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Abstract

This thesis explores the relationship between the method of least squares and modern

(non-)convex optimization techniques for addressing ill-conditioned and ill-posed inverse

problems prevalent in machine learning and data science. Our focus lies in leveraging

least squares to develop simple, computationally efficient and statistically robust algo-

rithms with provable guarantees for various tasks, including matrix completion, sparse

recovery, and noise-blind regression. We provide contributions in four key areas. First, we

address the convergence rate of the iteratively reweighted least squares (IRLS) algorithm

for sparse recovery, solving an open problem and demonstrating its global linear conver-

gence rate. Second, we introduce an algorithm capable of efficiently completing highly

ill-conditioned low-rank matrices using the information-theoretically optimal number of

samples. Additionally, we prove that the algorithm achieves a local quadratic convergence

rate. Our extensive numerical experiments showcase its superiority over existing methods

for statistically hard problems. Third, we extend the IRLS theory to noise-blind regres-

sion problems, where accurately estimating the noise level is challenging, and propose a

practical algorithm to tackle this scenario. Additionally, we explore the application of

ideas from overparametrized neural networks to solve constrained least squares problems

in a scalable manner, harnessing the inherent bias of gradient descent.

Zusammenfassung

Diese Arbeit untersucht die Beziehung zwischen der Methode der kleinsten Quadrate und

modernen (nicht-)konvexen optimierungstechniken zur Bewältigung von schlecht kondi-

tionierten und schlecht gestellten inversen Problemen, die im maschinellen Lernen und

der Datenwissenschaft weit verbreitet sind. Der Fokus liegt darauf, die Methode der

kleinsten Quadrate zu nutzen, um einfache, recheneffiziente und statistisch robuste Al-

gorithmen mit nachweisbaren Garantien für verschiedene Aufgaben zu entwickeln, ein-

schliesslich Matrixvervollständigung, dünnbesetzter Wiederherstellung und rauschblin-

der Regression. In diesem Sinne werden die folgenden vier Bereiche betrachtet. Als

erstes wird das offene Problem der Konvergenzgeschwindigkeit des iterativ gewichteten

kleinste Quadrate (IRLS) Algorithmus für die dünnbesetzte Wiederherstellung behan-

delt. Im Zuge dessen wird zusätzlich die globale lineare Konvergenzrate des Algorith-

mus’ demonstriert. Als nächstes wird ein weiterer Algorithmus mit lokal quadratischer

Konvergenzrate vorgestellt, der schlecht konditionierte Niedrigrangmatrizen effizient mit

der informationstheoretisch optimalen Anzahl von Stichproben vervollständigen kann.

Umfangreiche numerische Experimente illustrieren seine Performancevorteil gegenüber

3



bestehenden Methoden für statistisch schwierige Probleme. Im dritten Teil wird die

IRLS-Theorie auf rauschblinde Regressionsprobleme, bei denen eine genaue Schätzung

des Rauschniveaus herausfordernd ist, erweitert. Zuletzt werden bekannte Ideen aus

dem Bereich der überparametrisierten neuronalen Netzwerken erforscht, um Problem der

beschränkten kleinsten Quadrate auf skalierbare Weise zu lösen, indem der inhärenten

Bias des Gradientenverfahrens ausgenutzt wird.
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Del rigor en la ciencia

En aquel Imperio, el Arte de la Cartograf́ıa logró tal Perfección que el Mapa de una sola Provincia

ocupaba toda una Ciudad, y el Mapa del Imperio, toda una Provincia. Con el tiempo, estos

Mapas Desmesurados no satisficieron y los Colegios de Cartógrafos levantaron un Mapa del

Imperio, que teńıa el Tamaño del Imperio y coincid́ıa puntualmente con él. Menos Adictas al

Estudio de la Cartograf́ıa, las Generaciones Siguientes entendieron que ese dilatado Mapa era

Inútil y no sin Impiedad lo entregaron a las Inclemencias del Sol y los Inviernos. En los Desiertos

del Oeste perduran despedazadas Ruinas del Mapa, habitadas por Animales y por Mendigos; en

todo el Páıs no hay otra reliquia de las Disciplinas Geográficas.1

Suárez Miranda: Viajes de varones prudentes

Libro Cuarto, cap. XLV, Lérida, 1658. In [Bor13].

1In a free translation: On the Exactitude in Science - In that Empire, the Art of Cartography attained
such Perfection that the Map of a single Province occupied an entire City, and the Map of the Empire, an
entire Province. Over time, these Excessive Maps proved unsatisfactory, and the Colleges of Cartographers
erected a Map of the Empire that had the Size of the Empire and coincided point for point with it. Less
inclined to the Study of Cartography, the subsequent Generations understood that this vast Map was
Useless and not without Impiety they delivered it to the Inclemencies of the Sun and the Winters. In the
Deserts of the West, still today, there are scattered Ruins of the Map, inhabited by Animals and Beggars;
in all the Country there is no other relic of the Disciplines of Geography.
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Chapter 1

Introduction

Adrien Marie Legendre, Nouvelles methodes pour la

determination des orbites des cometes. Page VIII. Paris, 1805 [Leg06].1.

Since the beginning of the new millennium, we have witnessed a significant increase in data

collection, processing and analysis, accompanied by the emergence of data science as a scien-

tific discipline. To illustrate this massive growth, consider the staggering statistics for a single

minute in the year 2022: Google users conducted 5.9 million searches, YouTube users uploaded

500 hours of video, Twitter users shared approximately 347,000 tweets, Instagram users shared

66,000 photos, and people collectively spent around 104,000 hours in Zoom meetings. To put this

into perspective, a decade ago, there were roughly 2 million Google queries, 48 hours of video

uploaded to YouTube, and 100,000 tweets and 3,600 photos shared on Instagram per minute

[dat23]. Furthermore, the acquisition and processing of vast amounts of data have profoundly

impacted numerous scientific disciplines, including genomics, image and audio processing, eco-

nomics, neuroscience, environmental sciences, robotics, and computer vision, among many oth-

1In a free translation “for this purpose, the method which seems to me the simplest and the most
general, consists in minimizing the sum of the squares of the errors. We thus obtain as many equations
as there are unknown coefficients; which completes the determination of all the orbit elements. Like the
method of which I have just spoken, and which I call the method of least squares, can be of great use
in all questions of physics and astronomy where it is a question of drawing from observation the more
exact than it can offer; I have added, in an appendix, specific details on this method, and I have given its
application to the measurement of the meridian of France, which could serve as a complement to what I
have already published on this matter.”
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ers. The expectation is that this impact will continue to grow in the coming years. Indeed, as

David Donoho said in the very influential article “50 years of Data Science” [Don17], “Because

all of science itself will soon become data that can be mined, the imminent revolution in Data

Science is not about mere ’scaling up’, but instead the emergence of scientific studies of data

analysis science-wide. In various scientific disciplines, there has been a notable shift in perspec-

tive. Previously, the focus was primarily on acquiring all possible data, aligning with the notion

of “measure what can be measured”. This quote is often erroneously attributed to Galileo Galilei

(cf. [Kle09]). However, a new philosophy has emerged, as articulated by Thomas Strohmer in

the survey [Str12], advocating for the concept of “measure what should be measured”.

Ever since Johannes Kepler’s groundbreaking analysis of astronomical data and his profound

insights into planetary motions, which established him as the first renowned data scientist in

history [Ost20], science has experienced a profound transformation. This shift has led to the

emergence of a fourth paradigm centered around data-driven approaches that, complementing

the existing paradigms of empirical evidence, scientific theory, and computational science, is

driving a deep transformation in how science has been developed. Moreover, this transition

and progress have been compared to the revolutionary impact of the invention of the printing

press, highlighting their profound influence on recent scientific advancement [HTT+09]. Indeed,

in the words of Jim Gray, “The world of science has changed, and there is no question about

this. The new model is for the data to be captured by instruments or generated by simulations

before being processed by software and for the resulting information or knowledge to be stored in

computers. Scientists only get to look at their data fairly late in this pipeline. The techniques and

technologies for such data-intensive science are so different that it is worth distinguishing data-

intensive science from computational science as a new, fourth paradigm for scientific exploration”

[HTT+09, Page xix].

However, in this era of data deluge, one premise stands out as particularly significant: the

realization that the information encompassed within datasets is considerably smaller than the

sheer volume of data. This observation underscores the notion that real-world datasets possess

inherent low complexity despite their high dimensionality. This principle of parsimony serves as

a foundational concept that permeates scientific domains employing data-driven methodologies.

In essence, it suggests that a mere small subset of features from the dataset suffices for con-

ducting inference, constructing models, addressing scientific inquiries, and developing practical

applications. This principle has many facets and can be translated into several concepts, e.g.,

sparsity, low-rankness, and positivity. These concepts are also connected to the advent of High-

Dimensional Statistics [Wai19] and Compressive Sensing [FR13]. By no means does this thesis

intend to provide a comprehensive overview of these vast and fastly developing fields. There

are several wonderful books and surveys about them [Wai19, FR13, Vid19, WM22]. We intend,

however, to discuss simple but powerful algorithms that can be developed and analyzed to work

with very large (and potentially ill-conditioned) datasets.

By harnessing the power of this principle of parsimony, it is possible to retrieve and analyze
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high-dimensional data from a limited number of measurements; this idea lies at the heart of

modern machine learning. As the storage, analysis, inference, and downstream tasks associated

with large-scale high-dimensional data become increasingly important, the development of fast

and scalable algorithms to process such data emerges as a key objective. This thesis aims to

revisit an old yet important idea that originated in a captivating chapter of scientific history

during the early 19th century. It was a period marked by the development of statistics and

probability theory and by advancements in mechanics, leading to remarkable achievements in

solving diverse problems in fields such as cartography and astronomy.

Specifically, this thesis focuses on the principle of least squares —- a technique that traces its

roots back to the pioneering work of Lagrange and Gauss and holds a central position in mathe-

matics and statistics. The importance of this idea can be assessed from various perspectives. To

illustrate its significance, as of the time of writing, a search on Google Scholar yields 4,470,000

papers with ”least squares” in their titles, of which 63,400 have been published since the be-

ginning of 2022. The essence of this thesis lies in harnessing the power of least squares and

developing scalable algorithms inspired by it. The objective is to provide solutions with prov-

able convergence guarantees, allowing for the establishment of optimal results under minimal

assumptions for some machine learning tasks.

1.1 The method of least squares

The method of least squares, first introduced in 1805 by Adrien-Marie Legendre in an extensive

paper of eighty pages accompanied by a fifty-five-page appendix written in French [Leg06]2, who

coined its name, and, independently, by Carl Friedrich Gauss in the early 19th century [Gau77]3,

marks a significant milestone in the history of numerical analysis and statistical estimation4. See

also [AW02] for a detailed explanation of Gauss’ least-squares calculations.

In particular, as discussed on [Sti86, Page 16], there were three important problems to be solved

that are associated with the development of the method of least squares and that were addressed

by both of them:

• to determine the shape of the Earth;

• to determine and represent the motions of the moon mathematically;

• and to account for an apparently secular (that is, nonperiodic) inequality that had been

observed in the motions of the planets Jupiter and Saturn.

2As noted by Stigler in [Sti86, Page 13] “For stark clarity of exposition the presentation is unsurpassed;
it must be counted as one of the clearest and most elegant introductions of a new statistical method in the
history of statistics”.

3As indicated by Stigler in [Sti86, Page 145], there was a credit dispute between Legendre and Gauss.
In fact, Gauss referred to the method of least squares as principium nostrum (“our principle”) and
claimed that he had been using the method since I795.

4The first English translate of Legendre’s work on least squares was published in 1822 and appeared
in [Har22]. As for Gauss’ work, the first English translation is from 1857 [Gau57].
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To address these challenges, they stood on the shoulders of other giants such as Mayer, Simp-

son, Cotes, Lambert, De Moivre, Euler, Boscovich, Laplace, and numerous other prominent

astronomers, mathematicians, and cartographers of that era. They built upon the founda-

tional work laid by these scientists, incorporating their ideas into their own research. Generally

speaking, Legendre and Gauss independently developed this powerful technique to address the

problem of fitting a mathematical model to a set of observed data points. Legendre’s work in

1805 focused on determining the best-fit line for a set of data points by minimizing the sum

of the squares of the vertical deviations between the data and the line. Shortly afterward,

Gauss published his own treatise in 1809. As Kahaner, Moler, and Nash point out in the book

[KMN89], “On January 1, 1801, Giuseppe Piazzi discovered the asteroid Ceres. Ceres was only

visible for forty days before being lost to view behind the sun. Using three observations, exten-

sive analysis, and the method of least squares, Gauss was able to determine the orbit with such

accuracy that Ceres was easily found when it reappeared in late 1801.”. Indeed, on December 7,

1801, the astronomers Franz von Zach and Heinrich Olbers were able to observe it after using

the predictions made by Gauss with the method of least squares [Gol12]. Unfortunately, a com-

prehensive history of the least squares method and all of its scientific consequences is beyond

the scope of this thesis. Nevertheless, there are excellent sources that can be consulted and

that highly inspired this chapter, e.g., [Gla72, Mer77b, Mer77a, Pla49, Eis61, She73, Har74a,

Har74b, Har75a, Har75b, Har75c, Sti81, Sti86, Wat90, She93, Ald98, Nie01, GW11]. In partic-

ular, the publication [Mer77a] provides a comprehensive analysis of the notable developments in

the method of least squares spanning the years 1805 to 1864. For readers interested in delving

further into this captivating chapter of scientific history, we recommend consulting the books

[Sti86, Far99, Gol12, Tod14] and, especially, the excellent book [Gor16]. These sources offer

valuable insights and in-depth exploration of the subject matter.

Throughout the 19th and 20th centuries, further advancements were made in numerical anal-

ysis, expanding the applications and capabilities of the method of least squares. Notably, the

development of matrix algebra and linear regression techniques was crucial in extending the

method’s reach. In particular, the advent of digital computers in the mid-20th century further

accelerated the use of least squares in various fields that relied on least squares to handle large

datasets and estimate parameters with high precision.

The field of statistics also embraced the method of least squares as a fundamental tool for

regression analysis, hypothesis testing, and model selection. Interestingly, the statistical notion

of linear regression and its interpretation date from 1877-85 and were developed much later than

the seminar seminal works by Legendre and Gauss. The name regression itself, which means

regression towards the mean, was suggested by Francis Galton and comes from the study of

human intelligence and talent [Sti97, Gal89]. Later, the influential works of researchers such

as Ronald A. Fisher, Jerzy Neyman, Udny Yule, Francis Edgeworth, and Karl Pearson at the

beginning of the 20th century provided a statistical framework for the method and established

its theoretical underpinnings. See the books [Leh11, Gor16] for more information on their
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contribution to statistics. Moreover, the works on numerical mathematics by Gene Golub,

William Kahan, Alston Householder, Pete G. W. Stewart, James Wilkinson, Åke Björck, Charles

Lawson, Richard Hanson, among others, in the late sixties, were fundamental to establishing the

modern computational theory of least squares, see [Hig02, Section 20.11] and many historical

comments through the book [LH95].

More precisely, the least squares method is employed to fit a linear mathematical model to a set

of given observations. To mitigate the impact of errors in the observed data, it is desirable to

have a larger number of measurements compared to the number of unknown parameters in the

model. Formally speaking, given a dataset of observations denoted as b ∈ Rm, obtained through

a (possibly noisy) measurement process described by a linear operator A ∈ Rm×N , the goal is

to find a solution x ∈ RN to the optimization problem

min
x∈RN

∥Ax− b∥2, (1.1)

where ∥.∥2 denotes the Euclidean norm. The solution x ∈ RN is referred to as the linear least

squares solution to the linear system Ax = b. In the case that we have a larger number of

measurements compared to the number of unknown parameters, i.e., m > N , which leads to an

overdetermined linear system, the solution above is the one where the data b is best approximated

by Ax. It is called the least squares solution since it minimizes the residual vector r = Ax− b.

This solution may not be unique when rank(A) < N . However, there is a unique solution

that minimizes the 2-norm ∥x∥2. An important property of such a solution is described by the

following theorem.

Theorem 1.1.1. [Bjö96, Theorem 1.1.2] A vector x̂ ∈ RN is a solution of the problem (1.1) if

and only if the orthogonal condition AT (b−Ax̂) = 0 holds.

Proof. Assume that x̂ satisfies AT r̂ = 0, where r̂ = b − Ax̂. Then for any x ∈ RN , we have

r = b − Ax = r̂ + A(x̂ − x). By calculating the square norm ∥r∥22 and using the Pythagorean

Theorem, we obtain

∥r∥22 = ⟨r, r⟩ = ⟨r̂ +A(x̂− x), r̂ +A(x̂− x)⟩ = ⟨r̂, r̂⟩+ ∥A(x̂− x)∥22.

The minimum in the expression above is attained precisely when x = x̂. Conversely, suppose

that z =: AT r̂ ̸= 0 and consider x = x̂+ εz, for a certain small ε > 0. Then, r = r̂ − εAz, and

⟨r, r⟩ = ⟨r̂, r̂⟩ − 2ε⟨r̂, Az⟩+ ε2⟨Az,Az⟩ = ⟨r̂, r̂⟩ − 2ε⟨z, z⟩+ ε2⟨Az,Az⟩ < ⟨r̂, r̂⟩,

for a sufficiently small ε. This implies that x̂ is not the least squares solution.

The theorem above shows that the residual vector r = Ax − b lies in the kernel of AT . In

particular, by denoting by R(A) the range space of the matrix A ∈ Rm×N , the geometric

interpretation is that any least squares solution x can decompose the data b ∈ Rm in a unique
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way into two orthogonal components, i.e., b = Ax + r, where r ∈ ker(AT ) and Ax ∈ R(A).

Consequently, Ax is the orthogonal projection of b onto the range (column space) of A.

From the discussion above, it is possible to see that the least squares solution can be found by

solving the so-called normal equations, ATAx = AT b, a term coined by Gauss. In particular,

for A ∈ Rm×N with m ≥ N of full rank N , the matrix ATA is positive definite, and the unique

least squares solution is given by

xLS = (ATA)−1AT b.

In fact, the least squares solution can be characterized via the singular value decomposition that

exists for every matrix A ∈ Cm×N .

Proposition 1.1.2. [FR13, Proposition A.13] For A ∈ Cm×N , there exist unitary matrices

U ∈ Cm×m , V ∈ CN×N , and uniquely defined nonnegative numbers σ1 ≥ σ2 ≥ · · · ≥ σmin{m,N},

called singular values of A, such that

A = UΣV ∗ Σ = diag[σ1, . . . , σmin{m,N}]

In particular, if the matrix A ∈ Cm×N has rank r, we can use the following notation:

A = U

(
Σr 0

0 0

)
V ∗, U =

(
Ur Um−r

)
, V =

(
Vr VN−r

)
,

We can finally characterize any solution to the least squares problem with the following propo-

sition, which can be found in several books about least squares, e.g., [FR13, Proposition A.20].

Proposition 1.1.3. Let A ∈ Rm×N and b ∈ Rm. Then, for all z ∈ RN−r, the vector

x̂ = VrΣ
−1
r U∗

r b+ VN−rz,

is a solution of the least squares problem (1.1). Moreover, these are all the least squares solutions.

Proof. Let x ∈ RN . We start by partitioning it into two pieces,

V ∗x =

(
V ∗
r x

V ∗
m−rx

)
=:

(
w

z

)
.

Now, we substitute the SVD of A into the residual Ax− b, which yields

Ax− b = U

(
Σr 0

0 0

)
V ∗x− UU∗b = U

(
Σrw − U∗

r b

−U∗
m−rb

)
.

Thus,

∥Ax− b∥22 = ∥U∗(Ax− b)∥22 = ∥Σrw − U∗
r b∥22 + ∥U∗

m−rb∥22,
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since the ℓ2-norm is invariant by unitary matrices. Note that the second summand is independent

of w and z. Therefore, the norm is minimized if and only if the first summand is zero, i.e., when

ŵ = Σ−1
r U∗

r b. Hence, the solutions of (1.1) are given by

x̂ = V

(
ŵ

z

)
= Vrŵ + VN−rz = VrΣ

−1
r U∗

r b+ VN−rz.

For any z ∈ RN−r, VN−rz ∈ ker(A), since A has rank r. Therefore, z does not influence the

function ∥Ax− b∥2 and z ∈ RN−r can be chosen arbitrarily.

We have that if A is not full rank, then ker(A) is non-trivial and, since the columns of VN−r are

orthogonal, as a consequence of the theorem above, we can deduce that the least squares problem

(1.1) has infinitely many solutions. It also shows that any solution contains one term given the

pseudo-inverse, also known as the Moore–Penrose inverse, of the matrix A, A† = VrΣ
−1
r U∗

r .

In the case that N ≥ m and the matrix A ∈ Rm×N is of full rank m, then the matrix AAT is

invertible and the minimum norm solution to the underdetermined system Ax = b has a solution

given by the normal equation of the second kind [FR13, Corollary A.22],

xLS = AT (AAT )−1b.

There are a few ways to numerically find the least squares solution, i.e., to solve (1.1). They are

usually divided into iterative methods and direct methods. As examples of direct methods, we

can cite methods based on the Cholesky factorization (mN2 + 1
3N

3 flops), those based on the

QR factorization (2mN2 − 2
3N

3 flops) and those that utilize the Singular Value Decomposition

(2mN2 + 11N3 flops), see, e.g., [TB22, Chapter 11]. Each method has its own advantages and

disadvantages, which depend on factors such as problem size, conditioning, and how close to

being singular the problem is. However, when dealing with large matrices or structured matrices,

it is beneficial to utilize iterative methods that exploit the matrix-vector multiplication Ax. In

such cases, Krylov methods5, which include the conjugate gradient method [HS+52a] and the

minimum residual method (MINRES) [PS75] as specific instances, have been developed [Sog23].

In particular, we can cite the very relevant and widely used LSQR [PS82], LSMR [FS11], and

LSLQ [EOS19] methods for the iterative solution of linear systems.

The least squares method is a rich and multifaceted topic, extensively covered in the classic

book by Bjöerck [Bjö96], which remains the most comprehensive reference on the subject. Ad-

ditional sources worth consulting include [TB22, LH95, Far18]. In this thesis, we will not delve

deeply into the statistical or numerical properties of least squares. Instead, our focus will be on

demonstrating how this technique can be efficiently employed to solve high-dimensional inverse

problems that arise in machine learning and data science in a simple yet effective manner.

5Krylov methods are considered one of the top 10 Algorithms of the 20th century, see [Cip00, DS00,
VDV00].
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1.2 High-dimensional inverse problems

For nearly two centuries, the focus of the discussion surrounding the solution of linear systems

revolved around cases where there were more measurements than unknown parameters. Specif-

ically, as mentioned in the previous section, a central point was how to best fit the model to

a large set of measurements. However, this scenario changed with the emergence of scientific

problems where data acquisition is costly and only a limited number of high-dimensional signal

measurements are available – “measure what should be measured” [Str12]. In such cases, the

linear system has infinitely many solutions, making it impossible to fully recover the underlying

signal x ∈ RN from the data b ∈ Rm unless some structural assumption about the solution

is made. In many applications, a fundamental premise is that the object to be retrieved has

a parsimonious representation, i.e., it can be represented using minimal information. These

high-dimensional inverse problems have become ubiquitous in fields like machine learning, sig-

nal processing, and data science. Under these assumptions, numerous works over the past three

decades have analyzed the conditions under which it becomes possible to unambiguously identify

the true underlying signal [FR13, HTW15, WM22]. In such problems, one designs a regularizer

that controls the variable selection and allows for the identification of a solution having a cer-

tain structure. One notable instance is when the data is assumed to be sparse, i.e., when only a

small subset of the variable has nonzero coefficients or when many extracted features among the

predictors are irrelevant. This concept corresponds to the idea that for a given phenomenon,

usually there are only a few relevant causes, and it forms the basis of the fields of compressive

sensing and sparse recovery.

In 2006, groundbreaking research by Donoho, Candès, Tao, and Romberg established a sig-

nificant link between structure and randomness. They demonstrated how the combination of

concepts from convex optimization, stochastic processes, harmonic analysis, and approximation

theory could successfully address the challenge of finding sparse solutions of underdetermined

systems of equations [Don06, CT05, CT06, CRT06b, CRT06a]. These influential works, cur-

rently cited over 80,900 times according to Google Scholar, also highlighted the immense poten-

tial of these ideas in the fields of signal processing and statistics. Mathematically speaking, the

high-dimensional inverse problem can be formulated as

y = Ax+ ε,

where A ∈ Rm×N is the measurement/design matrix, y ∈ Rm is the data, ε ∈ Rm is the

noise which is, often, modeled as a random variable following a certain probability distribution,

and x ∈ RN is the underlying sparse signal/regression coefficient with at most s coefficients

different from zero, i.e., with ||x||0 ≤ s. And the main question is how to retrieve the signal

x ∈ RN from the given data y ∈ Rm, in a setting where N ≫ m. Compressive sensing, also

known as compressive sampling, sparse recovery, or compressed sensing, has profoundly impacted

various fields of science and technology. These innovative techniques have revolutionized how
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we think about data acquisition, processing, and analysis. Since its first successful application

in the field of magnetic resonance imaging (MRI) [LDSP08, JFL15, LDP07, VMA+11] the

range of applications has been extended to many fields such as imaging processing in general,

telecommunications, image and video compression, biomedical engineering, and remote sensing,

where data acquisition costs, storage, and transmission bandwidth are critical factors. There

are several books on the topic that discuss its mathematical foundations [FR13, Ela10, Vid19,

WM22] as well as books about specific applications of compressive sensing to MRI [Maj15],

optics [Ste16], image processing [AH21], radar signal processing [DMEH19] as well as hardware

implementation of compressive sensing methodologies [MPC+18].

Several algorithms were devised to find a sparse solution to an underdetermined linear system.

We can cite greedy algorithms, such as the orthogonal matching pursuit, thresholding-based algo-

rithms, such as the hard thresholding pursuit, and optimization methods, such as ℓ1-minimization

that aim to minimize a function that promotes sparsity, see [FR13, Chapter 3] or [LW21] for

more details on algorithms for sparse recovery. Unfortunately, a least squares solution, or ℓ2-

minimization, does not promote sparsity in the solution. Instead, it produces solutions with

smaller but non-zero coefficients for all variables, effectively shrinking the magnitudes of the

coefficients (cf. discussion in [HTFF09, Section 3.4.3]. However, in this thesis, we will explore

how least squares can be leveraged to develop highly efficient algorithms for efficient reconstruc-

tion or estimation of the underlying sparse structure. The algorithm proposed is remarkably

simple to implement and versatile since it can be extended to various machine learning problems

beyond sparse recovery. Moreover, it is accompanied by robust theoretical guarantees, further

enhancing its reliability.

1.3 Least squares in modern machine learning

In recent decades, the rise of machine learning and data-driven approaches has propelled the

method of least squares into new realms of application. With the advent of massive datasets

and complex models, least squares techniques found widespread use beyond forming the basis of

regression models and maximum likelihood estimators in statistics, in problems such as Linear

Discriminant Analysis [Ye07], Canonical Correlation Analysis [SJY09], Support Vector Machines

[SV99], Importance Estimation [KHS09], Optimal Transport [PBtTB+15], showing that this old

technique can be remarkably useful in modern applications.

Furthermore, the concept of overparametrization has gained prominence in modern machine

learning [Bel21]. Overparametrized models, characterized by a higher number of parameters

than necessary for fitting the data, have shown remarkable capabilities such as generalization to

unseen data. Least squares methods and linear models in general, coupled with overparametriza-

tion, play a prominent role in understanding large models such as deep neural networks from

several different perspectives. As discussed in [HMRT22, Section 1.2], let us consider the scenario

where we aim to train a neural network with parameters θ ∈ Rp, f(·; θ) : Rd → R, z 7→ f(z; θ)



1.3. LEAST SQUARES IN MODERN MACHINE LEARNING 13

from a given i.i.d. dataset {(yi, zi)}ni=1, yi ∈ R, zi ∈ Rd.

Assuming the number of parameters is very large, the training process results in minimal changes

to θ, when initiated with random parameters θ0 ∈ Rp. Consequently, one tries to understand the

linearized model around θ0. Assuming that the initialization satisfies f(z; θ0) ≈ 0 and denoting

θ = θ0 + ε, for a given small ε, we can approximate the statistical model z 7→ f(z; θ) using the

following equation:

z 7→ ∇θf(z; θ0)
T ε. (1.2)

Although this model remains nonlinear in the input z, it is linear in the parameters ε. Since it

is assumed that the initialization θ0 is random, the high dimensional linear regression problem

(with p much greater than n) has random features given by xi = ∇θf(zi; θ0), i = 1, . . . , n.

Furthermore, due to the dimensionality of the problem (p > n), there exist multiple vectors β

that result in a model that perfectly interpolates the data. Thus, it is crucial to understand

least squares in this context, and a significant body of research is currently being undertaken

to fulfill this objective [AZLS19, COB19, JGH18]. In particular, the notion of neural tangent

kernel plays a major role in this analysis [JGH18, ADH+19].

To summarize, the method of least squares has undergone a transformative journey, from its

inception by Legendre and Gauss to its modern applications in machine learning and over-

parametrized models. The method’s versatility, robustness, and rich theoretical foundations have

made it a cornerstone of numerical analysis and statistical inference, empowering researchers and

practitioners to extract valuable insights from data and build accurate predictive models as well

as an understanding of very large models. Here, in this monograph, we delve into the enduring

significance of the method of least squares as a valuable source of inspiration for algorithm devel-

opment in data science and the analysis of complex machine learning scenarios. We explore the

reasons why this method remains relevant and is expected to continue shaping advancements in

these fields for the foreseeable future.

Contribution: In this thesis, we present a comprehensive study of iterative reweighted least

squares (IRLS) algorithms in three different problems, namely, sparse recovery, low-rank matrix

completion, and high-dimensional noise-blind regression. We show their theoretical analysis as

well as empirical performance. We also present results about constrained least squares and its

connection with overparametrization and the implicit bias of the gradient descent. This thesis

is divided into four main chapters, each containing an introduction and an extensive literature

review. Here, we tried to ensure historical accuracy by including references that initiated specific

lines of research or presented results for the first time. Although this task can be challenging, we

aimed to provide a comprehensive and precise account of the scientific advancements. Moreover,

in each chapter, we left a few open directions and problems that we believe are interesting to

pursue. In the concluding chapter, we highlighted two significant areas of research that we

consider highly relevant for further exploration and extension of the topics discussed in this

work. The contributions of each chapter are as follows:
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• Chapter 2: Global Convergence Rate of IRLS. This chapter focuses on the problems

of sparse recovery from few measurements. Our focus is on how to use least squares to

devise an algorithm that provably solves a compressive sensing problem. In particular,

we solve an open conjecture and propose an Iteratively Reweighted Least Squares (IRLS)

that converges with a global linear convergence rate to the underlying sparse vector. The

convergence analysis is performed under sharp, minimal assumptions. This chapter is

a joint work with C. Kümmerle and D. Stöger and it is an edited version of the paper

C. Kümmerle, C. Mayrink Verdun, D. Stöger. Iteratively Reweighted Least Squares for

Basis Pursuit with Global Linear Convergence Rate. In Advances in Neural Information

Processing Systems 34, 2873-2886, 2021.

• Chapter 3: Completion of Ill-Conditioned Matrices from Few Measurements.

This chapter focuses on the completion of ill-conditioned low-rank matrices using only a

limited number of measurements. We show that algorithms that usually perform well on

the recovery of low-rank matrices from few measurements may not do so if the underlying

object is an ill-conditioned low-rank matrix. We explore novel techniques based on least

squares that leverage highly non-convex objective functions to recover missing entries in

such matrices in a fast and scalable way. The proposed algorithm and analysis provide

insights into solving challenging matrix completion problems with few measurements in

highly ill-conditioned scenarios. We establish a local quadratic convergence rate for our

method. For the first time, we also provide an extensive numerical comparison of different

state-of-the-art methods from the matrix completion literature. This chapter is a joint

work with C. Kümmerle, and it is based on the paper C Kümmerle, C. Mayrink Verdun. A

Scalable Second Order Method for Ill-Conditioned Matrix Completion from Few Samples.

In International Conference on Machine Learning, 5872-5883, 2021.

• Chapter 4: IRLS Algorithm for Noise-Blind High-Dimensional Statistical Prob-

lems.

This chapter introduces an IRLS algorithm specifically designed for noise-blind high-

dimensional statistical problems, focusing on the sqrt-LASSO problem. We address the

challenges of handling noisy and high-dimensional datasets by leveraging the power of

IRLS. We provide a detailed convergence analysis under general assumptions as well as

under assumptions that are commonly used in the sparse recovery literature. We establish

a global linear converge rate for the algorithm in the context of high-dimensional statisti-

cal inference when assessing the noise level in the measurements is impossible. The results

contribute to the development of efficient and accurate solutions for noise-blind estimation

problems. This chapter is based on a joint collaboration with O. Melnyk, F. Krahmer,

and P. Jung, and the results have not yet been published. The final paper containing

these results as well as a numerical evaluation (unfortunately not presented in this thesis)

is in preparation.



1.3. LEAST SQUARES IN MODERN MACHINE LEARNING 15

• Chapter 5: Overparametrization in Machine Learning for Least Squares Prob-

lems.

In this chapter, we explore the concept of overparametrization in machine learning mod-

els and how this can be used to solve constraint least squares problems. By intentionally

introducing additional parameters into the least squares model, we investigate how over-

parametrization, combined with gradient descent, leads to a biased solution and how

this can be harnessed to provide efficient and accurate solutions to the non-negative

least squares problem. We analyze the implications of model complexity and general-

ization, shedding light on the benefits of overparametrization in the context of solving

constrained least squares problems. The findings provide valuable insights into leverag-

ing overparametrization as a tool for efficient optimization in machine learning. This

chapter is based on a joint collaboration with H.-H. Chou, J. Maly, and H. Mirandola.

The preprint H.-H. Chou, J. Maly, C. Mayrink Verdun. Non-negative Least Squares via

Overparametrization. arXiv preprint arXiv:2207.08437 is available on arXiv, and some

corrections are being made in order to submit it to a journal.

By investigating these four interconnected topics, we aim to contribute to the understanding and

advancement of some machine learning and data science problems. In particular, we advocate

for the use of least squares to tackle diverse applications. With that, we hope to pave the way for

further research and practical implementations of simple and scalable algorithms for challenging

problems.

According to Legendre himself, “Of all the principles that can be proposed for this purpose, I

think there is none more general, more exact, or easier to apply, than that which we have used

in this work; it consists of making the sum of the squares of the errors a minimum.” [Leg06,

Page 72].

In addition to the contributions discussed in the subsequent chapters, it is worth mentioning

that a few other works were written during the period when the research presented in this thesis

was conducted. The list of authors in each of these papers is alphabetical, except for the second

and he last papers.

• C Kümmerle, C. Mayrink Verdun. “Completion of structured low-rank matrices via it-

eratively reweighted least squares”. 2019 International Conference on Sampling Theory

and Applications (SampTA 2019) [KV19].

• C. Mayrink Verdun, et al.. “Group testing for SARS-CoV-2 allows for up to 10-fold effi-

ciency increase across realistic scenarios and testing strategies”. Front. Public Health 9,

1205, 2021 [VFH+21]. Featured by David Donoho in his Distinguished Lecture on Math-

ematics of Data Science: https://www.youtube.com/watch?v=VOzl-RC4IIs&t=1674s.

• F. Hoppe, F. Krahmer, C. Mayrink Verdun, M. Menzel, H. Rauhut. “Uncertainty quan-

tification for sparse Fourier recovery”. arXiv preprint ArXiv:2212.14864, 2022 [HKV+22].

https://www.youtube.com/watch?v=VOzl-RC4IIs&t=1674s
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• F. Hoppe, F. Krahmer, C. Mayrink Verdun, M. Menzel, H. Rauhut. “High-dimensional

confidence regions in sparse MRI”. IEEE International Conference on Acoustics, Speech

and Signal Processing 2023 (ICASSP 2023) [HKV+23a]. This work won the Best Student

Paper Award.

• F. Hoppe, F. Krahmer, C. Mayrink Verdun, M. Menzel, H. Rauhut. “Sampling Strategies

for Compressive Imaging Under Statistical Noise”. 2023 International Conference on

Sampling Theory and Applications (SampTA 2023) [HKV+23b].

• F. Hoppe, F. Krahmer, H. Laus, C. Mayrink Verdun, H. Rauhut. “Uncertainty Quantifi-

cation for Learned ISTA”. 2023 IEEE International Workshop on Machine Learning for

Signal Processing (MLSP 2023) [HVL+23].

• S. Endt, M. Engel, E. Naldi, R. Assereto, M. Molendowska, L. Müller, C. Mayrink Verdun,

C. M. Pirkl, M. Palombo, D. K. Jones, M. I. Menzel. “In-vivo myelin water quantification

using diffusion-relaxation correlation MRI: a comparison of 1D and 2D methods. Appl.

Magn. Reson. 54, 1571–1588 (2023) [EEN+23].

1.4 Notation

In this section, we state standard notational conventions that will be used in the remainder of

the thesis. We denote by ∥.∥p, for p > 0, the ℓp-quasinorm of a vector. For p = 0, we denote

by ∥.∥0 the pseudo-norm that counts the number of non-zero entries of a vector. We denote

the cardinality of a set I by |I|. The support of a vector x ∈ RN , i.e., the index set of its

nonzero entries, is denoted by supp(x) = {j ∈ [N ] : xj ̸= 0}. We call a vector s-sparse if at

most s of its entries are nonzero, i.e., if ∥x∥0 ≤ s. We denote by xI the restriction of x onto

the coordinates indexed by I, and use the notation Ic := RN \ I to denote the complement of a

set I. Furthermore, for p > 0, the ℓp-error of best s-term approximation to a vector x ∈ RN is

defined by σs(x)p = inf{||x− z||p, z ∈ RN is s-sparse}.

We use ⊙ to denote the Hadamard product, i.e., the vectors x⊙y and x⊙p have entries (x⊙y)n =

xnyn and (x⊙p)n = xpn, respectively. We abbreviate x̃ :=
⊙

k∈[L] x
(k) = x(1) ⊙ · · · ⊙ x(L). The

logarithm is applied entry-wise to positive vectors, i.e., log(x) ∈ RN with log(x)n = log(xn).

For convenience, we denote by x ≥ y the entry-wise bound xn ≥ yn, for all n, and define

RN
+ = {x ∈ RN : x ≥ 0}. The all-zero and all-ones vectors are denoted by 0 and 1, where

the dimension is always clear from the context. For x+ ∈ S+ := argminz≥0 ∥Az − y∥22., we
furthermore define

y+ := Ax+, (1.3)
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which is the unique Euclidean projection of y onto the convex and closed set

C+ := {Az : z ∈ R≥0}. (1.4)

We denote the rank and the kernel of a matrix A by rank(A) and ker(A). For 0 ≤ p ≤ ∞,

∥A∥Sp denotes the Schatten-p quasi-norm ∥A∥Sp = (
∑d

i=1 σi(A)
p)

1
p of a matrix A ∈ Rd1×d2 . In

particular, for p = 0, the Schatten-0 represents the rank of a matrix. For p = 1, it is called

the nuclear norm, also denoted by ∥A∥∗. For p = 2, it is also called the Frobenius norm, a

norm induced by the Frobenius scalar product of two matrices ⟨X,Y ⟩ = tr(X∗Y ). For p = ∞,

the norm is also called the spectral norm, which coincides with the largest singular value of the

matrix σ1(A). The condition number of a rank-r matrix is denoted by κ(A) = σ1(A)/σr(A),

where σr denotes the smallest singular value different from zero.



Chapter 2

Iteratively Reweighted Least Squares

for Sparse Recovery

“Unfortunately, there is little guidance available on

choosing a good technique for a given parameter regime.”

J. Tropp and A. Gilbert [TG07].

In this chapter, we present an algorithm for sparse signal recovery. We propose a majorization-

minimization approach, drawing inspiration from robust regression techniques. After pro-

viding an overview of the existing literature, we delve into the computation and theoretical

properties of our proposed method. The work presented in this chapter was written in col-

laboration with Dr. Christian Kümmerle and Dr. Dominik Stöger and it was published as

a spotlight in the Conference on Neural Information Processing Systems (NeurIPS) 2021

under the title Iteratively Reweighted Least Squares for Basis Pursuit with Global Linear

Convergence Rate [KMVS21]. We highlight our main contribution:

We establish a new iteratively reweighted least squares method for sparse recovery

and we solve an open question from the literature by showing that it converges with

a global linear rate under minimal assumptions.

2.1 Introduction

As discussed in Chapter 1, the goal in high-dimensional statistics and in compressive

sensing is to retrieve a mathematical structure that has a parsimonious representation,

e.g., an (approximately) sparse vector x, from few measurements. Due to the nature of

several applications, e.g., magnetic resonance imaging [LL00], it is reasonable to assume

that the measurement process is described by a linear operator. In many of these appli-

cations, there is a need for saving time or resources, which mathematically translates into

18
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acquiring as few measurements as possible [LDP07]. Therefore, signal retrieval, usually a

very high-dimensional problem, is then modeled via an underdetermined system of linear

equations of the form y = Ax where the number of columns will usually be much larger

than the number of rows. In its simplest version, when one assumes that there is no noise

in the system, the problem is formulated in the following way:

min
x∈RN

∥x∥0 subject to Ax = y, (P0)

where ∥x∥0 denotes the number of nonzero entries of the vector x ∈ RN . The study

of the optimal solution of (P0) and its uniqueness was studied in several works, e.g.,

[GR97b, DE03b, DH+01].

Theorem 2.1.1. [GR97b, Theorem 1] Suppose that y = Ax0 for a s-sparse vector x0 ∈
RN . If ker(A) contains no 2s-sparse vectors, x0 is the unique optimal solution of (P0).

It was proven that the problem above belongs to the class of NP-hard problems, see [Nat95,

Theorem 1], by reducing it to the exact cover by 3-sets problem (X3C) which, in turn, is

an NP-complete problem [Kar72]. This means that solving the problem (P0) is as hard

as the X3C problem. In fact, it was proven that a more general version of the problem,

here denoted by (P0,η), where one assumes not an equality constraint Ax = y but rather

the inequality (noisy) constraint ∥Ax− y∥2 ≤ η, is NP-hard. See, e.g., [Nat95, DMA97].

Theorem 2.1.2. [Nat95, Theorem 1] For any η ≥ 0, the ℓ0-minimization problem (P0,η)

for general A ∈ Cm×N and y ∈ Cm is NP-hard.

2.1.1 The convex relaxation

One interesting aspect of this type of result is that it concerns the tractability of the

problem in the general case for all possible measurement matrices A and all possible

vectors y. In principle, this kind of worst-case analysis tells us nothing about specific

choices of A and y and tractable algorithms for these cases.

It is also important to notice that the NP-hardness of this problem lies in the fact that

we don’t know in principle where the non-zero entries are located. If the sparsity pattern

is fixed and equal to s, this problem turns into a convex problem. In the worse case, one

needs to solve all
(
N
s

)
sparsity patterns.

One way of tackling this issue is by substituting the ℓ0-norm by the ℓ1-norm, which is the

convex hull of the intersection of ℓ0-norm ball with the ℓ∞-norm ball [WM22, Theorem

2.11] (see also [CRPW12]). This tractable convex formulation, in the context of sparse

recovery, was developed and explored in the Ph.D. thesis of S. S. Chen [CD94a] and

became known as Basis Pursuit [CD94b, CDS01a]. It reads as follows:
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min
x∈RN

∥x∥1 subject to Ax = y, (P1)

The minimization of the ℓ1-norm has a long history, before the advent of compressive

sensing or high-dimensional statistics and of all the theoretical and numerical achieve-

ments of the last 20 years. Such a minimization procedure can date back to the 1750s and

the work of Boscovitch [Bos50, She73], which studied the least absolute deviation problem

for the first time. Boscovitch proposed a method to address errors in the measurements

of meridian arcs. He was likely the first scientist to propose a ℓ1-minimization method.

In particular, the following passage can be found in the book by Boscovitch and Maire

[MB70, Page 501]:

Figure 2.1: An excerpt from page 501 of the book [MB70]. Available at https:

//gallica.bnf.fr/ark:/12148/bpt6k9629131h.texteImage.

We can highlight the section that states: “Being given a certain number of degrees, find

the correction that must be made to each of them, supposing these three conditions are

complied with: ...the third, that the sum of all the corrections, positive as well as negative,

shall be the least possible ...”

Boscovich initially proposed the method in a geometric and verbal formulation without

providing any analytic formulation. It was Laplace who later developed an algebraic

treatment of the least absolute error method, building upon Boscovitch’s ideas and nam-

ing it the “méthode de situation” [mdL25]. Interestingly, in an annotated translation

https://gallica.bnf.fr/ark:/12148/bpt6k9629131h.texteImage
https://gallica.bnf.fr/ark:/12148/bpt6k9629131h.texteImage
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of Laplace’s book on celestial mechanics to English, Bowditch wrote a footnote saying

that Boscovich’s method should be preferred over the least squares method because it

gave less weight to defective observations. In his own words, “This method, proposed by

Boscovitch, and peculiarly well adapted to the present problem, is not now so much used

as it ought to be; instead of it, the principle of making the sum of the squares of the er-

rors a minimum is generally adopted. This method of the least squares...is extremely well

adapted to a set of observations, in which all the measured arcs are of nearly the same

length and subject to the same degree of uncertainty...But if the measure of one of these

degrees should differ very much from the rest, the method of the least squares, applied in

the usual manner, would give by far too great an influence to this defective observation, in

the determination of the figure of the earth...We shall hereafter find, in several instances,

that the method of the least squares, when applied to a system of observations, in which

one of the extreme errors is very great, does not generally give so correct a result as the

methods proposed by Boscovitch” [LB32, Page 434]. Bowditch could not have foreseen the

profound impact his statement, rediscovered by many researchers, would have on signal

processing, robust statistics, and machine learning, even 150 years later. See also [She77],

[Sti86, Page 50], [BS83, Section 1.4] and [Far99, Section 9.7] for more details on the (pre-

)history of ℓ1-minimization. Later, several developments in the geophysics community

[LF81, CB83, TBM79, WU83, CM73, SS86] led to a better numerical understanding of

the properties of this convex but non-differentiable function. In particular, [SS86, DL92]

showed that it is possible to retrieve the full wideband seismic signal from incomplete

measurements where no low-frequency were acquired due to the nature of the seismic

measurements. From the theoretical point of view, the work [Log65] was probably the

first to study guarantees for sparse reconstruction via ℓ1(-norm) minimization.

This problem is equivalent, in the case of real measurements – A ∈ Rm×N – to a linear

program, a fact that has been known since the 1950s, e.g., [BS83, Chapter 6]. To show

this equivalence, we introduce the variables x+, x− ∈ RN . For x ∈ RN , let

x+
j =

xj if xj > 0

0 if xj ≤ 0
and x−

j =

 0 if xj > 0

−xj if xj ≤ 0.
(2.1)

By doing so, the problem (P1) is equivalent to the following linear optimization problem

for the variables x+, x− ∈ RN :

min
x+,x−∈RN

N∑
i=1

(x+ + x−) subject to [A| − A]

[
x+

x−

]
= y,

[
x+

x−

]
≥ 0. (P ′

1)

Once the solution of this problem, here denoted by (x+)#, (x−)#, is obtained, the solution
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of the original Basis Pursuit (P1) will be given by x# = (x+)# − (x−)#. See [Til15,

Theorem 2.2] for more details on this equivalence.

Remark 2.1.3. This equivalence establishes a new interesting research direction for gen-

eral linear programming (LP). It would be, in theory, possible to obtain new bounds for

solving LPs by reducing them to Basis Pursuit and using methods tailored for the latter.

See [Til15].

In the complex case where x ∈ CN , this problem is equivalent to a second-order cone

program [FR13]. Because of this equivalence, general-purpose methods for linear pro-

gramming such as the Simplex Method or Interior-Point Methods could, in theory, be

used to solve this problem [NN94, BT97]. For example, it is worth mentioning that

[CD94a, Section 4.2] starts by emphasizing that “Basis Pursuit is only thinkable because

of recent advances in linear programming via interior point methods”. This was the start-

ing point for numerical methods for ℓ1-minimization in high-dimensional statistics and

signal processing.

The term Basis Pursuit originates from the field of atomic decomposition [CDS01b]. It

derives its name from the simplex algorithm [BT97, Chapter 3] employed to solve it. The

algorithm initially identifies a set of m linearly independent vectors and subsequently

iterates by replacing one vector in the set with another not yet included. This process

ensures an iteration-wise improvement of the objective function unless the optimal solution

has already been attained. This strategy of iteratively improving a basis until a solution

is reached is the reason behind the meaning of the name of the method.

Besides being computationally tractable in general, it is also possible to analyze the

minimizers of this problem and to understand under which assumptions the minimizer

of (P1) is also the minimizer of (P0). To do so, various tools were developed, such as

the notion of coherence [DE03a] or restricted isometry property (RIP) [BCT11, CT05].

For an analysis of Basis Pursuit based on coherence, see [GN03, DE03b, Fuc04]. For an

analysis based on the RIP, see [CT05, CRT06b]. For an analysis of the phase transition

phenomenon for ℓ1-minimization and the probability of success of ℓ1-minimization, see

[DT09a, DT10b, ALMT14, DT09b]. However, the most important theoretical tool for the

analysis of ℓ1-minimization is the null space property that will be discussed further below

in 2.2.2. This property was distilled in [FN03] and further analyzed in the seminal paper

[CDD09], from which it finally got its name.

An unconstrained variant of (P1), more popular in statistics and machine learning, of-

ten called the Least Absolute Shrinkage and Selection Operator (LASSO)1, amounts to

1The original LASSO formulation minimizes ||Ax − b||2 subject to ||x|| ≤ τ [Tib96b]. Later, the
unconstrained formulation, originally called Lagragian LASSO started to be called LASSO.
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the most well-studied tractable estimator for variable selection in high-dimensional in-

ference [Tib96b, HTW19, MB+06]. Besides the conditions cited in the last paragraph,

many sufficient conditions were developed to theoretically understand (un)constrained

ℓ1-minimization problems; see [VDGB09] for an overview. This problem has many ap-

plications, and it has become ubiquitous in science and engineering; nowadays, it is even

called the modern least squares [CWB08]. Still, the Basis Pursuit formulation is an opti-

mization program and not an algorithm that finds the sparse vector. So far, nothing has

been said on how to actually minimize this convex but non-differentiable function.

2.1.2 Which algorithm should one choose?

As many problems of interest in applications are very high-dimensional, it is usually

not a good idea to use general-purpose solvers for minimizing the ℓ1-norm that do not

take the structure of the problem into account. Therefore, a huge amount of research

in high-dimensional sparse models was devoted to designing specialized solvers tailored

to solve (P1). Among the most important ones, one can cite the Homotopy Method

[DT08], forward-backward algorithms [CW05], Alternating Direction Method of Multi-

pliers [BPC+11], Bregman iterative regularization [YOGD08] and Semismooth Newton

Augmented Lagrangian Methods [LST18]. Given the variety of methods available to

solve this problem, it is very hard to develop a study that reliably says which method

is the best one for a certain task or for a certain parameter regime, as the quote from

[TG07] opening this chapter indicates. In particular, a common problem in reproducible

research is that it is usually hard to benchmark numerically every single new method that

claims to be state-of-the-art for a given numerical problem 2.

The goal of this chapter will be to develop algorithms that have strong provable guarantees

(under minimal assumptions) and that are simple to implement and use. Most often, these

are the ones that pass the test of time. In Chapter 3, we will show how this kind of idea,

when applied to non-convex problems, can lead to excellent numerical performance.

The focus and contributions of this chapter are on another well-established solver for the

ℓ1-minimization problem (P1), namely, the so-called Iteratively Reweighted Least Squares

(IRLS). It corresponds to a family of algorithms that elegantly minimizes non-smooth

functions by solving several least squares problems in an iterative way, which motivates

the title of this thesis. The idea of this method can be traced back to a method proposed by

Weiszfeld3 for the Fermat-Weber problem (that could also be called the Fermat-Torricelli-

2The project State of the Art from the website https://paperswithcode.com/sota is an initiative
that tries to present benchmarks and to compare algorithms according to a certain metric for several
different machine learning and data science tasks in a systematic way.

3Endre Weiszfeld, a Hungarian Jew, fled Europe in 1930 and, upon arriving in the USA, changed

https://paperswithcode.com/sota
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Simpson-Steiner-Weber problem) [Wei37, BS15]. See also [EM11] for historical details

about this problem. This problem involves locating a point on the plane that minimizes

the total transportation costs from that point to n destination points, i.e., finding a point

minimizing the sum of weighted distances from give.

It has numerous uses that go beyond sparse recovery and many problems, such as robust

regression in statistics [HW77, MGJK20], total variation regularization in image process-

ing [GR92, NN05, AIG06], joint learning of neural networks [ZHH+19], robust subspace

recovery [LM18], numerical methods for elliptic PDEs [DFRW20], design of FIR filters

[BBS94], learning sparse and low-rank priors for image problems [LK23] and the recovery

of low-rank matrices [MF12a, FRW11a, KS18, KMV21] can be solved efficiently in prac-

tice by IRLS. The method relies on efficient and simple linear algebra since one only needs

to solve the linear systems arising from the quadratic problems at each iteration without

the need for careful initialization or intricate parameter tuning. Despite its successful

application in several problems, it is very challenging to analyze it theoretically since the

quadratic problem that is solved changes at each iteration.

The main contribution of this chapter is a deeper understanding of this family of methods

that led to new formulations and new ways of looking at their theoretical guarantees. In

particular, we will establish fast global convergence rates for IRLS for sparse recovery

under the most general assumption, namely, the NSP. In Section 2.1.3, we discuss the

progress in establishing theoretical guarantees for it. Before we develop our contributions

to the theory of IRLS for sparse recovery, in the next section, we will go one step back

and discuss the history of IRLS for related problems.

2.1.3 Related work

As discussed in the previous section, IRLS has a long history that dates back to the

1930s. It has appeared under different names within different communities, e.g., similar

algorithms are usually called half-quadratic algorithms in image processing [Idi01, AIG06]

and the Kacanov method in numerical PDEs [DFRW20]. It appeared in approximation

theory in the study of Chebyshev polynomials, where it became known as Lawson algo-

rithm [Cli72, Law61], c.f. the survey [Bur12]. The most common application of IRLS

has probably been in robust regression and maximum likelihood estimation problems

[HW77, Gre84, Zha21]. For p-norm regression, [APS19] proposed a version of IRLS for

which convergence results for p ∈ [2,∞) were established, solving a problem that was

open for over thirty years. Also, for robust regression, by using an ℓ1-objective on the

his name to Andrew Vázsonyi. His work, which was originally written in French, was published in the
Japanese journal “Tohoku Mathematical Journal” remained unknown for several decades. For an English
translation, see [WP09]. And for more details about his life, see [Vaz02].
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residual, [MGJK19] recently showed global convergence of IRLS with a linear rate, with

high probability for sub-Gaussian data.

The work [BDMS09] discussed the IRLS algorithm for constrained problems with general

convex functions and convex constraints that appear in robust regression problems and

establishes some convergence results for a general IRLS-type procedure. In [ODBP15], the

authors provided a general framework for formulating IRLS algorithms for the optimiza-

tion of a quite general class of non-convex and non-smooth functions; however, without

the smoothing update step that is crucial for the numerical success of IRLS, c.f. Section

2.2. They used techniques developed in [ABS13] to show convergence of the sequence of

iterates to a critical point under the Kurdyka-Lojasiewicz property [BDL07]. However,

no results about convergence rates were presented.

For the sparse recovery problem, the topic of this chapter, the references [LYW13, FPRW16a,

VD17] analyzed IRLS for an unconstrained version of (P1), which is usually a preferable

formulation if the measurements are corrupted by noise. The work [WN10] discussed

the connection between IRLS and Sparse Bayesian Learning. Additionally, the work

[FPRW16a] addressed the question of how to solve successive quadratic optimization

problems. The authors developed a theory that shows, under the null space property,

how accurately the quadratic subproblems need to be solved via the conjugate gradient

method to preserve the convergence results established in [DDFG10].

A connection between IRLS and bilevel optimization was recently established in [PP21].

This work describes a simple reparametrization of the IRLS formulation for ℓp-minimization

(with p ∈ (2/3, 1)) that leads to a smooth bilevel optimization problem without any spu-

rious minima, i.e., the stationary points of this new formulation are either global minima

or strict saddles.

IRLS was also successfully employed for the so-called subspace prototype problems when

one needs to find the median of a dataset [MKPK22], to system identification [BMDFT22]

and to point cloud alignment problems [AH15]. For the related problems of low-rank

matrix recovery and completion, the topic of Chapter 3, IRLS strategies have emerged as

one of the most successful methods in terms of data efficiency and scalability [FRW11a,

MF12a, KS18, KMV21]. But before describing the method and our contributions, we

present a short overview of how IRLS was developed and used in compressive sensing and

high-dimensional statistical problems.

2.1.4 IRLS for sparse recovery

Despite its long history in other fields, as mentioned above, in the sparse recovery context,

to the best of the author’s knowledge, the first variants of IRLS were introduced in
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[RKD99, GR97a], for the ℓp-quasinorm minimization problem (Pp) with 0 < p ≤ 1 that

is similar to (P1), but with ∥x∥p instead of ∥x∥1 as an objective. It is important to note

that unlike most of the methods cited above, IRLS is one of the few methods (ADMM

being the other one, e.g., [BPC+11]) that provides a framework to solve both constrained

and unconstrained formulations of ℓp-minimization problems.

min
x∈RN

∥x∥pp subject to Ax = y, (Pp)

In [CY08], modifications of the method of [RKD99, GR97a] using specific smoothing

parameter update rules, c.f. Section 2.2, were observed to exhibit excellent numerical

performance for solving (Pp), retrieving the underlying sparse vector with very few mea-

surements when most of the methods fail. This excellent numerical performance, where

saddle points can be avoided, combined with its simplicity to tackle highly non-convex

problems such as the minimization of ℓp-quasinorms for p ≪ 1, is one of the main reasons

for the popularity of IRLS [CY08, DDFG10]. A measure for the popularity of IRLS, only

considering the use of the method for sparse recovery, can be highlighted by the number of

Google Scholar citations of the four key papers about it [GR97a, CY08, DDFG10, LYW13],

which surpassed 5500 as of the writing of this thesis. While we do not study these non-

convex variants here in this chapter, in Chapter 3 we will develop the theory and practice

of IRLS for non-convex objective functions that appear in the matrix completion problem.

For now, this chapter aims to understand the convergence of IRLS in the case of ℓ1-norm

as our objective function. Since the seminal paper [DDFG10], that fundamentally changed

the way this type of algorithm is analyzed, despite several extensions and analyses of the

IRLS algorithm [ABH19, FPRW16a], the following fundamental algorithmic question has

remained unanswered:

What is the global convergence rate of the IRLS algorithm for ℓ1-minimization?

Contribution of this chapter:

We resolve this question, formally stated in [SV21], and present a new IRLS algorithm that

converges linearly to a sparse ground truth, starting from any initialization, as stated in

Theorem 2.3.3. Our algorithm returns a feasible solution with δ-accuracy, i.e., ∥x∗−xk∥1 ≤
δ, where x∗ is the underlying s-sparse vector, in k = O(N

√
(logN)/m log(1/δ)) iterations.

Analogous to [DDFG10], it is assumed that the measurement matrix A satisfies the so-

called null space property [CDD09], which is the minimum possible assumption required

for sparse recovery. We also provide a similar result for approximately sparse vectors.

Our proof relies on a novel quantification of the descent of a carefully chosen objective
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function in the direction of the ground truth given by a simple quadratic polynomial

equation. Additionally, we support the theoretical claims with numerical simulations

indicating that we capture the correct dimension dependence. We also believe that the

new analysis techniques in this paper are of independent interest and will pave the way for

establishing global convergence rates for other variants of IRLS, such as in low-rank matrix

recovery [FRW11a] or in the analysis of certain numerical methods for PDEs [DFRW20].

Remark 2.1.4. The work [DDFG10] states that the algorithm converges exponentially

fast in the iteration number. Here we will adopt the standard nomenclature from opti-

mization theory and refer to it as linear convergence.

2.2 IRLS for ℓ1-minimization

We start by deriving the Iteratively Reweighted Least Squares (IRLS) algorithm for ℓ1-

minimization. The idea behind the method is that the ℓ1-norm can be approximated by

a weighted ℓ2-norm ∥x∥2,w =
∑N

i=1 wix
2
i and, therefore, a non-smooth convex problem

can be turned into a quadratic problem, i.e., a least squares one. In fact, one can write

|xi| = x2
i

|xi| . The problem with such a calculation is that the ground-truth vector to be

retrieved via ℓ1-minimization will typically be sparse, which makes most of the coefficients

xi = 0.

In this case, a smoothing parameter ε needs to be introduced to guarantee that the

denominator will not blow up. There are several ways to do so. The most common way

found in the literature is given by

|xi| =
x2
i

|xi|
=

x2
i√
|xi|2

≈ x2
i√

|xi|2 + ε
, (2.2)

for a very small ε ̸= 0. Another way to do so is by using that xi ≈ max(xi, ε), i.e.,

|xi| =
x2
i

|xi|
≈ x2

i

max(xi, ε)
:= wix

2
i . (2.3)

While the first approach was quite well studied in the literature of smooth methods for

the ℓ1-norm, in this thesis, we will depart from this view and explore the second (sharper)

approach. In particular, we will show that such an approach leads to better convergence

guarantees as well as better numerical properties.

Remark 2.2.1. The smoothing parameter ε was introduced in order to deal with sparse

vectors in high-dimensional problems. The IRLS algorithm is well-defined and applicable

even in the absence of such a parameter in its description, as observed in the original
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Weiszfeld method. However, it is important to note that in such instances, there is a

possibility that the iterates {xk} may, eventually, coincide with one point in the set of

destination points, the so-called anchor set. This scenario leads to a division by zero in

the calculation for subsequent iterates. For precise conditions and a thorough convergence

analysis of the method, see [BS15].

One of the key points in our work is the interpretation of IRLS algorithms as a variant of

a Majorize-Minimize (MM) algorithm [SBP17, Lan16], as we will lay out in the following

paragraphs. This point of view differs from [DDFG10], which considered the IRLS method

as a consequence of a variational principle. Our derivation, on the other hand, is highly

inspired by robust statistics techniques [Hub64, Mey21].

Remark 2.2.2. Another approach for sparse recovery that was quite popular for some

time in the literature was the iteratively reweighted ℓ1-norm which, as the name sug-

gested, solves a sequence of weighted ℓ1-minimization problems [CWB08]. However, the

convergence analysis for this method is very intricate [WZW22]; IRLS is computationally

simpler due to the least squares minimization, and it was shown that it also leads to better

numerical performance. See [CY08] and [DDFG10, Section 8.2].

It mitigates the non-smoothness of the ∥ · ∥1-norm by introducing a smoothed objective

function Jε : RN → R, which is defined, for a given ε > 0, by

Jε(x) :=
N∑
i=1

jε(xi) with jε(x) :=

|x|, if |x| > ε,

1
2

(
x2

ε
+ ε
)
, if |x| ≤ ε.

(2.4)

We note that the relationship between the ℓ1-norm and its smoothed version Jε of Equa-

tion 2.4 is very similar to the smoothing achieved by using Huber M-estimators instead

of ℓ1-residuals in robust regression [LS98]. Moreover, the function Jε is continuously

differentiable and fulfills |x| ≤ jε(x) ≤ |x|+ ε for each x ∈ R.
The reason for choosing such function Jε, which can be considered as a scaled Huber

loss function, can be explained from several points of view. This function is by no means

the only approximation to the ℓ1-norm. See, e.g. [BBZ04, Appendix A], [Kal18] and

[Bar19]. For a general discussion on this problem and the importance of this technique

in optimization, see [BT12, Nes05]. Here, we follow the presentation in [Bec17] and start

by defining the notion of a smooth function and a smoothable function.

Definition 2.2.3. Let L ≥ 0. A function f : RN → (−∞,∞] is said to be L-smooth over

a set D ⊂ RN if its gradient is a Lipschitz function, i.e., if it is differentiable over D and

satisfies

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for allx, y ∈ D.
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The constant L is called the smoothness parameter.

An important step in the analysis of non-smooth functions and the design of algorithms

to minimize them is the concept of a smoothable function.

Definition 2.2.4. A convex function h : Rn → R is called (α, β)-smoothable α, β > 0

if for any µ > 0 there exists a convex differentiable function hµ : Rn → R such that the

following holds

I. hµ(x) ≤ h(x) ≤ hµ + βµ for all x ∈ RN .

ii. hµ is α
µ
-smooth.

The function hµ is called a 1
µ
-smooth approximation of h with parameters (α, β).

We also need the notion of the Moreau envelope of a function h [Mor65]. Given a proper

closed convex function h : Rn → (−∞,∞] and µ > 0, the Moreau envelope of f is given

by the function

Mµ
h (x) = min

u∈Rn
{h(x) + 1

2µ
∥x− u∥2} (2.5)

With this tool at our disposal, it is possible to establish that the Moreau envelope of a

Lipschitz convex function is a 1
µ
-smooth approximation.

Theorem 2.2.5. [Bec17, Theorem 10.51] Let h : Rn → R be a convex function satisfying

|h(x)− h(y)| ≤ ℓh∥x− y∥ for all x, y ∈ RN .

Then for any µ > 0, the Moreau envelope Mµ
h is a 1

µ
-smooth approximation of h with

parameters (1,
ℓ2h
2
).

As a consequence of this theorem, every convex and Lipschitz with constant ℓh is (1,
ℓ2h
2
)-

smoothable. Since the Moreau envelope of the absolute value function |.| is given by the

Huber function [Bec17, Example 6.54],

Hµ(x) =

 1
2µ
|x|2, |x|2 ≤ µ

|x| − µ
2
, |x|2 > µ,

(2.6)

and the Moreau envelope of separable functions is given by the sum of the Moreau

envelopes for each coordinate [Bec17, Theorem 6.58], we have a natural candidate for

smoothing the ℓ1-norm. To simplify calculations, our IRLS method is based on a slightly

modified version of the Huber loss, Equation 2.4.

The central idea of IRLS is to use several iterations of the least squares method for

a smooth approximation of the objective function. A different quadratic function will
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be created and minimized in each iteration with standard numerical methods for least

squares [Bjö96]. Instead of minimizing the function Jε directly, the idea of IRLS is to

minimize instead a suitable chosen quadratic function Qε(·, x), which majorizes Jε such

that Qε (z, x) ≥ Jε (z) for all z ∈ RN . This function is furthermore chosen such that

Qε (x, x) = Jε (x) holds, which implies that min
z∈Rn

Qε (z, x) ≤ Jε (x). The latter inequality

implies that by minimizing Qε(·, x), IRLS actually achieves an improvement in the value

of Jε as well. More specifically, Qε (·, x) is defined by

Qε(z, x) := Jε(x) + ⟨∇Jε(x), z − x⟩+ 1

2
⟨(z − x), diag(wε(x))(z − x)⟩

= Jε(x) +
1

2
⟨z, diag(wε(x))z⟩ −

1

2
⟨x, diag(wε(x))x⟩,

(2.7)

where ∇Jε(x) =

 xi

|xi| , if |xi| > ε

xi

ε
, if |xi| ≤ ε

N

i=1

is the gradient of Jε at x and the weight

vector wε (x) ∈ RN is a vector of weights such that wε(x)i := [max(|xi|, ε)]−1 for i ∈ [N ].

Figure 2.2 illustrates the function Jε(x) and its quadratic majorizer Qε(x, z) for different

values of z.
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(a) Jε and Qε with ε = 0.1.
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(b) Jε and Qε with ε = 0.01.

Figure 2.2: Jε and its quadratic majorizer Qε(x, z) for z = 0.05, 0.15, 0.25, 0.5.

The following lemma shows that Qε (·, ·) has indeed the above-mentioned properties.

Lemma 2.2.6. Let ε > 0, let Jε : RN → R be defined as in (2.4) and Qε : RN ×RN → R
as defined in (4.14). Then, for any z, x ∈ RN , the following affirmations hold:

i. diag(wε(x))x = ∇Jε(x), ii. Qε(x, x) = Jε(x), iii. Qε(z, x) ≥ Jε(z).

Proof. We prove each of the three statements separately.
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1. Let x ∈ RN . Then the i-th coordinate of diag(wε(x))x is given by

(diag(wε(x))x)i =

 xi

|xi| = sgn(xi), if |xi| > ε,

xi

ε
, if |xi| ≤ ε.

= j′ε(xi) = (∇Jε(x))i ,

where Jε(x) is the gradient of Jε at x.

2. This follows directly from the definition of Qε(x, z) and by setting x = z.

3. We define I := {i ∈ [N ] : |xi| > ε} and write the difference Qε(z, x)− Jε(z) as

Qε(z, x)−Jε(z) =
1

2
(⟨z, diag(wε(x))z⟩ − ⟨x, diag(wε(x))x⟩)

=
∑
i∈I

(
1

2
|xi|+

1

2

z2i
|xi|

− jε(zi)

)
+
∑
i∈Ic

(
1

2
ε+

1

2

z2i
ε
− jε(zi)

)

and show that each summand of the two sums is non-negative. In particular, if

i ∈ I, then assume first that |zi| > ε. Then

1

2
|xi|+

1

2

z2i
|xi|

− jε(zi) =
1

2

(
|xi|+

z2i
|xi|

)
− |zi| ≥ |zi| − |zi| = 0

due to inequality a ≤ 1
2
(a2/b+ b), which holds for any b > 0.

On the other hand, if |zi| ≤ ε, then

1

2
|xi|+

1

2

z2i
|xi|

− jε(zi) =
1

2
|xi|+

1

2

z2i
|xi|

− 1

2

(
z2i
ε
+ ε

)
=

1

2

(
|xi| − ε

)
+

1

2
z2i

(
1

|xi|
− 1

ε

)
≥ 1

2

(
|xi| − ε

)
+

1

2
ε2
(

1

|xi|
− 1

ε

)
=

1

2

(
|xi|+

ε2

|xi|

)
− ε ≥ ε− ε = 0,

(2.8)

where we used that 1
|xi| −

1
ε
< 0 in the first inequality. In the second inequality, we

again used a ≤ 1
2
(a2/b + b) for any b > 0. Now let i ∈ Ic. We again consider the

two cases, |zi| ≤ ε and |zi| > ε. In the first case we have that 1
2
ε+ 1

2

z2i
ε
− jε(zi) = 0,

and in the second case we have that

1

2
ε+

1

2

z2i
ε
− jε(zi) =

1

2
ε+

1

2

z2i
ε
− |zi| ≥ |zi| − |zi| = 0,

which concludes the proof.
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As can be seen from the equality in Equation (2.7), minimizing of Qε(·, x) corresponds to
a minimizing (re-)weighted least squares objective ⟨·, diag(wε(x))·⟩, which lends its name

to the method. A pivotal point in the design of the algorithm, and one of our major

contributions to the theory of IRLS, is the observation that the choice of an objective

function that approximates the ℓ1-norm (or any other non-smooth function for which an

IRLS algorithm needs to be designed) should match the choice of weights. In particular,

one can see from Equation (4.14) that due to the approximation Equation (2.3), the term

⟨∇Jε(x), z − x⟩ is canceled out due to our choice of weights, which leads to a “pure”

quadratic problem without any linear terms. However, unlike a classical MM approach,

IRLS comes with an update step of the smoothing parameter ε at each iteration. This

update is crucial for its excellent numerical performance but makes the analysis of the

method much harder. We outline the method in Algorithm 1.

Algorithm 1 Iteratively Reweighted Least Squares for ℓ1-minimization

Input: Measurement matrix A ∈ Rm×N , data vector y ∈ Rm,
initial weight vector w0 ∈ RN (default: w0 = (1, 1, . . . , 1)).
Set ε0 = ∞.
for k = 0, 1, 2, . . . do

xk+1 := argmin
z∈RN

⟨z, diag (wk) z⟩ subject to Az = y, (2.9)

εk+1 := min

(
εk,

σs(x
k+1)ℓ1
N

)
, (2.10)

(wk+1)i :=
1

max
(
|xk+1

i |, εk+1

) for each i ∈ [N ], (2.11)

end for
return Sequence (xk)k≥1.

A consequence of Lemma 2.2.6, step Equation 2.10, the fact that ε → Jε(z) is monotonously

non-decreasing, and that k 7→ εk is non-increasing so k 7→ Jεk(z) is non-increasing in k.

This implies that the iterates xk, xk+1 of Algorithm 1 fulfill

Jεk+1
(xk+1) ≤ Jεk(x

k+1) ≤ Qεk(x
k+1, xk) ≤ Qεk(x

k, xk) = Jεk(x
k). (2.12)

This shows in particular that the sequence
{
Jεk

(
xk
)}∞

k=0
is non-increasing. For this rea-

son, it can be shown that each accumulation point of the sequence of iterates (xk)k≥0 is

a (first-order) stationary point of the smoothed ℓ1-objective Jε(·) subject to the measure-
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ment constraint imposed by A and y, where ε = limk→∞ εk. See [DDFG10, Theorem 5.3]

for the proof for a related IRLS algorithm.

2.2.1 Computational considerations

While the crucial steps for the success of IRLS are the weighting choice and the update

of the smoothing parameter ε, the core of the method is the solution of the least squares

problem at each iteration. Roughly speaking, the idea is to smooth the original non-

smooth function and, then, to design a sequence of parabolas that will get closer and

closer to the original function as we move towards the minimum as Figure 2.3 shows.

x

Qε1(z, x2)

Qε2(z, x1)

Qε3(z, x3)

Figure 2.3: Majorization-minimization scheme like Algorithm 1.

When A ∈ Rm×N (m ≤ N) is of full rank, its pseudo-inverse will be given by A† =

A∗(AA∗)−1. Hence, by making the substitution x = W
1/2
k z, where Wk = diag (wk), the

weighted quadratic problem

min
z∈RN

⟨z, diag (wk) z⟩ = ∥z∥22,w = (
N∑
i=1

|zj|2wj) subject to Az = y (2.13)

is equivalent to a standard least squares problem with the constraint given by AW− 1
2x = y.

Therefore, the constrained weighted least squares update (2.9) can be computed such

that xk+1 = W−1
k A∗(AA∗)−1(y) = W−1

k A∗(AW−1
k A∗)−1(y) with Wk = diag (wk), with the

solution of the (m×m) linear system (AW−1
k A∗)z = y as a main computational step. This

linear system is positive-definite and suitable for the use of iterative solvers such as Krylov

methods [Saa03, HS52b, Meu06]. This is especially advantageous if the measurement

matrix A is sparse or allows for fast matrix-vector multiplications [Vor12, FPRW16a].

The convergence theory for iterative methods, such as CG, for IRLS, was finally estab-

lished by [FPRW16a]. However, their analysis was indirect since the shape of the spectrum
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of the system matrix AW−1
k A∗, which plays a major role in the convergence of CG itera-

tions, was not calculated, and the issue of bad conditioning of the IRLS system matrices

was not solved. Before this work, it is interesting to note that a few works already used

conjugate gradient (CG) in the context of IRLS for sparse recovery, e.g., [Vor12, VD17] for

ℓ1-minimization and [VO98] for TV-minimization. However, none of these works analyzed

the convergence of iterative methods to solve the linear system behind IRLS.

The authors of [FPRW16a] provide conditions on the accuracy of conjugate gradient

solvers of the successive linear systems for an IRLS algorithm for basis pursuit using

weights that are given by

(wk)i = 1/
√

|xk
i |2 + ε2k (2.14)

for each i ∈ [n] (coinciding with the choice of the weights of [DDFG10, ABH19]).

Independently of how we perform the inner iteration of the method, i.e., how we solve

the linear system at each iteration, one caveat of IRLS methods is the fact that the linear

system (AW−1
k A∗)z = y becomes highly ill-conditioned once the algorithm gets closer to

the ground truth – a sparse vector – since the weights, as well as the smoothing parameter

εk, will get close to zero [FPRW16a, Section 5.2]. It has been observed that the blow-up of

the condition number of AW−1
k A∗ can be a problem for an inexact solver of the weighted

least squares system [Vor12]. In particular, this numerical issue is shared by many of the

IRLS methods developed in the literature so far. For example, it was observed that the

IRLS proposed in [DDFG10] usually does not converge when applied to ℓp-minimization

for p < 0.5 due to ill-conditioned linear systems [DDFG10, Section 8]

Another interesting aspect of our contribution is that unlike previous formulations of IRLS

[DDFG10, FPRW16a, ABH19], our formulation tackles this issue, previously open in the

literature for IRLS methods, and we can establish that our choice of weights leads to a

well-conditioned linear system.

The starting point of our algorithm is the observation that for our choice of weight (2.11),

i.e., for

(wk)i :=
1

max
(
|xk

i |, εk
)

for each i ∈ [N ], unlike for (2.14), it is possible to write the inverse weight matrix W−1
k ∈

RN×N such that

W−1
k = W−1

Ik
+ εk (IdN − PIk) =

(
W−1

Ik
− εkPIk

)
+ εkId, (2.15)

where Ik := {i ∈ [N ] : |xk
i | > εk}, W−1

Ik
∈ RN×N is the diagonal matrix with entries |xk

i |
if i ∈ Ik and 0 otherwise, and PIk denotes the projection matrix such that PIkx = xIk .

In particular, we observe that (Wk)
−1 is the sum of a scaled identity matrix Id and a
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(diagonal) matrix with only sk := |Ik| non-zero entries. Furthermore, due to the update

rule Equation 2.10 of the smoothing parameter εk, it can be seen that sk is small and

of the order of s if εk approaches 0, i.e. if the k-th iterate xk of Algorithm 1 has only

small coordinates outside a set of s large coordinates. We show this by reformulating

the main computational step, i.e., the weighted least squares problem such that xk+1 can

be computed by solving a positive definite linear system of size (sk × sk), which is well-

conditioned. In this way, we avoid solving the ill-conditioned system
(
AW−1

k A∗) z = y.

In order to do so, we need the Sherman-Morrison-Woodbury matrix inversion formula

[Woo50]:

Lemma 2.2.7. [Woo50] Let B ∈ Rn×n, C ∈ Rk×k, E ∈ Rn×k and F ∈ Rk×n. Then,

(ECF ∗ +B) is invertible if and only if C and F ∗B−1E are invertibles and it holds that

(ECF ∗ +B)−1 = B−1 −B−1E(C−1 + F ∗B−1E)−1F ∗B−1

Our implementation uses the matrix V ∈ Rm×N with orthonormal columns which denotes

the projection onto the range space of the measurement matrix A ∈ Rm×N , as well as

the left singular vector matrix U ∈ Rm×m of A and the diagonal matrix ΣA ∈ Rm×m

containing the singular values of A. These can be pre-computed before using IRLS, for

example, via a singular value decomposition of A. Likewise, the vector

ỹ = V Σ−1
A (U∗y) (2.16)

can be pre-computed and can be re-used at each outer iteration of IRLS.

In the following, for I ⊂ [N ], we denote by MI ∈ Rm×|I| the restriction of a matrix

M ∈ Rm×N to the columns indexed by I, and by QIk ∈ RN×Ik the projector matrix

such that PIk = QIkQ
∗
Ik
. Furthermore, let D−1

Ik
∈ RIk×Ik be a diagonal matrix such that

(D−1
Ik
)ii = |xk

i | for each i ∈ Ik. Now, we verify that xk+1 as computed by Algorithm 2 is a

solution of the weighted least squares problem Equation 2.9.

Lemma 2.2.8. If xk+1 ∈ RN is the output of Algorithm 2, then xk+1 coincides with the

solution of the weighted least squares problem Equation 2.9.

Proof of Lemma 2.2.8. We recall from above that if xk+1
∗ ∈ RN is the solution of Equation

2.9, it holds that xk+1
∗ = W−1

k A∗z where z is as in
(
AW−1

k A∗) z = y. Using Equation

2.15, we see that

AW−1
k A∗ = A

((
W−1

Ik
− εkPIk

)
+ εkId

)
A∗ = AIk

(
D−1

Ik
− εkId

)
A∗

Ik
+ εkAA

∗.

By identifying B := εkAA
∗, C :=

(
D−1

Ik
− εkId

)
and E = F := AIk , and by noting that
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Algorithm 2 Practical implementation of weighted LS step of IRLS for small εk

Input: Matrix V ∈ Rm×N projecting onto range space of measurement matrix A,
ỹ ∈ RN from (2.16), smoothing parameter εk, projection γ

(0)
k = Q∗

Ik
QIk−1

(γk−1) ∈ RIk

of solution γk−1 ∈ RIk−1 of linear system (2.17) for previous iteration k − 1.

1: Compute h0
k = Q∗

Ik
ỹ −

(
εk
(
D−1

Ik
− εkId

)−1
+ (V ∗)∗Ik(V

∗)Ik

)
γ
(0)
k ∈ RIk .

2: Solve (
εk
(
D−1

Ik
− εkId

)−1
+ (V ∗)∗Ik(V

∗)Ik

)
∆γk = h0

k (2.17)

for ∆γk ∈ RIk by the conjugate gradient method [HS52b, Meu06].

3: Compute γk = γ
(0)
k +∆γk ∈ RIk .

4: Compute residual rk+1 := ỹ − V (V ∗)Ik(γk) ∈ RN .
5: Set xk+1 = rk+1.
6: Set (xk+1)Ik = (xk+1)Ik + γk.
7: Output: xk+1 ∈ RN and γk ∈ Ik.

the matrix C is invertible, since, on the set Ik, we have |xk
i | > εk, we obtain by using

Lemma 2.2.7 that

(
A(Wk)

−1A∗)−1
= ε−1

k Z − ε−1
k ZAIkG

−1A∗
Ik
Z,

where we used the notation Z := (AA∗)−1 and G := εkC
−1 + A∗

Ik
ZAIk . Therefore, we

have

z =
(
A(Wk)

−1A∗)−1
y = ε−1

k Z(y)− ε−1
k ZAIkG

−1A∗
Ik
Z(y) = ε−1

k Z(y − AIkG
−1A∗

Ik
Z(y))

(2.18)

and hence

A∗
Ik
(z) = ε−1

k (A∗
Ik
Z(y)− A∗

Ik
ZAIkG

−1A∗
Ik
Z(y))

= ε−1
k (A∗

Ik
Z(y)− A∗

Ik
ZAIk

(
εkC

−1 + A∗
Ik
ZAIk

)−1
A∗

Ik
Z(y))

= ε−1
k

(
A∗

Ik
Z(y)−

(
A∗

Ik
ZAIk ± εkC

−1
) (

εkC
−1 + A∗

Ik
ZAIk

)−1
A∗

Ik
Z(y)

)
= C−1

(
εkC

−1 + A∗
Ik
ZAIk

)−1
A∗

Ik
Z(y).

(2.19)

Thus, for the (k + 1)-th iteration of IRLS, we obtain for the solution xk+1
∗ of (2.9) the

representation

xk+1
∗ = W−1

k A∗(z) =
(
εkId +QIk

(
D−1

Ik
− εkId

)
Q∗

Ik

)
A∗(z)

=
[
εkId +QIkCQ∗

Ik

]
A∗z = εkA

∗z +QIkCA∗
Ik
(z)

= εkA
∗z +QIkCC−1

(
εkC

−1 + A∗
Ik
ZAIk

)−1
A∗

Ik
Z(y)

= εkA
∗z +QIkG

−1A∗
Ik
Z(y)

(2.20)
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using (2.19) in the third equality. Next, if V is as in the input of Algorithm 2, since

A∗
Ik
ZAIk = Q∗

Ik
A∗(AA∗)−1AQIk = Q∗

Ik
V V ∗QIk = (V ∗)∗Ik(V

∗)Ik ,

we observe that the matrix G from above actually coincides with the linear system matrix

of (2.17).

Furthermore, if γk is as in step 3 of Algorithm 2, it satisfies

γk = γ
(0)
k +∆γk = γ

(0)
k +G−1h0

k = γ
(0)
k +G−1

(
Q∗

Ik
ỹ −Gγ

(0)
k

)
= G−1Q∗

Ik
ỹ,

where we also observe that

Q∗
Ik
ỹ = Q∗

Ik
V Σ−1

A U∗(y) = Q∗
Ik
A∗ (AA∗)−1 y = A∗

Ik
Zy.

Using this last equation, we can identify z of (2.18) such that

z = ε−1
k Z(y − AIkG

−1A∗
Ik
Zy) = ε−1

k Z
(
y − AIkG

−1Q∗
Ik
ỹ
)
= ε−1

k Z (y − AIkγk) .

Inserting this into (2.20), we obtain

xk+1
∗ = εkA

∗z +QIkG
−1A∗

Ik
Zy = εkA

∗z +QIkG
−1Q∗

Ik
ỹ = εkA

∗z +QIkγk

= A∗Z (y − AIkγk) +QIkγk

= V Σ−1
A U∗ (y − UΣAV

∗QIkγk) +QIkγk

= ỹ − V (V ∗)Ikγk +QIkγk

= rk+1 +QIkγk,

where the residual rk+1 is as in step 4 of Equation 2. The last equation tells us that the

solution of the linear system can be represented by a residual. The first, Z(y), can be

precomputed from the data, and the second, ZAPIkG
−1P ∗

Ik
A∗Z(y), is updated iteratively

according to the weights.

Comparing the equation xk+1
∗ = rk+1 + QIkγk with the steps 5 and 6 of Algorithm 2, we

observe that the output xk+1 of Algorithm 2 coincides with xk+1
∗ , which finishes the proof.

If a linear system is solved inexactly with an iterative solver (and a limited number of

iterations), a sufficient condition for quantifying its accuracy can be achieved by bounding

the condition number of the system matrix (see, e.g., [NW06, Section 5.1]). In particular,

it can be shown that the convergence rate of the conjugate gradient is given by
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Theorem 2.2.9 ([QSS10, Theorem 4.12]). Let the matrix A be Hermitian and positive

definite. The conjugate gradient algorithm converges to the solution of the system Ax = y

after at most N steps. Moreover, the error xi − x is such that

∥A
1
2 (xi − x)∥2 ≤

2ciA
1 + c2iA

∥A
1
2 (x0 − x)∥2, with cA =

√
κA − 1

√
κA + 1

< 1,

where κA = σmax(A)
σmin(A)

is the condition number of the matrix A and σmax(A) (resp. σmin(A))

is the largest (resp. smallest) singular value of A.

In fact, using a few iterations of a CG method to solve the system (2.17) typically leads

to quite accurate solutions, particularly if εk is small. This can be seen by analyzing the

condition number of the matrix G

G = εk
(
D−1

Ik
− εkIdIk

)−1
+ A∗

Ik
ZAIk =: M1,k +M2,k (2.21)

of Equation 2.17 in Algorithm 2. To do so, we assume that the matrix AIk is well-

conditioned in the sense that it has the restricted isometry property.

Definition 2.2.10. A matrix A ∈ Rm×N satisfies the restricted isometry property (RIP)

of order 1 ≤ s ≤ N if there is a constant δs ∈ (0, 1) such that

(1− δs)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δs)∥x∥22

for all s-sparse vectors x ∈ RN .

We start by bounding the condition number of M2,k. For that, let x such that ∥x∥2 = 1.

We calculate that

∥xTA∗
Ik
(AA∗)−1AIkx∥ ≤ ∥AIkx∥2∥(AA∗)−1∥ ≤ (1 + δ)2∥(AA∗)−1∥,

where in the last inequality, we assumed that A satisfies the restricted isometry property.

From that, as long as the cardinality of the set Ik := {i ∈ [N ] : |xk
i | > εk} is smaller than

s, the inequality holds. This implies that

∥M2,k∥ = ∥A∗
k(AA

∗)−1Ak∥ ≤ (1 + δ)2σmin(A)
−2. (2.22)

Similarly, we can derive that

σmin

(
A∗

k(AA
∗)−1Ak

)
≥ (1− δ)2∥A∥−2. (2.23)
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We note that M1,k is a diagonal matrix with entries given by εk/(x
k
i − εk). Now, by

additionally assuming that the iteration xk is already close to the ground truth and,

without loss of generality, by assuming that k is such that ||xk − x∗||∞ ≤ cmini∈S(x∗)i,

for c > 0, we have

||M1,k||2 = εk/(x
k
i − εk) ≤

εk
(1− c)mini∈S |(x∗)i| − εk

. (2.24)

Note that this term becomes arbitrarily small when εk becomes arbitrarily small.

Hence, for εk small enough it follows that

κ (G) =
∥G∥2

σmin(G)

(a)

≤ ∥M1,k∥2 + ∥M2,k∥2
σmin(M2,k)− ∥M1,k∥2

(b)

≤ 2(1 + δ)2∥A∥22
(1− δ)2σmin(A)2

=
2(1 + δ)2

(1− δ)2
κ (A)2 .

Here, in (a), we used Weyl’s inequality [HHJ94] and (b) holds as soon as εk is small

enough due to inequalities (2.22), (2.23), and (2.24). Hence, we have shown that if A

is well-conditioned, the matrix G will also be well-conditioned, and the CG method will

yield very accurate solutions. This fact, which forms the computational basis of our

IRLS implementation, solves the problem of ill-conditioned systems that appear when

such methods are used. The method of choice for the solution of the linear system in the

inner iteration will dictate how scalable the method is. Note that in this thesis, we have

not explored modern randomized techniques for such tasks, and we leave this remark for

future work. A first step in this direction was given in [Mel21], but we believe that its

full potential has not yet been explored. See also the discussion in [DY23].

Open Problem: How can randomized methods, e.g., [GR15], when applied to the

inner iteration of IRLS, improve the algorithm’s scalability? What are the limitations of

such an approach?

Now that we have discussed the computational side of IRLS, we turn to the development

of the convergence theory, which is our main result in this chapter. To do so, we start by

introducing a central property in compressive sensing and sparse signal recovery, the null

space property.

2.2.2 Null space property

As mentioned in Section 2.1.1, several sufficient conditions exist for the sparse recovery

via ℓ1-minimization. The remarkable fact about this problem is that we also know a

precise characterization of a necessary condition, at least in the noiseless case. In fact,

the seminal work [CDD09] defined the null space property (NSP), a condition on the
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kernel of measurement matrix A, that is necessary and sufficient for sparse recovery via

Basis Pursuit. This is a very rare example of a provably hard combinatorial problem

in optimization where there exists a property that dictates when the solution to this

problem can be found via solving a convex problem. They also defined a more general

stable version of the NSP that accounts for compressible vectors, i.e., not exactly but

rather approximately sparse. This is precisely the content of the next definition.

Definition 2.2.11. A matrix A ∈ Rm×N is said to satisfy the ℓ1-null space property (ℓ1-

NSP) of order s ∈ N if for any set S ⊂ [N ] of cardinality |S| ≤ s, it holds that ∥vS∥1 <
∥vSc∥1, for all v ∈ ker(A)\{0}. We say that it satisfies the stable null space property if

there exists a constant 0 < ρs < 1 such that ∥vS∥1 ≤ ρs∥vSc∥1, for all v ∈ ker(A)\{0}.

The precise theorem can be found in [FR13, Theorem 4.5].

Theorem 2.2.12. (Essentially [CDD09, Theorem 3.2]): Given a matrix A ∈ Rm×N ,

every s-sparse vector x ∈ RN is the unique solution of (P1) with Ax = y if and only if A

satisfies the null space of order s.

This property is not a vacuous one since many examples of matrices satisfy it with high

probability, as the next result shows.

Theorem 2.2.13. [FR13, Theorem 9.29] Let A ∈ Rm×N be a random drawing of a

Gaussian matrix. Assume that

m2

m+ 1
≥ 2s ln(eN/s)

(
1 + ρ−1 +D(s/N) +

√
ln(ε−1)

s ln(eN/s)

)2

,

where D is a function that satisfies D(α) ≤ 0.92 for all α ∈ (0, 1] and limα→0D(α) = 0.

Then, with probability at least 1 − ε the matrix A satisfies the stable null space property

of order s with constant ρ.

The proof of Theorem 2.2.13, which appeared for the first time in [FR13, Theorem 9.29]

relies on Gordon’s Escape Through the Mesh Theorem [Gor88] and was highly inspired by

[RV08a, Theorem 4.1] and the discussion and propositions presented in [Sto10]. Later,

the book [FR13] introduced a robustness constant to account for robustness with respect

to additive noise. See [FR13, Chapter 4] or [PJ22] for an overview. Furthermore, the

ℓ1-NSP is known to hold for random matrices with i.i.d. entries whose distribution has a

logarithmic number of finite moments and fulfills a small-ball condition, which includes a

number of more heavy-tailed random matrices as long as the number of rows and columns

satisfy a certain relationship [ML17, DLR18].
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The ℓ1-NSP is implied by the restricted isometry property despite a fundamental the-

oretical difference between them (see, e.g., [CCW16, DLR16] for a discussion), which

is fulfilled by a large class of random matrices with high probability. For example,

this includes matrices with (sub-)Gaussian entries and random partial Fourier matrices

[RV08b, BDDW08].

As in [DDFG10], the analysis we present in this chapter is based on the assumption that

the measurement matrix A satisfies the NSP since this is the weakest possible assumption

we could require for the analysis of sparse recovery. Before we state the main result,

Theorem 2.3.3, we discuss some existing theoretical results for IRLS.

2.2.3 Existing theory

A major step forward in the theoretical understanding of IRLS was achieved in the semi-

nal paper [DDFG10], where the authors showed that a variant of IRLS for (P1) converges

globally to the ℓ1-minimizer if the measurement operator A fulfills the NSP of sufficient

order, which essentially ensures that an ℓ1-minimizer is actually sparse. However, since

their proof relies on a compactness argument, their proof is non-constructive and does not

reveal any rate for global convergence. Furthermore, the analysis of [DDFG10] provides

a locally linear convergence rate, but this local linear rate has the drawback that it only

applies if the support of the true signal has been discovered, which was not emphasized in

their contribution and which is arguably the difficult part of ℓ0-minimization—cf. Theo-

rem 2.3.1 below and Section 2.4.1. Later, [Bec15a] established a nonasymptotic sublinear

rate of convergence for the LASSO as a particular case of a general result for alternating

minimization schemes. However, the result does not apply to an IRLS scheme with a

smoothing parameter that changes at each iteration, as is the case here. We will discuss

this general result [Bec15a] in Chapter 4.

A predecessor of IRLS for the sparse recovery problem (P1), and more generally, for ℓp-

quasinorm minimization with 0 < p ≤ 1, is the FOCal Underdetermined System Solver

(FOCUSS) proposed by Gorodnitsky, Rao and Kreutz-Delgado [GR97a, RKD99]. Asymp-

totic convergence of FOCUSS to a stationary point from any initialization was claimed

in [RKD99], but the proof was not correct, as pointed out by [CY16]. One limitation of

FOCUSS is that unlike in IRLS as presented in Algorithm 1, no smoothing parameter

ε is used, which leads to ill-conditioned linear systems and to solutions that could be

non-sparse in the case of p < 1.

To mitigate this, [CY08] proposed an IRLS method that uses smoothing parameters ε

(such as used in Qε defined above) that are updated iteratively. It was observed that

this leads to a better condition number for the linear systems to be solved in each step of
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IRLS and, furthermore, that this smoothing strategy has the advantage of finding sparser

vectors if the weights of IRLS are chosen to minimize a non-convex ℓp-quasinorm for p < 1.

Further progress for IRLS designed to minimize an ℓ1-norm was achieved in the seminal

paper [DDFG10]. In [DDFG10], it was shown that if the measurement operator fulfills the

ℓ1-null space property as in Definition 2.2.11, an IRLS method with iteratively updated

smoothing converges to the ℓ1-minimizer, coinciding with the s-sparse solution, if there

exists one that is compatible with the measurements. This method uses not exactly the

update rule of Equation 2.10, but rather updates the smoothing parameter such that

εk+1 = min(εk, R(xk+1)s+1/N), where R(xk+1)s+1 is the (s+1)st-largest element of the set

{|xk+1
j |, j ∈ [N ]}. Furthermore, a local linear convergence rate of IRLS was established

[DDFG10, Theorem 6.1] under the same conditions.

However, the analysis of [DDFG10] has its limitations: first, there is a gap in the as-

sumption of their convergence results between the sparsity s of a vector to be recovered

and the order ŝ of the NSP of the measurement operator. Recently, this gap was cir-

cumvented in [ABH19] with an IRLS algorithm that uses a smoothing update rule based

on an ℓ1-norm, namely, εk+1 = min(εk, η(1 − ρs)σs(x
k+1)ℓ1/N), where η ∈ (0, 1), and ρs

is the NSP constant of the order s of the NSP fulfilled by the measurement matrix A –

this rule is quite similar to the rule Equation 2.10 that we use in Algorithm 1. In partic-

ular, [ABH19, Theorem III.6] establishes convergence with a local linear rate similar to

[DDFG10] but without the gap mentioned above. The main limitation, however, of the

theory of [DDFG10], which is also shared by more recent paper [ABH19], is that the linear

convergence rate only holds locally, i.e., in a situation where the support of the sparse

vector has already been identified, see also Section 2.3 and Section 2.4.1 for a discussion.

We finally mention three relevant papers for the theoretical understanding of IRLS. The

work [BBPB13] established a correspondence between the IRLS algorithm and a class

of Expectation-Maximization (EM) algorithms for constrained maximum likelihood esti-

mation under a Gaussian scale mixture distribution. Without requiring any connection

between sparse recovery and ℓ1-minimization, [EV19] shows that an IRLS-like algorithm

for Equation P1, requires O(N1/3 log(log(N))+N1/3 log(1/δ)/δ2/3+log(N)/δ2) iterations

to obtain an multiplicative error of 1 + δ on the minimizer ||x||1. Unlike the result estab-
lished in this chapter, Theorem 2.3.3, this corresponds not to a linear but to a sublinear

convergence rate. Finally, the recent [SV21] explored the curious relationship of IRLS for

ℓ1-minimization and slime mold dynamics, interpreting both as an instance of the same

meta-algorithm. We expect that this kind of insight could be explored in the future for

new theoretical guarantees as well as for the design of new algorithms for data science

and machine learning problems.
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2.3 IRLS for Basis Pursuit with Global Linear Rate

The main theoretical result for (a modern implementation of) IRLS for the sparse recov-

ery problem was established in the work [DDFG10]. In particular, they established the

following local convergence-rate theorem4:

Proposition 2.3.1. [DDFG10, Theorem 6.1] Assume that A ∈ Rm×N satisfies the NSP

of order ŝ > s with constant ρŝ such that 0 < ρŝ < 1 − 2
ŝ+2

and ŝ > s + 2ρŝ
1−ρŝ

hold. Let

x∗ ∈ RN be an s-sparse vector and set y = Ax∗. Assume that there exists an integer

k0 ≥ 1 and a positive number ξ > 0 such that

ξ :=
∥xk0 − x∗∥1
mini∈S |(x∗)i|

< 1. (2.25)

Then the iterates {xk0 , xk0+1, xk0+2, . . .} of the IRLS method in [DDFG10] converge lin-

early to x∗, i.e., for all k ≥ k0, the kth iteration of IRLS satisfies

∥xk+1 − x∗∥1 ≤
ρŝ(1 + ρŝ)

1− ξ

(
1 +

1

ŝ− 1− s

)
∥xk − x∗∥1. (2.26)

A closer look at the locality condition (2.25) reveals that its basin of attraction is very

restrictive: this condition means that the support identification problem underlying the

sparse recovery has already been solved, i.e., if xk, the kth IRLS iteration, is already close

enough to the ground truth, then we would observe that the support would have been

already identified and, consequently, the hardest part of the sparse recovery problem would

have been solved. Only the identification of the correct magnitudes would be missing,

which can be done via least squares applied to an overdetermined system. Since this was

not discussed in [DDFG10], we establish this fact in the following proposition as part of

our contribution.

Proposition 2.3.2. Let xk, x∗ ∈ RN , let S ⊂ [N ] be the support set of x∗ of size |S| = s.

If Equation 2.25 holds, i.e., if ∥xk − x∗∥1 < mini∈S |(x∗)i|, then the set Sk ⊂ [N ] of the s

largest coordinates of xk coincides with S.

Proof. Let j ∈ Sc, where S is the support set of x∗. Then

|xk
j | ≤

∑
i∈Sc

|xk
i | < min

i∈S
|(x∗)i| −

∑
i∈S

|xk
i − (x∗)i|,

using the assumption
∑

i∈Sc |(xk)i|+
∑

i∈S |xk
i − (x∗)i| = ∥xk − x∗∥1 < mini∈S |(x∗)i|.

4In [DDFG10, Section 7.3], the authors also established a local superlinear convergence rate with rate
2− p for the case of ℓp-minimization, where 0 < p < 1
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On the other hand, for j ∈ S, we can estimate that

|xk
j | = |xk

j − (x∗)j + (x∗)j| ≥ |(x∗)j| − |xk
j − (x∗)j| ≥ min

i∈S
|(x∗)i| −

∑
i∈S

|xk
i − (x∗)i|.

Taking the previous two inequalities together, we conclude that

max
j∈Sc

|xk
j | < min

j∈S
|xk

j |,

which finishes the proof.

Now, we will overcome the local assumption such as the one presented in Equation 2.25

and solve a problem stated in [SV21]. We show that IRLS as defined in this chapter by

Algorithm 1 exhibits a global linear convergence rate, i.e., there is a linear convergence rate

starting from any initialization, as early as in the first iteration. This shows that a very

simple strategy for sparse recovery, based on solving a least squares problem multiple

times, can be fruitful and have strong theoretical guarantees when the weighting and

smoothing parameters are suitably chosen. Moreover, our proof strategy is quite simple

and involves bounding two terms together with a solution of a quadratic inequality.

Our first main result, Theorem 2.3.3, deals with the scenario that the ground truth vector

x∗ is exactly s-sparse. Our second result, Theorem 2.3.9, generalizes the first one to the

more realistic situation of approximately sparse vectors.

Theorem 2.3.3. Consider the problem of recovering an unknown s-sparse vector x∗ ∈ RN

from known measurements of the form y = Ax∗. Assume that the measurement matrix

A ∈ Rm×N fulfills the ℓ1-NSP of order s with constant ρs < 1/2. Let the IRLS iterates{
xk
}
k
and {εk}k be defined by the IRLS algorithm (2.9) and (2.10) with initialization x0.

Then, for all k ∈ N, it holds that

Jεk(x
k)− ∥x∗∥1 ≤

(
1− c

ρ1N

)k (
Jε0(x

0)− ∥x∗∥1
)

(2.27)

as well as

∥xk − x∗∥1 ≤ 9

(
1− c

ρ1N

)k

∥x0 − x∗∥1. (2.28)

Here c = 1/768 is an absolute constant and ρ1 < 1/2 denotes the ℓ1-NSP constant of

order 1.

Inequality 2.27 says that the difference Jεk(x
k)−∥x∗∥1 converges linearly with a uniform

upper bound of 1− c
ρ1N

on the linear convergence factor. As our proof shows, this implies

inequality 2.28, which implies that also ∥x∗ − xk∥1 exhibits linear convergence in the



2.3. IRLS FOR BASIS PURSUIT WITH GLOBAL LINEAR RATE 45

number of iterations k. In particular, this means that for some error tolerance δ > 0, we

obtain ∥x∗ − xk∥1 ≤ δ after O
(
ρ1N log

(
∥x∗−x0∥1

δ

))
iterations.

Remark 2.3.4. Note that it follows directly from Definition 4.1.4 that the constant ρ1

of the ℓ1-NSP of order 1 satisfies ρ1 ≤ ρs ≤ 1, which implies that δ-accuracy is obtained

after O
(
N log

(
∥x∗−x0∥1

δ

))
iterations. This bound can be improved in many scenarios

where one can obtain more explicit bounds on ρ1, for example, when A is a Gaussian

matrix. Namely, inspecting [FR13, p. 142 and Thm. 9.2], we observe in this sce-

nario that ρ1 ≲
√

(logN)/m with high probability. Hence, in this scenario, at most

O

(
N
√

logN
m

log
(

∥x∗−x0∥1
δ

))
iterations are needed to achieve δ-accuracy.

The key idea in our proof is to use the fact that the quadratic functional Qεk(·, xk)

approximates the ℓ1-norm in a neighborhood of the current iterate xk. For this reason, we

also expect that for t > 0 sufficiently small, we have that Qεk(x
k + tvk, xk) < Qεk(x

k, xk)

if vk = x∗ − xk is the vector between xk and the ground truth x∗. Then, by choosing t

properly, we can guarantee a sufficient decrease of the functional Jεk
(
xk
)
in each iteration.

Before we start with the proof of Proposition 2.3.7, we first state and prove the following

technical lemma, which gives an upper and lower bound for the quantity for which we are

going to show linear convergence, namely, Jε (x)− ∥x∗∥1.

Lemma 2.3.5. Let x∗, x ∈ RN . Assume that A fulfills the ℓ1-NSP of order s with constant

ρs < 1. Furthermore, suppose Ax∗ = Ax and that ε ≤ 1
N
σs (x)ℓ1. Then, it holds that

1− ρs
1 + ρs

∥x− x∗∥1 − 2σs (x∗)ℓ1 ≤ Jε (x)− ∥x∗∥1 ≤ 3σs (x)ℓ1 . (2.29)

To prove Lemma 2.3.5, we need the following technical lemma.

Lemma 2.3.6. [DDFG10, Lemma 4.3] Assume that the matrix A ∈ Rm×N has the ℓ1-

NSP holds for some s and ρs < 1. Then for all z, x∗ ∈ RN such that Az = Ax∗ it holds

that

∥z − x∗∥1 ⩽
1 + ρs
1− ρs

(∥x∗∥1 − ∥z∥1 + 2σs(z)ℓ1) .

Proof of Lemma 2.3.5. We observe that Jε (x) ≥ ∥x∥1, which follows directly from the
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definition of Jε (x), see Equation 2.4. Hence, we obtain that

Jε (x)− ∥x∗∥1 ≥ ∥x∥1 − ∥x∗∥1
= ∥xSc∥1 + ∥xS∥1 − ∥x∗∥1
≥ ∥xSc∥1 − ∥ (x− x∗)S ∥1 − ∥ (x∗)Sc ∥1
≥ ∥ (x− x∗)Sc ∥1 − ∥ (x− x∗)S ∥1 − 2∥ (x∗)Sc ∥1,

where in each of the last two inequalities, we have applied the reverse triangle inequality.

Since x − x∗ is contained in the null space of A, it follows from the nullspace property

that ∥ (x− x∗)S ∥1 ≤ ρs∥ (x− x∗)Sc ∥1. Hence, we have shown that

Jε (x)− ∥x∗∥1 ≥ (1− ρs) ∥ (x− x∗)Sc ∥1 − 2∥ (x∗)Sc ∥1.

Since it follows from the null space property that ∥ (x− x∗)Sc ∥1 ≥ ∥x−x∗∥1
1+ρs

, this shows the

first inequality in 2.29.

Next, we will prove the reverse inequality in 2.29. For that, set I := {i ∈ [N ] : |xk
i | > εk}

and denote by S the set, which contains the s largest entries of x in absolute value. Then

we observe that

Jε (x)− ∥x∗∥1 = ∥xI∥1 +
1

2

∑
i∈Ic

(
x2
i

ε
+ ε

)
− ∥x∗∥1

≤ ∥xI∥1 + |Ic|ε− ∥x∗∥1
≤ ∥xI∥1 + σs (x)ℓ1 − ∥x∗∥1
≤ ∥x∥1 + σs (x)ℓ1 − ∥x∗∥1.

(2.30)

In the third line we used the assumption ε ≤ 1
N
σs (x)ℓ1 . To proceed, we first derive an

appropriate upper bound for ∥x∥1 − ∥x∗∥1. For that, we note(
1− ρs
1 + ρs

+ 1

)
(∥x∥1 − ∥x∗∥1) ≤

1− ρs
1 + ρs

∥x− x∗∥1 − (∥x∗∥1 − ∥x∥1)

≤
(
∥x∗∥1 − ∥x∥1 + 2σs (x)ℓ1

)
− (∥x∗∥1 − ∥x∥1)

≤ 2σs (x)ℓ1 ,

where in the second line, we have used Lemma 2.3.6. This shows that ∥x∥1 − ∥x∗∥1 ≤
2σs(x)ℓ1
1+ 1−ρs

1+ρs

. Combining this with Equation 2.30, we obtain

Jε (x)− ∥x∗∥1 ≤ 3σs (x)ℓ1 ,
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which finishes the proof of inequality 2.29.

The next key proposition states that the quantity Jεk
(
xk
)
− ∥x∗∥1 decays linearly un-

der appropriate conditions. But before that, we define the ℓ1-error of the best s-term

approximation as σs(x∗)ℓ1 = inf{∥x∗ − z∥1 : z ∈ RN is s-sparse}.

Proposition 2.3.7. Let x∗ ∈ RN be an approximately s-sparse vector with support S.

Let A ∈ Rm×N and y = Ax∗. Assume that A fulfills the ℓ1-NSP of order s with constant

ρs < 3/4, if σs (x∗)ℓ1 = 0, and ρs < 1/4 otherwise. Moreover, assume that A has the

ℓ1-NSP of order 1 with constant ρ1 < 1.

Let the IRLS iterates
{
xk
}
k
and {εk}k be defined by Equation 2.9 and Equation 2.10 with

initialization x0. Then, for all k ∈ N, such that ∥ (x∗)Sc ∥1 ≤ 2
9
∥ (x∗)Sc − xℓ

Sc∥1 for all

ℓ < k, the following holds

Jεk(x
k)− ∥x∗∥1 ≤

(
1− cρs

ρ1N

)k (
Jε0(x

0)− ∥x∗∥1
)
. (2.31)

where the constant cρs is defined by

cρs :=


(3/4−ρs)2

48
if σs (x∗)ℓ1 = 0

(1/4−ρs)2

48
else

Before proving this statement, let us describe the main ideas of our proof. Recall that x∗

has minimal ∥ · ∥1-norm among all vectors x that satisfy the constraint Ax = y, since we

have assumed that the NSP holds. Hence, setting vk = x∗ − xk due to convexity of the

ℓ1-norm we that ∥xk+ tvk∥1 < ∥xk∥1 for all 0 < t < 1. Since that the quadratic functional

Q(·, xk) approximates the objective function Jε, which is a surrogate for the ℓ1-norm, in

a neighborhood of the current iterate xk, we also expect that for t > 0 sufficiently small

we have that Q(xk + tvk, xk) < Q(xk, xk). To show that the decrease is sufficiently large,

we also need to show that t can be chosen large enough. This will guarantee a sufficient

decrease of Jεk
(
xk
)
in each iteration.

Proof of Theorem 2.3.7. In order to show inequality Equation 2.31 we will prove by in-

duction that for each k, such that ∥ (x∗)Sc ∥1 ≤ 2
9
∥ (x∗)Sc − xℓ

Sc∥1 for all ℓ ≤ k, it holds

that

0 ≤ Jεk+1
(xk+1)− ∥x∗∥1 ≤

(
1− cρs

ρ1N

)(
Jεk(x

k)− ∥x∗∥1
)
.

Now choose such a k ≥ 1 and assume that the statement has been shown for all k′ < k.
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Set vk = x∗ − xk. For t ∈ R, we have, by the optimality of xk+1 in Equation2.9, that

Jεk+1
(xk+1) ≤ Qεk(x

k+1, xk) ≤ Qεk(x
k + tvk, xk). (2.32)

Moreover, by the definition of the quadratic objective Qεk(·, xk) (see Equation 4.14), it

holds that

Qεk(x
k + tvk, xk)− Jεk(x

k) = t ⟨∇Jεk(x
k), vk⟩+ t2

2
⟨vk, diag(w(xk, εk))v

k⟩. (2.33)

Our goal is to show that by picking t large enough, we can make Qεk(x
k + tvk, xk) −

Jεk(x
k) < 0 sufficiently small. For that, we now control the terms ⟨∇Jεk(x

k), vk⟩ and

⟨vk, diag(wεk(x
k))vk⟩ separately.

Part I: Bounding the linear term ⟨∇Jεk(x
k), vk⟩:

Let I := {i ∈ [N ] : |xk
i | > εk} and denote by S the set which contains the s largest entries

of x∗ in absolute value. In the case that x∗ is sparse, S is given by the support of x∗, i.e.

S = supp (x∗). Consider

⟨∇Jεk(x
k), vk⟩ =

N∑
i=1

xk
i

max(|xk
i |, εk)

vki =
∑
i∈S

xk
i

max(|xk
i |, εk)

vki +
∑
i∈Sc

xk
i

max(|xk
i |, εk)

vki .

The first summand can be bounded by

∑
i∈S

xk
i

max(|xk
i |, εk)

vki =
∑
i∈S∩I

sgn(x
(k)
i )vki +

∑
i∈S∩Ic

xk
i

εk
vki

≤ ∥vkS∩I∥1 + ∥vkS∩Ic∥1
= ∥vkS∥1
≤ ρs∥vkSc∥1.

Note that this is precisely the first place where the definition of εk proposed in Algorithm
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1 played a role in the proof of our main result. For the second summand, we have that

∑
i∈Sc

xk
i

max(|xk
i |, εk)

vki

=
∑

i∈Sc∩I

sgn
(
xk
i

)
vki +

∑
i∈Sc∩Ic

xk
i v

k
i

εk

=
∑

i∈Sc∩I

sgn
(
xk
i

)
(x∗)i −

∑
i∈Sc∩I

sgn
(
xk
i

)
xk
i +

∑
i∈Sc∩Ic

xk
i (x∗)i
εk

−
∑

i∈Sc∩Ic

(xk
i )

2

εk

≤∥ (x∗)Sc∩I ∥1 − ∥xk
Sc∩I∥1 + ∥ (x∗)Sc∩Ic ∥1 −

∥xk
Sc∩Ic∥22
εk

=− ∥xk
Sc∩I∥1 + ∥ (x∗)Sc ∥1 −

∥xk
Sc∩Ic∥22
εk

=∥ (x∗)Sc ∥1 − ∥xk
Sc∥1 + ∥xk

Sc∩Ic∥1 −
∥xk

Sc∩Ic∥22
εk

≤2∥ (x∗)Sc ∥1 − ∥vkSc∥1 + ∥xk
Sc∩Ic∥1 −

∥xk
Sc∩Ic∥22
εk

.

To proceed, we note that from the elementary inequality ab ≤ 1
2
(a2 + b2) and from

∥xk
Sc∩Ic∥1 ≤

√
N∥xk

Sc∩Ic∥2, it follows that

∥xk
Sc∩Ic∥1 ≤

1

2

(
εk∥xk

Sc∩Ic∥21
2∥xk

Sc∩Ic∥22
+ 2

∥xk
Sc∩Ic∥22
εk

.

)
≤ εkN

4
+

∥xk
Sc∩Ic∥22
εk

.

Hence, using that εk ≤ σs(x
k)ℓ1/N , we have shown that

∑
i∈Sc

xk
i

max(|xk
i |, εk)

vki ≤ 2∥ (x∗)Sc ∥1 − ∥vkSc∥1 +
εkN

4

= 2∥ (x∗)Sc ∥1 − ∥vkSc∥1 +
σs(x

k)ℓ1
4

≤ 2∥ (x∗)Sc ∥1 − ∥vkSc∥1 +
∥xk

Sc∥1
4

≤ 2∥ (x∗)Sc ∥1 − ∥vkSc∥1 +
∥vkSc∥1

4
+

∥(x∗)Sc∥1
4

=
9

4
∥ (x∗)Sc ∥1 −

3

4
∥vkSc∥1,

where we used the triangular inequality for the vector vk = xk − x∗ on the set Sc and the

fact that σs(x
k)ℓ1 ≤ ∥xk

Sc∥1. Hence, by adding up terms, we obtain that

⟨∇Jεk(x
k), vk⟩ ≤ 9

4
∥ (x∗)Sc ∥1 −

(
3

4
− ρs

)
∥vkSc∥1 ≤ −(β − ρs)∥vkSc∥1.
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Here, we have set β = 3/4 in the case that σs (x∗)ℓ1 = 0 and β = 1/4 else. Moreover, we

used the assumption ∥ (x∗)Sc ∥1 ≤ 2
9
∥vkSc∥1.

Part II: Bounding the quadratic term ⟨vk, diag(wεk(x
k))vk⟩

In order bound the quadratic term in eq. (2.33) we first decompose it into two parts

⟨vk, diag(wεk(x
k))vk⟩ =

N∑
i=1

(vki )
2

max(|xk
i |, εk)

=
∑
i∈S

(vki )
2

max(|xk
i |, εk)

+
∑
i∈Sc

(vki )
2

max(|xk
i |, εk)

.

(2.34)

For the first summand, we note that

∑
i∈S

(vki )
2

max(|xk
i |, εk)

≤ ∥vkS∥1∥vkS∥∞
εk

≤ ρs
∥vkSc∥1∥vk∥∞

εk
≤ ∥vkSc∥1∥vk∥∞

εk
. (2.35)

For the second summand, it holds that

∑
i∈Sc

(
vki
)2

max(|xk
i |, εk)

≤ ∥vkSc∥∞∥vkSc∥1
εk

≤ ∥vkSc∥1∥vk∥∞
εk

, (2.36)

Hence, by adding eq. (2.35) and eq. (2.36) up, it follows that

⟨vk, diag(wεk(x
k))vk⟩ ≤ 2

∥vkSc∥1∥vk∥∞
εk

.

Next, we note that

∥vk∥∞ ≤ ρ1∥vk∥1 ≤ ρ1 (1 + ρs) ∥vkSc∥1 ≤ 2ρ1∥vkSc∥1.

Hence, we have shown that

⟨vk, diag(wεk(x
k))vk⟩ ≤ 4ρ1

∥vkSc∥21
εk

.

Part III: Combining the bounds to obtain a decrease in k-th step:

Inserting the bounds of Part I and Part II into eq. (2.33) we obtain

Qεk(x
k + tvk, xk)− Jεk(x

k) ≤ −tb+ t2a =: h(t), (2.37)

where the function h : R → R is a quadratic polynomial with coefficients b = (β − ρs) ∥vkSc∥1
and a = 4ρ1

∥vkSc∥21
εk

. We observe that the minimizer of h is given by t = b
2a
. Inserting this
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into h, we obtain that

h

(
b

2a

)
= − b2

4a
= −(β − ρs)

2∥vkSc∥21εk
16ρ1∥vkSc∥21

= −(β − ρs)
2

16ρ1
εk. (2.38)

Combining this with Equation 2.12, we obtain, for t = b
2a
,

Jεk+1
(xk+1)− Jεk(x

k) ≤ Qεk(x
k+1, xk)− Jεk(x

k)

≤ Qεk(x
k + tvk, xk)− Jεk(x

k) ≤ −(β − ρs)
2

16ρ1
εk.

Hence, by rearranging terms, it follows that

Jεk+1
(xk+1)− ∥x∗∥1 ≤ Jεk(x

k)− ∥x∗∥1 −
(β − ρs)

2

16ρ1
εk. (2.39)

In order to proceed, we need to bound εk from below. Here, for the second time, we need

to use the definition of εk proposed in Algorithm 1. For that, we note that

εk = min

(
εk−1,

σs(x
k)ℓ1

N

)
=

σs

(
xℓ
)
ℓ1

N

for some ℓ ≤ k. By Lemma 2.3.5, we have the following inequality chain

Nεk = σs

(
xℓ
)
ℓ1
≥ 1

3

(
Jεℓ
(
xℓ
)
− ∥x∗∥1

)
≥ 1

3

(
Jεk

(
xk
)
− ∥x∗∥1

)
,

where in the second inequality, we have used that, by induction, Jεk

(
xk
)
≤ Jεℓ

(
xℓ
)
.

Plugging this into Equation 2.39 leads to

Jεk+1
(xk+1)− ∥x∗∥1 ≤

(
1− (β − ρs)

2

48ρ1N

)(
Jεk(x

k)− ∥x∗∥1
)
.

This finishes the induction step and concludes the proof of Theorem 2.3.7.

From Theorem 2.3.7 we can deduce Theorem 2.3.3, the first main result of this manuscript.

Proof of Theorem 2.3.3 . Recall that by Theorem 2.3.7 we have for all k ∈ N that

Jεk(x
k)− ∥x∗∥1 ≤

(
1− cρs

ρ1N

)k (
Jε0(x

0)− ∥x∗∥1
)

with a constant cρs =
(3/4−ρs)2

48
and where S denotes the set which contains the s largest
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entries of x∗ in absolute value. By our assumption ρs < 1/2 it follows that cρs ≥ 1/768,

which implies that inequality Equation 2.27 holds.

By Lemma 2.3.5 we have that

Jε0(x
0)− ∥x∗∥1 ≤ 3σs

(
x0
)
ℓ1
≤ 3∥x0 − x∗∥1.

Next, we note that, again by Lemma 2.3.5, it holds that

1− ρs
1 + ρs

∥x− x∗∥1 ≤ Jεk(x
k)− ∥x∗∥1.

Combining the three inequalities in this proof together with the assumption ρs ≤ 1/2

yields inequality 2.28, which finishes the proof.

We now generalize Theorem 2.3.3 to the scenario where the ground truth x∗ is only

approximately sparse. By that, we mean that the vector x∗ can be well-approximated

by an s-sparse vector in the sense that the ℓ1-error of the best s-term approximation

σs(x∗)ℓ1 = inf{∥x∗ − z∥1 : z ∈ RN is s-sparse} is small, which is a commonly used

quantity to measure the model misfit to a sparse vector [FR13, Section 2.1]. If x∗ is

approximately sparse in this sense, we can only hope to approximately recover x∗ by the

ℓ1-minimization program (P1) as the next theorem shows.

Theorem 2.3.8. Suppose that a matrix A ∈ Rm×N satisfies the stable null space property

of order s with constant 0 < ρ < 1. Then, for any x ∈ RN , a solution x∗ of (P1) with

y = Ax approximates the vector x with ℓ1-error

||x− x∗||1 ≤
2(1 + ρ)

(1− ρ)
σs(x)1. (2.40)

Indeed, [DDFG10, Theorem 5.3 (iv)] showed that under a suitable null space property,

IRLS for (P1) finds a vector x, such that ∥x − x∗∥1 is at most a constant multiple of

the optimal best s-term approximation error σs(x∗)ℓ1 . However, as for exactly sparse

vectors x∗, only a local but no global convergence rate was provided in previous literature

[DDFG10, Theorem 6.4].

The following result shows that we can also obtain global linear convergence of Algo-

rithm 1 in this case. More precisely, Theorem 2.3.9 implies that Jεk(x
k) − ∥x∗∥1 decays

exponentially fast until a certain accuracy is reached, which σs (x∗)ℓ1 up to a constant

multiple.

Theorem 2.3.9. Consider the problem of recovering an unknown vector x∗ ∈ RN from

known measurements of the form y = Ax∗. Assume that the measurement matrix A ∈
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Rm×N fulfills the ℓ1-NSP of order s with constant ρs < 1/8. Let the IRLS iterates
{
xk
}
k

and {εk}k be defined by (2.9) and (2.10) with initialization x0. Then, the following three

statements hold.

1. For k ≤ k̂ := min
{
k ∈ N : σs (x∗)ℓ1 >

2
9

∥∥(x∗ − xk
)
Sc

∥∥
1

}
it holds that

Jεk(x
k)− ∥x∗∥1 ≤

(
1− c

ρ1N

)k (
Jε0(x

0)− ∥x∗∥1
)
, (2.41)

where S denotes the support of the s largest entries of x∗.

2. For all 1 ≤ k ≤ k̂ it holds that

∥xk − x∗∥1 ≤ 6

(
1− c

ρ1N

)k

∥x0 − x∗∥1 + 10σs (x∗)ℓ1 . (2.42)

3. Moreover, for all integers k ≳ ρ1N log
(

∥x0−x∗∥1
σs(x∗)ℓ1

)
we have that

∥xk − x∗∥1 ≤ 20σs (x∗)ℓ1 . (2.43)

Here c = 1/3072 and ρ1 < 1/8 denotes the constant for the ℓ1-NSP of order 1.

Remark 2.3.10. Applying Theorem 2.3.9 to the special case σs (x∗)ℓ1 = 0, we observe

that inequality 2.28 yields a seemingly sharper result than inequality 2.42 in Theorem

2.3.3, which may seem somewhat counterintuitive. However, note that in Theorem 2.3.3

we require ρs < 1/2, whereas in Theorem 2.3.9 we have the stronger assumption ρs <

1/8. Indeed, a closer inspection of the proofs reveals that both the factors 3 and 6 in

the inequalities 2.28 and 2.42 can be replaced by the factor 3(1+ρs)
1−ρs

, reconciling those two

results.

Now, we prove the second main result in this manuscript, Theorem 2.3.9, which deals

with the approximately sparse case.

Proof of Theorem 2.3.9. Recall that

k̂ := min

{
k ∈ N : σs (x∗)ℓ1 >

2

9
∥ (x∗)Sc − xk

Sc∥1
}
.

Moreover, we note that by Theorem 2.3.7 we have for k ≤ k̂ that

Jεk(x
k)− ∥x∗∥1 ≤

(
1− cρs

ρ1N

)k (
Jε0(x

0)− ∥x∗∥1
)

(2.44)
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with a constant cρs =
(1/4−ρs)2

48
. Hence, by our assumption ρs < 1/8 we obtain cρs ≥ 1/3072

and inequality Equation 2.41 follows, which proves the first statement. To prove the

second statement, let k̃ and k be natural numbers, such that k̃ ≤ k̂ and k ≥ k̃ holds.

Then, we obtain that

1− ρs
1 + ρs

∥xk − x∗∥1 − 2σs (x∗)ℓ1 ≤ Jεk(x
k)− ∥x∗∥1

≤ Jεk̃
(xk̃)− ∥x∗∥1

≤
(
1− cρs

ρ1N

)k̃ (
Jε0(x

0)− ∥x∗∥1
)

≤ 3

(
1− cρs

ρ1N

)k̃

σs

(
x0
)
ℓ1
,

where in the first inequality, we applied Lemma 2.3.5. In the second inequality, we used

that the sequence
{
Jεℓ
(
xℓ
)}

ℓ
is monotonically decreasing and in the third inequality we

used inequality 2.44. In the fourth inequality, we again used Lemma 2.3.5. By rearranging

terms and using the assumption ρs < 1/8 it follows for all integers k̃ and k such that k̃ ≤ k̂

and k ≥ k̃

∥xk − x∗∥1 ≤ 6

(
1− cρs

ρ1N

)k̃

σs

(
x0
)
ℓ1
+ 4σs (x∗)ℓ1 . (2.45)

To proceed, recall that S denotes the support of the s largest entries of x∗. Then we note

that

σs

(
x0
)
ℓ1
≤ ∥x0

Sc∥1 ≤ ∥
(
x0 − x∗

)
Sc ∥1 + ∥ (x∗)Sc ∥1 ≤ ∥x0 − x∗∥1 + σs (x∗)ℓ1 . (2.46)

Hence, we have shown that for all integers k̃ and k such that k̃ ≤ k̂ and k ≥ k̃ it holds

that

∥xk − x∗∥1 ≤ 6

(
1− cρs

ρ1N

)k̃

∥x0 − x∗∥1 + 10σs (x∗)ℓ1 . (2.47)

By setting k = k̃, we observe that this implies inequality 2.42, which shows the second

statement. To prove the third statement, we will distinguish two cases. For the first case,

assume that k̂ ≥
⌈
ρ1N
cρs

log
(

∥x0−x∗∥1
σs(x∗)ℓ1

)⌉
. Then for k ≥ k̃ :=

⌈
ρ1N
cρs

log
(

∥x0−x∗∥1
σs(x∗)ℓ1

)⌉
it follows

from inequality eq. (2.47) that

∥xk − x∗∥1 ≤ 6

(
1− cρs

ρ1N

) ρ1N
cρs

log

(
∥x0−x∗∥1
σs(x∗)ℓ1

)
∥x0 − x∗∥1 + 10σs (x∗)ℓ1 ≤ 20σs (x∗)ℓ1 .
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where in the second inequality, we have used the elementary inequality log (1 + t) ≤ t

for t > −1. This shows the third statement in the first case. To prove the second case,

assume that k̂ <
⌈
ρ1N
cρs

log
(

∥x0−x∗∥1
σs(x∗)ℓ1

)⌉
. Then, we can compute that

1− ρs
1 + ρs

∥xk − x∗∥1 − 2σs (x∗)ℓ1 ≤ Jεk(x
k)− ∥x∗∥1

≤ Jεk̃
(xk̂)− ∥x∗∥1

≤ 3σs

(
xk̂
)
ℓ1

≤ 3∥xk̂ − x∗∥1 + 3σs (x∗)ℓ1

≤ 3 (1 + ρs) ∥
(
xk̂ − x∗

)
Sc
∥1 + 3σs (x∗)ℓ1

≤ 20σs (x∗)ℓ1 .

In the first and third inequality, we have used Lemma 2.3.5. In the second inequality,

we have used the monotonicity of the sequence
{
Jεk

(
xk
)}

k
. In the fourth inequality,

we have argued as in inequality 2.46, and in the fifth inequality, we have used the null

space property. In the last inequality, we have used that by definition of k̂ it holds that

σs (x∗)ℓ1 > 2
9
∥ (x∗)Sc − xk̂

Sc∥1. This shows that the third statement holds in the second

case, which finishes the proof.

2.4 Numerical experiments

In this section, we first examine whether IRLS indeed exhibits two distinct convergence

phases, a global one, as described in this paper, and a local one, as described in [DDFG10,

ABH19], corresponding to different linear convergence rate factors. This question is very

important in the optimization literature, and, indeed, many algorithms for sparse recovery

and low-rank matrix recovery exhibit this type of behavior, e.g., [SLCX23, LFP17]. This

phenomenon is also known as manifold identification [SJNS19, BIM22], a problem that

dates back to [Dun87]. See also [LW11, BM88] for a discussion of this problem in the

case of constrained optimization, a question that will arise again in Chapter 5. Second,

we explore to which extent the dimension dependence in the convergence rates (2.27) and

if we can expect a dimension-free linear convergence rate factor or if rather the (2.28)

indicated by Theorem 2.3.3 is necessary.
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2.4.1 Two-phase convergence phase

As discussed in the beginning of Section 2.3 the local convergence result of [DDFG10,

Theorem 6.1] depends on the locality condition ξ(k) := ∥xk−x∗∥1
mini∈S |(x∗)i| < 1, cf. Equation

2.25. Under this condition and a null space property of order ŝ > s with constant ρŝ such

that 0 < ρŝ < 1− 2
ŝ+2

and ŝ > s+ 2ρŝ
1−ρŝ

hold, Theorem 2.3.1 stated above implies that

∥xk+1 − x∗∥1 ≤ µ∥xk − x∗∥1

with an absolute constant µ < 1 which, in particular, does not depend on the dimension

N,m, and s. This corresponds to a local linear rate for IRLS. A very similar condition

to (2.25) is required by the comparable and more recent local convergence statement for

the IRLS variant considered in [ABH19].

Theorem 2.4.1. [ABH19, Theorem III.6] Suppose that the measurement matrix A ∈
Rm×N satisfies the null space property of order s for a certain 0 < ρ < 1, and suppose

that A−1(y), the set of solutions to the equation Ax = y, contains a s-sparse vector x∗.

Set T := {i|x∗
i ̸= 0, 1 ≤ i ≤ N} and choose ρ̃ ∈ (0, 1− ρ(1 + η(1− ρ))), where ρ is the

NSP constant and η ∈ (0, 1) is initialized in the IRLS. Then there is a smallest k0 ∈ N
such that

∥(xk0 − x∗)T c∥1 ≤ ρ̃min
i∈T

|(x∗)i| .

Moreover, for all k ≥ k0,

∥(xk+1 − x∗)Sc∥1 ≤ µ∥(xk − x∗)Sc∥1, (2.48)

∥xk − x∗∥1 ≤ (1 + ρ)µk−k0∥xk0 − x∗∥1, (2.49)

where µ := ρ(1+η(1−ρ))
1−ρ

< 1.

We now explore the behavior of the IRLS algorithm for ℓ1-minimization proposed here,

with weights given by Equation (2.11), Algorithm 1, and the sharpness of Theorem 2.3.2.

In order to do so, we design experiments that build on those of [DDFG10, Section 8.1].

Therefore, we consider vectors lying in a vector space of dimension N = 8000. We

also sample independently a 200-sparse vector x∗ ∈ RN with random support S ⊂ [N ],

s = 200 = |S|, chosen uniformly at random such that (x∗)S is chosen according to the

Haar measure on the sphere of a 200-dimensional unit ℓ2-ball. We choose a measurement

matrix A ∈ Rm×N with i.i.d. Gaussian entries such that Aij ∼ N (0, 1/m) while setting

m = ⌊2s log(N/s)⌋, which is given by the theory of compressive sensing [FR13, Chapter

9]. As described above, such a matrix is known to fulfill with high probability the ℓ1-null

space property of order s with constant ρs < 1 [FR13, Theorem 9.29].
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Figure 2.4: Instantaneous linear convergence rates of IRLS for ℓ1-minimization (N =
8000): Linear convergence factors µℓ1(k) := ∥xk − x∗∥1/∥xk−1 − x∗∥1 (in blue), filled blue
circle if Sk = S with Sk of Theorem 2.3.2 (support identification), and error parameter
ζ(k) := ∥xk−x∗∥1/mini∈S |(x∗)i| (in red). Horizontal (red) line: Threshold ζ = 1. Vertical
(red) line: First iterate k with ζ(k) < 1.

In Figure 2.4, we track the decay of the ℓ1-error ∥xk−x∗∥1 of the iterates xk rof Algorithm

1 via the values of ζ(k) := ∥xk − x∗∥1/mini∈S |(x∗)i|, depicted in red, and the behavior

of the factor µℓ1(k) := ∥xk − x∗∥1/∥xk−1 − x∗∥1, depicted in blue. We observe that the

condition 2.25 for local convergence with the fast, dimension-less linear rate Equation

2.26 is satisfied after k = 33 iterations, as indicated by the vertical dashed red line.

In the first few iterations, ζ(k) is larger than 1 by several orders of magnitudes, suggesting

that the local convergence rate results of [DDFG10, ABH19] do not apply until the later

stages of the simulation: In fact, we observe that the support S of x∗ is already perfectly

identified via the s largest coordinates of xk as soon as k ≥ 18. For iterations 18 ≤ k ≤ 50,

the linear rate µℓ1(k) remains very stable around ≈ 0.7, after which an accelerated linear

rate can be observed. The latter phenomenon cannot be observed for the IRLS algorithm

of [DDFG10] as it uses a slightly different objective function and weights than Algorithm

1. We believe it would also not be observed for the Algorithm from [ABH19]. In the

example presented here, before k = 18, the rate µ(k) floats around the value 0.7. For all

iterations k, µ(k) is smaller than 1, in line with the global linear convergence rate implied

by Theorem 2.3.3.

In a similar experiment for a larger ambient space dimension N = 16000 and a smaller

measurement-to-sparsity ratio such that m = ⌊1.75s log(N/s)⌋ results in a qualitatively

similar situation, as seen in Figure 2.5: In Figure 2.5, we add also a plot of the linear

convergence factor µ(k) :=
Jεk

(xk)−∥x∗∥1
Jεk−1

(xk−1)−∥x∗∥1 that tracks the behavior of the linear conver-

gences in the smoothed ℓ1-norm objective J , cf. (2.31). In addition to what has been

observed in Figure 2.4, we see that µ(k) and µℓ1(k) exhibit very similar behavior for this
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example.
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Figure 2.5: Standard initialization (uniform weights (w0)i = 1 for all i). Instantaneous
linear convergence rates of IRLS for ℓ1-minimization for N = 16000. Linear

convergence factors µℓ1(k) :=
∥xk−x∗∥1

∥xk−1−x∗∥1 (in blue) and µ(k) :=
Jεk

(xk)−∥x∗∥1
Jεk−1

(xk−1)−∥x∗∥1 (in

green), filled circles if Sk = S (perfect support identification), and error parameter
ζ(k) := ∥xk − x∗∥1/mini∈S |(x∗)i| (in red), horizontal and vertical red lines as in

Figure 2.4.

Hence, these experiments indicate that we can distinguish two phases. A few works

discuss why such behavior is typical for non-smooth objective functions [SLCX23] and

why methods like the (sub)gradient descent method, for example, would require decaying

stepsizes in the first phase of the convergence. In the first phase of IRLS, the global one,

we observe a linear convergence where the instantaneous linear convergence rate has not

yet stabilized. In the second one, the instantaneous linear convergence stabilizes when

the support identification problem has been solved.

As discussed in the introduction of this chapter, other methods, such as proximal algo-

rithms, exhibit similar behavior. In particular, there are some algorithms for which con-

vergence results with a two-phase behavior have already been established. For example,

[LFP17] showed that a forward-backward method applied to the Lasso problem exhibits

local linear convergence and that after a finite number of iterations, the region of fast

convergence is reached. In particular, [LFP17, Proposition 3.6(ii)] provides a bound on

this number of iterations, which scales proportionally with ||x∗−x0||22. On the other hand,

what is remarkable is that our result for IRLS, (2.3.3), provides a bound on the number

of iterations until the fast linear convergence rate is reached that scales proportionally

with log(||x∗ − x0||2), but also proportionally with the dimension N . Moreover, most of

these results require stronger assumptions than the NSP, such as the restricted isometry

property, restricted condition number [AS21], or a restricted strong convexity/smooth-

ness property. At the time of this thesis, some results for linear convergence (with high
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probability) were recently established, followed by a study of the two-phase behavior for

iterative hard thresholding (a projected sub-gradient descent-type algorithm). However,

they rely on the strong assumption that the measurement matrix is given by a Gaussian

matrix with independent rows [SLCX23].

2.4.2 Global convergence rate and its dimension dependence

In this section, we explore to what extent the dependence on N in the convergence rates

given by Equations 2.28 and 2.43 is sharp or if we can rather expect a dimension-free

linear convergence rate factor. Such kind of complexity discussion appeared already in the

literature for, for example, interior-point algorithms such as the barrier method [NN94].

In particular, in [BV04, Section 11.5.3], one can find a discussion about the number of

necessary iterations for the Newton step in the barrier method, which also exhibits a two-

phase convergence phenomenon. In Chapter 3, we will discuss the connection between

IRLS and Newton’s method. Therefore, there are parallels in the complexity analysis for

both methods.

To analyze the dimension dependency, we design a hard experiment where a variant of

IRLS is initialized with the weight vector w0 ∈ RN not uniformly as in Algorithm 1,

but based on an adversary initialization, here denoted by zadv. Since the hardest step

in sparse recovery is to retrieve the support, we start with a vector that contains all the

information off-support. More specifically, we first compute a minimizer

zadv ∈ argmin
z∈RSc :AScz=y

∥z∥1

of the ℓ1-minimization problem restricted to the off-support coordinates of x∗ indexed by

Sc and set then x0 ∈ RN such that x0
Sc := zadv and x0

S = 0. Based on this initialization

x0, we compute ε0 :=
σs(x0)ℓ1

N
and set the first weight vector such that for all i ∈ [N ],

(w0)i :=
1

max (|x0
i |, ε0)

, (2.50)

before proceeding with the IRLS steps Equation 2.9, 2.10 and 2.11 until convergence.

We observe in Figure 2.6 that this initialization, which is adversary as it sets very large

initial weights on the coordinates of S that correspond to the true support of x∗, eventually

results in the same behavior of Algorithm 1 as for the standard initialization by uniform

weights, identifying the true support at iteration k = 39 compared to k = 30. However,

in the first few iterations, we see that the instantaneous linear convergence factor µ(k) is

close to 1 with µ(1) = 0.980, decreasing only slowly before stabilizing around 0.79 after
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around k = 30.
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Figure 2.6: Adversary initialization (weights (w0)i as in (2.50)). Instantaneous linear
convergence rates of IRLS for ℓ1-minimization for N = 16000: Linear convergence

factors µℓ1(k) :=
∥xk−x∗∥1

∥xk−1−x∗∥1 (in blue) and µ(k) :=
Jεk

(xk)−∥x∗∥1
Jεk−1

(xk−1)−∥x∗∥1 (in green), filled

circles if Sk = S (perfect support identification), and error parameter
ζ(k) := ∥xk − x∗∥1/mini∈S |(x∗)i| (in red), horizontal and vertical red lines as in

Figure 2.4.

While this is just one example, this already indicates that a linear rate such as Equation

2.26, i.e., without dependence on the dimension N (which has been proven locally in

[DDFG10, Theorem 6.1] and [ABH19, Theorem III.6]) might not hold in general.

In our next experiment, we further investigate numerically the dimension dependence of

the worst-case linear convergence factor µ(k) :=
Jεk

(xk)−∥x∗∥1
Jεk−1

(xk−1)−∥x∗∥1 , which is upper bounded

by the result of Theorem 2.3.3. We saw that in the experiment using the adversary

initialization mentioned above and depicted in Figure 2.6, the maximal value was attained

in the first iteration, i.e., for µ(1), as the effect of the adversary initialization is most

eminent for k = 1 and it decreases with the iteration of the algorithm,.

In the third experiment, IRLS is executed for different ambient dimensions N = 125 · 2ℓ/2

for ℓ = 0, 1, . . . , 14 and it is started from the adversary initialization. For each of the values

of N , vectors x∗ ∈ RN of sparsity s = 40 are sampled from the same random model as

above. The number of i.i.d. Gaussian measurements is given by m = ⌊2s log(N/s)⌋. We

average the resulting values for µ(1) across 500 independent realizations of the experiment.

In Figure 2.7, we see that dependence on N of linear convergence factor µ(1) as observed

in this experiment is quite well described by the upper bound (2.27) provided by our main

result Theorem 2.3.3. Roughly speaking, our result predicts that the rate µ ≈ 1− 1
N
. We

observe that 1
1−µ(1)

scales almost linearly with N . As 2.3.4 after Theorem 2.3 indicates,

the constant ρ1 of the null space property of order 1 scales with
√

logN
m

, and therefore a
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precise dependence on all the parameters such as m and s might be more complicated

than what can be observed in this experiment.
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1
1−µ(1)
N
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Figure 2.7: Comparison of N
100

and 1
1−µ(1)

(for which Proposition 2.3.7 provides an

upper bound of ρ1N
c
) for different dimension parameters N , where µ(1) =

Jε1 (x
1)−∥x∗∥1

Jε0 (x
0)−∥x∗∥1

is the linear convergence factor, for IRLS initialized from adversary initialization.

Nevertheless, Figure 2.7 provides a piece of strong evidence that one should not expect

the linear convergence rate of Theorem 2.3.7 to be dimension-free. That being said, it

is an interesting open problem to investigate the precise parameter dependence of µ in

greater detail. As mentioned at the beginning of this section, a similar question was

analyzed for other methods such as interior-point methods, cf. [BV04, Section 11.5] and

[N+18, Section 5.2] and all the known results in the literature, to the best of the author’s

knowledge, are dimension-dependent. Our convergence proof is quite conservative, and

it is possible that with different weighting and smoothing schemes for IRLS, one could

obtain a sharper convergence rate. We leave this as an open problem.

Open Problem: Establish the optimal dependence on N for the convergence rate of

IRLS methods.

In view of the experiments described above and our (potentially pessimistic) analysis, it

is interesting to investigate whether a global convergence rate with better dimension de-

pendency is possible, for example, via a smoothed analysis [ST03, DH18], which measures

the expected performance of algorithms under slight random perturbations of worst-case

inputs.

Recently, some works developed the notion of Trimmed LASSO that possesses excellent

numerical properties [BCM17] and for which a majorization-minimization strategy was

also developed [ABN21]. We think it is an interesting problem to leverage the current
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theoretical knowledge about algorithms for the trimmed LASSO with the techniques de-

scribed in this chapter.

Open Problem: Is it possible to extend the analysis provided in this chapter to

algorithms designed for the Trimmed LASSO objective function?

2.5 Chapter Conclusion

In this chapter, we presented the first idea related to least squares in this thesis, and

we discussed how a specific choice of objective function and weights leads to a powerful,

scalable, and fast algorithm for ℓ1-minimization. After covering a part of the vast history

of IRLS and its developments for several different problems, we showed how new ideas

can lead to improved numerical stability and stronger theoretical results as compared to

previous methods. In particular, we solved an open problem in the algorithmic theory for

sparse recovery. Namely, we established a global linear convergence rate for IRLS under

minimal assumptions. We have corroborated our theory with numerical experiments that,

first, discussed the difference between the local and global convergence phase and, second,

elucidated the optimality of the dimension dependence of convergence rate given by our

main theorem, Theorem 2.3.3. As a potential future work direction, we note that there are

currently no convergence rates available for IRLS optimizing a convex objective function

that resembles the ℓ1-norm, such as the nuclear norm. This objective function is also

discussed in the literature for, for example, matrix completion [MF12a, FRW11a, KS18]

and tensor completion problems [YZ16]. It would be interesting to generalize the theory

presented in this chapter to these problems. We conclude by noting that we left a few

open problems and future research directions that we believe are interesting to pursue.



Chapter 3

Ill-conditioned low-rank matrix

completion

“Some movies are notoriously bad, and people who did not like them always give them as negative

examples, indicating what they do not want to watch. However, for the other part of the population, who

liked those movies, they are not going to be remembered long as salient positive examples. Thus, when

rating in bulk, long after watching the movie, only those who disliked the movie will rate it.”

Yehuda Koren describing the progress on the Netflix prize [Kor09]

This chapter proposes an IRLS-type algorithm to complete highly ill-conditioned low-rank

matrices. This algorithm, which can be interpreted as a saddle-escaping smoothing quasi-

Newton method or a variable metric proximal gradient method, combines the favorable

data efficiency of IRLS approaches with improved scalability by several orders of magni-

tude. The work presented in this chapter was written in collaboration with Dr. Christian

Kümmerle, and it was published at the Workshop on “Beyond first-order methods in

ML systems” at the 37th International Conference on Machine Learning, 2020 under the

title Escaping Saddle Points in Ill-Conditioned Matrix Completion with a Scalable Sec-

ond Order Method [KMV20]. And also at the main International Conference on Machine

Learning 2021 under the title A Scalable Second Order Method for Ill-Conditioned Matrix

Completion from Few Samples [KV21]. The results of this chapter also appeared in the

Ph.D. thesis of Dr. Christian Kümmerle. We highlight our main contribution:

We establish a minimization scheme for the low-rank matrix completion problem that

is able to retrieve highly ill-conditioned matrices in the optimal information theoretical

regime, where the number of sufficient samples for the completion does not depend on

the condition number and scales logarithmically with the dimension. We show that the

method attains a local quadratic convergence rate and provide extensive experiments

that indicate its advantages against other state-of-the-art methods.

63
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3.1 Introduction

In the preceding chapter, we extensively explored the concept of sparsity as the primary

principle of parsimony, and we devised an efficient and scalable algorithm based on the

least squares framework to recover sparse vectors. In the present chapter, our focus will

shift towards tabular data in the form of matrices and will generalize the previously devel-

oped concepts. Dealing with matrices introduces additional complexities in employing the

least squares approach, but we will nonetheless proceed to design an algorithm capable

of completing matrices from missing entries. Moreover, we will establish that this algo-

rithm, which is based on the sequential minimization of majorizers of a highly non-convex

function, attains local quadratic convergence. This represents a notable departure from

the previous chapter, where such accelerated convergence was not established.

In the era of machine learning and data-driven models, low-rank matrices became ubiqui-

tous in science and engineering due to their ability to capture simplified representations of

complex information since they provide an efficient and parsimonious presentation of tab-

ular data. In particular, the crucial information contained in an (approximately) low-rank

dataset can be expressed by using a few vectors since the number of degrees of freedom

of a low-rank matrix is much lower than the ambient dimension of the matrix, see Theo-

rem 3.1.6 below. Thanks to that, low-rank structures usually allow for fast computations

and efficient data storage and processing, which made their use well spread in large-scale

or real-time applications. See [HMT11, HNWL21] and references therein.

Since the introduction of the Singular Value Decomposition (SVD) [Ste93] and the method

of Principal Component Analysis (PCA) [Pea01, Hot33] (for more historical details, see

the notes in the book [SS90]), where one aims for a low-rank matrix that explains the data

in the sense that it minimizes the approximation error in the least squares sense, several

methods having low-rank matrices at their core were proposed for dealing with large-scale

data and for making sense of it. One of the earliest examples of using such matrices was

developed in [Hot36]. This work employed the use of eigenvectors of a covariance matrix

between two sets of variables to understand the relation between them, and the notion of

low-rankness played a fundamental role in the analysis.

The development of tools from linear algebra that leverage low-rank models for compres-

sion [HCMTH15], sketching [W+14], or streaming [TYUC19] of data, among other tech-

niques for large-scale data, is a very active topic. Also, the numerous applications of such

methods in machine linear and data science, such as in cardiac MRI [ZHBL10], statistics

[LR19], recommender systems [RYL+18], large language models [HSW+21], hyperspectral

imaging [PSL+21], environmental sensing [KXL+13], blind source separation [KMM+18]

geophysics [YMO13], phase retrieval [CESV15], molecular biology [WWZG15], system
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identification [LV10], video processing [JLSX10], MIMO channel estimation in telecom-

munications [XGJ16], and in quantum information theory [GLF+10], to name a few.

Low-rank matrices are more omnipresent than what was thought, as the result below

shows. In particular, we can interpret it as large datasets have a low-rank structure.

Theorem 3.1.1. [UT19, Theorem 1] Let X ∈ Rm×n with m ≥ n and 0 < ϵ < 1. Then,

with r = ⌈72 log(2n+ 1)/ϵ2⌉ we have

inf
rank(Y )≤r

∥X − Y ∥max ≤ ϵ∥X∥2 (3.1)

Remark 3.1.2. As the authors of [UT19] discussed, it is important to assume r < n,

which requires n to be extremely large; otherwise, the theorem is meaningless. In this case,

the theorem says that any large matrix with a small spectral norm is well approximated by

a low-rank matrix.

In many of the applications mentioned above, when only one can access partial or in-

complete data, an important sub-problem is to infer the matrix model from just a few

samples. The general mathematical question is whether a partially specified rectangular

array of data could be completed into a matrix satisfying certain properties. This problem

of retrieving a matrix from partial observations is a highly ill-posed one since there are

infinitely many matrices that could be used to complete a given subset of tabular data.

Therefore, one needs to impose a certain structure on the underlying data to have a well-

defined matrix completion (MC) problem. There are various MC problems [Joh90], such

as positive definite completions1, maximum entropy completions, and low-rank comple-

tions – the latter, known as low-rank matrix completion (LRMC) [NKS19, DR16, CLC19],

being the subject of investigation in this chapter.

Among the LRMC problems, one of the most famous examples occurs in the field of rec-

ommender systems, where a rating matrix that represents how users rate certain products

needs to be inferred from a few samples [CW22]. This lack of information comes from the

fact that many users usually haven’t rated most of the products but rather just a few of

them. The problem is predicting the rates a certain user would give a certain item.

3.1.1 The Netflix problem

The problem described above gained a lot of attention from the media (https://www.

nytimes.com/2006/10/02/technology/02netflix.html) after the streaming company

1This is still a very active field of research. See [CNX22] and https://www.alignment.org/blog/

prize-for-matrix-completion-problems/ for more details.

https://www.nytimes.com/2006/10/02/technology/02netflix.html
https://www.nytimes.com/2006/10/02/technology/02netflix.html
https://www.alignment.org/blog/prize-for-matrix-completion-problems/
https://www.alignment.org/blog/prize-for-matrix-completion-problems/
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Netflix2 created a public competition on 2 October 2006, where they offered the prize

of US$1, 000, 000 for developing an algorithm that could outperform their own method,

called Cinematch. A team would be considered a winner if they could improve over

Cinematch by 10% on the root mean squared error (RMSE) of the algorithm’s prediction

against the actual rating that a subscriber provides. The company provided a training

data set of 100, 480, 507 ratings, scores from 1 to 5, that 480, 189 users (nowadays the

company has over 232 million users worldwide) gave to 17, 770 movies and a qualifying

set of 2, 817, 131 ratings that were used to test the proposed algorithms. The dataset

was formed by randomly selecting a subset of all users who provided at least 20 ratings

between October 1998 and December 2005. Interestingly, it took six days until a team

had already found a better algorithm than the one by Netflix. But it was only in July

2009 that Bellkor’s Pragmatic Chaos team was declared the winner after an improvement

of 10.06% on the RMSE.

Mathematically speaking, the rating process can be described by matrix X0 ∈ Rd1×d2

whose (i, j) entry contains the rate that the user i’s attributed to the item j. If we define

the set Ω = {(i, j)| rate that user i has given to movie j}, the problem translates into

retrieving X0 from the observed entries Y = P (X0), where P is the projection operator

onto the subset Ω. As described in Section 3.1, without any additional assumption,

the problem is ill-posed since any completion is feasible. It is widely accepted in the

recommender system community that only a few latent factors describe the rate that a

user gives to a movie since their choices tend to be correlated by, for example, movie style

or director [CW22]. Therefore, the underlying matrix would be (approximately) low rank.

In Figure 3.1, we can observe this fact for the MovieLens dataset [HK15].

The low-rankness assumption was crucial in many of the solutions proposed for the Netflix

challenge. In particular, matrix factorization methods that relied on this assumption were

successfully employed. Interestingly, another important technique that was used by the

winners was the method of alternating least squares minimization, which also related

to the main theme of this thesis [KBV09]. Despite the great accuracy of such matrix

completion methods for recommender systems, it is worth noting that they were not

sufficient for practical settings3. Indeed, to make matrix completion methods useful for

recommender systems, one needs to consider several other aspects of human-computer

interaction, machine learning, and quantitative marketing. Nevertheless, this competition

2When the problem was announced, Netflix was still a DVD rental company. They started their
streaming service in January 2007.

3Indeed, the company Netflix did not implement the winning solution. In their own words
“the additional accuracy gains that we measured did not seem to justify the engineering ef-
fort needed to bring them into a production environment”. See https://netflixtechblog.com/

netflix-recommendations-beyond-the-5-stars-part-1-55838468f429.

https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
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Figure 3.1: Singular values of rating matrices generated from two widely used datasets
for recommender systems: (a) MovieLens-100K (1682 Movies and 943 Users) and (b)
MovieLens-1M (3952 Movies and 6040 Users), where top 20% singular values account for
51.10% and 55.97% of the sum of all singular values, respectively.

stimulated a lot of research in the field of matrix completion.

3.1.2 The mathematical formulation

The low-rank matrix completion problem can be formulated as follows. Given a matrix

X0 ∈ Rd1×d2 of rank-r and an index set Ω ⊂ [d1]× [d2], the task is to reconstruct X0 just

from the knowledge of Ω and PΩ(X0), where PΩ : Rd1×d2 → Rm (with m ≪ d1d2) is the

subsampling operator that maps a matrix to the set of entries indexed by Ω.

min
X∈Rd1×d2

rank(X) subject to PΩ(X) = PΩ(X0). (3.2)

A connection exists between Equation (3.2) and the sparse recovery problem discussed

in Chapter 2. If we describe the underlying matrix X0 by its SVD decomposition, in

the case that U and V are nonsingular, we have rank(X0) = rank(Σ). And rank(Σ) will

be given by the number of non-zero elements of the vector of singular values #»σ (X0) =

(σ1, . . . , σmin{d1,d2}). Therefore, problem 3.2 is simply the problem of minimizing the ℓ0

norm of the vector of singular values, subject to the constraints given by the data. From

this connection, one can convert the sparse recovery problem Equation (P0) into a rank

minimization problem by considering the vector to be retrieved as a diagonal matrix. This

shows that the rank minimization problem is as hard as the sparse recovery problem and,

hence, it is an NP-hard problem.

Remark 3.1.3. The low-rank matrix completion can actually be seen as a particular

instance of a more general problem, the so-called low-rank matrix recovery [Mar18], where

the linear operator PΩ(X) will not be given by an orthogonal projection onto the set of
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entries but rather will be of the form PΩ(X)i = tr(AT
i X) for general matrices A1, . . . , Am ∈

Rd1×d2. This general problem is also known as the affine rank minimization problem

in the control theory community [FHB03, MP97]. LRMC can be considered a (hard)

particular example when {Ai}kj = 1 if (k, l) ∈ Ω, where Ω is the set of known entries

and 0 elsewhere. For the recovery problem, under certain assumptions on the matrices

{Ai}mi=1, several works established uniform and non-uniform recovery guarantees4 (see

[FR13, Section 9.2] for a discussion) with algebraic geometric [RWX21, CRWX18] or

probabilistic [ENP12] techniques. See also [BCMN14, CEHV15] for a discussion about

the injectivity of the measurement operator PΩ in the particular case of phase retrieval

and [KK17] for a discussion in the context of bilinear inverse problems.

The focus of this chapter will be on the LRMC problem, which is considered a hard

instance of the general matrix recovery problem since most of the techniques used for the

general problem assume that the operator P preserves the geometry of certain structure

sets, which is known as the restricted isometry property [RFP10], and this does not hold

in the case of matrix completion. It is beyond the scope of this thesis to analyze the

general recovery problem fully, and we will rather focus on the use of least squares for the

LRMC problem.

From an optimization point of view, (3.2) is particularly difficult to handle due to two

properties: its non-convexity and its non-smoothness. A widely studied approach in

the literature replaces the rank(X) by the (convex) nuclear norm ∥X∥∗ =
∑d

i=1 σi(X)

[FHB03], which is the tightest convex envelope of the rank, as the following theorem

shows:

Theorem 3.1.4. [FHB03, Theorem 1] The nuclear norm ∥X∥∗ is the convex envelope of

the function rank(X) on the set C = {X ∈ Rd1×d2
∣∣∥X∥2→2 ≤ 1}.

The theorem above is the matrix version of what was described in Section 2.1.1, i.e.,

that the ℓ1-norm ball is the convex hull of the intersection of ℓ0-norm ball with the ℓ∞-

norm ball. With this in mind, we can state the most well-studied problem for matrix

completion, namely, nuclear norm minimization (NNM):

min
X∈Rd1×d2

∥X∥∗ subject to PΩ(X) = PΩ(X0). (3.3)

Analogously to what was established in the case of sparse recovery, a mature theory has

been developed from this fruitful convex approach, e.g., a necessary and sufficient condi-

tion – a matrix version of the NSP – for the low-rank matrix recovery problem via nuclear

norm minimization [KKRT16, RXH08, RXH11]. Nevertheless, despite this analogy, the

4They are also known as strong and weak recovery. See [TBD11, Section 2.D.].
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theory for matrix completion is much more involved, and the matrix completion frame-

work is still a very active field of research, cf. the very recent papers that became available

on ArXiv at the time of writing of this thesis, e.g., [BCZ23]. The theory for matrix comple-

tion includes, for example, performance guarantees for a near-optimal sample complexity

[CT10, Che15] and robustness to (adversarial) noise [CP10a, CCF+20, FGJ+22].

However, from a practical point of view, using such a convex relaxation to find a low-

rank completion is computationally very demanding, as it is equivalent to a semidefinite

program as the next theorem shows:

Theorem 3.1.5. [FHB03, Lemma 1] The problem Equation (3.3) is equivalent to the

following semidefinite programming problem:

min
X∈Rd1×d2 ,Y ∈Rd1×d1

Z∈Rd2×d2

tr Y + tr Z subject to PΩ(X) = PΩ(X0) and

[
Y X

XT Z

]
≽ 0.

(3.4)

In principle, this problem could be tackled with generic semidefinite solvers based on inte-

rior point methods such as MOSEK [ApS22] or SeDuMi[Stu99]. However, the problem’s

computational complexity is at least cubic in the dimensions of X0. See [ZL18, CLC19]

and [GM12, Chapter 2] for more details. Even first-order solvers have the same bad arith-

metic complexity. Thus, convex relaxations are of little use in large-scale applications

of the model, such as in recommender systems [KBV09], where even storing the dense

matrix X0 ∈ Rd1×d2 is prohibitive.

From a statistical point of view, the most important question is how many measurements

are necessary for the recovery. In this case, the important quantity is the degrees of

freedom of a matrix, described in the theorem below.

Theorem 3.1.6. A matrix X ∈ Rd1×d2 of rank r has degX := r(d1 + d2 − r) degrees of

freedom.

Proof. Let the X = UΣV T be the singular value decomposition of the rank-r matrix X.

Since X is of rank k, the singular value matrix Σ can be written as a k×k diagonal matrix

containing the k non-zero singular values of X and the singular vector matrices U and V

will be of size d1 × r and d2 × r, respectively. Each of the r singular values contributes as

a free parameter. Then, the first column of the matrix U has d1 − 1 degrees of freedom

since the vector has d1 and it has a unit norm. The next columns of U must be orthogonal

to the ones before, which gives (d1 − 1) + (d1 − 2) + · · ·+ (d1 − r) = d1r− r(r+ 1)/2 free

parameters. In a similar way, V has d2r − r(r + 1)/2 free parameters. All together, the

matrix X has a total of r + d1r + d2r − r(r + 1) = r(d1 + d2 − r) degrees of freedom.
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Another important but less well-known issue is that a convex relaxation is typically not as

data efficient as certain other algorithms [TW13, BNZ21], i.e., nuclear norm minimization

typically necessitates a larger amount of samples m than other methods, measured by the

quotient ρ := m/(d1+d2−r) (oversampling ratio) betweenm and the number of degrees of

freedom of X0, to identify X0 correctly [ALMT14]. The main contribution of this chapter

is to develop a method that is able to retrieve matrices using as few measurements as

possible, i.e., close to the information-theoretical regime m = r(d1+ d2− r), and to prove

a quadratic convergence to the ground truth under very weak assumptions. This type

of convergence means, as mentioned in [BV04, Section 9.5], that “roughly speaking, ...

after a sufficiently large number of iterations, the number of correct digits doubles at each

iteration”.

Before we develop our algorithm, which will also be based on a sequential quadratic

programming idea where, at each iteration, a parabola is chosen to avoid local minima,

we will discuss a few contributions to the topic of matrix completion.

3.1.3 Related work

Even before the Netflix challenge, the LRMC problem was already important in fields

like control theory and graph theory. In the former, the problem of reconstructing a

discrete linear time-invariant dynamical system from the first n time samples of its impulse

response can be modeled as a structured matrix completion problem [LV10, FHB03]. In

the latter, the problem of Euclidean distance matrix estimation, where a configuration

of points needs to be reconstructed from its pairwise distances, can also be recast as a

completion of a rank-deficient matrix [MMS11].

But it was not before the seminal papers by Fazel, Hindi, and Boyd [FHB03, Faz02] and, a

few years later, by Candes, Recht, and Tao [CR09, Rec11, CT10], that theoretical progress

for this problem was achieved. In particular, these papers introduced the first tools from

optimization and non-asymptotic probability that helped to shape the field. The works

[FHB03, Faz02] formulated the trace heuristic (see also [Sha82] for a pioneering paper on

this idea) that coincides with the nuclear norm when the underlying matrix is a positive

semidefinite one, and the log-det one that very much inspired the work in this chapter.

They employed it to complete low-rank Hankel matrices and Euclidean distance matrices

[Faz02, Chapter 6]. Later, the work [CR09] analyzed the probability of success of the

nuclear norm minimization, introduced in [Faz02], for the retrieval of low-rank matrices.

In particular, they proved that Ω(D5/4r logD) entries are sufficient for the semidefinite

program Equation (3.4), where D = max(d1, d2), to recover all entries of X0 with high

probability. Several works made progress on this approach and established very general
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recovery guarantees even when the measurements are corrupted by noise [Gro11, CT10,

KS21b, CP10a, Rec11, Klo14, Che15, TKL11, CCF+20]. See also the survey [FGJ+22].

Notably, the paper [Che15] showed sharp guarantees for matrix completion via nuclear

norm minimization. It proved that Ω(degX0
log2D) measurements suffice for retrieving

low-rank matrices while it was already known that Ω(degX0
logD) are necessary for matrix

completion, cf. [CT10, Theorem 1.7]. Despite all the theoretical progress, the lack of

scalability of NNM and the non-optimality in the information-theoretical sense led to the

development of various alternative methods.

Among the most popular ones are non-convex algorithms based on a variational formu-

lation of the nuclear norm and matrix factorization ideas [BM03, MMBS13]. Indeed, the

three formulas below are equivalent to the nuclear norm of a matrix ∥X0∥∗, see [WM22,

Proposition 4.6].

• ∥X0∥∗ = minU,V

∑
k ∥uk∥2∥vk∥2 s.t. X0 = UV ∗ =

∑
k ukv

∗
k.

• ∥X0∥∗ = minU,V ∥U∥F∥V ∥f s.t. X0 = UV ∗.

• ∥X0∥∗ = minU,V
1
2
(∥U∥2F + ∥V ∥2F ) s.t. X0 = UV ∗.

Therefore, the NNM problem can be factorized and written, for example, as

min
U∈Rd1×r,V ∈Rd2×r

s.t.X0=UV ∗

1

2
(∥U∥2F + ∥V ∥2F ) subject to PΩ(UV ∗) = PΩ(X0). (3.5)

Remark 3.1.7. Such an approach has been generalized to any Schatten-p quasi-norm for

0 < p < 1. In particular, the work [SLS+20] showed that any Schatten-p quasi-norm can

be written as a product of the Schatten-r (quasi-)norm and Schatten-q (quasi-)norm of its

two-factor matrices provided that 1/p = 1/q+1/r. This result was also generalized to the

case of three or more factor matrices.

It is common in the literature where factorization methods are employed to see the un-

constrained version of the problem above, e.g., [RS05], namely,

J(U,V):=∥PΩ(UV∗)−PΩ(X0)∥2F+
λ

2

(
∥U∥2F+∥V∥2F

)
(3.6)

for λ ≥ 0, which use (projected) gradient descent on the two-factor matrices [SL16, ZL16,

MWCC18], or related methods. These methods are much more scalable than those opti-

mizing a convex rank surrogate while also allowing for theoretical analysis; see [CLC19]

for a recent survey. Still, even though a huge amount of literature was devoted to under-

standing how well these methods perform for matrix recovery problems [BL21, ZBL21], in
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the case of matrix completion, recent results indicate that they also have limitations when

the amount of available information is close to the information-theoretic limit [YZLS22].

Furthermore, among the most data-efficient methods for low-rank completion are those

that minimize a smooth objective over the Riemannian manifold of fixed rank matrices

[Van13, WCCL20, BA15, BNZ21, ZN22, CA16, SK22, DGHG22]. These approaches are

likewise scalable and often able to reconstruct the low-rank matrix from fewer samples

m than a convex formulation. The idea is that the optimization is performed over the

smooth submanifold of matrices of fixed rank r with explicit knowledge of the tangent

spaces and an efficient representation of tangent vectors. However, strong performance

guarantees have remained elusive so far. To the best of the author’s knowledge, this is

the best theoretical paper available [WCCL20].

In many instances of the LRMC problem, such as in the discretization of PDE-based

inverse problems [BSS21, CCBB14] or in spectral estimation problems modeled by struc-

tured low-rank matrices [Fas95, UC16], it is an additional difficulty that the matrix of

interest X0 is severely ill-conditioned, i.e., κ = σ1(X0)/σr(X0) might be very large. For

example, in spectral estimation, the matrices can reach up to κ = 1015 [FL12]. Therefore,

the main question was how to design an algorithm that is scalable, from the optimization

point of view, data-efficient, from the statistical point of view, and is also able to retrieve

highly ill-conditioned matrices.

A scaled (preconditioned) version of gradient descent specially designed for this purpose

appeared in a few papers [TW13, NS12] and was finally analyzed in [TMC21]. This

work claimed that they rigorously established a method that can complete highly ill-

conditioned matrices from few measurements. However, a closer inspection shows that the

sample complexity for their algorithm scales as Ω
(
κ2rdegX0

max(log(D), µ0κ
2)
)
[TMC21,

Theorem 8]. Moreover, the numerical experiments conducted in the paper only completed

matrices with condition number κ = 20, which would not be considered an ill-conditioned

matrix by anyone working, for example, with numerical analysis! With that in mind, we

address the following question:

How to develop an algorithm for matrix completion that is data-efficient and retrieves

the matrix from only m ≈ degX0
= r(d1 + d2 − r) entries, but that is also scalable,

provable, can retrieve highly ill-conditioned matrices and is robust to noise errors?

Contribution of this chapter:

We propose a solution based on least squares where, at each iteration, the designed

quadratic problem is tailored to the curvature of a highly non-convex function that can

be seen as a sharp non-convex “relaxations” of the rank function and, thanks to that,
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is able to complete matrices in the information-theoretical regime. We also analyze the

algorithm, called Matrix Iteratively Reweighted Least Squares (MatrixIRLS) and show

that it is designed to find low-rank completions that are potentially very ill-conditioned,

allowing for a scalable implementation. While being severely non-convex, we note that

our method fundamentally differs from a typical non-convex approach with an objective

such as (3.6).

Let D = max(d1, d2) and d = min(d1, d2). From a theoretical angle, we establish that if

the m sampled entries are distributed uniformly at random and if m = Ω(µ0rD logD),

with high probability, MatrixIRLS exhibits local convergence to X0 with a local quadratic

convergence rate, where µ0 is the incoherence factor [CCF+21, Chapter 3] that will be

discussed below in more details. This sample complexity does not depend on the con-

dition number κ, is optimal under the sampling model and improves, to the best of our

knowledge, on the state-of-the-art of any algorithmic sample complexity result for low-

rank matrix completion—albeit, with the caveat that, unlike many other results, our

guarantee is inherently local. Table 3.1 shows our result with respect to other recent ones:

Table 3.1: Comparison of sample complexity for different state-of-the-art algorithm

Name of the algorithm Suff. condition on m for convergence

Nuclear Norm Min. [Rec11, Che15] Ω(µ0degX0
log2D)

OptSpace [KMO10] Ω(µ0κ
2degX0

max(logD, κ4r))

AltMin [HW14] Ω(µ2
0 log(κ)r

8degX0
log2D)

GD on matrix factorization [CLL20] Ω(µ2
0κ

14r2 logD)
ScaledGD [TMC21] Ω(µ0κ

2rdegX0
max(logD,µ0κ

2))
MatrixIRLS (our result) Ω(µ0degX0

logD) (only local convergence)

Necessary condition [CT10] Ω(µ0degX0
logD)

As one can see in Table 3.1, essentially all algorithms have a strong dependency on the

condition number. The only exception is the alternating minimization scheme of [HW14].

This algorithm’s trade-off is that its sample complexity strongly depends on the rank

of the matrix. The algorithm developed in this chapter, again based on an interesting

application of least squares but this time applied to non-convex functions attains the

optimal necessary condition. The caveat is that the theory provided here is of a local

nature, and global convergence results for our method still remain elusive.

Nevertheless, we obtain very competitive numerical results, and our algorithm can be

implemented in a sub-quadratic per-iteration cost in D, without the need to store dense

d1 × d2 matrices. Also, by assuming a random sampling model, the linear systems to be

solved in the main computational step of MatrixIRLS are well-conditioned, even close

to the ground truth, unlike the systems of comparable IRLS algorithms in the literature
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[DDFG10, FRW11b, MF12a, KS18]. Our method’s data efficiency and scalability com-

pared to several state-of-the-art methods are finally explored in numerical experiments

involving simulated data.

3.2 MatrixIRLS for log-det rank surrogate

The starting point of the derivation of our method is the observation that minimizing a

non-convex surrogate objective F with more regularity than rank(X) can lead to effective

methods for solving (3.2) that may combine some of the aforementioned properties, e.g.,

if F is chosen as a log-determinant [Faz02, CESV15], Schatten-p quasi-norm (with 0 <

p < 1) [GVRH20] or a smoothed clipped absolute deviation (SCAD) of the singular

values [MSW20]. In particular, it has been observed in several works [Faz02, CESV15]

that optimizing the smoothed log-det objective
∑d

i=1 log(σi(X + ϵI)) for some ϵ > 0 can

lead to less biased solutions than a nuclear norm minimizer—very generally, it can be

shown that a minimizer of non-convex spectral functions, i.e., functions of matrices that

depend only on their singular values or on their eigenvalues [Bec17, Chapter 7], such as

the smoothed log-det objective coincides as least as often with the rank minimizer as the

convex nuclear norm minimizer [Fou18, Corollary 3]. The rationale behind this is that,

on the one hand, the function rank can be seen as a limit of the Schatten-p norms, but,

on the other hand, with the correct scaling, this limit converges to the log-det function.

Indeed, for a matrix X ∈ Rd1×d2 of rank-r with singular values {σi}ri=1, we have

log det(X) = log

(
r∏

i=1

σi(X)

)
=

r∑
i=1

log σi(X) =
r∑

i=1

lim
p→0

(σi(X))p − 1

p

= lim
p→0

r∑
i=1

(σi(X))p − 1

p
= lim

p→0

∥X∥pSp

p
− r

p

(3.7)

On the other hand, we have limp→0 ∥X∥pSp
= rank(X). Therefore, since the minimizer X

of the function log det(X) does not depend on p and r, the calculation above indicates

that the minimizes of both functions are connected.

Relevant algorithmic approaches to minimize non-convex rank surrogates include iterative

thresholding methods [MSW20], iteratively reweighted least squares [FRW11b, MF12a,

KS18] and iteratively reweighted nuclear norm [LTYL15] algorithms. However, finding

the global minimizer of a non-convex and non-smooth rank surrogate can be very chal-

lenging, as the existence of sub-optimal local minima and saddle points might deter the

success of many local optimization approaches. Furthermore, applications such as in rec-

ommender systems [KBV09] require solving very high-dimensional problem instances so
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that it is impossible to store full matrices, let alone to calculate many singular values of

these matrices, ruling out the applicability of many of the existing methods for non-convex

surrogates. A major shortcoming is that the available convergence theory for such algo-

rithms is still very immature—a convergence theory quantifying the sample complexity

or convergence rates is, to the best of our knowledge, not available for any method of this

class.

To derive our method, let now ϵ > 0 and Fϵ : Rd1×d2 → R be the smoothed log-det objective

– see Figure 3.2 – defined as Fϵ(X) :=
∑d

i=1 fϵ(σi(X)) with d = min(d1, d2) and

fϵ(σ) =

log |σ|, if σ ≥ ϵ,

log(ϵ) + 1
2

(
σ2

ϵ2
− 1
)
, if σ < ϵ.

(3.8)

ϵ−ϵ

f(σ)

fϵ(σ)

Figure 3.2: Smooth approximation fϵ(σ) for f(σ) = log(|σ|)

It can be shown – see [LS05, Section 7] – that that Fϵ is continuously differentiable with

ϵ−2-Lipschitz gradient given by ,

∇Fϵk(X) = U diag

(
σi(X)

max(σi(X), ϵk)2

)d

i=1

V∗,

where X has a singular value decomposition X = U diag
(
σ(X)

)
V∗ = U diag

(
σ
)
V∗. It is

clear that the optimization landscape of Fϵ crucially depends on the smoothing parameter

ϵ. Here, we proceed exactly as in Chapter 2 and will create a sequence of quadratic models

to be minimized. The difference, however, lies in the complexity of the quadratic model

since its construction, in the case of non-convex functions for matrix completion, is much

more involved. Instead of minimizing Fϵk directly, our method minimizes, for k ∈ N ,
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ϵk > 0 and X(k) a quadratic model

Qϵk(X|X(k)) = Fϵk(X
(k)) + ⟨∇Fϵk(X

(k)),X−X(k)⟩+ 1

2
⟨X−X(k),W (k)(X−X(k))⟩

under the data constraint PΩ(X) = PΩ(X0), where W (k) is the following operator, which

describes the geometry of the non-convex function and is one of the main contributions

of this work.

Definition 3.2.1. Let ϵk > 0 and X(k) ∈ Rd1×d2 be a matrix with singular value decom-

position X(k) = Uk diag(σ
(k))V∗

k, i.e., Uk ∈ Rd1×d1 and Vk ∈ Rd2×d2 are orthonormal

matrices. Then we call the linear operator W (k) : Rd1×d2 → Rd1×d2 the weight operator of

the ϵk-smoothed log-det objective Fϵk of (3.8) at X(k) if for Z ∈ Rd1×d2,

W (k)(Z) = Uk [Hk ◦ (U∗
kZVk)]V

∗
k, (3.9)

where Hk ◦ (U∗
kZVk) denotes the entrywise product of Hk and U∗

kZVk and Hk ∈ Rd1×d2

is a matrix with positive entries such that (Hk)ij :=
(
max(σ

(k)
i , ϵk)max(σ

(k)
j , ϵk)

)−1

.

We note that Iteratively Reweighted Least Squares (IRLS) methods with certain similari-

ties to Algorithm 3 had been proposed [FRW11b, MF12a, KS18] for the minimization of

Schatten-p quasi-norms for 0 < p ≤ 1. The difference, however, lies in the definition of

the matrix (Hk)ij. For example, the work [FRW11b] chose Hk := diag(1/[(σ
(k)
i )2 + ϵ2k]).

By doing so, they showed that the sequence generated by their IRLS-type algorithm con-

verges to stationary points of the underlying smoothed functional. However, the authors

were not able to show convergence rate results for the non-convex case of the Schatten-p

norm, with p < 1.

One of the crucial properties for the design of the correct sequence of least squares prob-

lems, i.e., the design of the parabolas that imitate the geometry of the non-convex func-

tion, is to have W (k)(Z) = ∇Fϵk(X). This property ensures quadratic bounds that mimic

the landscape of the function that is being majorized.

Comparing the gradients of smoothed Schatten-p quasi-norms and of (3.8), minimizing

a smoothed log-det objective can be considered as a limit case for p → 0 as shown in

Equation (3.7). Most importantly, however, our algorithm has two distinct conceptual

differences compared to these methods: Firstly, the weight operator of Definition 3.2.1

has the crucial property for the design of the correct sequence of least squares prob-

lems, namely, it is able to capture the second-order information of Fϵk , allowing for an

interpretation of MatrixIRLS as a saddle-escaping smoothing Newton method, cf. Sec-

tion 3.3.2, unlike the methods of [FRW11b, MF12a, KS18] due to the different structure
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Algorithm 3 MatrixIRLS for low-rank matrix completion

Input: Set Ω, observations y ∈ Rm, rank estimate r̃.
Initialize k = 0, ϵ(0) = ∞ and W (0) = Id.
for k = 1 to K do
Solve weighted least squares: Use a conjugate gradient method to solve

X(k) = argmin
X:PΩ(X)=y

⟨X,W (k−1)(X)⟩. (3.10)

Update smoothing: Compute r̃ + 1-th singular value of X(k) to update

ϵk = min
(
ϵk−1, σr̃+1(X

(k))
)
. (3.11)

Update weight operator: For rk := |{i ∈ [d] : σi(X
(k)) > ϵk}|, compute the first rk

singular values σ
(k)
i := σi(X

(k)) and matrices U(k) ∈ Rd1×rk and V(k) ∈ Rd2×rk with
leading rk left/ right singular vectors ofX

(k) to updateW (k) defined in Equation (3.9).

end for
Output: X(K).

of their weight operators. Secondly, the interplay of Fϵk and the weight operator W (k) in

Algorithm 3 is designed to allow for efficient numerical implementations, cf. Section 3.6.

The weight operator W (k) is a positive, self-adjoint operator with strictly positive eigen-

values that coincide with the entries of the matrix Hk ∈ Rd1×d2 , and it also verifies that

W (k)(X(k)) = ∇Fϵk(X
(k)). Based on this, it follows that the minimization of the quadratic

model Qϵk(X|X(k)) boils down to a minimization of a quadratic form weighted by W (k).

This enables us to design the iterative methodMatrix Iteratively Reweighted Least Squares

(MatrixIRLS), which we describe in Algorithm 3.

Apart from the weighted least squares step (3.10), which minimizes the quadratic model

Qϵk−1
(·|X(k−1)) of Fϵk−1

for fixed ϵk−1, an indispensable ingredient of our scheme is the

update of the smoothing parameter ϵk, which is performed in the spirit of smoothing

methods for non-smooth objectives [Che12]. In particular, the update rule (3.11), which

is similar to the update rule of [KS18], makes sure that if the rank estimate r̃ is chosen

such that r̃ ≥ r, the smoothing parameter ϵk converges to 0 as the iterates approach a

rank-r solution.

Finally, we note that it is non-trivial to show that the quadratic model Qϵk(·|X(k)) in-

duced by W (k) from Definition 3.2.1 is actually a majorant of Fϵk(·) such that Fϵk(X) ≤
Qϵk(X|X(k)) for all X ∈ Rd1×d2 . A proof of this fact, as well as a proof of the optimality

of the majorant, will be the subject of an upcoming paper. It is already available in Dr.

Kümmerle thesis [Küm19, Theorem 2.4].



78 CHAPTER 3. ILL-CONDITIONED LOW-RANK MATRIX COMPLETION

3.3 How to interpret MatrixIRLS?

Despite its conceptual simplicity, MatrixIRLS has in its core an intricate construction of

the weight operator. A brief comparison with the algorithm developed in Chapter 2 shows

that the formula W (k)(Z) = Uk [Hk ◦ (U∗
kZVk)]V

∗
k deserves a deeper explanation.

A common trace of all modern versions of IRLS is that the weights of quadratic form

match the first-order derivative of the non-convex objective function to be minimized,

i.e., W (k)(X(k)) = ∇Fϵk(X
(k)). This holds for our algorithm, MatrixIRLS, as well as for

previous versions of IRLS applied to non-convex spectral functions [FRW11b, MF12a,

KS18], see also a general discussion in [ODBP15, Section 5]. However, this local property,

together with the local quadratic convergence rate that will be established in Section 3.4,

does not explain the numerically observed global convergence behavior, see Section 3.7,

which is remarkable due to the non-convexity of the objective function.

These different versions of the IRLS algorithm applied to matrix problems can be in-

terpreted as a variable metric forward-backward method, as we discuss in Section 3.3.1.

However, unlike previous contributions, our method can also be interpreted in a different

way. In the next two sections, we will show how MatrixIRLS can be explained either

as a variable metric forward-backward method or as a saddle-escaping smoothing Newton

method. This will help to shed some light on its numerical performance.

3.3.1 MatrixIRLS as variable metric forward-backward method

An instructive angle to understand our method comes from the framework of variable

metric forward-backward methods [BGLS95, CPR14, FGP15], which can be seen as a com-

bination of a gradient descent method and a proximal point algorithm [CP11] that can be

used to minimize the sum of a non-smooth function and a function with Lipschitz contin-

uous gradients. In particular, if F is a proper, lower semi-continuous function, G is differ-

entiable with Lipschitz gradient∇G and (αk)k a sequence of step sizes, the iterations of the

forward-backward algorithm [ABS13] are such thatX(k+1) ∈ proxαkF

(
X(k) − αk∇G(X(k))

)
,

where proxαkF
(·) is the proximity operator of αkF . Typically, in such an algorithm,

F would be chosen as the structure-promoting objective (such as the smoothed log-

det objective Fϵ above) and G as a data-fit term such as G(X) = ∥PΩ(X) − y∥22/λ,
leading to thresholding-type algorithms such as the FISTA [BT09]. Algorithm 3, fits

into this framework if we transform the constrained problem into an unconstrained one

with the help of an indicator function. More specifically, if we choose, for ϵk > 0,

the non-smooth part F as the indicator function F := χP−1
Ω (y) : Rd1×d2 → R of the

constraint set P−1
Ω (y) := {X ∈ Rd1×d2 : PΩ(X) = y} and the smooth part G such

that G := Fϵk : Rd1×d2 → R as in (3.8), while offsetting the distortion induced by
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the non-Euclidean nature of the level sets of Fϵk via an appropriate choice of a vari-

able metric dAk
(X,Z) =

√
⟨X− Z, Ak(X− Z)⟩F for a positive definite linear operator

Ak : Rd1×d2 → Rd1×d2 , such that

X(k+1) ∈ proxAk
αkF

(
X(k) − αkA

−1
k (∇G(X(k)))

)
,

where proxAk
F (X) := argminZ∈Rd1×d2 F (Z) + 1

2
dAk

(X,Z)2 is the proximity operator of F

scaled in the metric dAk
at X [CPR14]. Specifically, if we choose the metric induced by

the weight operator of (3.9) such that Ak := W (k) and unit step sizes αk = 1, we obtain

proxAk
αkF

(
X(k) − αkA

−1
k (∇G(X(k)))

)
= proxW

(k)

χ
P−1
Ω

(
X(k) −W−1

k (∇Fϵk(X
(k)))

)
= proxW

(k)

χ
P−1
Ω

(
X(k) −W−1

k Wk(X
(k)))

)
= proxW

(k)

χ
P−1
Ω

(0)

= argmin
X:PΩ(X)=y

1

2
dAk

(X,0)2 = argmin
X:PΩ(X)=y

⟨X,W (k)(X)⟩,

where we used that Wk(X
(k)) = ∇Fϵk(X

(k)) in the third line. This shows that this update

rule for X(k+1) coincides with (3.10). Thus, MatrixIRLS can be considered as a forward-

backward method with a variable metric induced by the weight operator W (k), using a

unit step size αk = 1 for each k. One advantage of our method is that, unlike many

methods in this family, there is no step size to be tuned. A crucial difference, which

makes the existing theory for splitting methods, e.g., [FGP15], not directly applicable

for the convergence analysis of MatrixIRLS, is that the smooth function G = Fϵk is

changing at each iteration due to the smoothing parameter update (3.11). On the other

hand, the results of [FGP15] already imply the finite sequence length of (X(k))k in the

case that the smoothing parameter ϵk stagnates for k ≥ k0, using a Kurdyka-Lojasiewicz

property [BDL07] of Fϵk + χP−1
Ω (y), see [FGP15, Theorem 4.1]. In any case, the theory

of convergence for variable-metric algorithms is still in its infancy [BPR21], and we do

expect to see new developments in the near future that could be used to further analyze

the global convergence of IRLS-type methods.

Finally, we note that previous IRLS methods [FRW11b, MF12a, KS18] would also fit

in the presented splitting framework, however, without fully capturing the underlying

geometry as their weight operator has no strong connection to the Hessian ∇2Fϵk(X
(k))

of Fϵk , as explained in the next section.
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3.3.2 MatrixIRLS as saddle-escaping smoothing Newton method

Another interesting way to interpret MatrixIRLS is as a saddle-escaping smoothing Newton

method. Smoothing Newton methods minimize a non-smooth and possibly non-convex

function F by using derivatives of certain smoothing proxies of F [CQS98, Che12]. Inter-

preting the optimization problem minX:PΩ(X)=y Fϵk(X) as an unconstrained optimization

problem over the null space of PΩ, we can write

X(k+1) = X(k) − P ∗
Ωc

(
PΩcW (k)P ∗

Ωc

)−1
PΩcW (k)(X(k))

= X(k)−P ∗
Ωc

(
PΩc∇2Fϵk(X

(k))P ∗
Ωc

)−1

PΩc∇Fϵ(X
(k)),

if Ωc = [d1]×[d2]\Ω corresponds to the unobserved indices, where ∇2Fϵk(X
(k)) : Rd1×d2 →

Rd1×d2 is amodified Hessian of Fϵk atX
(k) that replaces negative eigenvalues of the Hessian

∇2Fϵk(X
(k)) by positive ones and slightly increases small eigenvalues. This line of research,

which was initiated [Gre67], see also a discussion about modifications of Newton’s Methods

[NW06, Chapter 3.4] and about Trust-Region Newton-CG methods in [NW06, Chapter

7], witnessed important recent achievements. For example, in [PMR19a], it has been

proved that for a fixed smooth function Fϵk , similar modified Newton-type steps are able

to escape the first-order saddle points at a rate that is independent of the problem’s

condition number.

Theorem 3.3.1. [PMR19b, Theorem 2.2] Let f(x) be a function that is twice continuously

differentiable with gradient and Hessian that are Lipschitz continuous. Moreover, suppose

that there exists a positive constant B such that ∥x†∥ ≤ B for all x† such that ∥∇f(x†)∥ =

0 and ∇2f(x†) ≻ 0 and assume that the local minima and saddles are nondegenerate, i.e.,

all the eigenvalue of the Hessian of f at a local minimum or a saddle point is strictly

positive. Let ε > 0 be the desired accuracy of the saddle-escaping smoothing Newton

method and α ∈ (0, 1) be one of its inputs. If m < ξ/2 and

∥∇f−(x0)∥ ≥ max{(5L/2m2) ∥∇f(x0)∥2 , ε} (3.12)

and ∥∇f(x0)∥ ≤ δ/2, we have that ∥∇f(xK1)∥ ≥ δ/2, with K1 ≤ 1 + log3/2
(

δ
2ε

)
.

As explained in [PMR19b], the result shows that if the projection of the gradient (at a

certain iteration x0 onto the orthogonal subspace associated with the negative eigenvalues

of the Hessian ∇2f(x‡) satisfies a certain condition, then there is an upper bound for the

number of iterations that it takes for the modified Newton-type method to escape the

saddle point. In particular, this escaping is of the order O(log(1/ε)). Moreover, they

showed that even when the condition Equation (3.12) is not satisfied, adding noise to the
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iterations ensures that it will be fulfilled with high probability.

Now, regarding MatrixIRLS, as it was discussed in the beginning of Section 3.2, if ϵk > 0,

then Fϵk : Rd1×d2 → R given by the ϵk-smoothed log-det objective Equation (3.8) is contin-

uously differentiable with ϵ−2
k -Lipschitz gradient ∇Fϵk(X) = U dg

(
σi(X)

max(σi(X),ϵk)2

)d

i=1

V∗

for any matrix X with singular value decomposition X = U dg
(
σ(X)

)
V∗ = U dg

(
σ
)
V∗.

Moreover, it holds that ∇Fϵk is differentiable at X if and only if the second derivative

f ′′
ϵk

: R → R of fϵk from (3.8) exists at all σ = σi(X), i ∈ [d], which is the case if

X ∈ Dϵk :=
{
X : σi(X) ̸= ϵk for all i ∈ [d]

}
. The latter statement follows from the

theory of non-Hermitian Löwner functions [Yan09, DSST18]5, as X 7→ ∇Fϵk(X) is such

a function.

Let X(k) ∈ Dϵk :=
{
X : σi(X) ̸= ϵk for all i ∈ [d]

}
with singular value decomposition

given by

X(k) = Uk diag(σ
(k))V∗

k =
[
U(k) U

(k)
⊥

] [Σ(k) 0

0 Σ
(k)
⊥

][
V(k)∗

V
(k)∗
⊥

]
, (3.13)

where Uk ∈ Rd1×d1 and Vk ∈ Rd2×d2 , and corresponding submatrices U(k) ∈ Rd1×rk ,

U
(k)
⊥ ∈ Rd1×(d1−rk), V(k) ∈ Rd2×rk , V

(k)
⊥ ∈ Rd2×(d2−rk), Σ(k) := diag(σ

(k)
1 , . . . σ

(k)
rk ) and

Σ
(k)
⊥ := dg(σ

(k)
rk+1, . . . σ

(k)
d ), and rk := |{i ∈ [d] : σi(X

(k)) > ϵk}| = |{i ∈ [d] : σ
(k)
i > ϵk}|. In

this case, it can be calculated that the Hessian ∇2Fϵk(X
(k)) at X(k), which is a function

that maps Rd1×d2 to Rd1×d2 matrices, satisfies, in the case of d1 = d2,

∇2Fϵk(X
(k))(Z) = Uk

[
MS ◦ S(U∗

kZVk) +MT ◦ T (U∗
kZVk)

]
V∗

k, (3.14)

for any Z ∈ Rd1×d2 , where S : Rd×d → Rd×d and T : Rd×d → Rd×d are the symmetrization

operator and antisymmetrization operator, respectively, that map any X ∈ Rd×d to

S(X) =
1

2
(X+X∗), and T (X) =

1

2
(X−X∗)

for any X ∈ Rd×d, and MS,MT ∈ Rd1×d2 fulfill

MS =

[
−H(k) M−

1,2

M−
2,1 ϵ−2

k 1

]
MT =

[
−H(k) M+

1,2

M+
2,1 ϵ−2

k 1
,

]

the matrix H(k) ∈ Rrk×rk satisfies

H
(k)
ij =

(
σ
(k)
i σ

(k)
j

)−1

for all i, j ∈ [rk], (3.15)

5These functions can also be called generalized matrix functions in the literature [Nof17].
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and the (d1 − rk) × (d2 − rk) 1 matrix where all entries are equal to one. Furthermore,

the matrices M−
1,2,M

+
1,2 ∈ (d1 − rk)× rk are such that

(
M±

1,2

)
ij
=

(σ
(k)
i )−1 ± σ

(k)
j+rk

ϵ−2
k

σ
(k)
i ± σ

(k)
j+rk

fori ∈ [rk], j ∈ [d2 − rk] and

(
M±

2,1

)
ij
=

(σ
(k)
j )−1 ± σ

(k)
i+rk

ϵ−2
k

σ
(k)
j ± σ

(k)
i+rk

forj ∈ [rk], i ∈ [d1 − rk].

The formula (3.14) for ∇2Fϵk(X
(k)) follows by inserting the operator ∇Fϵk into Theorem

2.2.6 of [Yan09], Corollary 3.10 [Nof17] or Theorem 4 of [DSST18]. By realizing that

0 ≤ σ
(k)
ℓ ≤ ϵk for all ℓ > rk, we see that

1

(σ
(k)
i )2

≤
(
M+

1,2

)
ij
=
(
M+

2,1

)
ji
≤ 1

σ
(k)
i ϵk

and − 1

σ
(k)
i ϵk

≤
(
M−

1,2

)
ij
=
(
M−

2,1

)
ji
≤ 1

(σ
(k)
i )2

for all i and j.

To explain the connection to ∇2Fϵk(X
(k))(Z) and to explain the formula for the weighting

operator, i.e., W (k)(Z) = Uk [Hk ◦ (U∗
kZVk)]V

∗
k, we need to understand the role of Hk ∈

Rd1×d2 . Recall that the entries of this matrix were defined such that, for all i and j, we

have (Hk)ij :=
(
max(σ

(k)
i , ϵk)max(σ

(k)
j , ϵk)

)−1

. Then, we write

Hk =

[
H(k) H

(k)
1,2

H
(k)
2,1 ϵ−2

k 1,

]
(3.16)

where the matrices H(k) ∈ Rrk×rk was defined above in Equation (3.15) and H
(k)
1,2 ∈

Rrk×(d2−rk) and H
(k)
2,1 ∈ R(d1−rk)×rk are such that

(
H

(k)
1,2

)
ij
=
(
σ
(k)
i ϵk

)−1

for all i ∈ [rk] and

j ∈ [d2 − rk] and
(
H

(k)
2,1

)
ij
=
(
ϵkσ

(k)
j

)−1

for all i ∈ [d1 − rk] and j ∈ [rk].

Now, comparing MS and MT with Hk, the core of the weight operator W
(k), we see that

the upper left blocks of MS and MT are just the negative of the upper left block H(k) of

Hk, while the lower right blocks coincide. Furthermore, the lower left and the upper right

blocks are related such that∣∣∣(M±
1,2

)
ij

∣∣∣ ≤ 1

σ
(k)
i ϵk

= (H
(k)
1,2)ij for all i ∈ [rk], j ∈ [d2 − rk], (3.17)

and ∣∣∣(M±
2,1

)
ij

∣∣∣ ≤ 1

σ
(k)
j ϵk

= (H
(k)
2,1)ij for alli ∈ [d2 − rk], j ∈ [rk]. (3.18)
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We can finally shed some light on the relationship between the above considerations and

the analysis performed in [PMR19a]. In their paper, the authors assumed to have a smooth

function Fϵk that needs to be minimized in the framework of unconstrained minimization.

Under these assumptions, [PMR19a] considers using modified Newton steps

X(k+1) := X(k) − ηk
∣∣∇2Fϵk(X

(k))
∣∣−1

c
∇Fϵk(X

(k))

where the Hessian ∇2Fϵk(X
(k)) is replaced by a positive definite truncated eigenvalue

matrix
∣∣∇2Fϵk(X

(k))
∣∣
c
, which replaces the large negative eigenvalues of ∇2Fϵk(X

(k)) by

their modulus for eigenvalues that have large modulus and eigenvalues of small modulus

by an appropriate constant c. Then, the paper [PMR19a] shows – see Theorem 3.3.1

above – that such steps are, unlike conventional Newton steps (which are often attracted

by saddle points), able to escape saddle points with an exponential rate that does not

depend on the conditioning of the problem. Experimental observations of such behavior

have also been reported in other works [DPG+14]. See also the discussion in [PDGB14,

Section 4].

In view of this, we observe that the weight operator W (k) is nothing but a refined variant

of
∣∣∇2Fϵk(X

(k))
∣∣
c
, as the eigenvalues of ∇2Fϵk(X

(k)) from (3.14) are simply {(MS
ij, i ≤

j} ∪ {(MT
ij, i < j}, c.f., [Nof17, Theorem 4.5]. In particular, the refinement is such that

the small eigenvalues of ∇2Fϵk(X
(k)), which can be found in the entries of M±

1,2 and M±
2,1,

are replaced not by a uniform constant, but by different upper bounds (σ
(k)
i ϵk)

−1 and

(σ
(k)
j ϵk)

−1 that depend either on the row index i or the column index j.

Besides this connection, important differences exist between our algorithm and the al-

gorithm analyzed in [PMR19a]. While that paper considers the minimization of a fixed

smooth function, we update the smoothing parameter ϵk and thus the function Fϵk at

each iteration. Furthermore, Algorithm 1 of [PMR19a] uses backtracking for each mod-

ified Newton step, which would be prohibitive to perform as evaluations of Fϵk are very

expensive for our smoothed log-det objectives, as they would require the calculation of

all singular values. On the other hand, MatrixIRLS uses fully modified Newton steps,

and we can assure that these are always a descent direction in our case, as explained in

[Küm19]. Lastly, we do not add noise to the iterates as [PMR19b] in order to make the

condition Equation (3.12) hold with high probability. We believe it is an interesting prob-

lem to make this connection rigorous since this could boost the use of methods containing

information about the Hessian in large-scale machine learning problems.

Open Problem: Develop a rigorous analysis, along the same lines of [PMR19b], for

constrained non-smooth problems with a variable metric formulation.
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As mentioned in Section 3.2, MatrixIRLS is by no means the first algorithm for low-

rank matrix recovery that can be considered as an iteratively reweighted least squares

algorithm. However, the IRLS algorithms [FRW11b, MF12b, LXY13, KS18] are different

from MatrixIRLS not only in their computational aspects and efficiency but also since

they do not allow for a close relationship between their weight operator W (k) and the

Hessian ∇2Fϵk(X
(k)) at X(k) as described above.

3.4 Local Convergence with Quadratic Rate

In this section, we will finally establish the quadratic rate of for MatrixIRLS. Before

formally stating our result, we need to state a few facts about the geometry of the set of

matrices of rank-r

Rd1×d2
r = {X ∈ Rd1×d2 | rank(X) = r}. (3.19)

A nice introduction to the topic of Riemannian Optimization can be found in, e.g., [UV20,

Bou23]. Indeed, for every 0 ≤ r ≤ min(d1, d2), this set is an embedded submanifold of

Rd1×d2
r of dimension r(d1 + d2 − r), see [Bou23, Chapter 7.5]. Every vector tangent that

is tangent to this space belongs to the direct sum of the row and column spaces, i.e., the

tangent space is the linear space spanned by elements of the form ukx
∗ and yv∗k, 1 ≤ k ≤ r,

where uk and vk are singular vectors of X and x and y are arbitrary. The tangent space

of Rd1×d2
r at a point X = UΣV∗ can, alternatively, be represented by

TX(Rd1×d2
r ) :=

{[
UU⊥

][ Rrk×rk Rrk(d2−rk)

R(d1−rk)rk 0

][
VV⊥

]∗}

=

{[
UU⊥

][M1M2

M3 0

][
VV⊥

]∗
: M1 ∈ Rrk×rk ,M2 ∈ Rrk×(d2−rk),M3 ∈ R(d1−rk)×rk

}
=
{
UΓ1V

∗ +UΓ2

(
I−VV∗)+ (I−UU∗)Γ3V

∗ : Γ1 ∈ Rr×r,Γ2 ∈ Rr×d2 ,Γ3 ∈ Rd1×r
}
,

(3.20)

where Γ1 ∈ Rr×r,Γ2 ∈ Rr×d2 ,Γ3 ∈ Rd1×r and it holds that Γ2V = 0 and U∗Γ3 = 0. Here

we have represented the tangent space by a decomposition into three mutually orthogonal

subspaces represented by the three matrices M1, M2 and M3. Alternatively, we can also

represent it with smaller matrices Γ1, Γ2, and Γ3 that are more suitable to be used for

calculations. The orthogonal projection of a matrix Z ∈ Rd1×d2 onto TX(Rd1×d2
r ), now

denote by T , can be obtained by projecting separately onto each of these subspaces. The



3.4. LOCAL CONVERGENCE WITH QUADRATIC RATE 85

formula for PT : Rd1×d2 → Rd1×d2 is given by [AO15],

PT (Z) = PUZPV + (Z− PUZ)PV + PU(Z
∗ − PVZ

∗)∗ = UU∗Z+ ZVV∗ −UU∗ZVV∗.

Also, the projection onto the perpendicular space is given by

PT⊥ = (I− PT )(Z) = (I−UU∗)Z(I−VV∗).

IfU ∈ Rd1×r andV ∈ Rd2×r are the left and right singular matrices corresponding to the r

non-zero singular values of X. With the tangent space of the rank-r manifold in mind, we

can formulate the weight operator W (k) : Rd1×d2 → Rd1×d2 of Definition 3.2.1 in a different

way. Recalling that Hk ∈ Rd1×d2 is such that (Hk)ij :=
(
max(σ

(k)
i , ϵk)max(σ

(k)
j , ϵk)

)−1

for all i and j, we write for each Z ∈ Rd1×d2

W (k)(Z) = Uk [Hk ◦ (U∗
kZVk)]V

∗
k

=
[
U(k) U

(k)
⊥

](
Hk ◦

[
U(k)∗ZV(k) U(k)∗ZV

(k)
⊥

U
(k)∗
⊥ ZV(k) U

(k)∗
⊥ ZV

(k)
⊥

])[
V(k)∗

V
(k)∗
⊥

]

=
[
U(k) U

(k)
⊥

]([H(k) H
(k)
1,2

H
(k)
2,1 ϵ−2

k 1

]
◦

[
U(k)∗ZV(k) U(k)∗ZV

(k)
⊥

U
(k)∗
⊥ ZV(k) U

(k)∗
⊥ ZV

(k)
⊥

])[
V(k)∗

V
(k)∗
⊥

]
=
(
PTk

DSk
P ∗
Tk

+ ϵ−2
k

(
I− PTk

P ∗
Tk

))
Z,

(3.21)

where the matrices H(k) ∈ Rrk×rk , H
(k)
1,2 ∈ Rrk×(d2−rk) and H

(k)
2,1 ∈ R(d1−rk)×rk are defined

in Equation (3.54). Furthermore, 1 in the third line is the ((d1 − rk)× (d2 − rk))-matrix

of ones 1, and I is the identity operator. Also, the operator DSk
: Sk → Sk is defined

implicitly through the last equality. We observe that DSk
is a diagonal matrix with the

entries of H(k), H
(k)
1,2 and H

(k)
2,1 enumerated on its diagonal.

In this thesis, we consider the canonical uniform random sampling model studied in

[CR09, Rec11, Che15] where the sampling set Ω = (iℓ, jℓ)
m
ℓ=1 ⊂ [d1] × [d2] consists of

m double indices that are drawn uniformly at random without replacement. Not each

rank-r matrix X0 ∈ Rd1×d2 is expected to be identifiable from a small number of samples

m under this sampling model.

The model above is not the only sampling model studied in the literature. In particular,

some works studied deterministic patterns and the problem of unique completability of a

given sampling pattern, see [PABN16, SXZ18, SC10, Tsa23, LMSH23]. Another interest-

ing recent line of research is to obtain results for when the sampling mask is dependent

on the underlying matrix to be retrieved. One can think about a situation where sensors

are monitoring the environment, and the sensors have a saturation value. After a range,
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the sensors return a truncated value that can be treated as missing data. In this case,

the sampling pattern depends on the underlying matrix itself. This problem is known as

truncated matrix completion [NTTB22].

In particular, we need to quantify how scattered the information of the non-zero entries is

since large matrices with all non-zero entries concentrated in a certain region will hardly be

retrieved unless all the measurements (observations) are performed in this region. Another

mathematical way to describe this fact is by measuring the alignment of a matrix with

the standard basis of Rd1×d2 or, in other words, how concentrated the singular vectors

are. The following notion of incoherence quantifies this phenomenon:

Definition 3.4.1. We say that a rank-r matrix X ∈ Rd1×d2 with singular value decom-

position X = U diag(σ)V∗, U ∈ Rd1×r, V ∈ Rd2×r, is µ0-incoherent if there exists a

constant µ0 ≥ 1 such that

max
1≤i≤d1,1≤j≤d2

∥PT (eie
∗
j)∥F ≤

√
µ0r

d1 + d2
d1d2

, (3.22)

where T = TX = {UM∗ + M̃V∗ : M ∈ Rd2×r, M̃ ∈ Rd1×r} is the tangent space onto the

rank-r matrix manifold at X and PT is the projection operator onto T .

This definition is slightly weaker than related conditions of [Rec11, Che15].

Another interesting line of research deals with the problem of non-uniform random sam-

pling patterns [SSS+16]. In particular, results in the literature show how to complete

any low-rank matrix, even without the coherence assumption, using a biased sampling

strategy [CBSW15]. In particular, those methods proposed as a strategy for the matrix

completion a weighted nuclear norm minimization scheme. An interesting question is to

extend those results to IRLS, which, as already discussed here, is computationally simpler.

We leave this as an open problem.

Open Problem: How to develop an IRLS scheme that provably works to complete

low-rank matrices from non-uniform sampling distributions?

Now, by assuming a uniform sampling model, we can finally state the main result of

this chapter. As defined in the Section 1.4, by denoting the spectral norm (or Schatten-∞
norm) of a matrix X by ∥X∥S∞ = σ1(X), we obtain the following local convergence result.

Theorem 3.4.2 (Local convergence of MatrixIRLS with Quadratic Rate). Let X0 ∈
Rd1×d2 be a matrix of rank r that is µ0-incoherent, and let PΩ : Rd1×d2 → Rm be the

subsampling operator corresponding to an index set Ω = (iℓ, jℓ)
m
ℓ=1 ⊂ [d1] × [d2] that

is drawn uniformly without replacement. If the sample complexity fulfills m ≳ µ0r(d1 +
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d2) log(d1+d2), then with high probability, the following holds: If the output matrix X(k) ∈
Rd1×d2 of the k-th iteration of MatrixIRLS with inputs PΩ, y = PΩ(X0) and r̃ = r updates

the smoothing parameter in (3.11) such that ϵk = σr+1(X
(k)) and fulfills

∥X(k) −X0∥S∞ ≲ min

(√
µ0r

d
,

µ0

d log(D)κ

)
σr(X0), (3.23)

where κ = σ1(X0)/σr(X0), then the local convergence rate is quadratic in the sense that

∥X(k+1)−X0∥S∞ ≤ min(µ∥X(k)−X0∥2S∞ , ∥X(k)−X0∥S∞) with µ ≤ d log(D)
µ0σr(X0)

κ, and further-

more X(k+ℓ) ℓ→∞−−−→ X0 if additionally ∥X(k) −X0∥S∞ ≲ min

(√
µ0r
d
,

µ
3/2
0 r1/2

d2 log(D)3/2κ

)
σr(X0).

While a comparable local convergence result had been obtained for an IRLS algorithm

for (non-convex) Schatten-p minimization [KS18], that result is not applicable for matrix

completion, as the proof relied on a null space property [Rec11] of the measurement

operator, which is not fulfilled by PΩ since there are always rank-ones matrices in the null

space of the entry-wise operator PΩ.

As shown in Table 3.1, unlike the theory of other algorithms, the sample complexity as-

sumption of Theorem 3.4.2 is optimal as it matches a well-known lower bound for this

sampling model [CT10] that is necessary for unique identifiability. Among the weak-

est sufficient conditions for existing algorithms are m ≳ µ0r(d1 + d2) log
2(d1 + d2) for

nuclear norm minimization [Che15], m ≳ µ0κ
14r2(d1 + d2) log

2(d1 + d2) for gradient de-

scent [CLL20] on a variant of Equation (3.6) and m ≳ κ6(d1 + d2)r
2 log(d1 + d2) required

random samples for the Riemannian gradient descent algorithm of [WCCL20]. In partic-

ular, our result does not depend on the condition number, indicating that our method

will potentially retrieve highly ill-conditioned matrices while other methods fail, cf. Sec-

tion 3.7. On the other hand, in contrast to other results, Theorem 3.4.2 only quantifies

local convergence.

3.5 Proof of the Local Convergence Rate

In this section, we prove under a random sampling model on the location of the provided

entries, MatrixIRLS converges locally to a low-rank completion of the data with high

probability with a quadratic convergence rate, as described in Theorem 3.4.2.

First, we shortly elaborate on our notion of incoherence, see Definition 3.4.1, which quan-

tifies the alignment of the standard basis (eie
∗
j)

d1,d2
i=1,j=1 of Rd1×d2 with the tangent space

onto the manifold of low-rank matrices at a specific rank-r matrix. The definition of

incoherence dates back to the works [DE03a, CR07] in the context of sparse recovery,
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although the definition meant something slightly different in that context. This, in turn,

appeared already implicitly in the paper [MZ93].

As mentioned in the previous section, a small incoherence parameter is a way to guarantee

that the information of the column and row spaces is not very concentrated in just a few

columns or rows. In the case of structure low-rank matrix completion such as low-rank

Hankel matrix completion, which is a technique used to recover spectrally sparse signals,

there is an interesting connection between the coherence parameter and the minimum

separation condition between frequency pairs, the so-called Rayleigh resolution [CFG14].

In that case, the coherence is given by the reciprocal of the smallest singular value of a

certain 2D Dirichlet kernel matrix that encapsulates the Rayleigh condition, see [CC14].

Here, we require the basis elements (eie
∗
j)

d1,d2
i=1,j=1 of Rd1×d2 of the space of d1 × d2 matrices

to have a small projection component on the tangent space of the manifold of rank-r

matrices.

Remark 3.5.1. We note that the assumption that a rank-r matrix X ∈ Rd1×d2 is µ0-

incoherent according to Definition 3.4.1 is weaker than similar assumptions described in

Definition 1.2, A0 and A1 of [CR09] and Definition 1 and Theorem 2 of [Rec11], and even

than the assumption (2) of [Che15], which is the weakest available incoherence condition in

the literature that is used for showing successful completion by nuclear norm minimization.

More precisely, [Che15] calls a matrix X µ0-incoherent if

max
1≤i≤d1

∥U∗ei∥2 ≤
√

µ0r

d1
and max

1≤j≤d2
∥V∗ej∥F ≤

√
µ0r

d2
. (3.24)

In fact, condition (3.24) is stronger than (3.22). If U ∈ Rd1×r and V ∈ Rd2×r are the left

and right singular matrices corresponding to the r non-zero singular values of X, we can

write the projection operator PT : Rd1×d2 → Rd1×d2 that projects onto the tangent space T

such PT (Z) = UU∗Z+ ZVV∗ −UU∗ZVV∗. Therefore, it can be seen that

∥PT (eie
∗
j)∥2F = ∥UU∗eie

∗
j + eie

∗
jVV∗ −UU∗eie

∗
jVV∗∥2F = ∥UU∗eie

∗
j(I−VV∗) + eie

∗
jVV∗∥2F

= ∥UU∗eie
∗
j(I−VV∗)∥2F + ∥eie∗jVV∗∥2F ≤ ∥UU∗eie

∗
j∥2F∥I−VV∗∥2 + ∥eie∗jVV∗∥2F

≤ ∥U∗eie
∗
j∥2F + ∥eie∗jV∥2F = ∥U∗ei∥22 + ∥V∗ej∥22 ≤

µ0r

d1
+

µ0r

d2
≤ µ0r(d1 + d2)

d1d2

for any i ∈ [d1], j ∈ [d2], if (3.24) is fulfilled, which holds since

∥U∗eie
∗
j∥2F = tr(eje

∗
iUU∗eie

∗
j) = tr(e∗iUU∗ei) = e∗iUU∗ei = ∥U∗ei∥22

and similarly ∥eie∗jV∥2F = ∥V∗ej∥22.



3.5. PROOF OF THE LOCAL CONVERGENCE RATE 89

3.5.1 Proof Roadmap

Here, we will briefly detail a roadmap for the quadratic convergence result, Theorem 3.4.2

since it consists of several steps. In the proof, we will denote by Trk(X
(k)) the best rank-rk

approximation of X(k), that is given by the Eckardt-Young-Mirsky theorem [Mir60].

Theorem 3.5.2. Given a matrix X ∈ Rd1×d2, the best rank-r approximation Trk(X
(k)) to

X is given by its truncated singular value decomposition, i.e.,

Trk(X
(k)) := argmin

Z:rank(Z)≤rk

∥Z−X(k)∥ = U(k)Σ(k)V(k)∗. (3.25)

Eckart and Young proved the theorem above in 1936 [EY36] for the Frobenius norm and

generalized by Mirsky for any unitarily invariant norm. An interesting generalization of

this theorem was established in [GHS87].

The first step in the convergence proof is understanding the interplay between the sam-

pling operator, where we assume that the knowing entries are revealed uniformly at ran-

dom without replacement and the tangent space of the manifold of rank-r matrices. In

particular, by using the definition of coherence, it was shown that the operator represent-

ing the sampling model is well-conditioned on the tangent space of the rank-r manifold.

This is presented in Lemma 3.5.4.

The second step is to show that this well-conditioning property from the first step, which

can be interpreted as a restricted isometry property on the tangent space, can “be trans-

ferred” from a tangent space at a point X0 to a tangent space at a point X(k+1) provided

that both point X0 and X(k+1) are close enough. Consequently, we can quantify “how

relevant” a vector η ∈ kerPΩ is. In particular, we prove that most of its energy is concen-

trated in the space orthogonal to the tangent space, i.e., we will show that if ∥η∥F is large,

then the projection ∥PT⊥
k
(η)∥F must also be large. This is presented in Lemma 3.5.6.

After that, in the third step, we introduce a classical matrix perturbation argument that

quantifies how close two subspaces are. See Lemma 3.5.9.

By using this, in the fourth step, we observe that X(k+1)−X0, where X
(k+1) is an iteration

of MatrixIRLS, is an element of kerPΩ and we use the previous result to show that

this distance its distance can be bounded by the nuclear norm of the weight operator

∥W (k)(X0)∥S1 . This is the content of Lemma 3.5.11

Finally, by taking the structure of the weight operator into account, we break it into

four pieces and estimate them by the norm of the vector X(k+1) −X0. In this step, the

definition of the weighted matrix developed for MatrixIRLS will play an important role.

In particular, the smoothing parameter εk will appear in the bounds, and this will be

finally estimated in the last step.
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In the end, we also connect the decay in the smoothing parameter εk with the norm of

X(k+1) −X0. To conclude, we show that if the current iteration of the algorithm lies in a

local basin of attraction, we can ensure that the (r+1)-st singular value σr+1(X
(k)) of the

current iterate is strictly decreasing. Then, we wrap up the proof by combining all the

steps described above. But we start by discussing the interaction between the projection

onto the tangent space and the random sampling operator.

3.5.2 Interplay between sampling operator and tangent space

In the statement of Theorem 3.4.2, we assume that the index set Ω is drawn uniformly at

random without replacement. In our proof below, however, we use a sampling model on

the locations Ω = (iℓ, jℓ)
m
ℓ=1 corresponding to independent sampling with replacement. It

is well-known (see, e.g., Proposition 3 of [Rec11]) that the statement then carries over to

the above sampling model without replacement.

As a preparation for our proof, we recall a result from [Rec11] that bounds the number

of repetitions of each location in Ω under the random sampling model with replacement.

Lemma 3.5.3. [Rec11, Proposition 5] Let D = max(d1, d2) and β > 1, let Ω = (iℓ, jℓ)
m
ℓ=1

be a multiset of double indices from [d1]×[d2] fulfilling m < d1d2 that are sampled indepen-

dently with replacement. Then with probability at least 1−D2−2β, the maximal number of

repetitions of any entry in Ω is less than 8
3
β log(D) for D ≥ 9 and β > 1. Consequently,

we have that with probability of at least 1 − D2−2β, the operator RΩ : Rd1×d2 → Rd1×d2

defined such that

RΩ(X) := P ∗
Ω(PΩ(X)) =

m∑
ℓ=1

⟨eiℓe∗jℓ ,X⟩eiℓe∗jℓ (3.26)

fulfills

∥RΩ∥S∞ ≤ 8

3
β log(D).

Now, we state a lemma from [Rec11] that shows that the operator PT0RΩPT0 is well-

conditioned. As discussed in Remark 3.5.5 below, this result can be seen as a restricted

isometry property on the space of matrices. We provide the proof for completeness since

we use the weaker incoherence definition of Definition 3.4.1 instead of the incoherence

notions of [Rec11, Che15]. As discussed in [Rec11], for a sampling without replacement

model given by a Bernoulli distribution where each entry is revealed independently with

probability equal to p, the next result is highly non-trivial and uses several results of

probability in Banach spaces. See [CR09, Theorem 4.1]. Here, on the other hand, the

proof can be simplified due to the assumption on the sampling strategy.

Lemma 3.5.4. [Rec11, Theorem 6] Let 0 < ϵ ≤ 1
2
, let X0 ∈ Rd1×d2 be a µ0-incoherent
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matrix whose tangent space T0 = TX0 onto the rank-r manifold T0 = TX0Mr (see (3.20))

fulfills (3.22) and RΩ : Rd1×d2 → Rd1×d2 be defined as in (3.26) from m independent uni-

formly sampled locations. Let PT0 : Rd1×d2 → Rd1×d2 be the projection operator associated

to T0. Then ∥∥∥∥d1d2m
PT0RΩPT0 − PT0

∥∥∥∥
S∞

≤ ε (3.27)

holds with probability at least 1− (d1 + d2)
−2 provided that

m ≥ 7

ε2
µ0r(d1 + d2) log(d1 + d2). (3.28)

Proof of Lemma 3.5.4. First we define the family of operators Zℓ, Z̃ℓ : Rd1×d2 → Rd1×d2

such that for X ∈ Rd1×d2 ,

Zℓ(X) :=
d1d2
m

⟨eiℓe∗jℓ ,PT0(X)⟩PT0(eiℓe
∗
jℓ
)− 1

m
PT0(X) :=

d1d2
m

Z̃ℓ(X)− 1

m
PT0(X)

for any ℓ ∈ [m]. Then

E[Zℓ] =
1

d1d2

d1∑
i=1

d2∑
j=1

d1d2
m

⟨eie∗j ,PT0(·)⟩PT0(eie
∗
j)−

1

m
PT0 =

1

d1d2

d1d2
m

PT0IPT0−
1

m
PT0 = 0.

(3.29)

Since for X ∈ Rd1×d2

⟨eiℓe∗jℓ ,PT0(X)⟩PT0(eiℓe
∗
jℓ
) = ⟨PT0(eiℓe

∗
jℓ
),X⟩PT0(eiℓe

∗
jℓ
),

we obtain

∥⟨eiℓe∗jℓ ,PT0(X)⟩PT0(eiℓe
∗
jℓ
)∥F ≤

∣∣⟨PT0(eiℓe
∗
jℓ
),X⟩

∣∣ ∥PT0(eiℓe
∗
jℓ
)∥F ≤ ∥PT0(eiℓe

∗
jℓ
)∥2F∥X∥F

by Cauchy-Schwartz, and thus the norm bound

d1d2
m

∥∥∥Z̃ℓ

∥∥∥
S∞

≤ d1d2
m

∥PT0(eiℓe
∗
jℓ
)∥2F ≤ d1d2

m
max

i∈[d1],j∈[d2]
∥PT0(eie

∗
j)∥2F

≤ d1d2
m

µ0r(d1 + d2)

d1d2
=

µ0r(d1 + d2)

m

(3.30)

using the incoherence assumption (3.22) in the last inequality. Similarly,

∥∥∥∥ 1

m
PT0

∥∥∥∥
S∞

=

∥∥∥∥ 1

m
PT0IPT0

∥∥∥∥
S∞

≤ 1

m

d1∑
i=1

d2∑
j=1

∥∥⟨PT0(eie
∗
j), (·)⟩PT0(eie

∗
j)
∥∥
S∞

≤ µ0r(d1 + d2)

m
.

(3.31)
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We note that if operatorsA and B are positive semidefinite, then ∥A−B∥S∞ ≤ max(∥A∥S∞ , ∥B∥S∞),

and as both Z̃ℓ and PT0 are positive semidefinite, we have

∥Zℓ∥S∞ ≤ max

(
d1d2
m

∥∥∥Z̃ℓ

∥∥∥
S∞

,
1

m
∥PT0∥S∞

)
=

µ0r(d1 + d2)

m

for all ℓ ∈ [m]. By taking the expectation of the squares of Zℓ, we obtain

EZℓZ∗
ℓ =

(d1d2)
2

m2
E
[
(Z̃ℓ)

∗Z̃ℓ

]
− d1d2

m2
E
[
Z̃ℓ

]
PT0 −

d1d2
m2

PT0 E
[
Z̃ℓ

]
+

1

m2
PT0

=
(d1d2)

2

m2
E
[
(Z̃ℓ)

∗Z̃ℓ

]
+ (1− 2)

1

m2
PT0 ,

as P2
T0

= PT0 and E[Z̃ℓ] =
1

d1d2
PT0 . Hence,∥∥∥∥∥

m∑
ℓ=1

EZℓZ∗
ℓ

∥∥∥∥∥
S∞

≤
m∑
ℓ=1

∥EZℓZ∗
ℓ ∥S∞

=
m∑
ℓ=1

∥∥∥∥(d1d2)2m2
E
[
(Z̃ℓ)

2
]
− 1

m2
PT0

∥∥∥∥
S∞

≤
m∑
ℓ=1

max

(
(d1d2)

2

m2

∥∥∥E [(Z̃ℓ)
2
]∥∥∥

S∞
,
1

m2
∥PT0∥S∞

)
≤

m∑
ℓ=1

max

(
(d1d2)

2

m2

∥∥∥E [∥PT0(eiℓe
∗
jℓ
)∥2F Z̃ℓ

]∥∥∥
S∞

,
1

m2

)
≤

m∑
ℓ=1

max

(
(d1d2)(d1 + d2)µ0r

m2

∥∥∥E Z̃ℓ

∥∥∥
S∞

,
1

m2

)
≤

m∑
ℓ=1

max

(
(d1 + d2)µ0r

m2
,
1

m2

)
=

µ0r(d1 + d2)

m
,

where we used that ∥PT0∥2 ≤ 1 since PT0 is a projection in the third inequality, the

definition of µ0 in the fourth and the fact that E Z̃ℓ = 1
d1d2

PT0 , since EZℓ = 0 due to

Equation (3.29), in the fifth. As all the operators Zℓ are Hermitian, it follows by the

matrix Bernstein inequality [Ver18, Theorem 5.4.1 ] that

P

(∥∥∥∥d1d2m
PT0RΩPT0 − PT0

∥∥∥∥
S∞

≥ ε

)
≤ (d1 + d2) exp

(
− mε2/2

µ0r(d1 + d2) + µ0r(d1 + d2)ϵ/3

)
≤ (d1 + d2) exp

(
− mε2

2µ0r(d1 + d2) + µ0r(d1 + d2)/3

)
,

using that ε ≤ 1
2
in the last inequality. Furthermore, if (3.28) is fulfilled, then

(d1 + d2) exp

(
− mε2

7
3
µ0r(d1 + d2)

)
≤ (d1 + d2)

−2,
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which shows that (3.27) holds with a probability of at least 1− (d1 + d2)
−2.

Remark 3.5.5. The result above can be seen (and it is usually referred to) as a restricted

isometry property (RIP) on the tangent space. Indeed, the inequality
∥∥d1d2

m
PT0RΩPT0 − PT0

∥∥
S∞

≤
ε implies that exist C1, C2 > 0 such that

C1∥PT0(X0)∥F ≤ ∥PT0RΩPT0(X0)∥F ≤ C2∥PT0(X0)∥F (3.32)

This, in particular, shows that the operator PT0RΩPT0 mapping the tangent space of the

rank-r matrices onto itself is well-conditioned and hence invertible. This remarkable fact

is one of the crucial ingredients in essentially any rigorous analysis of algorithms for

matrix completion problems.

To prove our convergence rate theorem, we will use the local restricted isometry statement

of (3.27) for tangent spaces TX corresponding to matricesX ∈ Rd1×d2 that are close toX0.

We show the following auxiliary result, which is a refinement of Lemma 4.2 [WCCL20] as

we obtain a bound in the S∞-norm in (c) instead of in the Frobenius norm.

Lemma 3.5.6. Let X0,X ∈ Rd1×d2 be matrices and assume that 0 < ε < 1 and that the

following three conditions hold:

(a) For RΩ : Rd1×d2 → Rd1×d2 as in (3.26),

∥RΩ∥S∞
≤ 16

3
log(D).

(b) The tangent space T0 = TX0 onto the rank-r manifold Mr at X0 fulfills∥∥∥∥d1d2m
PT0RΩPT0 − PT0

∥∥∥∥
S∞

≤ ε.

(c) The spectral norm distance between X and X0 fulfills

∥X−X0∥S∞ ≤
√
3

32
√
log(D)

√
(1 + ε)

ε

√
m

d1d2
σr(X0).

Then the tangent space T = TX onto the rank-r manifold at X fulfills∥∥∥∥d1d2m
PTRΩPT − PT

∥∥∥∥
S∞

≤ 4ε. (3.33)
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Proof. For any Z ∈ Rd1×d2 , we have

∥RΩPT0(Z)∥
2
F = ⟨RΩPT (Z),RΩPT (Z)⟩ ≤

16

3
log(D) ⟨PT0(Z),RΩPT0(Z)⟩

=
16

3
log(D) ⟨PT0(Z),PT0RΩPT0(Z)⟩

=
16

3
log(D)

(〈
PT0(Z),

m

d1d2
PT0(Z)

〉
+

〈
PT0(Z),

(
PT0RΩPT0(Z)−

m

d1d2
PT0(Z)

)〉)
≤ 16

3
log(D)

(
m

d1d2
+ ε

m

d1d2

)
∥PT0(Z)∥

2
F ≤ 16

3
log(D)(1 + ε)

m

d1d2
∥Z∥2F ,

where the first inequality follows from condition (a) and the second one from condition

(b). It follows that

∥RΩPT0∥ ≤
√

16

3
log(D)(1 + ε)

m

d1d2
. (3.34)

Furthermore, if U,U0 ∈ Rd1×r and V,V0 ∈ Rd2×r are the matrices of first r left and right

singular vectors of X and X0, respectively, it holds that for any Z ∈ Rd1×d2 ,

(PT − PT0)(Z) = UU∗Z+ ZVV∗ −UU∗ZVV∗ −U0U
∗
0Z− ZV0V

∗
0 +U0U

∗
0ZV0V

∗
0

= (UU∗ −U0U
∗
0)Z(I−V0V

∗
0) + (I−UU∗)Z(VV∗ −V0V

∗
0),

which we use to estimate

∥(PT − PT0)(Z)∥F ≤ ∥UU∗ −U0U
∗
0∥S∞∥Z∥F∥I−V0V

∗
0∥S∞ + ∥I−UU∗∥S∞∥Z∥F∥VV∗ −V0V

∗
0∥S∞

≤ ∥Tr(X)−X0∥S∞

σr(X0)
∥Z∥F · 1 + 1 · ∥Z∥F

∥Tr(X)−X0∥S∞

σr(X0)

≤ 2
∥Tr(X)−X∥S∞ + ∥X−X0∥S∞

σr(X0)
∥Z∥F ,

where Tr(X) is the best rank-r approximation (3.25). Here, we used the results

∥UU∗ −U0U
∗
0∥S∞ ≤ ∥Tr(X)−X0∥S∞

σr(X0)

and

∥VV∗ −V0V
∗
0∥S∞ ≤ ∥Tr(X)−X0∥S∞

σr(X0)

of Lemma 4.2, inequality (4.3) of [WCCL16], which bound the distance between the

projections onto the left and right singular subspaces of X and X0.

From the Eckardt-Young-Mirsky theorem (3.25), it then follows that

∥(PT − PT0)∥S∞ ≤ 4∥X−X0∥S∞

σr(X0)
. (3.35)
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With this, we further bound

∥RΩPT∥S∞
≤ ∥RΩ(PT − PT0)∥S∞

+ ∥RΩPT0∥S∞

≤ 16

3
log(D)

4 ∥X−X0∥S∞

σr(X0)
+ ∥RΩPT0∥S∞

≤ 16

3
log(D)

√
3

8
√

log(D)
√

(1 + ε)
ε

√
m

d1d2
+

√
16

3
log(D)(1 + ε)

m

d1d2

=
2√
3

√
log(D)

1√
(1 + ε)

ε

√
m

d1d2
+

√
16

3
log(D)(1 + ε)

m

d1d2

≤ 2
√
3
√

log(D)
√
1 + ε

√
m

d1d2
,

(3.36)

where the second inequality follows from (3.35) and the third from condition (c). To prove

the statement (3.33), we calculate∥∥∥∥d1d2m
PTRΩPT − PT

∥∥∥∥
S∞

≤ ∥PT − PT0∥S∞
+

d1d2
m

∥PTRΩPT − PTRΩPT0∥S∞

+
d1d2
m

∥PTRΩPT0 − PT0RΩPT0∥S∞
+

∥∥∥∥PT0 −
d1d2
m

PT0RΩPT0

∥∥∥∥
S∞

≤ ∥PT − PT0∥S∞
+

d1d2
m

∥RΩPT∥S∞
∥PT − PT0∥S∞

+
d1d2
m

∥RΩPT0∥S∞
∥PT − PT0∥S∞

+

∥∥∥∥PT0 −
d1d2
m

PT0RΩPT0

∥∥∥∥
S∞

≤
4 ∥X−X0∥S∞

σr(X0)
+

d1d2
m

∥RΩPT∥S∞

4 ∥X−X0∥S∞

σr(X0)

+
d1d2
m

∥RΩPT0∥S∞

4 ∥X−X0∥S∞

σr(X0)
+

∥∥∥∥PT0 −
d1d2
m

PT0RΩPT0

∥∥∥∥
S∞

≤ 4ε

where in the second inequality, we utilized the fact R∗
Ω = RΩ so that ∥PTRΩ∥S∞

=

∥RΩPT∥S∞
. The very last estimate follows from conditions (b) and (c) and the bounds

(3.34) and (3.36) for ∥RΩPT∥S∞
and ∥RΩPT0∥S∞

.

In the following lemma, we combine the previous results to show that under our sampling

model, with high probability, a local restricted isometry property holds with respect to

tangent spaces Tk that are in some sense close to X0.

Lemma 3.5.7. Let X0 ∈ Rd1×d2 be a matrix of rank r that is µ0-incoherent, and let

Ω = (iℓ, jℓ)
m
ℓ=1 be a random index set of cardinality |Ω| = m that is sampled uniformly

without replacement, or, alternatively, sampled independently with replacement. There



96 CHAPTER 3. ILL-CONDITIONED LOW-RANK MATRIX COMPLETION

exists constants C, C̃, C1 such that if

m ≥ Cµ0r(d1 + d2) log(d1 + d2), (3.37)

then, with probability at least 1−2D−2, the following holds: For each matrix X(k) ∈ Rd1×d2

fulfilling

∥X(k) −X0∥S∞ ≤ C1

√
µ0r

d
σr(X0), (3.38)

it follows that the projection PTk
: Rd1×d2 → Rd1×d2 onto the tangent space Tk :=

TTr(X(k))Mr satisfies ∥∥∥∥d1d2m
PTk

P ∗
ΩPΩPTk

− PTk

∥∥∥∥
S∞

≤ 2

5
,

and furthermore,

∥η∥F ≤

√
C̃d log(D)

µ0r
∥PT⊥

k
(η)∥F

for each matrix η ∈ kerPΩ in the null space of the subsampling operator PΩ : Rd1×d2 → Rm.

Proof of Lemma 3.5.7. Assume that there are m locations Ω = (iℓ, jℓ)
m
ℓ=1 in [d1] × [d2]

sampled independently uniformly with replacement, where m fulfills (3.37) with C := 7/ε2

and ε = 0.1. By Lemma 3.5.3, it follows that the corresponding operator RΩ : Rd1×d2 →
Rd1×d2 from (3.26) fulfills

∥RΩ∥S∞ ≤ 16

3
log(D) (3.39)

on an event called EΩ, which occurs with a probability of at least 1 − D−2, and by

Lemma 3.5.4, the tangent space T0 = TX0Mr corresponding to the µ0-incoherent rank-r

matrix X0 fulfills ∥∥∥∥d1d2m
PT0P

∗
ΩPΩPT0 − PT0

∥∥∥∥
S∞

≤ ε

on an event called EΩ,T0 , which occurs with a probability of at least 1−D−2. Let ϵ̃ = 1
10
.

If X(k) ∈ Rd1×d2 is such that ∥X(k) −X0∥S∞ ≤ ξ̃σr(X0) with

ξ̃ =

√
3

32

ϵ√
log(D)(1 + ϵ)

√
m

d1d2
=

√
3

32

1

10
√
log(D)(11/10)

√
m

d1d2
, (3.40)

it follows by Lemma 3.5.6 that on the event EΩ ∩ EΩ,T0 , the tangent space Tk := X(k)

onto the rank-r manifold at X(k) fulfills∥∥∥∥d1d2m
PTk

RΩPTk
− PTk

∥∥∥∥
S∞

≤ 4ϵ̃ =
2

5
. (3.41)
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Next, we claim that on the event EΩ ∩ EΩ,T0 ,

∥η∥F ≤

√
C̃d log(D)

µ0r
∥PT⊥

k
(η)∥F . (3.42)

for any for each matrix η ∈ kerPΩ in the null space of the subsampling operator PΩ :

Rd1×d2 → Rm. Indeed, to show this claim, we first note that η ∈ kerPΩ if and only if

η ∈ kerRΩ : P ∗
ΩPΩ. Let η ∈ kerRΩ. Then

∥PTk
(η)∥2F = ⟨PTk

(η),PTk
(η)⟩

=

〈
PTk

(η),
d1d2
m

PTk
RΩPTk

(η)

〉
+

〈
PTk

(η),PTk
(η)− d1d2

m
PTk

RΩPTk
(η)

〉
≤
〈
PTk

(η),
d1d2
m

PTk
RΩPTk

(η)

〉
+ ∥PTk

(η)∥F
∥∥∥∥PTk

− d1d2
m

PTk
RΩPTk

∥∥∥∥
S∞

∥PTk
(η)∥F

≤
〈
PTk

(η),
d1d2
m

PTk
RΩPTk

(η)

〉
+ 4ϵ∥PTk

(η)∥2F ,

using (3.41) in the last inequality, which implies that

∥PTk
(η)∥2F ≤ 1

1− 4ϵ

d1d2
m

⟨PTk
(η),PTk

R2
ΩPTk

(η)⟩ = 1

1− 4ϵ

d1d2
m

∥RΩPTk
(η)∥2F

≤ 2d1d2
m

∥RΩPTk
(η)∥2F

using the fact that RΩ : Rd1×d2 → Rd1×d2 is positive semidefinite and has eigenvalues

that are 0 or larger or equal than 1 only. Furthermore, we used that ϵ ≤ 1
10

in the last

inequality.

Since η ∈ kerRΩ, it holds that

0 = ∥RΩ(η)∥F =
∥∥∥RΩ

(
PTk

(η) + PT⊥
k
(η)
)∥∥∥

F
≥ ∥RΩPTk

(η)∥F − ∥RΩPT⊥
k
(η)∥F

so that

∥RΩPTk
(η)∥F ≤ ∥RΩPT⊥

k
(η)∥F ≤ 16

3
log(D)∥PT⊥

k
(η)∥F ,

where we used (3.39), i.e., ∥RΩ∥S∞ ≤ 16
3
log(D), in the last inequality. Inserting this
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above, we obtain

∥η∥2F = ∥PTk
(η)∥2F + ∥PT⊥

k
(η)∥2F ≤

(
2d1d2
m

162

32
log(D)2 + 1

)
∥PT⊥

k
(η)∥2F

≤
(

2d1d2
Cµ0r(d1 + d2) log(d1 + d2)

162

32
log(D)2 + 1

)
∥PT⊥

k
(η)∥2F

≤ C̃d log(D)

µ0r
∥PT⊥

k
(η)∥2F ,

where we used the sample complexity condition (3.37) in the second inequality and the

definition

C̃ :=
4 · 162

C · 32

for the constant C̃.

Moreover, we observe that for C1 :=
√
C

320

√
30
11

where C is the constant of (3.37), it holds

that

C1

√
µ0r

d
≤

√
3

32

1

10
√

log(D)(11/10)

√
Cµ0r(d1 + d2) log(d1 + d2)

d1d2
≤ ξ̃,

implying that the two statements of Lemma 3.5.7 are satisfied on the event EΩ ∩EΩ,T0 if

(3.23) holds. By the above-mentioned probability bounds and a union bound, EΩ ∩EΩ,T0

occurs with a probability of at least 1 − 2D−2, finishing the proof for the sampling with

replacement model. By the argument of [Rec11, Proposition 4], the result extends to the

model of sampling locations drawn uniformly at random without replacement, with the

same probability bound. This concludes the proof of Lemma 3.5.7.

The following lemma will also play a role in the proof of Theorem 3.4.2.

Lemma 3.5.8. Let C, C̃, C1 be the constants of Lemma 3.5.7 and µ0 be the incoherence

factor of a rank-r matrix X0. If

m ≥ Cµ0r(d1 + d2) log(d1 + d2)

and if η(k) = X(k) −X0 fulfills

∥η(k)∥S∞ ≤ ξσr(X0),

with

ξ := min

(
C1

√
µ0r

d
,

µ0

4(1 + 6κ)d log(D)C̃

)
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then, on the event of Lemma 3.5.7, it holds that

∥η(k)∥S∞ <

√
4C̃d(d− r) log(D)

µ0r
σr+1(X

(k)). (3.43)

Proof. First, we compute that

∥PT⊥
k
(η(k))∥F ≤ ∥PT⊥

k
(X(k))∥F + ∥PT⊥

k
(X0)∥F ≤

√√√√ d∑
i=r+1

σ2
i (X

(k)) +
∥∥∥U(k)

⊥ U
(k)∗
⊥ X0V

(k)
⊥ V

(k)∗
⊥

∥∥∥
F

≤
√
d− rσr+1(X

(k)) + ∥U(k)∗
⊥ U0∥S∞∥Σ0∥F∥V∗

0V
(k)
⊥ ∥S∞

≤
√
d− rσr+1(X

(k)) +
2∥η(k)∥2S∞

(1− ζ)2σ2
r(X0)

√
rσ1(X0)

=
√
d− rσr+1(X

(k)) +
2∥η(k)∥2S∞

(1− ζ)2σr(X0)

√
rκ,

where 0 < ζ < 1 such that ∥X(k) − X0∥S∞ ≤ ζσr(X0), using Lemma 3.5.9 twice in the

fourth inequality and ∥AB∥F ≤ ∥A∥S∞∥B∥F , which holds for all matrices A and B.

Using Lemma 3.5.7 for η(k) = X(k) −X0, we obtain on the event on which the statement

of Lemma 3.5.7 holds that

∥η(k)∥S∞ ≤ ∥η(k)∥F ≤

√
C̃d log(D)

µ0r
∥PT⊥

k
(η(k))∥F

≤

√
C̃d log(D)

µ0r

(
√
d− rσr+1(X

(k)) +
8
√
rκ∥η(k)∥2S∞

σr(X0)

)

≤

√
C̃d log(D)

µ0r

(
√
d− rσr+1(X

(k)) +
8
√
rκµ0σr(X0)

4(1 + 6κ)d log(D)C̃σr(X0)
∥η(k)∥S∞

)

=

√
C̃d(d− r) log(D)

µ0r
σr+1(X

(k)) +
1

3

√
µ0

C̃d log(D)
∥η(k)∥S∞ .

Since µ0 ≤ d
r
, we have that 1

3

√
µ0

C̃d log(D)
< 1

2
, and therefore we obtain, after rearranging,

(
1− 1

2

)
∥η(k)∥S∞ <

(
1− 1

3

√
µ0

C̃d log(D)

)
∥η(k)∥S∞ ≤

√
C̃d(d− r) log(D)

µ0r
σr+1(X

(k)),

which implies the statement of this lemma.
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3.5.3 Weight operator and matrix perturbation

In the following, we use a well-known bound on perturbations of the singular value decom-

position, which originally appeared in the work [Wed72], as an extension of a theorem es-

tablished in the paper [DK70]. The result bounds the alignment of the subspaces spanned

by the singular vectors of two matrices by their norm distance, given a gap between the

first singular values of one matrix and the last singular values of the other matrix that is

sufficiently pronounced.

Lemma 3.5.9 (Wedin’s bound [Ste06]). Let X and X̂ be two matrices of the same size

and their singular value decompositions

X =
(
U U⊥

)(Σ 0

0 Σ⊥

)(
V∗

V∗
⊥

)
and X̂ =

(
Û Û⊥

)(Σ̂ 0

0 Σ̂⊥

)(
V̂∗

V̂∗
⊥

)
,

where the submatrices have the sizes of corresponding dimensions. Suppose that δ, α sat-

isfying 0 < δ ≤ α are such that α ≤ σmin(Σ) and σmax(Σ̂⊥) < α− δ. Then

∥Û∗
⊥U∥S∞ ≤

√
2
∥X− X̂∥S∞

δ
and ∥V̂∗

⊥V∥S∞ ≤
√
2
∥X− X̂∥S∞

δ
. (3.44)

We also use a lemma, which provides an explicit formula for calculating the new iterate

X(k) of MatrixIRLS and its characterization by optimality conditions. It is well-known

in the IRLS literature, see, e.g., [DDFG10, Equation 1.9 and Lemma 5.2] or [FRW11b,

Lemma 5.1], and is very general as it holds for any positive definite weight operator.

Lemma 3.5.10. Let PΩ : Rd1×d2 → Rm be the sampling operator, let y ∈ Rm. Let W (k) :

Rd1×d2 → Rd1×d2 be the weight operator of Definition 3.2.1 defined based on X(k) ∈ Rd1×d2.

Then the solution of the weighted least squares step (3.10) of Algorithm 3 is unique and

X(k+1) = argmin
PΩ(X)=y

⟨X,W (k)(X)⟩ = (W (k))−1P ∗
Ω

(
PΩ(W

(k))−1P ∗
Ω

)−1
(y), (3.45)

where (W (k))−1 : Rd1×d2 → Rd1×d2 is the inverse matrix operator of W (k).

Moreover, a matrix X(k+1) ∈ Rd1×d2 coincides with the one of (3.45) if and only if

⟨W (k)(X(k+1)), η⟩ = 0 for all η ∈ kerPΩ and PΩ(X
(k+1)) = y. (3.46)

We show the following lemma. Wherever it appears, ∥X∥S1 denotes the nuclear norm

∥X∥S1 =
∑d

i=1 σi(X) of a matrix X ∈ Rd1×d2 .
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Lemma 3.5.11. Let X0 ∈ Rd1×d2 be a matrix of rank r, let X(k) be the k-th iterate of

Algorithm 3 for input parameters Ω, y = PΩ(X0) and r̃ = r. Assume that ϵk = σr+1(X
(k))

and that

∥η∥F ≤ c(µ0, r, d1, d2)∥PT⊥
k
η∥F for all η ∈ kerPΩ (3.47)

for some constant c(µ0, r, d1, d2) that may depend on µ0, r, d1, d2, where Tk = TTr(X(k))Mr

is tangent space onto the manifold of rank-r matrices at Tr(X
(k)). Then

∥X(k+1) −X0∥S∞ ≤ c(µ0, r, d1, d2)
2ϵ2k∥W (k)(X0)∥S1 , (3.48)

if W (k) : Rd1×d2 → Rd1×d2 is the weight operator of Definition 3.2.1 corresponding to X(k).

Proof of Lemma 3.5.11. Let η(k+1) := X(k+1)−X0. Since η
(k+1) is in the nullspace kerPΩ,

it follows from (3.47) that

∥η(k+1)∥2S∞ ≤ ∥η(k+1)∥2F ≤ c(µ0, r, d1, d2)
2∥PT⊥

k
(η(k+1))∥2F . (3.49)

Recalling the definition of the weight operator W (k) : Rd1×d2 → Rd1×d2 from Defini-

tion 3.2.1, i.e., W (k)(Z) = Uk [Hk ◦ (U∗
kZVk)]V

∗
k, we see that, if

X(k) = UkΣkV
∗
k =

[
U(k) U

(k)
⊥

] [Σ(k) 0

0 Σ
(k)
⊥

][
V(k)∗

V
(k)∗
⊥

]
(3.50)

is a singular value decomposition with U(k) ∈ Rd1×r, U
(k)
⊥ ∈ Rd1×(d1−r), V(k) ∈ Rd2×r,

V
(k)
⊥ ∈ Rd2×(d2−r), we have that

⟨Z,W (k)(Z)⟩ = ⟨U∗
kZVk,Hk ◦ (U∗

kZVk)⟩ (3.51)

where Hk ∈ Rd1×d2 is as in Definition 3.2.1.

If Z = PT⊥
k
(η(k+1)) ∈ T⊥

k , we know that U(k)∗Z = 0 and ZV(k) = 0, and therefore

U∗
kZVk =

[
U(k)∗

U
(k)∗
⊥

]
Z
[
V(k) V

(k)
⊥

]
=

(
0 0

0 U
(k)∗
⊥ ZV

(k)
⊥

)

with U
(k)∗
⊥ ZV

(k)
⊥ ∈ R(d1−r)×(d2−r).

By assumption of Lemma 3.5.11, we know that ϵk = σr+1(X
(k)), which means that rk :=

|{i ∈ [d] : σi(X
(k)) > ϵk}| = r, and therefore (Hk)ij = ϵ−2

k for all i, j > r. This entails
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with (3.51) that

⟨PT⊥
k
(η(k+1)),W (k)(PT⊥

k
(η(k+1)))⟩ = ϵ−2

k ⟨U∗
kPT⊥

k
(η(k+1))Vk,U

∗
kPT⊥

k
(η(k+1))Vk⟩

= ϵ−2
k ⟨PT⊥

k
(η(k+1)),PT⊥

k
(η(k+1))⟩ = ϵ−2

k ∥PT⊥
k
(η(k+1))∥2F ,

using the cyclicity of the trace and the fact that Uk and Vk are orthonormal matrices.

Inserting this into (3.49), we obtain

∥η(k+1)∥2S∞ ≤ c(µ0, r, d1, d2)
2ϵ2k

〈
PT⊥

k
(η(k+1)),W (k)(PT⊥

k
(η(k+1)))

〉
≤ c(µ0, r, d1, d2)

2ϵ2k
〈
η(k+1),W (k)(η(k+1))

〉
,

(3.52)

where the last inequality holds since W (k) is positive definite and since〈
PT⊥

k
(η(k+1)),W (k)(PTk

(η(k+1)))
〉
= 0

due to the orthogonality of Tk and T⊥
k . Due to Lemma 3.5.10, we know that the new

iterate X(k+1) fulfills

0 = ⟨W (k)(X(k+1)), η(k+1)⟩ = ⟨W (k)(η(k+1) +X0), η
(k+1)⟩,

and therefore

〈
η(k+1),W (k)(η(k+1))

〉
= −

〈
W (k)(X0), η

(k+1)
〉
≤ ∥W (k)(X0)∥S1∥η(k+1)∥S∞ ,

using Hölder’s inequality for Schatten-p (quasi-)norms [GGK12, Theorem 11.2]. Dividing

(3.52) by ∥η(k+1)∥S∞ concludes the proof of Lemma 3.5.11.

To obtain a fast local convergence rate, it is crucial to bound ∥W (k)(X0)∥S1 . For this,

we split ∥W (k)(X0)∥S1 into three parts and estimate the parts separately by using the

classical singular subspace perturbation result of Lemma 3.5.9.

Lemma 3.5.12. Let W (k) : Rd1×d2 → Rd1×d2 be the weight operator (3.9) of Defini-

tion 3.2.1 corresponding to X(k), let ϵk = σr+1(X
(k)) = σ

(k)
r and X0 ∈ Rd1×d2 be a rank-r

matrix. Assume that there exists 0 < ζ < 1 such that

∥X(k) −X0∥S∞ ≤ ζσr(X0). (3.53)
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Then

∥∥W (k)(X0)
∥∥
S1

≤ r(1− ζ)−2σr(X0)
−1

(
1 + 4

∥η(k)∥S∞

ϵk

σ1(X0)

σr(X0)
+ 2

∥η(k)∥2S∞

ϵ2k

σ1(X0)

σr(X0)

)
.

Proof. Recalling the notation σ
(k)
ℓ = σℓ(X

(k)) for the ℓ-th singular value of X(k) and the

decomposition

Hk =

[
H(k) H

(k)
1,2

H
(k)
2,1 ϵ−2

k 1

]
(3.54)

of (3.21), we bound the entries of the different blocks H(k), H
(k)
1,2 and H

(k)
2,1 separately.

Since (Hk)ij =
(
max(σ

(k)
i , ϵk)max(σ

(k)
j , ϵk)

)−1

for each i ∈ [d1] and j ∈ [d2] due to

definition of Hk, we observe that

max
i∈[r],j∈[r]

(H(k))ij ≤ (σ(k)
r )−2, (3.55)

and

max

(
max
i,j

((H
(k)
1,2)ij),max

i,j
((H

(k)
2,1)ij)

)
= max

i∈[r],r+1≤j≤d2
(H

(k)
1,2)ij ≤ (σ(k)

r )−1ϵ−1
k , (3.56)

In view of these entrywise bounds on the submatrices of Hk and H
(k)
2 , we compute, using

(3.21), that

∥∥W (k)(X0)
∥∥
S1

=

∥∥∥∥∥[U(k) U
(k)
⊥

]([H(k) H
(k)
1,2

H
(k)
2,1 ϵ−2

k 1

]
◦

[
U(k)∗X0V

(k) U(k)∗X0V
(k)
⊥

U
(k)∗
⊥ X0V

(k) U
(k)∗
⊥ X0V

(k)
⊥

])[
V(k)∗

V
(k)∗
⊥

]∥∥∥∥∥
S1

≤
∥∥U(k)[H(k) ◦ (U(k)∗X0V

(k))]V(k)∗∥∥
S1

+

∥∥∥∥∥Uk

[
0 H

(k)
1,2 ◦ (U(k)∗X0V

(k)
⊥ )

H
(k)
2,1 ◦ (U

(k)∗
⊥ X0V

(k)) 0

]
V∗

k

∥∥∥∥∥
S1

+ ϵ−2
k

∥∥∥U(k)
⊥ U

(k)∗
⊥ X0V

(k)
⊥ V

(k)∗
⊥

∥∥∥
S1

=: (I)+ (II)+ (III).

We now bound the terms (I), (II) and (III) separately.

First, we see that

(I) =
∥∥H(k) ◦ (U(k)∗X0V

(k))
∥∥
S1

≤
√
r
∥∥H(k) ◦ (U(k)∗X0V

(k))
∥∥
F

≤
√
r
∥∥H(k) ◦ (U(k)∗X(k)V(k))

∥∥
F
+
√
r
∥∥H(k) ◦ (U(k)∗η(k)V(k))

∥∥
F

≤
√
r
∥∥H(k) ◦Σ(k)

∥∥
F
+
√
r(σ(k)

r )−2∥U(k)∗η(k)V(k)∥F ,

where we used the Cauchy-Schwarz inequality in the first inequality, the notation η(k) =
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X(k) −X0 and the triangle inequality in the second inequality, and finally, (3.55) in the

third inequality. Σ(k) is here as in (3.13).

Since ∥∥H(k) ◦Σ(k)
∥∥
F
=

(
r∑

i=1

(σ
(k)
i )−2

)1/2

≤
√
r(σ(k)

r )−1

and

∥U(k)∗η(k)V(k)∥F ≤
√
r∥U(k)∗η(k)V(k)∥S∞ ≤

√
r∥η(k)∥S∞ ≤

√
rζσr(X0)

from assumption (3.53), it follows then that

(I) ≤ r(σ(k)
r )−2

(
σ(k)
r + ζσr(X0)

)
.

We can use the proximity assumption (3.53) further to get rid of the dependence on k in

the bound, as

σr(X0) = σr(X
(k) − η(k)) ≤ σ(k)

r + σ1(η
(k)) = σ(k)

r + ∥η(k)∥S∞ ≤ σ(k)
r + ζσr(X0),

using σi+j−1(A) ≤ σi(A +B) + σj(B) for any i, j (cf. Theorem 3.3.16 of [HHJ94]) with

A+B = X(k) − η(k) and B = ηk so that

σ(k)
r ≥ (1− ζ)σr(X0), (3.57)

and hence

(I) ≤ rσr(X0)
−2(1− ζ)−2 (σr(X0)(1− ζ) + ζσr(X0)) = r(1− ζ)−2σr(X0)

−1. (3.58)

For the term (II), we compute that

(II) ≤
√
2r

∥∥∥∥∥
[

0 H
(k)
1,2 ◦ (U(k)∗X0V

(k)
⊥ )

H
(k)
2,1 ◦ (U

(k)∗
⊥ X0V

(k)) 0

]∥∥∥∥∥
F

≤
√
2r(σ(k)

r )−1ϵ−1
k

(∥∥∥U(k)∗X0V
(k)
⊥

∥∥∥
F
+
∥∥∥U(k)∗

⊥ X0V
(k)
∥∥∥
F

)
≤

√
2r(σ(k)

r )−1ϵ−1
k

(
∥U(k)∗U0Σ0∥F∥V∗

0V
(k)
⊥ ∥S∞ + ∥U(k)∗

⊥ U0∥S∞∥Σ0V
∗
0V

(k)∥F
)
,

using the singular value decomposition X0 = U0Σ0V
∗
0 of the rank-r matrix X0 with

U0 ∈ Rd1×r, V0 ∈ Rd2×r. This allows us to use the singular subspace perturbation result

of Lemma 3.5.9, so that ∥V∗
0V

(k)
⊥ ∥S∞ and ∥U(k)∗

⊥ U0∥S∞ can compensate for the negative

power of the ϵk, avoiding a blow-up of the term (II): Indeed, using Lemma 3.5.9 with
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X = X0, X̂ = X(k), α = σr(X0) and δ = (1− ζ)σr(X0) results in

max(∥V∗
0V

(k)
⊥ ∥S∞ , ∥U(k)∗

⊥ U0∥S∞) ≤
√
2∥η(k)∥S∞

(1− ζ)σr(X0)
,

and since ∥U(k)∗U0Σ0∥F ≤ ∥Σ0∥F ≤
√
rσ1(X0), ∥Σ0V

∗
0V

(k)∥F ≤
√
rσ1(X0), we obtain

with (3.57) that

(II) ≤ 4r(1− ζ)−2σr(X0)
−1∥η(k)∥S∞

ϵk

σ1(X0)

σr(X0)
. (3.59)

It remains to bound the last term (III). For (III), we can use the subspace perturbation

lemma twice in the same summand such that

(III) = ϵ−2
k

∥∥∥U(k)
⊥ U

(k)∗
⊥ X0V

(k)
⊥ V

(k)∗
⊥

∥∥∥
S1

= ϵ−2
k ∥U(k)∗

⊥ X0V
(k)
⊥ ∥S1 ≤

√
rϵ−2

k ∥U(k)∗
⊥ X0V

(k)
⊥ ∥F

≤
√
rϵ−2

k ∥U(k)∗
⊥ U0∥S∞∥Σ0∥F∥V∗

0V
(k)
⊥ ∥S∞

≤
√
rϵ−2

k

√
2∥η(k)∥S∞

(1− ζ)σr(X0)

√
rσ1(X0)

√
2∥η(k)∥S∞

(1− ζ)σr(X0)
= 2r(1− ζ)−2σr(X0)

−1∥η(k)∥2S∞

ϵ2k

σ1(X0)

σr(X0)
.

(3.60)

Combining Equation (3.58), Equation (3.59) and Equation (3.60) finally yields the state-

ment of Lemma 3.5.12.

The bound on perturbations of the singular value decomposition, Lemma 3.5.9, used

above are not optimal since it is uniform for both the left and right singular spaces.

In particular, the bounds used here lead to a quite small basin of attraction for our

algorithm. Recently, some optimal perturbation bounds were developed, see [CZ18] and

the discussion in [FWZ18].

Open Problem: Is it possible to develop unbalanced weights to complete matrices

such that the local basin of attraction has a larger radius? Can the results from [CZ18]

be used to establish such results?

3.5.4 Connecting the dots and finishing the proof

We can now put Lemma 3.5.7, Lemma 3.5.11 and Lemma 3.5.12 together to prove the local

convergence statement of Theorem 3.4.2, also showing that we attain locally quadratic

convergence.

Proof of Theorem 3.4.2. Let k = k0 and X(k) be the k-th iterate of MatrixIRLS with

the parameters stated in Theorem 3.4.2. Under the sampling model of Theorem 3.4.2,

if the number of samples m fulfills m ≥ Cµ0r(d1 + d2) log(d1 + d2), where C is the
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constant of Lemma 3.5.7, we know from Lemma 3.5.7 that with a probability of at least

1 − 2D−2, inequality (3.47) is satisfied with c(µ0, r, d1, d2) =
√

C̃d log(D)
µ0r

, if furthermore

η(k) := X(k) −X0 fulfills

∥η(k)∥S∞ ≤ ξσr(X0) (3.61)

with

ξ ≤ C1

√
µ0r

d
, (3.62)

and thus, by Lemma 3.5.11,

∥X(k+1) −X0∥S∞ ≤ C̃d log(D)

µ0r
ϵ2k∥W (k)(X0)∥S1 . (3.63)

We denote the event that this is fulfilled by E. Furthermore, on this event, if ξ ≤ 1/2

in (3.61) and denoting the condition number by κ = σ1(X0)/σr(X0), it follows from

Lemma 3.5.12 that

∥X(k+1) −X0∥S∞ ≤ C̃d log(D)

µ0

4σr(X0)
−1
(
ϵ2k + 4ϵk∥η(k)∥S∞κ+ 2∥η(k)∥2S∞κ

)
Furthermore, if X

(k)
r ∈ Rd1×d2 denotes the best rank-r approximation of X(k) in any

unitarily invariant norm, we estimate that

ϵk ≤ σr+1(X
(k)) = ∥X(k) −X(k)

r ∥S∞ ≤ ∥X(k) −X0∥S∞ = ∥η(k)∥S∞ ,

Inserting these two bounds into (3.63), we obtain

∥η(k+1)∥S∞ = ∥X(k+1) −X0∥S∞ ≤ C̃d log(D)

µ0

4σr(X0)
−1 (1 + 6κ) ∥η(k)∥2S∞ .

Finally, if, additionally, (3.61) is satisfied for

ξ ≤ µ0

4(1 + 6κ)d log(D)C̃
, (3.64)

we conclude that

∥η(k+1)∥S∞ < ∥η(k)∥S∞

and also, we observe a quadratic decay in the spectral error such that

∥η(k+1)∥S∞ ≤ µ∥η(k)∥2S∞

with a constant µ = 4C̃d log(D)(1+6κ)
µ0σr(X0)

. This shows inequality (3.23) of Theorem 3.4.2.
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To show the remaining statement, we can use Lemma 3.5.8 to show that if X(k) is close

enough to X0, we can ensure that the (r + 1)-st singular value σr+1(X
(k)) of the current

iterate is strictly decreasing. More precisely, assume now the stricter assumption of

∥η(k)∥S∞ ≤
√

µ0r

4C̃d(d− r) log(D)
ξσr(X0). (3.65)

In fact, if ξ fulfills (3.62) and (3.64), we can conclude that on the event E,

σr+1(X
(k+1)) ≤ ∥η(k+1)∥S∞ ≤ C̃d log(D)

µ0

4σr(X0)
−1 (1 + 6κ) ∥η(k)∥S∞ · ∥η(k)∥S∞

<
C̃d log(D)

µ0

4σr(X0)
−1 (1 + 6κ)

√
µ0r

4C̃d(d− r) log(D)
ξσr(X0)

·

√
4C̃d(d− r) log(D)

µ0r
σr+1(X

(k)) ≤ σr+1(X
(k))

using Lemma 3.5.8 for one factor ∥η(k)∥S∞ and (3.65) for the other factor ∥η(k)∥S∞ in

the third inequality, and (3.64) in the last inequality. Taking the update rule (3.11)

for the smoothing parameter into account, this implies that ϵk+1 = σr+1(X
(k+1)), which

ensures that the first statement of Theorem 3.4.2 is fulfilled likewise for iteration k+1. By

induction, this implies thatX(k+ℓ) ℓ→∞−−−→ X0, which finishes the proof of Theorem 3.4.2.

Some of the ingredients used in the proof of Theorem 3.4.2 are similar to the local superlin-

ear convergence of [KS18, Theorem 11] when the objective function is the Schatten-p and

also have similarities with techniques developed for other matrix completion algorithms

[CWW19]. The proof presented in [KS18], however, relies on the null space property,

which does not hold in the matrix completion setting, and cannot be extended to the

limit of Schatten-p quasi-norm, namely, the log-det function, as we did here. Moreover,

the previous versions of the IRLS algorithm developed in [FRW11b, MF12b] cannot have

superlinear convergence, which is also not observed in practice. One way to explain that

is that with their choice of weights for the weighted least square problem, the estimations

developed in Lemma 3.5.12 would be too large.

3.6 Computational Aspects

The main contributions of this chapter are on the theoretical quadratic convergence and on

the numerical comparison of state-of-the-art methods for matrix completion. However,

for the sake of completeness, we also add some computational aspects of MatrixIRLS.
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These aspects were developed in [KMV21, Appendix A and Appendix C] and [Küm19].

In a similar way to what was established in Section 2.2.1, under the uniform sampling

model, it is possible to prove that, with high probability, the underlying linear system

from MatrixIRLS, described in Equation (3.10), is well-conditioned. This shows that a

very accurate solution of this system can be obtained with an iterative solver like the

conjugate gradient one in just a few iterations. In particular, the following theorem can

be established:

Theorem 3.6.1 (Well-conditioning of system matrices of MatrixIRLS). In the setup

and sampling model of Theorem 3.6.2, if m ≳ µ0r(d1 + d2) log(d1 + d2), the following

holds with high probability: If ϵk = σr+1(X
(k)) < σr(X

(k)) and if ∥X(k) − X0∥S∞ ≲

min
(√

µ0r
d
, 1
4

)
σr(X0), the matrix Ak ∈ Rr(d1+d2−r)×r(d1+d2−r) in the linear system ma-

trix of the weighted least squares step (3.10) has a spectrum λ(Ak) that satisfies λ(Ak) ⊂
m

d1d2

[
6
10
; 24
10

]
, and thus, the condition number of Ak fulfills κ(Ak) ≤ 4.

Similarly to what happened in our IRLS scheme designed for sparse recovery in Chap-

ter 2, this result shows that MatrixIRLS is able to successfully overcome a prevalent issue

encountered by numerous IRLS algorithms. Indeed, our choice of objective function and

weights induce the construction of a linear system that is not ill-conditioned like the

linear systems presented in [DDFG10, FPRW16b, MF12a, FRW11b, KS18]. Still, the

proof of this theorem relies on probabilistic arguments and the uniform sampling model.

Therefore, we propose the following question.

Open Problem: Is it possible to obtain proof for the well-conditioning of the linear

system of MatrixIRLS when a deterministic sampling pattern is assumed?

A crucial property of Algorithm 3 is that due to the structure of the weight operator (3.9)

and the smoothing update rule (3.11), in fact, the weighted least squares step (3.10) can

be computed by solving a positive definite linear system of size (rk(d1+d2−rk))×(rk(d1+

d2 − rk)), where rk is the number of singular values of X(k) that are larger than ϵk, which

is typically equal or very close to r̃. Conceptually, this corresponds to a linear system in

the tangent space Tk of the rank-rk matrix manifold at the best rank-rk approximation

of X(k), Tk =

{[
U(k)U

(k)
⊥

][ Rrk×rk Rrk(d2−rk)

R(d1−rk)rk 0

][
V(k)V

(k)
⊥

]∗}
.

In our implementation, it is noteworthy that the computation of more than rk singular

vector pairs and singular values of X(k) is never required. Moreover, the matrix X(k)

can be represented as a sum of a sparse matrix and a matrix in Tk. Thus, when using

an iterative solver such as conjugate gradients to solve the linear system, as discussed
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above, we obtain an implementation of MatrixIRLS with a time and space complexity of

the same order as for state-of-the-art first-order algorithms based on matrix factorization

(i.e., of Burer-Monteiro type) [CC18]. We refer to [KMV21, Appendix A] for a proof and

an extensive discussion.

Theorem 3.6.2. Let X(k) ∈ Rd1×d2 be the k-th iterate of MatrixIRLS for an observation

vector y ∈ Rm and r̃ = r. Assume that σ
(k)
i ≤ ϵk for all i > r and σ

(k)
r > ϵk. Then

an implicit representation of the new iterate X(k+1) ∈ Rd1×d2 can be calculated in a time

complexity of

O
(
(mr + r2D) ·NCG inner

)
,

where NCG inner is the number of inner iterations used in the conjugate gradient method

and D = max(d1, d2). More precisely, X(k+1) can be represented as

X(k+1) = P ∗
Ω(rk+1) +U(k)M

(k+1)∗
1 +M

(k+1)
2 V(k)∗,

where rk+1 ∈ Rm, M
(k+1)
1 ∈ Rd2×r and M

(k+1)
2 ∈ Rd1×r, i.e., with a space complexity of

O(m+ rD).

Theorem 3.6.2 showcases the computational superiority of MatrixIRLS over previous it-

eratively reweighted least squares algorithms when it comes to solving low-rank matrix

recovery problems [FRW11b, MF12a, KS18], which all require the storage and updates of

full (d1 × d2)-matrices and the calculation of singular value decompositions of these.

According to Theorem 3.6.2, since P ∗
Ω(rk+1) ∈ Rd1×d2 is m-sparse, X(k+1) can be seen

a sum of a sparse and two rank-r matrices. Intuitively, this representation is possible

as the weight operator W (k) of Definition 3.2.1 can be written as “identity + diagonal

on Tk”, and due to the Sherman-Morrison-Woodbury formula applied to the inverse in

X(k+1) = (W (k))−1P ∗
Ω

(
PΩ(W

(k))−1P ∗
Ω

)−1
(y), which is an explicit representation of the

solution of Equation (3.10).

As a result, fast matrix-vector multiplications can be used to explore the full potential of

methods such as Lanczos bidiagonalization [SZ00] or randomized Block Krylov [MM15]

to compute rk+1 singular values and vectors of X(k+1) in step 3 of Algorithm 3.

3.7 Numerical Experiments

In this section, we finally explore the performance of MatrixIRLS for completing synthetic

low-rank matrices in terms of statistical and computational efficiency compared to state-

of-the-art algorithms in the literature. Our selection criteria are guided by the aim of

capturing a comprehensive overview of state-of-the-art algorithms for matrix completion.
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This includes algorithms demonstrating scalability for high-dimensional problems, those

accompanied by the best theoretical guarantees, and those specifically designed to perform

well in completing ill-conditioned matrices. All the methods are provided with the true

rank r of X0 as an input parameter. If possible, we use the MATLAB implementation

provided by the authors of the respective papers, as described in Section 3.7.1.

We opted for a diverse selection of algorithms to test against MatrixIRLS. These meth-

ods can be grouped into three main categories: the non-convex matrix factorization ones

which include LMaFit [WYZ12], ScaledASD [TW16] and ScaledGD [TMC21], the Rieman-

nian optimization on the manifold of fixed rank matrices ones which include LRGeomCG

[Van13], RTRMC [BA15] and R3MC [MS14], one alternating projection method on the mani-

fold of fixed rank matrices, NIHT [TW13] (see [WCCL20] for a connection between NIHT

and Riemannian methods), and the recent R2RILS [BNZ21] which can be seen as a factor-

ization based method but also contains ideas from the Riemannian optimization family

of algorithms.

As discussed at the beginning of this chapter, we are interested in completing matrices in

the information-theoretical regime. This means that we are interested in finding low-rank

completions from a sampling set Ω of sample size |Ω| =: m = ⌊ρr(d1 + d2 − r)⌋, where
ρ is an oversampling ratio since r(d1 + d2 − r) is just the number of degrees of freedom

of an (d1 × d2)-dimensional rank-r matrix. For a given Ω, the solution of Equation (3.2)

might not coincide with X0, or the solution might not be unique, even if the sample set Ω

is chosen uniformly at random. In particular, this will be the case if Ω is such that there

is a row or a column with fewer than r revealed entries, which is a necessary condition

for the uniqueness of the Equation (3.2), see the discussion in [PABN16]. To mitigate

this problem, which is rather related to the structure of the sampling set rather than to

the performance of a certain algorithm, we, in fact, adapt the sampling model of uniform

sampling without replacement. For a given factor ρ ≥ 1, we sample a set Ω ⊂ [d1]× [d2]

of size m = ⌊ρr(d1 + d2 − r)⌋ indices randomly without replacement. Then we check

whether the condition such that each row and each column in Ω has at least r observed

entries, and resample Ω if this condition is not fulfilled. This procedure is repeated up to

a maximum of 1000 resamplings.

We consider the following setup: we sample a pair of random matrices U ∈ Rd1×r and

V ∈ Rd2×r with r orthonormal columns and define the diagonal matrix Σ ∈ Rr×r such

that Σii = κ exp(− log(κ) i−1
r−1

) for i ∈ [r]. With this definition, we define a ground truth

matrix X0 = UΣV∗ of rank r that has exponentially decaying singular values between κ

and 1.
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3.7.1 Algorithmic Parameter Choice

This section provides a comprehensive description of the numerical experiments, including

the corresponding download links for the implementations. While explicit parallelization

is not utilized in any of the methods, many of them incorporate compiled C subroutines

to efficiently execute sparse evaluations of matrix factorizations. We set the maximum

number of outer iterations for the second-order methods to N0 = 400. The second-order

type algorithms considered for this paper, including their parameter choices, are:

• MatrixIRLS, as described in Algorithm 3. As a stopping criterion, we choose a

threshold of 10−9 for the relative change of the Frobenius norm ∥X(k+1)−X(k)∥F
∥X(k)∥F

. We

use the conjugate gradient (CG) method for solving the linear system (2.17) with-

out any preconditioning. We terminate the CG method if a maximum number of

NCG inner = 500 inner iterations is reached or if a relative residual of tolinner = 10−9

is reached, whichever happens first.6 For the weight operator update step, we use

a variant of the randomized Block Krylov method [MM15] based on the implemen-

tation provided by the authors7, setting the parameter for the maximal number of

iterations to 20.

• R2RILS [BNZ21] or rank 2r iterative least squares, a method that optimizes a least

squares data fit objective ∥PΩ(X0)−PΩ(X)∥F over X ∈ TZ(k)Mr, where TZ(k)Mr is

a tangent space onto the manifold of rank-r matrices, while iteratively updating this

tangent space. As above, we stop the outer iterations a threshold of 10−9 is reached

for the relative change of the Frobenius norm ∥X(k+1)−X(k)∥F
∥X(k)∥F

. At each outer iteration,

R2RILS solves an overdetermined least squares problem of size (m×r(d1+d2)) via the

iterative solver LSQR, for which we choose the maximal number of inner iterations

as NLSQR inner = 500 and a termination criterion based on a relative residual of

10−10. We use the implementation based on the author’s code but adapted for these

stopping criteria.8

• RTRMC, the preconditioned Riemannian trust-region method called RTRMC 2p of

[BA15], which was reported to achieve the best performance among a variety of ma-

trix completion algorithms for the task of completing matrices of a condition number

of up to κ = 150. We use the implementation provided by the authors9 with default

6While this stopping condition uses the condition number κ, which will probably be unknown in
practice, it can be generally chosen independently of κ without any convergence issues.

7https://github.com/cpmusco/bksvd
8https://github.com/Jonathan-WIS/R2RILS
9RTRMC v3.2 from http://web.math.princeton.edu/~nboumal/RTRMC/index.html, together with

the toolbox Manopt 6.0 (https://www.manopt.org/) [BMAS14].

https://github.com/cpmusco/bksvd
https://github.com/Jonathan-WIS/R2RILS
http://web.math.princeton.edu/~nboumal/RTRMC/index.html
https://www.manopt.org/
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options except from setting the maximal number of inner iterations to Ninner = 500

and setting the parameter for the tolerance on the gradient norm to 10−15. Further-

more, as the algorithm otherwise would often run into certain submatrices that are

not positive definite for ρ between 1 and 1.5, we set the regularization parameter

λ = 10−8, which is small enough not to deter high precision approximations of X0

if enough samples are provided.

Furthermore, we consider the following first-order algorithms, setting the maximal number

of outer iterations to N0 = 4000:

• LRGeomCG [Van13], a local optimization method for a quadratic data fit term based

on gradients with respect to the Riemannian manifold of fixed rank matrices. We use

the author’s implementation10 while setting the parameters related to the stopping

conditions abs grad tol, rel grad tol, abs f tol, rel f tol, rel tol change x

and rel tol change res each to 10−9. The rank-adaptive variant of LRGeomCG,

called LRGeomCG Pursuit [UV15, TTW+14], is used with the same algorithmic pa-

rameters as LRGeomCG for the inner iterations, and with a rank increase of 1 each

outer iteration.

• LMaFit or low-rank matrix fitting [WYZ12], a nonlinear successive over-relaxation

algorithm based on matrix factorization. We use the implementation provided by

the authors11, setting the tolerance threshold for the stopping condition (which is

based on a relative data fit error ∥PΩ(X
(k))− y∥2/∥y∥2) to 5 · 10−10.

• ScaledASD or scaled alternating steepest descent [TW16], a gradient descent method

based on matrix factorization which scales the gradients in a quasi-Newton fashion.

We use the implementation provided by the authors12 with the stopping condition

given by ∥PΩ(X
(k))− y∥2/∥y∥2 ≤ 10−9.

• ScaledGD or scaled gradient descent [TMC21], a method that is very similar to

ScaledASD, but for which a non-asymptotic local convergence analysis has been

established for matrix completion. We use an adapted version of the author’s im-

plementation13: We choose a step size of η = 0.5, but increase the normalization

parameter p by a factor of 1.5 in case the unmodified algorithm ScaledGD leads to

divergent algorithmic iterates, using the same stopping condition as for ScaledASD.

10http://www.unige.ch/math/vandereycken/matrix_completion.html
11http://lmafit.blogs.rice.edu
12http://www.sdspeople.fudan.edu.cn/weike/code/mc20140528.tar
13https://github.com/Titan-Tong/ScaledGD

http://www.unige.ch/math/vandereycken/matrix_completion.html
http://lmafit.blogs.rice.edu
http://www.sdspeople.fudan.edu.cn/weike/code/mc20140528.tar
https://github.com/Titan-Tong/ScaledGD
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• NIHT or normalized iterative hard thresholding [TW13], which performs iterative

hard thresholding steps with adaptive step sizes. We use the implementation pro-

vided by the authors 12 with a stopping threshold of 10−9 for the relative data fit

error ∥PΩ(X
(k))− y∥2/∥y∥2 and for the convergence rate threshold parameter.

• R3MC [MS14], a Riemannian nonlinear conjugate-gradient that also optimizes a least

squares data fit objective ∥PΩ(X0) − PΩ(X)∥F by exploiting a three-factor matrix

factorization similar to the SVD. The algorithm performs a search on a quotient

manifold defined from the manifold of rank r matrices and uses the factorization

and symmetries from the action of the orthogonal group. We use the author’s

implementation14 while choosing the Polyak-Ribier rule for the nonlinear CG and

the Armijo line search with a maximum of 50 line searches allowed at each iteration.

Also, we set the tolerance parameter for the stopping criterion to 10−9. R3MC w/

Rank Upd corresponds to the method described in the section on rank updating of

[MS14].

3.7.2 Data-efficient recovery of ill-conditioned matrices

First, we run MatrixIRLS and the algorithms R2RILS , RTRMC, LRGeomCG, LMaFit, ScaledASD,

ScaledGD, NIHT and R3MC to complete X0 from PΩ(X0) where Ω corresponds to differ-

ent oversampling factors ρ between 1 and 4, and where the condition number of X0

is κ = σ1(X0)/σr(X0) = 10. In Figure 3.3, we report the median Frobenius errors

∥X(K) −X0∥F/∥X0∥F of the respective algorithmic outputs X(K) across 100 independent

realizations.

We see that MatrixIRLS and R2RILS are the only algorithms that are able to complete

X0 already for ρ = 1.5. In our experiment, R3MC completes X0 in a majority of instances

starting from ρ = 2.0, whereas the other algorithms, except NIHT, are able to reconstruct

the matrix most of the times if ρ is at least between 2.4 and 3.0. This confirms the findings

of [BNZ21], which show that even for quite well-conditioned matrices, fewer samples are

required if second-order methods such as R2RILS or MatrixIRLS are used.

We repeat this experiment for ill-conditioned matrices X0 with κ = 105. In Figure 3.4,

we see that current state-of-the-art methods are not able to achieve exact recovery of X0.

This is, in particular, true as given the exponential decay of the singular values, to recover

the subspace corresponding to the smallest singular value of X0, a relative Frobenius error

of 10−5 or even several orders of magnitude smaller needs to be achieved. We observe

14https://bamdevmishra.in/codes/r3mc/. We used the version from Sep. 2020 which already in-
cludes the rank updating strategy.

https://bamdevmishra.in/codes/r3mc/
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Figure 3.3: Performance of matrix completion algorithms for 1000 × 1000 matrices of
rank r = 5 with condition number κ = 10, given m = ⌊ρr(d1 + d2 − r)⌋ random samples.
Median of Frobenius errors ∥X(K) −X0∥F/∥X0∥F of 100 independent realizations.

that MatrixIRLS is the only method that is able to complete X0 for any of the considered

oversampling factors.
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Figure 3.4: Performance of matrix completion algorithms as in Figure 3.3, but with
κ = 105. Median of 50 realizations.

3.7.3 Running time for ill-conditioned problems

In Figure 3.5, for an oversampling ratio of ρ = 4, we illustrate the completion of one

single extremely ill-conditioned 1000 × 1000 matrix with rank = 10 and κ = 1010 and

exponentially interpolated singular values as described above. We again can see that only

second-order methods such as R2RILS or MatrixIRLS can achieve a relative Frobenius

error ≈ 10−5 or smaller. MatrixIRLS goes beyond that and attains a relative Frobenius

error of the order of the machine precision and, remarkably, exactly recovers all the singular

values up to 15 digits. This also shows that the conjugated gradient and the randomized
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block Krylov method used at the inner core of our implementation can be extremely

precise when properly adjusted. R2RILS can obtain relatively low Frobenius error, but

unlike our method, it is not able to retrieve all the singular values with high accuracy.

For the ill-conditioned matrix under consideration, other methods were found to result in

a negligible reduction in relative error, rendering them ineffective for the task.
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Figure 3.5: Completion task for a highly ill-conditioned 1000×1000 matrix of rank r = 10
with κ = 1010 (ρ = 4).

In Figure 3.6, we thoroughly investigate the execution time of R2RILS and MatrixIRLS

for a range of ground truth matrices with increasing dimension for an oversampling ratio

of ρ = 2.5, whose singular values are linearly interpolated between κ and 1. We observe

that the larger the dimensions are, the larger the discrepancy in the running time of the

two algorithms. Other algorithms are not considered in this experiment because they

typically do not reach a relative error below 10−4 for κ ≫ 102.
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Figure 3.6: Execution time of R2RILS and MatrixIRLS for completion of rank r ∈ {5, 10}
matrices of size m × (m + 100) and condition number κ = 102, averaged across 50 inde-
pendent realizations.
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3.7.4 MatrixIRLS versus rank-adaptive strategies

In Section 3.7.2, all methods were provided with the correct rank r of the ground truth,

which was used to determine the size of the matrix factors or the rank of the fixed rank

manifold. Even in this case, we illustrated numerically that most of the methods are not

able to recover highly ill-conditioned matrices. To handle such ill-conditioned completion

problems, [MS14, UV15, TTW+14] proposed very promising rank-adaptive variants of

the methods R3MC and LRGeomCG. These variants, which we call LRGeomCG Pursuit15

[UV15, TTW+14] and R3MC w/ Rank Update [MS14], respectively, combine fixed-rank

optimization with outer iterations that increase r̃ from 1 to a target rank r, while warm

starting each outer iteration with the output of the previous iteration. The main idea of

these is that the rank-r manifold is not a closed set since a sequence of matrices in this

set may converge to a matrix that has a strictly smaller rank and, therefore, it is not

easy to develop a convergence theory for Riemannian method on this set. Moreover, in

this manifold, it is usually the case that second-order approximation to the function to

be minimized contains terms that are of the order of 1/σr(X), which means that these

methods can perform really badly for retrieving ill-conditioned with very singular values,

see [UV15] and [Van13, Section A.2]. Then, the problem is formulated on the (closed) set

of matrices of rank at most r. To compare the data efficiency of MatrixIRLS with one of

these three algorithms, we repeat the experiments of Section 3.7.2 for these methods and

report the median Frobenius errors for the completion of 1000 × 1000 matrices of rank

r = 5 with condition numbers κ = 10 and κ = 105, respectively, with those of MatrixIRLS

in Figures 3.7 and 3.8.
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Figure 3.7: Completion of 1000 × 1000 matrices of rank r = 5 with condition number
κ = 10, experiment as in Figure 3.3.

Figure 3.7 demonstrates that MatrixIRLS exhibits superior data efficiency compared to

15The MATLAB code containing the rank update was provided by B. Vandereycken in private com-
munication.



3.7. NUMERICAL EXPERIMENTS 117

the two rank-adaptive methods when considering a relatively small condition number of

κ = 10. The phase transition for the rank-adaptive methods occurs at a larger oversam-

pling factor,ρ = 1.8, in contrast to MatrixIRLS, where it happened at ρ = 1.5.

Contrarily, 3.8 highlights the effectiveness of the rank-adaptive techniques LRGeomCG

Pursuit and R3MC w/ Rank Update when dealing with matrices possessing a large con-

dition number like κ = 105. These methods exhibit a phase transition at approximately

ρ = 1.8 and ρ = 1.7, respectively, whereas MatrixIRLS exhibits its phase transition at

ρ = 1.9. This shows that for large condition numbers, rank adaptive strategies can out-

perform the data efficiency of MatrixIRLS, and in both experiments, the phase transitions

are considerably better than for their fixed rank versions LRGeomCG and R3MC, cf. Figures

3.3 and Figure 3.4.
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Figure 3.8: Completion of 1000 × 1000 matrices of rank r = 5 with condition number
κ = 105, experiment as in Figure 3.4.

In all experiments so far, we have considered low-rank matrices with r singular values that

exponentially decrease from κ to 1, as described at the beginning of this section. This

might be a setting that is particularly suitable for rank-adaptive strategies that increase

the rank parameter r̃ one-by-one, as the singular subspaces are all one-dimensional and

well-separated. For this reason, in a last experiment, we change this to a very challenging

setup and consider ground truth matrices X0 that have a plateau in the set of singular

values, potentially presenting a larger challenge for completion methods due to a higher

dimensional subspace spanned by a set of multiple singular vectors. In particular, we

consider the completion of a 1000 × 1000 matrix X0 with 10 singular values equal to

1010·exp(−10·log(10)14
29
), and with 10 singular values linearly interpolated on a logarithmic

scale between this value and 1010 and, and another 10 between this value and 1. For a

random instance of such a matrix, we report the relative Frobenius error vs. execution

time for the methods MatrixIRLS against the rank-adaptive variants of LRGeomCG and

R3MC, here denoted by LRGeomCG Pursuit and R3MC w/ Rank Update in Figure 3.9, from
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random samples with a small oversampling factor of ρ = 1.5.
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Figure 3.9: Comparison of matrix completion algorithms for 1000×1000 matrices of rank
r = 30 with condition number κ = 1010 and 10 equal singular values, oversampling factor
of ρ = 1.5.

We observe that the fixed-rank variants LRGeomCG and R3MC are not able to complete

the matrix, which is in line with the experiment of Section 3.7.3. R3MC w/ Rank Update

exhibits a quick error decrease to a range around 6 · 10−5, after which it just decreases

very slowly for around 110 seconds before converging to X0 up to an error of around

10−12 within another 70 seconds. The stagnation phase presumably corresponds to the

learning of the 10-dimensional singular space of X0 in the central part of its spectrum.

LRGeomCG Pursuit, on the other hand, reaches an error of around 10−12 already after

5 seconds, albeit without monotonicity with a fluctuation phase between errors of 10−8

and 10−12 from seconds 3 to 5. For MatrixIRLS, we use a tolerance parameter for the

relative residual in the conjugate gradient method of tolinner = 10−3 and a maximal

number of 3 iterations for the randomized Block Krylov method (cf. 3.7.1 for the default

parameters) and observe that the method successfully converges to X0 slightly slower

with a convergence within 13 seconds, but, remarkably, unlike LRGeomCG Pursuit, with

a monotonous error decrease.16

Nevertheless, relying solely on tracking the relative Frobenius error to assess the per-

formance of methods in recovering highly ill-conditioned matrices without taking into

account the condition number κ, may not provide a comprehensive understanding. It

is important to note that the recovery of singular spaces associated with the smallest

singular values is typically achieved only when the relative error becomes smaller than

1/κ.

To address this, we present the singular values of the recovered matrices X(K) in Fig-

16For the default choice of algorithmic parameters as described in Section 3.7.1, we obtain a qualitatively
similar behavior for MatrixIRLS, but with a small runtime multiple due to the higher required precision
at each iteration.
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Figure 3.10: Spectrum of output matrices X(K) and X0
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Figure 3.12: Spectrum information of algorithmic output X(K) after convergence, exper-
iment of Figure 3.9 (1000× 1000 matrix, r = 30, κ = 1010, ρ = 1.5)

ure 3.10, along with the corresponding relative error for each individual singular value in

Figure 3.11. These results pertain to the experiment conducted in Section 3.7.4, as illus-

trated in Figure 3.9. Notably, MatrixIRLS, LRGeomCG Pursuit and R3MC w/ Rank Upd

exhibit remarkable capability in accurately recovering even the smallest singular values,

specifically those with indices i = 28, 29, 30. The relative error for these singular values

ranges from 10−7 to 10−3, indicating a high level of precision.

This shows that despite a not too restrictive choice of the tolerance on of the inner

conjugate gradient iterations (such as tolinner = 10−3), MatrixIRLS is successful in recov-

ering the complete spectrum of X0, indicating that an implementation of MatrixIRLS

that solves Equation (2.17) via conjugate gradient method together with weight updates

based on a randomized block Krylov method can be very precise even without requiring

a very high precision on the iterative solver.
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These observations suggest that MatrixIRLS and Riemannian optimization methods with

adaptive rank updates such as LRGeomCG Pursuit and R3MC w/ Rank Upd are good alter-

natives to solve hard matrix recovery problems in a numerically efficient way, warranting

further investigations for a better theoretical understanding. In particular, looking into

the possible connections between rank-adaptive Riemannian methods and MatrixIRLS

would be interesting.

3.8 Chapter Conclusion

In this chapter, we presented the second idea related to the methods of least squares

method of this thesis, and we discussed how to develop a second-order method, here

called MatrixIRLS, that is able to efficiently complete large, extremely ill-conditioned

matrices from few samples, a problem for which most state-of-the-art methods fail. We

designed weighted least squares problems that can tackle highly non-convex objective

functions such as the log-det by applying a suitable smoothing strategy combined with

saddle-escaping Newton-type steps.

We established a local quadratic convergence rate for our algorithm under very general

coherence assumptions and we have corroborated our theory with numerical experiments

that show how efficient the method is for retrieving very ill-conditioned low-rank matrices.

While some Riemannian optimization methods are guaranteed to have an asymptotic

quadratic rate of convergence [MMBS13, BA15], their theory does not specify the number

of samples needed to perform the completion. Also, it is not clear what the basin of

attraction for such methods is. See also [ABG07] for a discussion about the convergence

rate.

In addition, we examined an efficient implementation focused on the matrix completion

problem. It is important to note that our analysis can be extended to situations where the

measurements are corrupted by noise. In such cases, the constraint PΩ(X) = PΩ(X0) can

be integrated into the objective function as λ∥PΩ(X)−PΩ(X0)∥22, where λ is a parameter

that balances the data-fidelity and the non-convex proxy function that enforces the low-

rank model. Since the data-fidelity term in this scenario is represented by a quadratic

function, incorporating it into the reweighted least squares analysis can be done easily.

Another very relevant issue relates to the more realistic scenario of online optimization.

In recommender systems, for instance, the algorithms can operate in an online and in-

teractive fashion, continuously adapting based on user feedback. While the theory for

online matrix completion is not as well-established as its offline counterpart, cf. [PJ23],

recent advancements have been made in completing ill-conditioned matrices within an

online framework [ZCZ22]. We believe that an extension of MatrixIRLS to this case is
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extremely relevant.

Open Problem: How to develop a reweighted least squares algorithm for online matrix

completion? Is it possible to use techniques developed for modified least squares

problems, e.g., [Bjö96, Chapter 3], for this task?

Another interesting issue is related to the local convergence rate. Usually, is it possible

to establish a two-phase convergence regime for Newton’s method, the so-called damped

Newton phase and pure Newton phase [BV04, Chapter 9.5]. Under certain assumptions, it

is possible to prove that this type of method achieves a linear convergence in the beginning,

and after a finite number of steps, it reaches the basin of attraction for which an accelerated

superlinear convergence is guaranteed. Given the resemblance of our algorithm with a

non-convex Newton’s method [PMR19b], it would be interesting to establish results of

this nature to MatrixIRLS.

Open Problem: How to rigorously establish a two-phase global convergence

guarantees for MatrixIRLS?

Another interesting line of research deals with tensors and tensor completion methods: a

higher-order generalization of the matrix completion ones. However, everything is more

involved in this scenario. Even the singular value decomposition [DOT18, VNVM14]. In

this case, developing an algorithm that is fast, scalable, and with optimal memory storage

is even more crucial. Extending the theory presented in this chapter to address the tensor

completion problem would be fascinating.



Chapter 4

IRLS for Sparse Noise-Blind

Optimization

“Finding patterns is easy in any kind of data-rich environment; that’s what mediocre gamblers do.

The key is in determining whether the patterns represent noise or signal.” [Sil12]

The Signal and the Noise: Why So Many Predictions Fail-but Some Don’t, Nate Silver

In this chapter, we study the noise-blind sparse recovery problem, a problem that is also

connected to robust optimization. We then propose an efficient algorithm based on the

method of least squares to minimize the so-called square-root LASSO, an optimization

problem for which the optimal solution provably does not depend on the noise added to

the measurements. The work presented in this chapter, still in progress, is in collaboration

with Dr. Oleh Melnyk, Dr. Peter Jung and Prof. Felix Krahmer and the final version of

the manuscript is currently in preparation.

We establish a minimization scheme for the square-root LASSO, a convex but non-

smooth problem that appears in high-dimensional statistics and robust optimization

for which the optimal regularization parameter does not depend on the noise level. By

extending the techniques for the first chapter of this thesis, we show that the method

attains a global convergence rate.

4.1 Introduction

In Chapter 2, we discussed and analyzed a constrained optimization program for sparse

recovery, the so-called Basis Pursuit Equation (P1). However, in several applications,

the data is corrupted with noise, i.e., the measurements are subject to errors. Given the

presence of noise in the measurements, typically modeled via

y = Ax+ ϵ, where ϵ is a random variable, (4.1)

122
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it is crucial to adopt a formulation that incorporates and withstands its impact. Taking

this into consideration, the Quadratically Constrained Basis Pursuit (QCBP), introduced

in [CD94b], substitutes the equality constraint Ax = y with an inequality constraint
1
m
∥Ax− y∥22 ≤ η. Consequently, the objective now shifts towards solving

min
z∈RN

∥z∥1 subject to
1

m
∥Az − y∥22 ≤ η, (4.2)

Remark 4.1.1. An alternative approach to address this challenge involves solving the

Equality Constrained Basis Pursuit program blindly, without any prior knowledge or es-

timation of the noise level. The aim is to identify conditions under which this approach

guarantees successful recovery, meaning that it provides an accurate solution up to the

noise level. The seminal work by [Woj10] (see also [Fou14, DPW09]) introduced the quo-

tient property, which is discussed in Chapter 5. The authors demonstrated that if the

measurement matrix satisfies this property, it is possible to achieve noise-blind recovery

guarantees for the Equality Constrained Basis Pursuit. However, while this property can

be established for broad matrices ensembles, the supporting arguments rely on concen-

tration inequalities and random polytopes. To the best of the author’s knowledge, there is

currently no theory to establish this property for structured matrices commonly used in ap-

plications. Therefore, this chapter will focus on methods widely used in signal processing,

statistics, and machine learning.

At around the same time, in the statistics literature, the work [Tib96a] proposed the

LASSO1, which stands for Least Absolute Shrinkage and Selection Operator, which consists

in solving, for some parameter τ ≥ 0,

min
z∈RN

1

m
∥Az − y∥22 subject to ∥z∥1 ≤ τ. (4.3)

Since both problems are constrained ones, the development of techniques that are designed

to solve them is harder than the correspondent techniques for the equivalent unconstrained

problem, which was originally called Basis Pursuit Denoising (also called Lagrangian

LASSO, see [Wai19, Chapter 7]). This problem consists in solving, for some parameter

λ ≥ 0,

min
z∈RN

λ∥z∥1 +
1

m
∥Az − y∥22. (4.4)

The following theorem demonstrates the interrelation among these three problems, high-

lighting their connection. For a comprehensive analysis encompassing all three problems,

refer to [HTW15].

1This, in turn, was inspired by the so-called empirical atomic decomposition [CDS01b].
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Theorem 4.1.2. [FR13, Proposition 3.2] There exists an equivalence between the LASSO,

the Basis Pursuit Denoising and the Quadratically Constrained Basis Pursuit as the fol-

lowing three statements show.

i. If x is a minimizer of the Basis Pursuit Denoising with λ > 0, then there exists

η = η(x) such that x is a minimizer of the Quadratically Constrained Basis Pursuit.

ii. If x is a unique minimizer of the Quadratically Constrained Basis Pursuit with

η ≥ 0, then there exists τ = τ(x) ≥ 0 such that x is a unique minimizer of the

LASSO.

iii. If x is a unique minimizer of the LASSO with τ > 0, then there exists λ = λ(x) ≥ 0

such that x is a minimizer of the Basis Pursuit Denoising.

The aforementioned theoretical equivalence implies that the unconstrained problem rep-

resented by Equation (4.4) could be a favorable option for designing optimization algo-

rithms. In this scenario, there is no need to consider if the feasible points lie within the

constraint set. The Lagrangian LASSO problem described by Equation (4.4) has recently

been referred to as the LASSO, a terminology that we will maintain throughout this thesis.

Due to this equivalence, this penalized estimator also achieves, under certain assumptions,

variable selection by promoting sparsity among the estimated regression coefficients.

From the computational point of view, several efficient and scalable algorithms were

proposed to minimize this function. See, e.g. [LST18, WYL+22] and references therein.

From the theoretical point of view, this estimator attains optimal minimax rates for the

prediction error [BRT09, Section 6] and in the ℓ∞-norm [Lou08, BZ22]. Results for the

size of the support of the LASSO minimizer were also derived in [FTZ22]. However, such

optimal results depend on a regularization choice that relies on oracle knowledge about

the noise variance, which is usually unavailable in many applications [Gir15, Chapter

5]. If no prior information about the noise is available, the sub-optimally tuned LASSO

yields suboptimal recovery guarantees. Moreover, the estimation of the error variance

for LASSO-type problems is a non-trivial problem that still attracts significant interest

[RTF16, YB19, GHV12].

Several (almost optimal) approaches have been developed to address the selection of λ

in a provable manner without assuming any prior knowledge about the noise distribu-

tion. These include techniques such as cross-validation [CLC21] and adaptive calibration

schemes [CLW16]. However, they lack scalability or, in the second case, are just tailored

to ℓ∞-norm results, and it is not clear how to establish other minimax bounds for such

approaches. Besides that, the LASSO estimator lacks some important properties such as

scale invariance, see e.g., [Gir15, Section 5.1], or asymptotic normality, see e.g., [JM18,
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Section 1] and references therein for a discussion. Both properties are fundamental, for

example, to characterize the uncertainty associated with a parameter through the com-

putation of confidence intervals and p-values.

To address the aforementioned challenges, the groundbreaking paper [BCW11] introduced

the square-root LASSO (sqrt-LASSO)2. In the authors’ own words, this novel estimator

effectively “handles the unknown scale, heteroscedasticity, and (drastic) non-Gaussianity

of the noise”. Notably, the key characteristic of this estimator is that the tuning parameter

λ, which ensures minimax oracle inequalities, remains independent of the noise level

[vdG16]. Mathematically, it is described as follows:

x̂λ ∈ argmin
x∈RN

1√
m
∥Ax− y∥2 + λ∥x∥1 =: argmin

x∈RN

f0(x). (4.5)

Subsequent advancements in the field yielded sharp oracle inequalities for the sqrt-LASSO,

building upon the findings of [BCW11], as demonstrated in some works such as [Der18,

SvdG17]. Estimates for the support size of the obtained solution [Fou23] and recovery

guarantees against adversarial noise [PJ21] have also been established. In particular, the

work [Fou23] shows that if the measurement matrix A satisfies the RIP, then the output of

any LASSO-type solution, including the sqrt-LASSO, is Cs-sparse for a certain constant

C.

Theorem 4.1.3. [Fou23, Theorem 5] Let p ∈ [1, 2], q ≥ 1, and r ≥ 1. Consider a vector

x ∈ RN such that B−1x is s-sparse for some invertible matrix B ∈ RN×N with condition

number κB := ∥B∥2→2∥B−1∥2→2. Suppose that the vector x is measured via y = Ax+ ϵ ∈
Rm for some error vector e ∈ Rm with ∥ϵ∥p ≤ (1/3)∥y∥p and some matrix A ∈ Rm×N

satisfying the nonstantard restricted isometry property of order t := ⌊(6γκB)
2s⌋ + 1 with

ratio γ = β/α, i.e.,

α∥z∥2 ≤ ∥Az∥p ≤ β∥z∥2 whenever ∥B−1z∥0 ≤ t.

Then, for any λ ≥ λ∗ := 2q−1βr∥B∥r2→2∥ϵ∥q−r
p , the solution xλ of the LASSO-type proce-

dure

xλ ∈ argmin
z∈RN

1

q
∥y − Az∥qp + λ

1

r
∥B−1z∥r1

has sparsity at most proportional to s, namely

∥B−1xλ∥0 ≤ ⌊χ2s⌋, χ := 6γκB.

Applying the theorem above to the case where q = r = 1 and B = I, the threshold λ∗

2It is also called ℓ2-lasso in the signal processing literature [OTH13].
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reduces to a quantity that is independent of the magnitude of noise, and it yields the

corresponding result concerning the sparsity of the sqrt-LASSO solution. In particular,

for λ ≥ β, it holds that ∥xλ∥0 ≤ ⌊36β
α
s⌋.

The most celebrated result for the sqrt-LASSO estimator is in the form of sharp recovery

guarantees. Namely, it is that it is possible to establish that for a certain choice of

regularization parameter λ that is independent from the noise level, the sqrt-LASSO

attains optimal error. For example, by assuming that ϵ in Equation (4.1) is a random

noise, with values in Rm, distributed as N(0, σ2I), it was proven in [BCW11, Theorem 1]

and [Der18, Theorem 3.1] that, for a certain λ that does not depend on σ, the solution

of the sqrt-LASSO xλ attains an error of the order of s/m log(N/s), that is known to be

sharp, see [BLT18] and [RWY11]. Later, this was generalized to an adversarial error, more

commonly discussed in the signal processing literature, by assuming that the measurement

matrix satisfies the robust null space property, a generalization of the null space property

discussed in Chapter 2.

Definition 4.1.4 ([FR13, Definition 4.17]). A matrix A ∈ Rm×N is said to satisfy the

robust null space property (NSP) of order s ∈ [N ] with constants 0 < ρ < 1 and τ > 0 if

for any set S ⊂ [N ] of cardinality |S| ≤ s, it holds that

∥vS∥1 ≤ ρ∥vSc∥1 + τ∥Av∥2, for all v ∈ RN . (4.6)

Theorem 4.1.5. [PJ21, Theorem 3.1] Let A ∈ Rm×N have ℓq-RNSP of order S wrt ∥.∥
with constants ρ and τ . Let λ ≥ 2

1+ρ
τ . Then for all x ∈ RN and y ∈ Rm, any minimizer

xλ of

min
z∈RN

∥Az − y∥2 + λ∥z∥1

obeys

∥xλ − x∥1 ≤ 2
1 + ρ

1− ρ
σs(x)1 +

(
2

1− ρ
τ +

1 + ρ

1− ρ
λ

)
∥y − Ax∥2. (4.7)

Also, if λ ≥ 3+ρ
(1+ρ)2

τ
√
S, any minimizer xλ of the sqrt-LASSO

∥xλ − x∥2 ≤ 2
(1 + ρ)2

1− ρ

√
Sσs(x)1 +

(
3 + ρ

1− ρ
τ +

(1 + ρ)2

1− ρ

√
Sλ

)
∥y − Ax∥2. (4.8)

Another remarkable property of the sqrt-LASSO is that it is equivalent to a robust re-

gression problem, usually formulated as the following min-max problem,

min
x∈Rm

{
max
∆A∈U

∥b− (A+∆A)x∥2
}
, (4.9)
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where U denotes the so-called uncertainty set representing all possible perturbations of

the measurement matrix A. One typical class of uncertainty sets is given by

U =:
{
(δ1, · · · , δm)

∣∣∣∥δi∥2 ≤ ci, i = 1, · · · ,m
}
, (4.10)

for given ci ≥ 0.

Theorem 4.1.6. [XCM10, Theorem 1] The robust regression problem (4.9) with uncer-

tainty set of the form (4.10) is equivalent to the following sqrt-LASSO regression problem:

min
x∈Rm

{
∥b− Ax∥2 +

m∑
i=1

ci|xi|
}
. (4.11)

Although the sqrt-LASSO exhibits comparable theoretical characteristics to the origi-

nal LASSO without requiring tuning efforts and many interesting theoretical properties,

as illustrated above, its computational aspect poses greater challenges due to the non-

differentiability of the data fidelity term. The original paper demonstrated that the sqrt-

LASSO can be reformulated as a second-order conic program [BCW11, Section 4], allow-

ing for the utilization of second-order conic solvers like MOSEK [ApS22]. However, these

solvers do not make use of the intrinsic problem structure and are not scalable [SCGS16],

necessitating the development of specialized solvers tailored to noise-blind sparse recov-

ery problems in high-dimensional settings. While several algorithms have been proposed

- see Section 4.3 - essentially all lack rigorous analysis or scalability. Despite significant

progress in understanding the theoretical aspects of this estimator and recognizing its

vast potential in applications where noise estimation is a challenging task, such as mag-

netic resonance imaging [VS16], there still remains a critical question regarding the design

of an efficient computational method for minimizing this function. Therefore, the main

question to be solved in this chapter is

What approaches can be utilized to devise a scalable algorithm for the sqrt-LASSO,

ensuring provable global convergence with a linear rate?

Contribution of this chapter:

The goal of this chapter is to affirmatively answer this question by leveraging the tech-

niques from Chapter 2 and by establishing an Iteratively Reweighted Least Squares

method for the sqrt-LASSO problem that has a global convergence rate. Unlike the

previous chapters, we discuss a general convergence theory of the algorithm even in sce-

narios where structural assumptions for sparse recovery, such as the null space property

of the incoherence property, are not made.
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4.2 Minimizing the sqrt-LASSO via IRLS

The objective function in (4.5) is convex, but both of its terms are non-smooth, and

an efficient way to minimize it is to design a majorization-minimization strategy, i.e., to

introduce a smoothed objective fε(x) that mitigates the non-smoothness of the ∥·∥1-norm
as well as the non-smoothness of the ∥·∥2-norm but that, at the same time, majorizes the

sqrt-LASSP objective function to be minimized. After that, we establish quadratic upper

bounds for fε(x) that can be optimized efficiently by employing least square ideas.

Note that the objective function (4.5) is non-smooth at the points where either the data

fidelity term or the ℓ1-norm vanishes. Thus, smoothing the objective around these points

will be sufficient. By following the steps from Chapter 2 we use a scaled Huber loss

function, Equation (2.4), on both terms of our objective function. Our new objective

function will be then given by

fε(x) = jε0(∥Ax− b∥2) +
N∑
i=1

jε(xi), (4.12)

with some smoothing parameters ε0, ε > 0 that consider how far the proxy is from the

original function. Clearly, fε and f0 coincide if ε0 = ε = 0. Furthermore, the distance in

the function values between smooth and non-smooth objectives can be quantified.

Lemma 4.2.1. Let ε0, ε > 0. Then, we have

f0(x) ≤ fε(x) ≤ f0(x) + ε0 + λNε and fε1(x) ≤ fε2(x), 0 ≤ ε1 ≤ ε2.

To tackle the objective function above, we perform a change of variables

Ax− b =
[
−b A

] [1
x

]
= Ãx̃.

The embedding ṽ := (1, vT )T for vectors v ∈ RN will be used throughout this chapter

with the added dimension indexed by zero, i.e., ṽ0 = 1. With this change of variables,

our objective function becomes

fε(x) = jε(∥Ax− b∥2) +
N∑
i=1

jε(xi) = jε(∥Ãx̃∥2) +
N∑
i=1

jε(xi) =: f̃ε(x̃)

and the unconstrained optimization of the proposed smoothed objective becomes

min fε(x) = min
x̃∈RN+1, x̃0=1

f̃ε(x̃). (4.13)
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The main idea of the IRLS strategy developed in this paper is to solve Equation (4.13)

by defining a sequence of iterates xk, k ≥ 0, which performs the following steps. As

previously discussed, a quadratic majorant of the form

Qε(z̃, x̃) : = f̃ε(x̃) + ⟨∇f̃ε(x̃), z̃ − x̃⟩+ 1

2
⟨z̃ − x̃,Wε(x̃)(z̃ − x̃)⟩

= f̃ε(x̃) +
1

2
⟨z̃,Wε(x̃)z̃⟩ −

1

2
⟨x̃,Wε(x̃)x̃⟩,

(4.14)

is constructed with the symmetric and positive semidefinite matrix Wε given by

Wε(x) =
ÃT Ã

max{∥Ãx̃∥2, ε0}
+ λ

[
0 0

0 diag({max−1{|xi|, ε}}i=1,...,N)

]
. (4.15)

This choice of Wε(x) ensures that Qε(z̃, x̃) is a majorizer, as the following lemma shows.

Moreover, as explained in Section 2.2, the weight matrix is constructed in a way that

captures the information given by the first-order derivative. By doing so, we are able

to derive a “pure” quadratic problem, i.e., without first-order terms, to be minimized at

each iteration.

Lemma 4.2.2. The function Equation (4.14) with Wε as in (4.15) admits

i. Wε(x)x̃ = ∇f̃ε(x̃), ii. Qε(x̃, x̃) = f̃ε(x̃), iii. Qε(z̃, x̃) ≥ f̃ε(z̃).

Proof. The first derivative of the smoothed objective function is given by

∇f̃ε(x̃) =
ÃT Ãx̃

max{∥Ãx̃∥2, ε0}
+ λ

N∑
j=1

xjej
max{|xj|, ε}

, (4.16)

with {ei}i=0,...,N being the standard basis vectors in R1+N . In view of the first condition,

it is natural to define Wε(x) as in (4.15).

The second condition follows directly from Equation (4.14). To show that Qε(z̃, x̃) ma-

jorizes fε(z̃) for all z ∈ RN , we first rewrite Equation (4.14) as

Qε(z̃, x̃) := f̃ε(x̃) + ⟨∇f̃ε(x̃), z̃⟩ − ⟨∇f̃ε(x̃), x̃⟩+
1

2
⟨z̃,Wε(x̃)z̃⟩+

1

2
⟨x̃,Wε(x̃)x̃⟩ − ⟨z̃,Wε(x̃)x̃⟩

= f̃ε(x̃) +
1

2
⟨z̃,Wε(x̃)z̃⟩ −

1

2
⟨∇f̃ε(x̃), x̃⟩, (4.17)

where we used the second condition. Thus, to establish the majorization property iii., we
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need to prove the inequality

0 ≤ Qε(z̃, x̃)− f̃ε(z̃) = f̃ε(x̃)− f̃ε(z̃)−
1

2
⟨∇f̃ε(x̃), x̃⟩+

1

2
⟨z̃,Wε(x̃)z̃⟩

= jε(∥Ãx̃∥2)− jε(∥Ãz̃∥2)−
∥Ãx̃∥22 − ∥Ãz̃∥22
2max{∥Ãx̃∥2, ε0}

+ λ
N∑
i=1

[
jε(xi)− jε(zi)−

|xi|2 − |zi|2

2max{|xi|, ε}

]
.

As all summands have a similar structure, we can prove that for M ∈ Rp×q, γ > 0 and

for all v, u ∈ Rq, it holds that

jγ(∥Mv∥2)− jγ(∥Mu∥2)−
∥Mv∥22 − ∥Mu∥22
2max{∥Mv∥2, γ}

≥ 0. (4.18)

Then, note that the theorem will be established by applying Equation (4.18), first with

M = Ã and γ = ε0 and finally with M = Ei,i, i = 1, . . . , N and γ = ε, where Ei,i is a

matrix with a single non-zero element Ei,i
i,i = 1.

To prove Equation (4.18), we start by noting that the left-hand side may take four different

values depending on ∥Mv∥2, ∥Mu∥2 and γ. Let us consider each of them separately.

Case 1: ∥Mv∥2 < γ, ∥Mu∥2 < γ. Then, the left-hand side is given by

∥Mv∥22
2γ

+
γ

2
− ∥Mu∥22

2γ
− γ

2
− ∥Mv∥22 − ∥Mu∥22

2γ
= 0.

Case 2: ∥Mv∥2 < γ, ∥Mu∥2 ≥ γ. Using the arithmetic-geometric mean inequality, we get

∥Mv∥22
2γ

+
γ

2
− ∥Mu∥2 −

∥Mv∥22 − ∥Mu∥22
2γ

=
∥Mu∥22
2γ

+
γ

2
− ∥Mu∥2 ≥ 0.

Case 3: ∥Mv∥2 ≥ γ, ∥Mu∥2 ≥ γ. Likewise, as in the previous case,

∥Mv∥2 − ∥Mu∥2 −
∥Mv∥22 − ∥Mu∥22

2∥Mv∥2
=

∥Mv∥2
2

+
∥Mu∥22
2∥Mv∥2

− ∥Mu∥2 ≥ 0.

Case 4: ∥Mv∥2 ≥ γ, ∥Mu∥2 < γ. We have

∥Mv∥2 −
∥Mu∥22
2γ

− γ

2
− ∥Mv∥22 − ∥Mu∥22

2∥Mv∥2
=

1

2

[
∥Mv∥2 − γ + ∥Mu∥22

[
1

∥Mv∥2
− 1

γ

]]
.

Since ∥Mv∥2 ≥ γ, the second term is negative, and we can further decrease it by applying
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∥Mu∥2 < γ, which gives

∥Mv∥2 −
∥Mu∥22
2γ

− γ

2
− ∥Mv∥22 − ∥Mu∥22

2∥Mv∥2
≥ 1

2

[
∥Mv∥2 − γ + γ2

[
1

∥Mv∥2
− 1

γ

]]
=

1

2

[
∥Mv∥2 +

γ

∥Mv∥2
− 2γ

]
≥ 0,

where the last inequality is the arithmetic-geometric mean inequality again.

The change of variables introduced above is motivated by a more natural construction of

the weight matrix. Note that if instead of f̃ε, we try to work with fε directly, its derivative

∇fε(x) =
AT (Ax− b)

max{∥Ax− b∥2, ε0}
+ λ

N∑
j=1

xjej
max{|xj|, ε}

would be affine in x and not linear, making the construction of Wε more involved. With

this transformation in mind, given a previous iterate xk of the algorithm, we obtain xk+1

by solving

x̃k+1 := argmin
z̃∈RN+1, z̃0=1

Qε(z̃, x̃
k). (4.19)

Despite (4.19) being a constrained optimization, it can be seen as a classical least squares

problem, as the following lemma shows

Lemma 4.2.3. The iterate xk+1 defined in (4.19) is the minimizer of the unconstrained

least squares problem

min
z∈RN

∥Az − b∥22
max{∥Axk − b∥2, ε0}

+ λ

N∑
j=1

|zj|2

max{|xk
j |, ε}

.

Proof. In view of (4.17), the minimizer of Qε(z̃, x̃
k) is also the minimizer of

1

2
⟨z̃,Wε(x̃)z̃⟩ =

∥Ãz̃∥22
max{∥Ãx̃k∥2, ε0}

+ λ

N∑
j=1

|z̃j|2

max{|x̃k
j |, ε}

=
∥Az − z̃0b∥22

max{∥Axk − x̃k
0b∥2, ε0}

+ λ

N∑
j=1

|zj|2

max{|xk
j |, ε}

.

Reversing the change of variables from z̃ to z with the equalities z̃0 = x̃k
0 = 1 gives the
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desired unconstrained least squares problem,

argmin
z̃∈RN+1, z̃0=1

Qε(z̃, x̃
k) = argmin

z̃∈RN+1, z̃0=1

∥Az − z̃0b∥22
max{∥Axk − x̃k

0b∥2, ε0}
+ λ

N∑
j=1

|zj|2

max{|xk
j |, ε}

= argmin
z∈RN

∥Az − b∥22
max{∥Axk − b∥2, ε0}

+ λ

N∑
j=1

|zj|2

max{|xk
j |, ε}

.

Hence, to determine the new iterate xk+1, we solve a weighted least squares problem,

where the weights max{∥Axk − b∥2, ε0} and max{|xk
j |, ε}, j = 1, . . . , N , are updated

after each iteration according to a certain decaying rule. By Lemma 4.2.2, for a fixed

regularization parameter ε, the new iterate satisfies

0 ≤ fε(x
k+1) = f̃ε(x̃

k+1) ≤ Qε(x̃
k+1, x̃k) ≤ Qε(x̃

k, x̃k) = f̃ε(x̃
k) = fε(x

k)

and, thus, the sequence {fε(xk)}k≥0 converges. However, as discussed previously in Chap-

ter 2, the key idea is to gradually decrease ε at each iteration to obtain the minimizer of

the underlying nonsmooth function (4.24), which constitutes Algorithm 4.

Algorithm 4 Quadratic minimization for Sqrt-LASSO

Input: Measurement matrix A ∈ Rm×N , data vector y ∈ Rm,
initial weight vector w0 ∈ RN (default: w0 = (1, 1, . . . , 1)).
Set ε0 = ∞.
for k = 0, 1, 2, . . . do

xk+1 := argmin
z∈RN

∥Az − b∥22
max{∥Axk − b∥2, εk,0}

+ λ

N∑
j=1

|zj|2

max{|xk
j |, εk}

. (4.20)

Update εk+1, εk+1,0 such that 0 < εk+1 ≤ εk and 0 < εk+1,0 ≤ εk,0 (4.21)

end for
return Sequence (xk)k≥1.

Note that due to Lemma 4.2.1, our convergence argument above is still applicable, namely,

0 ≤ fεk+1
(xk+1) ≤ fεk(x

k+1) ≤ fεk(x
k). (4.22)

While this guarantees that Algorithm 4 eventually stops, from this qualitative argument,

it is neither possible to infer the properties of the limit point nor quantify the convergence

speed. Thus, a more involved analysis is needed. In this chapter, we establish three types
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of results: convergence speed of IRLS with fixed regularization parameter εk = ε, their

counterparts for decaying εk, namely, a O(1/k) rate, and global linear convergence under

the assumption that A satisfies robust nullspace property. This property is a crucial

assumption when dealing with sparse recovery. Moreover, as discussed in Chapter 2, the

NSP is a necessary and sufficient condition for sparse recovery via Basis Pursuit [FR13,

Chapter 4]. See also [PJ21, Section 3.3] for an extensive discussion.

4.3 Related works

Before the proposal of the sqrt-LASSO (4.5), there were other attempts to define a scale-

invariant and pivotal estimator with respect to the noise level. For example, the work

[SBvdG10b] proposed an estimator that is scaling invariant and simultaneously estimates

the noise level to the sparse vector. However, this estimator still relies on tuning the

regularization parameter. This work suggested performing the parameter tuning via a

cross-validation procedure or a via Bayesian information criteria (BIC), which is usually

not scalable [SBvdG10b, Section 3.4]. This estimator was later called Scaled LASSO, and

it was claimed that it could be efficiently minimized using coordinate descent [SBvdG10a].

However, no further optimization discussion was provided. The short note [Ant10] pro-

posed to address the concomitant scale invariance and the noise estimation problems

with a slightly different estimator inspired by some classical robust regression techniques

[Hub81, Chapter 7]. In particular, this note proposed to solve, instead of the LASSO,

(x̂λ, σ̂λ) ∈ argmin
x∈RN ,σ>0

1

2mσ
∥y − Ax∥22 +

σ

2
+ λ∥x∥1 (4.23)

Specifically, [Ant10] raised the question of whether using the estimator (4.23) instead of

the original Scaled LASSO proposed by [SBvdG10b] could potentially result in a more

efficient optimization algorithm. In his own words “Do the authors think that such a

parametrization could lead to a more efficient optimization algorithm?”

Subsequently, the paper [SZ12] referred to the estimator proposed by [Ant10], Equa-

tion (4.23), as the Scaled LASSO, which led to some confusion in the literature as high-

lighted in [vdG16, Section 3.1]. This estimator, which jointly estimates the noise and

sparse vector, was also implicitly mentioned in [Owe07]3. It is worth noting that some

subsequent works have referred to it as the Concomitant LASSO [NFG+17] or as SPICE

(SParse Iterative Covariance-based Estimation) in the signal processing literature [BS14].

Moreover, since its introduction, the sqrt-LASSO estimator has been extended to en-

3Indeed, [Owe07] exhibited the Sqrt-LASSO as a member of a more general family of penalized esti-
mators defined. See equations (8) and (9) in [Owe07].
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compass various notions of parsimony beyond its initial formulation. For instance, it has

been adapted to address group sparsity [BLS14] and matrix completion [Klo14], and more

broadly, to accommodate any regularization defined by a norm that fulfills the weak de-

composability condition [SvdG17]. It was also studied from the distributionally robust

optimization point of view [BKM19], and results about the out-of-sample prediction error

are also available [ORVW22].

From the computational point of view, the initial approach presented in [BCW11] em-

ployed interior-point and first-order methods for conic programs. Specifically, they utilized

the SDT3 implementation of an interior-point method [TTT12] and the TFOCS imple-

mentation of first-order methods [BCG11] to minimize Equation (4.5). Subsequently, an

ADMM-based solver was implemented in [LZYL15]. Since the minimization sub-steps

of ADMM are very costly, a Primal-Dual Hybrid Gradient was developed with simpler

sub-steps [?]. The equivalent Scaled LASSO was addressed using a combination of gradi-

ent descent and alternating minimization [SZ12], and a coordinate descent strategy was

proposed for a smoothed version of the Scaled LASSO, coupled with a pathwise optimiza-

tion for the tuning parameter to enhance convergence empirically [NFG+17]. The work

[?] introduced an overparametrized variational formulation to solve this type of objective

function, but they did not manage to obtain a convergence rate for their method. Proximal

gradient descent and proximal Newton methods were introduced by [LJH+20] to handle

the square-root LASSO objective function, establishing local linear and local quadratic

convergence guarantees, respectively. Additionally, both [NFG+17] and [LJH+20] im-

proved convergence performance through the inclusion of a pathwise optimization strat-

egy. More recently, [TWST20] presented a proximal majorization-minimization method

for the square-root LASSO. The majority of the papers mentioned above lack theoretical

guarantees for their algorithms, except for [TWST20], which demonstrated the conver-

gence of their method to a d-stationary point (cf. [CP21, Chapter 6]), [LJH+20], which

established a local convergence theory but required the assumption of a locally restricted

strongly smooth condition for its validity, and [?], which developed a primal-dual method

with a O(1/k) convergence rate.

In this chapter, we will establish a global convergence rate of IRLS applied to the sqrt-

LASSO under minimal assumptions, namely, the robust null space property. However,

before that, we start by discussing the convergence theory in the case of a fixed smoothing

parameter ε and without any assumption on the measurement matrix A.
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4.4 Global convergence with fixed smoothing

We start our convergence analysis by showing a sublinear convergence rate in the case we

have a fixed regularization parameter ε, i.e., we do not update ε as in Equation (4.21),

but it is rather chosen as a very small positive number. This analysis does not need any

structural assumption from the measurement matrix A and can be established only with

tools from convex analysis. In our analysis, we will denote the sqrt-LASSO objective

function by

∥Ax− b∥2 + λ∥x∥1 =: f0(x). (4.24)

Moreover, we will denote the minimizer of the regularized function fε by x∗
ε. The first step

is to quantify the decay in the function value for a single iteration. This idea is inspired

by the analysis performed for basis pursuit in Chapter 2.

Lemma 4.4.1 (General function value decay rate). Fix ε, ε0 > 0 and let x ∈ RN . If the

iterate xk of IRLS, defined by (2.9), satisfies ⟨∇f̃ε(x̃
k), x̃− x̃k⟩ ≤ 0 and x ̸= xk, then we

have

fε(x
k+1)− fε(x

k) ≤ Qε(x̃
k+1, x̃k)− fε(x

k) ≤ − |⟨∇f̃ε(x̃
k), x̃− x̃k⟩|2

2⟨Wε(xk)(x̃− x̃k), x̃− x̃k⟩
.

Proof. By construction, fε(x
k+1) = Qε(x̃

k+1, x̃k) ≤ Qε(z̃, x̃
k+1) for any z̃ ∈ R1+N such that

z̃0 = 1. Consider vk = x̃− x̃k and let us evaluate the difference Qε(x̃
k + tvk, x̃k)− f̃ε(x̃

k)

for some t > 0. The idea is that for a properly chosen t > 0, the difference Qε(x̃
k +

tvk, x̃k) − f̃ε(x̃
k) will be negative, which will imply that f̃ε(x̃

k+1) < f̃ε(x̃
k). Expanding

Qε(x̃
k + tvk, x̃k) yields

Qε(x̃
k + tvk, x̃k)− f̃ε(x̃

k) = t⟨∇f̃ε(x̃
k), vk⟩+ t2

2
⟨Wε(x

k)vk, vk⟩ = bt+ at2. (4.25)

This is a quadratic polynomial with a positive leading coefficient. Indeed,

a =
1

2
⟨Wε(x

k)vk, vk⟩ = 1

2

∥Ãvk∥22
max{∥Ãx̃k∥2, ε0}

+
λ

2

N∑
j=1

|vkj |2

max{|x̃k
j |, ε}

≥ 0.

The equality is possible if and only if all summands are equal to zero. This means that

vk = 0, i.e., x = xk which contradicts our assumption.

Hence, the quadratic polynomial Qε(x̃
k + tvk, x̃k) − f̃ε(x

k) attains its minimum at t =
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−b/2a. Therefore, we have that,

fε(x
k+1)− fε(x

k) ≤ Qε(x̃
k+1, x̃k)− fε(x

k) ≤ min
z s.t. z0=1

Qε(z̃, x̃
k)− fε(x

k)

≤ Qε(x̃
k + tvk, x̃k)− fε(x

k) ≤ − b2

4a
= −|⟨∇f̃ε(x

k), vk⟩|2

2⟨Wε(xk)vk, vk⟩
.

Remark 4.4.2. The essence of Section 4.4 shares similarities with the sufficient decrease

lemma [Bec17, Lemma 10.4], which is commonly employed to establish convergence prop-

erties of the proximal gradient descent method. However, an important distinction arises

in the approach taken by the author. In the case of Section 4.4, the author introduces

the gradient mapping GL as a generalization of the traditional gradient concept. This

definition enables the establishment of convergence guarantees tailored specifically for the

proximal gradient descent algorithm.

With the help of Lemma 4.4.1, we can establish the first result regarding the sublin-

ear convergence of IRLS. In particular, we will show that the sequence {xk} converges

sublinearly to the minimizer of the regularized problem, here denoted by x∗
ε.

Theorem 4.4.3 (Sublinear convergence to the minimizer of the regularized problem).

Let ε, ε0 > 0. Let x∗
ε be the minimizer of fε. Whenever k ≥ 2, for the iterates xk of IRLS

the inequality

fε(x
k)−fε(x

∗
ε) ≤ max

{(
1

2

)(k−1)/2

(fε(x
0)− fε(x

∗
ε)),

8(ε−1
0 ∥A∥2 + λε−1)(fε(x

0) + f0(x
∗
ε))

2

λ2(k − 1)

}

holds.

Proof. We apply Lemma 4.4.1 with x = x∗
ε. Let v

k = x̃∗
ε − x̃k. Note that convexity of f̃ε

gives

fε(x
∗
ε) = f̃ε(x̃

∗
ε) ≥ f̃ε(x̃

k) + ⟨∇f̃ε(x̃
k), vk⟩ = fε(x

k) + ⟨∇f̃ε(x̃
k), vk⟩,

or, equivalently,

⟨∇f̃ε(x̃
k), vk⟩ ≤ fε(x

∗
ε)− fε(x

k) ≤ 0 and |⟨∇f̃ε(x̃
k), vk⟩| ≥ fε(x

k)− fε(x
∗
ε). (4.26)

Hence, Lemma 4.4.1 yields

fε(x
k+1)− fε(x

k) ≤ −|⟨∇f̃ε(x̃
k), vk⟩|2

2⟨Wε(xk)vk, vk⟩
≤ −(fε(x

k)− fε(x
∗
ε))

2

2⟨Wε(xk)vk, vk⟩
. (4.27)
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Let us show that the denominator is bounded from above. By construction we have

⟨W (xk)vk, vk⟩ = ∥Ãvk∥22
max{∥Ãx̃k∥2, ε0}

+ λ
N∑
j=1

|vkj |2

max{|x̃k
j |2, ε}

≤ ∥A(x∗
ε − xk)∥22
ε0

+
λ

ε

N∑
j=1

|(x∗
ε − xk)j|2 ≤ (ε−1

0 ∥A∥2 + λε−1)∥x∗
ε − xk∥22.

Consequently, we only need to bound ∥x∗
ε − xk∥2. This can be done by contradiction.

Assume that ∥x∗
ε − xk∥2 > λ−1(f0(x

k) + f0(x
∗
ε)). Then, by the reverse triangle inequality,

we have

f0(x
k) = ∥Axk − b∥2 + λ∥xk∥1

≥ ∥A(x∗
ε − xk)∥2 − ∥Ax∗

ε + b∥2 + λ∥x∗
ε − xk∥1 − λ∥x∗

ε∥1.

The first term is nonnegative. The second and the fourth terms together are equal to

−f0(x
∗
ε). The third term can be bounded from below by λ∥x∗

ε − xk∥2 by monotonicity of

the ℓp-norms. Hence, using the assumption ∥x∗
ε − xk∥2 > λ−1(f0(x

k) + f0(x
∗
ε)), we get

f0(x
k) ≥ 0 + λ∥x∗

ε − xk∥2 − f0(x
∗
ε) > λλ−1(f0(x

k) + f0(x
∗
ε))− f0(x

∗
ε) = f0(x

k),

which is a contradiction. Therefore,

∥x∗
ε − xk∥2 ≤ λ−1(f0(x

k) + f0(x
∗
ε)) ≤ λ−1(fε(x

k) + f0(x
∗
ε)) ≤ λ−1(fε(x

0) + f0(x
∗
ε)),

where we used that fε(x
k) ≥ fε(x

k+1) ≥ f0(x
k+1) for all k ≥ 0. Now, we substitute the

obtained bound in (4.27), which leads to

[fε(x
k+1)− fε(x

∗
ε)]− [fε(x

k)− fε(x
∗
ε)] ≤ − λ2(fε(x

k)− fε(x
∗
ε))

2

2(ε−1
0 ∥A∥2 + λε−1)(fε(x0) + f0(x∗

ε))
2

≤ − λ2(fε(x
k+1)− fε(x

∗
ε))

2

2(ε−1
0 ∥A∥2 + λε−1)(fε(x0) + f0(x∗

ε))
2

(4.28)

The result of the theorem follows by applying [Bec15b, Lemma 3.8] for the sequence

{fε(xk)− fε(x
∗)}k≥0.

Remark 4.4.4. Theorem 4.4.3 is similar in its nature to [Bec15b, Theorem 4.2]. The

difference is that in [Bec15b, Theorem 4.2], the proof is given for the alternating minimiza-

tion strategy. This would correspond to the regularized Scaled LASSO objective function,

while here, we establish it directly for the regularized sqrt-LASSO formulation without an

alternating procedure.
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It is essential to highlight that the convergence rate presented in Theorem Theorem 4.4.3

can be divided into two distinct components. The first case demonstrates the potential

for achieving a linear convergence rate, while the second sublinear case becomes domi-

nant in the asymptotic regime. Additionally, it is worth noting that, in principle, it is

impossible to theoretically ascertain which of the two cases will apply. Thus, in our next

theorem, we derive an alternative result, which provides a guaranteed linear convergence

to a neighborhood of the solution x∗
ε.

Theorem 4.4.5 (Linear convergence to the neighborhood of the minimizer of the smoothed

problem). Let ε, ε0 > 0. Let x∗
ε be the minimizer of fε. If fε(x

k) − fε(x
∗
ε) ≥ γ for some

constant γ > 0, then

fε(x
k+1)− fε(x

∗
ε) ≤

(
fε(x

k)− fε(x
∗
ε)
) [

1− γ

2max{ 1
ε0
, 1
λε
}f 2

0 (x
∗
ε) + 4γ

]
.

Proof. We start by noting that it would be possible to obtain a linear decay rate by

substituting the assumption fε(x
k)− fε(x

∗
ε) ≥ γ into (4.28). However, such a rate would

depend on f0(x
0), which can potentially be large. Thus, we take a step back to (4.27)

and bound the denominator ⟨Wε(x
k)vk, vk⟩ with vk = x̃∗

ε − x̃k differently. More precisely,

we first decompose it into two parts and connect it with the first derivative ⟨∇f̃ε(x̃
k), vk⟩

by using that Wε(x)x̃ = ∇f̃ε(x̃) and that Wε(x) is a self-adjoint and positive semidefinite

matrix,

⟨Wε(x
k)vk, vk⟩ = ⟨Wε(x

k)vk, x̃∗
ε⟩ − ⟨Wε(x

k)vk, x̃k⟩

= ⟨Wε(x
k)(x̃∗

ε − x̃k), x̃∗
ε⟩ − ⟨∇f̃ε(x̃

k), vk⟩

= ⟨Wε(x
k)x̃∗

ε, x̃
∗
ε⟩ − ⟨Wε(x

k)x̃k, x̃∗
ε ± x̃k⟩ − ⟨∇f̃ε(x̃

k), vk⟩

= ⟨Wε(x
k)x̃∗

ε, x̃
∗
ε⟩ − ⟨Wε(x

k)x̃k, x̃k⟩ − 2⟨∇f̃ε(x̃
k
ε), v

k⟩

≤ ⟨Wε(x
k)x̃∗

ε, x̃
∗
ε⟩+ 2|⟨∇f̃ε(x̃

k), vk⟩|.

(4.29)
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Next, the term ⟨Wε(x
k)x̃∗

ε, x̃
∗
ε⟩ is bounded from above as

⟨Wε(x
k)x̃∗

ε, x̃
∗
ε⟩ =

∥Ãx̃∗
ε∥22

max{∥Ãx̃k∥2, ε0}
+ λ

N∑
j=1

|(x∗
ε)j|2

max{|xk
j |, ε}

≤ ∥Ãx̃∗
ε∥22

ε0
+

λ2

λ

N∑
j=1

|(x∗
ε)j|2

ε

≤ max

{
1

ε0
,
1

λε

}[
∥Ax∗

ε − b∥22 + λ2

N∑
j=1

|(x∗
ε)j|2

]

≤ max

{
1

ε0
,
1

λε

}[
∥Ax∗

ε − b∥2 + λ
N∑
j=1

|(x∗
ε)j|

]2
= max

{
1

ε0
,
1

λε

}
f 2
0 (x

∗
ε)

(4.30)

Now, turning to the nominator in Equation (4.27), the bound in (4.26) gives

|⟨∇f̃ε(x̃
k), vk⟩|2 ≥ |⟨∇f̃ε(x̃

k), vk⟩|[fε(xk)− f0(x
∗
ε)]. (4.31)

By plugging Equation (4.29), Equation (4.30) and Equation (4.31) into Equation (4.27),

we obtain

fε(x
k+1)− fε(x

∗
ε) ≤

[
fε(x

k)− fε(x
∗
ε)
] [

1− |⟨∇f̃ε(x̃
k), vk⟩|

2max{ 1
ε0
, 1
λε
}f 2

0 (x
∗
ε) + 4|⟨∇f̃ε(x̃k), vk⟩|

]
,

The second term of the right-hand side has the form 1 − t
a+4t

= 3
4
+ a

4a+16t
, where t =

|⟨∇f̃ε(x̃
k), vk⟩| ≥ γ. The function a

4a+16t
is decreasing and, thus, attains its maximum at

t = γ. This gives

fε(x
k+1)− fε(x

∗) ≤
[
fε(x

k+1)− fε(x
∗)
] [

1− γ

2max{ 1
ε0
, 1
λε
}f 2

0 (x
∗) + 4γ

]
, (4.32)

Consequently, by Theorem 4.4.5, IRLS converges with a linear rate to an arbitrary neigh-

borhood of the solution of the smoothed problem at a rate determined by the neighbor-

hood’s diameter. Once the neighborhood is reached, i.e., once fε(x
k) − fε(x

∗
ε) < γ, only

a sublinear convergence can be guaranteed by Theorem 4.4.3.

The preceding analysis assumed a fixed regularization parameter and derived convergence

results towards the solution x∗
ε of the regularized problem. However, the true potential of
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IRLS-type algorithms lies in constructing a sequence of objective functions with a varying

regularization parameter εk, allowing the algorithm to converge towards the solution of the

original non-smooth function, as demonstrated in Chapter 2. In the subsequent section,

we will establish the possibility of obtaining convergence rate results where the sequence

xk
ε converges to the minimizer of the original sqrt-LASSO problem (4.5), here denoted by

x∗
0.

4.5 Global Convergence with decaying εk

Now, we turn to the analysis of Algorithm 4 with decaying εk. Since εk, εk,0 → 0 as

k → ∞, Algorithm 4 is expected to converge to the solution of (4.5). Just as for constant

εk, we would like to quantify the convergence of fεk(x
k) to f0(x

∗
0). In contrast to the

previous theorem, this situation necessitates a more intricate analysis as the condition

⟨∇f̃εk(x̃
k), x̃∗

0 − x̃k⟩ ≤ 0 used in Lemma 4.4.1 may no longer hold. Consequently, an

alternative to Theorem 4.4.3 is required.

Theorem 4.5.1 (Sublinear convergence of iterates). Let {εk}k≥0 and {εk,0}k≥0 be two

non-increasing sequences. Then, the iterates xk generated by Algorithm 4 satisfy

lim
k→∞

∥xk+1−xk∥2 = 0 and min
k=0,...,K−1

∥xk+1−xk∥22 ≤
2max{λε0, fε0(x0)}

λ2K
[fε0(x

0)−f0(x
∗
0)].

Proof. We start by quantifying the difference between fεk+1
(xk+1) and fεk(x

k), i.e., by

proving that

fεk+1
(xk+1)− fεk(x

k) ≤ Qεk(x̃
k+1, x̃k)− fεk(x

k) = −1
2
⟨Wεk(x

k)(x̃k+1 − x̃k), x̃k+1 − x̃k⟩.

The first inequality is trivial if xk+1 = xk. Otherwise, we apply Lemma 4.4.1 with x =

xK+1 instead of x = x∗
0 as it was done in the previous proofs. Note that by the convexity

of f̃εk and definition of xk+1, the assumption of Lemma 4.4.1 is satisfied,

⟨∇f̃εk(x̃
k), xk+1 − xk⟩ ≤ fεk(x

k+1)− fεk(x
k) ≤ 0. (4.33)

Thus, we get

Qεk(x̃
k+1, x̃k)− fεk(x

k) ≤ − |⟨∇f̃εk(x̃
k), x̃k+1 − x̃k⟩|2

2⟨Wεk(x
k)(x̃k+1 − x̃k), x̃k+1 − x̃k⟩

.
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Substituting the definition of Qεk(x̃
k+1, x̃k) and combining it with (4.33) gives

−|⟨∇f̃εk(x̃
k), x̃k+1 − x̃k⟩|+ 1

2
⟨Wεk(x

k)(x̃k+1 − x̃k), x̃k+1 − x̃k⟩

≤ − |⟨∇f̃εk(x̃
k), x̃k+1 − x̃k⟩|2

2⟨Wεk(x
k)(x̃k+1 − x̃k), x̃k+1 − x̃k⟩

.

Let us denote

a := |⟨∇f̃εk(x̃
k), x̃k+1 − x̃k⟩| ≥ 0 and b := ⟨Wεk(x

k)(x̃k+1 − x̃k), x̃k+1 − x̃k⟩ > 0.

Then, the inequality above is equivalent to −2ab+b2 ≤ −a2 and (a−b)2 ≤ 0, which is only

possible if a = b. Another way of seeing that this holds is to look at the KKT conditions

of the problem minz∈RN+1, z0=1Qεk(z̃, x̃
k). In fact, it holds that ⟨Wεk(x

k)(x̃k+1− x̃k), v⟩ =
−⟨∇f̃εk(x̃

k), v⟩ for all v ∈ RN+1 such that v0 = 0. Substituting the obtained equality into

Qεk(x̃
k+1.x̃k) gives

Qεk(x̃
k+1, x̃k) = f̃εk(x̃

k)− a+ b
2
= f̃εk(x̃

k)− 1
2
⟨Wεk(x

k)(x̃k+1 − x̃k), x̃k+1 − x̃k⟩.

Together with the majorization property from Lemma 4.2.2, it yields the inequality stated

at the beginning of the proof, namely,

f̃εk+1
(x̃k+1) ≤ f̃εk(x̃

k+1) ≤ Qεk(x̃
k+1, x̃k) = f̃εk(x̃

k)− 1
2
⟨Wεk(x

k)(x̃k+1 − x̃k), x̃k+1 − x̃k⟩.
(4.34)

Now, we bound the quadratic term from below in terms of the squared distance ∥xk+1 −
xk∥22. Using the definition of Wεk(x

k), we get

⟨Wεk(x
k)(x̃k+1 − x̃k), x̃k+1 − x̃k⟩ = ∥Ã(x̃k+1 − x̃k)∥22

max{∥Ãx̃k∥22, εk,0}
+ λ

N∑
j=1

|(x̃k+1 − x̃k)j|2

max{|x̃k
j |, εk}

≥ 0 + λ
N∑
j=1

|(xk+1 − xk)j|2

max{|xk
j |, εk}

≥ λ∥xk+1 − xk∥22
max{∥xk∥∞, εk}

.

Furthermore, by construction, we have εk ≤ ε0 and

λ∥xk∥∞ ≤ λ∥xk∥1 ≤ ∥Axk − b∥2 + λ∥xk∥1 = f0(x
k) ≤ fεk(x

k) ≤ fε0(x
0).

Consequently, the quadratic term satisfies

⟨Wεk(x
k)(x̃k+1 − x̃k), x̃k+1 − x̃k⟩ ≥ λ∥xk+1 − xk∥22

max{λ−1fε0(x
0), ε0}

=
λ2∥xk+1 − xk∥22

max{fε0(x0), λε0}
.
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Returning to Equation (4.34), we obtain

λ2∥xk+1 − xk∥22
2max{fε0(x0), λε0}

≤ f̃εk(x̃
k)− f̃εk+1

(x̃k+1) = fεk(x
k)− fεk+1

(xk+1)

Summing up for k = 0, . . . , K − 1, for some K ∈ N, leads to

K−1∑
k=0

λ2∥xk+1 − xk∥22
2max{fε0(x0), λε0}

≤
K−1∑
k=0

[fεk(x
k)− fεk+1

(xk+1)] = fε0(x
0)− fεk(x

K).

By taking λ2

2max{fε0 (x0),λε0} to the right-hand side, we observe that the partial sum of the

series is bounded from above by

K−1∑
k=0

∥xk+1−xk∥22 ≤
2max{fε0(x0), λε0}

λ2
[fε0(x

0)−fεk(x
K)] ≤ 2max{fε0(x0), λε0}

λ2
[fε0(x

0)−f0(x
∗
0)].

This bound is independent of K and, thus, the series
∑∞

k=0 ∥xk+1 − xk∥22 is convergent.

As a result its summands ∥xk+1 − xk∥22 converge to zero as k → ∞. Finally, we bound

the minimum of the first K summands by their mean,

min
k=0,...,K−1

∥xk+1 − xk∥22 ≤
1

K

K−1∑
k=0

∥xk+1 − xk∥22 ≤
2max{fε0(x0), λε0}

λ2K
[fε0(x

0)− f0(x
∗
0)].

Unlike previous results, Theorem 4.5.1 states convergence in terms of distance between

two consequence iterates instead of function values. Furthermore, it is, in principle, not

clear if fεk(x
k) converges to the optimal value f0(x

∗
0), which is the aim of the next part of

this subsection. First, we derive a linear convergence to the neighborhood of the minimizer

x∗
0, as it was analogously done to the case when εk is fixed.

Theorem 4.5.2 (Linear convergence to the neighborhood of the minimizer of the original

problem). Let εk, εk,0 > 0 and set x∗
0 as the minimizer of f0. If fεk(x

k) − f0(x
∗
0) ≥

γ(λNεk + εk,0) for some constant γ > 1, then

fεk(x
k+1)−f0(x

∗
0) ≤

(
fεk(x

k)− f0(x
∗
0)
) [

1− (γ − 1)2(λNεk + εk,0)

2γmax{ 1
εk,0

, 1
λεk

}f 2
0 (x

∗
0) + 4(γ − 1)2(λNεk + εk,0)

]
.

Proof. The proof follows a similar structure to that of Theorems 4.4.3 and 4.4.5 discussed

earlier. Specifically, we employ Lemma 4.4.1 and establish an upper bound for the de-

nominator, analogous to the approach utilized in Theorem 4.4.5. However, Lemma 4.4.1
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relies on (4.26), which is no longer true for x∗
0. Consequently, we derive an alternative

bound to address this issue. Similarly to the previous case, the convexity of f̃ε yields

fεk(x
∗
0) = f̃εk(x̃

∗
0) ≥ f̃εk(x̃

k) + ⟨∇f̃εk(x̃
k), x̃∗

0 − x̃k⟩ = fεk(x
k) + ⟨∇f̃εk(x̃

k), x̃∗
0 − x̃k⟩

Then, by Lemma 4.2.1 and the assumption fεk(x
k)− f0(x

∗
0) ≥ γ(λNεk + εk,0), we obtain

−⟨∇f̃εk(x̃
k), x̃∗

0 − x̃k⟩ ≥ fεk(x
k)− fεk(x

∗
0) ≥ fεk(x

k)− f0(x
∗
0)− (λNεk + εk,0) (4.35)

≥ (γ − 1)(λNεk + εk,0) ≥ 0,

and

−⟨∇f̃εk(x̃
k), x̃∗

0 − x̃k⟩ ≥ fεk(x
k)− f0(x

∗
0)− (λNεk + εk,0) ≥ (1− 1/γ)[fεk(x

k)− f0(x
∗
0)].

Using these bounds instead of (4.26) leads to the desired result.

4.6 Discussion on ε decay

An important element of Theorem 4.5.2 is the condition fεk(x
k) − f0(x

∗
0) ≥ γ(λNεk +

εk,0), which plays a crucial role in establishing convergence. While Theorem 4.4.5 and

Theorem 4.5.2 share similarities, the latter exhibits a convergence rate that approaches

one as εk and εk,0 tend to zero. However, depending on the rate at which the smoothing

parameters approach zero, the bound presented in Theorem 4.5.2 may not always yield

a meaningful convergence result. In this section, we establish a connection between the

decay of smoothing parameters and the convergence rate, providing further insights into

the analysis.

Lemma 4.6.1. Let K ≥ 1, γ > 1 and 0 < ν < 1. Assume that εk,0 = λεk and define

c := γλ(N + 1) and d :=
2γf 2

0 (x
∗
0)

λ2(γ − 1)2(N + 1)
(4.36)

Then, the iterate xK+1 of Algorithm 4 admits

fεK+1
(xK+1)− f0(x

∗
0) ≤ max

cε⌊Kν⌋, (fε0(x
0)− f0(x

∗
0))

K∏
k=⌊Kν⌋+1

[
1− 1

dε−2
k + 4

] ,

where ε⌊Kν⌋ denotes the regularization parameter εk at the iteration k = ⌊Kν⌋ for a

certain 0 < ν < 1.
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Proof. The proof differentiates between two possible cases depending on how many times

the inequality fεk(x
k)− f0(x

∗
0) < cεk is satisfied. Firstly, assume that it is satisfied for at

least ⌊Kν⌋ indices k and denote the largest one of them by k0, i.e., k0 ≥ ⌊Kν⌋. Then, by
the inequality (4.22), we have

fεK+1
(xK+1) ≤ fεk(x

K) ≤ . . . ≤ fεk0 (x
k0) ≤ fε⌊Kν⌋(x

⌊Kν⌋) < f0(x
∗
0) + cε⌊Kν⌋.

Now, let us assume that the opposite holds, i.e., that there are less than ⌊Kν⌋ indices k

for which fεk(x
k) − f0(x

∗
0) < cεk. In this case, this inequality implies that there are at

least K −⌊Kν⌋+1 indices k such that the opposite holds. Let us denote all these indices

by a set K. If k /∈ K, we can use the bound fεk+1
(xk+1)− f0(x

∗
0) ≤ fεk(x

k)− f0(x
∗
0) that

holds due to the monotonicity of ε. Otherwise, by Theorem 4.5.2, we have

fεk+1
(xk+1)− f0(x

∗
0) ≤ fεk(x

k)− f0(x
∗
0)

[
1− 1

dε−2
k + 4

]
.

Combining these two bounds together yields

fεk+1
(xK+1)− f0(x

∗
0) ≤ (fε0(x

0)− f0(x
∗
0))
∏
k∈K

[
1− 1

dε−2
k + 4

]

By construction, εk+1 ≤ εk. Thus, the product on the right-hand side is the largest, when

the set K is {⌊Kν⌋, . . . , K}, which gives

fεk+1
(xK+1)− f0(x

∗
0) ≤ (fε0(x

0)− f0(x
∗
0))

K∏
k=⌊Kν⌋

[
1− 1

dε−2
k + 4

]
.

We first note that assumption εk0 = λεk is only used to simplify the formulas. Lemma 4.6.1

highlights the impact of εk. If εk decays slowly, the product quickly becomes small and

the first term dominates. On the other hand, if εk decays fast, the product may converge

to a nonzero value. By [LTVB22, Theorem 2.2.2], the infinite product
∏

k≥0

[
1− 1

dε−2
k +4

]
diverges to zero 4 if and only if the series

∑
k≥0[dε

−2
k + 4]−1 diverges. The latter, in turn,

is equivalent to the divergence of the series
∑

k≥0 ε
2
k.

For instance, consider a sequence εk = ε0(1 + k)−θ with starting value ε0 > 0 and decay

parameter θ > 0. Consequently, if θ > 1/2, the product does not diverge to zero. Yet,

Lemma 4.6.1 only provides an upper bound for the rate and does not imply that f0(x
∗
0)

4We follow the standard denomination from the theory of infinite products that treats zero as a special
case since the product diverges to zero if and only if the series

∑∞
n=1 log(an) diverges to −∞.
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is not the limit of fεk(x
k). When θ ≤ 1/2, the product diverges to zero. However, even

if the product vanishes quickly, the right-hand side is proportional to εk, which decays

sublinearly. In general, we are able to establish the following sublinear convergence rate.

Theorem 4.6.2. Consider the sequence εk = ε0(1 + k)−θ with starting value ε0 > 0 and

decay parameter and 0 < θ ≤ 1/2. For K ≥ 1 and γ > 1, the sequence xk generated by

Algorithm 4 admits the following decay

fεK+1
(xK+1)− f0(x

∗
0) ≤ max

{
cε0, e

ε20/d(6 + 4d−1ε20)
ε20/d(fε0(x

0)− f0(x
∗
0))
}
K

− θε20
dθ+ε20 .

where constants c and d are defined in (4.36).

Proof. Let q = d−1ε20 and 0 < ν < 1, whose precise value of which will be determined

later. Then, an application of Lemma 4.6.1 gives

fεK+1
(xK+1)−f0(x

∗
0) ≤ max

cε0(⌊Kν⌋+ 1)−θ, (fε0(x
0)− f0(x

∗
0))

K∏
k=⌊Kν⌋

[
1− 1

q−1(k + 1)2θ + 4

] .

The first term is already of the desired form since

cε0(⌊Kν⌋+ 1)−θ ≤ cε0(K
ν − 1 + 1)−θ = cε0K

−νθ.

Hence, we look at the second term and estimate the product. Note that this product is

increasing in θ, and we can bound it by

K∏
k=⌊Kν⌋

[
1− 1

q−1(k + 1)2θ + 4

]
≤

K∏
k=⌊Kν⌋

[
1− 1

q−1(k + 1) + 4

]

=
K∏

k=⌊Kν⌋

[
1− q

k + 1 + 4q

]
≤

K∏
k=⌊Kν⌋

[
1− q

k + 1 + 4⌈q⌉

]
=

K+1+4⌈q⌉∏
k=⌊Kν⌋+1+4⌈q⌉

[
1− q

k

]
.

Let n = K + 4⌈q⌉, p = ⌊Kν⌋ + 4⌈q⌉, s = ⌊q⌋ and r = q − s. Then, the product can be

expressed in terms of gamma function Γ,

n+1∏
k=p+1

[
1− q

k

]
=

n+1∏
k=p+1

k − q

k
=

(n+ 1− q) · . . . · (p+ 1− q)

(n+ 1) · . . . · (p+ 1)
· Γ(p+ 1− q)

Γ(p+ 1− q)
· p!
p!

=
Γ(n+ 2− q) p!

(n+ 1)! Γ(p+ 1− q)
=

Γ(n− s+ 1 + 1− r) p!

(n+ 1)! Γ(p− s+ 1− r)
.
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Note that all factors here are strictly positive since

(n+ 1− q) ≥ . . . ≥ (p+ 1− q) = ⌊Kν⌋+ 4⌈q⌉+ 1− q ≥ ⌊Kν⌋+ 3⌈q⌉+ 1 ≥ 2 > 0.

The next step is to bound the Gamma functions using Gautschi’s double inequality

[Gau59, Qi10]. This leads to

Γ(j + 1)(j + 1)−(1−α) ≤ Γ(j + α) ≤ Γ(j + 1)j−(1−α), j ∈ N, 0 ≤ α ≤ 1.

Its application for j = n− s+ 1 and j = p− s with α = 1− r gives

Γ(n− s+ 1 + 1− r) p!

(n+ 1)! Γ(p− s+ 1− r)
≤ Γ(n− s+ 2) (n− s+ 1)−r p!

(n+ 1)!Γ(p− s+ 1) (p− s+ 1)−r

=
(n− s+ 1)! p! (p− s+ 1)r

(n+ 1)! (p− s)! (n− s+ 1)r
.

Recall the definition of the binomial coefficient
(
j
k

)
, it holds the bound jk

kk
≤
(
j
k

)
≤ ekjk

kk
.

In our case, this leads to

(n− s+ 1)! p! (p− s+ 1)r

(n+ 1)! (p− s)! (n− s+ 1)r
=

(
p
s

)
(p− s+ 1)r(

n+1
s

)
(n− s+ 1)r

≤ esps(p− s+ 1)r

(n+ 1)s(n− s+ 1)r
.

To simplify the resulting fraction, we note that es ≤ er+s, ps ≤ (p + 1)s, (p − s + 1)r ≤
(p+ 1)r and that

n+ 1 ≥ n+ 1− s = K + 4⌈q⌉+ 1− ⌊q⌋ ≥ K + 3q + 1 ≥ K.

Consequently, these estimates yield

esps(p− s+ 1)r

(n+ 1)s(n− s+ 1)r
≤ es+r(p+ 1)s+r

Ks+r
=

eq(p+ 1)q

Kq
=

eq(⌊Kν⌋+ 4⌈q⌉+ 1)q

Kq

≤ eq(2 + 4⌈q⌉)qKνqK−q ≤ eq(6 + 4q)qK−(1−ν)q.

Combining everything together, we arrive at

fεk+1
(xK+1)− f0(x

∗
0) ≤ max

{
cε0K

−νθ, eq(6 + 4q)q(fε0(x
0)− f0(x

∗
0))K

−(1−ν)q
}
.

The last step is to select ν such that the powers νθ and (1 − ν)q coincide. This gives

ν = q/(θ + q), which implies that 0 < ν < 1 and

K−(1−ν)q = K−νθ = K−θq/(θ+q).
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Substituting q = d−1ε20 concludes the proof.

Theorem 4.6.2 derives a sublinear convergence rate, which is slightly worse than K−θ the

decay rate of εk. As the power θε20/(dθ + ε20) is increasing as a function of ε0, K
−θq/(θ+q)

will converge asymptotically to K−θ as ε0 → +∞. However, in this case, the constant

eε
2
0/d(6 + 4d−1ε20)

ε20/d blows up at a much faster pace. In any case, it is important to

understand the rate given by the previous theorem. Indeed, the maximum of the exponent

−θq/(θ + q) is given by

max
q,θ

θq

θ + q
= max

q,θ

(θ + q)q

θ + q
− q2

θ + q
= max

q,θ
q − q2

θ + q
. (4.37)

Since θ ∈ (0, 1/2]. the maximum above, as a function of θ, is attained when θ = 1/2.

Hence, this yields

max
q

q − q2

1/2 + q
= max

q

1

2

q

q + 1/2
. (4.38)

When q → ∞, the maximum of the expression above is 1/2. There K−1/2 is, in principle,

the best possible rate that one can obtain by using this technique. As discussed previously,

Theorem 4.5.1 also reveals that the convergence of the iterates exhibits a rate of K−1/2

for any θ. Remarkably, in the recent work [Chi21], it was demonstrated that for a related

algorithm, namely the Bregman gradient method (but operating in an infinite-dimensional

space of measures), the rateK−1/2 is proven to be optimal and cannot be improved without

imposing additional assumptions.

It is important to put the two main results established so far in this chapter into perspec-

tive. Theorem 4.4.3 established a K−1 for a fixed smoothing parameter ε, whereas the

aforementioned result, Theorem 4.6.2, exhibits a slower convergence rate given by K−1/2.

At first glance, it may appear that we are obtaining a less favorable result for a more

desirable problem, as the decay of εk brings us closer to the true function f0. However,

as εk decreases, the problem gets closer to a non-differentiable one, which poses greater

challenges for optimization due to a deteriorating Lipschitz constant. Also, the limit point

in both cases is different. While in Theorem 4.4.3, the algorithm convergence to x∗
ε, in

Theorem 4.6.2, the limit point is x∗
0.

At the end of this section, we consider a construction of εk that, to a certain extent,

optimizes the constant involved. Now, we choose a sequence εk that makes the rate

established in Theorem 4.6.2 independently from d :=
2γf2

0 (x
∗
0)

λ2(γ−1)2(N+1)
.

Corollary 4.6.3. Consider the sequence

εk =
fεk−1

(xk)

2λ
√
N + 1(1 + k)θ

, k ≥ 0,
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where, for convenience, ε−1 > 0 and 0 < θ ≤ 1/2. For K ≥ 1, the sequence xk generated

by Algorithm 4 admits

fεk+1
(xK+1)− f0(x

∗
0) ≤ max

{√
N + 1fε0(x

0), 10e(fε0(x
0)− f0(x

∗
0))
}
K− θ

θ+1 .

Proof. The proof is similar to the proof of Theorem 4.6.2 with only minor changes. An

application of Lemma 4.6.1 with γ = 2 and any 0 < ν < 1 gives

fεk+1
(xK+1)− f0(x

∗
0) ≤ max

{
cfε⌊Kν⌋−1

(x⌊Kν⌋)

λ
√
2N + 2

(⌊Kν⌋+ 1)−θ,

(fε0(x
0)− f0(x

∗
0))

K∏
k=⌊Kν⌋

[
1− 1

df−2
εk−1

(xk)λ2(2N + 2)(k + 1)2θ + 4

] ,

where c and d are defined in (4.36). The first term is again bounded by

cfε⌊Kν⌋−1
(x⌊Kν⌋)

2λ
√
N + 1

(⌊Kν⌋+ 1)−θ ≤
√
N + 1fε0(x

0)(Kν − 1 + 1)−θ =
√
N + 1fε0(x

0)K−νθ.

For the second term, we observe that

df−2
εk−1

(xk)λ2(2N + 2) =
f 2
0 (x

∗
0)

f 2
εk−1

(xk)
≤ 1, for all k ≥ 0.

Using this bound for the product, the rest of the proof repeats the steps from Theo-

rem 4.6.2 with q = 1. In particular, ν = 1/(1 + θ).

Remark 4.6.4. In the proof above, we could also have used the monotone sequence εk =
mins=0,...,k f0(xs)

2λ
√
N+1(1+k)θ

instead of εk =
fεk−1

(xk)

2λ
√
N+1(1+k)θ

.

Without any additional assumptions, deriving a global linear convergence rate result

for IRLS, aimed at minimizing a scaled Huber loss function jε(x), for the sqrt-LASSO

problem, appears to be unattainable, both in cases with a fixed ε and with a decaying ε,

as we expect that similar lower bounds as the one from [Chi21] can be obtained. However,

it is possible to establish such convergence rate for a fixed ε by choosing, instead of the

Huber function, the smoothing function
√
|x|2 + ε2, which leads to the objective

f̂ε(x) :=
√
∥Ax− y∥22 + ε20 + λ

N∑
j=1

√
|xj|2 + ε2.

In this context, we outline a concise explanation for establishing the linear convergence

rate by utilizing the KL property, an essential analytical tool for studying nonconvex
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nonsmooth problems [ABRS10, YLP22].

Definition 4.6.5 (Kurdyka-Lojasiewicz property). We say that a proper closed function

h : X → R∪ {∞} satisfies the Kurdyka-Lojasiewicz (KL) property at x̂ ∈ dom ∂h if there

are a ∈ (0,∞], a neighborhood V of x̂ and a continuous concave function φ : [0, a) →
[0,∞) with φ(0) = 0 such that

(i) φ is continuously differentiable on (0, a) with φ′ > 0 on (0, a);

(ii) For any x ∈ V with h(x̂) < h(x) < h(x̂) + a, it holds that

φ′(h(x)− h(x̂))dist(0, ∂h(x)) ≥ 1. (4.39)

If h satisfies the KL property at x̂ ∈ dom ∂h and the φ(s) in (4.39) can be chosen as

c̄ s1−α for some c̄ > 0 and α ∈ [0, 1), then we say that h satisfies the KL property at x̂

with exponent α.

A proper closed function h satisfying the KL property at every point in dom ∂h is said to

be a KL function, and a proper closed function h satisfying the KL property with exponent

α ∈ [0, 1) at every point in dom ∂h is said to be a KL function with exponent α.

First note that the results of Theorem 4.4.5 remain true for IRLS applied to f̂ε. Next,

we establish a local linear convergence rate of IRLS based on [BP16, Proposition 4]. For

that, we need three conditions to be satisfied:

1. f̂ε(x
k+1)− f̂ε(x

k) ≤ C1∥∇f̂ε(x
k)∥2 for some constant C1 > 0;

2. ∥∇f̂ε(x
k)∥2 ≤ C2∥xk+1 − xk∥2 for some constant C2 > 0;

3. f̂ε satisfies Kurdyka-Lojasiewicz (KL) property with exponent 1/2 or less (see Lemma

2.2 of [YLP22]).

The first property follows similarly to Theorem 4.5.1. The second property follows from

the 1/ε-smoothness of
√

|x|2 + ε2 (see [Bec17, Example 10.44]) combined with Karush-

Kuhn-Tucker conditions for the constrained problem described in Equation (4.19). Lastly,

unlike the scaled Huber function jε(x), the function
√

|x|2 + ε2 can be represented via

linear matrix inequalities [YLP22], and, by [YLP22, Theorem 4.3], the loss f̂ε has KL

exponent 1/2. Thus, by [BS17, Lemma 2.5], the KL constant c̄ > 0 can be estimated

and, therefore, by following an argument similar to the one developed in [BNPS17], it is

possible to show that there exists a neighborhood of x∗
ε, estimated via c̄ > 0, in which IRLS

admits a linear convergence rate. Then, by selecting γ in Theorem 4.4.5 appropriately, the

IRLS algorithm designed to minimize the function
√
|x|2 + ε2 admits a linear convergence
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rate to this neighborhood, which implies that IRLS has a global linear convergence rate

to a solution of the smoothed SQRT-LASSO problem. However, this solution potentially

differs from the solution of the true sqrt-LASSO objective function. Moreover, this proof

will not remain true for a decaying sequence εk as the smoothness of f̂ε deteriorates as

εk vanishes and, therefore, the second property no longer holds. We leave it as an open

problem to characterize the set of smoothed versions of the sqrt-LASSO for which the

technique above can be applied.

Open Problem: For which other functions, beyond
√

|x|2 + ε2, is it possible to apply

the technique above? Is there a simple characterization of this set? Moreover, is it

possible to extend the analysis from [BP16] to the εk decaying case, i.e., for a sequence

of smoothing functions indexed by εk that smooth the sqrt-LASSO?

So far we provided a general convergence analysis of the IRLS method applied to the

objective function

fε(x) = jε0(∥Ax− b∥2) +
N∑
i=1

jε(xi),

that is designed to tackle the non-smoothness of the sqrt-LASSO objective function.

As previously emphasized in this chapter, the sqrt-LASSO finds its highest significance for

noise-blind high-dimensional statistics or compressive sensing tasks. These applications

aim to recover a sparse vector and perform variable selection without requiring prior noise

level knowledge. Hence, in the next section, our goal is to establish the principal theorem

of this chapter, which is the linear convergence rate of IRLS for the sqrt-LASSO under a

natural assumption prevalent in compressive sensing.

4.7 Convergence under the Null Space Property

In the field of sparse regression, it is common to assume that the design matrix A ∈ Rn×p

is, in some sense, well-conditioned on the set of sparse vectors or that the kernel of such

matrices has a nice geometry. A general way to do so is via the compatibility condition

[VDGB09], which is the sharpest condition to obtain oracle inequalities for estimation

and prediction.

Definition 4.7.1. A matrix A ∈ Rn×p is said to satisfy the (L,S)-compatibility condition

if there exists L ∈ (1,∞) such that for the set

∆L,S :=
{
v ∈ RN : ∥vSc∥1 ≤ L∥vS∥1 and ∥vS∥1 ̸= 0

}
,
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the condition infv∈∆L,S

S∥Av∥22
∥vS∥21

> 0 holds true.

It turns out that the compatibility condition is equivalent to the so-called robust null space

property more commonly used in the signal processing literature, e.g., [PJ21][Theorem

XX]. This property extends the necessary and sufficient property used for the analysis of

equality constrained ℓ1-minimization to include robustness with respect to noise. Before

we start the convergence analysis, we state a few facts connected to the NSP. The first

one is an equivalent formulation, which is more suitable for our analysis.

Lemma 4.7.2. [FR13, Lemma 4.20] The matrix A ∈ Cm×N satisfies the robust null

space property with constants 0 < ρ < 1 and τ > 0 if and only if for any set S ⊂ [N ] of

cardinality |S| ≤ s we have

∥z − x∥1 ≤
1 + ρ

1− ρ
(∥z∥1 − ∥x∥1 + 2∥xSc∥1) +

2τ

1− ρ
∥A(z − x)∥2 (4.40)

for all vectors x, z ∈ CN .

The first benefit of NSP, when used in the convergence analysis, is that it is possible to

track the distance to the ground truth signal x in terms of the function value gap.

Lemma 4.7.3 (Error bound in terms of function value gap). Let A ∈ Cm×N admit the

robust null space property with constants 0 < ρ < 1 and τ > 0 of order s. If λ ≤ (1+ρ)
2τ

,

then for all z ∈ Rn and all ε, ε0 ≥ 0 we have

∥z − x∗∥1 ≤
2(1 + ρ)

(1− ρ)λ

[
λσs(x∗)ℓ1 + ∥ϵ∥2 +

1

2
(f0(z)− f0(x∗))

]
,

where x∗ is the ground truth signal that gives origin to the data y = Ax∗ + ϵ.

Proof. By Lemma 4.7.2 and the choice of λ, we get

∥z − x∗∥1 ≤
1 + ρ

1− ρ
(∥z∥1 − ∥x∥1 + 2σs(x)ℓ1) +

2τ

1− ρ
∥A(z − x∗)∥2

≤ 1 + ρ

(1− ρ)λ
[λ(∥z∥1 − ∥x∗∥1 + 2σs(x)ℓ1) + ∥A(z − x∗)∥2]

Since x∗ is the true signal, we have Ax∗ = y − ϵ and ∥ϵ∥2 = ∥Ax∗ − y∥2. Hence, triangle
inequality gives

∥z − x∗∥1 ≤
1 + ρ

(1− ρ)λ
[2λσs(x∗)ℓ1 + λ∥z∥1 + ∥Az − y∥2 + ∥ϵ∥2 − λ∥x∗∥1]

=
1 + ρ

(1− ρ)λ
[2λσs(x∗)ℓ1 + 2∥ϵ∥2 + f0(z)− f0(x∗)] .
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For the iterates of IRLS, a consequence of Lemma 4.7.3 is the following statement:

Corollary 4.7.4. Under assumptions of Lemma 4.7.3, the iterates xk generated by Algo-

rithm 4 admit

∥xk − x∗∥1 ≤
2(1 + ρ)

(1− ρ)λ

[
λσs(x∗)ℓ1 + ∥ϵ∥2 +

1

2
(fεk(x

k)− f0(x
∗
0))

]
.

Proof. It follows Lemma 4.7.3 combined with inequalities f0(∗) ≥ f0(x
∗
0) and f0(x

k) ≤
fεk(x

k).

Consequently, the minimization of the objective function (4.5) implies that the distance

between the iterates and the ground truth is being minimized. Furthermore, the bounds

established in Section 4.4 and Section 4.5 can be combined with Corollary 4.7.4 to derive

the convergence results in terms of the distance to the ground truth. A similar inequality

can be derived for the minimizer of the sqrt-LASSO, Equation (4.5).

Corollary 4.7.5. Under assumptions of Lemma 4.7.3 solution x∗
0 of Sqrt-LASSO admits

∥x∗
0 − x∗∥1 ≤

2(1 + ρ)

(1− ρ)λ
[λσs(x∗)ℓ1 + ∥ϵ∥2]

and

∥Ax∗
0 − b∥2 ≤

[
1 +

2(1 + ρ)

(1− ρ)

]
∥ϵ∥2 +

2(1 + ρ)λ

(1− ρ)
σs(x∗)ℓ1 .

Proof. The first inequality follows from Lemma 4.7.3 with z = x∗
0 and ε = ε0 = 0. For

the second inequality, we use the optimality of x∗
0,

∥Ax∗
0 − b∥2 + λ∥x∗

0∥1 ≤ ∥Ax∗ − b∥2 + λ∥x∗∥1 = ∥ϵ∥2 + λ∥x∥1. (4.41)

By bringing ∥x∗
0∥1 to the right-hand side and applying the first inequality, we get

∥Ax∗
0 − b∥2 ≤ ∥ϵ∥2 + λ(∥x∗∥1 − ∥x∗

0∥1) ≤ ∥ϵ∥2 + λ∥x∗ − x∗
0∥1

≤ ∥ϵ∥2 +
2(1 + ρ)

1− ρ
[λσs(x∗)ℓ1 + ∥ϵ∥2]

=

[
1 +

2(1 + ρ)

1− ρ

]
∥ϵ∥2 +

2(1 + ρ)λ

1− ρ
σs(x∗)ℓ1 .
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The first bound is the bound Theorem 4.1.5 [PJ21, Theorem 3.1] that was proven here

for the sake of completeness5. It implies that if the noise is absent and x is sparse, Sqrt-

LASSO recovers x uniquely. The second bound is rather a technical result, which will be

useful later in this section. We can now proceed to formally state the principal theorem.

Theorem 4.7.6. Let A satisfies NSP with constants 0 < ρ < 1
4
and τ > 0 and assume that

y = Ax∗ + ϵ. Consider the sequence εk = min
{
εk−1,

∥Axk−b∥2+λσs(xk)ℓ1
λ(N+1)

}
and εk,0 = λεk for

k ≥ 0 and ε−1 = +∞. Then, for k ≤ k̂ := min
{
k ∈ N : fεk(x

k)− f0(x
∗
0) > 3λ(N + 1)εk/4

}
it holds that the following is true for the iterates xk of Algorithm 4 with λ ≤ ρ/τ :

fεk+1
(xk+1)− f0(x

∗
0) ≤

[
1− (1− ρ)4

96(1 + ρ)2(2 + ρ)2(N + 1)

] [
fεk(x

k)− f0(x
∗
0)
]
.

Moreover, for 0 ≤ fεk(x
k)− f0(x

∗
0) ≤ 3λ(N + 1)εk/4 , it holds that

∥xk − x∗∥1 ≤
2(1 + ρ)

(1− ρ)λ

[
1 +

3(1 + ρ)

2− 8ρ

]
[λσs(x∗)ℓ1 + ∥ϵ∥2] .

The proof of Theorem 4.7.6 is based on Lemma 4.4.1 with x = x∗
0, v

k = x∗
0 − xk and

ṽk = (0, vk) = x̃∗
0 − x̃k and follows the same lines of the proof of Proposition 2.3.7. Let us

denote by S the support of the k largest entries of xk in absolute value. It consists of two

complementary parts, similar to what happens for Basis Pursuit, see Theorem 2.3.9. In the

first part, we will establish that outside a certain region, i.e., when fεk(x
k)−f0(x

∗
0) > Cεk

for a certain C > 0, we obtain a linear decay on the function value. Then, in the second

part, we will prove that when we reach the basin of attraction, we can also conclude that

the iterates xk are already close enough to the ground truth.

The first part consists of three main steps:

i Bound the first order term −|⟨∇f̃εk(x̃
k), x̃∗

0 − x̃k⟩| from below.

ii Bound the second order term ⟨Wε(x
k)ṽk, ṽk⟩ from above.

iii Bound the function value gap fεk(x
k+1)− fεk(x

k) is bounded by εk.

iv To finish, the convergence rate will finally be obtained by using a certain choice of

ε together with the three bounds above.

Proof. The proof will be divided into two parts. First, assume that fεk(x
k) − f0(x

∗
0) >

3λ(N + 1)εk/4 holds. In this case, the idea of the proof is based on Theorem 4.4.5 and

Theorem 4.5.2.
5At the beginning of the chapter, we stated this theorem with the condition λ ≥ 2

1+ρτ as it is originally

stated. Here, for our convenience, we performed the change of variable λ 7→ 1
λ and stated it under the

assumption λ ≤ (1+ρ)
2τ .
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Part I: Bounding the linear term: By assuming that εk,0 = λεk, the first-order term

can be rewritten as

⟨∇f̃εk(x
k), ṽk⟩ = ⟨ṽk, ÃT Ãx̃k⟩

max{∥Ãx̃k∥2, λεk}
+ λ

N∑
i=1

vki x
k
i

max{|xk
i |, εk}

= λ
N∑
i=0

⟨Miṽ
k,Mix̃

k⟩
max{∥Mix̃k∥2, εk}

,

with M0 = λ−1Ã and Mi = Ei,i for i = 1, . . . , N , where Ei,i is a matrix with a single

non-zero entry Ei,i
i,i = 1. For a single summand, we have

⟨Miṽ
k,Mix̃

k⟩
max{∥Mix̃k∥2, εk}

=
⟨Mix̃

∗
0,Mix̃

k⟩
max{∥Mix̃k∥2, εk}

− ∥Mix̃
k∥22

max{∥Mix̃k∥2, εk}

≤ ∥Mix̃
∗
0∥2∥Mix̃

k∥2
max{∥Mix̃k∥2, εk}

− ∥Mix̃
k∥22

max{∥Mix̃k∥2, εk}

≤ ∥Mix̃
∗
0∥2 −

∥Mix̃
k∥22

max{∥Mix̃k∥2, εk}
.

If ∥Mix̃
k∥2 ≥ εk, then

⟨Miṽ
k,Mix̃

k⟩
max{∥Mix̃k∥2, εk}

≤ ∥Mix̃
∗
0∥2 − ∥Mix̃

k∥2 = ∥Mix̃
∗
0∥2 − jεk(∥Mix̃

k∥2).

Otherwise, if ∥Mix̃
k∥2 < εk, we have

⟨Miṽ
k,Mix̃

k⟩
max{∥Mix̃k∥2, εk}

≤ ∥Mĩ̃x
∗
0∥2 −

∥Mix̃
k∥22

εk

= ∥Mix̃
∗
0∥2 −

∥Mix̃
k∥22

2εk
− εk

2
+

εk
2

= ∥Mix̃
∗
0∥2 − jεk(∥Mix̃

k∥2) +
εk
2
.

Thus, in any case, the latter bound applies since εk
2
> 0. Hence, the first-order term can

be bounded by

⟨∇f̃εk(x
k), ṽk⟩ ≤ λ

N∑
i=0

[
∥Mix̃

∗
0∥2 − jεk(∥Mix̃

k∥2) + εk
2

]
= ∥Ãx̃∗

0∥2 + λ∥x∗
0∥1 − jεk,0(∥Ãx̃k∥2) + λ

N∑
i=1

jεk(x
k
j ) +

1
2
λ(N + 1)εk

= f0(x
∗
0)− fεk(x

k) + 1
2
λ(N + 1)εk.

Now, by using the hypothesis fεk(x
k)− f0(x

∗
0) >

3
4
λ(N + 1)εk, it follows that

⟨∇f̃εk(x
k), ṽk⟩ ≤ f0(x

∗
0)− fεk(x

k) + 1
2
λ(N + 1)εk ≤ −1

4
λ(N + 1)εk ≤ 0,
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and

⟨∇f̃εk(x
k), ṽk⟩ ≤ f0(x

∗
0)− fεk(x

k) +
1

2
λ(N + 1)εk

≤ f0(x
∗
0)− fεk(x

k) +
2

3
[fεk(x

k)− f0(x
∗
0)] ≤ 1

3
[f0(x

∗
0)− fεk(x

k)] ≤ 0.

Hence, for xk ̸= x∗
0 we apply Lemma 4.4.1, which gives

fεk(x
k+1)− fεk(x

k) ≤ −|⟨∇f̃εk(x̃
k), ṽk⟩|2

2⟨Wεk(x
k)ṽk, ṽk⟩

≤ −λ(N + 1)εk(fεk(x
k)− f0(x

∗
0))

24⟨Wεk(x
k)vk, vk⟩

. (4.42)

Now, we must bound the denominator ⟨Wεk(x
k)vk, vk⟩.

Part II: Bounding the quadratic term: From the definition of Wε, we obtain

⟨Wε(x
k)ṽk, ṽk⟩ = ∥Ãṽk∥22

max{∥Ãx̃k∥2, λεk}
+ λ

N∑
j=1

|vkj |2

max{|xk
j |, εk}

≤ ∥Avk∥22
λεk

+
λ2

λεk
∥vk∥22 =

1

λεk

[
∥Avk∥22 + λ2∥vk∥22

]
≤ 1

λεk

[
∥Avk∥2 + λ∥vk∥2

]2 ≤ 1

λεk

[
∥A(x∗

0 − xk)∥2 + λ∥x∗
0 − xk∥1

]2
.

Next, we bound the term ∥A(x∗
0 − xk)∥2 + λ∥x∗

0 − xk∥1 by using the NSP. Lemma 4.7.2

yields

∥A(x∗
0 − xk)∥2 + λ∥x∗

0 − xk∥1

≤ λ(1 + ρ)

1− ρ

[
∥x∗

0∥1 − ∥xk∥1 + 2σs(x
k)ℓ1
]
+

[
1 +

2τλ

1− ρ

]
∥A(x∗

0 − xk)∥2

≤ λ(1 + ρ)

1− ρ

[
∥x∗

0∥1 − ∥xk∥1 + 2σs(x
k)ℓ1
]
+

[
1 +

2τλ

1− ρ

]
(∥Ax∗

0 − b∥2 + ∥Axk − b∥2)

Since x∗
0 is the minimizer of f0, we have

∥Ax∗
0 − b∥2 + λ∥x∗

0∥1 ≤ ∥Axk − b∥2 + λ∥xk∥1,

which is equivalent to

λ(∥x∗
0∥1 − ∥xk∥1) ≤ ∥Axk − b∥2 − ∥Ax∗

0 − b∥2.
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Thus, we get

∥A(x∗
0 − xk)∥2 + λ∥x∗

0 − xk∥1 ≤
2λ(1 + ρ)

1− ρ
σs(x

k)ℓ1

+

[
1 +

2τλ

1− ρ
+

1 + ρ

1− ρ

]
∥Axk − b∥2 +

[
1 +

2τλ

1− ρ
− 1 + ρ

1− ρ

]
∥Ax∗

0 − b∥2.

By assumption λ ≤ ρ/τ , which implies that[
1 +

2τλ

1− ρ
− 1 + ρ

1− ρ

]
≤ 0 and

[
1 +

2τλ

1− ρ
+

1 + ρ

1− ρ

]
≤ 2(1 + ρ)

1− ρ
.

Therefore, we obtain

∥A(x∗
0 − xk)∥2 + λ∥x∗

0 − xk∥1 ≤
2(1 + ρ)

1− ρ

[
∥Axk − b∥2 + λσs(x

k)ℓ1
]
,

and

⟨Wε(x
k)ṽk, ṽk⟩ ≤ 4(1 + ρ)2

λεk(1− ρ)2
[
∥Axk − b∥2 + λσs(x

k)ℓ1
]2
. (4.43)

The remaining major step of this part is to bound ∥Axk − b∥2 + λσs(x
k)ℓ1 in terms of

εk. Recall that, by hypothesis, εk = min
{
εk−1,

∥Axk−b∥2+λσs(xk)ℓ1
λ(N+1)

}
. If the minimum is

attained by the second term, the bound is trivial since

∥Axk − b∥2 + λσs(x
k)ℓ1 = λ(N + 1)εk ≤

2 + ρ

(1− ρ)
λ(N + 1)εk.

Otherwise, there exists index j < k, such that

εk = εj =
∥Axj − b∥2 + λσs(x

j)ℓ1
λ(N + 1)

.

By Lemma 4.2.1 and by the construction of the iterates, we have

f0(x
k) ≤ fεk(x

k) ≤ fεj(x
j) ≤ f0(x

j) + λ(N + 1)εj.

Expanding both the right and left parts leads to

∥Axk − b∥2 + λ∥xk∥1 ≤ 2∥Axj − b∥2 + λ∥xj∥1 + λσs(x
j)ℓ1

Let us denote by Sj the set of indices corresponding to the best-s term approximation

of xj. That is, we have ∥xj
Sj
∥1 = σs(x

j)ℓ1 and ∥xk
Sj
∥1 ≥ σs(x

k)ℓ1 . Thus, by splitting the
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norms ∥xt∥1 = ∥xt
Sj
∥1 + ∥xt

Sc
j
∥1, for t = j, k, we arrive at

∥Axk − b∥2 + λ∥xk
Sj
∥1 + λ∥xk

Sc
j
∥1 ≤ (1 + c)∥Axj − b∥2 + λ∥xj

Sj
∥1 + (1 + c)λσs(x

j)ℓ1 .

Hence, bringing λ∥xk
Sj
∥1 to the right-hand side, yields

∥Axk − b∥2 + λ∥xk
Sc
j
∥1 ≤ 2

[
∥Axj − b∥2 + λσs(x

j)ℓ1
]
+ λ[∥xj

Sj
∥1 − ∥xk

Sj
∥1]

≤ 2
[
∥Axj − b∥2 + λσs(x

j)ℓ1
]
+ λ∥(xj − xk)Sj

∥1. (4.44)

Moreover, the definition of NSP gives

∥(xj − xk)Sj
∥1 ≤ ρ∥(xj − xk)Sc

j
∥1 + τ∥A(xj − xk)∥2

≤ ρ∥xj
Sc
j
∥1 + ρ∥xk

Sc
j
∥1 + τ∥Axj − b∥2 + τ∥Axk − b∥2

≤ ρσs(x
j)ℓ1 + ρ∥xk

Sc
j
∥1 + ρ

λ
∥Axj − b∥2 + ρ

λ
∥Axk − b∥2.

Incorporating this bound in Equation (4.44) leads to

∥Axk − b∥2 + λ∥xk
Sc
j
∥1 ≤ (2 + ρ)

[
∥Axj − b∥2 + λσs(x

j)ℓ1
]
+ ρ∥Axk − b∥2 + λ∥xk

Sc
j
∥1,

which, in turn, is equivalent to

∥Axk − b∥2 + λ∥xk
Sc
j
∥1 ≤

2 + ρ

1− ρ

[
∥Axj − b∥2 + λσs(x

j)ℓ1
]
.

Since ∥xk
Sj
∥1 ≥ σs(x

k)ℓ1 , we obtain

∥Axk − b∥2 + λσs(x
k)ℓ1 ≤

2 + ρ

1− ρ

[
∥Axj − b∥2 + λσs(x

j)ℓ1
]
=

2 + ρ

(1− ρ)
λ(N + 1)εk.

Returning to the bound for the quadratic term (4.43), this gives

⟨Wε(x
k)ṽk, ṽk⟩ ≤ 4(1 + ρ)2(2 + ρ)2λ(N + 1)2εk

(1− ρ)4
. (4.45)

Adding the pieces together: Now, the bound for the quadratic term can be combined

with the inequality (4.42). This finally gives

fεk(x
k+1)− fεk(x

k) ≤ − λ(N + 1)εk(1− ρ)4

96(1 + ρ)2(2 + ρ)2λ(N + 1)2εk

[
fεk(x

k)− f0(x
∗
0)
]
.
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As for the last step, we add and subtract f0(x
∗
0) and rearrange all the terms, which gives

fεk+1
(xk+1)− f0(x

∗
0) ≤ fεk(x

k+1)− f0(x
∗
0)

≤
[
1− (1− ρ)4

96(1 + ρ)2(2 + ρ)2(N + 1)

] [
fεk(x

k)− f0(x
∗
0)
]
.

Now, we assume the opposite inequality, i.e., we assume that 0 ≤ fεk(x
k) − f0(x

∗
0) ≤

3λ(N + 1)εk/4 holds. Since λ ≤ ρ/τ = 2ρ/2τ ≤ (1 + ρ)/2τ , by Corollary 4.7.4, we have

∥xk − x∥1 ≤
2(1 + ρ)

(1− ρ)λ

[
λσs(x)ℓ1 + ∥ϵ∥2 +

1

2
(fεk(x

k)− f0(x
∗
0))

]
≤ 2(1 + ρ)

(1− ρ)λ

[
λσs(x)ℓ1 + ∥ϵ∥2 + 3

8
λ(N + 1)εk

]
. (4.46)

To finish the proof, we will establish a bound of the form

∥Axk − b∥2 + λσs(x
k)ℓ1 ≤ c1[∥ϵ∥2 + λσs(x)ℓ1 ],

for a given c1 ≥ 0. Since x∗
0 is the minimizer of f0, we have

f0(x
k) ≤ fεk(x

k) ≤ f0(x
∗
0) +

3
4
λ(N + 1)εk ≤ f0(x) +

3
4
[∥Axk − b∥2 + λσs(x

k)ℓ1 ].

Expanding f0 and rearranging terms gives

(1− 3c
4
)∥Axk − b∥2 + λ∥xk∥1 − 3λ

4
σs(x

k)ℓ1 ≤ ∥Ax− b∥2 + λ∥x∥1 = ∥ϵ∥2 + λ∥x∥1.

In a similar way to what was done above, let us denote by S the set of indices corresponding

to the best-s term approximation of x. That is, we have ∥xS∥1 = σs(x)ℓ1 and ∥xk
S∥1 ≥

σs(x
k)ℓ1 . Thus, by splitting the norms ∥v∥1 = ∥vS∥1 + ∥vSc∥1 for v = xk and v = x, we

arrive at

(1− 3
4
)∥Axk − b∥2 + λ∥xk

S∥1 + λ∥xk
Sc∥1 − 3λ

4
σs(x

k)ℓ1 ≤ ∥ϵ∥2 + λ∥xS∗∥1 + λσs(x)ℓ1 .

This, together with reverse triangle inequality, yields

(1− 3
4
)∥Axk − b∥2 + λ∥xk

Sc∥1 − 3λ
4
σs(x

k)ℓ1 ≤ ∥ϵ∥2 + λ[∥xS∥1 − ∥xk
S∥1] + λσs(x)ℓ1

≤ ∥ϵ∥2 + λ[∥(x− xk)S∥1] + λσs(x)ℓ1
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By the definition of NSP, we have

∥(x− xk)S∥1 ≤ ρ∥(x− xk)Sc∥1 + τ∥A(x− xk)∥2
≤ ρ∥xSc∥1 + ρ∥xSc∥1 + τ∥Ax− b∥2 + τ∥Axk − b∥2
≤ ρσs(x)ℓ1 + ρ∥xk

Sc∥1 + ρ
λ
∥ϵ∥2 + ρ

λ
∥Axk − b∥2.

Thus,

(1− 3
4
− ρ)∥Axk − b∥2 + (1− ρ)λ∥xk

Sc∥1 − 3λ
4
σs(x

k)ℓ1 ≤ (1 + ρ)[∥ϵ∥2 + λσs(x)ℓ1 ]

Since, by assumption, 1− 3
4
− ρ > 0 and ∥xk

S∥1 ≥ σs(x
k)ℓ1 , we get

∥Axk − b∥2 + λσs(x
k)ℓ1 ≤ ∥Axk − b∥2 +

1− ρ

1− 3
4
− ρ

λ∥xk
Sc∥1 −

3λ
4

1− 3
4
− ρ

σs(x
k)ℓ1

≤ 1 + ρ

1− 3
4
− ρ

[∥ϵ∥2 + λσs(x)ℓ1 ].

Thus, λ(N + 1)εk is bounded from above as

λ(N + 1)εk ≤ [∥Axk − b∥2 + λσs(x
k)ℓ1 ] ≤

(1 + ρ)

1− 3
4
− ρ

[∥ϵ∥2 + λσs(x)ℓ1 ].

By applying this bound to (4.46), we finally conclude that

∥xk − x∥1 ≤
2(1 + ρ)

(1− ρ)λ

[
1 +

3(1 + ρ)

2− 8ρ

]
[λσs(x)ℓ1 + ∥ϵ∥2] .

Remark 4.7.7. Inspired null space constant ρ < 1/8 and the constant 3
4
in fεk(x

k) −
f0(x

∗
0) > 3λ(N+1)εk/4 are not optimized. In fact, inspired by [ABH19], one could choose

the smoothing parameter εk as εk = min
{
εk−1, c

∥Axk−b∥2+λσs(xk)ℓ1
λ(N+1)

}
for a certain constant

0 < c < 2. This constant would appear in the definition of the null space constant in the

form 0 < ρ < 1− 3c
4
and in the hypothesis for the “basis of attraction” that would be given

by fεk(x
k)− f0(x

∗
0) > min{1, c−1}λ(N +1)εk. Hence, in this case, the convergence results

read as

fεk+1
(xk+1)− f0(x

∗
0) ≤

[
1− c2(1− ρ)4

96(1 + ρ)2(1 + c+ ρ)2(N + 1)

] [
fεk(x

k)− f0(x
∗
0)
]
,

and

||xk − x||1 ≤
2(1 + ρ)

(1− ρ)λ

[
1 +

3c(1 + ρ)

8− 6c− 8ρ

]
[λσs(x)ℓ1 + ||η||2] .
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4.8 Chapter Conclusion

In this chapter, which represents an ongoing work, we have introduced the third use

of the method of least squares method in this thesis. Specifically, we have delved into

developing an algorithm to address non-smooth noise-blind problems. Furthermore, we

have extensively discussed various types of convergence results. Our next step involves

comparing the IRLS approach devised in this chapter with alternative strategies, such as

proximal gradient methods and the semismooth Newton method.

Furthermore, as discussed in Section 4.1, it is worth noting that this particular objective

function can also be viewed from the perspective of robust optimization, as highlighted in

recent works [BKZ+21, CTZ22]. We believe that exploring the implications of this IRLS

strategy in the realm of robust optimization holds promising potential for future research.



Chapter 5

Overparametrization and the

solution of convex problems

But in high dimension, there is no such thing as interpolation.

In high dimension, everything is extrapolation.

Yann LeCun [twi21]

In this chapter, we discuss how certain very recent ideas related to benign overfitting and

overparametrization in machine learning can be used to develop an algorithm that solves

constrained least squares problems in an unconstrained way. The algorithm is highly

scalable as it is based purely on gradient descent. We present its convergence theory based

on continuous arguments for a certain gradient flow and illustrate its power with numerical

experiments. The work presented in this chapter was developed in collaboration with Dr.

Hung-Hsu Chou, Dr. Johannes Maly and Dr. Heudson Mirandola. The first version of

our manuscript, “Non-negative Least Squares via Overparametrization”, is currently in

preparation for journal submission [CMV22]. Although this chapter closely follows the

article, several parts were edited to improve the text’s clarity and the math proofs.

5.1 Introduction

Until now, this thesis has primarily focused on developing a simple least squares-based al-

gorithm for tackling various tasks, along with establishing the corresponding convergence

theory. However, we now embark on a different path and delve into analyzing a con-

strained least squares problem known as the non-negative least squares problem (NNLS).

In doing so, we delve into one of the central questions in theoretical machine learning:

why do models with a large number of parameters, such as deep neural networks, exhibit

remarkable performance beyond the training data? In connection with this question, it

161
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is crucial to understand another pertinent and related question in this field: why does

(stochastic) gradient descent converge towards a desirable overparameterized model with

nice generalization properties when employed to train such models?

5.2 The importance of overparametrization

Why don’t heavily parameterized neural networks overfit the data?

Leo Breiman [Bre18]

One of the central points of learning theory is how a model with a certain number of

parameters can explain a given dataset, i.e., in some sense, how rich the model is. The

standard (and now classical) learning theory says that there should be a balance be-

tween the abundance of features and details to capture the underlying structure of the

data and parsimony to avoid overfitting [Vap99]. The well-studied bias-variance tradeoff

phenomenon, see [HTFF09, Chapter 7], quantifies this phenomenon and advocates for a

balance that does not highly underfit the training data but, at the same time, does not

interpolate it, causing overfitting.

However, the recent success of large-scale machine learning models [GPAM+14] in many

tasks, including challenging humans, e.g., playing the game Go [SHM+16] or predicting

protein structures [SEJ+20], has raised questions regarding such trade-off explanation and

traditional statistical learning theory. The training of deep neural networks, in partic-

ular, has shown the ability to find parameter configurations that lead to models with

highly effective generalization properties on unseen data despite the potential for over-

fitting. This challenges the conventional notion from learning theory that models should

not excessively fit the training data to avoid poor performance on future data. In fact,

modern machine learning methods have demonstrated the opposite phenomenon, where

remarkable prediction rules can be achieved alongside a strong fit to the training data.

This contradicts the belief expressed in the following quote from one of the most impor-

tant books in the field: “This means that we cannot use residual sum-of-squares on the

training data to determine these parameters as well, since we would always pick those that

gave interpolating fits and hence zero residuals. Such a model is unlikely to predict future

data well at all.”[HTFF09, Chapter 2].

It was observed that very large models could go beyond the interpolation threshold and

perform well on unseen data, i.e., if we progressively increase the size of the model, the

so-called test risk, which is the error on data that does not belong to the training set, will

also go to zero if the number of parameters is large enough [BHMM19].

The development of state-of-the-art models in various machine learning domains, such as

natural language processing and image classification, has witnessed a significant increase
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in model size over time, as evidenced for benchmark problems [pap23a, pap23b]. This

trend highlights the advantages associated with training larger models. Consequently,

investigating the phenomenon of the test error exhibiting the so-called double descent

curve has emerged as a paramount theoretical question in the field of machine learning.

Based on this observation, a number of research papers have attempted to provide an

explanation for this phenomenon. See the survey [Bel21] and references therein. These

studies have focused on determining the conditions under which benign overfitting can oc-

cur and have also sought to understand why, within the overparametrized regime, gradient

descent tends to converge towards parameter configurations that yield good generalization

performance, a phenomenon known as implicit bias.

The objective functions in such tasks typically have infinitely many global minimizers –

usually, there are infinitely many networks fitting the training samples exactly in the over-

parameterized regime [ZBH+17] –, which means that the choice of the algorithm strongly

influences which minimum is picked in this highly non-convex optimization problem.

Through rigorous numerical simulations, starting with the seminal work of [SHN+18]

on classification and support vector machines, several works [JT19, NTSS17, NTS15,

ZBH+17, ZBH+21, WGL+20] have undertaken a systematic exploration of the implicit

bias of gradient descent in the training of deep neural networks.

Whereas it is not even clear by now how to measure the implicit bias — one could quan-

tify it, e.g., in low complexity [NTS15] or in high generalizability [HS97] —, the empirical

studies observed that the factorized structure of such networks is crucial for successful

training. However, due to the complexity of the model class, there is still very little corre-

sponding thorough theoretical analysis/understanding available. To close the gap between

theory and practice for such a complex phenomenon, some simplified “training” models

have been proposed and analyzed in many works. In particular, several works in this

line of research performed an analysis of overparametrized linear regression models, i.e.,

overparametrized least squares objective functions, [BHX20, HMRT22, BLLT20, MZS23],

on vector factorization [Hof17], [ZYH19], [VKR19], [WGL+20], [LNHW21], [CMR23],

[LZQY22], [YZQM20] or matrix factorization [ACH18], [ACHL19], [CGMR20], [GKK20],

[GBLJ19], [GSD20], [GLSS18], [SS21], [WCZT22], [GWB+17], [NTSS17], [NTS15], [RC20],

[SHN+18], [WR21].

Essentially, all of these works agree on the point that, if initialized close to zero and

applied to a plain least-squares overparametrized formulation, Equation (5.2) vanilla gra-

dient descent/flow exhibits an implicit bias towards global minimizers that are sparse, in

the vector case, or of low-rank, in the matrix case. This is remarkable since it shows that

in overparametrized regimes, gradient descent has an implicit tendency toward simple

solutions.
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Such simplified analysis and results can even be connected to general neural networks

in the infinite width regime via the neural tangent kernel [JGH18]. However, a compre-

hensive understanding of the implicit bias of gradient descent in the training of finite-

width networks remains a challenge and one of the main problems in theoretical machine

learning, especially for large models present in natural language processing such as trans-

formers [MRG+20]. Whereas the obtained insights on vector and matrix factorization

might not yet resolve the mystery of deep learning, they provide valuable tools for more

classical problems. One such example is sparse recovery, which lies at the interface of high-

dimensional statistics and signal processing. Over the past two decades, several methods

have been developed to recover intrinsically low-dimensional data, such as sparse vec-

tors or low-rank matrices, which have been the subject of the previous chapters. For

example, one can ask if obtaining new algorithms for such problems is possible by using

overparametrized models.

While previous contributions tried to explain the implicit bias phenomenon and its con-

nection to the double descent behavior, most of these works were not interested in how

to use this bias to leverage current approaches to solve a certain optimization problem.

For example, is it possible to use an overparametrized objective function together with

gradient descent to solve a problem with a certain structure, e.g., a problem with convex

constraints? In this chapter, we will give the first step in this direction. The goal here

is to link the implicit bias of gradient descent/flow to a ubiquitous problem of numerical

mathematics, namely (NNLS), the topic of the next section.

5.3 Non-negative least squares

The task of finding (approximate) solutions to a linear system holds significant impor-

tance and occurs frequently in the field of numerical mathematics as well as in various

applications. Extensive research in scientific computing and related fields has focused on

this problem, as it serves as a fundamental component for numerous methods employed

in data science. In many scenarios, the physical quantities of interest are inherently

non-negative, such as in deconvolution and demixing problems like source separation.

Consequently, seeking a solution that minimizes the least-squared error while adhering

to additional non-negativity constraints is common. This leads to the formulation of the

non-negative least-squares (NNLS) problem. Given a linear operator A ∈ RM×N and data

y ∈ RM , NNLS is formally defined as finding

x+ ∈ S+ := argmin
z≥0

∥Az− y∥22. (NNLS)
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Large scale applications in which (NNLS) appears include NMR relaxometry [SK21],

imaging deblurring [BZZB09], biometric templates [KKKT19], transcriptomics [KBP+11],

magnetic microscopy [MLL+19], sparse hyperspectral unmixing [ELX13], and system iden-

tification [CRBH11]. The formulation in (NNLS) is also closely related to non-negative

matrix factorization [CSEP21] and supervised learning methods such as support vector

machines [Vap99]. We refer the interested reader to [CP10b] for a survey about the de-

velopment of algorithms that enforce non-negativity.

Compared to the standard least squares approach, including the non-negativity constraint

introduces additional challenges. By now, three primary algorithmic approaches have been

developed for solving this problem: (i) interior point methods, (ii) active set methods,

and (iii) projected gradient methods. In the first approach, the non-negative least squares

(NNLS) problem can be recast as the quadratic problem

argmin
x≥0

1

2
⟨x,Qx⟩+ ⟨c,x⟩, (5.1)

where Q = A⊤A and c = −A⊤y, which is then solved via interior point methods. For

M = N , these are guaranteed to converge to a ε-solution in O(N3 ln ε−1) time [BMM06].

The (ii) active set methods [LH95] represent the most commonly used solution to (NNLS).

They exploit the fact that the solution of (NNLS) can be found by solving an uncon-

strained problem with inactive variables that do not contribute to the constraints. Both

(i) and (ii) require solving a linear system at each iteration, limiting their scalability.

In contrast, (iii) projected gradient methods like projected gradient descent (PGD) only

require matrix-vector multiplications and the projection to the positive orthant can be

trivially performed, e.g., [Lin07, KSD13, BTT91].

However, selecting an appropriate step size poses a challenge for these methods. De-

spite the guaranteed convergence of projected gradient descent (PGD) with a step size

determined by the inverse of the Lipschitz constant, this approach exhibits slow conver-

gence for ill-conditioned problems. Employing step size acceleration methods, such as the

Barzilai-Borwein step-size [BB88], in such scenarios can lead to cyclic behavior in PGD,

causing it to fail to converge even when the chosen step-size is proven to be effective for

unconstrained gradient descent [DF05]. In light of recent insights into the implicit bias of

(vanilla) gradient descent [Hof17, ZYH19, VKR19, WGL+20, LNHW21, CMR23], we ask

the following question.

Is it possible to design solvers for (NNLS) that are based on unconstrained

optimization by exploiting the implicit bias of first-order methods?
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Contribution of this chapter:

this chapter aims to affirmatively answer this question by leveraging the implicit bias of

the gradient descent for large models. First, we formulate a nonconvex unconstrained but

overparametrized ℓ2-functional capable of capturing the geometry imposed by the convex

constraints in (NNLS).

Furthermore, when applied to this functional, we demonstrate that the vanilla gradient

flow method exhibits implicit bias towards non-negative solutions. From a conceptual

standpoint, we introduce a novel approach for trading-off side constraints in optimiza-

tion problems with the complexity of the optimization landscape without relying on the

concept of Lagrangian multipliers. This trade-off becomes particularly advantageous in

ill-conditioned problems, where the geometry of the constrained set, although convex,

presents challenges in selecting an appropriate step size. Advanced techniques for stochas-

tic and accelerated step-size tuning can be explored by employing an unconstrained sub-

stitute.

As mentioned in [VKR19, CMR23], the implicit sparsity regularization bridges the recent

studies on gradient descent and compressive sensing. In fact, the overparametrized gradi-

ent descent provides a tuning-free alternative to established algorithms like LASSO and

Basis Pursuit. A nice by-product of our approach is that, by choosing the initialization

of gradient flow close to zero, one can add an additional (weighted-)ℓ1-bias on top of non-

negativity. This latter feature is inherited from previous works like [VKR19, CMR23] and

is only of interest in the special case of applying NNLS to sparse recovery.

Before detailing our results, we however need to remember some notation already intro-

duced in Chapter 1. We use ⊙ to denote the Hadamard product, i.e., the vectors x ⊙ y

and x⊙p have entries (x ⊙ y)n = xnyn and (x⊙p)n = xp
n, respectively. We abbreviate

x̃ :=
⊙

k∈[L] x
(k) = x(1) ⊙ · · · ⊙ x(L). The logarithm is applied entry-wise to positive vec-

tors, i.e., log(x) ∈ RN with log(x)n = log(xn). For convenience, we denote by x ≥ y the

entry-wise bound xn ≥ yn, for all n, and define RN
+ = {x ∈ RN : x ≥ 0}. The all-zeros

and all-ones vectors are denoted by 0 and 1, where the dimension is always clear from

the context. For x+ ∈ S+, we furthermore define

y+ := Ax+,

which is the unique Euclidean projection of y onto the convex and closed set

C+ := {Az : z ∈ R≥0}.



5.4. SOLVING NNLS VIA VANILLA GRADIENT DESCENT 167

5.4 Solving NNLS via vanilla gradient descent

In this section, we demonstrate that the implicit regularization exhibited by the (vanilla)

gradient flow/descent method can effectively solve the (NNLS) problem through uncon-

strained least-square optimization. The approach involves artificially introducing exces-

sive parameters – the overparametrization technique – to the objective function and min-

imizing it using a scalable first-order method like gradient descent. Subsequently, we

establish that the algorithm’s trajectory in the parameter space tends to favor a non-

negative solution, a characteristic that is not inherently implied by the loss function.

Although the formulation proposed here in this chapter is inherently discrete since it uses

gradient descent (see [Lem12] for a historical perspective on the method), which, for a

given step-size η > 0, is given by

xk+1 = xk − η∇f(xk),

the analysis developed in this chapter will adopt a continuous approach through an in-

finitesimal stepsize limit, i.e., a gradient flow argument.

More precisely, this is obtained by considering that our iterates xk are sampled at each

multiple of η, from a function x : R+ → RN such that xk = x(kη). We extend the

definition of this function to each point in the domain by interpolating them with an affine

interpolation. This gives, for t = kη, x(t+η) = xk+1 = xk−η∇f(xk) = x(t)−η∇f(x(t)).

Therefore, the gradient flow arises when the step size becomes arbitrarily small, i.e., when

η → 0. Indeed, this leads to

d

dt
x(t) = lim

η→0

x(t+ η)− x(t)

η
= −∇f(x(t)).

From this observation, gradient descent can be seen as an Euler discretization for the

gradient flow equation.

This analysis simplifies various challenges encountered in analyzing discrete algorithms,

eliminating the need to devise rules for the step size. Additionally, techniques developed

for ordinary differential equations (ODEs) and continuous flows, a quite developed field,

can be applied in such analyses [San17]. However, a significant challenge arises when

attempting to translate continuous results derived from gradient flow arguments into

discrete ones, and a comprehensive theory addressing this issue is still elusive [GBR21,

EC21]. Nonetheless, the continuous analysis provides strong evidence for the existence

of the implicit bias phenomenon and suggests the possibility of extending it to a discrete

but potentially more complicated proof. It is worth noting that the majority of works

on implicit bias focus on continuous scenarios, see [YKM21, AMN+21, LWLA22] and
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references therein, and we will follow a similar approach in this chapter.

To be more precise, we consider gradient flow on the factorized loss-function

Lover

(
x(1), . . . ,x(L)

)
:=

1

2

∥∥∥A(x(1) ⊙ · · · ⊙ x(L)
)
− y

∥∥∥2
2
, (5.2)

which appeared before in the context of implicit ℓ1-regularization [VKR19, LNHW21,

CMR23]. In these works, it was shown that if there exists a non-negative solution x ≥ 0

with Ax = y and all factors x(k) are initialized with α1 at t = 0, for α > 0 suffi-

ciently small, then the product x(1)(t) ⊙ · · · ⊙ x(L)(t) of the gradient flow approximates

an ℓ1-minimizer among all positive solutions, for t → ∞. While previous works such as

[VKR19, LNHW21, CMR23] found the positivity of the limit to be a technical challenge

to be circumvented. This required an adaptation of (5.2), the present work utilizes this

positivity to address the problem of solving (NNLS).

Our contribution is twofold. First, by robustifying the argument in [CMR23] we show,

for any A, y, and positive (identical) initialization x(k)(0) = x0 > 0, that the product

x(1)(t)⊙· · ·⊙x(L)(t) converges to a solution x+ of (NNLS). A crucial point here is that, in

contrast to [CMR23], the existence of a solution Ax = y is not required anymore. As part

of this, we characterize the convergence rate of the trajectory as O(1
t
) for the gradient flow

formulation. Second, as a nice by-product of relying on the existing theory, we conclude

that if x0 is chosen sufficiently close to zero, the limit of gradient flow is of (approximately)

minimizing a weighted ℓ1-norm among all possible solutions of (NNLS). Note that to

guarantee a similar additional regularization in the case of general measurements A, the

established techniques for solving (NNLS) — (i)-(iii) discussed above — would require

notable adjustments both in methodology and in theory.

The following two theorems formalize these claims. Let us emphasize that a small initial-

ization is only required in Theorem 5.4.1 to obtain additional ℓ1-regularization. In general,

any instance of NNLS can be solved via our method with arbitrary positive initialization:

Theorem 5.4.1. Let L ≥ 2, A ∈ RM×N and y ∈ RM . Define the overparameterized loss

function Lover as

Lover

(
x(1), . . . ,x(L)

)
:=

1

2
∥Ax̃− y∥22 (5.3)

where x̃ = x(1) ⊙ · · · ⊙ x(L). Let x0 > 0 be fixed and, for any k, let x(k)(t) follow the flow(
x(k)
)′
(t) = −∇x(k)Lover with x(k)(0) = x0. Let S+ be the set defined in (NNLS). Then

the limit x̃∞ := limt→∞ x̃(t) exists and lies in S+. Also, for y+ as defined in (5.3), there

exists an absolute constant C > 0 that only depends on the choice of A, y, and x0 such
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that

∥Ax̃(t)− y+∥22 ≤
C

t
,

for any t > 0. Moreover, let ϵ > 0 and assume in addition that we start the gradient

descent with a very small initialization x0 = α1. If

α ≤ h(Q+, ϵ) :=


exp

(
−1

2
− Q2

++Ne−1

2ϵ

)
if L = 2(

2ϵ
L(Q++N+ϵ)

) 1
L−2

if L > 2
, (5.4)

where Q+ = minz∈S+ ∥z∥1, then the ℓ1-norm of x̃∞ satisfies

∥x̃∞∥1 − min
z∈S+

∥z∥1 ≤ ϵ.

Let us highlight two of the most important features of the first theorem right away. First,

the limit x̃∞ exists and minimizes Lover to global optimality for any choice of A and y and

any initialization magnitude α > 0. The non-convex nature of equation (5.2) makes this

statement non-trivial. Additionally, it is noteworthy that Theorem 5.4.1 does not impose

any specific technical assumptions on matrix A and vector y, yet it applies to arbitrary

problems in the form of non-negative least squares (NNLS). However, it is important

to note that we require identical initialization of all factors and consider the continuous

gradient flow in our analysis.

The fact that we focus on the case of identical initialization, i.e., x(1)(0) = · · · = x(L)(0) =

x0 is not restrictive when solving (NNLS). Indeed, all solutions of (NNLS) are stationary

points of (5.2) and, as such, can be described as the limit of gradient flow on (5.2) under

suitably chosen identical initialization. We start by noting that since the problem (NNLS)

is convex, the Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for

optimality, see, e.g., [Bjö96].

Theorem 5.4.2. (Karush-Kuhn-Tucker conditions for NNLS) A point x+ ∈ RN is a

solution of problem (NNLS) if and only if there exists w⋆ ∈ Rn and a partition A ∪ P =

{1, . . . , N} such that

w⋆ = AT (y −Ax+), (5.5)

(x+)i = 0, i ∈ A, (x+)i > 0, i ∈ P, (5.6)

w⋆
i ≤ 0, i ∈ A, w⋆

i = 0, i ∈ P. (5.7)
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The equations (5.6-5.7) imply

(x+)iw
⋆
i = 0, i = 1, . . . , N, (5.8)

which are the KKT complementarity conditions.

From these conditions, one can observe that all solutions of (NNLS) can be represented

by stationary points of the functional

Lover

(
x(1), . . . ,x(L)

)
:=

1

2

∥∥∥A(x(1) ⊙ · · · ⊙ x(L)
)
− y

∥∥∥2
2

in (5.2), i.e., points that satisfy, for all ℓ ∈ [L], the equation

∇Lx(ℓ)

(
x(1), . . . ,x(L)

)
=
[
AT
(
A
(
x(1) ⊙ · · · ⊙ x(L)

)
− y

)]
⊙
(⊙

k ̸=ℓ

x(k)
)
= 0. (5.9)

Indeed, for any given optimal point x+ of the (NNLS) problem, it is straightforward

to check that the conditions in Theorem 5.4.2 imply that x(1) = · · · = x(L) = x
⊙ 1

L
+ is

a stationary point of (5.2) with x(1) ⊙ · · · ⊙ x(L) = x+. The same argument holds for

stationary points of the reduced functional (5.10). In particular, this implies that any

solution of (NNLS) can be described as the limit of gradient flow on (5.2) under suitably

chosen identical initialization.

As we have done in Chapter 3, we develop a roadmap for the proof of Theorem 5.4.1.

It consists of three major steps: First, the objective function and the corresponding

flow are reduced to a simplified form by using the fact that all factors are initialized

identically. Second, we prove that the reduced flow converges and characterize its limits

as the minimizer of a specific optimization problem. Finally, we show that if x0 = α1,

the limit approximately minimizes the ℓ1-norm among all possible solutions of (NNLS).

Whereas the first and the third steps are taken unchanged from [CMR23], the second step,

which is the backbone of the argument, requires different reasoning due to the (possible)

non-existence of solutions Az = y. Let us now start with the proof.

As already mentioned, we use the same reduction as in [CMR23] to analyze the dynamics

x′(t) = −∇Lover.

Lemma 5.4.3 (Identical Initialization, [CMR23, Lemma A.2]). Suppose x(k)(t) follows

the negative gradient flow

(
x(k)
)′
(t) = −∇x(k)Lover

(
x(1), . . . ,x(L)

)
.

If all initialization vectors are identical, i.e. x(k)(0) = x(k′)(0) for all k, k′ ∈ [L], then the
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vectors remain identical for all t ≥ 0, i.e. x(k)(t) = x(k′)(t). Moreover, the dynamics will

be given by

x′(t) = −∇L(x),

where x = x(1) = · · · = x(L) and L(x) = 1
2
∥Ax⊙L − y∥22.

Due to the identical initialization, all the factors (layers) x(k) remain identical over time.

This idea appeared already in the literature under the name balancedness condition

[ACHL19, RMC21]. Therefore, based on Lemma 5.4.3, we can restrict ourselves to a

simplified loss in the following. Moreover, our present contribution stems from the insight

that in most of the above papers [ACH18, ACHL19, CGMR20, CMR23], the signs of

components do not change over time when gradient flow is applied. Instead of viewing

this feature as an obstacle, cf. [CMR23, Section 2], we use it to naturally link the implicit

bias of gradient descent/flow to another ubiquitous problem of numerical mathematics,

namely, Equation (NNLS).

Definition 5.4.4 (Reduced Factorized Loss). Let L ∈ N, L ≥ 2. For A ∈ RM×N and

y ∈ RM , the reduced factorized loss function is defined as

L : RN → [0,∞), L(x) := 1

2
∥Ax⊙L − y∥22. (5.10)

Its derivative is given by ∇L(x) =
[
AT(Ax⊙L − y)

]
⊙ x⊙L−1.

One intriguing observation is that the factorization process induces a Riemannian metric,

and our method can be regarded as a Riemannian gradient approach. In this framework,

the metric distorts the space, ensuring that positive solutions are always obtained. Indeed,

originally we have

x′(t) = −Lx⊙L−1 ⊙ [A⊤(Ax⊙L − y)].

Now, we want to look at the dynamics at the point x̃ = x⊙L, which will obey the following

equation

x̃′(t) = Lx⊙L−1 ⊙ x′(t)

= −L2x⊙L−1 ⊙ [xL−1 ⊙ [A⊤(Ax⊙L − y)]]

= −L2x2L−2 ⊙ [A⊤(Ax⊙L − y)]

= −L2x̃2− 2
L ⊙ [A⊤(Ax̃− y)]

= −L2x̃2− 2
L ⊙ [∇L(x̃)]

= −x̃(t)⊙q ⊙∇L(x̃).
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Here we used that q = 2 − 2
L
and L(x̃) = 1

2
∥Ax̃ − y∥22. This shows that if one considers

the matrix G(x) = L−2 diag(x)
2
L
−2 = L−2 diag(x)q, which defines the Riemmanian metric

⟨u, v⟩x = ⟨L2x⊙−qu, v⟩, the dynamics of x̃′(t) can be recast as

x̃′(t) = −G(x)−1∇L(x̃) = −∇RL(x̃),

where ∇R denotes the Riemannian gradient. See [Bou23, Chapter 3] for more details.

To prove that x⊙L converges to an element in S+ defined in (NNLS), we use the concept

of Bregman divergence, which measures the distance between a function and its first-

order approximation. This notion of distance is strongly connected to the mirror descent

algorithm [RM15] used in several problems in machine learning and in the analysis of

overparametrized models.

Definition 5.4.5 (Bregman Divergence). Let F : Ω → R be a continuously-differentiable,

strictly convex function defined on a closed convex set Ω. The Bregman divergence asso-

ciated with F for points p, q ∈ Ω is defined as

DF (p, q) = F (p)− F (q)− ⟨∇F (q), p− q⟩. (5.11)

Although this function is not a metric, since it does not satisfy the triangle inequality,

it has several important properties. For example, this function is non-negative, strictly

convex in its first argument p, and it is unique up to affine difference, i.e., DF (p, q) =

DG(p, q) if and only if F − G is an affine function. We can now show convergence of

x(t)⊙L and characterize its limit.

Theorem 5.4.6. Let x̃(t) = x(t)⊙L and

x′(t) = − 1

L2
∇L(x(t)) = − 1

L

[
AT(Ax⊙L(t)− y)

]
⊙ x⊙L−1(t) (5.12)

with x(0) ≥ 0. Then x̃∞ := limt→∞ x̃(t) exists and

x̃∞ = argmin
z∈S+

gx̃(0)(z) := argmin
z∈S+

⟨z, log(z)− 1− log(x̃(0))⟩ if L = 2,

⟨z, x̃(0)⊙ 2
L
−1⟩ − L

2
∥z∥2/L2/L if L > 2

(5.13)

where S+ is defined in (NNLS).

Theorem 5.4.6 resembles [CMR23, Theorem 2.7]. Note, however, that the definition of

S+ is different. The proof unifies and simplifies several of the arguments given there, and

that Theorem 5.4.6 does not require the existence of a solution of Ax = y.
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To prove Theorem 5.4.6, we consider a function F : RN
≥0 → R that is based on an impor-

tant concept that appears in thermodynamics, namely, the so-called Tsallis q-logarithm,

introduced in the seminal paper [Tsa88]. It is given by

F (x) = ⟨x, lnq x⟩, (5.14)

where q = 2− 2
L
and the q-logarithm is given by

lnq(u) =

x1−q−1
1−q

, if q ̸= 1;

ln(x), if q = 1,

where we set 0 log(0) = limz→0 z log(z) = 0. The q-logarithm function lnq(u) has some

basic properties that will be used in the calculations below.

(i) lnq(1/u) = −uq−1 lnq u;

(ii) lnq(uv) = lnq u+ lnq v + (1− q) lnq u lnq v

(iii) lnq(u/v) = vq−1(lnq u− lnq v)

Furthermore, its derivative is given by d
du
(lnq u) = u−q. Using these properties, it fol-

lows that the gradient vector is ∇F (x) = lnq x + x⊙1−q and the Hessian is described by

∇2F (x) = (2−q) diag(x⊙−q). In particular, the function F is convex, since q = 2−2/L < 2

and, therefore, ∇2F (x) ≽ 0.

The proof of Theorem 5.4.6 is based on two ingredients, a function for which the Bregman

divergence can be nicely calculated and for which its temporal derivative ∂tDF (z+, x̃(t))

is bounded by the derivative of the objective function and a so-called Lyapunov functional

(also known as energy functional) that decreases as t → ∞. The convergence rate will

naturally appear from the minimization of this functional. This idea, which dates back

from the work by Aleksandr Lyapunov [Lya92], became a crucial tool to analyze dynamical

systems given by a system of ODEs. We start by calculating the Bregman divergence of

the q-logarithm.

Proposition 5.4.7. The Bregman divergence DF of the function F : RN
≥0 → R define

above is given by

DF (x,y) = ⟨x⊙ lnq(
x

y
)− (x− y),y⊙1−q⟩.

In particular, for q = 1, DF (x,y) reduces to the Kullback-Leibler divergence for vectors

in RN
≥0.
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Proof. The definition of the Bregman divergence yields

DF (x,y) = F (x)− F (y)− ⟨∇F (y),x− y⟩

= ⟨x, lnq x⟩ − ⟨y, lnq y⟩ − ⟨lnq y + y⊙1−q,x− y⟩

= ⟨x, lnq x⟩ − ⟨y, lnq y⟩ − ⟨lnq y,x⟩+ ⟨lnq y,y⟩ − ⟨y⊙1−q,x⟩+ ⟨y⊙1−q,y⟩

= ⟨x, lnq x− lnq y⟩ − ⟨x− y,y⊙1−q⟩.

By using that lnq(u − v) = v1−q lnq(u/v), we have that lnq x − lnq y = y⊙1−q ⊙ ln(x
y
).

Thus,

DF (x,y) = ⟨x,y1−q ⊙ lnq(
x

y
)⟩ − ⟨x− y,y⊙1−q⟩

= ⟨x⊙ lnq(
x

y
),y1−q⟩ − ⟨x− y,y⊙1−q⟩.

Remark 5.4.8. This Bregman divergence has a nice interpretation in the particular

case q = 1. Indeed, for probability vectors x,y ∈ RN
≥0 that add up to one, i.e., with

⟨x,1⟩ = ⟨y,1⟩ = 1, the Bregman divergence DF reduces to the Kullback-Leibler function

KL[x,y] = ⟨ln(x
y
),x⟩. In general, in Information Theory and Information Geometry,

such divergence is called Kullback-Leibler divergence if the underlying vectors are positive.

See [Ama16, Page 11].

We will use another Lemma about the boundedness of the Bregman divergence. It is

inspired by [CMR23, Lemma 2.5] but we prove it here for the sake of completeness since

we have a different Bregman divergence.

Lemma 5.4.9. Let F be the function defined in Equation (5.14) and x̃(t) : R+ → RN
+ be

a continuous function with x̃(0) > 0. Let z ≥ 0 be fixed. If DF (z, x̃(t)) is bounded, then

∥x̃(t)∥2 is bounded.

Proof. We will prove the statement by using the contrapositive. Let ∥x̃(t)∥2 be un-

bounded. Then there exists a sequence 0 < t1 ≤ t2 ≤ . . . such that ∥x̃(tk)∥2 → ∞.

Hence there exists some n ∈ [N ] and a subsequence 0 < tn1 ≤ tn2 ≤ . . . such that

x̃n(tnk
) → ∞. Because of that, we only need to analyze a one-dimensional version of the

Bregman divergence. From Proposition 5.4.7, we have

DF (z, x̃(t)) = ⟨z⊙ lnq

(
z

x̃(t)

)
− (z− x̃(t)), x̃(t)1−q⟩.
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For z ≥ 0 and q = 1, we have

DF (z, x̃n(t)) = z ln

(
z

x̃n(t)

)
− z+ x̃n(t)

= x̃n(t)− z ln

(
z

x̃n(t)

)
− z → ∞,

when x̃n(tnk
) → ∞. For z ≥ 0 and q = 2, we have,

DF (z, x̃n(t)) =

(
z lnq

(
z

x̃n(t)

)
− z+ x̃n(t)

)
x̃n(t)

1−q

= z

[( z
x̃n(t)

)1−q

− 1

1− q
− (z− x̃(t))

]
x̃n(t)

1−q

= z
[z1−q − x̃n(t)

1−q

1− q
− zxn(t)

1−q + xn(t)
2−q
]
→ ∞,

when x̃n(tnk
) → ∞, since 1 − q < 0. Thus DF (z, x̃(tnk

)) → ∞ and consequently

DF (z, x̃(t)) is unbounded.

We will first prove Theorem 5.4.6 and, from that, we will use the balancedness condition

from Lemma 5.4.3 to finally establish Theorem 5.4.1.

Proof of Theorem 5.4.6. Let us begin with a brief outline of the proof.

• First, we compute the time derivative of DF (z+, x̃(t)), for z+ ∈ S+, where S+ was

defined in (NNLS).

• Second, with this estimate, we will establish the convergence rate of the objective

function, i.e., at which rate Ax̃(t) → y+. To do so, we will show there exists a

certain Lyapunov functional that decreases over time, i.e., such that E ′(t) < 0.

• Third, by using Lemma 5.4.9, we deduce the boundedness and convergence of

∥x̃(t)∥2.

• Fourth, we characterize the limit x̃∞ = limt→∞ x̃(t).

Since C+ = {Az : z ∈ R≥0} ⊂ RM is a closed convex set, the infimum of the convex

function infw∈C ∥w− y∥2 is attained at y+, which is a vector that fulfills Ax+ = y+. This

means that the set S+ is non-empty. Let z+ be any element of S+. We start by calculating

the derivative

∂t∇F (x̃(t)) = (2− q) diag(x̃(t)⊙−q)x̃′(t) = −(2− q)x̃(t)⊙−q ⊙ x̃⊙q(t)⊙ AT (Ax̃(t)− y)

= −(2− q)AT (Ax̃(t)− y) = −(2− q)∇L(x̃).
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From that, we obtain the temporal derivative of the Bregman divergence DF (x̃∞, x̃(t)),

∂tDF (z+, x̃(t)) = ∂t [F (z+)− F (x̃(t))− ⟨∇F (x̃(t)), z+ − x̃(t)⟩]

= −⟨∇F (x̃(t)), x̃′(t)⟩+ ⟨∇F (x̃(t)), x̃′(t)⟩ − ⟨∂t∇F (x̃(t)), z+ − x̃(t)⟩

= (2− q)⟨∇L(x̃(t)), z+ − x̃(t)⟩.
(5.15)

Now, the crucial step is to exhibit a functional E(t) that depends on the difference L( ˜˜(t)x−
L(z+)) and on the Bregman divergence DF (x̃∞, x̃(t)). The function F is chosen in a way

to make the Bregman divergence of L, i.e., DL(z+, x̃(t)), appear in the derivative of this

functional. Therefore, consider the functional

E(t) = t(L(x̃(t))− L(z+)) +
1

2− q
DF (z+, x̃(t)).

Note that L(x̃(t))− L(z+) ≥ 0, since

d

dt
(L(x̃(t))− L(z+)) = ⟨∇L(x̃(t)), x̃′(t)⟩ = −⟨∇L(x̃(t)), x̃(t)⊙q∇L(x̃(t))⟩ ≤ 0.

Using Equation (5.15), we obtain

E ′(t) = L(x̃(t))− L(z+) + t⟨∇L(x̃(t)), x̃′(t)⟩+ ⟨∇L(x̃(t)), z+ − x̃(t)⟩

= −DL(z+, x̃(t))− t⟨∇L(x̃(t)), x̃⊙q∇L(x̃(t))⟩ ≤ 0.

Hence, E(t) is decreasing, which implies

t(L(x̃(t))− L(z+)) ≤ E(t) ≤ E(0) = 1

2− q
DF (z+, x̃(0)).

Thus, L(x̃(t))− L(z+) ≤ O
(
1
t

)
. This implies that

∥Ax̃(t)− y+∥22 ≤ ∥Ax̃(t)− y∥22 + ∥y−y+∥22
= ∥Ax̃(t)− y∥22 + ∥Az+ − y∥22

= L(x̃(t))− L(z+) ≤ O
(
1

t

)
.

(5.16)

Now, we establish that ∥x̃(t)∥2 is bounded. In fact, from Equation (5.15), we have

∂tDF (z+, x̃(t)) = −(2− q)⟨Ax̃(t)− y,Ax̃(t)−Az+⟩

≤ −(2− q)∥Ax̃(t)− y+∥22 < 0.
(5.17)
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Note that DF (z+, x̃(t)) must converge for t → ∞ as it is bounded from below and mono-

tonically decreasing, since DF (z+, x̃(t)) ≥ 0 and ∂tDF (z+, x̃(t)) ≤ 0. In particular,

0 ≤ DF (z+, x̃(t)) ≤ DF (z+, x̃(0)) for all t ≥ 0. Moreover, from Lemma 5.4.9, we know

that ∥x̃(t)∥2 is bounded since 0 ≤ DF (z+, x̃(t)) ≤ DF (z+, x̃(0)).

Since x(t) is bounded, let us denote by B a sufficiently large compact ball around the

origin such that B ∩ S+ ̸= ∅ and x̃(t) ∈ B, for all t ≥ 0. Now assume that there exists

no z+ ∈ S+ ∩B such that limt→∞DF (z+, x̃(t)) = 0, i.e., by compactness of S+ ∩B there

exists ε > 0 such that limt→∞DF (z+, x̃(t)) > ϵ, for all z+ ∈ S+∩B. By strict convexity of

DF (·, x̃(t)), this implies that x̃ is bounded away from the set S+ on B and ∥Ax̃(t)−y+∥2
cannot converge to zero contradicting the just obtained convergence limt→∞Ax̃(t) = y+.

Hence, there exists z+ ∈ S+ with limt→∞DF (z+, x̃(t)) = 0. For any such z+, let us

assume that x̃(t) ↛ z+. Then there exists ε > 0 and a sequence of time steps t0, t1, . . .

with ∥z+− x̃(tk)∥2 ≥ ε and limk→∞ DF (z+, x̃(tk)) = 0. Since x̃(tk) is a bounded sequence,

a (not relabeled) subsequence converges to some x̄ with ∥z+− x̄∥2 ≥ ε and DF (z+, x̄) = 0.

Since DF (x̄, x̄) = 0 and DF is non-negative, this is a contradiction to the strict convexity

of DF (·, x̄). Hence, x̃∞ = limt→∞ x̃(t) ∈ S+ exists and is the unique solution satisfying

limt→∞ DF (x̃∞, x̃(t)) = 0.

Because ∂tDF (z+, x̃(t)) is identical for all z+ ∈ S+ (the second line of (5.17) does not

depend on the choice of z+), the difference

∆z+ = DF (z+, x̃(0))−DF (z+, x̃∞) (5.18)

is also identical for all z+ ∈ S+. By non-negativity of DF ,

DF (z+, x̃(0)) ≥ ∆z+ = ∆x̃∞ = DF (x̃∞, x̃(0)). (5.19)
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Thus

x̃∞ ∈ argmin
z∈S+

DF (z, x̃(0))

= argmin
z∈S+

F (z)− F (x̃(0))− ⟨∇F (x̃(0)), z− x̃(0)⟩

= argmin
z∈S+

F (z)− ⟨∇F (x̃(0)), z⟩

= argmin
z∈S+


∑N

n=1 zn log(zn)− zn − log(x̃n(0))zn if L = 2∑N
n=1−z

2
L
n + 2

L
x̃n(0)

−1+ 2
L zn if L > 2

= argmin
z∈S+

⟨z, log(z)− 1− log(x̃(0))⟩ if L = 2,

⟨z, x̃(0)⊙ 2
L
−1⟩ − L

2
∥z∥2/L2/L if L > 2

= argmin
z∈S+

gx̃(0)(z).

We can finally prove the last part of our main result.

Proof of Theorem 5.4.1. By Lemma 5.4.3, the assumption that x(k)(0) = x(k′)(0), for all

k, k′ ∈ [L], implies that x(k)(t) = x(k′)(t), for all t ≥ 0. Furthermore, each x(k)(t) equals

x(t) defined via x(0) = x(k)(0) and x′(t) = − 1
L2∇L(x). By Theorem 5.4.6, the limit

x∞ := limt→∞ x(t) exists and x̃∞ = x⊙L
∞ lies in S+. Let z ∈ S+, i.e., is an admissible

solution to (NNLS). The quantitative bound in (5.4) can be deduced by following the steps

in [CMR23] since (5.13) and [CMR23, Equation (18)] are identical up to the definition of

S+.

The Lyapunov analysis developed above can, in principle, be generalized to more sophis-

ticated methods such as stochastic or accelerated gradient flows. See [SBC16, DSKL+22,

WRJ21, KS21a, ZWB+21]. In fact, by using slightly different gradient flow dynamics, we

can establish an accelerated convergence rate for this dynamical system that solves the

problems (NNLS).

5.5 Accelerated gradient flow

In this section, we can generalize the argument given above and prove that an accelerated

version of Theorem 5.4.1. Indeed, let y(t) = x̃(t) + t
2
x̃′(t) and consider the second order

ODE:



5.5. ACCELERATED GRADIENT FLOW 179

y′(t) = − t

2
y(t)⊙q∇L(x̃(t)).

y(0) = x̃(0) = x̃0 > 0.

First, we observe that the sign of y(t) does not change. In fact, if y(t0) = 0, for some

t0 ≥ 0, then we have y(t0) = y′(t0) = 0. By the Picard-Lindelöf theorem, we have that

y(t) = 0, for all t, which contradicts y(0) > 0. Thus, the ODE admits a unique solution

y(t) > 0, for all t ≥ 0.

When q = 0, the ODE system above can be used to explain Nesterov’s acceleration of

gradient descent see, e.g., [SBC16, Section 2], [KBB15, Section 3] and [MJ19, Section 2].

Therefore, Equation (5.20) can be seen as a Riemannian generalization of the accelerated

gradient flow.

Proposition 5.5.1. The flow x̃(t) converges with order O(1/t2). More precisely, it holds

that L(x̃(t))− L(z+) ≤ O( 1
t2
).

Proof. Consider z+ ∈ S+. We then have that L(z+) = 1
2
∥y+ − y∥22. Now, consider the

Lyapunov functional given by

E(t) = t2(L(x̃(t))− L(z+)) +
4

2− q
DF (z+,y(t)).

We start by proving that it decreases, i.e., that E ′(t) ≤ 0.

First we will calculate the derivative d
dt
DF (z+,y(t)). Remember from the previous section

that the gradient of F is given by ∇F (x) = lnq x + x⊙1−q and the Hessian is described

by ∇2F (x) = (2 − q) diag(x⊙−q). Using that the Hessian applied at y(t), ∇2F (y(t)) =

(2− q) diag(y(t)⊙−q), and y′(t) = − t
2
y(t)⊙q∇L(x̃),

∂t∇F (y(t)) = ∇2F (y(t))y′(t) = (2− q) diag(y(t)⊙−q)y′(t)

= − t

2
(2− q)∇L(x̃(t)),

we obtain

d

dt
DF (z+,y(t)) =

d

dt

(
F (z+)− F (y(t))− ⟨∇F (y(t)), z+ − y(t)⟩

)
= −⟨∇F (y(t)),y′(t)⟩ − ⟨∇F (y(t)),−y′(t)⟩ − ⟨∂t∇F (y(t)), z+ − y(t)⟩

= −⟨∂t∇F (y(t)), z+ − y(t)⟩

=
t

2
(2− q)⟨∇L(x̃(t)), z+ − y(t)⟩. (5.20)
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Thus,

E ′(t) = 2t(L(x̃(t))− L(z+)) + t2⟨∇L(x̃), x̃′(t)⟩+ 4

2− q

d

dt
DF (z+,y(t)).

= 2t(L(x̃(t))− L(z+)) + t2⟨∇L(x̃), x̃′(t)⟩+ 2t⟨∇L(x̃(t)), z+ − y(t)⟩

= 2t(L(x̃(t))− L(z+)) + t2⟨∇L(x̃), x̃′(t)⟩+ 2t⟨∇L(x̃(t)), z+ − x̃(t)− t

2
x̃′(t)⟩

= 2t(L(x̃(t))− L(z+)) + t2⟨∇L(x̃), x̃′(t)⟩+ 2t⟨∇L(x̃(t)), z+ − x̃(t)− t

2
x̃′(t)⟩

= 2t(L(x̃(t))− L(z+)) + 2t⟨∇L(x̃(t)), z+ − x̃(t)⟩

= −2tDL(z+, x̃(t)) ≤ 0.

We can finally establish the accelerated convergence rate for the dynamics given by Equa-

tion (5.20). Indeed, since E(t) is decreasing. This implies that

t2(L(x̃(t))− L(z+)) ≤ E(t) ≤ E(0) = 4

2− q
DF (z+, x̃0).

We conclude that 0 ≤ L(x̃(t))− L(z+) ≤ O( 1
t2
), as t → ∞.

As described above, the discretization of a Riemannian gradient flow can be seen as a

mirror descent algorithm [LWLA22, GWS21]. Therefore, the next step, left here as an

open problem, is to explore this connection and to develop an extension of the above

techniques to the discrete case to establish the respective convergence rates.

Open Problem: How can the gradient flow analysis, which was developed here for the

vanilla/accelerated gradient flow applied to overparametrized NNLS, can be extended to

discrete methods?

Remark 5.5.2. The very restrictive form of x0 = α1 in Theorem 5.4.1 is only required

to get an implicit ℓ1-bias, which is a classical regularizer for sparse recovery [FR13].

By changing the initialization, one can also achieve other biases like weighted ℓ1-norms.

Below, we show that, for L = 2 and any w ∈ (0, 1]N with ∥w∥∞ = 1, the initialization

vector x0 defined as

x0 = e−
1
2
(1+θw)

will yield an approximate ℓw,1-bias in the limit of gradient flow, where ∥z∥w,1 = ∥z ⊙
w∥1 and θ > 0 has to be chosen sufficiently large depending on the aimed for accuracy.
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Weighted ℓ1-norms have been used in various applications, e.g., polynomial interpolation

or sparse polynomial chaos approximation [RW16], [PHD14].

Theorem 5.5.3. Let ε > 0 and L = 2. Under the assumptions of Theorem 5.4.1 with

x0 ≤ α ≤ h(Q+, ϵ), we get that

∥x̃∞∥w,1 − min
z∈S+

∥z∥w,1 ≤ ϵ,

where ∥z∥w,1 = ∥z ⊙ w∥1 denotes the weighted ℓ1-norm for the weights w = δ(−1 −
log(x̃0)), where δ = 1

maxn∈[N ](−1−log((x̃0)n)
.

Proof. For L = 2, we obtain from (5.13) that x̃∞ ∈ argminz∈S+
⟨z, log(z)− 1− log(x̃0)⟩.

Hence,

⟨x̃∞, log(x̃∞)− 1− log(x̃0)⟩ ≤ ⟨z, log(z)− 1− log(x̃0)⟩,

which may be re-stated as

⟨x̃∞ − z,−1− log(x̃0)⟩ ≤ ⟨z, log(z)⟩ − ⟨x̃∞, log(x̃∞)⟩.

Let α ∈ (0, e−
1
2 ) and assume that α ≥ x0 > 0 (so that log(x̃0) < −1). Note that

1 ≥ w ≥ 0 by assumption. Denote ∥z∥w,1 = ∥z ⊙ w∥1 to be the weighted ℓ1-norm. By

non-negativity of w, x̃∞, z, we get that

∥x̃∞∥w,1 − ∥z∥w,1 ≤ δ(⟨z, log(z)⟩ − ⟨x̃∞, log(x̃∞)⟩).

Since ξ2 ≥ ξ log(ξ) ≥ −e−1 for ξ ≥ 0,

∥x̃∞∥w,1 − ∥z∥w,1 ≤ δ(∥z∥22 +Ne−1) ≤ δ(∥z∥21 +Ne−1) ≤ ϵ

because α ≤ h(Q+, ϵ) and δ ≤ − 1
1+2 log(α)

. Take the minimum over all z ∈ S+ and we get

our conclusion.

5.6 NNLS and Compressive Sensing

The additional ℓ1-regularization that is described in Theorem 5.4.1, for small α > 0,

allows finding NNLS-solutions that are of lower complexity since there is a strong con-

nection between small ℓ1-norm and (effective) sparsity. In particular, this allows stable

reconstruction of (almost) non-negative ground truths if A is well-behaved, e.g., if A sat-

isfies standard assumptions for sparse recovery like suitable robust null space and quotient
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properties [FR13]. The former was defined in Chapter 4, see Definition 4.1.4. Therefore,

we start our discussion by defining the latter.

Definition 5.6.1 ([FR13, Definition 11.11]). A measurement matrix A ∈ RM×N is said to

possess the ℓ1-quotient property with constant d relative to the ℓ2-norm if, for all b ∈ RM ,

there exists u ∈ RN with Au = b and ∥u∥1 ≤ d
√
s∗∥b∥2, where s∗ = M/ ln(eN/M).

The quotient property was established by [Woj10] in order to study when equality-

constrained ℓ1-minimization would succeed in recovering the underlying ground-truth

in a noisy regime, as discussed in Chapter 4. It has a nice geometric interpretation,

namely, that the ℓ2-ball of radius
ln(eN/M)

dM
is contained in the image of the ball in the

1-norm, which is the polytope generated by the absolute convex hull of the columns of

the measurement operator A. Mathematically speaking, the quotient property says that
ln(eN/M)

dM
BN

2 ⊂ ABN
1 .

Note that many types of matrices satisfy the robust NSP of order s and the ℓ1-quotient

property, e.g., Gaussian random matrices, randomly subsampled Fourier-matrices, and

randomly subsampled circulant matrices. For instance, a properly scaled matrix with

i.i.d. Gaussian entries satisfies both properties with high probability if M ≥ Cs log(eN/s)

and M ≤ N/2, where the constant C > 0 only depends on the NSP parameters ρ and

τ [FR13]. Combining Theorem 5.4.1 and [CMR23, Theorem 1.4], the following stable

recovery result can be derived.

Theorem 5.6.2. Let A ∈ RN×M be a matrix satisfying the ℓ2-robust null space property

with constants 0 ≤ ρ < 1 and τ > 0 of order s := cM/ log(eN/M) and the ℓ1-quotient

property with respect to the ℓ2-norm with constant d > 0.

For x∗ ∈ RN and y = Ax∗, recall y+ and C+ from Equations (5.3) and (1.4). Decompose

x∗ into

x∗ = x+ − x− (5.21)

where Ax+ = y+. For ϵ > 0 assume that α > 0 satisfies

α ≤ h(∥x+∥1, ϵ)

for h defined in (5.4). Then the limit x̃∞ defined in Theorem 5.4.1 yields reconstruction

error

∥x̃∞ − x∗∥2 ≤
C√
s
(2σs(x+)ℓ1 + ϵ) + ∥x−∥2. (5.22)

The constants C,C ′ > 0 only depend on ρ, τ, c, d.

As can be seen from Theorem 5.6.2, our approach to solving (NNLS) is stable with

respect to negative entries of the ground truth, i.e., the reconstruction error depends on
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the sparsity of the positive part x+ of x∗ and the magnitude of the negative part x− of

x∗. The experiments we perform in Section 5.8.4 suggest that the established solvers for

(NNLS) are less stable under such perturbations.

The observation that under specific assumptions on the measurement operator A, the

solution obtained through (NNLS) inherently promotes sparsity without necessitating

hyper-parameter tuning can be traced back to seminal works such as [DT05, DT10a],

which establish a connection between this subject and the theory of convex polytopes. It

is noteworthy that even before the advent of modern sparse recovery theory, as exemplified

by compressive sensing, the paper [DJHS92] exploited non-negativity to recover sparse

objects, showcasing the early recognition of its significance. Subsequent works studied the

uniqueness of positive solutions of underdetermined systems [BEZ08] as well as the exten-

sion to low-rank solutions within the positive-definite matrix cone [WXT10]. Furthermore,

researchers have established conditions under which NNLS proves effective in recovering

sparse vectors even in the presence of noise [KJ17, SJC19, SH11, SH13, Mei13]. Two key

concepts in these findings are the null space property, as outlined in Definition 4.1.4, and

the M+ criterion [BEZ08].

Definition 5.6.3 ([BEZ08]). Let A ∈ RM×N . We say A obeys the M+ criterion with

vector uM+ if there exists uM+ ∈ RM such that A⊤uM+ > 0, i.e., if A admits a strictly-

positive linear combination of its rows.

It is important to note that the M+ criterion, as demonstrated in [WXT10, Theorem

5], serves as a necessary condition for an underdetermined system (M < N) to possess a

unique non-negative solution. Examples of matrices A ∈ RM×N satisfying the M+ crite-

rion include: (i) matrices with independent and identically distributed (i.i.d.) Bernoulli

entries, (ii) matrices whose columns can be expressed as independent 1-subgaussian ran-

dom vectors [SJC19], (iii) matrices whose columns form an outwardly k-neighborly poly-

tope [DT05], and (iv) adjacency matrices of bipartite expander graphs [WXT10]. The

following is a recent robustness result for NNLS, relying on the null space property and

the M+ criterion.

Theorem 5.6.4 ([KJ17, Theorem 4]). Suppose that A ∈ RM×N obeys the NSP of order

s ≤ N with constants 0 < ρ < 1 and τ > 0 and the M+ criterion with the vector

uM+. Then A allows stable reconstruction of any non-negative s-sparse vector x∗ from

y = Ax∗ + ϵ via (NNLS). In particular, for any 1 ≤ p ≤ q, the unique solution x+ of

(NNLS) is guaranteed to obey

∥x+ − x∗∥p ≤
C

s1−1/p
σs(x)1 +

D

s1/q−1/p
(∥uM+∥2 + τ)∥ϵ∥2, (5.23)
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where C and D only depend on ρ, the condition number of the diagonal matrix diag(A⊤uM+).

Theorem 5.6.4, which was later generalized to arbitrary ℓp-quasinorms [SJC19, Theorem

2], shows that if A behaves sufficiently well, the solution of (NNLS) stably reconstructs

any non-negative s-sparse vector from noisy measurements at least as well as conventional

programs for sparse recovery. In particular, neither sparsity regularization nor parameter

tuning is required. The program only relies on the geometry imposed by its constraints.

The work [SJC19] even showed that (NNLS) outperforms Basis Pursuit Denoising in re-

trieving a sparse solution from noisy measurements. However, as previously discussed in

Section 5.3, the established solvers for (NNLS) unfortunately come with several disad-

vantages. Let us also mention that measurement operators A appearing in applications

normally do not satisfy the assumptions of Theorem 5.6.4. In such scenarios, an addi-

tional sparsity regularization is still needed when solving (NNLS) with these methods.

Since our approach does not share the disadvantages of non-scalability or step-size tuning

and naturally includes the possibility of adding ℓ1-regularization, it is well-designed for

exploiting the noise robustness of (NNLS) in sparse recovery.

5.7 Related Works on NNLS

The results presented in Section 5.4 establish a connection between two distinct and pre-

viously unrelated areas of mathematical research: the long-standing question of efficient

methods for solving NNLS and the more recent investigation into the implicit bias of gra-

dient descent. In particular, it was shown in Theorem 5.4.1 that it is possible to use ideas

from overparametrization to solve a constrained optimization problem. Prior to delving

into a numerical evaluation of our theory, it is appropriate to provide a concise overview

of the existing literature about the solution of the non-negative least squares.

The first algorithm proposed to solve (NNLS) appeared in 1974 in the book [LH95, Chap-

ter 23], where its finite convergence was proved, and a Fortran routine was presented.1

Like the previous papers [Sto71, GS70, GM73] it builds upon the solution of linear systems.

Similar to the simplex method, the algorithm is an active-set algorithm that iteratively

sets parts of the variables to zero to identify the active constraints and solve the uncon-

strained least squares sub-problem for this active set of constraints. It is still, arguably,

the most famous method for solving (NNLS), and several improvements have been pro-

posed in a series of follow-up papers [BDJ97], [VBK04], [MFLS17], [LD11], [DDM21].

Nevertheless, a limitation of this approach arises from its reliance on the normal equa-

tions, rendering it impractical for ill-conditioned or large-scale problems. Furthermore,

1This algorithm is the standard one implemented in many languages: optimize.nnls in the SciPy
package, nnls in R, lsqnonneq in MATLAB and nnls.jl in Julia.
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current theoretical guarantees for the algorithm and its modifications have yet to surpass

convergence with a finite number of steps [LH95, Chapter 23], [DDM21, Theorem 3],

leaving room for improvement in terms of theoretical guarantees.

Another line of research has been developing projected gradient methods for solving

(NNLS), which come with linear convergence guarantees [KSD13], [Pol15] [Lin07]. In

contrast to active set and interior point methods, projected gradient methods do not re-

quire solving a linear system of equations at each step, making them more scalable for

high-dimensional problems. However, the effectiveness of these methods hinges on the

appropriate choice of step size, and as previously emphasized in Section 5.3, the projec-

tion step may render established acceleration techniques for standard gradient descent

ineffective.

5.8 Numerical experiments

In the last part of this chapter, we will finally turn to a numerical evaluation of our

theoretical insights. We compare the following six methods for solving NNLS here:

• GD-nL: Vanilla gradient descent applied to Lover in (5.2) with n layers, for n ∈ N.
This is the discretized version of the gradient flow we considered in Section 5.4. As

initialization we use α1, for α > 0.

• SGD-nL: Stochastic gradient descent applied to Lover in (5.2) with n layers, for

n ∈ N. A probabilistic variant of GD-nL. In the experiments we use M/10 as

batch-size for SGD-nL and initialize with α1, for α > 0.

• LH-NNLS: The standard Python NNLS-solver scipy.optimize.nnls, which is an

active set method and is based on the original Lawson-Hanson method [LH95]. It

is not scalable to high dimensions since it requires solving linear systems in each

iteration. (An accelerated version of LH-NNLS is provided in [BDJ97]. Since both

methods produce the same outcome in our experiments, we only provide the results

for LH-NNLS.)

• TNT-NN: An alternative but more recent active set method that heuristically

works well and dramatically improves over LH-NNLS in performance [MFLS17].

We used the recent Python implementation available at https://github.com/

gdcs92/pytntnn.

https://github.com/gdcs92/pytntnn
https://github.com/gdcs92/pytntnn
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• CVX-NNLS: Solving the quadratic formulation of (NNLS) described in (5.1) via

ADMM. We use the Python-embedded modeling language CVX 2 which, in turn,

uses the solver OSQP 3 for this task.

• PGD: Projected gradient descent for NNLS as described in [Pol15].

In particular, we are interested in quantifying the impact of initialization on sparsity

regularization, in illustrating the impact of the number of layers on reconstruction perfor-

mance, in the practicality of state-of-the-art step-size tuning procedures for GD-nL, and

in the stability of GD-nL against negative perturbations in comparison to established

methods. At the end of the chapter, we also provide additional large-scale experiments

and benchmark tests with PGD.

5.8.1 Initialization

In the first experiment, we validate the ℓ1-norm regularization that, according to the

second part of Theorem 5.4.1, can be induced by using a small initialization for GD-nL.

For M = 10 and N = 50, we draw a random Gaussian matrix A ∈ RM×N , create a

3-sparse ground-truth x ∈ RN , and set y = Ax. Figure 5.1 depicts the ℓ1-norm of the

limits of GD-2L and GD-3L, for 10−3 ≤ α ≤ 10−1 and constant step-size η = 10−2. As

a benchmark, the ℓ1 minimizer among all feasible solutions is computed via basis pursuit

(BP). Figure 5.1 shows that GD-2L and GD-3L converge to ℓ1-norm minimizers if α is

sufficiently small. As predicted by the second part of Theorem 5.4.1, the requirements

on α to allow such regularization are milder for the 3-layer case GD-3L. Finally, neither

LH-NNLS nor CVX-NNLS reaches ℓ1-minimality. The matrix A, although sufficiently

well-behaved for sparse recovery in general, does not guarantee the uniqueness of the

NNLS solution here.

5.8.2 Number of layers

In the second experiment, we take a closer look at the reconstruction behavior of GD-

nL. In particular, we compare how different ground truth entries are approximated over

time for n = 2 and n = 3 layers. For initialization magnitude and step-size we choose

α = 10−2 and η = 10−2. We set M = 30 and N = 50, draw a random Gaussian matrix

A ∈ RM×N , create a 3-sparse non-negative ground-truth x ∈ RN , and set y = Ax.

Note that A satisfies the assumptions of Theorem 5.6.2. Figure 5.2 depicts the entry-

wise error between the three non-zero ground-truth entries and the corresponding entries

2https://www.cvxpy.org/
3https://osqp.org/docs/solver/index.html

https://www.cvxpy.org/
https://osqp.org/docs/solver/index.html
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Figure 5.1: Influence of the initialization on the ℓ1-norm of the solution.

of the iterates of GD-2L and GD-3L. As already observed in previous related works,

we see that a deeper factorization leads to sharper error transitions that occur later

and that more dominant entries are recovered faster than the rest. Interestingly, there

occurs some kind of overshooting in the dominant entries. The dark blue and purple

curves suggest that GD-nL does not monotonically decrease the error in all components

but rather concentrates heavily on the leading component(s) in the beginning and only

starts distributing the error over time. In this way, GD-nL could be interpreted as a

self-correcting greedy method.
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Figure 5.2: Influence of the number of layers on the decay of the solution.

5.8.3 Different stepsizes

In the third experiment, we compare the convergence rates of GD-nL and SGD-nL for

various choices of step size. Apart from using a constant step-size η > 0, we also consider
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Nesterov acceleration [Nes83] and the BB stepsize rules [Fle05, Ray97]. Figure 5.5 shows

the decay in training error, i.e., objective value over time in two different settings: the

dense case, i.e., we have a quadratic system with M = N = 50 and a dense ground-truth,

and the sparse case, i.e., we have an underdetermined system with M = 30, N = 50, and

a 3-sparse ground-truth. In both settings, A has Gaussian entries. As Figures 5.3 and

5.4 show, advanced step-size choices notably improve the gradient methods’ convergence

rate. Moreover, GD-nL seems to profit more from the acceleration than SGD-nL.
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Figure 5.3: Convergence rate for various choices of step-size in the dense case, see Section
5.8.3.
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Figure 5.4: Convergence rate for various choices of step-size in the sparse case, see Section
5.8.3.

Figure 5.5: Convergence rate for various choices of step-size, see Section 5.8.3.
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Figure 5.6: Illustration of the MNIST reconstruction, see Section 5.8.4.

5.8.4 Stability with Negative Entries

Now, we examine the robustness of the proposed methods in the context of recovering

perturbed signals that may not strictly adhere to non-negativity constraints. We explore

two distinct scenarios: the first involves generating random signals, while the second

utilizes signals sourced from the MNIST data set, which represent more realistic data. In

both scenarios we set α = 10−2 and η = 10−2 for GD-nL and SGD-nL. It is noteworthy

that in all tested instances GD-nL and SGD-nL outperform the established methods in

reconstruction quality, cf. Figure 5.6. Whereas HL-NNLS and TNT-NN are designed

to retrieve only non-negative signals, the gradient-based methods can stably deal with

vectors with small negative components by not using explicit constraints.

5.8.4.1 Gaussian signals

Let A ∈ RM×N be a random Gaussian matrix, where M = 30 and N = 50. We pick a

3-sparse non-negative vector x+ ∈ RN
+ at random. We, furthermore, define a noise vector

x− ∈ RN
+ that is 0 on the support of x+ and has positive Gaussian entries everywhere

else. For q ∈ [0, 1], we scale x+,x− such that

∥x+∥22 = 1− q and ∥x−∥22 = q. (5.24)

The perturbed signal is then given by x = x+−x−, and q regulates the negative corruption.

We regard the copy of x+ scaled to ℓ2-norm with norm equal to (1− q) as ground truth

and, by abuse of notation, also refer to it as x+. The corresponding measurements are

given as y = Ax = A(x+ − x−).
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(a) Gaussian.

(b) MNIST. (c) MNIST with PGD.

Figure 5.7: Comparison of stability, see Section 5.8.4.

5.8.4.2 MNIST signals

Again A ∈ RM×N is a random Gaussian matrix, where now M = 300 and N = 282 = 784.

We take x+ to be the original MNIST image (number three) and define a corrupted signal

x including negative Gaussian noise x− as in (5.24), for q ∈ [0, 1]. Note that our ground

truth is again a re-scaled version of the original image that has ℓ2-norm equal to (1− q).

Figures 5.7a, 5.7b and 5.7c compare the reconstruction error ∥x̂ − x+∥2 of HL-NNLS,

TNT-NN, GD-3L, and SGD-3L over various choices of q. Here we set α = 10−2 and

η = 10−2. These figures clearly show that the gradient descent-based methods outperform

the established NNLS solvers. Only for small negative noise levels and MNIST data SGD-

3L yields worse results than HL-NNLS and TNT-NN. As can be seen from Figure 5.6,

this worse error is mainly caused by incorrect values on the support of x+. Visually,

even for small q, the MNIST reconstruction of SGD-3L is far better than the one of

HL-NNLS and TNT-NN.

The experiment also reveals two interesting points. First, whereas it has numerically been

observed in [PPVF21] that, compared to gradient descent, stochastic gradient descent

reduces the generalization (resp. approximation) error if measured in ℓ2-norm, we observe

this (in the case of NNLS) only for large values of q, i.e., strong negative perturbations. For

small values of q, Figure 5.5 rather suggests that GD-3L outperforms SGD-3L. Second,
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for all values of q, the solutions computed by SGD-3L are visually closer to the ground

truth than the ones computed by GD-3L, cf. Figure 5.6. This suggests that, even in the

simple context of sparse recovery, (i) the ℓ2-norm might not be the appropriate measure

for the generalization error and (ii) the stochasticity in SGD-3L apparently improves the

generalization quality. Formalizing and proving this observation is an appealing topic for

future research.

5.8.5 Large-scale NNLS experiments

In this section, we provide additional empirical evidence for our theoretical claims. In

particular, (i) we illustrate the performance of our method in an over-determined large-

scale NNLS problem and (ii) we compare our method to projected gradient descent (PGD)

[Pol15] in terms of the number of iterations, convergence rate, and running time since it

is known that PGD converges linearly to the global minimizer [ABS13, Pol15] and it is a

numerically efficient method due to the fast calculation of the projection step.

In this first experiment, cf. Figure 5.8, we illustrate the performance of our method for an

overdetermined NNLS problem on a larger scale. The matrix A ∈ R2048×1024 is standard

Gaussian and, for a Gaussian random vector x ∈ R1024, y is created as a perturbed version

of Ax such that y is not in the range of A. Furthermore, we use x0 = 1 as a generic

initialization. Figure 5.8 shows the error ∥Ax⊙L − y∥2 over the iterations of gradient

descent. As predicted by Theorem 5.4.1, our method converges to a solution that solves

the NNLS problem (compare the error to the benchmark given by the Lawson-Hanson

algorithm).
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Figure 5.8: Large-scale NNLS problem, see Section 5.8.5.



192 CHAPTER 5. OVERPARAMETRIZED NNLS

5.8.5.1 Comparison of the averaged number of iterations

In the second experiment, cf. Figure 5.9, we illustrate the necessary amount of iterations

to reach the precision 10−3. The matrix A ∈ R512×1024 is a normalized 8-sparse random

vector x ∈ R1024 with Gaussian entries that are made positive by considering only the

absolute values of each entry, we generate y simply by doing y = Ax, which means that we

would expect the methods to converge to zero. We use x0 = 1 as a generic initialization.

As for the stepsize, for the PGD algorithm, it was chosen as η = 1/L = 1/||ATA||2, the
Lipschitz constant of the gradient. Also, for overparametrized GD-2L, overparametrized

GD-3L, and overparametrized SGD-2L, we choose a small but constant stepsize η = 0.02.

Moreover, we compare all of these methods against the GD-2L and GD-3L with the

Barzilai-Borwein (BB) stepsize η =
||xt−xt−1||22

||A(xt−xt−1)||22
. See [BB88] for more details. We ran it

100 times and took the median of the results in order to avoid outliers.

GD-2L GD-3L GD-3L BBGD-2L BBSGD-2LPGD

Figure 5.9: Comparison of the number of iterations, cf. Section 5.8.5.1.

As expected, PGD shines as it is extremely fast for the convex formulation of NNLS

and reaches good progress in the first 103 iterations. Our non-convex formulation, on

the other hand, needs more iterations to reach a very good precision. Nevertheless, by

combining it with the BB stepsize, we outperform the number of iterations necessary for a

certain precision as compared to PGD. This illustrates the potential of further acceleration

schemes that could leverage overparametrized formulations.

5.8.5.2 Running time comparison

In this experiment, we show a table with the necessary average running time, in seconds

and averaged over 25 realizations, to run 106 iteration of the NNLS problem for normalized

squared Gaussian matrices. Here, we use the Lipschitz constant of the gradient as the

stepsize for PGD, as described above. We also employ the same strategy and use the



5.9. CHAPTER CONCLUSION 193

(iteration-dependent) Lipschitz constant for our method, given by

∇2L(x) = L2ATA⊙ [x⊙L−1[x⊙L−1]T ] + L(L− 1) diag{AT (Ax⊙L − y)⊙ x⊙L−2)},

where L is defined in (5.10), i.e., η = 1/||∇2L(x)||2. Since this computation should

be done at each iteration, we only precompute the stepsize for the overparametrized

algorithm GD-2L and GD-3L at every 1000 iterations to make it more efficient. We use

x0 = 0.021 as a generic initialization. For both methods, we precompute Q = ATA and

p = ATy at the beginning of the simulation. As can be seen from the table, PGD is

extremely efficient. Interestingly, our method has a comparable running time, and it even

outperforms PGD for large dimensions.

256× 256 512× 512 1024× 1024 2048× 2048 4096× 4096
PGD 4.12 5.05 34.08 144.03 657.87
GD-2L 4.26 6.65 24.16 89.07 403.13
GD-3L 7.04 9.58 24.50 98.81 423.31

Table 5.1: Comparison of running time, cf. Section 5.8.5.2.

5.8.5.3 Convergence rate

In the last experiment, we compare the convergence rates of GD-2L, GD-3L, and PGD.

To this end, we create an NNLS instance with Gaussian A ∈ R256×256, y = Ax, for

x ∈ R256 drawn from a Gaussian distribution and entries taken in absolute value, and

run all three methods. As Figures 5.10 and 5.11 show, the convergence rates of all three

algorithms are the same with the observation that the PGD algorithm has a boosted start

provided by the initial projection step.

5.9 Chapter Conclusion

In this chapter, we presented the fourth and last idea related to the methods of least

squares method of this thesis. We discussed the phenomenon of implicit bias on over-

parametrized models, and we have shown that, due to its implicit bias, vanilla gradient

descent is a reliable and scalable solver for the decade-old problem of NNLS that, in

contrast to some of the established methods, comes with strong theoretical guarantees.

Whereas most works on the implicit bias of gradient descent focus on explaining the

still mysterious success of deep learning, we here took a different path and used the

implicit bias to solve a constrained optimization problem. We also showed that our
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Figure 5.10: Comparison of convergence rate in the dense, non-sparse case, cf. Section
5.8.5.3. With constant step size.
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Figure 5.11: Comparison of convergence rate in the dense, non-sparse case, cf. Section
5.8.5.3. With oracle stepsize.

solution has a Riemmanian interpretation, which opens new ways to think about the

overparametrized models and the analysis of deep learning architectures. In particular,

by using, for example, techniques related to extrapolating iterates, it should be possible to

develop Riemannian nonlinear accelerated methods that address more general constraints

in an accelerated way [HMJG23]. We leave this as an open problem with potential for

future exploration and development.

Open Problem: How to leverage the current overparametrized methods developed in

this chapter with accelerated Riemannian methods?

One limitation of the presented analysis resides in its reliance on a gradient flow argument

with infinitely small stepsize, whereas the discrete nature of the proposed algorithm calls
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for the development of a convergence theory specifically tailored to gradient descent.

Moreover, a connection between those results and generalization aspects of (linear) neural

networks needs a stepsize analysis since the performance of machine learning algorithms

is highly sensitive to the choice of stepsize. These results are currently in preparation and

will serve as the focus of one of the sections of an upcoming version of our paper before

submission.

Another intriguing avenue for exploration involves extending the positivity constraint be-

yond NNLS to encompass polyhedral or more general convex constraints. This extension

can be achieved by devising functions, such as the q-logarithm, that effectively capture

the geometry of the constraint set through the Bregman divergence in conjunction with

the overparametrized regime. A comprehensive investigation of this topic is also being

undertaken in preparation for a forthcoming publication.

A final important aspect is the benefit of stochasticity [PPVF21]. For algorithms like

stochastic gradient descent, it has been shown that introducing randomness induces better

generalization properties than that of gradient flow. Therefore, given the importance

of such a foundational algorithm for machine learning, as a future work, it would be

interesting to understand the role of the stepsize and how SGD can be used to retrieve a

solution to a constrained problem beyond the numerical simulations presented here.

In any case, we see much potential in exploiting this phenomenon in other contexts and

more classical problems as well. With the present chapter, we hope to initiate further

research and discussion in this direction.



Chapter 6

Conclusion

What’s past is prologue.

The Tempest, William Shakespeare, Act II, Scene I

This thesis has investigated how a simple and old idea, least squares, can be used as the

central toolkit for the understanding and development of modern algorithms that solve

data science and machine learning problems. By investigating iteratively reweighted least

squares, we observed that these algorithms can be seen as a majorization-minimization

strategy applied to a surrogate (non-)convex function. Moreover, by analyzing a gradient

flow algorithm applied to a non-convex least squares formulation, we developed a scal-

able method that tackled constrained optimization problems in the case of non-negative

constraints.

As the statistician Stephen Stigler wrote in one of the most important books about the

history of statistics, “The method of least squares was the dominant theme – the leitmotif –

of nineteenth-century mathematical statistics. In several respects, it was to statistics what

the calculus had been to mathematics a century earlier.” [Sti86, Page 11]. Thus, building

upon this line of reasoning, we envision this thesis as an incremental step towards ad-

vancing simple, scalable, statistically efficient but provable approaches that are grounded

in the method of least squares method for tackling large-scale machine learning chal-

lenges. Moreover, we advocate for comprehending intricate and complex phenomena in

data science and machine learning by initially grasping the linear regression scenario and

establishing connections between the complex phenomenon and a simplified least squares

framework. Currently, this paradigm is in a state of active development, as demonstrated

by some recent papers that, for example, try to understand the transformer architecture

in deep learning [ASA+22, ZFB23]. We anticipate that this is just the beginning of several

theoretical developments, and we can expect numerous comparable advancements to arise

in the future.

196
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We now summarize the main results of this thesis and give an overview of some possible

future research directions. In this thesis, we developed:

• A proof: The first proof that IRLS can converge globally with a linear rate for the

sparse recovery problem. In particular, we solved an open problem in the theory of

IRLS for sparse recovery.

• An algorithm: A scalable second-order algorithm with provable guarantees that

is able to retrieve highly ill-conditioned matrices for the provably optimal number

of measurements and is highly competitive with state-of-the-art methods.

• An extension of a theory: A theory for IRLS with global linear convergence

rate in the noise-blind case where the objective function is given by the sum of two

non-smooth terms allowing its use for problems when the noise level is not known

and when it is hard to perform hyperparameter tuning.

• An idea: A connection between overparametrization and the solution of constrained

convex problems based on the trade-off between side constraints in optimization

problems with the complexity of the optimization landscape.

Furthermore, throughout our discussions, we have conducted numerous numerical exper-

iments and identified several open problems and intriguing directions worth exploring.

These aspects have added depth to our research and have laid the groundwork for further

investigation.

6.1 Future directions

We conclude this thesis with two future lines of research that we believe to be interesting.

6.1.1 Majorization-minimization

As we discussed in this thesis, the majorization-minimization strategy plays a crucial

role in the development of efficient algorithms for ill-conditioned large-scale problems.

Recently, this type of strategy was employed to solve geodesically-convex problems in

Riemannian optimization [SW22] to get non-asymptotic convergence rates. Can the

IRLS-type of majorization-minimization strategy develop new algorithms for geodesically

convex functions with better convergence rates?
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6.1.2 Overparametrization

In the study of overparametrized least squares, we studied the implicit bias of gradient

descent when the overparametrization is given by x̃ :=
⊙

k∈[L] x
(k) = x(1) ⊙ · · · ⊙ x(L),

which can be seen as a simple linear neural network. It would be interesting to investigate

what happens in the case of a wider (and more realistic) set of architectures that involve

non-linearities. As an example, the recent study [LJ22] investigated the implicit bias

observed in nonhomogeneous feedforward networks. What are the implications of a more

general overparametrization when combined with the bias of the gradient descent for the

solution of constrained optimization problems?

“We have not succeeded in answering all our problems – indeed we sometimes feel we have not

completely answered any of them. The answers we have found have only served to raise a whole set of

new questions. In some ways, we feel that we are as confused as ever, but we think we are confused on a

higher level and about more important things. So this report does not purport to give final answers, or

to claim that we now “know how to do it”. We see more need for revision than ever. But we are doing

better than we did. And this is a progress report, rendered with humility because of the unsolved

problems we see now which we could not see before.”

Earl Kelley, in [Kel51]
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on manifolds identified by proximal gradient methods. Mathematical Pro-

gramming, pages 1–34, 2022.
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[Chi21] Lénäıc Chizat. Convergence rates of gradient methods for convex optimiza-

tion in the space of measures. arXiv preprint arXiv:2105.08368, 2021.

[Cip00] Barry A Cipra. The best of the 20th century: Editors name top 10 algo-

rithms. SIAM news, 33(4):1–2, 2000.



BIBLIOGRAPHY 209

[CLC19] Yuejie Chi, Yue M Lu, and Yuxin Chen. Nonconvex optimization meets

low-rank matrix factorization: An overview. IEEE Transactions on Signal

Processing, 67(20):5239–5269, 2019.

[CLC21] Denis Chetverikov, Zhipeng Liao, and Victor Chernozhukov. On cross-

validated Lasso in high dimensions. The Annals of Statistics, 49(3):1300

– 1317, 2021.

[Cli72] AK Cline. Rate of convergence of lawson’s algorithm. Mathematics of Com-

putation, 26(117):167–176, 1972.

[CLL20] Ji Chen, Dekai Liu, and Xiaodong Li. Nonconvex rectangular matrix com-

pletion via gradient descent without ℓ2,∞ regularization. IEEE Transactions

on Information Theory, 66(9):5806–5841, 2020.

[CLW16] Michael Chichignoud, Johannes Lederer, and Martin J Wainwright. A prac-

tical scheme and fast algorithm to tune the lasso with optimality guarantees.

The Journal of Machine Learning Research, 17(1):8162–8181, 2016.

[CM73] Jon F Claerbout and Francis Muir. Robust modeling with erratic data.

Geophysics, 38(5):826–844, 1973.

[CMR23] Hung-Hsu Chou, Johannes Maly, and Holger Rauhut. More is less: Inducing

sparsity via overparameterization. Information and Inference: A Journal of

the IMA, 12(3):iaad012, 2023.

[CMV22] Hung-Hsu Chou, Johannes Maly, and Claudio Mayrink Verdun.

Non-negative least squares via overparametrization. arXiv preprint

arXiv:2207.08437, 2022.

[CNX22] Paul Christiano, Eric Neyman, and Mark Xu. Formalizing the presumption

of independence. arXiv preprint arXiv:2211.06738, 2022.

[COB19] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in

differentiable programming. Advances in neural information processing sys-

tems, 32, 2019.

[CP10a] Emmanuel J Candes and Yaniv Plan. Matrix completion with noise. Pro-

ceedings of the IEEE, 98(6):925–936, 2010.

[CP10b] Donghui Chen and Robert J Plemmons. Nonnegativity constraints in nu-

merical analysis. In The birth of numerical analysis, pages 109–139. World

Scientific, 2010.



210 BIBLIOGRAPHY

[CP11] Patrick L Combettes and Jean-Christophe Pesquet. Proximal splitting meth-

ods in signal processing. Fixed-point algorithms for inverse problems in sci-

ence and engineering, pages 185–212, 2011.

[CP21] Ying Cui and Jong-Shi Pang. Modern nonconvex nondifferentiable optimiza-

tion. SIAM, 2021.

[CPR14] Emilie Chouzenoux, Jean-Christophe Pesquet, and Audrey Repetti. Vari-

able metric forward–backward algorithm for minimizing the sum of a dif-

ferentiable function and a convex function. Journal of Optimization Theory

and Applications, 162(1):107–132, 2014.

[CQS98] Xiaojun Chen, Liqun Qi, and Defeng Sun. Global and superlinear con-

vergence of the smoothing newton method and its application to gen-

eral box constrained variational inequalities. Mathematics of computation,

67(222):519–540, 1998.

[CR07] Emmanuel Candes and Justin Romberg. Sparsity and incoherence in com-

pressive sampling. Inverse problems, 23(3):969, 2007.

[CR09] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via

convex optimization. Foundations of Computational Mathematics, 9(6):717–

772, 2009.

[CRBH11] Jie Chen, Cédric Richard, José Carlos M Bermudez, and Paul Honeine.
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[Mor65] Jean-Jacques Moreau. Proximité et dualité dans un espace hilbertien. Bul-
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dinates. IEEE Transactions on Pattern Analysis and Machine Intelligence,

2023.

[TTT12] Kim-Chuan Toh, Michael J. Todd, and Reha H. Tütüncü. On the Implemen-
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