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Abstract. In this paper we introduce a transformer-based system that reconstructs a 3D building 

model from line drawing of building facades. Specifically, we generate the dataset of drawings 

from 3D geometric models of houses and extract the rendered lateral views associated with the 

relative depth map. The dataset is used to fine-tune the Dense Prediction Transformer model to 

learn the depth maps of singular views. Each depth map predicted from the transformer model 

is combined with the relative lateral view and converted into a point cloud. Using plane 

detection and rigid transformations of the points, we implement a recombination mechanism 

that aims to correctly reconstruct the building geometry. We develop a hybrid recombination 

system that combines the predicted depth maps and the orthogonal projection in the 3D space 

of the point clouds to correct imprecisions of the point conversion. Finally, we regenerate the 

mesh corresponding to the recovered point cloud using a patch-based Delaunay triangulation. 

1 Introduction 

Despite the tremendous advances in building information modelling in the last decade, technical 

drawings (i.e., building plans) are still the primary communication medium between 

architects/engineers and contractors. The content of the drawing includes in detail the structure 

and features of the building elements, being illustrated in a standardized way. In complex 

projects, many technical drawings are available to represent all aspects of a building at various 

levels of detail. The software used to create these drawings imitates the centuries-old way of 

working using a drawing board. 

However, line drawings cannot be comprehensively understood by computers. The information 

they contain can only be partially interpreted and processed by computational methods. Basing 

the information flow on drawings alone therefore fails to harness the great potential of 

information technology for supporting project management and building operation. A key 

problem is that the consistency of the diverse technical drawings can only be checked manually. 

This is a potentially massive source of errors, particularly if we take into account that the 

drawings are typically created by experts from different design disciplines and across multiple 

companies. Design changes are particularly challenging: if they are not continuously tracked 

and relayed to all related plans, inconsistencies can easily arise and often remain undiscovered 

until the actual construction – where they then incur significant extra costs for ad-hoc solutions 

on site. In conventional practice, design changes are marked only by means of revision clouds 

in the drawings, which can be hard to detect and ambiguous. 

The limited information depth of technical drawings also has a significant drawback in that 

information on the building design cannot be directly used by downstream applications for any 

kind of analysis, calculation, and simulation, but must be re-entered manually which again 

requires unnecessary additional work and is a further source of errors (Borrmann et al., 2018). 

The same holds true for the information handover to the building owner after the construction 

is finished. He must invest considerable effort into extracting the required information for 
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operating the building from the drawings and documents and enter it into a facility management 

system. 

This is where Building Information Modeling comes into play. By applying the BIM method, 

a much more profound use of computer technology in the design, engineering, construction, 

and operation of built facilities is realized. Instead of recording information in drawings, BIM 

stores, maintains and exchanges information using comprehensive digital representations: the 

building information models. Developing methods to interpret 2D drawings of a building to 

create a 3D BIM representation would allow to combine conventional drawing-based 

workflows with modern BIM technology and open the possibility to create building models for 

existing facilities where only drawings are available.  

Multiple families of methods were proposed in the literature already since 2005, entailing rule-

based 3D reconstruction from orthographic views, convex optimization-based reconstruction 

from multi-view capturing, shape matching from database. A significant boost to the field took 

place with the rise of deep learning. Since the derivation of rulesets for shape estimation is 

extremely complex for most designs, networks translating photorealistic images to shape from 

shape where designed. Especially the adoption of attention networks in the multi-view setup 

yielded promising outcomes. However, most of the aforementioned methods require multiple 

views of the object or light reflectance information. 

In this paper, we introduce a novel method to create a 3D building model from simplistic line 

schematics corresponding to distinct perspective views of the edifice using the content of facade 

drawings that represents only the exterior visible information of the construct. The views have 

a difference of 90 degrees between them. A depth prediction transformer trained with transfer 

learning and used to derive depth information allowing for the indicative estimation of point 

cloud data relevant to the 3d surface. The four generated point clouds corresponding to each of 

the side views are subsequently recombined to form the joint point cloud and surface. This 

paper presents the first step towards full BIM model reconstruction from drawings considering 

the exterior reconstruction as initial stage of the procedure.  

2 Related Work 

3D reconstruction from multiple images is the creation of three- dimensional models from a set 

of images. It is the reverse process of obtaining 2D images from 3D scenes. The problem is ill 

posed since the image does not give us enough information to reconstruct a 3D scene. This is 

due to the nature of the image forming process that consists of projecting a three-dimensional 

scene onto a two-dimensional image. During this process, the depth is lost. The points visible 

in the images are the projections of the real points on the image.  

Several methodologies have appeared in the literature already from 2005. Lee et al. (2005) 

devised a rule-based ensemble of methods to reconstruct the 3D shape of CAD models given 

individual orthographic line drawings. Yet complex manually derived decision trees are 

required to process not only the visibly defined part but also information relevant to the inner 

parts of the model. Multiview volumetric silhouette extraction was proposed by (Liu et al. 2006) 

with the derived models failing in the case of non-convex shapes. Kolev et al. (2009) proposed 

convex optimization in a multi-view setup (16 to 47 images) achieving high object 

completeness (91%-99%) and accuracy (0.53mm-1 mm). However, their methods required a 

high number of images from multiple angles in high compute times (55m -10h). Xue et al. 

(2012) proposed shape matching from a 3D shape database to reconstruct the 3D geometry of 

a line drawing depicting visible and non-visible line segments. Mildenhall et al. (2020) 
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proposed the Neural Radiance Field based method proposing a fully connected neural network 

that can generate views of complex 3D scenes, based on a partial set of 2D images. It is trained 

to replicate input views of a scene using a rendering loss. Wang et al. (2021) presented a 

Transformer based method using as input 12 to 24 views of objects to reconstruct a voxel 

representation of the initial object achieving high quality results. Yet their method required 

multiple shaded views from multiple angles. Peng et al. (2022) achieved similar outcomes using 

an updated transformer-based architecture with just three colored views. 

3 Methodology 

3.1 Dataset Creation 

The process follows the creation of the dataset from the geometry of 3D models of different 

buildings. The collection of buildings is the House3K dataset (PERALTA 2020) that is divided 

into twelve distinctive styles of building, each containing 50 house geometries created 

procedurally. For each batch, five different textures were applied forming the sets. In the scope 

of the geometry the textures are excluded and only models with different geometry were 

adopted in the research. The extraction of the sketches is done with the 3D modelling software 

Blender. The process of the dataset creation is automated in such a way that the software 

imports the model, rotates the geometry four times and for each rotation it extracts the view 

captured from the camera and the relative depth map. The rendering of the camera is aided by 

the plug-in Freestyle that renders the image in a non-photo-realistic manner to represent the 

view in a technical drawing style. The system is designed to automatically resize the 3D model 

to fit the camera view and maintain the same camera settings for a uniform reconstruction for 

all the samples in the database.  

 

Figure 1: The dataset creations automatically extract each lateral view from the model with the relative 

depth map. 

3.2 Depth prediction  

The architecture for estimation of the depth is the Dense Prediction Transformer (DPT) model, 

the overall structure follows the encoder-decoder architecture using vision transformers as 

backbone (Ranftl, Bochkovskiy and Koltun, 2021). Vision transformer is used as encoder and 

it creates patches from the image, operating on bag-of-words manner. Each patch is embedded 

in a feature space and transformers operate on them using multi-headed self-attention (MHSA) 

that compares each element with others in the image on a global setting. The multi-headed self-

attention computes in parallel multiple attention modules, passes the results to a final head  
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Figure 2: Encoder-decoder with a transformer backbone as encoder. The decoder reassembles features 

from the transformers and converts them for the final dense predictions. 

where the final attention is computed to produce the attention score; this mechanism accounts 

the possibility of each patch to influence others in the image and aids the prediction based on 

this feature. The base transformer processing is repeated multiple times in parallel on the image 

to extract features on different resolutions of prediction. Each output is reassembled from the 

patch level to an image-like representation given the positional encodings from the original 

input. From the parallel execution of multiple attention modules, the reassembled elements are 

multiple, referring to the same input and representing different resolutions of the image. The 

last part of the neural network consists in the fusion of the multi-resolution elements with a 

spatial-concatenation operation of the original feature dimension. Technically, the up sampling 

of the matrix is obtained with a series of transpose convolutional layers adapted to the relative 

resolution of each feature. The model was originally trained on common depth prediction tasks 

i.e., ADE20K, NYUv2, KITTI, and reached state of the art in Pascal Context. 

One of the main difficulties adopting this model is the problem of fine-tuning it on smaller 

datasets given the fact that the model was trained with an affine-invariant loss, that means that 

the predictions are arbitrarily scaled and shifted leading to mismatch on the magnitude of the 

prediction that dominate the loss function. To overcome the problem, the fine-tuning has been 

achieved with a scale and shift invariant loss function. The loss function computes scale and 

shift for the input and the target, applies this change to the input and computes a custom loss 

combining the mean squared error, a gradient based loss, and a regularization loss. The effect 

of this adjustment. The four perspectives produced by the neural network are fed into the 3D 

reconstruction, which combines them to create the model's surface. Prior to training the neural 

network to judge the proper reconstruction process, the data pipeline was created using the 

ground truth depths. 

3.3 Multi-view reconstruction 

Each view is converted in the point cloud using the pinhole camera settings used in the dataset 

creation algorithm. Given depth value d at (u, v) image coordinate and the depth scale, the x 

and y focal length of the camera (fx and fy) and the x and y principal points offsets (cx and cy), 

the corresponding 3d point is defined as follows: 
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𝑧 =  𝑑 / 𝑑𝑒𝑝𝑡ℎ 𝑠𝑐𝑎𝑙𝑒 

𝑥 =  (𝑢 –  𝑐𝑥) ∗  𝑧 / 𝑓𝑥 

𝑦 =  (𝑣 –  𝑐𝑦)  ∗  𝑧 / 𝑓𝑦 

The image is a black and white 2D matrix and the depth map has the same structure representing 

the distance to the camera for each matrix element. Every pixel of the image is combined with 

the relative predicted depth from the depth transformer network and applying the reverse 

transformation taking into consideration the pinhole settings of the generator camera give the 

three dimensions of each point. The assumption of this element is the ability of the neural 

network when trained enough to convert unseen images in the settings on which the algorithm 

reconstructs a 3D representation. 

The transformation in point clouds accounts for the deformations generated by the perspective 

views and transforms the points in an orthogonal reference system. The building's façade can 

always be precisely recreated using the point cloud generated from the ground truth data, 

however this is not always the case when using the depth created by the neural network. The 

edges represent a point of transition between two different depth regions in the training data, 

and the model predicts a fuzzy distinction between those two different depth areas, which makes 

it complicated for the network to predict the depth of edges points exactly. As a result, the point 

cloud is created with noise, which causes mistakes in the 3D reconstruction. While the model 

learns through a scale-and-shift invariant loss that reduces the magnitude difference between 

the pre-trained samples and fine-tuned dataset, another problem that occurs when applying the 

depth estimate from the neural network is the lack of precision in the absolute values of depth. 

The networks successfully learn how to rebuild the surface's relative depths but can only 

approximate the actual distance from the camera that would result in a flawless surface 

reconstruction. 

 

Figure 3: Intermediary steps of reconstruction from the initial drawings to the aggregation of the point 

clouds 

We employ a reconstruction process to clean up the point cloud, match the various viewpoints, 

and reconstruct the 3D model to address these issues brought on by the neural network's 

prediction inaccuracies. Given the structure of the house that are structured of rectangular 

shapes we use RANSAC to extract the fundamental surfaces in the point cloud excluding the 

noise points and the background. The RANSAC algorithm is an iterative method that optimizes 
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plane fitting in a set of points removing outliers (Derpanis, 2010). We adopt a multi-iterative 

RANSAC algorithm to fit multiple planes on the point cloud and then remove the group of 

points that account for less than 5% of the total number of points in the cloud. This allows to 

remove points that are still undesirable from the correct reconstruction of the façade but follow 

a structured path in the point cloud.  

From the specifics of the dataset construction, in case of perfect estimation of the depth map of 

each view, the reconstruction would require the simple rotation of each view in the point of 

mass of the complete surface. It is not the case for the predicted depth map, since the network 

learns from a scale-and-shift loss and does not forecast the correct absolute distance from the 

camera for data that was not used for training. A collision or a gap between the facades results 

from an erroneous combination of the facades caused by the lack of accuracy in the absolute 

distance.  

Because the point clouds in this scenario do not share enough common points across the various 

viewpoints, established approaches for point cloud registration like Iterative Closest Point and 

Coherent Point are ineffective. The edges points connecting one orthogonal façade to the other 

are the only elements they share. Nevertheless, the network loses accuracy at the same precise 

locations that are necessary for connecting the two contiguous point clouds, making it 

exceedingly difficult to accomplish an effective registration.  

To reconstruct contiguous views, we define a rule-based method based on prior knowledge 

specific to dataset construction. To meet the connection criteria, the edges of each view must 

be connected. To accomplish this, the point cloud is divided based on the values of the y-axes, 

and the points closest to the delimitation line on the maximum or minimum of the reference 

axis are then extracted. This allows us to simply retain the points required for the best 

reconstruction, and it also produces a proxy point cloud for the registration sub-task that should 

resemble the original one.  

Each view has two sets of vectors representing the most exterior points in the left and right part 

of the points cloud, which in the initial image would represent the black edges of the drawing. 

To have a first correct disposition of the point clouds, we iteratively minimize the distance of 

the vectors using rigid transformations of the points. This makes it possible to have an improved 

initial setting point distribution that more closely resembles the original model, each view is 

still not perfectly aligned because there are still gaps and incongruencies. 

On top of the first rigid transformation algorithm, we develop another reconstruction step based 

on the projections of the edges in the orthogonal setting. The algorithm excludes the first and 

last percentage of each drawing and recreates the missing part with an orthogonal projection of 

the edges of the central part of the point cloud. The two views to merge are divided into vertical 

patches and every patch is projected with the other one, on the collision of the planes 

corresponding to each patch the 90-degree point cloud is generated.  

3.4 3D Mesh creation 

The 3D reconstruction is defined as a surface reconstruction given the reconstructed point 

cloud. We create a mesh from the point cloud using the two-dimensional Delaunay filter on the 

set of points (Fortune et al. 1995). Delaunay triangulation creates convex meshes, the model of 

the houses that we are trying to reconstruct have very often concave elements in it. To overcome 

the limitation of the triangulation algorithm we define a rule-based approach for the 

reconstruction. We implement a multi RANSAC plane detection on the figure: we split the 

overall point cloud in different primary geometric planes and then we run the triangulation on 



7 

 

vertical patches of each resulting plane from the RANSAC algorithm. Since the Delaunay 

triangulation optimizes the triangulation on points generating a convex mesh, we divide our 

complex geometry in convex primary planes and then reassemble the sub-divided elements to 

obtain the model. The final output is a geometrical mesh that stores the points and the triangular 

faces generated by the triangulation. In this way we avoid the convexity of the created mesh 

and ensure similarity with the target point cloud. 

4 Experimental evaluation 

4.1 Simulation setup 

For the creation of the dataset 2D views of 3D models are captured via pinhole camera with 

focal length 𝑓𝑥 = 711.11 , focal length, 𝑓𝑥 = 1066.66 and principal point o = [256,256]. To 

generate each side view, we rotate the object around the z-axis by 90°´around the center of 

mass and rotation origin (0,0,0). In total the data is comprised of 1800 images with dimensions 

512x512 pixels equally distant from the camera in the rendering program.  

The images in the custom dataset are synthetically made and do not resemble actual scenes 

captured with cameras but rather abstractive line representations of the captured object. Such 

an example is presented in Figure 5a. The object’s background was assigned a large integer 

value equal to 65504. To avoid overfitting with the background we normalized the background 

value based on the relative distance to the camera. The dataset is divided into 80% for training 

and 20% for testing. 

Pytorch is used to create the DPT-large model, which is then trained on GPU. The loss function 

is a combination of mean squared error on projected depth using the scale and shift 

transformation and a regularization loss with alpha 0.5 based on gradient loss. The results are 

extracted via bicubic interpolation by the head that outputs the final depth map from the 

recombination decoder. We trained the network with a batch size of 4 and Adam with a learning 

rate of 1e-5 for the backbone and 1e-4 for the decoder weights. 

The intrinsic of the pinhole camera defines the point cloud formation. Each RANSAC plane 

detection is performed 500 times with a minimum ratio of 0.005 and a threshold of 0.00001. 

The settings have been empirically validated to identify the appropriate amount of detail on 

numerous models. To rebuild from the boundaries of the views, 30 points were sampled along 

the y-axis using a 1% threshold. Through projection, 20% of the view's exterior section is 

recreated. The statistical outlier removal method is used to repair errors in point clouds with a 

minimum of 20 points and a standard deviation ratio of 2. The 3D mesh reconstruction uses the 

2D Delaunay filter with an alpha value of 3.  
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4.2 Results 

Figure 4 presents the training and validation loss for the 

current dataset. In total the training loss decreased by 

83% and the validation loss by 53%. Qualitative 

evaluation of the model outcomes is presented in Figure 

5 where the depth prediction is evaluated for various 

training epochs. It is visible that depth prediction 

improves allowing the model to define the depth value 

of specific details also learning to represent details of 

buildings that vary significantly from the images on 

which it was pre-trained on. The model at first applies 

the deformation of perspective analysis and then learns 

the absence of floor and the main components of the building.  

 

Figure 5: Results of training on a lateral view in the test set. (a) input image to the network, (b) prediction 

of the base model, (b) prediction at epoch 0 in the training, (b) is prediction at epoch 150. 

 

 

Figure 6: Results of mean squared error between ground truth and prediction for a building in the test 

set including and excluding the background. 

Figure 4: Training and Validation loss 

on the drawings’ dataset 
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Figure 7: Results of training of 3D reconstruction from four lateral views of two different buildings 

The prediction outcomes are evaluated using the mean squared error metric. The background is 

removed from the reconstruction when the depth map is transformed to point cloud format. 

Therefore, for each view, we evaluate the prediction error including and omitting the backdrop. 

The findings from the test set of 100 images reveal a mean MSE score of 0.07414 including the 

background and a value of 0.17949 omitting these pixels from the computation. The results 

reveal that the background dominates the loss function during training, decreasing the deep 

learning model's ability to improve predictions for facades. The overall pipeline of 

reconstruction is effective but strongly dependent on precise depth predictions of the model. 

Even if the error from the prediction is low, the conversion to point cloud might bring some 

outlier that falsely reconstruct the overall geometry. The post-processing and reconstruction 

mechanisms decrease the outliers correcting the point clouds and reconstructing the parts that 

would lead to deformations of the overall structure. Figure 7 presents a qualitative evaluation 

of the final geometry reconstruction. The prediction pipeline is designed to be generic in the 

reconstruction and focused on maintaining the building's details.  

5 Conclusion and future steps 

In this paper, we presented a novel method that generates 3D buildings from line drawings 

depicting lateral views of the building. From a dataset of 3D models of houses, we developed 

an automation system that renders each side in a drawing style, extracts the depths and uses the 

data to fine-tune a transformer based deep learning model to learn the depth of each view. The 
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model learns to improve the predictions for the specific dataset, generating realistic relative 

depths but missing the correct absolute distances. To overcome this problem, each depth and 

image is converted into a point cloud, cleaned from outliers, and recombined through a hybrid 

system of predicted and projected depth. The recombined point cloud is converted into a mesh 

following a patch-based Delaunay triangulation on multiple planes of the point cloud to assess 

concavity of the final model. The results are a promising first into the processing of actual 

technical drawings that typically have significantly more “noise”. To achieve a complete 

generation of a BIM model from drawings, floorplans and sections must also be considered to 

reproduce the interior of the buildings correctly. 
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