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Abstract.  Automated progress monitoring builds an important foundation for objective productivity 
analysis of construction processes. Digital twins of the construction phase rely on fully automated 
approaches to acquire near real-time progress information. This is essential for identifying 
bottlenecks during construction and supporting future project planning. Many existing vision-based 
methods lack automated image acquisition, fast computation times, or fine-grained progress 
information. This paper presents a new vision-based construction monitoring approach that reduces 
the geometric information provided in exchange for a higher time resolution and a higher level of 
automation. Instead of the detailed geometry, the real-time status of the building elements is 
provided. It is applied to cast-in-place concrete columns, identifying individual operational steps. 
The approach is based on projecting building elements from a building model onto images of a fixed 
on-site camera to then classify them according to the current element status with the help of a CNN. 
Using image sequences additionally allows accounting for moving objects and other outliers, which 
makes the approach robust and reliable. 

1 Introduction 
Construction projects are considered to be successfully finished when they are completed 
within the planned time and cost and the resulting building complies with specified quality 
standards (Bannerman, 2008). Continuous progress monitoring is paramount to identify 
deviations from the plan as early as possible and initiate timely countermeasures.  
Traditionally, progress information is collected and documented by hand, which is very time-
consuming and error-prone, especially for large construction sites. Recently, many researchers 
have focused on automating the monitoring process with computer vision-based approaches. 
As Rehman et al. (2022) pointed out, many of these approaches rely on construction site images 
used for a photogrammetric reconstruction of the building that is compared against the as-
designed building model. However, full automation has yet to be accomplished in data 
collection and processing. For example, regular site visits are necessary to capture construction 
site images, e.g., with the help of a drone. This introduces significant manual effort and does 
not comply with applications that require continuous progress information.  
In digital twin construction (Sacks et al., 2020) and productivity analysis, up-to-date progress 
information is very relevant since many use cases rely on information about the building 
elements already built. Here, most use cases other than those directly concerned with detailed 
geometric deviations and defects benefit more from rough status information in high time 
resolution than from highly detailed geometric information provided in limited time intervals 
(Mediavilla et al., 2021).    
This paper presents a new construction monitoring approach that reduces the geometric 
information provided in exchange for a higher time resolution and a higher level of automation. 
Instead of the detailed geometry, the real-time status of the building elements is provided. The 
developed vision-based approach is validated with a proof-of-concept implementation limited 
to the progress monitoring of the shell construction of high-rise buildings. Fixed on-site cameras 
with known positions are used to superimpose expected building elements onto the captured 
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images and identify regions of interest. These regions are classified by a Convolutional Neural 
Network (CNN) according to the current status of the building elements into the classes not 
started, rebar, formwork, and finished. The developed approach is applied to cast-in-place 
concrete columns and slabs in the case study. It is tracked how the status of building elements 
changes in consecutive images, which allows for using outlier removal in a post-processing 
step. This makes the outcome of the automated progress monitoring more robust and reliable. 

2 Related Work 

Automated progress monitoring of construction sites is a very active field of research, partially 
because the construction industry still has a lot of potential for improvement in productivity and 
efficiency. In this area, image-based approaches have gained a lot of attention. Compared to 
other sensors, cameras are relatively affordable, and the image quality has significantly 
improved over the last few years (Fini et al., 2022). Moreover, drones have facilitated making 
images from otherwise unreachable points of view. Existing image-based progress monitoring 
methodologies are discussed, emphasizing their degree of automation, capabilities of near real-
time progress updates, and possibilities to detect individual construction steps, to set the present 
paper in the context of the current state-of-the-art. All publications focus on shell constructions 
of high-rise buildings. 

Rehman et al. (2022) show that many researchers rely on photogrammetric reconstruction 
through Structure from Motion (SfM) techniques for progress monitoring. A 3D representation 
of the construction site can be reconstructed by identifying geometric features on several images 
from different angles. For example, Golparvar-Fard et al. (2015) create point clouds from 
unstructured images taken by site personnel. These are overlaid with the as-designed BIM 
model. Based on a voxel grid, locations with expected building elements are checked for the 
existence of points in the reconstructed point cloud. Depending on the number of points 
detected, the building elements are either assigned with the status existing or not existing. With 
this approach, formwork is falsely classified as a finished building element. In contrast, Braun 
et al. (2015) match individual points to expected element surfaces to confirm their existence. 
Here, thresholds are adjusted, and colour information from the images is analysed to distinguish 
between concrete and formwork surfaces. However, photogrammetric reconstruction is 
generally a time-intensive process with specific requirements for the image dataset. Its 
application for real-time monitoring is hindered by long computing times and the manual effort 
required to acquire the image dataset through drone flights or smartphone images. Furthermore, 
identifying additional construction steps like the installed rebar is challenging because the point 
cloud resulting from SfM is sparse and noisy (Reja et al., 2021). 

Besides photogrammetric reconstruction, other researchers directly analyze individual images 
or image sequences. A few selected papers are introduced and compared based on the used 
camera setup, their method to align the as-designed BIM model with reality, and their progress 
monitoring methodology.  

Fini et al. (2022) apply progress monitoring to prefabricated wooden slab panels. Using a fixed 
camera on a tower crane, they capture images of the building from a top-down angle. By 
aligning the images with the as-designed 2D floor plans, they can detect the time when 
individual slab panels are installed and measure productivity but do not consider vertical 
elements like walls and columns. Also relying on a single camera fixed on the construction site, 
Wang et al. (2021) monitor the progress of installing precast concrete wall elements. With the 
help of various neural networks, they perform object detection, instance segmentation, and 
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multiple object tracking. Their alignment of the BIM model and reality is based on identifying 
the wall axes on a horizontal plane. As output, their tool detects the time when the wall elements 
are installed, including the moment when the tower crane moves them. Ibrahim et al. (2009) 
have yet another approach using a fixed construction site camera. They project the elements 
from the BIM model onto the camera images. Using the image masks of the building elements 
as areas of interest, they observe changes in pixel neighbourhoods. Many changes followed by 
a long changeless period are interpreted as a finished element. No further distinction between 
individual construction steps is made. Furthermore, changes introduced by moving equipment 
and construction personnel make the reliability of the results questionable. Also mapping the 
elements of the BIM model onto individual images, Vincke and Vergauwen (2022) identify the 
displacement of concrete columns. Opposed to the previous approaches, they manually take 
images of the construction site from various viewpoints. First, selecting optimal images to 
detect column displacement, they compare the expected column location with its actual location 
to identify deviations of 5 mm and above. Focusing on column displacement, they do not 
propose a methodology to recognise the existence of a particular column but take it as given. 
Kargul et al. (2015) approach progress monitoring from the side of the construction equipment. 
Through the internal sensors of a pile boring machine, they evaluate the progress of bored piles. 
However, such an approach is not feasible for building elements that require primarily manual 
work for the installation process. All discussed methods are summarized with further details 
about the needed computation time in Table 1.  

Table 1: Comparison of state-of-the-art vision-based progress monitoring. 

Reference Data 
Acquisition 

BIM-reality 
alignment 

Building 
elements 

Operational 
steps 

Computation 
time 

Fini et al. (2022)  Fixed camera 
Match 2D plan 
with top-down 
image 

Wooden slab 
panels 

Existing / 
not existing < 30 sec. 

Ibrahim et al. (2009) Fixed camera Project BIM 
onto image Not specified Existing / 

not existing > 20 min. 

Vincke et al. (2022) Images taken 
manually 

Project BIM 
onto image 

Concrete 
columns - > 15 min. 

Wang et al. (2022) Fixed camera Axis network Prefabricated 
walls 

Moving / 
installed Real-time 

Kargul et al. (2015) 
Internal 
sensors of 
equipment 

GPS 
(presumably) Bored piles 

Not started / 
drilling / 
concreting / 
finished 

Not specified 

The state-of-the-art shows that none of the existing approaches can detect all relevant 
operational steps of cast-in-place concrete shell constructions in near real-time. This type of 
information, however, is valuable for detailed productivity analysis and identification of 
bottlenecks within construction sequences as part of a digital twin of the construction phase. 

3 Methodology 
At first, the proposed methodology to fill the identified gap in the state-of-the-art is 
summarized, showing the complete workflow for the image sequence of a single camera. In the 
subsequent subchapters, the individual components are explained in more detail. Furthermore, 
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it describes how the methodology is extended to include rough detection of cast-in-place 
concrete slabs to cope with multi-storey shell constructions. 

3.1 Overview 
As the primary data source, a fixed on-site camera captures images in short intervals. It is 
assumed that the external and internal camera parameters are known. The as-designed BIM 
model is also required in the form of an IFC file containing a reference to a geodetic reference 
system. Knowing the location of the camera and the expected location of the building elements 
from the IFC file, the elements are projected into the camera’s 2D image plane. This is done 
using the approach described in Braun et al. (2020). The image areas that are covered by 
expected elements from the BIM model correspond to the areas of interest. Image sections are 
cut out from the original image for every column, reflecting slightly enlarged areas of interest, 
using rectangular bounding boxes. 
In the second step, the image sections are fed to a CNN to be classified according to the current 
status of the contained cast-in-place concrete column. The CNN was trained using images of 
concrete columns collected on various construction sites and is expected to be reused for new 
construction projects without additional training. The previously described steps are executed 
for all potentially visible columns on the image, repeating the process for all following photos 
of the same camera. Through a post-processing step, noise and outliers are removed. This is 
based on observing consecutive image sections and applying knowledge about the expected 
sequence of construction steps. The complete workflow is visualized in Figure 1. The grey 
boxes with numbers refer to the corresponding chapters that explain the module in further detail.  

 

Figure 1: Workflow diagram of the proposed methodology. 

Analyzing the status of all concrete columns throughout a construction project complemented 
with an algorithm for slab detection allows the automatic creation of the as-performed schedule 
of the shell construction. This comprises information about individual construction steps' start 
and end dates and can be compared with the as-planned schedule. Since the goal of the proposed 
approach is to identify deviations from the as-planned schedule, as-planned information was 
intentionally not integrated into the workflow to ensure that the result will be unbiased. 

3.2 Extraction of Elementwise Image Sections 
For automated data collection for progress monitoring, a fixed camera is placed on a tower 
crane, a neighbouring building or a similar location that provides a good overview of a large 
part of the construction site. With a router and a local server on-site, the images are sent to a 
remote server to make them accessible over the web. For more details regarding the proposed 
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data-capturing system, please refer to the hardware setup described in Collins et al. (2022). For 
the present paper, it is assumed that the external and internal camera parameters are known.  
With the known camera position relative to a geodetic reference system and the internal 
parameters, together with a geolocated IFC file, the three-dimensional building elements from 
the IFC model are projected onto the 2D plane of the camera. This can be achieved by 
multiplying the original 3D coordinates with rotation and translation matrices that transform 
the coordinates into the local coordinate system of the camera, as described by Braun et al. 
(2020). The IFC model does not include any 4D information. For this reason, all potentially 
visible columns are projected onto the image independent of their expected construction time. 
The areas of the image overlaid with element projections are the regions of interest, while one 
region always corresponds to an individual column. For every region, the minimal axis-aligned 
bounding box is calculated and slightly enlarged to account for minor movement of the camera. 
This is also necessary to ensure that the top and bottom parts of the column are entirely included 
in the bounding box and easily distinguishable from the background. They are relevant features 
for the following image classification. Based on the bounding boxes, sections from the original 
images are extracted and treated as small images. 

3.3 CNN for Column Status Classification 

After extracting the image sections that contain one column each, they need to be classified 
automatically according to the current status of the column. In the context of cast-in-place 
concreting, the operational steps comprise placing the rebar, installing the formwork, pouring 
the concrete and removing the formwork in the given order. Considering the chosen approach, 
the phases to be identified are not started, rebar, formwork, and finished. Some examples of the 
four stages are shown in Figure 2. 

A Convolutional Neural Network was selected to perform this classification task. Neural 
networks provide very time-efficient automated evaluation methods, which are relevant for the 
near real-time analysis of construction images. More specifically, CNNs are well-suited for 
image classification tasks. Several existing CNN models trained on large image datasets can be 
used as a starting point to be further trained with use case-specific data sets, also referred to as 
transfer learning. Compared to other types of neural networks, CNNs have a relatively low 
number of parameters that need to be trained, which allows for achieving good results even 
with small image data sets (Rehman et al., 2022; Hussain et al. 2018). 

 

Figure 2: Four construction phases displayed in the example of a group of six concrete columns.  
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For the column classification, various neural networks were tested that were pre-trained on 
large online datasets. These networks served as a baseline and were adjusted by changing the 
topmost network layers through training with a column-specific dataset. The tested network 
architectures were VGG16, MobileNetV2, ResNet50V2, InceptionV3, and EfficientNetV2, 
from which ResNet50V2 performed best. From its 190 network layers, the fifty topmost 
network layers were retrained using a dataset collected by the authors. It contains roughly 2000 
images of columns from various European construction sites. In the dataset, columns with the 
status not started and finished are overrepresented. Therefore, weighting of the four classes is 
applied to give every class the same importance in the training process. Of the complete dataset, 
80% of the images of every class were used for the network training, while the remaining 20% 
were used for testing. Training the model for 50 epochs and restoring the model with the lowest 
validation loss after 47 epochs results in an overall accuracy of 95.64%. The accuracy and loss 
functions and the final confusion matrix are displayed in Figure 3. 

 

Figure 3: Accuracy and loss function, and confusion matrix of the trained CNN model using the 
ResNet50V2 network architecture pre-trained on the ImageNet dataset. 

With the help of the trained CNN, the extracted image sections of all consecutive images are 
classified according to their current appearance. The predictions are stored in an object-oriented 
class structure, grouping columns by the storey and adding pairwise status entries, including 
the timestamp and status for every column and each image. 

3.4 Detection of Phase Start and End Points  

Several influencing factors result in erroneous status predictions. Beside the imperfect CNN 
prediction, the lighting conditions have a considerable impact on the appearance of the columns. 
Even though images of varying brightness were included in the training dataset, the influence 
of the lighting conditions cannot be eradicated. Furthermore, moving objects and clutter on the 
construction site make it more challenging to classify image sections correctly. Especially 
during ongoing construction works of a specific column, there is a high activity of construction 
workers and heavy machinery in the surrounding area. These and other reasons make it difficult 
to correctly identify the exact point in time when a column changes its status. For example, 
Figure 4a depicts the progress of a single column over time based on analysing several hundred 
images. The horizontal axis represents the temporal evolvement. It is discretised through the 
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points in time at which images are captured. The vertical axis describes the columns’ progress. 
It is not to be seen as a specific percentage to which the column is finished but has discrete 
values for every different type of status. The values increase in the order in which the statuses 
occur. However, due to the mentioned classification errors, the predicted progress over time 
includes undesirable irregularities. 

 

Figure 4: a) Predicted progress of a single column over time, including prediction errors; b) Corrected 
progress predictions of a single column. 

Knowing the order in which the column phases occur helps to reevaluate the prediction results 
and correct them to a certain degree. To apply the correction, for every stage, the optimal time 
interval is identified that is as large as possible and contains the largest number of predictions 
of the current phase of interest while at the same time minimizing the number of predictions of 
all other stages within the interval. Once they are identified, the transition between them must 
be assigned to one of the neighbouring intervals. The exact transition point is determined by 
minimizing the number of predictions that need to be changed due to the correction algorithm. 
Following this principle, all transition points between the phases are identified. Finally, the 
status predictions are corrected so all images within the identified intervals are assigned to the 
same status. Applying the described algorithm to the exemplary column in Figure 3 results in 
the corrected progress diagram shown in Figure 4b. 

3.5 Multi-storey Progress Monitoring  

Considering shell constructions with multiple floors, it is necessary to identify when slabs are 
built to change the column projections from one floor's columns to the next floor's columns. 
Due to the large extent of the slabs and the broad range of shapes, applying the same approach 
as for the concrete columns is impossible. The transition from one phase to the next can take 
multiple hours or even days, making it highly questionable to use discrete progress status values 
the same way it was done for columns. Nevertheless, a simplified slab detection algorithm was 
implemented to evaluate the progress of multi-storey buildings. As soon as all columns of a 
specific floor are detected to be finished, the slab detection algorithm is started. Once the 
predictions of the majority of the column statuses changed from finished to not started, it can 
be assumed that the slab is currently under construction since the formwork of the slab blocks 
the view of the columns beneath it. In this event, the column projections are updated with the 
projections of the columns of the following floor, which also updates the bounding boxes for 
creating image sections. 
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4 Case Study 

4.1 Project Description and Setup 

A construction site of a hospital building in Spain was used as a case study to validate the 
proposed workflow and report on its accuracy. For this, a surveillance camera was installed on 
the tower crane to capture the building’s progress of the shell construction, containing columns 
and slabs over several months. During working hours, the camera captured one image roughly 
every one and a half hours. For real-time monitoring, this time interval is rather long. However, 
the number of images is sufficient for the first validation of the approach. The construction 
company provided a geo-referenced IFC file used to project expected columns onto the camera 
images. The automated progress monitoring was tested on two of the building’s stories with ten 
columns each. 

4.2 Results and Discussion 

During the monitoring period of roughly two months, 5200 image sections were automatically 
analysed, each containing a single column. This excludes all image sections where columns 
cannot be built yet because the slab beneath is not finished or the column is not visible anymore 
since the slab on top is already built. As a basis for comparison, all images were inspected by 
the human eye to create the ground truth of the progress of the concrete columns over time. 
Evaluating the classification of the CNN on the image sections without any alteration, the 
achieved accuracy is 89%. The reasons for a deviation of 6.5% in comparison to the accuracy 
of the column test dataset are explained later in this section. After applying the outlier removal 
described in Chapter 3.4, the accuracy was raised to 96.8%. 

To visualise the results of the automated progress monitoring software, it contains a UI module 
that creates a Gantt chart based on the evaluation results using Syncfusion Blazor. A screenshot 
from the user interface is shown in Figure 6. The chart directly compares the ground truth 
against the automatically created results. The short bars represent one column each, showing 
the time of their first detection as rebar until completion. The longer bars belong to the slab 
construction and the parent processes, like building the complete stories or the complete 
construction site, respectively. When the ground truth and the automated evaluation coincide, 
the bar section is coloured in dark blue. The bar is coloured in light blue for the parts where the 
automatic evaluation results in longer construction times than the ground truth and in grey for 
the other way round. The detection of the two slabs is currently only implemented in a 
simplified way, giving a single instance of time rather than the whole construction period. The 
Gantt chart also includes sub-processes for all individual operational steps of columns, which 
are not shown in Figure 5 because of the limited space. 
Analysing the results, it becomes clear that the overall methodology is feasible. However, it is 
also evident that there is still room for improvement. While the complete time of the 
construction of the columns was roughly detected, some transitions from one status to the next 
are detected more reliably than others. The transitions from the status not 
started to rebar sometimes turned out to be hard to detect since the CNN can easily mistake 
surrounding clutter with linear shape with the narrow rebar. This type of error can be observed 
in Figure 6 on all columns that start with a light blue section on the left. Similarly, the 
status formwork and finished can look very alike. In bad lighting conditions, the material 
structure of the formwork is hardly visible and mistaken for a finished column. For this reason, 
some columns are predicted to have been finished earlier than they were (see columns in Figure 
6 with a grey section on the right end of the bar). Overall, two primary sources of erroneous 
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progress detection were identified. Firstly, some images were taken during challenging lighting 
conditions, even including some images taken late in the evening and therefore being almost 
entirely black. Second, the ongoing construction activities using movable scaffolding and 
depositing construction materials and formwork close to the location of expected columns also 
led to misclassification. Combining these two factors, it was sometimes challenging to correctly 
classify the image sections, even with the human eye. 

 

Figure 5: Ground truth schedule and automatically generate schedule in comparison. 

Finally, it should be critically mentioned that the proposed approach only identifies the needed 
time, starting with placing the rebar up until the completion of the column. It does not enable 
us to identify the time construction workers spent actively working on the column. In that case, 
the focus needs to be shifted to detecting the workers and identifying their interaction time with 
a particular column. This requires a different methodology. Nevertheless, the presented 
approach can provide times of status changes that already allow to significantly narrow down 
the time spans when the workers’ activities should be carefully assessed. 

5 Future Work  
This paper presented a new methodology using fixed construction site cameras to automatically 
detect the progress of cast-in-place shell constructions, including the individual construction 
steps, in near real-time. Opposed to many existing approaches, the focus lies on capturing rough 
status information in high time resolution instead of a geometrically accurate as-built model, 
which cannot be created multiple times a day for several reasons. Aggregating the status 
changes of all elements over time allows us to automatically create the as-performed 
construction schedule of the shell construction that is of immense value for, e.g., digital twin 
applications of the construction phase for progress and productivity analysis.  
The presented implementation focused on concrete columns as primary elements. The 
workflow should be extended to concrete walls in the future since they also form an essential 
part of the shell construction. Additionally, the accuracy and completeness of the progress 
monitoring system could be improved, e.g., by analyzing images from several cameras 
simultaneously and fusing the contained progress information. 
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