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ICESat-2 river surface slope (IRIS): 
A global reach-scale water surface 
slope dataset
Daniel Scherer    ✉, Christian Schwatke   , Denise Dettmering    & Florian Seitz

The global reach-scale “ICESat-2 River Surface Slope” (IRIS) dataset comprises average and extreme 
water surface slopes (WSS) derived from ICESat-2 observations between October 2018 and August 
2022 as a supplement to 121,583 reaches from the “SWOT Mission River Database” (SWORD). To gain 
full advantage of ICESat-2’s unique measurement geometry with six parallel lidar beams, the WSS 
is determined across pairs of beams or along individual beams, depending on the intersection angle 
of spacecraft orbit and river centerline. Combining both approaches maximizes spatial and temporal 
coverage. IRIS can be used to research river dynamics, estimate river discharge, and correct water level 
time series from satellite altimetry for shifting ground tracks. Additionally, by referencing SWORD as 
a common database, IRIS may be used in combination with observations from the recently launched 
SWOT mission.

Background & Summary
The water surface slope (WSS) is a fundamental parameter for calculating river discharge, one of the Essential 
Climate Variables (ECVs) as defined by the Global Climate Observing System1. River discharge critically con-
tributes to the characterization of the Earth’s hydrological cycle and climate and, thus, its determination on a 
global scale is of great scientific relevance. Additionally, correcting water surface elevation (WSE) observations 
from satellite altimetry for WSS can significantly improve the accuracy of the resulting water level time series2,3. 
Depending on the river’s morphology, regulation, bed material, and basin size, the WSS can be highly variable 
in both space and time4.

Various methods exist to measure WSS based on field surveys, gauges, airborne sensors, or satellites. 
However, most of them face difficulties in capturing the temporal and/or spatial variability of WSS at global 
scale. Although they are very accurate, field surveys and airborne campaigns can only cover relatively small study 
areas within a short period of time because of the high human and financial effort. Gauge records are usually 
available over long periods at a high sampling rate, but their suitability to derive WSS is limited to free-flowing 
river segments covered by multiple gauges. Due to the small number of free-flowing rivers in developed areas5 
and the lack of gauging stations in remote areas, global WSS coverage with gauges cannot be achieved. In con-
trast, radar satellite altimetry provides a globally distributed network of so-called virtual stations, but at the same 
time lacks simultaneous observations over short distances and provides much fewer measurements compared 
to gauges6. Additionally, the distribution of virtual stations along a river is irregular, so that radar satellite altim-
etry cannot be used to derive a globally homogeneous WSS dataset. Another space-based technique is the use 
of digital elevation models (DEM) such as the “Shuttle Radar Topography Mission” (SRTM) or the “Advanced 
Spaceborne Thermal Emission and Reflection Radiometer” (ASTER) data, which provide spatially continuous 
elevation measurements within the boundaries of the spacecrafts’ orbits. The elevation accuracy of the DEM 
data, however, is low, which leads to errors when deriving WSS for short reach lengths and narrow rivers7,8. In 
addition, also the temporal resolution of DEM data is low, if the models are time-dependent at all. Just recently 
(December 2022), the “Surface Water and Ocean Topography” (SWOT) satellite was launched, targeting a WSS 
accuracy of 17 mm/km9. It was demonstrated that 90% of the sensor’s slope errors are in the desired range10, but 
SWOT observations are not yet available. In contrast, the unique measurement geometry of the “Ice, Cloud, and 
Land Elevation Satellite 2” (ICESat-2) with six parallel laser beams enables instantaneous and highly accurate 
WSS observations since its launch in September 2018. Due to its dense ground track pattern, ICESat-2 is well 
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suited for global studies of the Earth’s hydrosphere11. ICESat-2 WSE observations have already been used to 
derive WSS in small study areas2,12, but not at the global scale. WSS datasets at the global scale so far exist only 
on the basis of DEM data such as the “Global River-Slope” (GloRS13) or as part of the “SWOT Mission River 
Database” (SWORD14).

In a previous study2, we developed an approach to derive reach-scale WSS from ICESat-2 observations. 
The approach was applied to 815 reaches in Europe and North America where sufficient validation data was 
available. For 89% of those reaches, the approach could be used to estimate WSS with a median absolute error of 
23 mm/km, almost complying with the SWOT requirements of 17 mm/km. For the remaining studied reaches, 
there were no or not sufficient observations from ICESat-2. In order to create the global “ICESat-2 River Surface 
Slope” (IRIS15) dataset, we applied our approach2 to all reaches defined within SWORD. By referencing SWORD, 
IRIS can be easily compared or combined with SWOT mission observations as they become available. IRIS is 
the first WSS dataset with global coverage based on ICESat-2 observations. In this paper, we briefly review the 
materials and methods and present the resulting dataset.

Fig. 1  Processing strategy for the computation of the IRIS water surface slope (WSS) data.
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Methods
Except for minor differences in preprocessing (more details below), the methodology used to derive the global 
“ICESat-2 River Surface Slope” (IRIS, Version v115) dataset follows our published approach2, which has already 
been applied to derive and validate a regional dataset (Version v016). Figure 1 shows a flowchart of the main steps 
in the processing of the IRIS dataset. The approach combines two different methods that are applicable depend-
ing on the intersection angle between the satellite orbit and the river: If ICESat-2 crosses a river reach nearly per-
pendicularly, the across-track approach calculates the WSS between the crossings of the sensor’s multiple beams. 
Otherwise, if satellite orbit and river are nearly parallel, the along-track approach calculates the WSS directly 
from the continuous water level observations along a single intersecting beam. The WSS within IRIS is defined 
as positive for a decreasing water surface elevation (WSE) in downstream direction. Table 1 lists the required 
input data. Besides the fundamental ICESat-2 and SWORD data, no auxiliary inputs are required. Version v1 
of IRIS comprises ICESat-2 ATL13 version 517 data from cycles 1 to 16 (October 2018 to August 2022) and uses 
SWORD version v214,18. In the following, we briefly describe the materials and relevant processing steps. For a 
more detailed description, we refer the reader to our previous publication2.

SWOT mission river database (SWORD).  Version v1 of IRIS is designed as a supplement to version v2 
of the “SWOT Mission River Database” (SWORD14,18), which contains high-resolution (30 m) river centerline 

Dataset Variable Description

SWOT Mission River Database (SWORD14,18)

reach_id ID of each reach (Used as key and to identify the reach type)

centerline Reach centerline shapefile geometry (Used to construct the reach AOI and measure the chainage)

width Average reach width (Used to construct the reach AOI)

ATLAS/ICESat-2 L3A Along Track Inland Surface Water Data (ATL1317)

ht_water_surf Water surface height per short segment with reference to WGS84 ellipsoid

cloud_flag_asr_atl09 Cloud probability using Apparent Surface Reflectance (ASR).

snow_ice_atl09 NOAA snow/ice flag.

Table 1.  Input data for the IRIS dataset.

Variable Name Unit Description

reach_id The SWORD reach identifier

lon degrees east Approx. centroid longitude of the SWORD reach

lat degrees north Approx. centroid latitude of the SWORD reach

across_flag
Flags indicating whether ICESat-2 [across/along/combined] slope is available (1) 
for the reach or not (0)along_flag

combined_flag

avg_across_slope

mm/km Average (median) ICESat-2 [across/along/combined] slope for the reachavg_along_slope

avg_combined_slope

min_across_slope

mm/km Minimum ICESat-2 [across/along/combined] slope for the reachmin_along_slope

min_combined_slope

max_across_slope

mm/km Maximum ICESat-2 [across/along/combined] slope for the reachmax_along_slope

max_combined_slope

std_across_slope

mm/km ICESat-2 [across/along/combined] slope standard deviation for the reachstd_along_slope

std_combined_slope

n_across_slope

days Number of days with ICESat-2 [across/along/combined] slope observations for 
the reachn_along_slope

n_combined_slope

min_date_across_slope

 days since 2000-01-01 First date of ICESat-2 [across/along/combined] slope observations for the reachmin_date_along_slope

min_date_combined_slope

max_date_across_slope

days since 2000-01-01 Latest date of ICESat-2 [across/along/combined] slope observations for the reachmax_date_along_slope

max_date_combined_slope

Table 2.  Contents of the resulting IRIS dataset.
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geometries and river widths from the “Global River Widths from Landsat” (GRWL19) dataset segmented into 
reaches approximately every 10 km and topologically ordered. The direction of flow can be inferred from the 
reach identifiers, which increase upstream. The reaches are segmented at natural and artificial river obstructions 
such as dams and waterfalls, or anomalies like basin boundaries and tributary junctions. Therefore, we assume 
the WSS within each reach to be reasonably homogeneous. Each SWORD reach has an assigned type, and only 
reaches of type “river” or “lake on river” are processed for IRIS. SWORD also contains WSE and WSS data from 
MERIT Hydro20 which is derived from the multi-error-removed improved-terrain (MERIT) DEM21 based on 
SRTM. We use the SWORD WSS for comparison with IRIS. IRIS uses the SWORD reach identifier as a key so that 
both datasets can be used together.

In the first step of preprocessing, we buffer each SWORD reach’s centerline geometry by its average width to 
construct a polygon that defines the area of interest (AOI) for further processing. The resulting AOI is thus twice 
as wide as the average SWORD reach’s width to account for any significant temporal and spatial variability (e.g., 
on braided rivers). Note, that for the creation of the regional dataset (version v0), the AOIs were even wider by 

Fig. 2  Averaged combined water surface slope (WSS).

Fig. 3  Detailed views of the averaged combined WSS for North America, Europe, and Siberia (upper f.l.t.r.), 
South America, Central Africa, and East Asia (lower f.l.t.r.).

https://doi.org/10.1038/s41597-023-02215-x
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four times the width’s standard deviation2. We reduced the AOI size for version v1 because we observed a signif-
icant number of AOIs overlapping with adjacent water bodies on the global scale. In this way, some input data 
from ICESat-2 (see below) might be lost, but we also reduce the number of outliers.

Ice, cloud, and land elevation satellite 2 (ICESat-2).  Each reach AOI is used to spatially filter WSE 
measurements from the “ATLAS/ICESat-2 L3A Along Track Inland Surface Water Data” (ATL13, Version 517) 
dataset provided by the “National Snow & ICE Data Center” (NSIDC). These measurements are taken by ICESat-
2’s photon-counting lidar sensor “Advanced Topographic Laser Altimeter System” (ATLAS) which determines the 
travel time of an emitted photon to the Earth and back to the sensor along three pairs of beams at a pulse rate of 
10 kHz (i.e., one pulse every 0.7 m) and a footprint of approximately 17 m in diameter22. However, depending on 
water and atmospheric conditions, the sensor can detect only a maximum of 2.9 photons per meter over inland 
waters23. Each pair of beams consists of a high energy (175 ± 17 J) and a low energy (45 ± 5 J) beam. The energy 
of the beams used to estimate the WSS has no significant influence on the WSS accuracy2. The spatial resolution 
is relatively high compared to other repeat-orbit satellite altimetry missions because the 91-day repeat orbit with 
an inclination of 92 degrees and changing off-nadir pointings over a two-year period results in a track density of 
2 km24. Version v1 of IRIS is based on ATL13 data from ICESat-2’s cycles 1 to 16 (October 2018 to August 2022). 

Fig. 4  Percentage of processed reaches with Water Surface Slope (WSS) results per Pfaffstetter level 4 basin.

Fig. 5  Average number of days with WSS results per Pfaffstetter Level 4 basin.
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ATL13 does not contain photon-level observations but representative values over short segments of 75 to 100 
consecutive received photons above inland water bodies. These short segments have an along-track length of 30 to 
several hundred meters, depending on the number of received signal photons per pulse23. We use the mean water 
surface height parameter (“ht_water_surf”) with reference to the WGS84 ellipsoid and apply the EIGEN-6C4 
geoid25, which, unlike the EGM2008 geoid used for the ATL13 orthometric heights, also includes measurements 
from the GOCE mission. Additionally, we use the “cloud_flag_asr_atl09” and “snow_ice_atl09” (new in version 
v1 compared to v0) parameters to identify and reject outliers caused by clouds and ice coverage. All remaining 
ATL13 observations within the respective AOI are grouped by beam, cycle, and individual river intersection into 
so-called features (3D-geometries containing points of common properties). For each feature i, the chainage value 
xi of its intersection with the river centerline or otherwise of the nearest point of the centerline is determined. We 
detect further outliers within each feature by calculating the absolute deviation around the median (ADM) within 
a rolling window and a linear support vector regression (SVR), similar to the approach applied in DGFI-TUM’s 

Fig. 6  Combined water surface slope (WSS) variation. Only reaches with more than 3 days of record are shown.

Fig. 7  Combined water surface slope (WSS) variation details. Only reaches with more than 3 days of record are 
shown.

https://doi.org/10.1038/s41597-023-02215-x


7Scientific Data |          (2023) 10:359  | https://doi.org/10.1038/s41597-023-02215-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

“Database for Hydrological Time Series over Inland Waters” (DAHITI26). Observations deviating more than 5 cm 
from the SVR or the respective median are rejected. If a feature contains a gap larger than 500 m, it is split at this 
gap, and only the largest cluster is processed further.

Estimation of across-track WSS.  For each feature i, we calculate the average elevation hi of all valid ATL13 
observations, weighted by their inverse distance to the river centerline. Then, the instantaneous WSS between i 
and every other feature j observed at the same date and within the same reach can be calculated as follows:

=
−

−
WSS i j

h h

x x
( , ) i j

i j

Pairs of features with − <∣ ∣x x 1i j  km are not considered, and negative WSS estimates are viewed as outliers 
and rejected. Multiple instantaneous WSS observations of identical dates are averaged, weighted by the inverse 

Fig. 8  Percentage of processed reaches with missing ICESat-2 ATL13 data per Pfaffstetter level 4 basin.

Fig. 9  Averaged combined water surface slope (WSS) extremes. Reaches with an average WSS above the 99th 
percentile (8,237 mm/km, red) and below the 1st percentile (3 mm/km, blue).
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sum of WSE standard deviations in both respective features, to get a reach-scale across-track WSS time series 
with daily temporal resolution.

Estimation of along-track WSS.  Taking advantage of the high spatial resolution, precision, and accuracy 
of ATLAS, the along-track WSS (tan β) can be estimated by fitting a linear regression to the ATL13 WSE observa-
tions and their position along the track within a single feature. However, tan β only represents the WSS along the 
beam ground track which is not fully parallel to the river centerline. This results in an erroneous WSS. Therefore, 
tan β is projected onto the river centerline tangent vector c→ to obtain an undistorted WSS along the river:

WSS
b tan

b
b c b b c

c
csgn( ) with ,

2

� �

� � � �
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′
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Fig. 10  Averaged combined water surface slope (WSS) by reach elevation (left) and reach width (right).

Fig. 11  Mean number of observation days (left) and processed reaches with Water Surface Slope (WSS) results 
(right) by mean cloud fraction.

Fig. 12  Mean number of observation days, WSS result ratio, and mean WSS variation per reach width grouped 
by 10% percentiles and river morphology.
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where 
→
b  is the vector of the feature’s beam ground track segment. As above, negative WSS are rejected. In addi-

tion, an angle-dependent outlier threshold is applied to the confidence interval (CI) of tan β. The smaller the 
angle between c→ and b

→
, the higher the allowed CI, with a maximum angle of 65° and a maximum CI of 

300 mm/km. These constraints were determined empirically by comparison with in-situ data2. We obtain a 
reach-scale along-track WSS time series by averaging the instantaneous results from identical dates weighted by 
the inverse of the angle between →c  and b

→
.

Combined estimation of WSS.  To increase the overall spatial and temporal coverage, we combine both 
methods. Depending on the intersection angle, only one of them may provide a WSS result. Thus, in the combi-
nation the reach-scale daily averaged across- and along-track WSS time series are merged, with the across-track 
results being preferred in the case of overlapping dates as this is the more accurate and robust approach2.

Fig. 13  Correlation coefficient between IRIS average combined WSS and SWORD WSS from MERIT Hydro 
per Pfaffstetter level 4 basin enclosing more than 5 reaches covered with WSS results.

Fig. 14  Bias (SWORD - IRIS) between IRIS average combined WSS and SWORD WSS from MERIT Hydro per 
Pfaffstetter level 4 basin enclosing more than 5 reaches covered with WSS results.

https://doi.org/10.1038/s41597-023-02215-x
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Data Records
The global “ICESat-2 River Surface Slope” (IRIS15) dataset is available at Zenodo. IRIS is stored in a single 
NetCDF4 file, which is structured in a single group containing the variables listed in Table 2. IRIS can be used as 
a supplement to SWORD by joining the datasets via the “reach_id ” key. Otherwise, the “lon” and “lat” variables 
give the approximate centroid of the reach. All other variables are provided separately for each method. The 
“[across/along/combined]_ flag” variable indicates the availability of data from the respective method.

The main content of IRIS is the reach-scale median WSS from the combined approach (“avg_combined_
slope”) shown in Fig. 2. More detailed views on specific regions are presented in Fig. 3. In dark grey, both figures 
display reaches that were not processed due to the SWORD type flag filter, such as ghost reaches or reaches with 
unreliable topography. Reaches that have been processed but do not contain valid results are shown in white. 
Overall, 178,659 (74.1%) of the total 241,107 reaches in the SWORD dataset pass the type flag filter (types “river” 
or “lake on river”) and are further processed. The approach yields results for 121,583 reaches which corresponds 
to a coverage of 68.1% of the processed SWORD reaches. Figure 4 shows the ratio of processed reaches with WSS 
results per river basin (Pfaffstetter level 427).

IRIS provides the number of days with WSS observations per reach by the parameter “n_[across/along/com-
bined]_slope”. Figure 5 shows the average number of days with combined observations per basin. The detection 
of WSS changes over time is possible through the continuous addition of ICESat-2 observations. IRIS contains 
the minimum (“min_[across/along/combined]_slope”) and maximum (“max_[across/along/combined]_slope”) 
WSS obtained with the respective method per reach. The amplitude of WSS variations (“max_combined_slope” 
- “min_combined_slope”) for reaches with more than 3 days of WSS observations can be seen in Fig. 6. More 
detailed views of specific regions are provided in Fig. 7. The parameters “min_date_[across/along/combined]_
slope” and “max_date_[across/along/combined]_slope” give the first and latest observation of the respective 

Fig. 16  Probability density of the IRIS average combined WSS per climate zone.

Fig. 15  Root mean square deviation (RMSD) between IRIS average combined WSS and SWORD WSS from 
MERIT Hydro per Pfaffstetter level 4 basin enclosing more than 5 reaches covered with WSS results.

https://doi.org/10.1038/s41597-023-02215-x
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method per reach, and “std_[across/along/combined]_slope” provides the standard deviation of all respective 
WSS observations per reach.

Technical Validation
The approach was validated at 815 reaches in a regional study2 with a median absolute error (MAE) of 23 mm/
km for the “avg_combined_slope” compared to gauge data. The MAE for the “avg_across_slope” and “avg_along_
slope” were 19 and 47 mm/km, respectively2. Although a global validation is not feasible, the overall robustness 
of the results can be inferred from Figs. 2, 3. Especially at the free-flowing Amazon and Congo Rivers, the WSS 
increases gradually in upstream direction. Discontinuities can be observed primarily in basins influenced by 
human intervention. For example, reservoirs in the western Mississippi River basin are apparent as single dis-
continuities with low WSS (cf. Fig. 3). In Figs. 6, 7, low variations of WSS can be observed along river main stems 
and regulated rivers. Large fluctuations, on the other hand, occur mainly at upstream reaches.

Among others, high coverage can be achieved for Eastern Europe, Brazil, and the Nile River. Below-average 
coverage is apparent for parts of the Lena and Indus Rivers, Western Europe, East Asia, and the Pacific coast of 
South America. This is caused, among other factors, by missing ATL13 input data (cf. Figure 8). Overall, 16,754 
(9.4%) of the processed reaches are not covered by ATL13 data.

Figure 9 displays extremely high (99th percentile: 8,237 mm/km) and low (1st percentile: 3 mm/km) “avg_
combined_slope” WSS values. Except for some plateaus, low WSS values are located in low-lying regions. On 
the other hand, high WSS values are not limited to regions of high elevation as shown in Fig. 10 on the left. 
Figure 10 also provides the averaged combined WSS by reach width. With increasing width, the WSS tends 
towards 10 mm/km. Extremely high WSS are limited to narrow reaches. The data density in Fig. 10 indicates that 
the majority of the studied reaches are less than 300 m wide and situated lower than 200 m.

In Fig. 11 the number of observed days and and the coverage with WSS results is compared with cloud 
coverage data from MODIS28 during the ICESat-2 period. Both values, especially the number of observed days, 
depend strongly on cloud coverage since the ATLAS lidar sensor cannot penetrate clouds. Additionally, Fig. 12 
shows the number of observed days, the coverage with WSS results, and mean temporal WSS variation (“max_
combined_slope” - “min_combined_slope”) per 10% reach width percentiles for meandering (n = 96,900) and 
braided (n = 24,683) rivers. For the morphological classification, the “Global River Morphology” (GRM) raster 
from the “Global Channel Belt” (GCB29,30) dataset is sampled along each reaches’ centerline, assigning the class 
with the highest summed probability. Figure 12 shows that with increasing width, more observations can be 
provided. The mean temporal WSS variation is significantly larger for braided rivers than for meandering rivers, 
especially at widths below 171 m.

DEM data cannot be used to validate the accuracy of the results. However, for further analysis of the statis-
tical soundness of the IRIS WSS, we compare the “avg_combined_slope” to the SWORD WSS derived from the 
MERIT Hydro DEM. Figures 13–15 show the correlation coefficient r, the bias (SWORD - IRIS), and the root 
mean square deviation (RMSD) between the two datasets per Pfaffstetter level 4 basin. Basins with less than six 
reaches covered by IRIS are not included because there is not enough data to make a meaningful comparison. 
On basin scale, r is greater than 0.50 for 580 (72%) out of the 808 basins with more than 5 covered reaches. Of 
the major river basins, only the Nile has a low correlation (0.03, cf. Figure 13). Over all IRIS and SWORD WSS, 
r is 0.73.

The bias ranges from −657 to 4,774 mm/km at the basin scale (with more than 5 reaches covered) with a 
mean of 149 mm/km. Thus, SWORD tends to have greater WSS than IRIS, especially in East Asia, while for 
almost the entire Amazon basin, the WSS results are greater in the IRIS dataset (cf. Figure 14). The overall 
RMSD after subtracting the bias between SWORD and IRIS is 1,514 mm/km, ranging from 12 to 19,994 mm/km 
at the basin scale (with more than 5 reaches covered) with a mean RMSD of 942 mm/km.

One reason for low correlations or large biases at the basin scale could be the gap between the acquisition 
time of the SWORD and IRIS input data, which spans 18 years in the case of SRTM and ICESat-2. During this 
time, significant hydraulic structures affecting the WSS may have been constructed and the river morphology 
may have changed. In addition, the bias between the two datasets is expected due to the better vertical accuracy 

Fig. 17  Probability density of the IRIS average combined WSS per freshwater habitat.
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of ICESat-2 compared to the MERIT DEM31 used to derive the SWORD WSS. The MERIT DEM shows signifi-
cant elevation errors21 compared to the first ICESat mission in basins where large biases occur between IRIS and 
SWORD (e.g., in East Asia).

For an additional analysis of the statistical soundness, we classify the “avg_combined_slope” by different 
hydro-environmental classifications provided by HydroATLAS32 at the basin scale (BasinATLAS). Figures 16, 17 
show the WSS probability density by different climate zones33 and freshwater habitats34, respectively. The legends 
listing the classes also show the relative contribution of each class to the total number of basins. Classes with a 
percentage of less than 1% are not shown.

Usage Notes
Although IRIS contains separate values for each of the three approaches, the “avg_combined_slope” is likely to be 
appropriate for most use cases because it has the highest spatial and temporal coverage. Users should consider 
the number of days with WSS observations (“n_[across/along/combined]_slope”) when using the aggregated 
“max_[across/along/combined]_slope”, “min_[across/along/combined]_slope”, and “std_[across/along/combined]_
slope” parameters. With fewer samples, these aggregated parameters get less significant or not meaningful at 
all. In this paper, only reaches with more than 3 days of WSS observations were used when plotting the param-
eters (i.e., Figs. 6, 7). IRIS will be updated progressively by adding future ICESat-2 cycles. This will provide 
increasing insight into the temporal variability of WSS. IRIS will also be updated with new versions of SWORD. 
Additionally, for future versions it is planned to include WSS uncertainty values derived from the confidence of 
fit or the WSE uncertainties for the along- and across-track method, respectively. Note, that the IRIS dataset is 
generated fully automatically and depends on the availability and quality of the ATL13 observations and flags, as 
well as the accuracy of the SWORD centerline, topology, and type parameters. Therefore, isolated outliers cannot 
be excluded, e.g., caused by missing dams in SWORD.

Code availability
A code example of IRIS is available at Zenodo35. The methodology is described in detail in our regional study2.

Received: 3 February 2023; Accepted: 5 May 2023;
Published: xx xx xxxx

References
	 1.	 Global Climate Observing System. The 2022 GCOS Implementation Plan (GCOS-244) (World Meteorological Organization, Geneva, 

2022).
	 2.	 Scherer, D., Schwatke, C., Dettmering, D. & Seitz, F. ICESat-2 based river surface slope and its impact on water level time series from 

satellite altimetry. Water Resources Research 58, e2022WR032842, https://doi.org/10.1029/2022WR032842 (2022).
	 3.	 Halicki, M., Schwatke, C. & Niedzielski, T. The impact of the satellite ground track shift on the accuracy of altimetric measurements 

on rivers: A case study of the Sentinel-3 altimetry on the Odra/Oder River. Journal of Hydrology 617, 128761, https://doi.
org/10.1016/j.jhydrol.2022.128761 (2023).

	 4.	 Julien, P. Y. River dynamics. In River Mechanics, chap. 11, https://doi.org/10.1017/9781316107072.012, 2 edn (Cambridge University 
Press, Cambridge, 2018).

	 5.	 Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221, https://doi.org/10.1038/s41586-019-1111-9 (2019).
	 6.	 Dettmering, D., Ellenbeck, L., Scherer, D., Schwatke, C. & Niemann, C. Potential and limitations of satellite altimetry constellations 

for monitoring surface water storage changes–a case study in the Mississippi basin. Remote Sensing 12, https://doi.org/10.3390/
rs12203320 (2020).

	 7.	 LeFavour, G. & Alsdorf, D. Water slope and discharge in the Amazon River estimated using the shuttle radar topography mission 
digital elevation model. Geophysical Research Letters 32, 1–5, https://doi.org/10.1029/2005GL023836 (2005).

	 8.	 Rodríguez, E., Morris, C. S. & Belz, J. E. A global assessment of the SRTM performance. Photogrammetric Engineering and Remote 
Sensing 72, 249–260, https://doi.org/10.14358/PERS.72.3.249 (2006).

	 9.	 Biancamaria, S., Lettenmaier, D. P. & Pavelsky, T. M. The SWOT mission and its capabilities for land hydrology. Surveys in Geophysics 
37, 307–337, https://doi.org/10.1007/s10712-015-9346-y (2016).

	10.	 Altenau, E. H. et al. Temporal variations in river water surface elevation and slope captured by AirSWOT. Remote Sensing of 
Environment 224, 304–316, https://doi.org/10.1016/j.rse.2019.02.002 (2019).

	11.	 Cooley, S. W., Ryan, J. C. & Smith, L. C. Human alteration of global surface water storage variability. Nature 591, 78–81, https://doi.
org/10.1038/s41586-021-03262-3 (2021).

	12.	 Wang, S., Cui, D. & Xu, J. Monitoring and analysis of water surface slope of the Yarlung Zangbo River based on remote sensing. 
Water 14, 3304, https://doi.org/10.3390/w14203304 (2022).

	13.	 Cohen, S., Wan, T., Islam, M. T. & Syvitski, J. P. Global river slope: a new geospatial dataset and global-scale analysis. Journal of 
Hydrology 563, 1057–1067, https://doi.org/10.1016/j.jhydrol.2018.06.066 (2018).

	14.	 Altenau, E. H. et al. The surface water and ocean topography (SWOT) mission river database (SWORD): a global river network for 
satellite data products. Water Resources Research 57, https://doi.org/10.1029/2021WR030054 (2021).

	15.	 Scherer, D., Schwatke, C., Dettmering, D. & Seitz, F. IRIS: ICESat-2 river surface slope, version v1. Zenodo https://doi.org/10.5281/
zenodo.7516381 (2023).

	16.	 Scherer, D., Schwatke, C., Dettmering, D. & Seitz, F. IRIS: ICESat-2 river surface slope, version v0. Zenodo https://doi.org/10.5281/
zenodo.7098114 (2022).

	17.	 Jasinski, M. et al. ATLAS/ICESat-2 L3A along track inland water surface water data, release 5. NASA National Snow and Ice Data 
Center Distributed Active Archive Center https://doi.org/10.5067/ATLAS/ATL13.005 (2021).

	18.	 Altenau, E. H. et al. SWOT river database (SWORD), version v2. Zenodo https://doi.org/10.5281/zenodo.5643392 (2021).
	19.	 Allen, G. H. & Pavelsky, T. Global extent of rivers and streams. Science 361, 585–588, https://doi.org/10.1126/science.aat0636 (2018).
	20.	 Yamazaki, D. et al. MERIT Hydro: a high-resolution global hydrography map based on latest topography dataset. Water Resources 

Research 55, 5053–5073, https://doi.org/10.1029/2019WR024873 (2019).
	21.	 Yamazaki, D. et al. A high-accuracy map of global terrain elevations. Geophysical Research Letters 44, 5844–5853, https://doi.

org/10.1002/2017GL072874 (2017).
	22.	 Neumann, T. A. et al. The ice, cloud, and land elevation satellite - 2 mission: A global geolocated photon product derived from the 

advanced topographic laser altimeter system. Remote Sensing of Environment 233, 111325, https://doi.org/10.1016/j.rse.2019.111325 
(2019).

https://doi.org/10.1038/s41597-023-02215-x
https://doi.org/10.1029/2022WR032842
https://doi.org/10.1016/j.jhydrol.2022.128761
https://doi.org/10.1016/j.jhydrol.2022.128761
https://doi.org/10.1017/9781316107072.012
https://doi.org/10.1038/s41586-019-1111-9
https://doi.org/10.3390/rs12203320
https://doi.org/10.3390/rs12203320
https://doi.org/10.1029/2005GL023836
https://doi.org/10.14358/PERS.72.3.249
https://doi.org/10.1007/s10712-015-9346-y
https://doi.org/10.1016/j.rse.2019.02.002
https://doi.org/10.1038/s41586-021-03262-3
https://doi.org/10.1038/s41586-021-03262-3
https://doi.org/10.3390/w14203304
https://doi.org/10.1016/j.jhydrol.2018.06.066
https://doi.org/10.1029/2021WR030054
https://doi.org/10.5281/zenodo.7516381
https://doi.org/10.5281/zenodo.7516381
https://doi.org/10.5281/zenodo.7098114
https://doi.org/10.5281/zenodo.7098114
https://doi.org/10.5067/ATLAS/ATL13.005
https://doi.org/10.5281/zenodo.5643392
https://doi.org/10.1126/science.aat0636
https://doi.org/10.1029/2019WR024873
https://doi.org/10.1002/2017GL072874
https://doi.org/10.1002/2017GL072874
https://doi.org/10.1016/j.rse.2019.111325


13Scientific Data |          (2023) 10:359  | https://doi.org/10.1038/s41597-023-02215-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

	23.	 Jasinski, M. et al. Algorithm Theoretical Basis Document (ATBD) for Along Track Inland Surface Water Data, ATL13, Release 5, https://
doi.org/10.5067/RI5QTGTSVHRZ (NASA Goddard Space Flight Center, Greenbelt, MD, 2021).

	24.	 Markus, T. et al. The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation. 
Remote Sensing of Environment 190, 260–273, https://doi.org/10.1016/j.rse.2016.12.029 (2017).

	25.	 Foerste, C. et al. EIGEN-6C4 the latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ 
Potsdam and GRGS Toulouse https://doi.org/10.5880/icgem.2015.1 (2014).

	26.	 Schwatke, C., Dettmering, D., Bosch, W. & Seitz, F. DAHITI - an innovative approach for estimating water level time series over 
inland waters using multi-mission satellite altimetry. Hydrology and Earth System Sciences 19, 4345–4364, https://doi.org/10.5194/
hess-19-4345-2015 (2015).

	27.	 Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large 
river systems. Hydrological Processes 27, 2171–2186, https://doi.org/10.1002/hyp.9740 (2013).

	28.	 Pincus, R. et al. Updated observations of clouds by MODIS for global model assessment. Earth System Science Data Discussions 
2022, 1–20, https://doi.org/10.5194/essd-2022-282 (2022).

	29.	 Nyberg, B. Global channel belt (GCB). Zenodo https://doi.org/10.5281/zenodo.7680163 (2022).
	30.	 Nyberg, B., Henstra, G., Gawthorpe, R. L., Ravnås, R. & Ahokas, J. Global scale analysis on the extent of river channel belts. Nature 

Communications 14, 2163, https://doi.org/10.1038/s41467-023-37852-8 (2023).
	31.	 Chen, W. et al. Towards ice-thickness inversion: an evaluation of global digital elevation models (dems) in the glacierized tibetan 

plateau. The Cryosphere 16, 197–218, https://doi.org/10.5194/tc-16-197-2022 (2022).
	32.	 Linke, S. et al. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Scientific Data 6, 

1–15, https://doi.org/10.1038/s41597-019-0300-6 (2019).
	33.	 Metzger, M. J. et al. A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and 

monitoring. Global Ecology and Biogeography 22, 630–638, https://doi.org/10.1111/geb.12022 (2013).
	34.	 Abell, R. et al. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. 

BioScience 58, 403–414, https://doi.org/10.1641/B580507 (2008).
	35.	 Scherer, D. Minimum working example of IRIS global river slope processing. Zenodo https://doi.org/10.5281/zenodo.7761212 

(2023).

Acknowledgements
This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)-Project 
number 324641997, Grant DE 2174/10-2. Open access funding enabled and organized by Projekt DEAL. We 
thank the NSIDC and the authors of SWORD for openly sharing the input data required for IRIS.

Author contributions
D.S. developed the methodology and wrote the manuscript. C.S. curated the data. D.D. and F.S. supervised the 
study and contributed to the discussion of the results. All authors reviewed the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to D.S.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2023

https://doi.org/10.1038/s41597-023-02215-x
https://doi.org/10.5067/RI5QTGTSVHRZ
https://doi.org/10.5067/RI5QTGTSVHRZ
https://doi.org/10.1016/j.rse.2016.12.029
https://doi.org/10.5880/icgem.2015.1
https://doi.org/10.5194/hess-19-4345-2015
https://doi.org/10.5194/hess-19-4345-2015
https://doi.org/10.1002/hyp.9740
https://doi.org/10.5194/essd-2022-282
https://doi.org/10.5281/zenodo.7680163
https://doi.org/10.1038/s41467-023-37852-8
https://doi.org/10.5194/tc-16-197-2022
https://doi.org/10.1038/s41597-019-0300-6
https://doi.org/10.1111/geb.12022
https://doi.org/10.1641/B580507
https://doi.org/10.5281/zenodo.7761212
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	ICESat-2 river surface slope (IRIS): A global reach-scale water surface slope dataset

	Background & Summary

	Methods

	SWOT mission river database (SWORD). 
	Ice, cloud, and land elevation satellite 2 (ICESat-2). 
	Estimation of across-track WSS. 
	Estimation of along-track WSS. 
	Combined estimation of WSS. 

	Data Records

	Technical Validation

	Usage Notes

	Acknowledgements

	Fig. 1 Processing strategy for the computation of the IRIS water surface slope (WSS) data.
	Fig. 2 Averaged combined water surface slope (WSS).
	Fig. 3 Detailed views of the averaged combined WSS for North America, Europe, and Siberia (upper f.
	Fig. 4 Percentage of processed reaches with Water Surface Slope (WSS) results per Pfaffstetter level 4 basin.
	Fig. 5 Average number of days with WSS results per Pfaffstetter Level 4 basin.
	Fig. 6 Combined water surface slope (WSS) variation.
	Fig. 7 Combined water surface slope (WSS) variation details.
	Fig. 8 Percentage of processed reaches with missing ICESat-2 ATL13 data per Pfaffstetter level 4 basin.
	Fig. 9 Averaged combined water surface slope (WSS) extremes.
	Fig. 10 Averaged combined water surface slope (WSS) by reach elevation (left) and reach width (right).
	Fig. 11 Mean number of observation days (left) and processed reaches with Water Surface Slope (WSS) results (right) by mean cloud fraction.
	Fig. 12 Mean number of observation days, WSS result ratio, and mean WSS variation per reach width grouped by 10% percentiles and river morphology.
	Fig. 13 Correlation coefficient between IRIS average combined WSS and SWORD WSS from MERIT Hydro per Pfaffstetter level 4 basin enclosing more than 5 reaches covered with WSS results.
	Fig. 14 Bias (SWORD - IRIS) between IRIS average combined WSS and SWORD WSS from MERIT Hydro per Pfaffstetter level 4 basin enclosing more than 5 reaches covered with WSS results.
	Fig. 15 Root mean square deviation (RMSD) between IRIS average combined WSS and SWORD WSS from MERIT Hydro per Pfaffstetter level 4 basin enclosing more than 5 reaches covered with WSS results.
	Fig. 16 Probability density of the IRIS average combined WSS per climate zone.
	Fig. 17 Probability density of the IRIS average combined WSS per freshwater habitat.
	Table 1 Input data for the IRIS dataset.
	Table 2 Contents of the resulting IRIS dataset.




