatures
and densities that lead to electron capture by Ne and Mg (Minerbo, 1978; Nomoto &
Kondo, 1991; Nomoto et al., 1979). In the case of double CO white dwarfs, it is thought
to produce SN type Ia, as discussed above. However, this kind of merger could trigger
the quiescent conversion to an ONeMg white dwarf via inward propagating carbon flame
(e.g., Nomoto & Iben, 1985; Saio & Nomoto, 1985; Schwab et al., 2016). To summarize,
the current understanding supports that double CO white dwarf mergers could lead to
neutron star formation or SN type Ia depending on the mass ratio of the white dwarfs, the
exact composition (i.e., the mass of He-layer), and accretion rates, while the violent CO
white dwarf mergers will most likely lead to a SN type Ia.

The mass accretion rate, the mass and composition of the white dwarf are the fun-
damental parameters that distinguish between the SN type Ia and the AIC (Nomoto &
Kondo, 1991; Schwab et al., 2016). For a summary we refer to figure 1.2 that displays the
different evolutionary scenarios for accretion onto ONeMg and CO white dwarfs, as pre-
sented in Nomoto & Kondo (1991). In the double-degenerate scenario of the white dwarf
collapse, single neutron stars can be born.

1.2 Significance and Observations of AICs

AICs occur from different progenitor systems and can form double neutron star binaries or
isolated neutron stars. Apart from explaining various astrophysical systems, AICs play a
remarkable role in the multi-messenger and transient astronomy era. The AIC scenario has
been thought to contribute to various topics, from the chemo-dynamic evolution of galaxies
to gravitational wave sources. The main contributions from AICs can be summarized as
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Figure 1.2: Mass accretion rate as a function of the mass of an ONeMg white dwarf (left panel) and a
CO white dwarf (right panel). Nomoto & Kondo (1991) present the regions where white dwarf collapse is
possible by electron captures. In the case of a massive and cold CO white dwarf, C deflagration could still
lead to the collapse because of the high central densities. Figure taken from Nomoto & Kondo (1991).

follows:

• AICs are sites of heavy-element nucleosynthesis. Heavy elements produced by the
rapid neutron capture, i.e., r-process, are considered to take place in AICs, although
the exact amount of r-process material produced and the extension of the relative
importance of AICs compared to other r-process astrophysical sites is still under
debate (e.g., Dessart et al., 2006; Ehring et al., 2023; Fryer & Heger, 2000; Qian &
Wasserburg, 2007; Wheeler et al., 1998).

• Collapsing white dwarfs and particularly rotating white dwarfs are predicted to be
gravitational wave sources (e.g., Abdikamalov et al., 2010). Close white dwarf binaries
are predicted to emit gravitational waves with a frequency of the order of 10−4 −
10−1 Hz before their collapse, which should populate the gravitational-wave galactic
background (Evans et al., 1987; Nelemans et al., 2001). It is expected that this signal
will be observed by future space-based gravitational wave detectors such as the Laser
Interferometer Space Antenna (LISA, e.g., Cooray et al., 2004; Nelemans et al., 2004;
Ruiter et al., 2010). An additional gravitational wave signal is expected at the white
dwarf collapse (Abdikamalov et al., 2010; Dessart et al., 2006).

• Cao et al. (2018); Margalit et al. (2019); Moriya (2019) argue that some fast radio
bursts (FRBs) could be explained by AICs.

• Belczynski et al. (2018) suggest that double neutron stars could be formed in globular
clusters. In that scenario, double neutron star binaries could form when a neutron
star - ONeMg white dwarf binary interacts with a CO white dwarf. The interacting
white dwarfs will form a neutron star via the AIC scenario.
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The corresponding rate of these events can constrain the importance of AICs. However,
there is no confirmed observation of AICs. The absence of an observation cannot give
definite answers to the AIC rates, and we can only obtain limits from the theoretical
modeling. The estimated rates for AICs in our Galaxy are in the order of ∼ 0.3−0.9·10−3/yr
for the single-degenerate scenario and ∼ 1.4−8.9·10−3/yr for the double-degenerate scenario
(Liu & Wang, 2020; Wang, 2018). Fryer et al. (1999) estimated the rate for AICs to be
much lower in the range from 10−7 − 10−5/yr in both scenarios. They estimated the AIC
rate by modeling the r-process nucleosynthetic yields from the neutron-rich ejecta from
AICs. However, r-process element production in AICs is a matter of discussion (Dessart
et al., 2006; Ehring et al., 2023; Fryer et al., 1999; Qian & Wasserburg, 2007).

Until now, there has been no confirmed observation of an AIC event even though an
increasing number of observed transients speculate this possibility (e.g., Gillanders et al.,
2020; McBrien et al., 2019). Apart from the faint nature of AIC-associated mass ejection,
the lack of detailed models with predictions of observables makes the detection of such
events even more challenging. It is predicted that AICs result in relatively faint optical
transients compared to a typical SN with a canonical explosion energy of 1051 erg (e.g.,
Dessart et al., 2006). Additionally, there are only limited predictions about the electro-
magnetic signals of these events (Darbha et al., 2010). Therefore, identified transients could
be misinterpreted as other faint transients (e.g., Gillanders et al., 2020, see discussion later
on).

There is an increase in observations of transients that do not convincingly fit the con-
ventional scenarios of stellar deaths. A recent discovery of a fast radio transient (Anderson
et al., 2019) opened the discussion of AIC observations in radio frequencies (Margalit et al.,
2019). Moriya (2019) suggests that the radio emission could potentially result from the
interaction by the shock wave from the AIC and the circum-stellar medium. In addition,
they showed that the observed signal could give us a glimpse of whether the AIC comes
from a single or double degenerate system. Scholz et al. (2016) discovered a radio source
connected to the fast radio burst FRB 121102. The persistent radio source is considered a
“weak stellar explosion” with low energy and mass ejection that might be consistent with
the AIC scenario (Margalit et al., 2019; Sharon & Kushnir, 2020; Waxman, 2017). Mar-
galit et al. (2019) propose that AICs could be progenitors of some FRBs considering that
magnetars could be born via the AIC channel (Dessart et al., 2007). Thus, due to the
low-energetic, low-ejecta mass and thus faint nature of AICs, they could be first detected
as radio transients. Even though these radio observations have been associated with the
possibility of an AIC event, the speculations are far from a confirmed case.

A relatively recent observation of a rapidly declining transient, namely the AT2018kzr,
has also been connected to a plausible AIC event. McBrien et al. (2019) performed spectro-
scopic and lightcurve analysis of the transient and discussed different explosion scenarios
that could explain the observed signal. They consider that this observation could be
explained by an AIC event or the merger of a white dwarf and a neutron star. Their
conclusion favors the white dwarf-neutron star merger scenario based on the composition
found in their spectroscopic analysis. Their skepticism on the AIC scenario is driven by the
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current predictions that AICs are sources of heavier nuclei via the r-process (Darbha et al.,
2010; Dessart et al., 2006; Metzger et al., 2009a). Their modeling proposes that the ejecta
composition mainly consists of intermediate-mass elements, including O, Mg, Si, and Ca,
in addition to a small amount of Fe. However, detailed nucleosynthesis calculations for the
AIC ejecta from self-consistent models are missing from the literature, and thus there is
still considerable uncertainty on the heavy-element production in AICs.

A similar analysis was performed by Gillanders et al. (2020) for the same fast-evolving
transient. Gillanders et al. (2020) obtained models to explain the early epoch of the
observed photospheric spectra, and thus, they extracted properties of the ejecta such as
the ejecta velocity and composition. They disfavor the AIC scenario via ONeMg white
dwarf collapse or double-white dwarf mergers based on the discrepancy of their derived
composition and the composition predicted from theoretical calculations of AICs (Darbha
et al., 2010; Dessart et al., 2006; Metzger et al., 2009a) and double white dwarf mergers
(Brooks et al., 2017), in agreement with the conclusions of McBrien et al. (2019). It is
worth noticing that the existing attempts for nucleosynthesis predictions from AICs are
based on a very limited set of simulations and with approximation in the physics involved
(see discussion in section 1.4).

Apart from the observations that could plausibly be an AIC event, only a few observa-
tions point to potential progenitor models. Recently, a super-Chandrasekhar object, named
IRAS 00500+6713, was identified, and it is expected to end its life as an AIC (Gvaramadze
et al., 2019; Oskinova et al., 2020). The observed object consists of a central star which is
identified as a super-Chandrasekhar white dwarf that it is embedded in a circular nebula
which probably comes from a SN type Iax5. Gvaramadze et al. report that the discovered
object matches a rapidly rotating stellar object with strong magnetic fields. Additionally,
they suggest that the observations are in accordance with the post-merger evolution of a
double-white dwarf merger (Schwab et al., 2016). Oskinova et al. conclude that the object
IRAS 00500+6713 resulted from the coalescence of an ONeMg and a CO white dwarf.
This scenario has also been recently studied by Wu et al. (2023). Both Gvaramadze et al.
(2019) and Oskinova et al. (2020) conclude that the white dwarf remnant will stay above
the Chandrasekhar mass limit and will probably undergo core collapse to form a neutron
star in an AIC event. Caiazzo et al. (2021) report on discovering a highly magnetized and
rapidly rotating white dwarf identified as ZTF J190132.9+145808.7. Their analysis cannot
confidently conclude the fate of this object, but they suggest that it will end its life as an
AIC event or a SN type Ia.

1.3 Physics of the AIC of White Dwarfs to Neutron Stars

The evolutionary paths to form a neutron star or a double-neutron star binary via the AIC
mechanism depend on various conditions as it was already discussed, which are poorly
constrained due to the absence of a verified AIC observation. However, white dwarfs that

5SN Type Iax is a sub-category of SN type Ia that has lower luminosity and ejecta mass.
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evolve at the stage to end up as an AIC will undergo electron captures on Ne, Mg, and
free nuclei (Miyaji et al., 1980) and collapse to form a neutron star.

The road to collapse When a white dwarf exceeds the Chandrasekhar mass limit, the
degeneracy pressure support from the matter is insufficient to balance the self-gravity.
While the mass increases, the core of the white dwarf will contract to result in higher core
densities. When the central density exceeds ∼ 109 g/cm3 (Nomoto & Kondo, 1991; Schwab
et al., 2015), electron captures on Ne and Mg are favorable, via the inverse β-decay:

e− + p → n + νe, (1.1)

e− + (A, Z) → (A, Z − 1) + νe

and produce neutrons, n, and electron neutrinos, νe. The electron captures reduce the
Chandrasekhar mass limit and decrease the pressure in the core. This process triggers
gravitational instability, leading to the core collapsing and forming a hot proto-neutron
star (PNS). The PNS is a preceding object that will eventually become a neutron star.
As the gravitational collapse occurs, the matter will reach higher and higher densities
until nuclear matter density (ρ ≥ 2.7 · 1014 g/cm3) is reached, as in CCSNe. Initially, the
electron neutrinos νe from the electron captures can escape, but as the density increases,
the neutrinos get trapped in the high-density core. Since the neutrinos cannot escape, the
infall continues adiabatically, and the inner core collapses homologously, i.e., the radial
velocity is proportional to the radius (ur ∼ r, where r is the radius). For a comprehensive
discussion on collapse physics, we refer the reader to Shapiro & Teukolsky (1983, Chapter
18). The infall stops when nuclear matter densities are reached because the repulsive
nuclear forces between nucleons become significant and prevent the further contraction of
the matter. Then, the matter undergoes a phase transition to nuclear matter resulting
in the rise of the adiabatic index and the stiffening of the equation of state (EoS) of the
matter. Since further compression cannot occur, the matter is bouncing back, and the core
emits pressure waves that eventually stiffen to create a shock wave propagating outwards.
In the center, a neutron star forms, and the shock wave, assisted by neutrino heating,
drives the outflow.

Neutrino-driven outflow Electron neutrinos are produced in large numbers by electron
captures and carry away most of the binding energy of the core; however, they remain
trapped in the high densities of the core. As the shock moves to lower densities, the
neutrinos start to diffuse. As the shock wave propagates in even lower densities, the
neutrinos propagate in neutrino-transparent regions.

There is a general consensus that a small fraction of the emitted neutrinos will be
reabsorbed in the post-shock region, thus heating that region (Colgate & White, 1966).
This raises the post-shock pressure; therefore, the shock accelerates outwards and breaks
out of the surface of the contracting white dwarf. For a thorough discussion of the physics
involved in the neutrino-driven mechanism, which is similar in AICs and CCSNe, we refer
to the review of Bethe (1990).
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The neutrino emission that accelerates the shock wave can last several seconds, and
with this mechanism, the ejecta is launched from the white dwarf. As the ejecta, we
account for the material that propagates outwards and is unbound. Furthermore, after
the ejecta driven by the shock wave, the ongoing neutrino heating on the surface of the
new-born neutron star will create a “secondary” outflow of baryonic matter of high entropy
that originates from the neutron star’s surface. This is referred to as the neutrino-driven
wind and adds on the total mass ejecta in an AIC (e.g., Dessart et al., 2006; Woosley &
Baron, 1992).

1.4 Modeling of AICs

Even though the underlying mechanism that drives the explosion is theoretically estab-
lished, the parameter space of the different properties of the pre-collapse AIC systems
and how this affects the AIC dynamics and observed signals is widely unexplored. The
complexity and uncertainty of the AIC progenitor systems create a gap in the connection
to observables. However, numerical modeling of physically motivated pre-collapse systems
can significantly improve the understanding of AICs and connect them with potential ob-
servations.

The first attempts for modeling the AICs were made by Woosley & Baron (1992), who
laid the foundations for the neutrino-driven outflow in one-dimensional AIC models, and
Fryer et al. (1999), who explored the AIC scenario in one and two dimensions and set
preliminary constraints on the nucleosynthetic output of the AIC events.

Following the advances in the CCSN modeling (see, e.g., Burrows, 2013; Janka, 2017a,
for reviews), the neutrino-radiation hydrodynamics modeling has significantly advanced,
allowing for the modeling of sophisticated multi-dimensional simulations of CCSNe (e.g.,
Bollig et al., 2021; Glas et al., 2019b; Nagakura et al., 2021; Powell et al., 2023; Var-
tanyan et al., 2022). However, multi-dimensional simulations addressing the AIC scenario,
including the current advancements in neutrino-hydrodynamics modeling, are rare in the
literature. Some existing ones were constrained to the phase around core bounce with-
out neutrino transport to determine the characteristic gravitational-wave signal associated
with the collapse and bounce of rotating white dwarfs (Abdikamalov et al., 2010). Some
recent studies (Chan et al., 2022, 2023; Leung et al., 2019; Zha et al., 2019) performed
numerical simulations of dark matter-admixed white dwarfs, suggesting that a potential
AIC observation could also set constraints in the dark matter on small scales. Other sim-
ulations were constrained to the very early phases of the shock evolution until a few 100
milliseconds (Dessart et al., 2006), covering only the onset of the mass ejection for a small
fraction of the total mass loss of the collapsing white dwarfs. Moreover, these modeling
efforts considered only a few progenitor conditions and suffered from simplified approxima-
tions in the neutrino treatment (via flux-limited diffusion and with a small subset of the
relevant neutrino interactions).

Besides overcoming such limitations, it is of paramount importance to follow the evo-
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lution of the ejected material and the newly formed neutron star until much later stages
when the neutrino emission declines and the ejecta approaches a self-similar expansion.
Such long-time simulations are indispensable for reliable and meaningful predictions of the
observables as an attempt to bridge the theoretical knowledge to the current and increasing
observational signals of transients that do not fit the traditional picture of stellar deaths.

1.5 Goals and Structure of this Thesis

The goal of our project is to conduct, for the first time, self-consistent two-dimensional
(2D) neutrino-hydrodynamical simulations of AICs from the onset of white dwarf collapse
through core bounce and all the way to the homologous expansion of the ejecta several
seconds later for a set of six models of non-rotating and rotating white dwarfs with different
initial masses, different spin rates, and angular momentum profiles. These simulations will
be the first ones of their kind to cover the significant fraction of the neutrino-cooling
evolution of the PNSs formed in the collapse of white dwarfs when gravitational instability
is triggered by mass accretion from a companion star or in the secular evolution of the
product of a binary white dwarf merger.

Given the absence of stellar-evolution models of white dwarf mergers or accreting white
dwarfs on the verge of collapse, we employ physically motivated progenitor models that
represent the final evolutionary state of a system that ends as an AIC. We use pre-collapse
models that are computed configurations of degenerate matter in rotational equilibrium.
The initial pre-collapse AIC models are based on the calculations of Abdikamalov et al.
(2010) with improvements in the stability of the rotational equilibrium (Ehring, 2019).
The selected models cover a representative set of conditions that could incorporate both
the single-degenerate and the double-degenerate scenario for AICs (see section 1.1.3). This
gives us the advantage of simulating, for the first time, a representative set of AIC progen-
itors with a neutrino-hydrodynamics code that includes all the relevant physical processes
crucial for AICs.

Our modeling employs fully multi-dimensional, multi-energy-group neutrino transport
(by a two-moment treatment) (Just et al., 2018, 2015b; Obergaulinger, 2008) with a state-
of-the-art description of the neutrino interactions (Just et al., 2018) (based on Bruenn
(1985); Hannestad & Raffelt (1998); Horowitz (2002); O’Connor (2015); Pons et al. (1998))
and a modern nuclear equation of state (Steiner et al., 2013) that satisfies all current
experimental and astrophysical constraints, including the radius bounds deduced from the
recent gravitational-wave detection for the neutron star-merger event of GW170817. The
alcar code is widely used and tested in multi-dimensional simulations of CCSNe (e.g.,
Bugli et al., 2023, 2021; Glas et al., 2020, 2019a,b; Just et al., 2018; Obergaulinger & Aloy,
2021; Obergaulinger et al., 2014) and neutron star mergers (e.g., Just et al., 2022, 2023;
Sneppen et al., 2023).

Our simulations will determine characteristic properties of the AIC events such as ejecta
masses, ejecta geometry, and the composition, entropy, and expansion time scale of the
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ejecta, which are needed to compute their chemical composition by detailed nucleosyn-
thetic post-processing. Employing the frontiers of neutrino-hydrodynamics modeling and
a large set of progenitors, we improve the understanding of AICs, the dependence of differ-
ent initial conditions such as white dwarf masses or rotational profiles, and calculate the
properties of the ejecta and the newly-born neutron stars. Our self-consistent dynamical
simulations can be used for further predictions of the nucleosynthetic output of AICs and
electro-magnetic properties of an observed signal and therefore bridge the gap between the
theoretical understanding of AICs and observations. Thus, our work serves to predict the
observational signatures of AIC events and their contribution to the production of heavy
elements in the Universe.

Organisation of this Thesis Having given a summary of the underlying theoretical un-
derstanding of AICs, the importance of the event, potential observations, and current
modeling of AICs in this Chapter, we move to Chapter 2, where we describe the numeri-
cal code alcar that we use to conduct the simulations. In Chapter 3 we summarize the
progenitor models that we use in the numerical simulations. In Chapter 4, we focus on the
hydrodynamical evolution of the collapse and the onset of the neutrino-driven outflow and
how the different properties of each progenitor alter the dynamical evolution of each model.
In Chapter 5, we focus on analyzing the neutrino signal for each model which is significant
for the neutrino-driven outflow of AICs and the ejecta composition. In Chapter 6 we focus
on the ejecta properties of each model. Finally, we conclude this work in Chapter 7.



Chapter 2
Numerical Simulations with the ALCAR code

In this Thesis, we explore the accretion-induced collapse of white dwarfs to neutron stars
by performing six long-time axisymmetric simulations of non-rotating and rotating white
dwarfs using the code alcar (Just et al., 2018, 2015b; Obergaulinger, 2008). The code
combines non-relativistic hydrodynamics, a Newtonian gravitational potential with gen-
eral relativistic corrections, and an energy-dependent three-flavor treatment of the neu-
trino transport based on a two-moment scheme with an analytical closure relation for the
Eddington tensor. In this chapter, we describe the technical part of this Thesis, focusing
on the numerical methods used to simulate the long-time evolution of AICs. We present
the basic framework of the alcar code developed to model the neutrino transport and
hydrodynamics in CCSNe simulations and the modifications we used to adjust the code
for our long-time AIC simulations. The description of the code properties is based on Just
et al. (2018, 2015b) and in the detailed explanations of Glas (2019); Just (2012).

2.1 Hydrodynamics

The equations of hydrodynamics describe the fluid motions as a function of time in the
stellar plasma. In this formulation, we do not include numerical viscosity or magnetic
fields. Therefore, the Euler equations, which consist of the conservation law for density ρ,
momentum density ρu, electron fraction Ye, and total energy et, are given below:

∂tρ + ∇j(ρuj) = 0, (2.1a)

∂t(ρYe) + ∇j(ρYeu
j) = QN, (2.1b)

∂t(ρui) + ∇j(ρuiuj + Pg) = −ρ∇iϕ + Qi
M, (2.1c)

∂tet∇j(uj(et + Pg)) = −ρuj∇jϕ + QE + ujQ
i
M (2.1d)

In the above equations, the right-hand side includes the gravitational terms (∇ϕ) and
the neutrino-matter interactions, with QN to be the source term for the electron number,
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Qi
M the momentum, and QE for the energy. The source terms are calculated through

the neutrino-matter interaction rates and are explained in section 2.2. Additionally ϕ is
the gravitational potential for a density field ρ, such as ∇2ϕ = 4πGρ(r). Here G is the
gravitational constant.

The self-gravity of the stellar fluid is described by a Newtonian gravitational poten-
tial (ϕ) obtained as the solution of Poisson’s Equation in 2D. General relativistic correc-
tions are applied by replacing the monopole of the potential with an effective relativistic
formulation that reproduces the solution of hydrostatic equilibrium according to the Tol-
man–Oppenheimer–Volkoff (TOV) equation, following case A of Marek et al. (2006). The
Poisson’s equation in two spatial dimensions is based on the algorithm developed in Müller
& Steinmetz (1995), which uses spherical coordinates and an expansion into spherical har-
monics.

In the Euler equations for a stellar fluid, the conservation of the chemical composition
of matter is included. For a chemical species i we can define the number fraction Yi as Yi =
ni/nB, where ni is the number density of the species i and nB is the total baryon number
density. For the physics problem at hand, we define the electron fraction, a fundamental
conserved quantity that is included in equation (2.1) as

Ye = n−
e − n+

e

nB
, (2.2)

where n−
e is the electron fraction and n+

e is the positron fraction.

The equations of hydrodynamics are closed by a microphysical equation of state (EoS)
that describes the gas pressure Pg as a function of the gas density ρ, the electron fraction
Ye, and the internal energy. A brief summary of the EoS is given in section 2.1.1.

2.1.1 Equation of State

Since we treat a problem that covers a large spectrum of densities and temperatures, we
employ a tabulated high-density EoS extended to low temperatures and a semi-tabulated
one for low densities. In this section, we briefly describe the ingredients of both regimes.

High-density Equation of State We employ the microphysical SFHo EoS by Steiner et al.
(2013, SFH; Steiner Fischer Hempel), which is based on a covariant Langrangian using the
Walecka model for nucleon interactions via the exchange of σ, ω, and ρ mesons in a mean-
field approximation. This is a high-density nuclear equation of state with a lower density
limit of 1660 g/cm3 and a lower temperature limit down to 0.1 MeV or 8.6 · 108 K We use
an extended version with a lower temperature of 10−3 MeV. The equation of state closes
the hydrodynamical equations of the stellar fluid. The EoS comes in a tabulated form,
and we can choose the density threshold in which the high-density EoS is used, which is
2000 g/cm3 in our case. In the high-density EoS, nuclear statistical equilibrium is assumed.
This approximation assumes that above temperatures of 5 · 109 K, there is enough energy
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to balance forward and reverse nuclear reactions. In this state, the mass fractions of any
element can be calculated from Maxwell-Boltzmann statistics as

Xi(Ai, Zi, T, ρ) = A

NA · ρ
·ω(T )

(
2πkBTm(Ai, Zi)

h2

)3/2

· exp
(

µ(Ai, Zi) + B(Ai, Zi)
kBT

)
(2.3)

with A the atomic number of the nucleus, T is the temperature, kB is the Boltzmann con-
stant, NA is the Avogadro’s number, ω(T ) the temperature dependent partition function,
m(Ai, Zi) the mass of the nucleus, µ the chemical potential and B(Ai, Zi) the binding
energy of the nucleus.

Low-density Equation of State For lower densities, we employ a partially tabulated and
analytical EoS. That includes an electron/positron gas, a photon gas, and baryons. Ad-
ditional corrections include Coulomb lattice corrections for pressure, energy density, en-
tropy, and adiabatic index using a Wigner-Seitz approximation for a body-centered cubic
Coulomb lattice of nuclei embedded by uniformly distributed ionization electrons. We use
a two-dimensional table available in ρ · Ye, and T for the leptonic part, while the rest is
in analytic form. Nuclear statistical equilibrium is assumed for temperatures higher than
T > 5 · 109 K, and the NSE table gives the composition. For temperatures lower than
T < 5 · 109 K, the composition has to be given as an input in the EoS in addition to ρ, Ye,
and T . The electrons are non-relativistic and non-degenerate; the full EoS (ρ, Ye, T , and
composition) can be calculated analytically. In alcar, when the conditions for NSE are
not met, we keep the composition constant, i.e., the fraction of electrons, protons, alpha
particles, and heavy nuclei remain the same. In that case, we use a representative nucleus
for the heavy nuclei, which is 54Mn.

2.2 Radiation Transport

Apart from the stellar gas, neutrinos will be emitted, absorbed, and transported during
the collapse of the white dwarf and the birth of the neutron star. In high densities inside
the proto-neutron star, neutrinos are trapped and can only escape through slow diffusive
processes. In the less dense matter, neutrinos are decoupled from the matter and are in the
free-streaming regime. The modeling of these processes is accomplished with the theory
of radiation transport. The description of this section follows Just et al. (2018, 2015b);
Munier & Weaver (1986a,b).

Neutrinos are described by the Boltzmann equation, which describes the temporal evo-
lution for a particle distribution given by the function f in the six-dimensional phase space.
The intensity of radiation I that is often used in neutrino transport is correlated to the
distribution function f as:

I(x, t,n, ϵ) = h

c3 ϵ3f(x, t,n, ϵ), (2.4)
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where x is the position, n the unit vector in the momentum direction, ϵ the neutrino
energy, h the Planck constant and c the speed of light. The temporal evolution of the
specific intensity I is given by the Boltzmann equation:

1
c
∂tI + ni∇iI = [I]coll (2.5)

assuming a neutrino distribution with velocity c. The source term in the right-hand side
[Icoll] represents the neutrino-matter interactions that will be described in section 2.2.

We measure the specific intensity I in the comoving frame (i.e., fluid frame). The mo-
mentum space coordinates are measured using fixed Eulerian coordinates in the laboratory
frame (lab frame). This mixed-frame approach optimizes the efficiency of the computation.
Therefore, the radiation transport equation in the mixed-frame using Lorentz transforma-
tions up to order O(c/u) becomes:

1
c
∂tI + uin

i

c2 ∂tI + nj∇jI + uj

c
∇jI (2.6)

− ∂ϵ

[
Iϵ

(
ain

i

c2 + 1
c
njnk∇juk

)]

+ ∇n,i

[
I

(
ajn

j

c2 ni − ai

c2 + 1
c
ninjnk∇juk − 1

c
nj∇ju

i − Γi
jln

jnl − 1
c
Γi

jln
luj

)]

+ I

[
2ain

i

c2 + 1
c
∇iu

i + Γi
iln

l + 1
c
njnk∇juk

]
= [I]coll.

In the last equation, u is the fluid velocity, a = ∂tu is the fluid acceleration, Γ are the
Christoffel symbols, and the ∇ refers to the derivative in the momentum space. The
indices follow Einstein’s sum notation.

To reduce the dimensionality of the problem, we make use of the fact that the specific
intensity is related to the specific energy density E, the energy flux density F i, and the
pressure tensor P ij. Consequently, instead of directly solving equation (2.6), we construct
the moments of the specific intensity as follows:

E = 1
c

∫
dΩnI, (2.7)

F i =
∫

dΩnIni, (2.8)

P ij = 1
c

∫
dΩnIninj, (2.9)

Qijk =
∫

dΩnIninjnk. (2.10)

Here, Qijk is the analog 3rd-moment quantity, and dΩn refers to the solid angle in momen-
tum space.
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The system of equations for the first two moments of equation (2.6) is given by taking
the angular integrals of equation (2.6) and ignoring terms higher than O(u2/c2). To include
general-relativistic redshift and time dilation effects, we correct the source terms and write
them as a function of the lapse function α (Just et al., 2018). Therefore, the two-moment
equations system according to Just et al. (2018) reads

∂tE + ∇j(αF j + ujE) + P ij∇iuj + F i∇iα (2.11a)

− ∂ϵ[ϵ(P ij∇iuj + F i∇iα)] = αCE,

∂tF
i + ∇j(αc2P ij + ujF i) + F j∇jui + c2E∇iα (2.11b)

− ∂ϵ[ϵ(Qijk∇juk + c2P ij∇jα)] = αCi
F.

The lapse function α is calculated by integrating the relativistic Euler equation and is
given by

∂α

∂r
= − 1

ρc2 + ϵint + p

(
∂p

∂r
− QM

Γ

)
. (2.12)

The integration starts from the surface to the center, and the boundary condition at the
surface is α = Γ, where Γ is the metric function (van Riper, 1979). For more details, we
refer the reader to Rampp & Janka (2002).

The equation (2.11) represents the system of two-moment radiation transport used in
the code alcar. This system is solved for all three neutrino species. Since the source
terms are energy dependent, the above equations have to be solved for all the neutrino
energies. In alcar, this is done by evolving the equations in a range of energies split in a
specific energy range called ”energy group”. We also notice that each moment depends on
another moment of a higher level. Thus, instead of calculating infinitely higher moments,
we use an analytic closure relation to close the two-moment system.

Analytical Closure Relation

As discussed above, we use an analytical closure relation to close the equations of radiation
transport. The Boltzmann equation can be written in an infinite series of conservation
equations for the angular moments. Instead of solving the infinite series of equations, the
series can be truncated at a level of (m+1)th moment, provided that this moment can close
the set of m equations. This implies that we impose additional conditions or symmetries
in the local radiation field. In alcar, the closure relation is an analytical equation that
expresses the higher moments, i.e., P ij and Qijk as a function of the first two moments E
and F i. This is equivalent to P ij = P ij(E, F i) and Qijk = Qijk(E, F i). According to Just
et al. (2015b), the neutrino-pressure tensor is written as

P ij = E
(1 − χ

2 δij + 3χ − 1
2 ni

Fnj
F

)
, (2.13)
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where δij is the Kronecker δ, ni
F = F i/|F| the normalized flux direction, and χ is the

generalised Eddington factor. Similarly, the third moment is written as

Qijk = cE

[
f − q

2
(
ni

Fδjk + nj
Fδik + nk

Fδij
)

+ 5q − 3f

2 ni
Fnj

Fnk
F

]
, (2.14)

where q is a parameter and f = |F|/cE is the flux factor.

The exact definitions for the χ and q depend on the closure relation that we are using.
There are different closures in this form in the literature, but in our study, we use the one
proposed in Minerbo (1978), and therefore the quantities above are given by

χ(f) = 1
3 + 1

15(6f 2 − 2f 3 + 6f 4) (2.15)

q(f) = f

15(45 + 10f − 12f 2 − 12f 3 + 38f 4 − 12f 5 + 18f 6) (2.16)

For more details on the derivation, see Just et al. (2015b).

Neutrino-Matter Interactions

The neutrino-matter interactions are introduced in the radiation-transport equations via
the source terms (i.e., CE,ν and Ci

F,ν), including the necessary microphysics to describe
the physical problem. These quantities are used to calculate the source terms for the
hydrodynamics equations as follows

QN = −αmB

∫
(CE,νe − CE,ν̄e)ϵ−1dϵ, (2.17a)

Qi
M = −α

1
c2

∑
ν

∫
Ci

F,νdϵ, (2.17b)

QE = −α
∑

ν

∫
CE,νdϵ. (2.17c)

Here, α is the lapse function, QN is the source term for the electron number, Qi
M is the

source term for the momentum, and QE is the source term for the total energy. These
source terms express the change in the fluid electron number, momentum, and energy due
to the neutrino-matter interactions, and they are coupled to the hydrodynamics equations
via equation (2.1). Each source term is a sum for all the neutrino species, and mB is
the atomic mass unit. The neutrino-matter interactions are described in terms of the
energy density CE,ν and the energy flux density Ci

F,ν . We include absorption, emission,
iso-energetic scattering processes, and inelastic scattering. Therefore, the source terms for
the neutrino interactions can be written as

CE = CE,esc + CE,isc, (2.18a)

Ci
F = Ci

F,esc + Ci
F,isc. (2.18b)
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Here CE,esc, CF,esc are the contributions from the absorption and emission while CE,isc, CF,isc
are the contributions from the iso-energetic scattering processes.

We express the source terms for radiation as a function of the opacities for the interac-
tions considered. Below, we list all neutrino-matter interactions implemented in the alcar
code together with the reference on which the implementation is based.

• Absorption and emission of νe and ν̄e:
νe + n ⇌ p + e−, Bruenn (1985); Mezzacappa & Bruenn (1993)
ν̄e + p ⇌ n + e+, Bruenn (1985); Mezzacappa & Bruenn (1993)
νe + (A,Z) ⇌ (A,Z+1) + e−, Bruenn (1985)
ν̄e + (A,Z) ⇌ (A,Z-1) + e+, Bruenn (1985)

• Scattering:
n + νi ⇌ n + νi, Bruenn (1985); Mezzacappa & Bruenn (1993)
p + νi ⇌ p + νi, Bruenn (1985); Mezzacappa & Bruenn (1993)
(A,Z) +νi ⇌ (A,Z) + νi, Bruenn (1985); Horowitz (2002); Mezzacappa & Bruenn
(1993)
e± + νi ⇌ e± + νi, O’Connor (2015); Yueh & Buchler (1977)1

• Pair production annihilation of heavy-lepton neutrinos νx:
e− + e+ ⇌ νx + νx, Bruenn (1985); Pons et al. (1998)2.

• Bremsstrahlung - heavy-lepton neutrinos νx:
N1 + N2 ⇌ N1 + N2 + νx + νx, Hannestad & Raffelt (1998)2

In the above we use the generic term νx to describe all the heavy-lepton neutrinos, i.e.,
ντ ,ν̄τ ,νµ, and ν̄µ. We neglect the absorption and emission of heavy-lepton neutrinos because
their rates are suppressed due to the high muon mass. Moreover, we do not consider
bremsstrahlung and pair production processes for νe and ν̄e since they are dominated by
their absorption, emission, and scattering processes. According to the above and following
Bruenn (1985); Rampp & Janka (2002), the radiation source terms are written as a function
of the absorption opacity κa and the scattering opacity κs

CE,esc = cκa(Eeq − E), (2.19a)

Ci
F,esc = −c(κa + κs)F i, (2.19b)

where Eeq is the equilibrium energy density associated with the Fermi-Dirac distribution
and calculated as

Eeq(ϵ, µν , T ) = 4π
(

ϵ

hc

)3 [
exp

(
ϵ − µν

kBT
+ 1

)]−1
. (2.20)

The above formula corresponds to neutrinos with a chemical potential µν , energy ϵ, and a
fluid temperature of T , while kB is the Boltzmann constant. The opacities are calculated

1Damping the source terms for densities ρ > 5 · 1012 [g/cm3]
2simplified as in O’Connor (2015)
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with methods described in the Appendix of Rampp & Janka (2002) with the addition that
in alcar, we include corrections in the interaction with nucleons due to weak magnetism
and nucleon recoil according to Horowitz (1997). Additionally, the bremsstrahlung and
e−e+ pair processes are calculated in a simplified manner following O’Connor (2015), which
treats them as absorption and emission terms.

2.3 Numerical Methods

Both the hydrodynamics equations and the system of the two-moment equations for the
neutrino radiation transport are of hyperbolic mathematical nature; therefore, it is common
to use Godunov-type finite-volume methods (Godunov, 1959) to discretize the equations.
The evolved quantities are discretized as cell-volume averages. We employ approximate
Riemann solvers to obtain the cell-interface fluxes between cells. We use the ”HLLC”
solver (Toro, 2013) and the ”HLLE” solver for specific circumstances (Einfeldt, 1988; Ein-
feldt et al., 1991). The cell interfaces of an evolved quantity are reconstructed from the
cell averages using the piecewise-parabolic method (Colella & Woodward, 1984; Mignone,
2014).

The integration is done in a mixed implicit-explicit way, where the left-hand-side of
the two-moment equations (equation (2.11)) are treated explicitly in time while the source
terms in the right-hand side are treated implicitly. The time integration is performed using
a second-order Runge-Kutta scheme. We use the same timestep for both the hydrodynam-
ics and the radiation transport equations, constrained by the Courant-Friedrichs-Lewy
condition (Courant et al., 1928, CFL). The global timestep is computed as

∆t = fCFL · min [∆thydro, ∆tradiation], (2.21)

where fCFL is the CFL parameter set to 0.5, ∆thydro is the integration timestep for hydro-
dynamics, and ∆tradiation for radiation. For a thorough explanation of the details of the
numerical scheme of alcar, we refer the reader to Just et al. (2015b).



Chapter 3
Initial Models

This chapter describes the methods used to develop the progenitor models for the AIC
simulations. We discuss and motivate the construction of the models, the improvements
from previous work, and the technical details for the initial conditions used in alcar
to perform the long-time evolution of AICs. The models constructed for this work are
provided by Ehring (2019), and they are based on but significantly improved from the
models presented in Abdikamalov et al. (2010).

3.1 Pre-collapse Models

The AIC scenario is either the outcome of a white dwarf binary merger or a white dwarf
that accretes mass and angular momentum from a companion star. Non-rotating ONeMg
white dwarfs undergo accretion-induced (i.e., electron-capture) collapse when their mass
exceeds the Chandrasekhar mass limit, while rotating white dwarfs need more mass to
undergo a collapse. Stellar evolution models can approximate the evolution of white dwarfs
and the accretion process. However, due to the complexity of stellar evolution and the
vast parameter space, there is a lack of self-consistent multi-dimensional pre-collapse AIC
models that result from stellar evolution numerical simulations.

Therefore, we construct our initial models as differentially rotating equilibrium config-
urations with Newtonian gravity, applying the self-consistent field method (SCF; Ostriker
& Bodenheimer, 1968) in a similar manner as in Abdikamalov et al. (2010) and Yoon &
Langer (2005). The pressure of the self-gravitating fluid is assumed to be provided by
degenerate electrons and formulated in terms of a barotropic relation (i.e., the pressure
depends only on the density).

The constructed models we use in the Thesis are presented in Ehring (2019), and here
we give a brief overview of the methods used to produce those models. They are a selection
of representative cases calculated in Abdikamalov et al. (2010) with increased numerical
accuracy of the rotation equilibrium and higher radial grid resolution. Our models span
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across various masses, spins, and total angular momentum to cover a representative sample
of possible realistic progenitors (see table 3.1).

We employ the SCF method in Newtonian gravity for given rotational profiles. General
relativistic effects are minor in the pre-collapse phase and thus neglected. The progenitors
are set to have an equal number of protons and neutrons at initialization. Therefore, the
electron fraction Ye is set to 0.5.

In the white dwarfs, the stellar matter is supported against gravity due to the electron
degenerate pressure. The following equation describes the equilibrium for a rotating white
dwarf: ∫

ρ−1dP + Φ −
∫

Ω2ϖdϖ = C, (3.1)

where ρ is the density, P the pressure, Φ is the gravitational potential, Ω is the rotational
profile, ϖ is the radial cylindrical coordinate, and C is determined from the boundary
conditions. In complete degenerate conditions, the pressure is given by

P = A[x(2x2 − 3)(x2 + 1)1/2 + 3sinh−1x] (3.2)

x = (ρ/B)1/3,

where A is a constant, i.e., A = 6.01 · 1022 dyn cm−3 and B is inversely proportional to Ye

such as B = 9.82 · 105 Y −1
e g cm−3, in our case B = 1.96 × 106g cm−3 for Ye = 0.5.

The first integral in equation (3.1) is the enthalpy H which is given by

H = 8A

B

[
1 +

(
ρ

B

)2/3
]

. (3.3)

Therefore equation (3.1) is written as

H = C − Φ +
∫

Ω2ϖdϖ. (3.4)

The rotational profile follows the rotational law for accreting white dwarfs by Yoon &
Langer (2005). They show that the angular momentum transport via the dynamical-shear
instability (DSI) affects the rotational profile in the inner region of the accreting white
dwarf. In contrast, the secular-shear instability (SSI) shapes the outer layers. The rotation
law results in a maximum angular velocity at the location that splits the DSI unstable
core with the rest of the white dwarf. We identify this position at a distance ϖp from
the rotational axis. The density at this position corresponds to a certain percentage of
the white dwarf central density ρc,i, in a manner such as ρi(ϖp, 0) = fpρc,i(0, 0), with the
second spatial variable is the polar angle θ = 0. The parameter fp shows the fraction of the
central density at the outer location of the shear-unstable core. In our models, according
to Abdikamalov et al. (2010), we choose fp = 0.05 or fp = 0.1. The rotational profile for
the inner core (i.e., below the shear unstable layer) is given by

Ω(ϖ) = Ωc,i +
∫ ϖ

0

fshσDSI,crit

ϖ′ dϖ′, (3.5)
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where Ωc,i is the initial central angular velocity, σDSI,crit describes the critical shear rate
for the onset of the DSI in the inner core, fsh is a dimensionless parameter that shows the
deviation of the shear rate from its critical value σDSI,crit.
According to Yoon & Langer (2005) the σDSI,crit is calculated as

σ2
DSI,crit ≃

(
g

109 cm s−2

)(
δ

0.01

)(
Hp

8 · 107 cm

)−1 (∇ad

0.4

)
, (3.6)

where g is the free-fall acceleration, Hp is the pressure scale height, ∇ad is the adiabatic
temperature gradient and δ = (∂ ln ρ/∂ ln T )P .
At the equatorial surface, the white dwarf is assumed to rotate at a certain fraction fK of
the Keplerian angular velocity ΩK at the equator, such as

Ω(Re) = fKΩK(Re) (3.7)

where Re is the equatorial radius of the white dwarf. Accretion onto the white dwarf will
carry angular momentum onto its surface, and it is expected to rotate near the critical
velocity, therefore, fK = 0.95 is chosen. The angular velocity for matter above the shear-
unstable layer is given by

Ω(ϖ)/ΩK(ϖ) = Ω(ϖp)/ΩK(ϖp) + C(ϖ − ϖp)α (3.8)

where ϖp is the location of the maximum angular velocity just above the shear-unstable
core and a = 1.2 as chosen in Abdikamalov et al. (2010); Yoon & Langer (2005). The
constant C is determined by

C = fK − Ω(ϖp)/ΩK(ϖ)
(Re − ϖp)α

(3.9)

In summary, the rotational law for the pre-collapse models is given by

Ω(ϖ) = Ωc,i +
∫ ϖ

0

fshσDSI,crit

ϖ′ dϖ′ for 0 ≤ ϖ ≤ ϖp

Ω(ϖ)/ΩK(ϖ) = Ω(ϖp)/ΩK(ϖp) + C(ϖ − ϖp)α for ϖp ≤ ϖ ≤ Re

Using the rotational profile above, we can employ the SCF method. Given a trial density
distribution ρ(r, θ) and following the rotational profile defined above, we can calculate
the value C (see equation (3.4)) from the boundary conditions and therefore update the
enthalpy from equation (3.4). With the new value for the enthalpy H, we use equation (3.3)
to estimate the new density distribution. We repeat the process until convergence, i.e., until
the maximum absolute values for the differences of the iterative quantities become less than
10−5. The convergence of the method is chosen with increased stability compared to the
models constructed in Abdikamalov et al. (2010), where the accuracy was 10−3.

Additionally, to estimate how accurate is the rotational equilibrium of the generated
models, we calculate the relative acceleration (Ehring, 2019) as

αrel =
∣∣∣∣∣αg + αc + αp

αg

∣∣∣∣∣ , (3.10)
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Table 3.1: AIC progenitor properties. The columns list different physical parameters, where M is the mass
of the white dwarf, Ωc the central angular velocity, Ωmax the maximum value of the angular velocity at the
equator, Req the equatorial radius, Tc the central temperature, J the initial total angular momentum, Erot
the total rotational energy, and βinit the ratio of the rotational to the gravitational energy in the initial
white dwarf model.

Model M Ωc Ωmax Req ρc Tc J Erot βinit
[M⊙] [rad/s] [rad/s] [km] [g/cm3] [K] [1050erg · s] [1050erg]

M1.42-J0 1.422 0 0 816 5 · 1010 1.00 · 1010 0.000 0.000 0.000
M1.42-J0.23-Dl 1.422 0 3.80 2250 4 · 109 4.13 · 109 0.231 0.299 0.007
M1.61-J0.47 1.609 12.0 19.64 1498 5 · 1010 1.00 · 1010 0.471 3.941 0.038
M1.61-J0.78-Dl 1.611 5.55 6.13 2897 4 · 109 4.13 · 109 0.782 2.094 0.046
M1.91-J1.09 1.919 18.0 25.66 2377 5 · 1010 1.00 · 1010 1.085 10.471 0.082
M1.91-J1.63-Dl 1.906 5.33 8.22 3982 4 · 109 4.13 · 109 1.630 5.033 0.091

where αg is the gravitational acceleration, αc is the acceleration from the centrifugal force,
and αp from the pressure gradient. We calculate the mass, m5, included in the cells so
that αrel > 0.05. The non-rotating progenitor yields m5 = 7 · 10−7 M⊙, and the rotating
models m5 ∼ 0.003 − 5 · 10−3 M⊙ (Ehring, 2019). To consider a model in good rotational
equilibrium, the value of the m5 should be as small as possible. The improvements of
Ehring (2019) provide us with a more accurate set of models with higher spatial resolution
and better rotational stability, compared to Abdikamalov et al. (2010). For more details
on the method, we refer the reader to Abdikamalov et al. (2010); Ehring (2019); Ehring
et al. (2023); Yoon & Langer (2005).

According to the discussed method, the initial models are constructed in rotational
equilibrium with a barotropic EoS, i.e., the pressure depends only on the density. Thus,
the initial models are independent of the temperature. We impose a temperature profile,
following Abdikamalov et al. (2010); Dessart et al. (2006) depending on the density and
given by

T (r, θ) = T0 · (ρc,i/ρ(r, θ))−0.35 (3.11)

with T0, ρc,i being the initial temperature and density, respectively. The initial central
temperature T0 is assumed to be 1010 K for all models. Note that due to the scaling with
the initial central density, the initial central temperature in the center will be changed
accordingly. A summary of the model properties is discussed in the next section and given
in table 3.1.

3.2 Properties of the Progenitor Models

Six two-dimensional models have been created for this Thesis as described above and
presented in Ehring (2019); Ehring et al. (2023). The exact structure and thermodynamics
of the AIC progenitor are crucial for the subsequent core collapse and outcome of the
explosion. Since the parameter range for the central density, temperature, and rotation are
not tightly constrained, we will explore a representative and physically motivated range of



3.2 Properties of the Progenitor Models 27

−2

−1

0

1

2

z
[1

00
0

k
m

]

0 2 4

x [10000 km]

−2

−1

0

1

2

z
[1

00
0

k
m

]

0 2 4

x [1000 km]

0 2 4

x [1000 km]

101

102

103

104

105

106

107

108

109

1010

ρ
[g
/c

m
3
]

Figure 3.1: Color-coded density of each progenitor in the xz plane. From left to right, the upper left
model has a mass of 1.42M⊙, high central density, and no rotation, i.e. the model M1.42-J0, the bottom
left one is the M1.42-J0.23-Dl with the same mass and slow rotation on the surface. The middle panels
show the rotating progenitors with 1.61M⊙, i.e., M1.61-J0.47 (middle top) and M1.61-J0.78-Dl (middle
bottom). The right panels show the rotating progenitors with 1.91M⊙, i.e., M1.91-J1.09 (right top) and
M1.91-J1.63-Dl (right bottom). Mass and rotation increase towards the right panels. The models are
embedded in a CSM with radially decreasing density and temperature profiles.

initial conditions and their outcome.

In order to study the effect of the initial central density on the AIC, we choose two
different values, i.e. 5 · 1010 g/cm3 for three of the models and 4 · 109 g/cm3 for the rest
of the models (low-density models include a suffix, ”-Dl”, in their naming convention, see
table 3.1). The models are constructed to have certain total masses of approximately
1.42, 1.61, and 1.91 M⊙. Each of those progenitors is initiated with a high central density
of 5 · 1010 g/cm3 and a low central density of 4 · 109 g/cm3, i.e., we have three pairs of
equal mass progenitors. The models initiated with high central density are chosen with
fp = 0.05. This implies that the density above the shear-unstable core is 5% of the initial
central density. For the low-central density progenitors, the parameter is fp = 0.1. The
shear parameter (see equation (3.5)) is chosen to be 1.0 for three models.

In total, we have one non-rotating and five differentially rotating white dwarfs. The
naming convention of the models is as follows: every model starts with M followed by a
number that indicates the mass of the model, then J refers to the total angular momentum
of the white dwarf at the start of the simulation, and three of the models have a suffix
”-Dl” that indicates that are initiated low central density at their cores.

The first pair of models have a mass of 1.42 M⊙. The model with the high central
density (5 · 1010 g/cm3), i.e., M1.42-J0 is non-rotating, and the model with low central
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Figure 3.2: Color-coded angular velocity of each progenitor in the xz plane. From left to right, the bottom
left is the model M1.42-J0.23-Dl, with a mass of 1.42 M⊙. The middle panels show the rotating progenitors
with 1.61M⊙, i.e., M1.61-J0.47 (middle top) and M1.61-J0.78-Dl (middle bottom). The right panels show
the rotating progenitors with 1.91M⊙, i.e., M1.91-J1.09 (right top) and M1.91-J1.63-Dl (right bottom).
The angular velocity in our progenitors depends on the distance x to the rotational axis. The circum-stellar
medium is non-rotating.

density (4 ·109 g/cm3), i.e., M1.42-J0.23-Dl is non-rotating in the center but rotating in the
outer layers with a surface rotation of 3.80 rad/s at the equator. The second pair of models
have a mass of approximately 1.6 M⊙, which is above the Chandrasekhar limit, but due to
rotational support, the mass can exceed this limit. The high central density model, i.e.,
M1.61-J0.47, has a central rotation of 12.0 rad/s to match the desired mass and a shearing
parameter fsh of 1.0. The low central density model with the same mass, i.e., M1.61-J0.78-
Dl, has a central rotation rate of 5.55 rad/s and the shear parameter is fsh = 0.2. The last
two models are the heaviest and the ones with the largest total angular momentum. The
high central density model, i.e., M1.91-J1.09, has a central rotation of 18.0 rad/s, while
the low central density model, i.e., M1.91-J1.63-Dl, is rotating more slowly with a central
rotation of 5.33 rad/s. Both models have the same shear parameter of fsh = 1.0.

Figure 3.2 displays the two-dimensional angular velocity profile for the rotating pro-
genitors. The models M1.61-J0.47 and M1.91-J1.09 have high central density, are more
compact and have high angular velocity in their centers. In contrast, the low-central den-
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sity models rotate more slowly, even though they have higher angular momentum than
their exact mass counterparts. All rotating models show a peak in their angular velocity
above the shear-unstable core by contraction. This holds for the rotating models apart
from the model M1.42-J0.23-Dl, where the angular velocity monotonically increases with
the distance to the rotational axis. In figure 3.3, we plot the z-component of the specific
angular momentum, which depends on the distance to the rotational axis, similarly to the
angular velocity.

Figure 3.1 shows the two-dimensional projection of the progenitors, color-coded by the
density. The low central density progenitors (i.e. M1.42-J0.23-Dl, M1.61-J0.78-Dl, M1.91-
J1.63-Dl) are generally larger and hence less compact than their equal mass counterparts.
The rotating high central density models (i.e., M1.61-J0.47, M1.91-J1.09) are more compact
and have higher central angular velocity. The low central density models have a smaller fp

parameter, which indicates the percentage of the central density where angular velocity is
the maximum and the peak of the angular velocity is located further out. This is also seen
in figure 3.4, where the equatorial angular velocity is shown as a function of radius.

3.3 Circum-stellar Medium

The progenitor models are embedded in an artificial circum-stellar medium (CSM) due to
the eulerian nature of our simulation code alcar. Since we don’t have any observational
constraints about the environment around the AIC, we set up the surroundings to be the
least affecting conditions for the propagation of the AIC ejecta. The CSM is set up in a
non-rotating hydrostatic equilibrium.

We assume a declining density profile, scaled to the white dwarf properties, as follows,

ρ(r, θ) = ρWD,min

(
RWD(θ)

r

)3+ϵ

(3.12)

where ρWD,min is the minimum density of the white dwarf, RWD(θ) is the angle-dependent
radius of the white dwarf, and ϵ is a parameter set to ϵ = 0.1 Apart from the non-rotating
model spherical symmetric model, the rest have an angle-dependent CSM around them.
Assuming a radiation-dominated ideal gas in the CSM, the temperature should be scaled
as T ∼ ρ−4. Therefore, to approximate this dependence, we adopt a radially declining
temperature profile, which is given by

T (r, θ) = TWD,min

(
RWD(θ)

r

)
(3.13)

where TWD,min is the minimum temperature of the white dwarf. For the composition, we
assume 60% protons, 40% neutrons, and no other elements; thus, the Ye is set to 0.6 in
the CSM. The above configuration makes the CSM in approximate hydrostatic equilibrium
because the assumed temperature is not identical to the one given in the numerical code
alcar.
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Figure 3.3: Color-coded z-component of the specific angular momentum of each progenitor in the xz plane.
From left to right, the bottom left one is the model M1.42-J0.23-Dl. The middle panels show the rotating
progenitors with M1.61-J0.47 in the middle top and M1.61-J0.78-Dl in the middle bottom panel. The right
panels show the rotating progenitors M1.91-J1.09 in the right top and M1.91-J1.63-Dl in the right bottom
panel. The z-component of the specific angular momentum depends on the distance x to the rotational
axis, as does the angular velocity.

3.4 Grids and Resolution

Neutrino Energy Grid As discussed previously, for the neutrino radiation transport we
evolve the two-moment equations (see equation (2.11)). In the code alcar, these are
solved for three different neutrino species, i.e., the electron neutrinos νe, the electron anti-
neutrinos ν̄e, and the heavy-lepton neutrinos described by νx that represent the muon νµ

and tau ντ neutrinos and their corresponding anti-neutrinos. For the energy grid, i.e.,
the discretization of the neutrino energy, we employ 15 logarithmically spaced bins in the
interval 0 ≤ ϵ ≤ 400 MeV.

Spatial Grid The progenitors are mapped in a spherical grid of 1440 radial and 96 polar
zones, which is identical for all the models. The inner 30 km are mapped in a radial grid
with equal-width zones of 100m each, while the rest of the radial zones have a logarith-
mically increasing width. The total radial grid reaches ∼ 600,000 km. The radial part
of the grid is constructed so that there is enough resolution on the neutron star surface
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Figure 3.4: Rotational profiles of the angular velocity at the equator as a function of radius for all models.
All models reach an angular velocity maximum at a certain radius except the non-rotating one (M.142-J0)
and its low-density counterpart M1.42-J0.23, which shows increasing rotation on its surface.

which is required for the simulations we present here and allows following the ejecta for
a long enough time until they reach homologous expansion. Specifically, as the neutron
star contracts, there is a steep density gradient on the surface of the neutron star and the
circum-stellar medium. Thus, high spatial resolution is required to capture all the relevant
physical processes to describe neutrino physics and hydrodynamical phenomena accurately.
In the polar direction, the 96 zones are equally distributed in the θ ∈ [0◦, 180◦], giving an
angular resolution of 1.875◦.

1D core To facilitate the long-time evolution of the models with a reasonable amount of
computing time, we use a spherical symmetric core (1D core) in the center that allows for
a larger timestep in our calculations. Since the timestep is constrained by the size of the
inner cell of the spatial grid, using the 1D core, we take the spherical averages of the central
quantities. The size of the 1D core varies from model to model because of the different
degrees of rotation. For faster-rotating models, we use a smaller 1D core because the high
spin of the core deforms the central region. For our non-rotating model, we use a 1D core
with a radius of 1 km, for the slow rotating model (M1.42-J0.23-Dl), the 1D core has a
radius of 600 km, and for the rest of the models 400 km.
For the rotating models, we allow the 1D core to rotate. The ϕ component of the momentum
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is advected in the 1D core, and thus, we can get non-zero ϕ velocities. The ϕ component of
the momentum is redistributed in each radial shell of the 1D core and follows a sinusoidal
function of the polar angle θ as pϕ ∼ sin θ. This treatment conserves the total ϕ momentum
and is an acceptable approximation for the rotating models.



Chapter 4
Collapse and Evolution of AIC models

In this Thesis we investigate the white dwarf collapse and the long-time evolution of six non-
rotating and rotating models of AIC progenitors. Our modeling employs the fully multi-
dimensional, multi-energy-group neutrino transport and hydrodynamics code alcar with
a state-of-the-art description of the neutrino interactions and a modern nuclear equation
of state, as described in chapter 2. Our simulations follow the collapse and long-time
evolution of the AIC models that were presented in chapter 3. In this chapter, we focus
on the dynamical development of the models, the onset of the neutrino-driven outflow, the
properties of the neutron stars born in the white dwarf collapse, and the overall properties
of the simulations.

4.1 Collapse of AIC Models

In this section, we discuss the collapse dynamics of the non-rotating and rotating AIC
models. All models are initialized with electron fraction Ye = 0.5, which means that
no electron captures have occurred so far. The AIC begins when the thermodynamical
conditions are such (high enough central temperature and density) to initiate electron
capture in the white dwarf core. In our simulations, all models become gravitationally
unstable and begin to collapse. The collapse timescale (i.e., bounce time) differs from model
to model, with a significant increase in the collapse time for the models with low central
density. This is intuitively clear since the initial collapse is to first order happening on the
gravitational free fall timescale, which scales inversely proportional to the square root of
density. Thus, a priori one would expect that lower density models need longer to undergo
gravitational collapse. The models with high central density (i.e., models M1.24-J0, M1.61-
J0.47, and M1.91-J1.09) collapse on a timescale of ∼40 ms, and any differences in the
bounce dynamics are attributed to the initial angular momentum distribution (figure 3.3).
The rest of the models, i.e., those with low-central density (models M1.42-J0.23-Dl, M1.61-
J0.78-Dl, and M1.91-J1.63-Dl) exhibit a significantly longer time to collapse, due to the low
density and temperature at their cores and to their corresponding rotational profiles. These
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models need between 300ms and 800ms to collapse since the beginning of our simulations.
The initial angular momentum profile for each model is crucial for the development of the
collapse and subsequent outflow.

Similar to CCSNe (e.g., Moenchmeyer et al., 1991; Tohline, 1984; Zwerger & Mueller,
1997), the collapse of an AIC (e.g. Abdikamalov et al., 2010; Dessart et al., 2006) can be
subdivided in three different phases (stages): infall, plunge and bounce, and ringdown. In
the following, we will discuss these phases with respect to AICs and post the interested
reader to Burrows (2013); Foglizzo et al. (2015); Janka (2017a); Kotake et al. (2006) for a
comprehensive overview of the state of CCSN explosion theory. During the infall, the inner
core, which is defined as the regions that are in sonic contact at the time of the bounce,
contracts in a homologous way (i.e., ur ∼ r, where r is the radius) (Goldreich & Weber,
1980), while the outer layers of the progenitor follow at supersonic speeds. The core bounce
occurs when the central density reaches nuclear saturation density (ρ ≥ 2.7 · 1014 g/cm3).
At that point, the matter cannot be compressed any further because the repulsive nuclear
forces between nucleons dominate and stabilize the further contraction of the matter. At
that point of maximum compression, there is a phase transition to nuclear matter which
leads to the sudden stiffening of the EoS and the rise of the adiabatic index. Because
of the huge amount of kinetic energy enclosed in the collapsing core, the central density
overshoots to a maximum value and then oscillates with small changes in the ρcentral. The
infalling matter bounces back to form pressure waves that will steepen to form a shock
wave that propagates outwards. This is referred to as pressure bounce or just bounce since
is the usual way a CCSN undergoes core-bounce.

Figure 4.1 shows the maximum density in the core for each model as a function of
post-bounce time. From figure 4.1 we can distinguish the infall phase in the slow rise of
the central maximum density (i.e., during 20-40ms before bounce), the plunge and bounce
in the steep and sudden rise of the central density at around 0ms1 which corresponds to
the time of the bounce, and finally the ringdown during the first millisecond post-bounce
as the central density slightly drops again after the overshoot to a maximum value at
the core bounce. There is a clear distinction of the time evolution of the central density
for the models M.161-J0.78-Dl (light blue line) and M1.91-J1.63-Dl (orange line) and the
other four simulated models. Due to the interplay of the low-central density and the high
degree of rotation in the models M.161-J0.78-Dl and M1.91-J1.63-Dl those do not undergo
a pressure bounce like the other models but evolve towards a centrifugal bounce before
they can reach nuclear saturation density. The centrifugal bounce occurs because of the
large angular velocities in the central region of the white dwarf (or other rotating collapsing
stars) that centrifugally stabilize the matter. Therefore, the matter cannot collapse any
further because is rotationally supported. In the following, we examine the collapse and
bounce for each AIC model in more depth.

1The time axis is normalized to 0ms for each model and 0ms is equivalent to the core bounce for all
the models. Thus negative times describe the time before the bounce.
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Figure 4.1: Maximum central density as a function of post-bounce time. We follow the evolution of the
maximum density of the central region of the progenitor. The black line shows the central density of the
non-rotating model M1.42-J0, the grey line shows its low-density counterpart M1.42-J0.23-Dl, the blue
line corresponds to the rotating model M1.61-J0.47, the light blue line to the low-density model M1.61-
J0.78-Dl, the red line displays the central density of the model M1.91-J1.09, and the light orange of the
model M1.91-J1.63-Dl. We follow this color-scheme throughout this Thesis. For later times, we refer the
reader to the corresponding figure A.1 in the Appendix.

4.1.1 Collapse and bounce of the non-rotating model

The spherical-symmetric non-rotating model, M1.42-J0, needs 37.7 ms to reach nuclear
saturation densities and to undergo core bounce. The maximum density in the core of the
white dwarf at core bounce is 4.07 · 1014 g/cm3. The evolution of the collapse and bounce
agrees well with the spherical symmetric models of Abdikamalov et al. (2010). However,
our model reaches a higher central density in its core in comparison to the models of
Abdikamalov et al. (2010) that only reach ρcentral ∼ 2.8 · 1014 g/cm3. The difference is
attributed to the elaborated nuclear EoS that we are using in the simulations together
with the neutrino radiation-transport scheme in contrast to Abdikamalov et al. (2010) who
omit neutrino radiation and use a parameterized relation between the electron fraction
Ye and density. Additionally, for our non-rotating model, the inner core has a mass of
Mic,b = 0.58 M⊙. Our findings are in accordance with the results from previous simulations
of CCSNe (e.g., Buras et al., 2006a,b; Liebendörfer et al., 2005). Abdikamalov et al. (2010)
found Mic,b ∼ 0.27 M⊙ which is smaller than our values. The discrepancy is again due to
the chosen EoS which leads to a different peak in the central density and therefore different
sizes of the inner core. It has been shown (Dimmelmeier et al., 2008; Sumiyoshi et al., 2005;
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Yasin et al., 2020) that the EoS choice can affect the exact value of the central density
at core bounce, i.e., a softer EoS yields higher central densities at core bounce. In our
simulations we chose the modern nuclear equation of state (version SFHo from Steiner et al.
(2013), see chapter 2) that satisfies all current experimental and astrophysical constraints,
including the radius bounds deduced from the recent gravitational-wave detection for the
NS-merger event of GW170817 (Abbott et al., 2017).

Figure 4.2 and figure 4.3 show the time evolution of the radial velocity as a function
of radius, from ∼ 10ms before the core bounce until ∼ 100ms after that. The different
color lines present the time evolution with the lighter colors corresponding to early times
and darker colors to later times. The left panels (purple lines) show the radial velocity
at the poles and the right panels (orange lines) show the radial velocity at the equator.
The first row corresponds to the non-rotating model M1.42-J0 and presents the radial
velocity from the start of the simulation (i.e., ∼ 37ms before bounce) until 100ms after
the bounce. Comparing the polar and equatorial radial velocity evolution, we notice the
spherical symmetric way of collapse and subsequent launch of the shock.

4.1.2 Collapse and pressure bounce of the rotating models

Most of the rotating models follow comparable collapse dynamics as in the non-rotating
case, but in a semi-homologous way of the infalling inner core. The infalling radial ve-
locity strongly depends on the polar radius θ; thus, the inner core properties are angular
dependent. This is seen in figure 4.2 and figure 4.3 for the rotating models that experience
pressure bounce, i.e., models M1.42-J0.23-Dl, M1.61-J0.47, and M1.91-J1.09. Figure 4.1
shows the maximum central density of all models as a function of radius. We observe that
the non-rotating M1.42-J0 model as well as the rotating M1.42-J0.23-Dl, M1.61-J0.47,
M1.91-J1.09 models, exhibit a comparable increase of the central density towards the core
bounce. Figure 4.1 shows clearly that the larger the (initial) core rotation, the lower the
maximum central density. This is in alignment with rotational CCSN simulations (e.g., Ott
et al., 2004; Shibata & Sekiguchi, 2004; Summa et al., 2018; Zwerger & Mueller, 1997) and
previous AIC models (Abdikamalov et al., 2010; Dessart et al., 2006; Fryer et al., 1999).
All of the aforementioned models experience oscillations of the inner core, seen as small
density fluctuations in figure 4.1 until ∼ 10ms when the PNS reaches a new equilibrium
state.

Figure 4.4 shows the central angular velocity for each of the rotating models as a function
of the post-bounce time. We calculate the angular velocity as the volume average of the
first five kilometers in order to include a representative region of the inner core and not
rely solely on the first cells (inner 400m) that use an 1D core modeling (see section 3.4).
The high-density high-rotation models, i.e. M1.61-J0.47 (dark blue line in figure 4.4) and
M1.91-J1.09 (red line in the same figure) show an instant increase of the rotation of their
inner core at bounce. The progenitors that are initially more compact (i.e., the ones
with high central density, see chapter 3), collapse fast, and experience a spin-up of their
cores due to the conservation of angular momentum. Furthermore, the low-central-density
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Figure 4.2: Radial profiles of the radial velocity at the poles (left panels, purple lines) and at the equator
(right panels, orange lines) for each model. The different color lines show the time evolution from ap-
proximately 20ms before the bounce until ∼100ms after the bounce, with lighter purple/orange lines to
represent early times and darker lines to correspond to later times. The first row corresponds to the model
M1.42-J0, the middle row to the model M1.42-J0.23-Dl, and the bottom row to the model M1.61-J0.47.
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Figure 4.3: Same as figure 4.2. he first row corresponds to the model M1.61L-J0.78-Dl, the middle row to
the model M1.91-J1.09, and the bottom row to the model M1.91-J1.63-Dl.
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rotating models are less compact and undergo a smaller spin-up compared to their high-
central-density counterparts. The aforementioned models undergo pressure bounce, similar
to CCSN due to the stiffening of the EoS. Even though the rotational dynamics can alter
the exact way of collapse (for example, asphericity), the bounce timescale and split into a
homologous inner core and supersonic outer core is similar to all models. This means that
the thermodynamics of the core set the conditions for the core bounce. In fact, the models
with high density in their cores, need about ∼ 40ms to collapse, while the timescale of the
collapse for the models with low-central density varies from ∼ 300ms to ∼ 800ms with the
difference being attributed to the initial rotational profile.

The models M1.42-J0.23-Dl, M1.61-J0.47, and M1.91-J1.09, undergo a pressure bounce
similar to the CCSN. The inner core, which is defined as the amount of mass that is in
sonic contact at the time of the bounce, ranges from 0.54 to 0.58M⊙ apart from the fast
rotating model M1.91-J1.09, which has an inner core mass of 0.72M⊙. The large difference
in the mass of the inner core for the last model is attributed to the high rotational rates
in its core which provide centrifugal stability to a larger mass. Even though the model
M1.91-J1.09 has the highest initial rotation at the core, its high central density leads to a
fast collapse and pressure bounce.

4.1.3 Collapse and centrifugal bounce of the rotating models

All of our rotating models apart from the M1.42-J0.23-Dl, are rotating differentially which
means that they are not limited by the mass-shedding on their surface. This implies that
the central angular velocity can increase so much that the inner core can get rotationally
supported and not undergo pressure bounce but centrifugal bounce instead. In fact, two
of our models that have high initial total angular momentum and low-central density, i.e.
the model M1.61-J0.78-Dl and the model M1.91-J1.63-Dl, both with low-central density,
take significantly longer to collapse (tbounce = 426ms and 825ms, respectively) and their
central density never reaches nuclear saturation density. These models have enough rota-
tional support in their inner core and therefore undergo a centrifugal bounce in sub-nuclear
densities, i.e. ρmax = 0.499 · 1014 g/cm3 for M1.61-J0.78-Dl and ρmax = 0.300 · 1014 g/cm3

for M1.91-J1.09-Dl. The collapse of the models follows a free-fall collapse timescale which
scales with the central density. During the collapse, the angular momentum is conserved.
Therefore, for a mass element that is centrifugally supported by Fc ∼ mj2/r3, there is a
point that the gravitational pull is not as strong as the centrifugal one (since the grav-
itational force scales with Fg ∼ GMm/r2). As we discuss later, this occurs for specific
models with a high-value ratio of the rotational to the gravitational energy (i.e., high β
value, where β is the ratio of the gravitational to the rotational energy). This effect is
known in the context of iron-core collapse and has already been studied in the context of
CCSN (Moenchmeyer et al., 1991; Tohline, 1984; Zwerger & Mueller, 1997).

Table 4.1 shows a summary of the parameters that characterize the core collapse for
each model. For comparison, the non-rotating model M1.42-J0 has an inner core mass
of 0.58 M⊙, while for the rotating models that undergo a pressure bounce, the inner core
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Table 4.1: AIC properties during the infall and collapse phase. The columns list different physical pa-
rameters, where M is the mass of the white dwarf, Ωc the central angular velocity, J the total angular
momentum, and βinit the ratio of the total gravitational to rotational energy. The subscript “0” denotes
the physical quantity at the initial state of the progenitor while the “ic,b” denotes the physical quantity of
the inner core at core bounce.

Model tbounce ρ M0 Mic,b Ω0 Ωic,b β0 βic,b
[s] [1014 g/cm3] [M⊙] [rad/s]

M1.42-J0 0.0377 4.071 1.422 0.584 0 0 0.00 0.000
M1.42-J0.23-Dl 0.3460 3.842 1.422 0.541 0 2343.1 0.23 0.027
M1.61-J0.47 0.0396 3.188 1.609 0.569 12.000 2377.9 0.47 0.092
M1.61-J0.78-Dl 0.4263 0.498 1.611 1.478 5.554 34.8 0.78 0.137
M1.91-J1.09 0.0408 2.533 1.919 0.721 18.012 908.1 1.08 0.105
M1.91-J1.63-Dl 0.8248 0.300 1.906 1.901 5.337 15.8 1.63 0.174

increases with rotation, in accordance to the AIC models of Abdikamalov et al. (2010).
The models that reach βic,b ≥ 13%, experience centrifugal bounce with very large inner
cores. From now on, we will refer to them as high-β rotating models. In fact, the model
M1.61-J0.78-Dl has an inner-core mass of 1.48 M⊙ at bounce, and the model M1.91-J1.63-
Dl has an inner-core mass of 1.901 M⊙ out of 1.906 M⊙ which is the total progenitor mass.
Those models experience a slow and gradual spin-up of their central angular velocity as
shown in figure 4.4. The slow collapse due to the low central densities of those models, in
combination with the initial angular momentum profile, are the main contributing factors
to the centrifugal bounce and the following evolution of these models.

An important parameter to distinguish between the pressure core bounce and the cen-
trifugal bounce is the ratio of the rotational to the gravitational energy of the white dwarf,
i.e., the β parameter. The fastest-rotating model that undergoes pressure bounce, i.e., the
model M1.91-J1.09, is the upper limit of the models that undergo pressure bounce, with a β
parameter of βic,b = 10% at core bounce. The rotating models with βic,b ≤ 13% experience
a pressure bounce and experience a linear effect of rotation on their collapse dynamics.
To be more specific, for these models, the higher the initial rotation, the higher the β
parameter at bounce, and the heavier the inner core. In contrast, models with βic,b ≥ 13%
undergo centrifugal bounce. Abdikamalov et al. (2010) report the limit between pressure
and centrifugal bounce at βic,b ∼ 18%, which is higher than our value.

4.2 Development of the Neutrino-Driven Outflow from AICs

In the previous section, we identified how the rotational and thermodynamical properties of
the progenitor models affect the core collapse after the onset of the gravitational instability.
We continue the discussion with an overview of the onset of the “explosion”. Since the AIC
is sub-energetic with very little ejecta mass compared to typical CCSN of massive stars
(e.g., Bollig et al., 2021; Burrows et al., 2019), we adopt the term neutrino-driven outflow
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Figure 4.4: Central angular velocity as a function of post-bounce time for the rotating models. The angular
velocity is calculated as a volume average of the inner 5 km. The steep rise at 0ms is due to the core-
bounce resulting from angular momentum conservation and the further increase is because of the further
contraction of the PNS. The high-β models that undergo centrifugal bounce show a less steep increase of
the angular velocity. Note that this is the volume-averaged angular velocity of the inner 5 km and is not
identical to the angular velocity of the inner core at bounce which is listed in table 4.1.

to discribe the ejected mass. The primary mass ejection is driven by the shock wave assisted
by neutrino heating, in a similar manner as in CCSN. Note that we differentiate this from
the neutrino-driven wind which is again mass outflow due to neutrino heating but the
material has high entropy and originates from the surface of the newly formed PNS. As
neutrino-driven outflow from AICs we consider both ejection mechanisms

4.2.1 Overview of explosion dynamics

After the infall of the inner core and the core bounce, a rarefaction wave is formed that
triggers the infall of the outer layers of the white dwarf. In the rotating models, the radial
velocity depends on the polar angle; therefore, the infall is not spherically symmetric.
As discussed earlier, this can be seen in the radial velocity profiles for the poles and the
equator in figure 4.2 and figure 4.3. Due to the steeper density profile at the poles, the shock
propagates faster in the polar direction compared to the mid-latitudes and the equator in
all rotating models. This is due to the low accretion rate towards the shock compared
to the large amount of mass that is accreted from the outer layers of a massive star in
CCSN. The collapse and explosion dynamics are in alignment with Dessart et al. (2006)
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who investigated the AIC of two rotating models with 1.46 and 1.92M⊙ in axisymmetric
neutrino hydrodynamics simulations.

In all the rotating models, the shock wave breaks out of the progenitor in the polar
direction due to the lack of rotational support and to the reduced accretion rate which
is established by the oblique shape of the progenitor with steeper density gradient along
the poles. Material at low latitude show little to no collapse but rather stay in rotational
equilibrium and form a disk like structure around the PNS. The uncollapsed disk around
the PNS constrains the opening angle of the ejecta. On the contrary, the model M1.42-J0,
which has no rotation, the shock wave breaks out of the progenitor at around 90ms in all
latitudes and expands in a spherically symmetric way.

Figures 4.6 to 4.11 show the visual evolution of each model from a few milliseconds
after bounce until the end of each simulation. In the top figures, the left panel is color-
coded by the radial velocity; with blue, we show the parts with negative radial velocity,
i.e., the matter that is infalling, and with red we show the matter that has positive radial
velocity. The right panels show the density of the matter on a logarithmic scale. In the
bottom figures, the electron fraction Ye is shown in the left half of each plot and we always
normalized the color bar to show in white the material with Ye = 0.5. Neutron-rich low-
Ye material is shown in orange and proton-rich high-Ye material is shown in dark purple.
The right half of the panels are color-coded by the entropy, with lighter colors showing
low-entropy regions. We show the evolution for each model close to the shock breakout
from the progenitor, at 1 s after shock bounce2, and at the end of each simulation. A more
detailed visual representation of the evolution of each model can be found in additional
figures in the Appendix in figure A.2 to figure A.13.

4.2.2 Non-rotating spherical symmetric model

After the stiffening of the equation of state, the core starts to develop positive radial
velocities which means that matter is moving outwards. The shock wave is formed and is
moving outwards in radius. Similar to CCSNe, after a few milliseconds, the radial velocities
become negative behind the shock. We identify this behavior as shock stalling. However,
due to the small accretion rate from the outer layers of the progenitor (since the progenitor
has a low mass compared to a CCSN progenitor) and the development of the neutrino
heating in the post-shock region, the shock accelerates and breaks out of the progenitor
very fast at ∼ 90ms after the core bounce. At this moment, the white dwarf has contracted
to a radius of 290 km.

Due to the neutrino heating in the post-shock layer, a negative entropy gradient develops
which drives a convection flow (see left plots at ∼ 80ms in figure 4.6). The shock continues
to move outwards, expelling the outer layers of the white dwarf. After 300ms the neutrino-
driven wind is established which drives additional mass away from the surface of the PNS.
This is shown in the figure 4.5 as the additional mass shells (black lines) that are growing in

2Exception is the model M1.42-J0.23-Dl for which we show the evolution after 500ms for better visu-
alization purposes.



4.2 Development of the Neutrino-Driven Outflow from AICs 43

0 200 400 600 800 1000

tpb [ms]

101

102

103

104

105

r
[k

m
]

0

10

20

30

40

50

60

en
tr

op
y
/b

ar
yo

n
[k

B
]

Figure 4.5: Mass-shell diagram for the simulation of M1.42-J0 color-coded by the entropy saturating at
60 kB/baryon. The Mass-shell diagram follows the radial evolution of defined mass-shells of specific mass
as a function of post-bounce time. The dashed white lines correspond to the enclosed mass of 0.1 M⊙ and
1.4 M⊙. The thin black lines between the 0.1 M⊙ and the 1.4 M⊙ lines have a mass separation of 0.1 M⊙,
and 0.001 M⊙ between the 1.4 M⊙ and the 1.422 M⊙ lines. The quantities shown are angle averaged.

radius and have high entropy. This material is heated by the continuous energy deposition
by the neutrino radiation which declines in timescales of more than 1 second. At the end
of our simulation, i.e., at 6.74 s post bounce, a total mass of 7.90·10−3 M⊙ is ejected from
the model M1.42-J0 and a neutron star is created with a mass of 1.41 M⊙. An elaborate
discussion on the outflow properties is to be found in chapter 6.

figure 4.5 shows the mass-shell diagram for the non-rotating model M1.420J0. This
displays the evolution of radius that enclose a specific amount of mass as a function of
post-bounce time. The colors show the entropy-per-baryon with blue being the low entropy
material and yellow/red the high entropy material, saturated in 60 kB. The thick solid line
shows the evolution of the shock wave as a function of time.

4.2.3 Rotating models

Rotating models: M1.42-J0.23, M1.61-J0.47, M1.91-J1.09
In the rotating models, the outflow develops so fast that there is insufficient time for any
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convective motions to set in before the shock breaks out. The main effect of the rotation
in the shock formation and propagation is the strong dependence on the polar θ angle.
The asphericity of the shock in rotating models has been studied in CCSNe simulations as
well (Dimmelmeier et al., 2002; Ott et al., 2006). The steep density gradient and absence
of centrifugal force in the polar regions allow the shock to break out in that direction
in a few tenths of milliseconds. On the contrary, in the equatorial plane, the centrifugal
support stabilizes most of the material which forms a quasi-Keplerian disk around the PNS.
The shock propagates outwards and wraps around the progenitor which expels only little
material from the outer parts of progenitor at the equator. In all the rotating models, apart
from the effect in the poles, we notice another pattern emerging regarding the development
of the outflow. The outflow expansion rate is higher at mid-latitudes, i.e., 30-50◦ away from
the poles, producing a “butterfly shape” of the outflow at ∼ 100ms. This is noticed in the
left panels (showing the radial velocity) of the sequence figures 4.7 to 4.11 which shows the
time when the shock wave breaks out of the surface of the white dwarf. This part of the
ejecta has more rotational energy to convert into kinetic energy compared to the ejecta
mass along the poles which lack rotational support, but lower than the equatorial material
which mostly stays rotationally bound. Therefore, these three components of steep density
gradient at the poles, enough rotational energy at mid-latitudes to drive the outflow, and
the rotationally supported disk in the equator, give form to the geometry of the outflow.

Another crucial part, that is a result of the initial angular momentum distribution and
core bounce, is the angular dependence of the neutrino luminosities and mean energies.
The neutrino luminosities are higher in the poles than in the equator, thus allowing more
efficient heating in the poles (Dessart et al., 2006). These effects alter the electron fraction
Ye of the overflow, making it strongly angle dependent. Additionally, the increased neutrino
heating along the poles increases the entropy in that direction. We thoroughly discuss the
neutrino properties and how they set the temporal and angular distribution of the Ye in
the ejecta in chapter 6.

The total ejecta mass for the rotating models is larger than the non-rotating model
M1.42-J0 and range in ∼ 2−5 ·10−2 M⊙. The model M1.42-J0.23-Dl has the highest ejecta
mass, with a total of 5.25·10−2 M⊙ after 7.83 s of evolution. The reasoning behind this
trend is the slow rotation of this progenitor and subsequently the low mass of the disk
around the PNS. Therefore, there is more available material - which is not centrifugally
supported - to be ejected.
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Table 4.2: Summary of global properties for the simulations of the AIC models. The model name is listed
in the first row, tend is the final time of the corresponding simulation, MNS is the baryonic mass of the NS,
RNS is the min/max radius of the NS, Mdisk is the mass of the circum-neutron star disk, Mej is the total
ejected mass calculated at the end of each simulation, and Eexpl is the explosion energy (see section 4.4).

Model tend [s] MNS[M⊙] RNS [km] Mdisk [M⊙] Mej [10−3M⊙] Eexpl[1050 erg]
M1.42-J0 6.74 1.409 13.2 0.00013 7.90 1.431
M1.42-J0.23-Dl 7.83 1.295 11.55/58.12 0.05898 52.45 2.939
M1.61-J0.47 6.80 1.370 9.95/95.08 0.11581 25.91 1.662
M1.61-J0.78-Dl 4.67 1.137 8.45/101.90 0.29427 21.22 0.450
M1.91-J1.09 6.15 1.296 9.05/98.80 0.42859 18.69 1.002
M1.91-J1.63-Dl 6.09 0.965 7.75/99.56 0.75393 5.78 0.115

High-β rotating models: M1.61-J0.78-Dl, M1.91-1.63-Dl

Just before the centrifugal bounce, during the slower - compared to other models - collapse,
part of the surface of the white dwarf at the poles is flying outwards due to the lack of
centrifugal support. Thus, at the poles, there is a steep density gradient which makes the
formed shock wave accelerate outwards with velocities that reach ∼ 109 cm/s. Due to the
large angular momentum budget in these models, most of the mass is staying in rotational
equilibrium around the newly formed PNS. In particular, the model M1.61-J1.63-Dl ejects
only 5.78 10−3 M⊙ after 6 s of evolution. The total ejecta mass for the model M1.61-J0.78-Dl
is 18.69 10−3 M⊙ after 4.67 s post bounce. A large fraction of the mass from the progenitor
stays around the PNS in the form of a disk, similar to the rest of the rotating models. The
mass of this disk is 0.75 M⊙ and after 6.1 s the neutron star has mass of only 0.97 M⊙ for
the model M1.91-J1.63-Dl. The other high-β rotating model, i.e., M1.61-J0.78-Dl, forms a
larger neutron star of 1.137 M⊙ and the disk around it has smaller mass of 0.12 M⊙. This
also explains the higher ejecta mass for the model M1.61-J0.78-Dl. Due to the lower initial
angular momentum, there is less mass in the disk around the PNS and thus allowing more
material to be ejected.

4.3 Angular Momentum Evolution and Disk Formation

Due to angular momentum conservation, the central angular velocity rises as the white
dwarf collapses, as seen in figure 4.4. With the development of the neutrino-driven outflow,
part of the angular momentum is carried away in the shock and outflow as the shock wraps
around the collapsed progenitor but most of the angular momentum resides in the material
around the PNS that forms a disk-like structure that is rotationally supported. Given
the initial differential rotation of our (rotating) models, much of the rotationally supported
material resides in low-latitudes close to the white dwarf surface. This part of each rotating
progenitor, experiences little to no collapse and forms a quasi-Keplerian disk (Abdikamalov
et al., 2010; Dessart et al., 2006). The mass of the disk that is formed around the PNS
ranges from 0.06 to 0.43 M⊙ for the discussed rotating models (see table 4.2 for details). The
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Figure 4.6: Series of color-coded cross-sections for different quantities at three different times of evolution
for the model M1.42-J0. The top row shows the radial velocity (left half panels) and the density in
logarithmic scale (right half panels). The radial velocity is normalized to show the parts with zero radial
velocity in white. The bottom row displays the electron fraction Ye (left half panels) and entropy (right
half panels). The Ye is normalized to show regions with Ye = 0.5 in white. The different plots show the
evolution of the model at 80ms, 1 s, and at the end of the simulation at 6.7 s post bounce.
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Figure 4.7: Same as in figure 4.6 for the model M1.42-J0.23-Dl. The different plots show the evolution of
the model at 100ms, 500ms, and at the end of the simulation at 7.8 s post bounce.
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Figure 4.8: Same as in figure 4.6 for the model M1.61-J0.47. The different plots show the evolution of the
model at 80ms, 1 s, and at the end of the simulation at 6.8 s post bounce.
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Figure 4.9: Same as in figure 4.6 for the model M1.61-J0.78-Dl. The different plots show the evolution of
the model at 100ms, 1 s, and at the end of the simulation at 4.7 s post bounce.
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Figure 4.10: Same as in figure 4.6 for the model M1.91-J1.09. The different plots show the evolution of
the model at 80ms, 1 s, and at the end of the simulation at 6.2 s post bounce.
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Figure 4.11: Same as in figure 4.6 for the model M1.91-J1.63-Dl. The different plots show the evolution
of the model at 80ms, 1 s, and at the end of the simulation at 6.1 s post bounce.
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higher the angular momentum of the initial model, the higher the centrifugal support at
the equator which manifests to a larger mass of the disk. We calculate the mass of the disk

as the material that its radial velocity is smaller than the escape velocity vesc =
√

2Gmenc/r

and it has density ρ ≤ 1010 g/cm3.

The mass of the disk for the rotating models is proportional to the initial angular
momentum of the progenitor. The model M1.42-J0.23-Dl, which is the model with the
modest rotational rates and the lower total initial angular momentum, develops a disk with
a mass of 0.059 M⊙ while the model M1.91-J1.63-Dl, which is the model with the highest
amount of initial angular momentum but not the one with the fastest central rotation, has
a disk with a mass of 0.75 M⊙. This trend is reflected to the total ejecta masses as well.
The models with the lower mass disks eject more mass despite their lower progenitor mass.
With a lower mass in the disk structure, there is more mass available to be ejected by the
neutrino-driven outflow.

Each plot in figure 4.12 shows the post-bounce time evolution of the z-component
of the specific angular momentum as a function of radius for each of the rotating AIC
models. The colored lines present the time evolution with blue being the initial specific
angular momentum and red showing the specific angular momentum at the end of the
specific simulation. In the inner 10-20 km, the specific angular momentum increases linearly
with radius. Since the specific angular momentum is directly proportional to the angular
velocity, we conclude that the neutron star rotates as a solid body to a good approximation.
Our findings and conclusions are in alignment with Dessart et al. (2006) who explored the
evolution of two rotating AIC models until ∼ 600ms post bounce.

Since our code does not include any viscosity treatment, there is no mechanism to
properly model the material in the disk. Therefore the realistic timescale for the disk
accretion cannot be determined from our simulations. We expect that the continuous flux
of radiated neutrinos from the PNS will cool the disk and alter the electron-to-baryon
ratio Yewhile a part of the mass will accrete onto the neutron star further increasing its
mass and spin. Metzger et al. (2009a) investigated the evolution of such disks using as the
initial conditions the AIC simulations by Dessart et al. (2006). Metzger et al. report that
the disk experiences neutrino cooling and become neutron-rich soon after its formation.
However, due to the viscous evolution of the disk which spreads the disk to larger radii,
the density drops and the neutrino radiation “reaches” more material. Thus, electron
neutrinos are absorbed by neutrons, raising again the electron-to-baryon ratio of the disk
close to Ye = 0.5. At the point when the disk spreads enough that the weak interactions
are negligible, the electron fraction Ye is not altered anymore. After the Ye freeze-out, the
disk becomes advective and geometrically thick (Metzger et al., 2008a, 2009b). α-particles
begin to form which release energy and unbind most of the disk material. These results
could potentially add on the nucleosynthetic output of AICs and consequently affect the
optical signal from AICs. Our simulations cannot confirm these results due to the lack of
viscosity in our calculations. Apart from that, in these conditions, magnetic fields might
play an important role in the redistribution of angular momentum and disk evolution.
However, the study of the disk evolution using the appropriate numerical tools (e.g. Just
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Figure 4.12: Time evolution of the z-component of the specific angular momentum as a function of radius.
The colored lines present the time evolution according to the color bar with blue corresponding to the
early times jz − r profile and red lines to the final stages of the simulation. Each panel presents the time
evolution of the radial dependence of the specific angular momentum for each model indicated in the plot
title. The same plot that shows the specific angular momentum as a function of enclosed mass, can be
found in the Appendix in figure A.14.
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et al., 2023) and further diagnosis of the nuclear composition of the disk is out of the scope
of this Thesis.

4.4 Explosion Energy

The ejected material from our models is in the order of 10−2 M⊙ (see table 4.2), similar to
previous findings (Dessart et al., 2007, 2006). This is orders of magnitude less than the
ejecta mass of a typical CCSN and therefore the explosion energy from AIC is expected
to be less than the canonical SN energy of 1051 erg (e.g., SN1987A, Arnett, 1987). In
figure 4.13 we plot the diagnostic explosion energy of the neutrino-driven outflow of each
model. The diagnostic explosion energy is calculated as

Ediag =
∫

V
etot,>0 ρ dV (4.1)

where etot the sum of the gravitational, internal and kinetic energy of the unbound material
in the post shock region, i.e., the ejecta. At ∼ 3 s, the explosion energy has reach saturation
levels and is of the order of 1050 erg, indeed an order of magnitude lower than the typical
explosion energy from a CCSN. The AICs are considered to be underenergetic because
there is little mass to absorb neutrinos due to the low mass ejecta and also because a large
part of the material stays rotationally bound in a disk configuration as discussed earlier.

From figure 4.13 we notice the large spread in explosion energies of our simulated models.
The model with the highest explosion energy is the slowly rotating model M1.42-J0.23-Dl.
This particular model has also the highest ejecta mass, i.e., 5.245·10−2 M⊙ after 7.83 s of
evolution. The slow rotation of this model allows for most of the mass to be ejected and
not form a heavy disk around the PNS.

For the rest of the rotating models (i.e., M1.42-J0.23-Dl, M1.61-J0.47, and M1.91-
J1.63-Dl, the explosion energy drops with the increasing initial angular momentum. The
non-rotating model M1.42-J0 exhibits a steep rise of the explosion energy in the first 100-
200ms after the onset of the neutrino-driven outflow but does not reach as high energies
as the model M1.42-J0.23-Dl for example. This is due to the lower ejecta mass of the
non-rotating model which is 7.90 · 10−3 M⊙. The steep rise of the explosion energy is
attributed to the fact that most of the mass is ejected during the first 200ms post bounce
(see section 6.1 for the discussion on the ejecta properties). On the low end of the explosion
energies lays the high-β rotating model M1.91-J1.63-Dl with a diagnostic explosion energy
of 1.15 · 1049 erg. This is an order of magnitude lower than the rest of the models and
it is directly correlated to the very small amount of ejecta mass for this model which is
only 5.78 10−3 M⊙. Despite the fact that the non-rotating model M1.42-J0 has ejecta mass
equal to 7.9 · 10−3 M⊙ that is close to the total ejecta mass of the high-β rotating model
M1.91J1.63-Dl with Mej = 5.78 · 10−3 M⊙, the respective explosion energies are more than
an order of magnitude apart. The underlying cause of this is the lower neutrino luminosities
and mean energies for the model M1.91-J1.63-Dl, which results from the centrifugal bounce
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Figure 4.13: Explosion energy as a function of post-bounce time for the AIC models. The explosion energy
is calculated as the sum of the gravitational, kinetic, and internal energy for the unbound material in the
post-shock region.

and the high initial angular momentum of the progenitor. A comprehensive discussion of
the rotational effects on the neutrino signal is given in chapter 5.

Dessart et al. (2006) find lower explosion energies, specifically 2.7 · 1049 erg for their
slow-rotating 1.46 M⊙ model and 2 · 1049 erg for their fast rotating 1.92 M⊙ model. Even
though their values are lower than ours, they report that at the end of their simulation
the energies are still rising and they expect that the total energies to be higher than
the reported. Similar to AIC, underenergetic explosions are expected from low-mass SN
progenitors that explode as electron-capture SN (Buras et al., 2006a; Janka et al., 2008;
Kitaura et al., 2006; Nomoto, 1984, 1987; Woosley et al., 2002). The resemblance with
the AIC models can be ascribed to the low post-bounce accretion rate caused by the low
envelope mass. Under these conditions, the neutrino-driven explosions are successful but
yield underenergetic explosions, which can impact their detectability.
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Figure 4.14: Radius of the neutron star as a function of post-bounce time. The upper left panel shows
the minimum neutron star radius, the upper right panel shows the maximum neutron star radius for the
aspherical rotating models, the bottom left plot shows the mean neutron star radius, and the bottom
right plot shows the ratio of the minimum to the maximum radius of the neutron star as a function of
post-bounce time.

4.5 Neutron Star Properties

The AIC progenitors discussed in this Thesis, evolve to form neutron stars after the core-
bounce and the onset of the mass ejection by the neutrino-driven outflow. All of our models
form neutron stars (Nomoto & Kondo, 1991; Woosley & Baron, 1992) with a large spread
in masses and spin periods. Table 4.3 shows a summary of the masses, radii, angular
velocities, rotational periods and total angular momentum for the formed neutron stars of
our models.

Figure 4.14 shows the evolution of the neutron star radius as a function of post-bounce
time; the upper left panel shows the minimum neutron star radius, the upper right panel
shows the maximum radius for the aspherical rotating models, the bottom left plot shows
the mean radius, and the bottom right plot shows the ratio of the minimum to the maximum
radius of the neutron star as a function of post-bounce time. As neutron star we consider
the material that has densities ρ ≥ 1011 g/cm3. Figure 4.15 shows the baryonic neutron star
mass as a function of post-bounce time (left plot) and the total angular momentum of the
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Table 4.3: Summary of the neutron star properties. The first column lists the AIC models, MNS is the
neutron star mass, RNS is the min/max radius of the neutron star, ΩNS the angular velocity, PNS the
neutron star spin, JNS the total angular momentum, INS is the moment of inertia, and βNS the ratio of
the rotational to the gravitational energy of the neutron star. The quantities are evaluated at the end of
each simulation.

Model MNS RNS ΩNS PNS JNS INS βNS
[M⊙] [km] [rad/s] [ms] [1049 erg · s] [1046 cm2 · g]

M1.42-J0 1.409 13.2 0 0 0 0 0
M1.42-J0.23-Dl 1.295 11.55/58.12 4370.577 1.438 1.136 0.260 0.1388
M1.61-J0.47 1.370 9.95/95.08 1970.466 3.189 2.321 1.177 0.2529
M1.61-J0.78-Dl 1.137 8.45/101.90 1287.426 4.880 2.397 1.862 0.3344
M1.91-J1.09 1.296 9.05/98.80 1636.608 3.839 2.554 1.561 0.3002
M1.91-J1.63-Dl 0.965 7.75/99.56 1106.785 5.677 1.874 1.694 0.3272

rotating neutron star as a function of post bounce time. The neutron star with the highest
mass is formed from the non-rotating model M1.42-J0 which is a result of the low ejecta
mass. The radius of this neutron star is 13.2 km and it is spherical symmetric. This is
larger than the mass that is expected from ECSN (e.g., Kitaura et al., 2006). The neutron
star from the rotating models are highly aspherical, as expected from previous simulations
of AIC and rotating CCSN (see e.g., Dessart et al., 2006; Janka & Moenchmeyer, 1989a,b;
Liu & Lindblom, 2001; Walder et al., 2005). The ratio of the minimum to the maximum
radius is in the order of ∼ 10% for all the rotating models with the exception of the
model M1.42-J0.23, for which the ratio is ∼ 20% at the end of the simulation. The high-β
rotating models (i.e., M1.61-J0.78-Dl and M1.91-J1.63-Dl) give birth to neutron stars with
extensive equatorial radius of ∼100 km and low mass neutron star masses with 1.14 M⊙
for the M1.61-J0.78-Dl model and 0.97 M⊙ for the M1.91-J1.63-Dl. The low masses are a
result of the high initial angular momentum of those models which results in a large disk
material around the NS. The neutron stars for these models are among those with the
longer spin periods as well. The neutron star spins every 4.88ms and 5.67ms for the model
M1.61-J0.78-Dl and M1.91-J1.63-Dl respectively. For the rotating models, the masses range
in 1.29 − 1.39 M⊙ and the spin rates in 1.44-3.84ms. The models with the lowest initial
rotational rates, for example the model M1.42-J.023, is the one with the shortest spin
period of 1.44ms. On the contrary, the model with the highest initial rotational rates,
i.e., the model M1.91-J1.09, gives birth to a neutron star with a period of 3.84ms. The
grounds for this trend lays in the circum-neutron star disk that is formed. For the models
with high initial angular momentum, there is a heavy disk formed and most of the angular
momentum budget belongs to the disk. That’s why the model M1.42-J0.23-Dl, that has a
disk of low mass, results in a high-spinning neutron star.

Figure 4.15 (right panel) demonstrates the total z-component of the angular momentum
of the neutron star as a function of time. The total angular momentum of the PNS continues
to increase as the neutron star mass grows in time and receives high-jz material from the
collapse. The total angular momentum of the neutron star is the same order of magnitude
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Figure 4.15: The left plot shows the baryonic mass of the formed neutron star for each AIC model as a
function of post-bounce time. As neutron star we consider the material that has densities ρ ≥ 1011 g/cm3.
The right plot displays the time evolution of total angular momentum of the neutron star for each of the
rotating models.

for all the models, with a higher angular momentum for the fastest rotating models as
expected. The model M1.91-J1.63-Dl - the one with the highest initial angular momentum
- is an exception because of the small neutron star mass and high mass of the disk around
it. A similar figure of the figure 4.12 that shows the time evolution of the z-component of
the specific angular momentum as a function of radius for the inner regions that correspond
to the neutron star can be found in the Appendix (figure A.15).

Our model M1.91-J1.09 can be compared to the 1.92 M⊙ of Dessart et al. (2006) since
they have similar masses, and comparable initial rotational rates. We both find almost
identical neutron star masses of 1.296 M⊙ for our model and 1.30 M⊙ for Dessart et al..
The rest of our models have a wide range of different initial conditions to make a direct and
meaningful comparison of the neutron star properties with the ones obtained by Dessart
et al.. Both Dessart et al.’s and our findings differ from the results of Fryer et al. (1999)
who obtained a neutron star of ∼ 1.2 M⊙ with a period of ∼1 s. The discrepancy can be
attributed to the solid-body rotation of the progenitor models by Fryer et al. which does
not allow for angular momentum accretion onto the neutron star. In a solid-body rotating
model, most of the rotation is accumulated in the outer parts of the white dwarf and thus
is carried away with the neutrino-driven outflow.

The last column of table 4.3 shows the ratio of the rotational to the gravitational
energy of the neutron star. High-β values allow for the growth of secular and dynamical
instabilities (Tassoul, 2000). Takiwaki et al. (2021) observed the growth of the low-T/|W|
instability3 at T/|W| ∼ 0.02 at bounce but they do not make a clear statement about
the instability at the PNS. Earlier studies by Ott et al. (2004) found that the low-T/|W|
instability can develop in the PNS even if the β = T/|W | parameter is as low as ∼0.08.

3T/|W| is the definition of the β parameter and it is referred at the literature either way
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The non-axisymmetric nature of the instability makes it impossible to be studied within
the framework of our models. However, future 3D simulations of interesting AIC models
could give an insight in the discussed instability.
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Chapter 5
Neutrino Signal

The first multi-messenger signal we can expect from an AIC is neutrino emission after the
core bounce. The gravitational collapse and subsequent development of a shock wave are
similar to the CCSNe from massive stars, and therefore, we would expect a similar neutrino
signal from the AICs. In this chapter, we focus on the neutrino signal from AICs. Neutrinos
play an essential role in the launch of the outflow from AICs, shaping the composition of
the ejected material. We present how the neutrino signals differ from model to model
depending on their initial properties and, in particular, how the initial angular momentum
profiles and central density influence the neutrino signatures.

5.1 Neutrino Signatures

In the following, we will discuss the neutrino emission properties for all AIC models from
core bounce to the end of each simulation. Figure 5.1 shows the neutrino luminosities and
mean energies for the electron neutrinos νe (left column), the electron antineutrinos ν̄e

(middle panels), and the heavy-lepton neutrinos νx
1 (right column) as a function of time.

The first row shows the luminosity, and the bottom shows the angle-averaged mean energy
of the neutrinos for each one of the six simulated models. All quantities are transformed to
the lab frame and evaluated at 3500 km. The mean energy for each of the evolved neutrino
species ν is calculated as

⟨ϵν(r)⟩ =
∫

F r
ν (r)dϵdΩ∫

F r
ν (r)ϵ−1dϵdΩ , (5.1)

where F r
ν is the radial neutrino flux for νe, ν̄e, νx, and r = 3500 km as mentioned above.

Electron captures on free protons and other nuclei produce a large number of neutrinos
in the core of the collapsed white dwarf. In the core, the densities are high enough, so that
the neutrinos are trapped and only move outwards in slow diffusive processes. Once the
electron neutrinos reach densities where the matter is optically thin, they stream outwards

1As a reminder, νx corresponds to heavy-lepton neutrinos, i.e., νµ, ν̄µ, ντ , ν̄τ .
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Figure 5.1: Luminosity (top row) and angle-averaged mean energy (bottom row) for the three evolved
neutrino species: electron neutrinos νe (left column), electron antineutrinos ν̄e (middle column), and
heavy-lepton neutrinos νx (right column) for the six AIC models as a function of time. Each colored line
corresponds to one model as denoted in the legend. The quantities are transformed into the lab frame and
evaluated at a radius of 3500 km. The time shown in the x-axis corresponds to the post-bounce time. Here
we show the evolution of the neutrino luminosities and mean energies from the time of bounce until one
second of evolution. The long-time evolution is shown in the Appendix in figure A.16.

(see, e.g., Janka, 2017b, for a review on neutrino emission in CCSNe). This corresponds to
the characteristic peak in the electron neutrino luminosities (left upper panel of figure 5.1).
By defining the neutrinosphere, we can estimate the radial position at which neutrinos
are no longer trapped and enter the optically thin matter. Although, in nature, there
is not a sharp transition to neutrino optically thin matter, we use the concept of the
neutrinosphere to facilitate our understanding and discussion. To determine the position
where the neutrino decoupling occurs, i.e., the radius of the neutrinosphere, we consider the
effective opacity, which is a function of the absorption and scattering opacity of νe and ν̄e.
Since the opacities are energy dependent, we consider an energy-averaged neutrinosphere
and use the energy-averaging effective opacities introduced in Buras et al. (2006b). Due
to the high density of electron neutrinos and antineutrinos at the collapsed cores, charged
current β-processes dominate the total νe and ν̄e opacity (see section 2.2).

We define the neutrinosphere at the point at which the flavor-dependent effective optical
depth τeff equals to 2/3, where the τeff is defined as

τeff(Rν) =
∫ ∞

Rν(θ)
κ̃eff(r, θ, ν)ρ(r, θ)dr. (5.2)
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Figure 5.2: Luminosity and angle-averaged mean energy as a function of post-bounce time for the non-
rotating model M1.42-J0. The luminosity (top row) is energy integrated, calculated in the lab frame at a
distance of 3500 km. Each panel in the top row shows different time intervals of the luminosity evolution
for the electron neutrinos νe in solid black lines, the electron antineutrinos ν̄e in dashed red lines, and the
heavy-lepton neutrinos νx in dotted blue lines. The bottom row shows the angle-averaged mean energy
of the electron neutrinos νe (solid black lines), the electron antineutrinos ν̄e (dashed red lines), and the
heavy-lepton neutrinos (dotted blue lines) as a function of post-bounce time. Notice the different y-axis
scales in each panel.

Here, κ̃eff is the energy-averaged effective opacity of the matter in units of [g/cm2] (Raffelt,
2001; Shapiro & Teukolsky, 1983). The effective opacity is given by

κeff =
√

κabs(κabs + κsca), (5.3)

where κabs is the absorption opacity and κsca is the scattering opacity. A list of the con-
sidered reactions that are included in the opacities calculation is listed in section 2.2. The
energy-average effective opacity is calculated from the effective opacity following Buras
et al. (2006b) as

κ̃eff =
∫

ϵ grid κeff(r′, ϵ)F r
ν (r′, ϵ)dϵ∫

ϵ grid F r
ν (r′, ϵ)dϵ

, (5.4)

where F r
ν is the radial component of the neutrino flux and the energy grid (ϵ grid) is

0 − 400 MeV in the alcar code (see section 3.4).

Continuing the discussion on the neutrino signal, we can use the concept of the neu-
trinospheres to elaborate on the neutrino properties. When the νe diffuse and “cross” the
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Figure 5.3: Luminosity and angle-averaged mean energy as a function of post-bounce time for the rotating
model M1.61-J0.47. Same as in figure 5.2. The same figures for the rest of the models are presented in the
Appendix in figure A.17 - figure A.20.

neutrinosphere, they stream outwards which is manifested in the νe luminosity peak seen
in figure 5.1. We point out again that in reality, there is not a sharp point at which the
neutrinos stream out, but rather a region that depends on the neutrino energy at which
the neutrinos are not coupled to the stellar matter.

After this so-called neutrino-shock break out, which corresponds in the peak for νe lumi-
nosities, the ν̄e and νx luminosities start to rise due to their production via pair processes in
the post-shock region in the first ∼ 50ms. The νe luminosity burst peaks at ∼ 5 ·1053 erg/s
and the ν̄e peaks at 4 · 1052 erg/s for the spherical symmetric model M1.42-J0. The re-
spective luminosity for the heavy lepton neutrinos νx peaks at 2.8 · 1052 erg/s. For the rest
of the models, the electron neutrino luminosity Lνe peaks between 5.3-0.9·1053 erg/s with
lower peak for the high-β model M1.91-J1.63-Dl. As the neutrino luminosities decrease
in time, the relative ordering of the luminosities for each models stays the same. The
decreasing trend in the luminosities for the rotating models is proportional to the central
density at bounce, i.e., the lower -compared to other models- central density at bounce,
the lower electron neutrino luminosity. This occurs because the lower central density at
bounce implies lower temperatures and thus lower neutrino mean energies. We explain the
correlation between central density at core bounce and neutrino signals due to the influence
of the corresponding initial rotational profiles, which will be discussed in greater detail in
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section 5.2.

For the non-rotating model M1.42-J0, the mean energy for electron neutrinos νe peaks
at 14.8MeV simultaneously as the maximum luminosity. The mean energy for the electron
antineutrinos ν̄e peaks at 12.8MeV, and for the heavy-lepton neutrinos at 17.5MeV. Note
that the maximum values for the νe are calculated at the time of the νe-burst, while for the
rest of the flavors, we chose the maximum value in the first 100ms. The ν̄e mean energy
peaks range from 15.8 to 9.7MeV for the rest of the models. A summary of the maximum
values of the luminosity and mean energy of the three neutrino species and for all models
can be found in table 5.1.

Figures 5.2 and 5.3 display the total neutrino luminosity (top panels) and the angle-
averaged mean energy for electron neutrinos νe (solid black line), electron antineutrinos ν̄e

(dashed red line), and heavy-lepton neutrinos νx (dotted blue line) as a function of post-
bounce time. Figure 5.2 shows the aforementioned quantities for the non-rotating model
M1.42-J0 and the figure 5.3 shows the same for the model M1.61-J0.47. The corresponding
figures for the rest of the models can be found in the Appendix in figure A.17 to figure A.20.

If we notice the evolution of the mean energies of each flavor in time (see figure 5.2)
for the non-rotating model M1.42-J0, the canonical hierarchy of the mean energies ⟨ϵνe⟩ <
⟨ϵν̄e⟩ < ⟨ϵνx⟩ holds after ∼20ms. The ordering of the mean energies originates from the fact
that neutrinos streamed from regions with higher temperatures, have higher mean energies.
The heavy-lepton neutrinos produced in thermal reactions, such as nucleon bremsstrahlung
(see section 2.2), originate from a deeper part of the PNS, which is hotter and denser (e.g.,
Janka, 2017b; Keil et al., 2003; Marek & Janka, 2009). Therefore, since the heavy-lepton
neutrinos νx come from hotter regions, they have higher mean energies.

For the electron neutrinos, the neutrinosphere, i.e., the region where the neutrinos
reach optically thin matter and stream outwards, is located at larger radii than the neutri-
nosphere of the electron antineutrinos. Once the protoneutron star is formed, it contains
neutron-rich material, which results in increased νe opacity compared to ν̄e. Therefore, the
neutrinosphere for the νe is located further out compared to the neutrino sphere for ν̄e.
Hence, the ν̄e flux comes from a deeper and hotter region of the PNS. This explains the
fact that electron antineutrino mean energies are higher than the electron neutrino mean
energies.

The neutrino properties at core bounce are summarized in table 5.1. Note that the
numbers shown there are calculated at core bounce for the electron neutrinos νe and in the
first 100ms for the electron antineutrinos ν̄e, and the heavy-lepton neutrinos νx.

The luminosities and mean energies for all neutrino species continue to drop as a func-
tion of time as the PNS cools and deleptonizes. However, at late times, i.e., t > 3 s, we
notice an unexpected rise of the νe mean energies (see black line in figure 5.3). This feature
occurs in the rotating models at late times, between 3-5 s, and we believe it originates from
the low resolution on the neutron star surface. Even though the region that includes the
neutron star has a high spatial resolution, at late times, the steep density gradient, partic-
ularly at the poles, pushes the numerical modeling to its limits. Thus, we remain cautious
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Table 5.1: Summary of the maximum value of the neutrino luminosity and angle-averaged mean energy for
νe, ν̄e, and νx. The first row shows the maximum central density at bounce (see table 4.1). The neutrino
quantities are measured at the peak of the Lνe

for electron neutrinos and in the first 100ms for the rest of
the neutrino species.

Model ρmax,b Lνe,max Lν̄e,max Lνx,max ⟨ϵνe,max⟩ ⟨ϵν̄e,max⟩ ⟨ϵνx,max⟩
[1014 g/cm3] [1053 erg/s] [1052 erg/s] [1052 erg/s] [MeV] [MeV] [MeV]

M1.42-J0 4.071 4.886 4.019 2.749 14.784 12.771 17.476
M1.42-J0.23-Dl 3.842 5.339 1.812 1.780 14.533 11.890 16.478
M1.61-J0.47 3.188 4.737 1.272 1.049 13.921 13.701 16.488
M1.61-J0.78-Dl 0.498 2.404 0.195 0.208 10.381 10.792 9.244
M1.91-J1.09 2.533 4.860 0.887 0.447 13.123 15.780 12.894
M1.91-J1.63-Dl 0.300 0.881 0.046 0.116 8.363 9.734 7.429

in interpreting the rise of the νe mean energies and consider it for further analysis.

5.2 Effect of Rotation on the Neutrino Signal

The main consequence of the rotation in the progenitor models is the formation of an oblate-
shaped PNS, reduced luminosities and mean energies for rotating models, and angular-
dependent neutrinoshperes. This effect is seen in previous AIC simulations of Dessart
et al. (2006), who also found qualitatively same results with our work.

In figure 5.4 the radius of the neutrinosphere for electron neutrinos and electron an-
tineutrinos as a function of the polar angle θ is shown at different points in time for all of
the six models. The νe and ν̄e neutrinospheres are spherical symmetric in the not-rotating
model M1.42-J0 and consequently there is no angular variation. On the contrary, the
rotating models show a highly angular dependent neutrinosphere for electron neutrinos
and electron antineutrinos for all times. Around the poles, the νe and ν̄e neutrinospheres
extend to similar radii (even though always Rνe > Rν̄e) and their respective difference is
reduced as time evolves due to the further contraction of the PNS. At the equator, the νe

neutrinosphere extends at longer radii up to ∼ 80 km for some models. This strong angular
variation directly impacts the neutrino signals as we discuss later on.

In the rotating models we identify the peak of the neutrinosphere’s radius in the mid-
latitudes (i.e., around ∼ 50◦). This occurs because the neutrinospheres follow the electron-
to-baryon ratio Ye and influences the angular variation of the ejecta composition. The
latitudinal variation of the neutrinospheres affect the latitudinal variation of the νe and
ν̄e number densities and therefore the electron-to-baryon ratio Ye via their absorption to
neutrons and protons, respectively. We elaborate on this effect in the discussion on the
ejecta composition in chapter 6.

The rotational effects on the neutrinospheres directly influence the neutrino signals
for all neutrino species. From figure 5.1, we can extract two different trends. First and
foremost, the less or absence of rotation, the higher the luminosities are across all species.
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Figure 5.4: Electron neutrino and electron antineutrino neutrinospheres for all of the six models plotted
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Figure 5.5: The left figure shows a cross-section of the central area of the M1.61-J0.47 AIC model at 500ms
after the bounce. The left panel is color-coded by the temperature and the right panel is color-coded by
the density. The solid black/white line determines the neutrinosphere for the electron neutrinos while
the dashed line shows the neutrinosphere for the electron antineutrinos. The right figure shows the same
quantities for the AIC model M1.61-J0.78-Dl at 500ms after the bounce. The color bars are chosen in the
same range to enhance the different thermodynamical conditions in the core of each model.

From figure 5.1, it is apparent that the non-rotating model shows the highest neutrino
luminosities and mean energies across all species. Additionally, the models that undergo a
centrifugal bounce (i.e., high-β models) show even lower luminosities in all species, with the
lowest showing in model M1.91-J1.63-Dl. Both these trends can be explained with the same
argument. The smaller core densities at bounce that are achieved in faster-rotating models
lead to lower temperatures in the core, i.e., weaker bounce and, therefore, modest neutrino
emission. As we discussed in section 4.1, same-mass models with slower central rotation
reach higher central densities at bounce (see table 4.1). In addition, this effect is even more
prominent for the models that undergo centrifugal bounce, i.e., models M1.61-J0.78-Dl and
M1.91-J1.63-Dl, because of their sub-nuclear core densities at bounce. For example, even
if the model M1.61-J0.78-Dl has slower central rotation initially, with an initial central
angular velocity of Ω0 = 5.55 rad/s, compared to the rotating model M1.91-J1.09, with
an initial central angular velocity of 18 rad/s, the latter model exhibits higher neutrino
luminosities across all species. This is explained by the fact that the model M1.91-J1.09
has higher central density at core bounce compared to the model M.161-J0.78-Dl. As a
conclusion, we notice that not only the initial rotational profile of the white dwarf has a
crucial effect on the neutrino signals, but also the lower central density alters the dynamics
of the explosion and therefore impacts as well the neutrino signals.

The reduction of the neutrino luminosities due to rotation is a phenomenon known from
CCSN simulations (e.g., Fryer & Heger, 2000). The lower central densities and tempera-
tures of the rotating models can also explain the latitudinal variation of the neutrinospheres
(see figure 5.5,figure 5.6). Figure 5.5 shows a cross-sectional cut of the model M1.61-J0.47
(left figure) color-coded by the temperature (left panel) and the density (right panel) as
well as for the same-mass model M1.61-J0.78-Dl (right figure). The black/white lines in
both figures show the location of the neutrinospheres for the electron neutrinos (solid line)
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Figure 5.6: Radial profiles of temperature at the poles (black), mid-latitudes (blue), and equator (red) for
the rotating model M1.61-J0.74 (left panel), and the high-β model M1.61-J0.78-Dl. Despite the same mass
of these models, the different central density and rotational profiles change the temperature profiles across
all latitudes. The vertical lines show the radial location of the neutrinosphere for the electron neutrinos
(solid lines) and the electron antineutrinos (dashed lines) at the poles (black), mid-latitudes (blue) and
equator (red), in both plots.

and the electron antineutrinos (dashed line). The νe-spheres are located at 20 km at the
poles and extend up to 75 km at the equator for the rotating model M1.61-J0.47. The
same-mass model M1.61-J0.78-Dl, which has slower initial central rotation and lower cen-
tral density, shows neutrinospheres at different radii with the νe-sphere to extend to 21 km
at the poles and 63 km at the equator. This is seen in figure 5.6, where we present the radial
variation of the temperature at the poles (black lines), the mid-latitudes (blue lines), and
the equator (red lines). The vertical lines identify the location of the neutrinospheres for
the electron neutrinos (solid lines) and the electron antineutrinos (dashed lines), with the
colors corresponding to different directions following the temperature-colored lines. The
left plot of this figure presents the rotating model M1.61-J0.47 and the right plot the same-
mass high-β model M1.61-J0.78-Dl. We find higher temperatures in the νe-neutrinosphere
at the poles compared to the equator for both models. Additionally, the temperatures at
the neutrinospheres for the model M1.61-J0.47, which displays a higher central density at
bounce, are larger than the corresponding values for the model M1.61-0.78-Dl.

The discussed effect of the weaker bounce on the luminosity in connection to the ro-
tational profiles of the progenitors introduces the angular variation of the luminosities
and mean energies for the rotating models. In figure 5.7, we demonstrate the latitudinal
dependence of the neutrino luminosities for the electron neutrinos (solid lines), electron
antineutrinos (dashed lines), and heavy-lepton neutrinos (dotted lines). The luminosity
for each direction is scaled to the whole surface and corresponds to the total luminosity
we would observe if the selected direction were emitted in all directions. The black lines
correspond to the polar direction, the blue lines to the mid-latitudes, and the red lines
to the equator. Each panel corresponds to one of the six simulated models. Similar to
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Figure 5.7: Each panel shows the luminosity as a function of post-bounce time along different directions for
electron neutrinos (solid lines), electron antineutrinos (dashed lines), and heavy-lepton neutrinos (dotted
lines). The black lines show the luminosity along the poles (0◦), the blue lines correspond to mid-latitudes
around 50◦, and the red lines show the luminosity in the equatorial direction (90◦). The luminosities are
evaluated at a distance of 3500 km, transformed at the lab frame, and they are scaled up to the whole
sphere, i.e., the directional luminosity corresponds to the total luminosity we would observe if the selected
direction were emitted in all directions (see equation (5.5)). Each panel shows the luminosities for each
model that is indicated in the upper left box in each figure. The same figure for longer times is shown in
the Appendix in figure A.21.
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Figure 5.8: Mean energy as a function of post-bounce time angle-averaged in the polar direction (black
lines), the mid-latitudes (blue lines) and the equator (red lines). The angle averaged energy is the integrated
energy along 10◦ around 0◦ for the poles, 50◦ for the mid-latitudes and 90◦ for the equator, and scaled
up to the whole sphere, in a similar manner as the luminosity. Each panel displays one of the six model
as denoted in the corresponding label. The solid lines of each color show the electron neutrinos νe, the
dashes lines show the electron antineutrinos νe, and the dotted lines show the heavy-lepton neutrinos νx.
The same figure for longer times is shown in the Appendix in figure A.22.
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figure 5.1, the luminosities are evaluated in a distance of 3500 km and transformed to the
lab frame. To calculate the luminosity an observer would receive in each direction, we
define the isotropic-equivalent-luminosity Liel as follows

Liel = 4πr2
∫

F r
ν dA

dA
, (5.5)

where dA is the surface element in spherical coordinates, i.e., dA = r2sinθdθdϕ, and F r
ν

is the radial neutrino flux. The deformation of the central region of the PNS and the
neutrinospheres shape manifests in a latitudinal dependence of the neutrino luminosities.

The non-rotating model M1.42-J0 (upper left panel in figure 5.7) does not exhibit any
latitudinal variation, which is expected because of the spherical symmetric neutrinospheres
that imply the same thermodynamical conditions along all angles. For the rotating models,
we notice a variation of the luminosities at the poles compared to the equatorial ones, which
exceed one or two orders of magnitude.

In all rotating models, the luminosities at the poles are higher compared to the ones
at the equator. The material at the poles is exposed to a broader area of neutrino fluxes
due to the very asymmetric shape of the neutrinospheres, extending in shorter radii along
the poles and larger radii along the equator (as seen in figure 5.4 and figure 5.5). When
neutrinos stream from regions with higher temperatures, they have higher mean energies
and a harder spectrum (Dessart et al., 2006). As a result, the neutrino luminosities are
higher in the poles due to the higher fluxes, the larger surface of the neutrinospheres and
the harder spectrum.

In figure 5.8, we present the latitudinal dependence of the neutrino mean energies
for the electron neutrinos (solid lines), electron antineutrinos (dashed lines), and heavy-
lepton neutrinos (dotted lines). The deformed neutrinosphere surface explains the angular-
dependence of the mean energies. The mean energies follow the same trend as the lumi-
nosities because the neutrinos emitted along the poles emerge from regions with higher
temperatures. Therefore, we conclude that the mean energies along the poles are higher
due to the shorter radii of the neutrinospheres and in the same manner, the mean energies
are lower along the equator for all species.

The canonical ordering of the neutrino energies, i.e., ⟨ϵνe⟩ < ⟨ϵν̄e⟩ < ⟨ϵνx⟩ holds for the
non-rotating model. However, as observed in the angle-averaged mean energies evolution
in figure 5.3, the electron antineutrino mean energy rises above the heavy-lepton neutrino
mean energy for the rotating model M1.61-J0.47. The hierarchy of the neutrino energies
can be changed to ⟨ϵνe⟩ < ⟨ϵνx⟩ < ⟨ϵν̄e⟩. This is due to the strong angle dependence of the
neutrino energies, which is shown in figure 5.8. For a chosen neutrino species, the mean
energy is higher at the poles compared to the equator. The angle-averaged mean energies
show different trends in different directions. For example, for the model M1.61-J0.47, the
angle-averaged ν̄e mean energy is larger than the angle-averaged mean energy for the νx

after ∼ 400ms. However, from figure 5.8 we notice that: ϵν̄e > ϵνx at the equator after
∼ 400ms and at ∼ 300ms at mid-latitudes, while ϵν̄e < ϵνx at all times. Similar effects are
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seen in the rest of the rotating models2. Therefore, the angle-averaged mean energies can
hide the latitudinal dependence of the mean energies of each neutrino species.

For the high-β models, the trend does not hold. Indeed, the electron antineutrinos have
higher mean energies than the heavy-lepton neutrinos. Again, this is explained by the
reduced central temperatures of these models that do not allow for efficient νxν̄x production.

The evolution of core density at bounce (see figure 5.5) undoubtedly shows that the
density distribution is altered due to rotation, and the temperatures significantly differ in
the core from model to model. This is a striking example of how the angular momentum
profile and the initial central density dramatically change the thermodynamical conditions
in the core and, therefore, the neutrino emission properties. Considering the above, we
conclude and confirm that the lower neutrino luminosities and the lower neutrino mean
energies are due to the rotational effects on the core structure.

2rotating models apart from the high-β rotating models
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Chapter 6
Ejecta Properties

In this chapter, we discuss the properties of the ejecta from all AIC models. The ejecta is
defined as the mass that is expelled from the shock wave, and the neutrino heating after
the core bounce is traveling outwards and is unbound (i.e., it has positive total energy1).
Apart from the white dwarf material that is expelled due to the shock formation, there is
additional matter that is driven out by the neutrino heating as the PNS cools; this is what is
widely called the neutrino-driven wind; we as consider ejecta, the material that is expelled
in both mechanisms. The properties of the ejected material, i.e., neutron excess, entropy,
and velocity, are relevant for the nucleosynthesis that occurs in AICs. Even though precise
nucleosynthesis calculations of the ejecta are out of the scope of this thesis, the ejecta
properties can constrain the tendency of what elements could be formed in AICs, which is
essential as a step to future studies.

6.1 Ejecta Mass

Most of the mass ejecta occurs in the first 500ms as the shock wave drives out material,
and the neutrino heating adds on top with the neutrino-driven wind driving additional
material from the surface of the PNS. However, there is still mass ejection after 2 seconds
which probably comes from material blown away from the semi-Keplerian disk surrounding
the newly formed neutron star. For the non-rotating model, there is only 0.04·10−3 M⊙
ejected after 2 seconds out of the total Mej = 7.9 · 10−3 M⊙ that is ejected from this
model. The non-rotating model M1.42-J0 ejects less material than the rotating models.
However, the non-rotating model forms a neutron star of MNS = 1.4 M⊙, i.e., most of
the initial white dwarf mass goes to the neutron star formation and thus leaving a small
fraction of the white dwarf mass to be ejected. The same-mass model M1.42-J0.23-Dl, has
a much larger ejecta mass with a total of 54.5 · 10−3 M⊙. This is a slowly rotating model

1The explosion energy is defined as the sum of the thermal, kinetic, and gravitational energy of one
mass element.
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Table 6.1: Ejecta mass in units of 10−3 M⊙ as a function of the ejection time, which is denoted in the
second row. The first column lists all the models, and each row shows the amount of mass ejected in the
corresponding time interval. We start the calculation when the ejecta breaks out of the progenitor, i.e., at
∼ 0.07 − 0.1 s post-bounce time, and we follow the ejection until the end of the corresponding simulation
(see table 4.2 second column and legends in figure 6.2) The last column gives the total ejected mass for
each model at the end of each simulation. Note that the numbers are rounded in the third decimal.

Mej(t) [10−3 M⊙]
tpb [s] start-0.2 s 0.2-0.3 s 0.3-0.5 s 0.5-1 s 1-2 s 2 s-end total
M1.42-J0 2.775 2.826 1.167 0.644 0.278 0.037 7.901
M1.42-J0.23-Dl 6.942 9.717 10.346 9.564 6.338 8.781 52.454
M1.61-J0.47 3.324 4.810 5.470 4.823 2.605 4.882 25.914
M1.61-J0.78-Dl 7.194 6.049 3.173 1.732 0.799 2.274 21.221
M1.91-J1.09 3.633 3.042 3.861 2.739 1.406 4.019 18.699
M1.91-J1.63-Dl 0.130 0.149 0.880 1.502 0.984 2.122 5.767

and most of the angular momentum is located in the outer layers of the progenitor (see
chapter 3, figure 3.3). Therefore, this model allows for a significantly higher amount of
ejecta mass since the material that stays in a quasi-Keplerian disk form is only 0.06 M⊙.
The rest of the rotating models, i.e., the models M1.61-J0.47 and M1.91-J1.09, have total
ejecta mass of 25.91 · 10−3 M⊙ and 18.69 · 10−3 M⊙, respectively. Models with higher initial
angular momentum tend to create larger disks around the PNS and thus present lower
ejecta masses, as discussed in chapter 4. The same reasoning explains the ejecta mass of
the high-β rotating model M1.61-J0.78-Dl that has a total ejecta mass of 21.22 · 10−3 M⊙.
All models, apart from the high-β rotating model M1.91-J1.63-Dl, eject up to 80% of their
respective mass ejecta in the first second of evolution. The high-β model M1.91-J1.63-Dl
ejects only ∼ 5% of the total ejecta mass in the first 300ms and ∼ 45% of the ejecta
in the first second. This is due to the fact that this model forms a heavy (0.75M⊙, see
table 4.2) disk around the PNS, and the outflow is driven mostly by the neutrino-driven
wind and not the shock wave formed from the centrifugal core bounce which expels only
little white dwarf material. This explains why this high-mass model (1.91M⊙) ejects only
5.78 · 10−3 M⊙. A summary of the ejecta mass as a function of ejected time is shown in
table 6.1.

6.2 Composition of the Ejecta

A significant property of the ejecta for each model is the electron-to-baryon ratio (or
electron fraction) Ye, which describes the neutron-richness of the matter and indicates
whether heavy nuclei can be synthesized in the AIC events. It is crucial to determine the
Ye range of the ejected material, the mass of the ejecta, and well as how these differ from
model to model.

Figure 6.1 shows the ejected mass distribution as a function of the electron fraction Ye.
Each colored line corresponds to one model (see legend for details). We start the calculation
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Figure 6.1: Electron-to-baryon ratio Ye mass distribution of the ejected material. Each colored line shows
the distribution of each model as denoted in the legend. The distribution is calculated as the amount of
mass that crosses a designated ellipsoidal surface located around each model and has positive explosion
energy from ∼ 100ms after bounce until the end of each simulation. Integrating each histogram yield the
total ejecta mass for each model. The bin size is the same for all distributions and set to δYe= 0.006.

between 70-100ms after the core bounce, which is the time that the shock breaks out of the
progenitor and carries material to the CSM, and we follow the mass outflow until the end
of each simulation which is reached between 5 and 8 seconds. Thus, the histograms display
the total mass ejected from each model as a function of Ye. The Ye distribution for the
ejected mass is evaluated by considering an ellipsoidal surface above each progenitor and
calculating the amount of mass that crosses this surface with a positive radial velocity given
its positive explosion energy. The ellipsoidal surface is located a few kilometers above the
progenitor surface and differs from model to model due to their different radii. Table 6.2
summarises the mass of the ejected material in different Ye ranges for each individual
model. From figure 6.1, we notice that each Ye distribution and the total mass of the
ejecta is unique in shape and on the lower and higher end of Ye values. The different
progenitor mass, initial rotational rates, and subsequent differentiation of the neutrino
signal are the main contributing factors in the shape of the Ye distribution. Figure 6.2
shows the time evolution of the distribution for each model as the ejecta accumulates over
time. Each panel demonstrates the neutron richness of the ejected mass for each model,
which is denoted in the title of each panel. The different colors are chosen to exhibit the
time dependence of the Ye distribution. As discussed above, the ejecta is calculated as the
mass that crosses the chosen ellipsoidal surface with positive radial velocity (i.e., moving
outwards) and positive explosion energy. Each histogram is calculated from the point in
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Table 6.2: Ejecta mass in units of 10−3 M⊙ at different Ye range which is denoted in the second row. The
first column lists all the models and each row shows the amount of mass ejected in the corresponding Ye

interval. All quantities are measured at the end of each simulation.

Mej(Ye) [10−3 M⊙]
Ye range ≤ 0.35 0.35-0.4 0.4-0.45 0.45-0.5 0.5-0.55 0.55-0.6 ≥ 0.6 total
M1.42-J0 - 0.443 0.799 2.581 3.573 0.496 0.010 7.901
M1.42-J0.23-Dl 1.767 20.772 10.736 8.607 8.309 2.248 0.013 52.454
M1.61-J0.47 0.623 8.007 6.116 6.012 2.599 2.329 0.229 25.914
M1.61-J0.78-Dl 1.043 1.838 1.508 2.130 12.691 1.393 0.617 21.221
M1.91-J1.09 1.333 1.873 5.483 3.251 3.505 2.808 0.446 18.699
M1.91-J1.63-Dl 1.114 0.971 1.037 0.855 0.870 0.394 0.524 5.767

time when the shock breaks out of the surface of the progenitor until the end of each
simulation. Each colored histogram shows the Ye distribution of the mass ejection at a
given time interval. Note that each colored histogram is cumulative of the time shown in
the legend plus the previous one, which means the excess of the following colored histogram
corresponds to the mass ejection at the given time. Thus the last histogram, i.e., the dark
blue that shows the mass during the time 2 s-end, shows the additional mass ejected at
that time interval.

The early ejecta material that has Ye = 0.5 comes from the white dwarf part that
did not receive enough neutrino radiation, and thus its Ye is not altered. The asymptotic
value of the Ye depends on the competing νe and ν̄e absorption on neutrons and protons,
respectively (e.g., Dessart et al., 2006; Qian & Woosley, 1996). The Ye of the ejecta is
determined by the initial Ye value of the matter and the different strength of νe and ν̄e

absorption during mass ejection. Specifically, high νe mean energy and flux enhances the
νe absorption via νe + n → p + e− which increases the Ye making the material proton-rich
and high ν̄e mean energy and flux enhances the ν̄e absorption via ν̄e + p → n + e+ which
lowers the Ye and therefore producing neutron-rich ejecta. Low-Ye material with Ye < 0.5
is neutron-rich material while Ye > 0.5 is proton-rich material.

Most of the mass is found in the neutron-rich regime of the Ye distribution, i.e., Ye < 0.5.
Additionally, most of the ejected mass has Ye > 0.35 for all models. This is in contrast
to the results found in Dessart et al. (2006), which found most of the ejecta material to
have Ye < 0.35. The neutron-rich material we find in some of our models comes from
late time ejection after 1 s while the models of Dessart et al. stop after 600ms after the
core bounce. There are two underlying reasons for these differences. First and foremost,
in the simulations of Dessart et al. (2006), there is an enforced upper limit in the Ye =
0.5; thus, they cannot get material above 0.5. Apart from that, the difference in the
neutrino treatment, in combination with the updated set of neutrino-matter interactions
(see section 2.2) in our simulations, lead to more accurate results concerning the neutrino
properties and, therefore the Ye distributions.

As was shown in chapter 4, the Ye distribution shows a dramatic variability with the
polar angular θ (see figure 4.7 to figure 4.10). To understand the Ye variability, we have
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Figure 6.2: This figure is a collection of the Ye distributions of the ejecta mass. Each panel shows the
distribution of the corresponding model which is indicated by the title of each panel. As in figure 6.2, the
bin-size is set to δYe= 0.006. The different colors represent different intervals in time at which the mass
is ejected with a given Ye. To be more specific, the distributions built on top of one another show the
additional mass that is ejected in each time interval. Thus, the last time interval corresponds to the total
ejected mass.
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to investigate the mechanism of mass ejection for each model. Material with different Ye

comes from different parts of the progenitor. We should consider not only the different
parts of the ejecta origin but also the different times that the ejecta is expelled. Table 6.2
summarizes the ejecta mass Mej at the end of each simulation in the outflow at a given time
interval following the rough time-dependence of the ejection is shown in the corresponding
colored histograms in figure 6.2.

6.3 Effect of Rotation on the Ejecta Composition

From our discussion so far, it is clear that the specific rotational profile of each progenitor
model has significant consequences on the explosion dynamics, neutrino signals, and out-
flow. In order to comprehend the mass contribution in different Ye ranges, we look into the
inner region of each model and the angle dependence of the mass, radial outflow velocity,
and Ye of each model at different times.

Figure 6.3 and figure 6.4 show the ejecta mass, velocity, and Ye as a function of the
polar angle θ for different times during the evolution of the ejecta. Each row corresponds
to each model, with the left panels showing the ejecta mass Mej per 10

◦, the middle panels
displaying the mass-averaged radial velocity of the ejecta, and the right panels the mass-
averaged Ye, as a function of the polar angle. We calculate each quantity at an ellipsoidal
surface in the same way we calculate the Ye distribution of the mass ejecta in the histograms
shown in figure 6.1 and figure 6.2. The radial velocity and the Ye are mass-averaged for
each time interval and each angular bin. Note that Ye = 0 means there is no outflow in
that angular bin.

Non-rotating model
The first row of figure 6.3 shows the ejecta properties for the non-rotating model M1.42-J0.
The outflow develops spherically symmetric since the shock wave is spherically symmetric
due to the absence of rotation. At the beginning of the shock propagation, the slight
variance of the angular velocity along the polar angle θ (black and orange lines in figure 6.3;
1st row) imprints the convection activity in this model (see figure 4.6). The pattern is lost
as the outflow propagates in the CSM.

At early times, neutron-rich material from the collapsed white dwarf is ejected. A
negative entropy gradient is developed by neutrino heating around the PNS, leading to a
short convection period (see, figure 4.6). Thus, accretion downflows are neutrino heated
near the newly formed PNS and then quickly accelerated outwards. Neutron-rich material
from the conversion of protons to neutrons dominates the early ejecta with Ye as low
as ∼ 0.37. At later times the νe absorption raises the Ye of the ejecta above 0.5. The
Ye distribution of the non-rotating model is similar to the Ye distribution expected from
ECSNe (Wanajo et al., 2011, 2018). Specifically, Wanajo et al. (2011) found Ye distribution
in the range Ye ∼ 0.404−0.55, marginally narrower than the one found in our non-rotating
model.
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Figure 6.3: Mass-averaged ejecta properties as a function of the polar angle θ. Each row shows the
properties for each model; the first row shows the spherical-symmetric model M1.42-J0, the middle row
shows the rotating model M1.42-J0.23-Dl, and the bottom row the model M1.61-J0.47. For each row
the left panel shows the angle-averaged (in 10◦ bins) mass ejecta as a function of latitude, the middle
panels show the mass-averaged radial velocity of the ejecta, and the right panels show the mass-averaged
Ye. The different lines present the different time intervals; black lines show the ejecta before 200ms after
bounce, the orange lines between 200 and 300ms, the blue lines between 300 and 500ms, the red lines
between 500ms and 1 s, and the purple lines between 1 and 2 s post bounce. The mass ejecta properties
are measured as the matter that crosses an ellipsoidal surface that is located around the progenitor in the
same way as in the Ye histograms in figure 6.1 and figure 6.2.
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Figure 6.4: Mass-averaged ejecta properties as a function of the polar angle θ, same as in figure 6.3. Here
the models M1.61-J0.78-Dl, M1.91-J1.09, and M1.91-J1.63-Dl are displayed.



6.3 Effect of Rotation on the Ejecta Composition 83

Rotating models
In the rotating models, the Ye range seen in the histograms (figure 6.2) strongly depends
on how the outflow develops. As we discussed in section 4.2, in the rotating models,
a rotationally supported disk is formed around the PNS, which constrains the outflow
in the polar direction with an angle opening of θ ∼ 45◦2. The distinguished shape of
the neutrinospheres and the angular dependence of the neutrino luminosities and mean
energies are the fundamental reasons that give rise to the latitudinal Ye variation. As
shown in section 5.2, the luminosities of electron neutrinos and electron antineutrinos are
higher at the poles than their equator values. Furthermore, the electron antineutrinos are
produced deeper in the PNS core, and their corresponding neutrinosphere has smaller radii
(see figure 5.4) and thus higher mean energies since they are streamed out of a hotter region
of the PNS, compared to the electron neutrinos. The higher neutrino luminosities along the
poles raise the Ye material above 0.5. This is an outcome of the νe neutrinosphere shape,
which has small radii along the poles and extends up to 80 km at the equator. Therefore,
the ejected material mainly comes from the polar region in the rotating models and is
exposed to a larger neutrino flux in the polar direction. The same reason contributes to
reduced electron neutrino luminosities in the equatorial region. The high Ye of the polar
regions in the rotating models is reflected in figure 6.3 and figure 6.4.

At later times, i.e., t ≥ 1 s, the number density of νe is reduced, and the ratio of
the electron neutrino and electron antineutrino number densities n(ν̄e)/n(νe) is close to
unity. For (almost) similar number densities of νe and ν̄e, the strength of their respective
absorption to neutrons and protons depends on the individual mean energies. At the poles,
the νe and ν̄e neutrinospheres have the same radii, which implies that the νe and ν̄e are
streaming from a same-temperature region and that they have the same mean energies.
This leads to a favored νe absorption via νe + n → p + e−, which leads to the increase of
the Ye in the poles. The last process is easier than the ν̄e absorption on protons because
the neutron has a higher mass than the proton.

The evolution as mentioned above can be seen in figure 6.5 where we show the density
(upper left panels), electron fraction Ye (upper right), the n(ν̄e)/n(νe) ratio (bottom right),
and the νe number density (bottom right), for four points in time. In figure 6.5, the rotating
model M1.91-J1.09 is displayed as a representative case for the rotating models. The same
plots for the rest of the models can be found in the Appendix in figure A.23 - figure A.27.

The νe neurtinosphere, seen in solid lines in figure 6.5, follows the neutron-rich and
low-Ye shape, which extends to larger radii in mid-latitudes. From the exact figure, we
can infer that the low-Ye material seen in the Ye distribution of the ejecta comes from
the mid-latitudes. Away from the poles, the electron neutrino number density is reduced,
and the n(ν̄e)/n(νe) increases. Therefore, at mid-latitudes, the reduced νe absorption (i.e.,
relative higher ν̄e absorption) gives rise to the neutron-rich tail of the Ye distribution seen
in the rotating models (figure 6.2).

2The polar angle θ is measured from the rotational axis which is perpendicular to the equatorial plane
of each model.
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One exception is the high-β rotating model that shows mass ejecta with Ye down to
0.2. The same effect of the low-Ye ejecta from the mid-latitudes still holds for this model.
However, at late times there is additional neutron rich outflow from the polar regions.
However, we caution that insufficient resolution may have affected this model. In particular,
the amount of mass around Ye = 0.2 could be affected by the increase of the νe and ν̄e mean
energies at late times due to the insufficient resolution at the polar regions. In fact, the
very steep density gradient at the poles would require finer zoning to capture the relevant
physics with acceptable accuracy. This does not affect the rest of the models that develop
a neutron-rich outflow at mid-latitudes.

6.4 Nucleosynthesis Implications from the AIC Ejecta

Even though detailed nucleosynthesis post-processing that would give the exact yields from
AICs is out of the scope of this thesis, the Ye distributions can indicate the nucleosynthesis
expectations. There has been a debate on the extent of the contribution of AICs to heavy-
element production and, in particular, if AICs are r-process sites (Dessart et al., 2006;
Ehring et al., 2023; Fryer et al., 1999; Qian & Wasserburg, 2007).

Rapid neutron capture, i.e., r-process, nucleosynthesis, can explain most of the stable
neutron-rich elements heavier than iron (Fe) (Burbidge et al., 1957; Cameron, 1957). Since
the last decade, there has been a significant shift and increased understanding of the
astrophysical sites that might be important for r-process nucleosynthesis. With advanced
numerical modeling in CCSNe, the idea that neutrino-driven winds from CCSNe are a
candidate for r-process nucleosynthesis is now abandoned (Fischer et al., 2010; Hüdepohl
et al., 2010; Roberts et al., 2010; Wanajo et al., 2018). Numerical simulations of neutron
star mergers show that the ejecta from such events fulfills the conditions to produce r-
process elements (e.g., Bauswein et al., 2013b; Freiburghaus et al., 1999; Just et al., 2015a;
Kasen et al., 2017; Rosswog et al., 2014; Wanajo et al., 2014). With the recent observation
of the double neutron star merger that was detected in gravitational waves as GW170817
(Abbott et al., 2017) and in the electromagnetic spectrum as AT2017gfo (Tanvir et al.,
2017), it is now confirmed that neutron star - neutron star mergers are sites of r-process
nucleosynthesis.

Neutron-rich ejecta with Ye ≤ 0.25 can synthesize lanthanites and heavier elements
(Lippuner & Roberts, 2015). In our work, for all models, most of the mass is ejected with
Ye > 0.35, which sets severe constraints in the r-process nucleosynthesis from AICs. Late-
time ejecta from the disk surface show low Ye around 0.2 could form r-process material.
However, this is only relevant for ∼ 0.45 · 10−3 M⊙ of the ejecta and is found only in one
model that develops a large disk around the PNS.

Our results do not indicate strong r-process nucleosynthesis. Instead, middle-range
elements with atomic numbers A ≃ 60 − 110, are more likely to be synthesized. Therefore,
with our AIC modeling, we predict that the synthesized material can populate the first
r-process peak and bearly reach the second r-process peak. Additionally, AICs are not
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Figure 6.5: A collection of cross sectional cuts at different points in time, color-coded by four different
quantities. In each plot, that represents one point in time shown in the title of each plot, the left upper
panel shows the logarithm of the density, the right upper panel shows the electron fraction Ye, the bottom
left shows the ratio of the electron antineutrino number density to the electron neutrino number density,
i.e., n(ν̄e)/n(νe), and the right bottom panel shows the logarithm of the νe number density. The same
figure for the rest of the models can be found in the Appendix in figure A.23 - figure A.27.
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expected to produce heavy elements above the second r-process peak, such as lanthanides.

This could raise implications in the conclusions drawn by Gillanders et al. (2020), who
excluded the AIC as a potential scenario to explain the transient AT2018kzr. Gillanders
et al. and McBrien et al. disregard the AICs because their analysis does not fit the bulk
composition predicted by previous studies that suggest r-process element production from
AICs (Dessart et al., 2006; Fryer et al., 1999). However, our models, contradicting strong
r-process, could match the bulk composition found in Gillanders et al. (2020) and McBrien
et al. (2019). For conclusions and a strong argument in favor of an AIC explaining the
transient AT2018kzr, detailed post-processing of the nucleosynthesis is required.



Chapter 7
Summary and Conclusions

The accretion-induced collapse (AIC) of white dwarfs to neutron stars is an alternative
evolutionary scenario for accreting white dwarfs, apart from SN Type Ia. Accretion of
mass from a companion star, associated with considerable amounts of angular momentum,
can push the white dwarf to its Chandrasekhar mass limit, or the white dwarf can collide
and merge with a white dwarf companion. Both scenarios can lead to nuclear burning
and a subsequent runaway in a thermonuclear explosion, i.e., a type Ia SN. Alternatively,
electron captures on free nuclei and nucleons at sufficiently high densities in the interior
of the white dwarf can trigger gravitational instability and the collapse of the white dwarf
to a neutron star in a so-called accretion-induced collapse event (Nomoto & Kondo, 1991;
Schwab et al., 2015).

At sufficient high densities and temperatures, electron captures are initiated, and the
white dwarf loses pressure support from the degenerate electrons, and implosion is stopped
when the density of nuclear matter is reached. The sudden halt of the infall at the moment
of “core bounce” leads to the generation of a quickly expanding shock wave, in the wake
of which a small fraction of the white dwarf’s matter is blown out as a “wind” powered
by the energy transfer from the vast flux of neutrinos radiated by the hot PNS which is
formed in the center. Thus, the outcome of AICs is a neutrino-driven and fast outflow, a
newly formed neutron star, and in the case of rotating white dwarfs, a semi-Keplerian disk
around the neutron star (Dessart et al., 2006; Fryer et al., 1999; Woosley & Baron, 1992).

The AICs are an alternative scenario for neutron star formation, are thought to explain
transients that do not fit the standard scenarios of stellar explosion (Gillanders et al., 2020;
McBrien et al., 2019), and also be a source of heavy element nucleosynthesis (e.g., Fryer
et al., 1999; Metzger et al., 2009a). It is crucial to study AICs with numerical simulations
involving all the relevant physics (i.e., matter-neutrino interaction, EoS, etc.) and follow
the evolution of the object until the homologous expansion of the ejecta. This is a required
step in order to be able to make any observational predictions and connect the theoretical
modeling with the observations.

In this thesis, we investigate the accretion-induced collapse of white dwarfs using ax-
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isymmetric neutrino-hydrodynamics simulations for six non-rotating and rotating AIC
models from the onset of the white dwarf collapse through core bounce and the expansion
of the ejecta for several seconds. Our pre-collapse configurations were computed in rotat-
ing equilibrium (Abdikamalov et al., 2010; Ehring, 2019). Even though our initial models
do not result from stellar evolution calculations, they represent physically motivated pre-
collapse conditions for AICs. We employ the fully multi-dimensional, multi-energy-group
neutrino transport code alcar with a state-of-the-art description of the neutrino inter-
actions and a modern nuclear equation of state (Just et al., 2018, 2015b; Steiner et al.,
2013).

Results

All models collapse on a dynamic timescale depending on the initial central density.
The unique rotational and density profile of each model alters the collapse. In two models,
we find structures that reach β ≤ 13% at bounce, where β is the ratio of the rotational
to the gravitational energy T/|W |. The high-β models do not reach nuclear saturation
densities in their cores at collapse because the core becomes rotationally supported, and
these models undergo centrifugal bounce. The non-rotating model and the rest of the
rotating models undergo pressure bounce due to the stiffening of the EoS and rise of the
adiabatic index similar to CCSNe.

We find neutrino-driven outflows with modest explosion energies of the order of ∼ 1050

erg, which is one order of magnitude lower than the typical energy for CCSNe. The
explosion energy reflects the amount of mass ejected by each model. Rotating models
have higher explosion energy with higher ejecta mass which scales inversely with the total
angular momentum of each model. Specifically, models with high initial angular momentum
develop a rotationally supported disk around the neutron star, leaving little mass to be
ejected. Therefore, models with high initial angular momentum that create heavy disks and
have lower ejecta mass show lower explosion energies. The lower explosion energy of the
order of ∼ 1049 erg is found in the high-β models M1.61-J0.78-Dl and M1.91-J1.63-Dl. The
highest explosion energy is found in the model M1.42-J0.23-Dl with an explosion energy
of 3 · 1050 erg. In AICs, no canonical explosion energy is inferred from our models due to
the large spread from model to model. The under-energetic explosions from AICs and the
variety of explosion energies based on the exact dynamics could increase the difficulty of
their detection.

The neutron stars formed in our AIC models range from 1.1M⊙ to 1.4M⊙. The excep-
tion is the high-β model M1.91-J1.63-Dl with a neutron mass as low as 0.96M⊙. However,
the model mentioned above forms a heavy disk of 0.75M⊙, which is expected to be partially
accreted and thus increase the neutron star’s mass. The neutron stars formed in rotating
AICs are oblate-shaped, with the minimum radius reaching 10% of the maximum radius
of the neutron star.

The shock wave, formed after the collapse of the white dwarf, ejects material from the
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outer layers of the white dwarf. In addition, the neutrino-driven wind ejects additional
material from the surface of the PNS. These two mechanisms create the neutrino-driven
outflow of AICs. In the rotating models, the outflow is constrained around the polar
region because of the formed disk stays centrifugally stabilized around the neutron star.
Our models yield ejecta masses up to 10−2 M⊙ for the rotating models. The non-rotating
model has a low ejecta mass of 8 · 10−3 M⊙ since most of the white dwarf mass goes into
the creation of a neutron star with a mass of 1.4 M⊙. The other extreme comes from the
high-β model M1.91-J1.63-Dl that ejects only 6 ·10−3 M⊙. Despite the low ejecta mass, the
neutron star of this model also has a very low mass, in contrast to the non-rotating model.
In this case, the low ejecta mass is a consequence of the heavy disk formed in this model.

The initial rotation of each model results in a highly deformed density profile in the
center, which gives rise to oblate-shaped neutron stars. Moreover, the νe and ν̄e neutri-
nospheres, which are the approximate regions that νe and ν̄e decouple from the stellar
matter and stream outwards, show a strong latitudinal dependence. In fact, in all rotat-
ing models, the polar radius of the neutrinosphere is much shorter than the equatorial.
This results in angular-dependent neutrino luminosities and mean energies for all neutrino
species.

The highly asymmetric neutrino emission subsequently develops angle-dependent out-
flow properties, such as density, electron-to-baryon ratio, and entropy. The latitudinal
variation of the outflow properties impacts the observed signal from AICs. Specifically, we
find proton-rich outflow in the polar direction and neutron-rich ejecta at mid-latitudes for
the rotating models. This is a direct consequence of the unique neutrinosphere shape due to
rotational effects and angular-dependent neutrino properties. The latitudinal dependence
of the electron-to-baryon ratio Ye will affect the nucleosynthesis in different directions caus-
ing angle-dependent spectra. This leads to the conclusion that the electromagnetic signal
observed by AICs is strongly subject to the observer’s line of sight toward the object.

We find that the ejecta composition for the non-rotating model is similar to what is
expected by ECSNe. In contrast, the rotating models show a wider Ye distribution of the
ejecta mass with proton-rich material up to Ye ∼ 0.7 and neutron-rich material as low as
Ye ∼ 0.2. However, most rotating models expel little to no material with Ye < 0.3. This
constrains the indications of strong r-process nucleosynthesis. We only find ∼ 20% of the
total ejecta with Ye ∼ 0.2 in one of the simulated models under particular circumstances,
including late time outflow from the disk’s surface. This concerns the model M1.91-J1.63-
Dl which forms a very low mass neutron star (i.e., 0.96M⊙) and a heavy disk around it. A
summary of the most significant quantities for our simulations are summarized in table A.1
in the Appendix.

Summary

In this thesis, we investigated the accretion-induced collapse of white dwarfs to neutron
stars. We performed neutrino-hydrodynamics simulations of six non-rotating and rotating
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AIC models in axisymmetry with varying masses, rotational rates, and angular momentum
profiles of the progenitor models. Our models cover, for the first time, the evolution from
the onset of the white dwarf collapse until the late stages of the PNS cooling and ejecta
evolution for up to ∼ 5 − 8 s. The individual initial rotational profile of the progenitor is a
crucial factor that influences the explosion dynamics and the ejecta and neutron star prop-
erties. In particular, our calculations show how rotation creates an angle variation on the
electron-to-proton fraction Ye, which is significant for nucleosynthesis. We demonstrated
that AICs produce neutrino-driven outflows and are under-energetic events with low ex-
plosion energies in the range 0.1 − 3 · 1050 erg. Our models yield outflows with total ejecta
mass ∼ 10−2 M⊙ with a large spread in the Ye distribution and disfavor strong r-process
nucleosynthesis.

Outlook

Our numerical simulations provide long-evolution AIC models for various progenitor
initial conditions that can be further used to bridge the gap between theoretical modeling
and observational predictions.

Our models can be used for post-processing in terms of nucleosynthesis. Heavy element
production in the Universe is significant in comprehending the abundance of the elements in
our solar system and beyond. Furthermore, identifying the astrophysical nucleosynthetic
sites, such as AICs, is essential for our Galaxy’s chemo-galactic evolution. Therefore, a
natural next step of our study is to perform nucleosynthesis calculations for the AICs
ejecta and determine which elements can be synthesized in these systems.

The element production from AICs could also be used to identify the rates of AICs and
therefore limit the neutron star birth from this channel. Additionally, our models can be
employed in calculating the electromagnetic signal we could expect from AICs. With the
increasing number of transient observations and observatories, such as the Zwicky Transient
Facility (ZTF), we expect to identify more low-luminosity transients soon. The modeling
of the expected signal from AICs will assist in the search and confirmation of such events
for the first time.

Last but not least, AICs are sources of gravitational waves. The prediction of the
gravitational wave signal from AICs, mainly using our rotating models, is crucial as future
detectors, such as the Laser Interferometer Space Antenna (LISA), could detect the AICs
independently of their electromagnetic signal.



Appendix A
Appendix

In this appendix we provide additional figures as supplementary material to the main
thesis. The content of the figures have already been discussed in the main text. The fol-
lowing material is used for completeness and concerns the chapter 4, on the AIC dynamical
evolution, chapter 5, and on the ejecta composition discussed on chapter 6.
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Figure A.1: Maximum central density as a function of post-bounce time. The time t = 0 is the moment of
the core bounce. The time of the bounce is calculated as the time that the inner ∼ 100 km have entropy
≤ 3 kB. The models M1.61-J0.78-Dl and M1.91-J1.63-Dl, undergo centrifugal bounce and they do not
reach nuclear saturation densities. However, the steep density increase at the same time as the models
that undergo pressure bounce seems as a good approximation for these models as well. The spread of the
central densities comes from the influence of the rotation on the core bounce. We discuss the collapse of
the white dwarfs in section 4.1.
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Figure A.2: A sequence of cross-sectional cuts of the model M1.42-J0. Each plot shows the density (right-
half panels) and the radial velocity (left half panels) in the xz plane at different points in time. The blue-red
color bar for the radial velocity is normalized, so the parts with zero radial velocity are shown in white.
The core collapses homologously, and at the core bounce, the shock wave develops spherically symmetric.
A neutron star of 1.4M⊙ is born in this AIC model, and the ejecta propagates spherically symmetric. At
late times, the ejecta detaches from the central region and propagates in a shell-like configuration.
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Figure A.3: A sequence of cross-sectional cuts of the model M1.42-J0 color-coded by the electron fraction
Ye (left-half panels) and entropy-per-baryon (right-half panels) from the start of the collapse until 5 s of
post-bounce evolution. After the core bounce, a short period of convection is developed, which drives
neutron-rich material in the ejecta, which is expelled by the shock wave. At later times, νe absorption
raises the Ye, creating proton-rich material in the ejecta.
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Figure A.4: Time sequence of cross-sectional cuts color-coded by the density (right-half panels) and the
radial velocity (left-half panels) for the rotating model M1.42-J0.23-Dl. This model is slowly rotating and
creates a low-mass disk of 0.06M⊙, which leaves enough material to be ejected. The total ejecta mass is
52.5 · 10−3, and the neutron star has a mass of 1.3M⊙.
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Figure A.5: Time sequence of cross-sectional cuts color-coded by the electron fraction Ye (left-half panels)
and the entropy-per-baryon (right-half panels) for the rotating model M1.42-J0.23-Dl. The angular varia-
tion of the neutrino luminosities creates the characteristic butterfly-shaped ejecta in the Ye space. In the
poles, we find high-entropy proton-rich material in the ejecta, while at the mid-latitudes, we find lower
entropy neutron-rich ejecta. At the equatorial plane, the Ye stays at 0.5, which is the initial value of the
progenitor. Because of the disk that stays centrifugally supported in the equator, the ejecta there do not
receive neutrino luminosity; thus, no νe or ν̄e absorption can alter the electron fraction.
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Figure A.6: Time sequence of cross-sectional cuts color-coded by the density (right-half panels) and the
radial velocity (left-half panels) for the rotating model M1.61-J0.47. This model has a high central density
at initialization and collapses fast. The outflow is constrained in the polar direction due to the disk forming
around the neutron star. This model yields a total of 25.9 ·10−3 M⊙ and a forms a neutron star of 1.37M⊙.
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Figure A.7: Time sequence of cross-sectional cuts color-coded by the electron fraction Ye (left-half panels)
and the entropy-per-baryon (right-half panels) for the rotating model M1.61-J0.47. This rotating model
shows the latitudinal variation of the Ye as in the case of M1.42-J0.23-Dl.
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Figure A.8: Time sequence of cross-sectional cuts color-coded by the density (right-half panels) and the
radial velocity (left-half panels) for the high-β rotating model M1.61-J0.78-Dl. This model undergoes
centrifugal collapse because during collapse the core becomes rotationally supported. In this model the
newly born neutron star has a mass of 1.14 M⊙, the disk that surrounds the neutron star has a mass of
0.29 M⊙ and a total of 21.22 · 10−3 M⊙ are ejected.
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Figure A.9: Time sequence of cross-sectional cuts color-coded by the electron fraction Ye (left-half panels)
and the entropy-per-baryon (right-half panels) for the high-β-rotating model M1.61-J0.78-Dl. In this
model, much of the equatorial material is swiped away as the shock wraps around the progenitor. This is
seen as the white parts of the Ye, which is white dwarf material that has not received neutrino luminosity
to alter its Ye. The neutron-rich part of the ejecta comes at later times but again from the mid-latitudes.
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Figure A.10: Time sequence of cross-sectional cuts color-coded by the density (right-half panels) and the
radial velocity (left-half panels) for the rotating model M1.91-J1.09. This model shows similar collapse and
explosion dynamics as the rotating model M1.61-J0.47. Due to the higher degree of rotation and higher
mass, this model creates a larger disk, compared of the model M1.61-J0.47, with a mass of 0.43M⊙. The
total ejecta mass is 18.69 · 10−3 M⊙ and the neutron star has a mass of 1.29M⊙.
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Figure A.11: Time sequence of cross-sectional cuts color-coded by the electron fraction Ye (left-half panels)
and the entropy-per-baryon (right-half panels) for the rotating model M1.91-J1.09. The evolution of the
ejecta properties is similar to the rotating model M1.61-J0.47.
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Figure A.12: Time sequence of cross-sectional cuts color-coded by the density (right-half panels) and the
radial velocity (left-half panels) for the high-β rotating model M1.91-J1.63-Dl. This model has the highest
angular momentum of all models and low central density. It collapses very slowly, and while that is, the
outer layer of the progenitor gets unbound. This model undergoes a centrifugal bounce. The remnant
consists of a neutron star with a mass of 0.96M⊙, a centrifugally supported disk of 0.75M⊙. The total
ejecta mass of this model is 5.7 · 10−3 M⊙.
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Figure A.13: Time sequence of cross-sectional cuts color-coded by the electron fraction Ye (left-half panels)
and the entropy-per-baryon (right-half panels) for the high-β rotating model M1.91-J1.63-Dl. This model’s
particular collapse and explosion dynamics allow very little material to be ejected. In contrast, most of
the ejecta comes later as the neutrino-driven wind ejects material from the surface of the PNS and the
surface of the disk. At late times, we find neutron-rich outflow mainly from the polar regions.
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Figure A.14: Time evolution of the z-component of the specific angular momentum as a function of the
enclosed mass. The colored lines present the time evolution according to the color bar, with black and
dark blue corresponding to the initial jz and purple to pink lines to the final stages of the simulation.
Each panel presents the evolution of the specific angular momentum for each model indicated in the plot
title. This is supplementary to the specific angular momentum evolution as a function of radius shown in
figure 4.12.
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Figure A.15: Each panel displays the z-component of the specific angular momentum as a function of
radius. The color-coding of the lines show the time evolution with yellow being the early times, i.e., before
the collapse and at core bounce, and the darker shades show the late time evolution until the end of each
simulation. Here we display the inner regions until 100 km which is approximately the maximum radius of
the neutron stars formed (apart from the model M1.42-J0.23-Dl that the equatorial radius of the neutron
star is 58 km). This is an addition to the figure 4.12.
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Figure A.16: Luminosity (top row) and angle-averaged mean energy (bottom row) for the three evolved
neutrino species: electron neutrinos νe (left column), electron antineutrinos ν̄e (middle column), and heavy-
lepton neutrinos νx (right column) for the six AIC models as a function of post-bounce time until 5 s. Each
colored line corresponds to one model, as denoted in the legend. The quantities are transformed into the
lab frame and evaluated at a radius of 3500 km. The time shown in the x-axis corresponds to the post-
bounce time. This shows the long-time evolution of the luminosities and the mean energies, in addition to
figure 5.1. The large spread of the different values in the luminosities directly affects rotation, which alters
the shape of the neutrinospheres in the PNS and the thermodynamical conditions at the neutrinospheres.
The higher the spin rates, the lower the central density and temperature in the core at bounce, which leads
to a modest neutrino emission. This is true for the rotating models. The high-β rotating models have
lower central spin rates, but due to the large reservoir of angular momentum, they undergo centrifugal
bounce, which translates to lower central densities. Therefore, the high-β models, i.e., M1.61-J0.78-Dl and
M1.91-1.63-Dl, have even lower luminosities than the rest.
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Figure A.17: Luminosity and angle-averaged mean energy as a function of post-bounce time for the model
M1.42-J0.23-Dl. The luminosity (top row) is energy integrated, calculated in the lab frame at a distance
of 3500 km. Each panel in the top row shows different time intervals of the luminosity as a function of
time and the bottom rows the angle-averaged mean energy as a function of time. In each panel the three
evolved neutrino species are shown; the electron neutrinos νe in solid black lines, the electron antineutrinos
ν̄e in dashed red lines, and the heavy-lepton neutrinos νx in dotted blue lines. The bottom row shows the
angle-averaged mean energy of the electron neutrinos νe (solid black lines), the electron antineutrinos ν̄e

(dashed red lines), and the heavy-lepton neutrinos (dotted blue lines) as a function of post-bounce time.
Notice the different y-axis scales in each panel. This appends on the figure 5.2, and figure 5.3.



108 A. Appendix

0 20 401050

1051

1052

1053

L
[e

rg
/s

]

νe

ν̄e

νx

250 500 750 10001050

1051

1052

1053

1000 2000 3000 4000

0.5

1.0

1.5

2.0

2.5
×1051

0 20 40

tpb [ms]

2.5

5.0

7.5

10.0

12.5

〈ε
〉[

M
eV

]

250 500 750 1000

tpb [ms]

6

8

10

12

1000 2000 3000 4000

tpb [ms]

4

6

8

10

Figure A.18: Same as figure A.17 for the model M1.61-J0.78-Dl.
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Figure A.19: Same as figure A.17 for the model M1.91-J1.09.
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Figure A.20: Same as figure A.17 for the model M1.91-J1.63-Dl.
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Figure A.21: Each panel shows the luminosity as a function of post-bounce time along different directions
for electron neutrinos (solid lines), electron antineutrinos (dashed lines), and heavy-lepton neutrinos (dotted
lines). The black lines show the luminosity along the poles, the blue lines correspond to mid-latitudes
around 50◦, and the red lines show the luminosity in the equatorial direction. The luminosities are
evaluated at a distance of 3500 km, transformed at the lab frame, and they are scaled up to the whole
sphere, i.e., the directional luminosity corresponds to the total luminosity we would observe if the selected
direction were emitted in all directions. Each panel shows the luminosities for each model that is indicated
in the upper left box in each figure. We define this luminosity as the isotropic-equivalent-luminosity and
is calculated by equation (5.5).



111

5

10

15

〈ε
〉[

M
eV

]

M1.42-J0

polar direction

midlatitudes

equatorial direction

5

10

15

M1.42-J0.23-Dl

νe ν̄e νx

5

10

15

〈ε
〉[

M
eV

]

M1.61-J0.47

5

10

15

M1.61-J0.78-Dl

0 1000 2000 3000 4000 5000

tpb [ms]

5

10

15

〈ε
〉[

M
eV

]

M1.91-J1.09

0 1000 2000 3000 4000 5000

tpb [ms]

5

10

15

M1.91-J1.63-Dl

Figure A.22: Mean energy as a function of post-bounce time angle-averaged in the polar direction (black
lines), the mid-latitudes (blue lines) and the equator (red lines). The angle averaged energy is the integrated
energy along 10◦ around 0◦ for the poles, 50◦ for the mid-latitudes and 90◦ for the equator, and scaled up
to the whole sphere, similarly as the luminosity. Each panel displays one of the six model as denoted in
the corresponding label. The solid lines of each color show the electron neutrinos νe, the dashes lines show
the electron antineutrinos νe, and the dotted lines show the heavy-lepton neutrinos νx.
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Figure A.23: Non-rotating model M1.42-J0. A collection of cross sectional cuts at different points in time,
color-coded by four different quantities. In each plot, that represents one point in time shown in the title
of each plot, the left upper panel shows the logarithm of the density, the right upper panel shows the
electron fraction Ye, the bottom left shows the ratio of the electron antineutrino number density to the
electron neutrino number density, i.e., c(ν̄e)/n(νe), and the right bottom panel shows the logarithm of the
νe number density.
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Figure A.24: Rotating model M1.42-J0.23-Dl. Same figure as figure A.23.
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Figure A.25: Rotating model M1.61-J0.47. Same figure as figure A.23.
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Figure A.26: High-β rotating model M1.61-J0.78-Dl. Same figure as figure A.23.
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Figure A.27: High-β rotating model M1.91-J1.63-Dl. Same figure as figure A.23.
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Table A.1: Summary of the basic parameters of the AIC models initially, at core bounce, and the end of the
simulation. M is the mass, Ω the angular velocity, R is the radius, ρ the density, T is the temperature, J the
angular momentum, Erot the total rotational energy, β is the ratio to the total rotational to gravitational
energy, t is the time, P is the spin period, I is the moment of inertia, and Eexpl is the explosion energy.
The first nine rows show the designated quantities of the progenitors, quantities with subscript “b” are
measured at core bounce, “ic” stands for the inner core, and “NS” for neutron star. The quantities of the
neutron star and ejecta mass are calculated at the end of each simulation.

Model M1.42-J0 M1.42-J0.23-Dl M1.61-J0.47 M1.61-J0.78-Dl M1.91-J1.09 M1.91-J1.63-Dl
M [M⊙] 1.422 1.422 1.609 1.611 1.919 1.906
Ωc [rad/s] 0 0 12.0 5.55 18.0 5.33
Ωmax [rad/s] 0 3.80 19.64 6.13 25.66 8.22
Req [km] 816 2250 1498 2897 2377 3982
ρc [1010 g/cm3] 5.00 0.40 5.00 0.40 5.00 0.40
Tc [1010K] 1.00 0.413 1.00 0.413 1.00 0.413
J [1050 erg · s] 0 0.231 0.471 0.782 1.085 1.630
Erot [1050erg] 0 0.299 3.941 2.094 10.471 5.033
βinit 0 0.007 0.038 0.046 0.082 0.091
tb [s] 0.0377 0.346 0.0396 0.426 0.041 0.825
ρb,max [10

14 g/cm3] 4.071 3.842 3.188 0.498 2.533 0.300
Mic,b [M⊙] 0.584 0.541 0.569 1.478 0.721 1.901
Ωic,b [rad/s] 0 2343.1 2377.9 34.8 908.1 15.8
βic,b 0 0.027 0.092 0.137 0.105 0.174
tend [s] 6.74 7.83 6.80 4.67 6.15 6.09
MNS [M⊙] 1.4093 1.2952 1.3704 1.1371 1.2960 0.9648
ΩNS [rad/s] 0 4370.578 1970.466 1287.4262 1636.608 1106.785
PNS [ms] 0 1.438 3.1887 4.880 3.839 5.677
RNS [km] 13.2 11.55/58.12 9.95/95.08 8.45/101.90 9.05/98.80 7.75/99.56
JNS [1049 erg · s] 0 1.136 2.321 2.397 2.554 1.875
INS [1046 cm2 · g] 0 2.599 1.178 1.862 1.560 1.694
βNS 0 0.1388 0.2529 0.3344 0.3002 0.3272
Mdisk [M⊙] 0.00013 0.05898 0.11581 0.29427 0.42859 0.75393
Mej [10−3 M⊙] 7.901 52.454 25.914 21.221 18.699 5.767
Eexpl [1050 erg] 1.431 2.939 1.662 0.450 1.002 0.115
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Additional Information

Resources This research project is funded by the Max Planck Institute for Astrophysics,
part of the Max Planck Society. The simulations carried out in this Thesis have made use
of the granted computed time from the Leibniz Supercomputing Centre (LRZ) of a total
of 18.3 Million core hours under the project number pn49sa. Additionally, parts of the
calculations and testing have been carried out on the HPC systems Cobra and Raven of
the Max Planck Computing and Data Facility (MPCDF).

Software The simulations are carried out with the code alcar (Just et al., 2018, 2015b;
Obergaulinger, 2008). The post-processing of the simulations uses ipython, and in par-
ticular, the following modules are used; Matplotlib (Hunter, 2007), NumPy (Harris et al.,
2020), Scipy (Virtanen et al., 2020), and CMasher1 (van der Velden, 2020).
This research has made use of NASA’s Astrophysics Data System Bibliographic Services.

1https://pypi.org/project/cmasher/
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1.1 Schematic representation of neutron star (NS) formation channels. Neutron
stars are mainly formed in the core collapse of massive stars with masses
≥ 8 M⊙ that have evolved through the advanced nuclear-burning stages to
create an onion-shell structure. Apart from the massive stellar collapse, they
are also formed in the accretion-induced collapse of ONeMg white dwarfs.
However, existing ones in a binary neutron star system can merge and also
give birth to a new neutron star. Sizes are not shown in scale. . . . . . . . 3

1.2 Mass accretion rate as a function of the mass of an ONeMg white dwarf (left
panel) and a CO white dwarf (right panel). Nomoto & Kondo (1991) present
the regions where white dwarf collapse is possible by electron captures. In
the case of a massive and cold CO white dwarf, C deflagration could still
lead to the collapse because of the high central densities. Figure taken from
Nomoto & Kondo (1991). . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Color-coded density of each progenitor in the xz plane. From left to right,
the upper left model has a mass of 1.42M⊙, high central density, and no
rotation, i.e. the model M1.42-J0, the bottom left one is the M1.42-J0.23-Dl
with the same mass and slow rotation on the surface. The middle panels
show the rotating progenitors with 1.61M⊙, i.e., M1.61-J0.47 (middle top)
and M1.61-J0.78-Dl (middle bottom). The right panels show the rotating
progenitors with 1.91M⊙, i.e., M1.91-J1.09 (right top) and M1.91-J1.63-
Dl (right bottom). Mass and rotation increase towards the right panels.
The models are embedded in a CSM with radially decreasing density and
temperature profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



122 LIST OF FIGURES

3.2 Color-coded angular velocity of each progenitor in the xz plane. From left to
right, the bottom left is the model M1.42-J0.23-Dl, with a mass of 1.42 M⊙.
The middle panels show the rotating progenitors with 1.61M⊙, i.e., M1.61-
J0.47 (middle top) and M1.61-J0.78-Dl (middle bottom). The right panels
show the rotating progenitors with 1.91M⊙, i.e., M1.91-J1.09 (right top)
and M1.91-J1.63-Dl (right bottom). The angular velocity in our progenitors
depends on the distance x to the rotational axis. The circum-stellar medium
is non-rotating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Color-coded z-component of the specific angular momentum of each pro-
genitor in the xz plane. From left to right, the bottom left one is the
model M1.42-J0.23-Dl. The middle panels show the rotating progenitors
with M1.61-J0.47 in the middle top and M1.61-J0.78-Dl in the middle bot-
tom panel. The right panels show the rotating progenitors M1.91-J1.09
in the right top and M1.91-J1.63-Dl in the right bottom panel. The z-
component of the specific angular momentum depends on the distance x to
the rotational axis, as does the angular velocity. . . . . . . . . . . . . . . . 30

3.4 Rotational profiles of the angular velocity at the equator as a function of
radius for all models. All models reach an angular velocity maximum at a
certain radius except the non-rotating one (M.142-J0) and its low-density
counterpart M1.42-J0.23, which shows increasing rotation on its surface. . 31

4.1 Maximum central density as a function of post-bounce time. We follow the
evolution of the maximum density of the central region of the progenitor.
The black line shows the central density of the non-rotating model M1.42-
J0, the grey line shows its low-density counterpart M1.42-J0.23-Dl, the blue
line corresponds to the rotating model M1.61-J0.47, the light blue line to the
low-density model M1.61-J0.78-Dl, the red line displays the central density
of the model M1.91-J1.09, and the light orange of the model M1.91-J1.63-
Dl. We follow this color-scheme throughout this Thesis. For later times, we
refer the reader to the corresponding figure A.1 in the Appendix. . . . . . . 35

4.2 Radial profiles of the radial velocity at the poles (left panels, purple lines)
and at the equator (right panels, orange lines) for each model. The different
color lines show the time evolution from approximately 20ms before the
bounce until ∼100ms after the bounce, with lighter purple/orange lines to
represent early times and darker lines to correspond to later times. The
first row corresponds to the model M1.42-J0, the middle row to the model
M1.42-J0.23-Dl, and the bottom row to the model M1.61-J0.47. . . . . . . 37

4.3 Same as figure 4.2. he first row corresponds to the model M1.61L-J0.78-Dl,
the middle row to the model M1.91-J1.09, and the bottom row to the model
M1.91-J1.63-Dl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
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4.4 Central angular velocity as a function of post-bounce time for the rotating
models. The angular velocity is calculated as a volume average of the inner
5 km. The steep rise at 0ms is due to the core-bounce resulting from angular
momentum conservation and the further increase is because of the further
contraction of the PNS. The high-β models that undergo centrifugal bounce
show a less steep increase of the angular velocity. Note that this is the
volume-averaged angular velocity of the inner 5 km and is not identical to
the angular velocity of the inner core at bounce which is listed in table 4.1. 41

4.5 Mass-shell diagram for the simulation of M1.42-J0 color-coded by the en-
tropy saturating at 60 kB/baryon. The Mass-shell diagram follows the radial
evolution of defined mass-shells of specific mass as a function of post-bounce
time. The dashed white lines correspond to the enclosed mass of 0.1 M⊙ and
1.4 M⊙. The thin black lines between the 0.1 M⊙ and the 1.4 M⊙ lines have
a mass separation of 0.1 M⊙, and 0.001 M⊙ between the 1.4 M⊙ and the
1.422 M⊙ lines. The quantities shown are angle averaged. . . . . . . . . . . 43

4.6 Series of color-coded cross-sections for different quantities at three different
times of evolution for the model M1.42-J0. The top row shows the radial
velocity (left half panels) and the density in logarithmic scale (right half
panels). The radial velocity is normalized to show the parts with zero radial
velocity in white. The bottom row displays the electron fraction Ye (left
half panels) and entropy (right half panels). The Ye is normalized to show
regions with Ye = 0.5 in white. The different plots show the evolution of the
model at 80ms, 1 s, and at the end of the simulation at 6.7 s post bounce. . 46

4.7 Same as in figure 4.6 for the model M1.42-J0.23-Dl. The different plots
show the evolution of the model at 100ms, 500ms, and at the end of the
simulation at 7.8 s post bounce. . . . . . . . . . . . . . . . . . . . . . . . . 47

4.8 Same as in figure 4.6 for the model M1.61-J0.47. The different plots show
the evolution of the model at 80ms, 1 s, and at the end of the simulation at
6.8 s post bounce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.9 Same as in figure 4.6 for the model M1.61-J0.78-Dl. The different plots show
the evolution of the model at 100ms, 1 s, and at the end of the simulation
at 4.7 s post bounce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.10 Same as in figure 4.6 for the model M1.91-J1.09. The different plots show
the evolution of the model at 80ms, 1 s, and at the end of the simulation at
6.2 s post bounce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.11 Same as in figure 4.6 for the model M1.91-J1.63-Dl. The different plots show
the evolution of the model at 80ms, 1 s, and at the end of the simulation at
6.1 s post bounce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
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4.12 Time evolution of the z-component of the specific angular momentum as a
function of radius. The colored lines present the time evolution according
to the color bar with blue corresponding to the early times jz − r profile
and red lines to the final stages of the simulation. Each panel presents the
time evolution of the radial dependence of the specific angular momentum
for each model indicated in the plot title. The same plot that shows the
specific angular momentum as a function of enclosed mass, can be found in
the Appendix in figure A.14. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.13 Explosion energy as a function of post-bounce time for the AIC models. The
explosion energy is calculated as the sum of the gravitational, kinetic, and
internal energy for the unbound material in the post-shock region. . . . . . 55

4.14 Radius of the neutron star as a function of post-bounce time. The upper
left panel shows the minimum neutron star radius, the upper right panel
shows the maximum neutron star radius for the aspherical rotating models,
the bottom left plot shows the mean neutron star radius, and the bottom
right plot shows the ratio of the minimum to the maximum radius of the
neutron star as a function of post-bounce time. . . . . . . . . . . . . . . . 56

4.15 The left plot shows the baryonic mass of the formed neutron star for each
AIC model as a function of post-bounce time. As neutron star we consider
the material that has densities ρ ≥ 1011 g/cm3. The right plot displays the
time evolution of total angular momentum of the neutron star for each of
the rotating models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Luminosity (top row) and angle-averaged mean energy (bottom row) for
the three evolved neutrino species: electron neutrinos νe (left column), elec-
tron antineutrinos ν̄e (middle column), and heavy-lepton neutrinos νx (right
column) for the six AIC models as a function of time. Each colored line
corresponds to one model as denoted in the legend. The quantities are
transformed into the lab frame and evaluated at a radius of 3500 km. The
time shown in the x-axis corresponds to the post-bounce time. Here we show
the evolution of the neutrino luminosities and mean energies from the time
of bounce until one second of evolution. The long-time evolution is shown
in the Appendix in figure A.16. . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Luminosity and angle-averaged mean energy as a function of post-bounce
time for the non-rotating model M1.42-J0. The luminosity (top row) is
energy integrated, calculated in the lab frame at a distance of 3500 km. Each
panel in the top row shows different time intervals of the luminosity evolution
for the electron neutrinos νe in solid black lines, the electron antineutrinos
ν̄e in dashed red lines, and the heavy-lepton neutrinos νx in dotted blue
lines. The bottom row shows the angle-averaged mean energy of the electron
neutrinos νe (solid black lines), the electron antineutrinos ν̄e (dashed red
lines), and the heavy-lepton neutrinos (dotted blue lines) as a function of
post-bounce time. Notice the different y-axis scales in each panel. . . . . . 63
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5.3 Luminosity and angle-averaged mean energy as a function of post-bounce
time for the rotating model M1.61-J0.47. Same as in figure 5.2. The same
figures for the rest of the models are presented in the Appendix in figure A.17
- figure A.20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Electron neutrino and electron antineutrino neutrinospheres for all of the
six models plotted at different times as a function of the polar angle θ. Each
colored line corresponds to a specific time from 0.3 s to 3 s post bounce.
The solid lines show the neutrinosphere radius for the electron neutrinos νe

and the dashes lines show the radius for the electron antineutrinos ν̄e. The
neutrinospheres are calculated by the energy-averaged opacities as shown in
equation (5.2)-equation (5.4). . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 The left figure shows a cross-section of the central area of the M1.61-J0.47
AIC model at 500ms after the bounce. The left panel is color-coded by the
temperature and the right panel is color-coded by the density. The solid
black/white line determines the neutrinosphere for the electron neutrinos
while the dashed line shows the neutrinosphere for the electron antineutrinos.
The right figure shows the same quantities for the AIC model M1.61-J0.78-
Dl at 500ms after the bounce. The color bars are chosen in the same range
to enhance the different thermodynamical conditions in the core of each model. 68

5.6 Radial profiles of temperature at the poles (black), mid-latitudes (blue), and
equator (red) for the rotating model M1.61-J0.74 (left panel), and the high-β
model M1.61-J0.78-Dl. Despite the same mass of these models, the different
central density and rotational profiles change the temperature profiles across
all latitudes. The vertical lines show the radial location of the neutrinosphere
for the electron neutrinos (solid lines) and the electron antineutrinos (dashed
lines) at the poles (black), mid-latitudes (blue) and equator (red), in both
plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.7 Each panel shows the luminosity as a function of post-bounce time along
different directions for electron neutrinos (solid lines), electron antineutri-
nos (dashed lines), and heavy-lepton neutrinos (dotted lines). The black
lines show the luminosity along the poles (0◦), the blue lines correspond
to mid-latitudes around 50◦, and the red lines show the luminosity in the
equatorial direction (90◦). The luminosities are evaluated at a distance of
3500 km, transformed at the lab frame, and they are scaled up to the whole
sphere, i.e., the directional luminosity corresponds to the total luminosity
we would observe if the selected direction were emitted in all directions (see
equation (5.5)). Each panel shows the luminosities for each model that is
indicated in the upper left box in each figure. The same figure for longer
times is shown in the Appendix in figure A.21. . . . . . . . . . . . . . . . . 70
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5.8 Mean energy as a function of post-bounce time angle-averaged in the polar
direction (black lines), the mid-latitudes (blue lines) and the equator (red
lines). The angle averaged energy is the integrated energy along 10◦ around
0◦ for the poles, 50◦ for the mid-latitudes and 90◦ for the equator, and scaled
up to the whole sphere, in a similar manner as the luminosity. Each panel
displays one of the six model as denoted in the corresponding label. The
solid lines of each color show the electron neutrinos νe, the dashes lines show
the electron antineutrinos νe, and the dotted lines show the heavy-lepton
neutrinos νx. The same figure for longer times is shown in the Appendix in
figure A.22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1 Electron-to-baryon ratio Ye mass distribution of the ejected material. Each
colored line shows the distribution of each model as denoted in the leg-
end. The distribution is calculated as the amount of mass that crosses a
designated ellipsoidal surface located around each model and has positive
explosion energy from ∼ 100ms after bounce until the end of each simula-
tion. Integrating each histogram yield the total ejecta mass for each model.
The bin size is the same for all distributions and set to δYe= 0.006. . . . . 77

6.2 This figure is a collection of the Ye distributions of the ejecta mass. Each
panel shows the distribution of the corresponding model which is indicated
by the title of each panel. As in figure 6.2, the bin-size is set to δYe= 0.006.
The different colors represent different intervals in time at which the mass
is ejected with a given Ye. To be more specific, the distributions built on
top of one another show the additional mass that is ejected in each time
interval. Thus, the last time interval corresponds to the total ejected mass. 79

6.3 Mass-averaged ejecta properties as a function of the polar angle θ. Each
row shows the properties for each model; the first row shows the spherical-
symmetric model M1.42-J0, the middle row shows the rotating model M1.42-
J0.23-Dl, and the bottom row the model M1.61-J0.47. For each row the left
panel shows the angle-averaged (in 10◦ bins) mass ejecta as a function of
latitude, the middle panels show the mass-averaged radial velocity of the
ejecta, and the right panels show the mass-averaged Ye. The different lines
present the different time intervals; black lines show the ejecta before 200ms
after bounce, the orange lines between 200 and 300ms, the blue lines between
300 and 500ms, the red lines between 500ms and 1 s, and the purple lines
between 1 and 2 s post bounce. The mass ejecta properties are measured
as the matter that crosses an ellipsoidal surface that is located around the
progenitor in the same way as in the Ye histograms in figure 6.1 and figure 6.2. 81

6.4 Mass-averaged ejecta properties as a function of the polar angle θ, same as
in figure 6.3. Here the models M1.61-J0.78-Dl, M1.91-J1.09, and M1.91-
J1.63-Dl are displayed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
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6.5 A collection of cross sectional cuts at different points in time, color-coded
by four different quantities. In each plot, that represents one point in time
shown in the title of each plot, the left upper panel shows the logarithm
of the density, the right upper panel shows the electron fraction Ye, the
bottom left shows the ratio of the electron antineutrino number density to
the electron neutrino number density, i.e., n(ν̄e)/n(νe), and the right bottom
panel shows the logarithm of the νe number density. The same figure for the
rest of the models can be found in the Appendix in figure A.23 - figure A.27. 85

A.1 Maximum central density as a function of post-bounce time. The time t = 0
is the moment of the core bounce. The time of the bounce is calculated as
the time that the inner ∼ 100 km have entropy ≤ 3 kB. The models M1.61-
J0.78-Dl and M1.91-J1.63-Dl, undergo centrifugal bounce and they do not
reach nuclear saturation densities. However, the steep density increase at
the same time as the models that undergo pressure bounce seems as a good
approximation for these models as well. The spread of the central densities
comes from the influence of the rotation on the core bounce. We discuss the
collapse of the white dwarfs in section 4.1. . . . . . . . . . . . . . . . . . . 91

A.2 A sequence of cross-sectional cuts of the model M1.42-J0. Each plot shows
the density (right-half panels) and the radial velocity (left half panels) in
the xz plane at different points in time. The blue-red color bar for the radial
velocity is normalized, so the parts with zero radial velocity are shown in
white. The core collapses homologously, and at the core bounce, the shock
wave develops spherically symmetric. A neutron star of 1.4M⊙ is born in
this AIC model, and the ejecta propagates spherically symmetric. At late
times, the ejecta detaches from the central region and propagates in a shell-
like configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.3 A sequence of cross-sectional cuts of the model M1.42-J0 color-coded by
the electron fraction Ye (left-half panels) and entropy-per-baryon (right-half
panels) from the start of the collapse until 5 s of post-bounce evolution. After
the core bounce, a short period of convection is developed, which drives
neutron-rich material in the ejecta, which is expelled by the shock wave. At
later times, νe absorption raises the Ye, creating proton-rich material in the
ejecta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.4 Time sequence of cross-sectional cuts color-coded by the density (right-
half panels) and the radial velocity (left-half panels) for the rotating model
M1.42-J0.23-Dl. This model is slowly rotating and creates a low-mass disk
of 0.06M⊙, which leaves enough material to be ejected. The total ejecta
mass is 52.5 · 10−3, and the neutron star has a mass of 1.3M⊙. . . . . . . . 94
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A.5 Time sequence of cross-sectional cuts color-coded by the electron fraction
Ye (left-half panels) and the entropy-per-baryon (right-half panels) for the
rotating model M1.42-J0.23-Dl. The angular variation of the neutrino lumi-
nosities creates the characteristic butterfly-shaped ejecta in the Ye space. In
the poles, we find high-entropy proton-rich material in the ejecta, while at
the mid-latitudes, we find lower entropy neutron-rich ejecta. At the equa-
torial plane, the Ye stays at 0.5, which is the initial value of the progenitor.
Because of the disk that stays centrifugally supported in the equator, the
ejecta there do not receive neutrino luminosity; thus, no νe or ν̄e absorption
can alter the electron fraction. . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.6 Time sequence of cross-sectional cuts color-coded by the density (right-
half panels) and the radial velocity (left-half panels) for the rotating model
M1.61-J0.47. This model has a high central density at initialization and col-
lapses fast. The outflow is constrained in the polar direction due to the disk
forming around the neutron star. This model yields a total of 25.9 ·10−3 M⊙
and a forms a neutron star of 1.37M⊙. . . . . . . . . . . . . . . . . . . . . 96

A.7 Time sequence of cross-sectional cuts color-coded by the electron fraction
Ye (left-half panels) and the entropy-per-baryon (right-half panels) for the
rotating model M1.61-J0.47. This rotating model shows the latitudinal vari-
ation of the Ye as in the case of M1.42-J0.23-Dl. . . . . . . . . . . . . . . . 97

A.8 Time sequence of cross-sectional cuts color-coded by the density (right-half
panels) and the radial velocity (left-half panels) for the high-β rotating model
M1.61-J0.78-Dl. This model undergoes centrifugal collapse because during
collapse the core becomes rotationally supported. In this model the newly
born neutron star has a mass of 1.14 M⊙, the disk that surrounds the neutron
star has a mass of 0.29 M⊙ and a total of 21.22 · 10−3 M⊙ are ejected. . . . . 98

A.9 Time sequence of cross-sectional cuts color-coded by the electron fraction Ye

(left-half panels) and the entropy-per-baryon (right-half panels) for the high-
β-rotating model M1.61-J0.78-Dl. In this model, much of the equatorial
material is swiped away as the shock wraps around the progenitor. This is
seen as the white parts of the Ye, which is white dwarf material that has not
received neutrino luminosity to alter its Ye. The neutron-rich part of the
ejecta comes at later times but again from the mid-latitudes. . . . . . . . . 99

A.10 Time sequence of cross-sectional cuts color-coded by the density (right-
half panels) and the radial velocity (left-half panels) for the rotating model
M1.91-J1.09. This model shows similar collapse and explosion dynamics as
the rotating model M1.61-J0.47. Due to the higher degree of rotation and
higher mass, this model creates a larger disk, compared of the model M1.61-
J0.47, with a mass of 0.43M⊙. The total ejecta mass is 18.69 · 10−3 M⊙ and
the neutron star has a mass of 1.29M⊙. . . . . . . . . . . . . . . . . . . . . 100
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A.11 Time sequence of cross-sectional cuts color-coded by the electron fraction
Ye (left-half panels) and the entropy-per-baryon (right-half panels) for the
rotating modelM1.91-J1.09. The evolution of the ejecta properties is similar
to the rotating model M1.61-J0.47. . . . . . . . . . . . . . . . . . . . . . . 101

A.12 Time sequence of cross-sectional cuts color-coded by the density (right-half
panels) and the radial velocity (left-half panels) for the high-β rotating model
M1.91-J1.63-Dl. This model has the highest angular momentum of all mod-
els and low central density. It collapses very slowly, and while that is, the
outer layer of the progenitor gets unbound. This model undergoes a cen-
trifugal bounce. The remnant consists of a neutron star with a mass of
0.96M⊙, a centrifugally supported disk of 0.75M⊙. The total ejecta mass
of this model is 5.7 · 10−3 M⊙. . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.13 Time sequence of cross-sectional cuts color-coded by the electron fraction
Ye (left-half panels) and the entropy-per-baryon (right-half panels) for the
high-β rotating model M1.91-J1.63-Dl. This model’s particular collapse and
explosion dynamics allow very little material to be ejected. In contrast, most
of the ejecta comes later as the neutrino-driven wind ejects material from
the surface of the PNS and the surface of the disk. At late times, we find
neutron-rich outflow mainly from the polar regions. . . . . . . . . . . . . . 103

A.14 Time evolution of the z-component of the specific angular momentum as a
function of the enclosed mass. The colored lines present the time evolution
according to the color bar, with black and dark blue corresponding to the
initial jz and purple to pink lines to the final stages of the simulation. Each
panel presents the evolution of the specific angular momentum for each
model indicated in the plot title. This is supplementary to the specific
angular momentum evolution as a function of radius shown in figure 4.12. . 104

A.15 Each panel displays the z-component of the specific angular momentum as
a function of radius. The color-coding of the lines show the time evolu-
tion with yellow being the early times, i.e., before the collapse and at core
bounce, and the darker shades show the late time evolution until the end
of each simulation. Here we display the inner regions until 100 km which is
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the model M1.42-J0.23-Dl that the equatorial radius of the neutron star is
58 km). This is an addition to the figure 4.12. . . . . . . . . . . . . . . . . 105
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A.16 Luminosity (top row) and angle-averaged mean energy (bottom row) for the
three evolved neutrino species: electron neutrinos νe (left column), electron
antineutrinos ν̄e (middle column), and heavy-lepton neutrinos νx (right col-
umn) for the six AIC models as a function of post-bounce time until 5 s.
Each colored line corresponds to one model, as denoted in the legend. The
quantities are transformed into the lab frame and evaluated at a radius of
3500 km. The time shown in the x-axis corresponds to the post-bounce
time. This shows the long-time evolution of the luminosities and the mean
energies, in addition to figure 5.1. The large spread of the different val-
ues in the luminosities directly affects rotation, which alters the shape of
the neutrinospheres in the PNS and the thermodynamical conditions at the
neutrinospheres. The higher the spin rates, the lower the central density and
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Pons, J., Miralles, J., & Ibáñez, J. M. 1998, Astronomy and Astrophysics Supplement
Series, 129, 343, doi: 10.1051/aas:1998189

Powell, J., Müller, B., Aguilera-Dena, D. R., & Langer, N. 2023, Monthly Notices of the
Royal Astronomical Society, doi: 10.1093/mnras/stad1292

Qian, Y. Z., & Wasserburg, G. J. 2007, Physics Reports, 442, 237, doi: 10.1016/j.

physrep.2007.02.006

Qian, Y. Z., & Woosley, S. E. 1996, The Astrophysical Journal, 471, 331, doi: 10.1086/
177973

Raffelt, G. G. 2001, The Astrophysical Journal, 561, 890, doi: 10.1086/323379

Rampp, M., & Janka, H. T. 2002, Astronomy & Astrophysics, 396, 361, doi: 10.1051/
0004-6361:20021398

Raskin, C., Kasen, D., Moll, R., Schwab, J., & Woosley, S. 2014, The Astrophysical

http://doi.org/10.1086/163547
http://doi.org/10.1086/185922
http://doi.org/10.1086/185922
http://doi.org/10.1093/mnras/stab295
http://doi.org/10.1093/mnras/stu1969
http://doi.org/10.1051/0004-6361/202039232
http://doi.org/10.1086/149507
http://doi.org/10.1086/149507
http://doi.org/10.1086/379822
http://doi.org/10.1086/500832
http://doi.org/10.1038/nature08642
http://doi.org/10.1038/nature08642
http://doi.org/10.1088/2041-8205/747/1/L10
http://doi.org/10.1093/mnras/stac3107
http://doi.org/10.1051/aas:1998189
http://doi.org/10.1093/mnras/stad1292
http://doi.org/10.1016/j.physrep.2007.02.006
http://doi.org/10.1016/j.physrep.2007.02.006
http://doi.org/10.1086/177973
http://doi.org/10.1086/177973
http://doi.org/10.1086/323379
http://doi.org/10.1051/0004-6361:20021398
http://doi.org/10.1051/0004-6361:20021398


BIBLIOGRAPHY 145

Journal, 788, 75, doi: 10.1088/0004-637X/788/1/75

Roberts, L. F., Woosley, S. E., & Hoffman, R. D. 2010, The Astrophysical Journal, 722,
954, doi: 10.1088/0004-637X/722/1/954

Romani, R. W., Kandel, D., Filippenko, A. V., Brink, T. G., & Zheng, W. 2022, The
Astrophysical Journal Letters, 934, L17, doi: 10.3847/2041-8213/ac8007

Rosswog, S., Korobkin, O., Arcones, A., Thielemann, F. K., & Piran, T. 2014, Monthly
Notices of the Royal Astronomical Society, 439, 744, doi: 10.1093/mnras/stt2502

Ruiter, A. J., Belczynski, K., Benacquista, M., Larson, S. L., & Williams, G. 2010, The
Astrophysical Journal, 717, 1006, doi: 10.1088/0004-637X/717/2/1006

Ruiter, A. J., Sim, S. A., Pakmor, R., et al. 2013, Monthly Notices of the Royal Astronom-
ical Society, 429, 1425, doi: 10.1093/mnras/sts423

Saio, H., & Nomoto, K. 1985, Astronomy & Astrophysics, 150, L21

Scholz, P., Spitler, L. G., Hessels, J. W. T., et al. 2016, The Astrophysical Journal, 833,
177, doi: 10.3847/1538-4357/833/2/177

Schwab, J., Quataert, E., & Bildsten, L. 2015, Monthly Notices of the Royal Astronomical
Society, 453, 1910, doi: 10.1093/mnras/stv1804

Schwab, J., Quataert, E., & Kasen, D. 2016, Monthly Notices of the Royal Astronomical
Society, 463, 3461, doi: 10.1093/mnras/stw2249

Shapiro, S. L., & Teukolsky, S. A. 1983, Black holes, white dwarfs, and neutron stars: The
physics of compact objects (John Wiley & Sons)

Sharon, A., & Kushnir, D. 2020, The Astrophysical Journal, 894, 146, doi: 10.3847/
1538-4357/ab8a31

Shibata, M., & Sekiguchi, Y.-I. 2004, Physical Review D, 69, 084024, doi: 10.1103/

PhysRevD.69.084024

Shibata, M., & Taniguchi, K. 2006, Physical Review D, 73, 064027, doi: 10.1103/

PhysRevD.73.064027
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