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Abstract— This paper considers a pursuit control based
on cooperative target motion estimation by robotic networks
equipped with visual sensors. First, we propose a cooperative
pursuit control law with a vision-based observer using visual
sensor networks, called networked visual motion observer. Then,
we learn position dependent target motion by a Gaussian
process and integrate it within the proposed control law. Second,
we show that all rigid bodies converge to desired relative
poses when at least one robot can obtain visual information
of the target. Furthermore, we prove that the total estimation
and control error is ultimately bounded with high probability
when integrating a GP model. Finally, we demonstrate the
effectiveness of the proposed control law through simulations.

I. INTRODUCTION

Due to the nature of visual sensors providing rich en-
vironmental information, research on autonomy of robots
using visual sensors has advanced in the fields of systems
and control [1], [2] and machine learning [3]. In this paper,
we consider a situation where mobile robots equipped with
visual sensors pursue an object. Motivating applications
include the prevention of bird strikes [4] and investigation
of animal ecology [5]. Since the target motion is unknown,
the risk of losing sight must be considered. To this end, this
paper considers cooperative pursuit by a group of robots and
learns the unknown target motion from data (Fig. 1).

Although vision-based robot control has been traditionally
investigated for robot manipulators, control objects have been
shifted to mobile robots, including aerial drones [6], [7].
The 3D motion of a mobile robot is typically modeled by
so-called rigid body motion, which is a nonlinear system
evolving on a matrix manifold. In [2], [8], [9], nonlinear
observers are proposed to estimate rigid body motion. In
particular, the authors in [2] focus on passivity of rigid body
motion, and this paper also focuses on this passivity based
method. The observer proposed in [2] is called visual motion
observer and is used for tracking control. Furthermore, it is
extended in [10] to estimate rigid body motion cooperatively
by visual sensor networks, which is called networked visual
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Fig. 1: Cooperative visual pursuit with motion learning.

motion observer. However, a cooperative control based on
this observer has not been considered.

On the other hand, many research results have reported on
the use of machine learning techniques for learning unknown
dynamics. In particular, Gaussian process (GP) regression
based on Bayesian inference is a powerful modeling tool
that can quantify the uncertainty of the learned model [11].
In [12]–[15], a GP model is utilized to learn the unknown
dynamics and to analyze control performance and stability.
The author’s recent publication [16] extends the result in [2]
with the technique from [14] by integrating the learned GP
target motion model into the visual pursuit control scheme,
which guarantees stability with high probability.

In this paper, we extend the results of previous works
[10], [16] by proposing a control law to pursue a target by
a group of robots based on motion estimation and learned
target velocities by GP regression. Similar to [16], this paper
considers a situation where a target motion is limited by
complex environments such as urban and forest sites, and
the motion is dependent on its position. The contributions
are summarized as: (i) an observer based visual cooperative
controller is proposed, (ii) the controller is extended by inte-
grating a GP target motion model, (iii) ultimate boundedness
of estimation and control error is shown. The controller of (i)
is obtained based on passivity of rigid body motion and the
networked visual motion observer proposed in [10]. Then, we
extend it to a controller with a GP model in (ii) according
to the approach in [16], which is a case of one pursuer.
Furthermore, ultimate boundedness in (iii) is also derived
based on properties of the graph Laplacian matrix.

This paper is organized as follows: Section II formulates
the problem to be considered. In Section III, we propose
a control law with an integrated GP model, and then, we
analyze the stability in Section IV. Finally, we demonstrate
the proposed control scheme by simulations in Section V,
and summarizes the results in Section VI.



II. PROBLEM SETTING

A. Rigid Body Motion and Networks

In this paper, we consider a target and n robots V :=
{1, . . . , n} moving in 3D space. In the following, both the
target and robots are modeled as rigid bodies. The pose of
the i-th rigid body from the world coordinate frame Σw is
denoted as (pwi, e

ξ̂wiθwi) ∈ SE(3), and we use the following
notation:

gwi =

[
eξ̂wiθwi pwi

0 1

]
, i ∈ {0} ∪ V (1)

where ξwi ∈ R3(ξTwiξwi = 1) is the axis of rotation and
θwi ∈ R is the angle. The pose of the target is denoted as
gw0. The operator ∧ computes âb = a × b for any vector
a, b ∈ R3, and the operator ∨ is the inverse operator of ∧.
In the following, ξ̂wiθwi is denoted as ξ̂θwi for simplicity.
Then, defining V b

wi := [(vbwi)
⊤ (ωb

wi)
⊤]⊤ ∈ R6 as the body

velocity, we obtain the following rigid body motion:

ġwi = gwiV̂
b
wi, V̂ b

wi :=

[
ω̂b
wi vbwi

0 0

]
∈ R4×4. (2)

Refer to [2] for details of rigid body motion. We assume
that the pose gw0 and body velocity V b

w0 of the target are
unknown. Each robot is assumed to be able to acquire its
own gwi, and the body velocity V b

wi, i ∈ V is the control
input to be designed in this paper. For learnability, the target
is assumed to move in a field with a limited range.

Assumption 1: The target is moving in a bounded 3D
space. In other words, pw0(t), ∀t ≥ 0 belongs to a compact
set X ⊂ R3.
This assumption is naturally satisfied due to the terrain where
the target moves.

The relative position and orientation of rigid body j with
respect to rigid body i is defined as follows

gij = (pij , e
ξ̂θij ) := g−1

wi gwj . (3)

Then, the relative rigid body motion is given by

ġij = −V̂ b
wigij + gij V̂

b
wj , i, j ∈ {0} ∪ V, i ̸= j. (4)

Since there is no means of communication between the target
and each robot, gi0 cannot be obtained directly.

Each robot can exchange information with its neighbors,
and its communication structure is denoted by a graph G =
(V, E), E ⊆ V×V . Here, V is the node set, and E is the edge
set. The set of robots adjacent to a robot i ∈ V is denoted
by Ni = {j ∈ V | (i, j) ∈ E}. In this paper, we assume the
following graph:

Assumption 2: The graph G is fixed and undirected.
Moreover, we denote the graph Laplacian matrix associated
with the graph G as L. For details, refer to [17].

B. Online Data: Visual Measurements

In this section, we specify the information obtained by
each robot using its visual sensor. First, we assume that there
are m feature points on the target extracted by real time
processing such as the method in [18], and the position of

Fig. 2: Perspective projection.

each feature point in Σ0 is pi0 ∈ R3, i ∈ {1, . . . ,m}. The
position pji := [xj

i yji zji ]
⊤ ∈ R3 of the j-th feature point

viewed from the i-th robot coordinate frame Σi is obtained as
[pji 1]

⊤ = gi0[p
j
0 1]

⊤. Then, we consider a monocular camera
as the visual sensor and use the perspective projection model
shown in Fig. 2. The position of each feature point f j

i ∈ R2

on the image plane is given by

f j
i = (λ/zji )

[
xj
i yji

]⊤
, (5)

where λ ∈ R is the focal length of the camera [6]. The
stacked vector of f j

i is denoted as fi := [(f1
i )

⊤ . . . (fm
i )⊤]⊤

and called visual measurement for i-th robot.
In this paper, we assume a situation where some robots

cannot capture m feature points. The set of robots that can
acquire m feature points is defined as Vv called visibility set,
and the set of the other robots is denoted as V̄v . Here, we
introduce the following:

vi :=

{
1 if i ∈ Vv

0 otherwise
, (6)

where we assume vi, i ∈ V are fixed, i.e., the visibility set Vv

is fixed. Furthermore, using positive real numbers di, i ∈ V
we define the followings:

Dv = diag(d1v1, . . . , dnvn) ∈ Rn×n (7)
H := L+Dv. (8)

Then, the matrix H has the following property.
Proposition 1: Suppose that the graph G satisfies Assump-

tion 2 and Vv ̸= ∅. Then, H is positive definite.

C. Offline Data

Next, we specify the data obtained by offline information
processing. These data are assumed to be difficult to obtain
in real time due to large computational cost, noisy measure-
ments, etc. We assume here that we can obtain the target
position pw0 and the corresponding body velocity offline as

y = V b
w0(pw0) + ϵ, (9)

where ϵ := [ϵ1 · · · ϵ6]⊤ ∈ R6 and ϵi ∼ N (0, σ2
ni). In

addition, ϵi is bounded by σni, namely |ϵi| ≤ σni. We assume
that the dataset consisting of M training inputs {p{i}w0 }Mi=1 and
outputs {y{i}}Mi=1 is available and denoted as

X :=
[
p
{1}
w0 · · · p

{M}
w0

]⊤
, Y :=

[
y{1} · · · y{M}

]⊤
,

D := {X,Y }.
(10)



The dataset is utilized for prediction of V b
w0(p

∗
w0) at the new

position p∗w0. We also assume that the function V b
w0(p

∗
w0) is

an element of a Reproducing Kernel Hilbert Space. This is
a mild assumption since it only excludes irregularity such as
discontinuity from a class of considered functions.

D. Control Objective

In this paper, we consider to drive gi0 to constant desired
poses gdi = (pdi, e

ξ̂θdi) ∈ SE(3), i ∈ V . To describe this
objective, we define the control error as

ẽci := vec(g−1
di gi0), i ∈ V (11)

where vec(·) is the operator for g ∈ SE(3) to obtain

vec(g) :=
[
p⊤(sk(eξ̂θ)∨)⊤

]⊤
, sk(eξ̂θ) :=

1

2
(eξ̂θ − e−ξ̂θ).

When ẽci → 0, ∀i ∈ V , the objective is accomplished.
However, the accomplishment is difficult because predictions
by machine learning techniques is not perfect. Based on the
above discussion, we formulate the problem to be solved.

Problem 1: Suppose that all robots are connected by the
graph G. Further assume that gwi, i ∈ V , the visual mea-
surements (5) and the dataset (10) are available. Then, design
a visual pursuit control law that achieves limt→∞ ∥ẽci∥ ≤
B, ∀i ∈ V with a given nonnegative constant B.

Since the robots can only get visual measurements of the
target, gi0 is not measurable directly. Therefore, we introduce
the visual motion observer to estimate gi0 and reformulate
Problem 1 with motion estimation in the next section.

III. COOPERATIVE VISUAL PURSUIT CONTROL

In this section, we first introduce the visual motion
observer and reformulate Problem 1. Then, we propose a
control law as a solution to the problem.

A. Visual Motion Observer and Error System

　 Estimation of the relative pose gi0, which is not
obtained directly from visual sensors, is denoted as ḡi =

(p̄i, e
ˆ̄ξθ̄i) ∈ SE(3). Based on [2], we introduce the following

model to estimate the relative rigid body motion:

˙̄gi = −V̂ b
wiḡi − ḡiûei, i ∈ V, (12)

where uei ∈ R6 is the observer input to be designed. Then,
we define estimation error as

gei = (pei, e
ξ̂θei) := ḡ−1

i gi0, eei := vec(gei). (13)

Here, eei is the error between the true relative pose gi0 and
the estimate ḡi, so it cannot be calculated directly. However,
if m ≥ 4, it can be reconstructed as eei = J†

i (fi − f̄i)
using the pseudo-inverse of the image Jacobian Ji [2]. f̄i
is an estimate of the visual measurement obtained from the
estimate ḡi and (5). Then, the time evolution of gei obeys

ġei = ûeigei + geiV̂
b
w0. (14)

Next, we redefine the control error with ḡi as

gci = (pci, eξ̂θci) := g−1
di ḡi, eci := vec(gci). (15)

The time evolution of the control error obeys

ġci = ûcigci − gciûei, (16)

where uci := −Ad(g−1
di )V

b
wi. The matrix Ad(g) ∈ R6×6 is the

adjoint transformation [2] and is defined as

Ad(g) :=

[
eξ̂θ p̂eξ̂θ

0 eξ̂θ

]
. (17)

For simplicity of notation, the adjoint transformation for
(0, eξ̂θ) is denoted by Ad(eξ̂θ ). In this paper, uci is to be
designed and the body velocity is applied to each robot as
V b
wi = −Ad(gdi)uci, i ∈ V . Hereafter, the system consists of

(14) and (16) is referred to as error system for i-th robot.

B. Control Objective with Motion Estimation

We define the following stacked forms of the estimation
and control errors as

ec := [e⊤c1 . . . e
⊤
cn]

⊤, ee := [e⊤e1 . . . e
⊤
en]

⊤, (18)

ei := [e⊤ci e
⊤
ei]

⊤ ∈ R12 e := [e⊤c e⊤e ]
⊤ ∈ R12n. (19)

Then, Problem 1 is modified by considering motion estima-
tion of the target as follow:

Problem 2: Suppose that all robots are connected by the
graph G. Further assume that gwi, i ∈ V , the visual
measurements (5) and the dataset (10) are available. Then,
design a visual pursuit control law that achieves

lim
t→∞

∥e(t)∥ ≤ B, B ≥ 0. (20)

C. Control Law

　 In this section, we propose an observer and control
input ui := [u⊤

ci u⊤
ei]

⊤ ∈ R12 as a solution for Problem 2
based on passivity of the error system.

To see passivity of the error system, we define the follow-
ing energy function:

Si :=
1

2
∥pei∥2 +

1

2
ϕ(eξ̂θei) +

1

2
∥pci∥2 +

1

2
ϕ(eξ̂θci), (21)

for i ∈ V , where ϕ is defined as ϕ(eξ̂θ) := (1/2)∥I3 −
eξ̂θ∥2F = tr(I3 − eξ̂θ). In addition, we define

Ni :=

[
I6 0

−Ad
(e−ξ̂θci )

I6

]
∈ R12×12. (22)

Then we obtain the following corollary [2, Corollary 7.1].
Lemma 1: The time derivative of the energy function Si

along the trajectory of the error system is obtained as

Ṡi = e⊤i N
⊤
i ui + e⊤i

[
0

Ad
(eξ̂θei )

]
V b
w0, i ∈ V, (23)

where ui = [u⊤
ci u

⊤
ei]

⊤ ∈ R12.
When the target is static (V b

w0 ≡ 0), the error system
for i-th robot is passive from ui to Niei with respect
to Si. Thus, if all the robots belong to Vv , the negative
feedback of Niei makes the error system stable. However,
if there is a robot that does not belong to Vv , this robot
cannot apply this negative feedback because the robot cannot
obtain eei from (5). In [10], the networked visual motion



observer is proposed which estimates the target motion while
synchronizing ḡw,i = (p̄w,i, e

ˆ̄ξθ̄w,i) := gwiḡi between robots.
Here, ḡw,i is the estimate of gw0 by i-th robot.

Based on passivity and the result in [10], we propose the
control law as follow:

ui = −KiNiei − ksRi

∑
j∈Ni

vec(ḡ−1
w,iḡw,j), ks > 0 (24)

where Ri := [I6 Ad
(eξ̂θci )

]⊤ and the gain Ki with positive
constants kcij , keij is designed as

Kci = diag(kci1, · · · , kci6), Kei = diag(kei1I3, kei2I3),

Ki = diag(Kci, viKei) ∈ R12×12. (25)

When only n = 1 robot is considered, the control law
coincides with [2]. When eci = 0, (24) coincides with
the observer input in [10]. Additionally, we obtain ˙̄gw,i =
−ḡw,iûei, and substituting uei in (24) with Kei = 0 yields
˙̄gw,i = ksḡw,i

∑
j∈Ni

vec(ḡ−1
w,iḡw,j)

∧. This is consistent with
synchronization law on SE(3) in [19]. In other words, uei

with Kei = 0 is the observer input to synchronize the
estimates ḡw,i in the group of rigid bodies.

D. Learning of Target Body Velocities by Gaussian Process
Since the body velocity is a function of the target position

pw0 ∈ X and an element of a Reproducing Kernel Hilbert
Space (RKHS), it is possible to learn the probabilistic model
by Gaussian process regression from the dataset D in (10).
To establish a model of V b

w0(pw0), we use the squared
exponential (SE) kernel given by

ki(pw0, p
′
w0) = σ2

fiexp

−
3∑

j=1

([pw0]j − [p′w0]j)
2

2l2ij

, (26)

where [·]i denotes i-th element of vectors. The signal vari-
ance σ2

fi > 0 and the lengthscales lij > 0 are called hyper-
parameters and typically trained by evidence maximization
[11]. Here, we denote ij-th element of a matrix as [·]ij . Then,
we define the kernel matrix as [Ki]jl := ki(p

{j}
w0 , p

{l}
w0 ) and

kernel vector as [ki∗]j := ki(p
∗
w0, p

{j}
w0 ) with a new input

p∗w0. Let Yi ∈ RM be the i-th column of Y . Then, the mean
and variance of y∗ for a new input p∗w0 is obtained as

µi(y
∗ | D, p∗w0) = k⊤i∗(Ki + σ2

niIM )−1Yi,

vari(y∗ | D, p∗w0) = ki(p
∗
w0, p

∗
w0)− k⊤i∗(Ki+σ2

niIM )−1ki∗.

Furthermore, we define the following stacked vector µi(y
∗ |

D, p∗w0) and diagonal matrix of vari(y∗ | D, p∗w0):

µ(p∗w0) = [µ1 . . . µ6]
⊤ ∈ R6, (27a)

Σ(p∗w0) = diag(var1, . . . , var6) ∈ R6×6. (27b)

Then, the result of [20, Theorem 6] gives us an upper
bound related to model fidelity with the bounded norm
∥[V b

w0]i∥ki , i ∈ {1, . . . , 6} associated with ki.
Lemma 2: Consider a Gaussian process trained from the

dataset D in (10). Then, the model error is bounded by

P{∀pw0 ∈ X , ∥µ(pw0)−V b
w0(pw0)∥ ≤ ∥β⊤Σ

1
2 (pw0)∥} ≥ δ

(28)

RRBM

RRBM
Model

Camera

Camera
Model

Image
Jacobian

Motion Estimation

GP Model

Synchronization
of Estimation

Fig. 3: Block diagram of cooperative visual pursuit control.
“RRBM” is an acronym of Relative Rigid Body Motion.

with probability δ ∈ (0, 1), and β ∈ R6 is defined as

[β]i :=

√
2∥[V b

w0]i∥2ki
+ 300ζiln3

(
M+1
1−δ1/6

)
with the maxi-

mum information gain ζi ∈ R.
Since the SE kernel is an universal kernel, it can ap-

proximate any continuous function arbitrarily precisely on
a compact set. Thus, even if [V b

w0]i is not an element of the
RKHS associated with ki and ∥[V b

w0]i∥ki is not bounded, it
is still bounded for a function arbitrarily close to [V b

w0]i [14].

E. Control Law with Target Motion Model by GP

Next, we consider the case of the moving target with (30).
In [16], a visual pursuit control law using GP is proposed
for single robot case. According to the result, we consider
integrating the control law of [16] and the cooperative visual
pursuit control law (24). We also consider adjusting Ki by
the variance of GP in the same way as [16] for reflecting the
uncertainty of prediction. Design kcij ◦Σ and keij ◦Σ to be
continuous on p̄w,i ∈ R3 and satisfy

kc ≤ kcij(Σ(p̄w,i)) ≤ k̄c, ke ≤ keij(Σ(p̄w,i)) ≤ k̄e, (29)

where kc，̄kc，ke and k̄e are positive constants. Note that the
argument of Σ is replaced by p̄w,i since pw0 is not available
online. Now, we propose the following control law:

ui =−Ki(Σ(p̄w,i))Niei −Aiµ(p̄w,i)

− ksRi

∑
j∈Ni

vec(ḡ−1
w,iḡw,j), (30)

where the matrix Ai ∈ R12×6 is defined as Ai :=[
Ad

(e−ξ̂θei )
Ad

(e−ξ̂θci )
Ad

(e−ξ̂θei )

]⊤
1. The first and third

terms of (30) are the same as in (24), and the first and
second terms are the same as in [16]. The block diagram
of the addressed system with (30) is depicted in Fig. 3.

IV. STABILITY ANALYSIS

In this section, we first analyze the stability with the
control law (24) when the target is static and verify that

1The matrix eξ̂θei used in Ai can be obtained as eξ̂θei =

exp
(
(sin−1(∥sk(eξ̂θei )∨∥))/(∥sk(eξ̂θei )∨∥)sk(eξ̂θei )

)
.



Problem 2 is solved. Next, we analyze the case where the
control law (30) is applied to a moving target.

A. Case of Static Target

　 Applying the control law (24) to the error system, we
obtain the following theorem.

Theorem 1: Consider the error system consisting of (14),
(16) and (24), and the graph G satisfying Assumption 2 with
Vv = V . Suppose that the target is static and eξ̂θei > 0, ∀i ∈
V, ∀t ≥ 02. Then, (20) is achieved with B = 0.

Proof: First, we define the following based on (21).

S :=
∑
i∈V

Si (31)

Then, Ṡ is obtained from the input in Lemma 1 and (24) as

Ṡ =−
∑
i∈V

e⊤i N
⊤
i KiNiei

− ks
∑
i∈V

∑
j∈Ni

e⊤i N
⊤
i Rivec(ḡ

−1
w,iḡw,j). (32)

Since the matrix N⊤
i KiNi is positive definite and Vv = V ,

Ṡ is negative definite if the second term of (32) is negative.
From the definitions of Ni and Ri,

e⊤i N
⊤
i Rivec(ḡ

−1
w,iḡw,j) = e⊤eivec(ḡ

−1
w,iḡw,j). It is

further decomposed into p⊤eie
− ˆ̄ξθ̄w,i(p̄w,j − p̄w,i) and

(sk(eξ̂θei)∨)⊤sk(e−
ˆ̄ξθ̄w,ie

ˆ̄ξθ̄w,j )∨. From the fact that
pei = e−

ˆ̄ξθ̄w,i(pw0 − p̄w,i) and Assumption 2, we have∑
i∈V

∑
j∈Ni

(pw0 − p̄w,i)
⊤(p̄w,j − p̄w,i)

=
∑
i∈V

∑
j∈Ni

∥p̄w,i − p̄w,j∥2 ≥ 0. (33)

Next, from Assumption 2, we have,∑
i∈V

∑
j∈Ni

(sk(e−
ˆ̄ξθ̄w,ieξ̂θw0)∨)⊤sk(e−

ˆ̄ξθ̄w,ie
ˆ̄ξθ̄w,j )∨

≥ 1

2

∑
i∈V

∑
j∈Ni

ρiϕ(e
− ˆ̄ξθ̄w,ie

ˆ̄ξθ̄w,j ) ≥ 0, (34)

since eξ̂θei = e−
ˆ̄ξθ̄w,ieξ̂θw0 , where ρi denotes the smallest

eigenvalue of (1/2)(eξ̂θei + e−ξ̂θei) and it is positive when
eξ̂θei is positive definite [2, Lemma E.2 and Proposition
C.2]. Therefore, from (33) and (34), the second term of (32)
becomes negative. Thus, Ṡ ≤ −

∑
i∈V eTi N

T
i KiNiei < 0.

and hence, (20) is held with B = 0.
Next, we show the result with Vv ̸= V .
Theorem 2: Consider the error system consisting of (14),

(16) and (24), and the graph G satisfying Assumption 2 with
Vv ̸= ∅. Then, if the target is static and eξ̂θei > 0, ∀i ∈
V, ∀t ≥ 0, (20) is achieved with B = 0.

2The assumption implies that all rotation estimation error should stay
inside the half-sphere centered at I3, which is in general satisfied in the
considered scenario in this paper.

Proof: First, we consider (32)–(34) and define

U :=
∑
i∈V

eTi N
T
i KiNiei,

W :=
ks
2

∑
i∈V

∑
j∈Ni

(∥p̄w,i − p̄w,j∥2 + ρiϕ(e
− ˆ̄ξθ̄w,ie

ˆ̄ξθ̄w,j )).

Then, we can simply denote (32) as Ṡ ≤ −U − W .
Furthermore, we define the following:

Pe := [∥pei∥ · · · ∥pen∥]⊤ ∈ Rn, (35)

Φe :=
[
ϕ

1
2 (eξ̂θe1) · · ·ϕ 1

2 (eξ̂θen)
]⊤

∈ Rn. (36)

Here, N⊤
i KiNi is a positive definite matrix for i ∈ Vv ,

and N⊤
i KiNi = diag(Kci, 0) for i ∈ V̄v . Let λKi be the

smallest eigenvalue of N⊤
i KiNi for i ∈ Vv and the smallest

eigenvalue of Kci for i ∈ V̄v , then λKi > 0, ∀i ∈ V .
Also, since ϕ(eξ̂θ) ≤ 2∥sk(eξ̂θ)∨∥2 holds when eξ̂θ > 0 [2,
Proposition 5.3], we have

U ≥
∑
i∈Vv

λKi∥eei∥2 +
∑
i∈V

λKi∥eci∥2

≥
∑
i∈Vv

λKi∥pei∥2 +
1

2

∑
i∈Vv

λKiϕ(e
ξ̂θei) + e⊤c Λec

≥ P⊤
e DvPe +Φ⊤

e DvΦe + e⊤c Λec, (37)

where Λ := diag(λK1, . . . , λKn) ⊗ I6, and we set di =
(1/2)λKi in (7).

Next, we consider W . From p̄w,i = −e−
ˆ̄ξθ̄w,ipei + pw0

and the reverse triangle inequality, we have ∥p̄w,i− p̄w,j∥ ≥
|∥pei∥ − ∥pej∥|. Futhermore, from e

ˆ̄ξθ̄w,i = eξ̂θw0e−ξ̂θei , we
have 2ϕ(e−

ˆ̄ξθ̄w,ieξ̂θw,j ) = ∥eξ̂θei − eξ̂θej∥2F . Here, from the
reverse triangle inequality, we obtain ∥(I − eξ̂θei) − (I −
eξ̂θej )∥F ≥ |∥I − eξ̂θei∥F − ∥I − eξ̂θej∥F |. Then, squaring
both sides and multiplying by 1/2 yields ϕ(e−ξ̂θw,ieξ̂θw,j ) ≥(
ϕ

1
2 (eξ̂θei)− ϕ

1
2 (eξ̂θej )

)2
. When eξ̂θei > 0, there exists a ϵ

such that |θei| ≤ π/2 + ϵ for all i ∈ V , namely, sin ϵ ≤ ρi
[2, Proposition C.2]. Therefore, we have

W ≥ 1

2
ks sin ϵ

∑
i∈V

∑
j∈Ni

(
(∥pei∥ − ∥pej∥)2

+
(
ϕ

1
2 (eξ̂θei)− ϕ

1
2 (eξ̂θej )

)2)
(38)

= P⊤
e LPe +Φ⊤

e LΦe (39)

where (1/2)ks sin ϵ is the common weight in L. Therefore,
(8), (37) and (39), we have Ṡ ≤ −P⊤

e HPe − Φ⊤
e HΦe −

e⊤c Λec. Thus, Ṡ < 0 holds since the matrix H is positive
definite from Proposition 1. Hence, it is proved that the
equilibrium point e = 0 is asymptotically stable.

In Theorem 2, by deriving the estimation error eei from
the network term W , the positive definite matrix H appears.
This matrix plays an essential role in the next section.



B. Case of Moving Target with GP
We define p̄w := [p̄⊤w,1 · · · p̄⊤w,n]

⊤, and denote the mini-
mum eigenvalue of H in (8) as λH . Note that the elements
of H depend on p̄w since the gains Ki, i ∈ V in (25) and
(29) are adapted by Σ(p̄w,i). Therefore, λH also depends on
p̄w. All elements of H are determined in Theorem 2.

Then, we are now ready to show the main theorem.
Theorem 3: Consider the error system (14), (16) and (30)

with the trained GP model (27) with dataset D (10), and
the graph G satisfying Assumption 2 with Vv ̸= ∅. Suppose
that the target motion satisfies Assumptions 1 and eξ̂θci >

0, eξ̂θei > 0 for all i ∈ V and t ≥ 0. Furthermore, suppose
that λH(p̄w) satisfies the following condition:

κ(p̄w) := λH(p̄w)−
1

2γ2
− Lµ > 0, ∀p̄w ∈ R3n, (40)

where γ is a positive constant and Lµ is a Lipschitz constant
of µ. Define κ := minp̄w∈R3n κ(p̄w), then, there exist a
ρ(δ) > 0 and a T (δ) ≥ 0 with any probability δ ∈ (0, 1)
such that

P{∥e(t)∥ ≤ B, ∀t ≥ T} ≥ δ (41)

B(δ) :=
nγ∆̄(δ)
√
ηκ

, η ∈ (0, 1) (42)

for any e(0) satisfying ∥e(0)∥ ≤ ρ(δ), where ∆̄(δ) is the
upper bound of the model error ∥β(δ)⊤Σ 1

2 ∥.
Proof: First, we examine the time evolution of S. From

the proof of Theorem 2, we obtain the following:

Ṡ ≤− P⊤
e HPe − Φ⊤

e HΦe − e⊤c Λec

+
∑
i∈V

e⊤i

[
0

Ad
(eξ̂θei )

]
(V b

w0(pw0)− µ(p̄w,i)). (43)

From Cauchy–Schwarz inequality, we have

Ṡ ≤− P⊤
e HPe − Φ⊤

e HΦe − e⊤c Λec

+
∑
i∈V

∥eei∥∥V b
w0(pw0)− µ(p̄w,i)∥. (44)

Since µ is continuous, there exists a Lipschitz constant Lµ

[11]. Therefore, from p̄w,i = −e−
ˆ̄ξθ̄w,ipei + pw0, we obtain

∥V b
w0(pw0)− µ(p̄w,i)∥
≤ ∥V b

w0(pw0)− µ(pw0)∥+ ∥µ(pw0)− µ(p̄w,i)∥
≤ ∥V b

w0(pw0)− µ(pw0)∥+ Lµ∥pei∥. (45)

Furthermore, from Peter-Paul inequality, we obtain

∥eei∥∥V b
w0(pw0)− µ(pw0)∥

≤ 1

2γ2
∥ee∥2 +

γ2

2
∥V b

w0(pw0)− µ(pw0)∥2 (46)

and ∥eei∥∥pei∥ ≤ ∥eei∥2. Then, from (44)–(46), we obtain

Ṡ ≤ −P⊤
e HPe − Φ⊤

e HΦe − e⊤c Λec + (
1

2γ2
+ Lµ)∥ee∥2

+
nγ2

2
∥V b

w0(pw0)−µ(pw0)∥2 (47)

≤ −κ∥ee∥2 − e⊤c Λec +
nγ2

2
∥V b

w0(pw0)−µ(pw0)∥2, (48)

0

2 3

1

0

2 3

1

Fig. 4: The graphs G1 and G2 with Vv = {1, 2}.
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Fig. 5: Trajectory of target generated by (50) and (51). Initial
and final position of the target are shown by diamond and
triangle in green, respectively.

where we used the fact that ϕ(eξ̂θ) ≥ ∥sk(eξ̂θ)∨∥2 [2,
Proposition 5.3]. Here, κ is smaller than λKi, ∈ V from
the definition in (40). Therefore, when (40) is satisfied,

Ṡ ≤ −κ∥e∥2 + nγ2

2
∆̄2, (49)

holds with probability δ. Analogous to [16, Theorem 1], the
error e is proven to be uniformly ultimately bounded from
(49) and [21]. The ultimate bound of (42) is also derived in
the same way.

Theorem 3 implies that (20) is satisfied with B of (42)
with probability. Since (42) is almost the same form as the
ultimate bound in [16], this result can be regarded as a natural
extension. To reduce the ultimate bound in [16], we need to
set the gain Ki larger. In this paper, by properly designing the
structure of the graph G and ks, we can reduce the ultimate
bound and expect to improve the pursuit performance.

V. SIMULATIONS

In this simulation, we consider a target with position
dependent motion and compare the results with (24) and
(30). We also compare the performance difference between
the graphs G and ks. Because we focus on the effect of
communication, Ki are designed to be constant.

We consider 3 robots, and the visibility set is specified by
Vv = {1, 2}. Two graphs are considered, G1 and G2, shown
in Fig. 4. The desired poses gdi are designed so that the
target is inside the triangle formed by robots as in Fig. 4.

The translational velocity is given as

vbw0 = 0.3

 [pw0]2
−[pw0]1 + (1− [pw0]

2
1)[pw0]2

([pw0]1)/rp

, (50)
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Fig. 6: Comparison of control error norms ∥ẽc∥.
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Fig. 7: Comparison of estimation error norms ∥ee∥.

where rp :=
√

[pw0]21 + [pw0]22, and the angular velocity is

ωb
w0 = 0.3[ 0 0 (π[pw0]1)/(8rp) ]

⊤
. (51)

The trajectory of the target position is shown in Fig. 5. In xy-
plane, the trajectory is generated by a Van der Pol oscillator.
The training data D is shown as the red crosses in Fig. 5 and
is shared by all robots. The hyperparameters are trained by
evidence maximum with 15 data points. Then, the Lipschitz
constant Lµ is calculated as 1.2. The gains are Kci = 8I6,
Kei = 8I6 for all i ∈ {1, 2, 3} and γ =

√
10. In this case,

κ = 0.091 with ks = 6, which satisfy the condition (40).
Fig. 6 shows the control error ẽc = [ẽ⊤c1 ẽ⊤c2 ẽ⊤c3]

⊤ in (11)
instead of (15) to see the difference between the desired and
real poses. The blue and yellow lines show the results with
the control law (24) and (30), respectively. From the figures,
it is observed that the performance of control and estimation
is significantly improved by integration a GP model.

For further analyses with the control law (30), the graph
G1 is changed to G2 (red line, κ = 0.77) and in addition,
ks is updated to 20 (purple line, κ = 1.2). The upper right
graphs in Figs. 6 and 7 show that the errors decrease faster
with larger κ. The lower right graphs in Figs. 6 and 7 also
show that the cases with larger κ have smaller errors. This is
also confirmed from the ultimate bound (42) because larger
κ is required to reduce B. From the fact that adding the edge
between robot 2 and 3, and larger ks resulted in larger κ, it is
concluded that the robots in V̄v need strong interconnections
with the robots in Vv for better pursuit performance.

VI. CONCLUSIONS

In this paper, we proposed a cooperative visual pursuit
control law based on motion estimation and a target velocity
model by a Gaussian process. First, we derived a cooperative
visual pursuit control law from passivity of rigid body motion
and extended it by integrating a trained GP model. Second,
we proved that if the target is static, the proposed control law

achieves cooperative visual pursuit if at least one robot can
obtain visual information of the target. Furthermore, we also
showed that the estimation and control errors are ultimately
bounded with high probability by the proposed control law
for the moving target. Finally, we demonstrated the effec-
tiveness of the proposed scheme through simulations.
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