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Abstract

Over the past few years, network traffic has grown exponentially with the rise in mo-
bile communication network users and services. This, in turn, increased the operational
complexity and hiked the capital and operational expenses of mobile network operations.
Present mobile networks are highly complex systems comprising automation mechanisms
that leverage numerous technologies. These technologies and automation tools have been
developed to deal with the configuration, optimization, and troubleshooting of mobile net-
work operations, facilitating an efficient network management. Self-Organizing Networks
(SONs) are an example of one such technology that aims to decrease human intervention
by automating network management tasks. Although SON is used widely as an automa-
tion tool, it has some shortcomings; particularly, maintenance and upgrade of a rule-based
management system like SON are challenging. To address these shortcomings, research is
aimed at incorporating machine learning (ML) capabilities in SON and introduced a new
management paradigm called cognitive autonomous networks (CANs). Like SON, CAN
consists of multiple network automation functions called cognitive functions (CFs). A CF
is an intelligent network function that is responsible for managing specific optimization
related tasks. Throughout this thesis, we use the following CFs that are relevant for the
use cases covered in this thesis: mobility load balancing (MLB), mobility robustness op-
timization (MRO), coverage and capacity optimization (CCO), and energy savings (ES).
These functions have already been standardized by both the network operator community
as well as the standardization bodies for SON use cases.

These CFs operate on the same radio network in parallel and learn to optimize the same
set of radio network parameters. Since they work independently but simultaneously try
to adjust the same set of parameters, conflicts are likely to happen among them. These
conflicts need to be resolved to keep the network stable and the network operations un-
interrupted. The conflicts can be resolved by introducing some coordination among the
CFs. In this thesis, we evaluate different paradigms of coordination for CAN and estab-
lish that centralized coordination is the most beneficial for CAN. In the first part of the
thesis, we propose solutions for centralized coordination for conflict resolution among the
CFs. These solutions are based on the Nash Social Welfare Function (NSWF) and a more
advanced version of NSWF, the Fisher Market Model, combined with Eisenberg-Gale op-
timization. Our proposed solutions are designed to serve the combined interest of all the
CFs while resolving a conflict. However, when compared between these two approaches,
we find that the second one provides a significant improvement over the first one regarding
overall network performance.

Keeping with the current trend of making the network management system more open,
flexible, and agile, in this thesis, we consider an open, multi-vendor CAN where different
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CFs can be produced and supplied by different vendors. The open and multi-vendor envi-
ronment raises the concern of trust, since a vendor can produce a CF designed to optimize
its objective by manipulating the centralized coordination while degrading the overall net-
work performance. To advertise its product’s superiority and establish itself in an open
market competition, a vendor has enough motivation to produce such a manipulative CF
(MCF). Not only we visualize the concept of an MCF and explain its behavior, but we
experimentally also show that an MCF can exist and downgrade the network performance.
Furthermore, we investigate the undesired behavior of MCFs in two steps. In the first step,
we propose a regression-based solution to detect an MCF with the expectation that when
detected, such an MCF could be shut down. However, detecting an MCF is sometimes not
enough since an MCF cannot permanently be shut down without affecting certain network
services. So, in the second step, we nullify the effect of an MCF using a random noise
generation based method.

Besides considering the coordination and the trust, we focus on enhancing the operational
capabilities of the CFs. However, it is also crucial to utilize the knowledge of the CFs to
maximize the benefit. Customizing cell radio configurations requires complete knowledge
of the inter-dependency among the radio parameters and observable metrics. Although it
is challenging for the operator to acquire that knowledge, the task becomes easier if the
operator can use the knowledge already possessed by the CFs. To utilize the knowledge of
the CFs, in the last part of the thesis, we propose an intent-driven interface between the
operator and CAN, enabling the operator to easily orchestrate CAN. The interface also
provides additional capabilities like detection and removal of conflicts among the intents.
After we evaluate the intent-driven interface and show that it is fit for real-life scenarios,
we also show that our proposed solution conforms with the ongoing worldwide mobile
network standardization activities.

As we see, in this thesis, we cover three important aspects (coordination, trust, and or-
chestration) regarding cognitive, open, multi-vendor network automation functions for
next-generation (5G-Advanced/6G) mobile network management. We see that, although
we are moving towards an open, flexible, cognitive network management system, several
areas of improvement need to be addressed. On the other hand, as an advanced level of net-
work automation, intent-driven management functionalities also need to be incorporated
into the network management system. In this thesis, we address these three important
topics which are prevalent and vital for the management and automation of future mobile
networks.
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1. Introduction

1.1 Self-Organization in Mobile Networks

The backbone of cellular networks is the collection of overlapping cells spread over a
specific geographical region. A geographical area is covered by multiple cells, where each
cell is managed by a base station that includes one or multiple low-power (on the order
of 100W or less) transceivers [2]. Each cell allocates a band of radio frequencies used by
the transceiver(s) for communication. Adjacent cells are assigned different frequencies to
avoid interference, although cells sufficiently distant from one another can use the same
frequency band. However, in LTE, adjacent cells can use same frequency band using
OFDMA [3].

To support the increasing demand for mobile network services, over the past couple of
decades mobile networks evolved with the development of numerous technologies. These
developments are further classified into multiple generations, where a new generation sym-
bolizes significant advancement over the previous generation. Although the 5th genera-
tion (5G) has been rolled out in some major cities around the world, currently 4G LTE
still covers most of the world. LTE stands for Long Term Evolution which started as
a project in 2004 by the international telecommunication body 3rd generation partner-
ship project (3GPP)1 [4]. The high-level network architecture of LTE has three primary
components:

• user equipment (UE): it denotes the mobile devices.

• evolved packet core (EPC): it communicates with packet data networks of the outside
world, i.e., the internet.

• evolved UMTS Terrestrial Radio Access Network (E-UTRAN): it acts as a connec-
tion between the UEs and the EPC.

In this thesis, we focus on E-UTRAN, which is an interconnected network of base stations.
In LTE, these base stations are denoted as evolved node B (eNB). An eNB in LTE is
responsible for various tasks, like:

13rd generation partnership project or 3GPP is a global initiative that provides specifications for
telecommunication technologies.

Version: 2024/01/25 – 10:50:11
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Figure 1.1: Overview of mobile network

(i) radio resource management which includes connection mobility control, radio bearer
control, radio admission control, and scheduling.

(ii) the compression of packets and packet encryption.

(iii) the mobility management entity (MME) selection.

(iv) UE to EPC connection by routing the traffic from the user-plane to the service gateway
(SGW).

(v) radio measurement analysis and reports.

To manage the exponential increase in the number of mobile devices and data services,
network operators are forced to deploy more eNBs to satisfy mobile users’ expectations.
Such massive deployment increases the capital and operational expenditures of the opera-
tor. Also, user demand for a better mobile network experience calls for developing newer
access schemes and radio technologies. To overcome the challenge of increasing costs and
managing complex technologies, the concept of self-organization in the mobile network
was implemented [1]. To make the idea acceptable in the scientific community, 3GPP
published a list of use cases where the self-organizing network (SON) can be a part of LTE
standards [5].

We already highlighted multiple radio resource management and measurement-related
tasks that are carried out by an eNB. In SON, multiple network functions are proposed,
among whom those tasks are divided. In the context of mobile network standards, 3GPP
defined a SON Function (SF) as a network function that can be made self-organized (c.f.
Fig. 1.2). Each SF is a rule-based function that is triggered when a particular network
context satisfies the necessary condition(s) that initiates the execution of an associated
SON algorithm. The algorithm then re-configures certain network parameters (at a cell
level), aiming to optimize certain network metrics or key performance indicators (KPIs).
The whole process works in a closed-loop self-organized manner while the mobile network
operator (MNO) only needs to adjust the context-based trigger condition(s) as necessary.

3GPP defined three different architectural options for the implementation of SFs related
to the general 3GPP network management:

• Centralized SON : here SF logic resides in a central entity. In 3GPP network man-
agement architecture, such a central entity could be a Network Manager (NM) or
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Figure 1.2: Operational structure of SON

Domain Manager (DM) as shown in Fig. 1.3. Information from different eNBs can
be accessed at such a management entity directly.

• Distributed SON : here SFs are implemented at the eNB level. One eNB can access
the necessary information from neighboring eNBs via interfaces like X2, as shown in
Fig. 1.3. It is a good choice for SON use cases when the focus is on a single cell or
a cluster of neighboring cells.

• Hybrid SON : in this case, the benefits of both Centralized and Distributed SON are
combined by implementing some SFs at the management level and some SFs at the
eNB level.

To serve the interest of the problems investigated in this thesis, throughout the thesis,
we consider Distributed SON: we assume that SON is deployed at a cell level by one or
multiple SFs running in each eNB. In the context of this thesis, the following SFs are
essential:

• Mobility Robustness Optimization (MRO) adjusts handover parameters to optimize
handover performance.

• Mobility Load Balancing (MLB) balances load distribution among neighboring cells
and adjusts cell individual offset (CIO) to reduce the load from a high-load cell.

• Coverage and Capacity Optimization (CCO) balances the trade-off between cell cov-
erage and the adversarial effects originating from increasing cell coverage.

• Energy Savings (ES) reduces energy consumption in a cell.

These SFs are chosen because they are relevant to the use cases described in this thesis.

1.2 Towards Cognitive Autonomy in Mobile Networks

For an SF, this type of manually-defined, context-based trigger limits the flexibility of
SON since there can be a very large number of contexts in a real-life mobile network.
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Figure 1.3: Initialization of SON in mobile network architecture

For the same reasons, SFs are unable to adapt to significant environmental or operational
changes, e.g., the introduction of new business or service models, network architecture
modification, etc. Since such changes will occur even more frequently in B5G networks
[6], a more flexible and adaptive network management system is required. On the other
hand, the SFs are coordinated hierarchically, following some fixed rules or policies [7]. A
modification of a trigger condition of an SF may require rewriting the rules of the entire
coordination mechanism. Maintaining such a hierarchical system becomes increasingly
complex and costly with the increase in the number of SFs.

Rapid progress in the field of artificial intelligence, particularly machine learning (ML),
enabled researchers to introduce cognitive capabilities in SON to overcome the challenges
mentioned above. One of the essential prerequisites for using ML-based solutions is to ob-
tain training data. When an ML algorithm is used to solve a problem using the available
data, the learning process derives a model by autonomously deducing rules that achieves
the problem objective. This removes the necessity of rule-based hierarchical network man-
agement system like SON. So, it is desirable to deploy ML based solutions to address the
shortcomings of SON. Therefore, when an ML-based solution is applied in this context, it
is desired that the solution has the following features:

(i) Autonomous inference: In SON, the desired capabilities are expressed by a set of explicit
rules or conditions. However, in an ML-based solution, it is done implicitly by supplying
the ML algorithm with training data that reflects the notion of desired functionality. This
approach removes the requirement of having complex hierarchical rules and focuses on
efficiently specifying desired functionalities.

(ii) Online learning : Online learning is a type of ML where data becomes available in a
sequential manner and is used to update the ML model in each step, as opposed to batch
learning techniques where all the data are available at once. As the ML algorithm can
already deduct its own rules, this approach can be utilized during the operation phase in
a real-life scenario where the environment may change rapidly, and the model is updated
accordingly.

Cognitive Autonomous Network (CAN) [7] is conceptualized based on those two afore-
mentioned features in the scope of mobile network management. CAN consists of multiple
cognitive functions (CFs), which are independent, closed-loop, learning-based functions.
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Figure 1.4: Operational structure of CAN

CFs are functionally equivalent to SFs, i.e., the responsibility of a CF is similar to the
responsibility of an SF. For example, both the CF MRO and SF MRO perform the same
task defined in Section 1.1. However, there is a significant difference between an SF and
a CF. SFs are rule-based functions that are triggered when specific predefined rules are
satisfied. Unlike SFs, CFs are cognitive entities that act based on their inference and
do not require any external trigger. The operational structure of a CF (Fig. 1.4) can be
primarily divided into four parts:

(i) Observation: the CF observes the network and all related KPI values.

(ii) Learning : the CF learns from this observation.

(iii) Decision: the CF uses its learning to make a decision.

(iv) Action: the CF acts on the decision it made.

So, just like SON, CAN also works in a closed-loop manner. However, in SON, the triggers
always need to be defined and adjusted by humans who perform the job of an MNO,
whereas no human intervention is needed in CAN. The difference can be observed by
comparing Fig. 1.4 with Fig. 1.2.

1.3 Thesis Objective

The objective of this thesis is to study CFs in an open, multi-vendor environment. We see
that there are two primary components in the thesis objective: (i) study of CFs, and, (ii)
open, multi-vendor environment.

We choose to study the CFs over SFs because CFs provide many advantages and im-
provements over state-of-the-art SFs. Besides, they are potential candidates for use in the
next-generation mobile networks (5G-Advanced/6G). However, since CAN is a relatively
new concept (proposed only a few years ago), currently there are many unexplored research
questions. Some of these questions are critical in the understanding of CAN which need
further investigation.

The environment, in which the CFs are studied, is also equally important. The cur-
rent trend of mobile network management aims to increase openness and flexibility [8].
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Increasing openness drives the mobile industry toward an ecosystem of innovative, multi-
vendor, interoperable, and autonomous RAN with reduced cost, improved performance,
and greater agility [8]. So, in our thesis objective, we combine these two elements of future
mobile network management. Our objective is to investigate three operational categories
of CAN: (i) coordination, (ii) trust, and (iii) orchestration.

1.3.1 Coordination

In CAN, the CFs work as independent learning agents, optimizing their objectives while
sharing the same resources. For example, mobility load balancing (MLB) and mobility
robustness optimization (MRO) both use handover parameters: time to trigger (TTT)
and CIO. So, there is a chance of a conflict arising between MLB and MRO over the
parameter TTT or CIO. To avoid these conflicts among the CFs regarding resource sharing,
coordination among the CFs is necessary. In SON, SFs are coordinated in a hierarchical
manner, by a rule-based SON controller [9]. However, since that approach is not applicable
for CFs, in the context of coordination, two main questions arise:

Q1. What type of coordination is best for CAN, i.e., centralized coordination or distributed
coordination? How do we prove that the chosen type of coordination is better than the
other one?

Q2. Can that coordination be done in a real-life scenario?

1.3.2 Trust

In an open, multi-vendor environment, different CFs from different vendors may not be
equally trustworthy. To advertise the superiority of the product and establish it in compe-
tition with others, a vendor might have the motivation to produce a rogue CF that manip-
ulates the Controller to achieve its objective. This type of CF, denoted as Manipulative
Cognitive Function (MCF), does not hesitate to compromise the overall network perfor-
mance to satisfy its objectives. The existence of an MCF in CAN is unwanted and requires
serious attention. Two main questions which arise in this context are:

Q3. Is it possible to detect an MCF if it exists in CAN?

Q4. Even if the MCF can be detected, what is the best way to handle such an MCF in an
operational system?

1.3.3 Orchestration

As we already discussed in Section 1.2, CAN works in a closed-loop manner without
providing many opportunities for interaction with the MNO: once the MNO defines the
objective of a CF, there is no further scope of intervention from the MNO side. So, if
the MNO needs to customize specific parameters and KPIs in a cell, she has to gain
complete knowledge of the dependence of KPIs on parameters across different network
states. However, since the CFs already possess this knowledge, their knowledge can be
utilized for this purpose, provided some interface is developed through which CAN and
MNO can interact seamlessly. Two fundamental questions prevalent in this context are:

Q5. Is it possible to develop such type of interface through which CAN and MNO can
communicate seamlessly?

Q6.Are there shortcomings that can be expected in such a type of interface?

These are the main questions that are investigated and addressed in this thesis.
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1.4 Research Approach

After identifying the challenges in CAN in each category, we propose potential solutions
and evaluate them in a simulation environment. The research approach followed in this
thesis can be summarized as follows:

• We implement CAN in a simulation environment and the CFs as neural network
(NN). This is the first and most necessary step since all our research in this thesis
is focused on CAN.

• We experimentally demonstrate that our implemented CAN exhibits intelligent be-
havior and behaves as expected. This proves the worthiness of our implementation
to evaluate our proposed solutions in the context of this thesis.

• We keep the simulation scenario the same throughout the thesis to maintain homo-
geneity.

• While introducing new concepts or terminologies, we always refer to the existing
standards to show that our proposed solutions conform with the ongoing worldwide
standardization efforts. In the context of this thesis, standards defined by 3GPP
SA5 and ETSI ZSM [10] are referred to.

• We provide a mathematical explanation, wherever possible, to establish and validate
our hypotheses and other assumptions.

1.5 Thesis Organization

This thesis is divided into five parts: Part I introduces the thesis and provides the necessary
background. Part II is focused on coordination. Part III is focused on trust. Part IV is
focused on orchestration and Part V concludes the thesis. Each part is then further divided
into multiple chapters. The first chapter of each part (except Part I and Part V) describes
the problems related to that part, while the rest of the chapters are dedicated to addressing
those problems. While discussing each chapter, we also refer to the publications and patent
applications, based on which the content of the chapter is produced. The complete list of
the publications and patent applications can be found in Section 1.6.

1.5.1 Part I

Part I provides the outline of the thesis and the necessary background to understand CAN,
and discusses the simulation environment used in this thesis. This part is further divided
into three chapters, as described below.

Introduction is the first chapter that provides a brief overview of the thesis. It narrates
the objective of this thesis and furthermore, it describes how the thesis is organized.

Cognitive Autonomous Networks: An Overview is the second chapter that provides a
detailed overview of the CAN architecture. While discussing the CAN architecture, we
also address Q1 formulated in Section 1.3.1. This background is crucial to understand
the rest of the parts of the thesis. The discussion on the architecture is based on the
peer-reviewed article P1 and the rest of the content is based on the patent application A1.

Simulator and Evaluation Environment Description is the third chapter that covers three
aspects related to the simulation environment: (i) a detailed description of the simulator
so the Reader can understand how the simulator works; (ii) configuration of the simulator,
i.e., certain values and settings of the simulator used in this thesis. To maintain homogene-
ity in the simulation environment throughout the thesis, we maintain the same simulator
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configuration; (iii) CAN extension of the simulator. The simulator is a system-level simu-
lator that only behaves like a mobile network. On top of the simulator, we implemented
some Python modules, written by us, to implement CAN. The description of the simu-
lator is necessary since the simulator is a Nokia internal simulator and is not currently
available publicly. The discussion on the CAN extension of the simulator is based on the
peer-reviewed article P2.

1.5.2 Part II

After providing the necessary background about CAN in Part I, in this part, we focus on
the coordination in CAN. This part is primarily focused on addressing the question Q2
formulated in Section 1.3.1. This part is further divided into three chapters, as discussed
below.

Coordination: Problem and Related Works is the first chapter in this part that describes the
problem statement related to coordination in CAN. It covers different types of conflicts in
CAN - how they originate and their effect on the system. Along with that, we also cover
relevant existing research works on coordination issues. The discussion about different
types of conflicts and existing research works are from the peer-reviewed article P3.

Conflict resolution among CFs is the second chapter in this part that addresses question
Q2 formulated in Section 1.3.1. In this chapter, we propose a Nash Social Welfare Function
(NSWF) based approach that resolves any type of conflict by choosing a value optimal for
the combined interest of all CFs. We evaluate this solution analytically and quantitatively
and describe our findings. The NSWF based solution is based on the patent application
A2 and the evaluations are published in the peer-reviewed article P1.

Interest based optimal configuration calculation is the third chapter in this part where
we highlight the shortcomings of the NSWF based solution and propose an alternative
approach based on Eisenberg Gale optimization. One important aspect of that solution
is to find the importance of a network parameter on a KPI, which we propose to deter-
mine using the Shapley value [11]. We evaluate the proposed solution extensively in the
simulation environment introduced in Chapter 3. This content is primarily based on the
peer-reviewed article P4 and the patent application A3.

1.5.3 Part III

In this part, we focus on the trust issues in CAN by addressing questions Q3 and Q4. Just
like previous parts, this part is also divided into three chapters, as described subsequently.

Trust: Problem and Related Works is the first chapter in this part describes the problem
statement related to trust in CAN. We conceptualize the idea of an MCF and experimen-
tally demonstrate that such an MCF is capable of causing severe network performance
degradation. We also cover existing research works and standards which are relevant to
this problem. All the content of this chapter is based on the peer-reviewed article P5.

Manipulative Cognitive Function Detection is the second chapter in this part, where we
address question Q3: we propose an ML-based algorithm called Manipulative CF Detector
(MCD) to detect an MCF in an operational system. Our proposed solution can either be
used as a standalone component or be integrated with the Controller. We evaluate MCD
in different scenarios to prove its effectiveness against MCF. The conceptualization of
MCD is based on the patent application A4 and the evaluation of MCD is based on the
peer-reviewed article P5.

CoDeRa: Controller Decision Randomizer is the third chapter in this part. Although
MCD can be effectively used to catch MCF, sometimes, for various reasons, an MCF



1.6. THESIS CONTRIBUTIONS 11

cannot be just taken out of an operational system. In such cases, the MCF has to be
neutralized, i.e., it is important to make the MCF give up its manipulative behavior. We
propose a solution, called Controller Decision Randomizer (CoDeRa), that accomplishes
the task and addresses Q4 described in Section 1.3.2. The idea of CoDeRa is based on the
patent application A5 and evaluation of CoDeRa is based on the peer-reviewed article P6.

1.5.4 Part IV

We discuss the intent-driven orchestration of CAN in this part. This part is primarily
focused on addressing Q5 and Q6, mentioned in Section 1.3.3. Like the previous parts,
this part is also divided into three chapters, as described below.

Orchestration: Problem and Related Works is the first chapter in this part that formu-
lates the problem statement related to the orchestration of CAN. Since CAN works in a
closed-loop manner, it does not provide any opportunity for MNO to intervene. However,
knowledge of CAN is essential for cell parameter customization. In this chapter, we focus
on the problem of having no interface between CAN and MNO for knowledge sharing. The
content of this chapter is based on the peer-reviewed article P7.

Intent-driven Network Automation Function Orchestration is the second chapter in this
part, where we address question Q5: we propose an intent-driven interface between MNO
and CAN, called intent-driven network automation function orchestrator (IDNAFO), through
which CAN and MNO can communicate with each other. MNO can specify the require-
ments in the interface; then, the interface generates appropriate commands, which are to
be executed by the Controller and the CFs to fulfill the requirements. The content of this
chapter is based on the peer-reviewed article P8.

Intent-driven Conflict Detection and Resolution is the third chapter in this part, where
we address question Q6: we propose a solution called Intent Contradiction Detector and
Remover (ICDR) to address the shortcomings of IDNAFO. ICDR can detect and resolve
conflicts (which arise before runtime) and contradictions (which arise during runtime) in
IDNAFO. ICDR conceptualization and evaluation are based on the peer-reviewed article
P9.

1.5.5 Part V

This is the last part of this thesis that contains a single chapter. We summarize and
conclude our work in this chapter. Along with that, we also discuss potential directions
in which the research can be carried forward.

1.6 Thesis Contributions

During his doctoral studies, the author contributes to multiple peer-reviewed articles pub-
lished in different journals and conferences, patent applications and mobile network stan-
dards. This section is divided into three subsections to list all the contributions in each
category.

1.6.1 Publications

In the context of this thesis, the author has the following publications:

[P1] A. Banerjee, S. S. Mwanje, and G. Carle. Game theoretic conflict resolution mech-
anism in cognitive autonomous networks. In 2020 International Symposium on Perfor-
mance Evaluation of Computer and Telecommunication Systems (SPECTS), pages 1–8.
IEEE, 2020.
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[P2] A. Banerjee, S. S. Mwanje, G. Carle (2021). On the implementation of cognitive
autonomous networks. Internet Technology Letters, 4(6), e317.

[P3] A. Banerjee, S. S. Mwanje, and G. Carle. Optimal configuration determination
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AUTONOMOUS NETWORKS
Anubhab Banerjee, Stephen S Mwanje
WO, PCT application no.: PCT/EP2021/054165, filed 19 February 2021

[A2] A COORDINATION AND CONTROL MECHANISM FOR CONFLICT RESOLU-
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[A3] METHODS AND APPARATUSES FOR DETERMINING OPTIMAL CONFIGU-
RATION IN COGNITIVE AUTONOMOUS NETWORKS
Anubhab Banerjee, Stephen S Mwanje
US, Provisional application no.: 63/056084, filed 24 July 2020

[A4] DETECTING MANIPULATIVE NETWORK FUNCTIONS
Anubhab Banerjee, Stephen S Mwanje, Abdelrahman Abdelkader
WO, PCT application no.: PCT/IB2021/054489, filed 24 May 2021

[A5] REDUCING SYSTEM DEGRADATION CAUSED BY MANIPULATIVE FUNC-
TIONS
Anubhab Banerjee, Stephen S Mwanje
WO, PCT application no.: PCT/IB2021/054486, filed 24 May 2021

1.6.3 Other Contributions

Apart from the aforementioned publications and patent applications, the author has also
contributed to the ongoing standardization activities in mobile networks. In this context,
the author primarily contributed to two standard documents: ETSI ZSM 011 [12] and
3GPP SA5 Technical Report (TR) 28.912 [13]. These contributions are based on the
patent applications and publications by the author listed above.

ETSI ZSM 011: “Intent-driven autonomous networks; generic aspects”
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Section 5.7.4. Potential intent conflict resolution approaches.

3GPP SA5 TR 28.912: “Study on enhanced intent driven management services for mobile
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Section 4.2. Intent conflicts.
Section 4.3. Enhancement of radio network intent expectation.
Section 4.7. Monitoring intent fulfillment information.
Section 4.8. Enablers for Intent fulfillment.
Section 4.9. Intent fulfillment feasibility check.
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The author of this thesis also won the Student Travel Grant (STG) Award 2021 at 17th
International Conference on Network and Service Management (IEEE/IFIP CNSM 2021)
for the following paper:

A. Banerjee, S. S. Mwanje, and G. Carle. An Intent-Driven Orchestration of Cognitive
Autonomous Networks for RAN management. In 2021 17th International Conference on
Network and Service Management (CNSM), pages 380-384. IEEE, 2021.
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2. Cognitive Autonomous Networks: An
Overview

In the previous chapter we gave a brief overview of CAN and its evolution from SON. In
this chapter we provide more detailed information about CAN, e.g., we discuss our pro-
posed architecture and end-to-end workflow of CAN. We cover the individual components
in detail, and along with that we also highlight how those components interact with one
another. The majority of the content in this chapter is from the following publication and
patent application by the author:

[14] A. Banerjee, S. S. Mwanje, and G. Carle. Game theoretic conflict resolution mech-
anism in cognitive autonomous networks. In 2020 International Symposium on Perfor-
mance Evaluation of Computer and Telecommunication Systems (SPECTS), pages 1–8.
IEEE, 2020.

DESIGN OF A ENERGY SAVINGS MODE OF OPERATION FOR COGNITIVE AU-
TONOMOUS NETWORKS
Anubhab Banerjee, Stephen S Mwanje
WO, PCT application no.: PCT/EP2021/054165, filed 19 February 2021

In addition to the content described in the publication and the patent application, this
chapter includes the following contributions by the author:

• Mathematical establishment of the necessity of coordination in CAN.

• Comparison between centralized and distributed coordination.

2.1 CAN Architecture

In Section 1.1 we gave a brief overview of the cellular network. In a cell transceiver there
are several adjustable control parameters, e.g., transmit power (TXP), remote electrical
tilt (RET), TTT, CIO. In a cell, there are several observable KPIs as well, like, cell
throughput, radio link failures (RLF), etc. These KPIs characterize the overall perfor-
mance of the network and often need to be optimized to meet the service requirements.
In a cell, KPI values are affected when one or multiple cell transceiver parameters (here-
after referred as control parameters) are changed. Apart from control parameters, there

Version: 2024/01/25 – 10:50:11



16 2. Cognitive Autonomous Networks: An Overview

are some external factors that may influence a KPI. For example, in mobile networks,
handover-related KPIs (e.g., RLF) are significantly influenced by the number of users
present in the cell and the user mobility. To combine all the factors that influence a KPI
into a single entity, the concept of “network state”was introduced [15]. Network states are
abstract states built from combinations of quantitative KPIs, abstract (semantic) state
labels, and operational contexts (e.g., date, time, number of users), such as the current
configurations (e.g., values of TXP, RET, etc.) of the network or its elements.

In Section 1.2 we gave a brief overview of CAN. CAN is an intelligent network management
entity that optimizes KPIs across different network states. CAN consists of multiple
intelligent functions, called CFs. For each KPI, there is one CF that: (i) identifies the
control parameters which influence the KPI, and, (ii) learns how the KPI changes when
the network state changes. This learning by a CF is a continuous process that is active as
long as the CF is operational. KPI associated with a target is called the objective of the
CF. For example, if we use a CF to maximize downlink average user throughput, then, for
the CF, KPI is: downlink average user throughput, target is: maximization and objective
is: to maximize downlink average user throughput. The control parameters, on which the
KPI is dependent, are called input control parameters (ICPs) of the CF. Since downlink
average user throughput primarily depends on the cell TXP and RET, TXP and RET are
the ICPs of the CF. As soon as the network state changes, the CF determines the values
of ICPs, for which its objective is optimized in that network state, based on its learning.

2.2 Necessity of Coordination in CAN

Very often it is found that multiple KPIs are influenced by a single control parameter (for
example, both interference and downlink throughput change when TXP changes). In 5G,
the environment can change very rapidly [16], leading to frequent changes in the network
state, and a CF may detect frequent changes in the optimal ICP values. Since each CF
works independently, if each CF starts changing a certain control parameter according to
its own will, the stability of the whole system may become compromised. To avoid that
fiasco, there needs to be some type of coordination between the CFs. In this section we
mathematically establish the necessity of coordination in CAN.

Let us consider a two-CF CAN model and formulate it as a normal-form game where F1

and F2 are players of the game. When there is a conflict of interest between the players,
each player can take one of the following strategies: (i)the player continues to work on
the interest (T), or, (ii) the player gives up the interest (G). There can be four possible
different combinations - both of them choose G, both of them choose T, and, one of them
chooses T and the other one chooses G. Payoff for each combination is defined as follows:

• when both of them choose G, no one modifies the interest and the interest remains
constant. Both the players get an equal payoff, say r1.

• when both of them choose T, each of them gets a payoff r2. The benefit of fighting
for the interest is worse than keeping it constant because it may change to worse
outcomes for any of the players and so, r2 < r1.

• when one of them selects T and the other one selects G, whoever selects T gets a
payoff r3 and the other one gets a payoff r4 with r3 > r4.

Relationship among r1, r2, r3, and r4: it is obvious that payoff is higher when the CF
can work on the interest than when the interest is constant, i.e., r3 > r1. The payoff for
one is also higher when either the interest is controlled by oneself or the interest remains
constant than when it is changed according to the other’s will, i.e., r2 > r4 and r1 > r4.
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Figure 2.1: Architectural overview of CAN

The payoff for a CF is higher again when only the CF changes it than when both of them
change it, i.e., r3 > r1. Combining all the above observations, we get

r3 > r1 > r2 > r4

As mentioned in [17], two criteria for a problem two qualify as a Prisoners’ Dilemma are:

• Regardless of what the other players do, each player receives a higher payoff for
defecting behavior than for cooperating behavior.

• All agents get a lower payoff if all defect than cooperate.

Now, a conflict between CFs is exactly like a Prisoner’s Dilemma where the defecting
behaviors is choosing T and cooperative behavior is choosing G. So, following the solution
of Prisoner’s Dilemma, where the best action for each prisoner is to choose defecting
behavior, and the best action for each CF is: selecting T. On the contrary, if the CFs work
with the existence of a coordination mechanism, they find that the best possible action for
each CF is - choosing G, because, when both of them select G, both of them get a higher
payoff (r1) than the payoff they get (r2) when they select T. This proves the necessity of
a coordination mechanism for CFs in CAN.

So, CAN architecture and operations can be depicted as Fig. 2.1 without the intricate
details. As we continue with the thesis, in later chapters we introduce more functionalities
and add new components to this architecture.

2.3 The Necessity of Centralized Coordination in CAN

In the last section, we emphasized on the necessity of coordination in CAN. Now, the
coordination can be done in either of these two ways:

• It can be done in a centralized way, i.e., there is a centralized entity that communi-
cates with the CFs individually. In this case, the CFs do not need to communicate
with each other directly.
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Figure 2.2: Communication in Centralized Coordination

• It can be done in a distributed way, i.e., the CFs communicate with each other
directly and there is not any external centralized entity.

In SON, the coordination is done in a centralized way, i.e., a controller exists for this
purpose [9]. However, for CAN, we evaluate the benefits of both types of coordination
mathematically to find the most suitable one in this scenario. The suitable one is the
one in which the amount of information exchange among the entities is lesser because the
less is the amount of internal communication, less is the system overhead and less is the
energy consumption. So, for both types of coordination model we calculate the amount of
information exchange (which is calculated in terms of number of rounds of communication)
within CAN and choose the one with the lesser amount of information exchange. For the
mathematical analysis purposes, let us assume that there are x number of CFs: F1, F2,
F3, . . , Fx, which need to be coordinated.

2.3.1 Centralized Coordination

In this type of coordination, a CF cannot change the value of a control parameter, so,
at first the CF requests the centralized coordinator to change the value of a control pa-
rameter. Along with the request, the CF also sends its preference over the parameter to
the coordinator. The coordinator does not change the value instantly, because there can
be other CFs in the system using the same parameter and their performances can get
affected by the change in the control parameter. The coordinator has to take the interests
of all CFs into account before changing the value of such a parameter. So, as soon as the
coordinator receives such a request, the coordinator sends messages to all other CFs to
send their preferences to the coordinator. After that, the CFs send their preferences back
to the coordinator based on which the coordinator decides the final value.

This whole process is shown in Fig. 2.2 with three different steps. So, when there are x
CFs, total number of internal communication = (2x− 1).

2.3.2 Distributed Coordination

In this type of coordination, the CFs talk with each other directly and agree on a value
before a CF changes the value of a control parameter. These communications are shown
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in the right part of Fig. 2.3. In the best case scenario, there are only 2 rounds of com-
munication between a pair of CFs (Step 1 and Step 4). In all other cases, the number of
communication between a pair of CFs is given by 2m, where m > 1 (Step 2 and Step 3
can happen any finite number of times before the CFs finally agree on a value). So, when
there are x CFs, total number of internal communication = xC2 ∗ 2m where m = 1 in the
best case scenario (all pairs of CFs have only 2 rounds of communication).

2.3.3 Comparison between Centralized and Distributed Coordination

Let us start the comparison between these two types of coordination by selecting the
scenario that is best for the distributed coordination. Even in that scenario, if we can
prove that the centralized coordination is more suitable than the distributed coordination,
then we can definitely establish that the centralized coordination is always better than the
distributed coordination and is the most suitable choice for CAN.

So, the centralized coordination is better when

xC2 ∗ 2 > 2x− 1

⇒ x ∗ (x− 1) > 2x− 1

⇒ x2 − 3x+ 1 > 0

(2.1)

Eq. 2.1 holds true for x ≥ 3, i.e., when the number of CFs is 3 or more, centralized
coordination is always better than the distributed coordination. Now, let us discuss now
what happens when the number of CFs is 2.

When there are 2 CFs, in the centralized coordination there are 3 rounds of information
exchange or communication. In the case of distributed coordination, there are total 2m

rounds of communication. Now, only in the best case scenario for distributed coordination,
m = 1, which makes distributed coordination more preferred than the centralized coordi-
nation. However, in reality, the value of m can not be 1 always, since the probability of two
CFs always agree on the same value is low. So, to model it realistically, we assume that p
is the probability that the two CFs agree on the same value. In that case, total number
of communication = 2p + 2m(1 − p), m > 1, m ∈ Z+. So, under these circumstances,
centralized is better than distributed if 2p + 2m(1 − p) > 3 holds true. Simplifying this
condition, we get 2m(1− p) > 3− 2p has to hold true.
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Figure 2.4: Variation of 2m(1− p) against m and p

Now p being a probability value, its value always lies between 0 and 1, i.e.,

0 ≤ p ≤ 1

⇒ 0 ≤ 2p ≤ 2

⇒ 0 ≥ −2p ≥ −2

⇒ 3 ≥ 3− 2p ≥ 1

(2.2)

So, the condition 2m(1− p) > 3− 2p reduces to 2m(1− p) > 3.

In Fig. 2.4 we plot the variation of y = 2m(1− p) with respect to m and p and make the
regions, where the condition holds true, in solid color. From the plot we see that the value
of y does not fall in the colored region when p = 1, which is in conjunction with our earlier
explanation. For other p values, when m > 5, the value of y falls into the colored region.

From these discussions, we conclude that in CAN, decentralized coordination is better
than centralized coordination if

• There are only 2 CFs, and,

• Those CFs always agree with each other over their shared control parameter value
(or, those CFs do not share any common control parameter).

In all other cases, the centralized coordination is better. That is why, in this thesis, we
assume a centralized coordinator in CAN. This coordinator is referred as the Controller
hereafter in this thesis.
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2.4 Information Exchange between the Controller and CFs

In the centralized coordination, a CF cannot directly change a cell transceiver parameter,
it has to request the Controller to do so. So, the CF has to convey its wish to the Controller
regarding a control parameter in some way. On the other hand, if the Controller wishes
to change a control parameter, it has to take the interests of all the CFs into account,
otherwise, it might affect some KPIs (the ones which are managed by that set of CFs to
whom the Controller did not pay interest) severely. So, while determining the optimal
value of a control parameter, the Controller requires some information from all the CFs
to understand their preferred choices. According to the CAN models proposed in this
thesis, which is based on [14], a Controller needs two pieces of information from each
CF to understand its preference: optimal configuration range set (OCRS) and utility
function (UF).

2.4.1 OCRS

Being a learning agent, for a particular network state, a CF can determine the range of
values of any ICP for which its objective will be optimum or close to optimum. This
set is called the OCRS of that ICP. An OCRS has the following structure: [min value,
max value] where min value and max value denotes the lower and upper bound of the set
respectively. If the value of that ICP lies between min value and max value, value of the
KPI lies within a certain percentage of the optimal value. This percentage is called the
KPI Optimality Spread (KOS) and is denoted by β. For example, let us assume that the
objective of a CF is to maximize the KPI value, and, for one ICP, the OCRS is [a, b]. If
the optimal value of the KPI is v, then for any ICP value c, a ≤ c ≥ b, the KPI value will
be ≥ β × v.

2.4.2 UF

In CAN, objectives of different CFs have different units of measurement. For the Controller
to understand and compare among these different objectives, it is beneficial to convert all
of them in the same predefined scale. This scale can either be provided by the MNO or
by the Controller. Example of one such a scale is [0:10], where 0 means the lowest and
10 means the highest objective value. Utility function (UF) is a function which maps an
ICP value to this [0:10] scale. A UF is denoted by f(p), where p means the configuration
value and for this p, f(p) provides the utility of the CF in the predefined scale. To do
so, f(p) maps the objective obtained from p (which is c) in a certain network state to the
predefined ([0:10]) scale using:

f(p) =
c− cmin

cmax − cmin
=

c− 0

10− 0
=

c

10

where cmax and cmin are respectively the maximum and minimum possible values of at-
tainable objectives. For example, if for a value p1 objective of the CF is c1, then the utility
value corresponding to p1 is c1

10 .

2.5 CAN Workflow

2.5.1 Workflow of a CF

Each CF is an independent learning agent which makes decisions on its own based on its
learning experience. For a certain network state, the CF is able to generate the OCRS
and UF for each of its ICPs. As soon as there is a change in the network state, the CF
recalculates the OCRSs and UFs, ensuring its preferences are always up-to-date.
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Figure 2.5: Workflow of a CF

The workflow of a CF can be visualized as two parallel processes as shown in Fig. 2.5: one
constitutes internal computation and the other constitutes external communication.

internal computation: whenever the CF detects a change in network state, it recalculates
the OCRSs and UFs for all its ICPs. If the CF finds that for any ICP the OCRS or UF
changed, it requests the Controller to recalculate that parameter.

external communication: whenever the CF gets a request from the Controller, it sends the
relevant OCRS and UF to the Controller.

So basically, each CF has the following properties:

• Each agent can learn and decide the best action for itself in a dynamic environment.

• No agent can communicate with each other and no one has a complete knowledge of
the system.

• Some or all of these agents share the same resources which give rise to conflicts of
interests among them.

• Each agent tries to optimize its own target or goal simultaneously, and the concept
of a common or team goal does not exist.

2.5.2 Controller Workflow

The controller takes OCRSs and UFs from CFs as its input and returns a single optimal
values as its output. Workflow of the proposed controller consists of four steps as depicted
in Fig. 2.6. Whenever a CF wants to change a certain parameter, it sends a request to the
controller. Upon receiving the request, the Controller sends requests to all CFs, asking
them to send their corresponding individual OCRSs and UFs. After receiving information
from all interested CFs, the controller calculates the optimal value for that parameter and
makes the necessary change in the network.
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2.5.3 End-to-end workflow

The end-to-end operation of the CAN is a continuous loop in which a CF evaluates the
network state, determines best possible values for its ICPs and sends its requirements
to the Controller if necessary. The system starts with some initial values of the control
parameters set by the MNO based on her previous experience. In the operational mode,
every CF periodically checks if the current configuration is optimal for itself. If the CF
finds the current configuration to be optimal, it does not communicate with the Controller
and only continues its learning until the next periodic checking. However, if the CF finds
that the current configuration is not optimal for itself, it triggers a process of configuration
recalculation described below:

• After a CF detects a new optimal configuration other than the current one, it iden-
tifies those control parameters whose values need to be recalculated.

• Then the CF sends request(s) to the Controller to recalculate the identified control
parameter(s). The CF, which sends such a request, is called the Requesting CF of
that particular control parameter.

• After receiving a request from the Requesting CF, the Controller sends requests to
all CFs in the system to send their latest OCRS and UF on the control parameter.

• All the CFs send back their OCRSs and UFs to the Controller.

• Based on the received information, the Controller calculates the optimal value of
that control parameter.

The end-to-end workflow is shown in Fig. 2.7.

2.6 Discussion on CAN

As we already mentioned in Chapter 1, CAN has several advantages over the existing
rule-based network management system. However, from the implementation perspective,
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it still has some challenges which are discussed in this section. It is to be noted that these
are some supplementary discussions that do not bear any impact on the main content of
this thesis. The challenges are:

(1) some control parameters are shared among quite several CFs, like TXP which is shared
among 4 CFs (coverage and capacity optimization (CCO), MLB, energy savings (ES),
Coverage Hole Management). So, the chances of the Controller frequently receiving a
request for the TXP recalculation are very high. On the other hand, there is no lower
bound specified for the amount of change in OCRS needed to trigger a recalculation. So,
even when there is a small, insignificant change in the OCRS, a CF can still trigger the
whole parameter recalculation process. Not only the Controller consumes time and energy
each time a parameter is calculated, the Controller also changes the value of the parameter
in the network. This type of frequent change of a parameter value may compromise the
stability of the network.

(2) since we consider a multi-vendor environment, different CFs coming from different
vendors may not be equally trustworthy. A CF has enough motivation to consecutively
send multiple requests to the Controller about an ICP until its value matches the CF’s
expectations. A significant amount of time and energy can be wasted in this manner.

To minimize the unnecessary recalculation of a control parameter (and therefore, more
time and energy) in a real-life scenario, we propose the following two features which can
be implemented alongside CAN:

t-value rule which minimizes the recomputation of a control parameter. Using this rule, the
Controller puts a lower bound on the minimum number of requests (t−value) necessary to
trigger the recalculation of a parameter. For example, if 4 CFs share TXP and t− value
is 0.5, then TXP is recalculated by the Controller when at least 4 * 0.5 = 2 CFs send
requests.

m-value rule which limits the number of requests a CF can make within a given time
period. For example, if m − value is 3, then, within a fixed time interval, a CF can only
send the total m number of recalculation requests to the Controller.
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If these two rules are combined, then the variable t ∗ 1
m quantizes the energy consumption

due to parameter recalculation. The lower the value of this variable, the better the energy
savings in parameter recalculation. In this way, the challenges in CAN can be overcome
and it can be operated in a more energy-efficient manner.

2.7 Conclusion and Key Takeaways

In this chapter, we gave a conceptual overview of CAN from the perspective of manage-
ment of mobile network. Using Prisoners’ Dilemma, we mathematically established that
coordination is needed for CAN. In this context, we evaluated two possible types of coordi-
nation: centralized and distributed. We found, both mathematically and experimentally,
that centralized coordination is better for CAN. Based on our observation, we proposed
the centralized coordination based architecture for CAN which is used throughout the
rest of this thesis. We highlighted the workflow of each key component in the proposed
framework and their interaction with one another. We concluded the chapter by covering
some constraints in our proposed design and different implementation details to overcome
those constraints in real-life scenarios.

List of Abbreviations Used in This Chapter

CCO coverage and capacity optimization

CFs cognitive functions

CIO cell individual offset

ES Energy Savings

ICPs input control parameters

KOS KPI Optimality Spread

KPIs key performance indicators

MAS multi agent system

MLB mobility load balancing

OCRS optimal configuration range set

RET remote electrical tilt

RLF radio link failure

SON self organizing network

TTT Time-To-Trigger

TXP transmission power

UF utility function
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3. Simulator and Evaluation Environment
Description

This chapter describes the fundamental components and organization of the simulation
environment used throughout the thesis. Along with that, we also detail the novelty
required to implement the proposed CAN modules, their functionalities and experimentally
demonstrate their feasibilities. It is to be noted that while discussing these two topics,
in both cases, we focus on the high-level logic of the components and not on the specific
implementation details. The majority of the content in this chapter is from the following
journal paper by the author:

[18] A. Banerjee, S. S. Mwanje, G. Carle. On the implementation of cognitive autonomous
networks. Internet Technology Letters, 4(6), e317. Wiley, 2021.

In addition to the content described in the publication, this chapter includes the following
contributions by the author:

• Description of the radio propagation model used in the simulation scenario.

• Description of UE states, UE transceivers and UE mobility model used in the simu-
lation scenario.

3.1 Simulator Description

The simulator mimics the behavior of a real-life mobile network where the operator (here,
user of the simulator) can customize certain aspects of the network. To make the simulated
mobile network as realistic as possible, the simulator takes multiple inputs from the user
which contain: (i) geographical area and size (in sq km), (ii) number of cells, (iii) cell
positions, (iv) parameters of cell transceivers, (v) radio propagation model, (vi) number of
user equipments (UEs), (vii) UE mobility model, (viii) observable KPIs (at cell or UE level)
and (ix) observation period. Description of these user inputs, along with the values used
in the simulation, are covered in Section 3.2 in detail. After the user inputs these values,
the simulator creates a physical scenario (building and street distribution), populates the
location with mobile UEs, creates UE activities, and starts the simulation. Based on the
user-specified simulation period, network configurations and KPIs can be observed at the
simulator output. While a simulation is going on, similarly to an MNO, the user of the

Version: 2024/01/25 – 10:50:11
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Figure 3.1: Implementation details of the simulator

simulator can make changes in the simulation configurations (described in Section 3.2) and
observe the changes in the network via network data collected at the output. This is a
brief overview of the simulation environment which is shown in Fig. 3.1.

3.2 Simulator Configuration

Throughout the thesis, we use the same simulation environment and configuration to
maintain the homogeneity among the generated results. These configurations are discussed
below in detail:

3.2.1 Scenario

For our evaluation scenario, we consider an area of 4 sq. km consisting of long straight
streets with strict grid patterns crossed by wide avenues and square blocks (Fig. 3.2). This
type of building distribution can be found in big cities in the world (Barcelona, Manhattan,
etc.), in most of the European cities and it is widely accepted as a standard city model
[19]. The streets generally have a width of 20 m, of which the central 10 m are destined for
carriageways and 5 m on each side are designated for the sidewalks for pedestrians. The
dimensions of the blocks are given by the distance between the longitudinal axes of the
streets and the width of these roads and the length (or breadth) of one block (including
roads on all sides) equals 133.3 m. Since the standard width of a road is 20 m, the blocks
(without the roads) are formed by quadrilaterals of 113.3 m. The height of the buildings
varies between 16 - 20 meters, and in our simulation scenario, those values have been
chosen randomly. All these values are taken from the real-life Barcelona city model1.

3.2.2 Cells

3.2.2.1 Number of cells and their positions

The cellular network consists of 5 cells deployed in the 4 sq. km area, where the cells are
deployed as shown in Fig. 3.3 such that the central cell is surrounded by the remaining cells.
All the cells are 1-sector macro cells (2GHz), and from here onward the term cell refers
to the coverage area of the centrally situated single radio transceiver. Unless specified
otherwise, throughout the Thesis all the network measurements data are taken in the
central cell.

1https://es.wikipedia.org/wiki/Distrito del Ensanche



3.2. SIMULATOR CONFIGURATION 29

133.3 m

1
1

3
.3

 m

1
3

3
.3

 m

1
1

3
.3

 m
2

0
 m

Blocks

Streets
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3.2.2.2 Cell transceivers

The default values used for antenna-specific parameters for a cell transceiver are given in
Table 3.1. However, in a later Chapter we’ll see that during some KPI measurements,
these values need be varied, but, unless specified otherwise, these are the values used for
all the cell transceivers in the simulations.

Table 3.1: Default values of cell transceiver parameters

Tx Power (dBm) Bandwidth (MHz) Scheduler

46 20 throughput fair

Antenna height (m) Azimuth compass direction Antenna Gain (dBi)

18 0 6

Mechanical downtilt (°) Remote electrical tilt (°) Azimuth & Elevation beam
spread (°)

0 0 0, 0

3.2.3 Radio Propagation Model

In mobile networks, the power of the signal received at one transceiver depends not only
on the TXP of the sending transceiver but also on a number of environmental factors like
the distance between the transceivers, obstacles on the path, fading, and so on. To make a
simulation study as realistic as possible, incorporating an accurate propagation model(s)
between the sending and receiving transceiver is a crucial step. We use a realistic radio
propagation model, the WINNER+ model [20], in our simulation. Since our simulation
environment is an urban macro cell, non line of sight (NLOS) and line of sight (LOS)
propagation are common, since the street level is often reached by single diffraction over
the rooftop [20]. Knife edge diffraction effects are computed for the leftmost and rightmost
building edges as well as the trailing roof edges from the perspective of the transceiver. The
computed effects of knife edge diffraction modulate the path loss between the two extremes
given by the respective Winner+ LoS and NLoS formulas. For the NLOS scenario, the
path loss is calculated using:

PL = (44.9− 6.55 log10(hBS)) log10(d) + 5.83 log10(hBS) + 14.78 + 34.97 log10(fc)
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Figure 3.3: Cell placement

Figure 3.4: Radio coverage map of the
cells

For the LOS scenario, the path loss is calculated using:

PL = 22.7 log10(d) + 27.0 + 20.0 log10(fc)

where d is the distance between the antenna and the UE, fc is the center frequency (2
GHz) and hBS is the actual antenna height.

3.2.4 UEs

The UEs are distributed randomly over the chosen simulation area of 4 sq km and they
can move freely within this area without any restriction. A UE is characterized by a UE
transceiver that contains all the radio-related parameters. During the simulation, a UE
can be in one of the six states as shown in Fig. 3.5. Transition from one state to another
state is possible by executing certain state transition events (discussed in Section 3.2.4.2)
associated with a corresponding timer (discussed in Section 3.2.4.3).

3.2.4.1 UE states

There are six possible states for a UE which are described below:

RLF: if a UE is in this state, it means that the UE transceiver is not connected to any
cell transceiver.

cell selection signalling (CSS): this state corresponds to the initial signaling procedure
performed by the network before the UE is connected to any of the cell transceivers.

radio resource control connected (RRCC): it signifies that the UE transceiver is connected
to one of the cell transceivers and it is entitled to all possible radio resources provided by
the cell.

radio resource control idle (RRCI): A UE transceiver is not scheduled in this state. It
indicates that the UE buffer is empty and it has no data to transmit.

handover signalling (HOS): this state models the signaling procedure by the network when
certain handover conditions are met for a UE. If the condition, that caused the transition
to this state, remains valid for a certain monitoring time period then the UE transceiver
transitions to the RRCC state in the new cell.

radio link failure signalling (RLFS): This state models the signaling procedure executed
by the network before the RLF state is reached.
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Figure 3.5: UE state machine diagram

3.2.4.2 UE state transition events

The events responsible for the change of UE states are briefly explained below:

events from RLF : from RLF, the only possible transition for a UE transceiver is the CSS.
This happens when the event RLF CSS is triggered.

events from CSS : from CSS, there are two possible states for transition: RLF or RRCC.
These transitions take place when the events CSS RLF and CSS RRCC are executed
respectively.

events from RRCC : from RRCC, three transitions are possible: (i) transition to RRCI
when the event RRCC RRCI is fired, (ii) transition to HOS when the event RRCC HOS
is fired, and, (iii) transition to RLFS when the event RRCC RLFS is fired.

events from RRCI : from RRCI also, three transitions are possible: (i) transition to RRCC
when the event RRCI RRCC is fired, (ii) transition to HOS when the event RRCI HOS
is fired, and, (iii) transition to RLFS when the event RRCI RLFS is fired.

events from HOS : from HOS, there are two possible transitions: RRCC and RLFS. These
transitions occur when events HOS RRCC and HOS RLFS are triggered respectively.

events from RLFS : from RLFS, the UE transceiver can either go to HOS (event RLFS HOS)
or RLF (event RLFS RLF).

3.2.4.3 UE transceiver timers

All signalling states of the UE transceiver are modeled as a specified time required to
execute a particular procedure. These timers are defined to validate whether an event is
a random occurrence or it exhibits a consistent behavior. There are seven timers used in
the simulator:

cell selection signalling time: this timer specifies the signalling time required by the net-
work when a UE transceiver, which is in the RLF state, tries to connect to the network.
In the simulations, the default value of this timer is 0.1 s.
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handover signalling time: this timer refers to the allowed time when a handover command
is being executed by the network. During this time the UE transceiver will be in an HOS
state. In the simulations, the default value of this timer is 0.1 s.

RLF signalling time: this timer corresponds to the signalling time, required by the net-
work, to perform radio link failure. During this time, the UE transceiver will be in the
RLFS state. In the simulations, the default value of this timer is 0.1 s.

late HO detection timer : this timer specifies the time interval threshold to detect a late
handover. In the simulations, the default value of this timer is 5 s.

early HO detection timer : this timer specifies the time interval threshold to detect an
early handover. In the simulations, the default value of this timer is 5 s.

pingpong HO detection timer : this timer specifies the time interval threshold to detect a
ping-pong handover. In the simulations, the default value of this timer is 5 s.

wrongcell HO detection timer : this timer specifies the time interval threshold to detect a
handover to a wrong cell. In the simulations, the default value of this timer is 5 s.

3.2.5 Mobility Model

A mobility model characterizes the pattern of mobile UEs, portraying the change of UE
location over time. In this thesis, we use a random mobility model as it is the most generic
and widely accepted mobility model in the study of mobile networks [21].

3.2.5.1 random mobility model

The general algorithm for the random mobility model is depicted in Fig. 3.6. In this
model, a UE decides randomly to either move or be static for a certain time duration
(td) chosen randomly. After the duration is over, again the UE selects randomly between
moving or being static for another randomly chosen time duration. This continues until
the simulation is finished.

Each time a UE randomly selects to be static, it remains stagnant in its last recorded
position. If a UE chooses to move, in the next step, it also randomly selects: (i) speed, (ii)



3.2. SIMULATOR CONFIGURATION 33

acceleration and (iii) direction of the movement. For speed, the allowed range to choose
from is 4 - 80 km/h (which covers all the possible speeds from pedestrians to cars). For
acceleration, the UE can randomly choose between 0 - 3 m/s2. Values of the speed and
acceleration have been chosen to keep the simulation as realistic as possible. Since the
simulator supports only 2D movement of a UE, possible directions of movement are +x,
-x, +y and -y.

3.2.5.2 wrap around

A wrap-around is implemented in all the mobility models to keep the number of UEs
constant in a simulation scenario. When a UE reaches a border of the 4 sq kilometer
area, it turns in the opposite direction to ensure that it stays within the designated area.
Otherwise, the UEs would continuously move away from the study network and comparison
between scenarios with different numbers of UEs would not be possible.

3.2.6 KPI Observation

As already mentioned earlier, all the KPI related measurements are taken in the central
cell (green in Fig. 3.4). In the scope of the thesis, the collected KPIs are listed below;
however, it is worth mentioning that not all KPIs have been used in all the chapters -
based on the necessity, different sets of KPI measurements have been taken.

total number of ues: this number corresponds to the total number of active (RRCC) and
idle (RRCI) UEs in the cell.

number of idle ues: this number corresponds to the total number of UEs in the cell which
are in the RRCI state.

number of connected ues: this number corresponds to the total number of UEs in the cell
which are in the RRCC state.

cell load : cell load is the ratio between the required radio resources (to satisfy the bit-rate
requirement of each RRC connected UE Transceiver) and the number of available radio
resources. Theoretically, this can be varied from 0 to ∞. If this value is greater than 1, it
means the cell transceiver is overloaded.

cell throughput : this KPI reports the achieved throughput in bits/sec by a cell transceiver
after serving all the RRC connected UE transceivers.

average user throughput : this is the achieved average user throughput in bits/sec per UE
transceiver. In other words,

average user throughput=cell throughput/number of connected ues

handover attempts count : this specifies the total number of handover events originating
from a cell transceiver to all other cell transceivers.

successful handovers count : it is the total number of successful handovers originating from
a cell transceiver to all other cell transceivers.

handover drops count : it is the total number of handover drops originating from a cell
transceiver to all other cell transceivers.

late handovers count : it specifies the total number of late handovers originating from a
cell transceiver.

early handovers count : it specifies the total number of early handovers originating from a
cell transceiver.
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wrong cell handovers count : it counts the total number of wrong cell handovers originating
from a cell transceiver.

pingpong handovers count : it specifies the total number of pingpong handovers originating
from a cell transceiver.

radio link failures count : it specifies the total number of RLF events originating from a
cell transceiver.

3.2.7 Simulation Data Analysis

The simulator used in this thesis is a Nokia Bell Labs proprietary simulator and it is
not publicly available. Although the simulator cannot be used by external users, we
published the dataset2 online so that the results of this research can be reproduced. So,
to establish the trustworthiness of the simulator, in this Section, we discuss the precision
of the data generated from the simulation using confidence intervals. From that dataset,
we plot variations of three KPIs (successful handover percentage, cell load, and average
user throughput3) against TXP in Fig. 3.8, 3.7, 3.9. From the Figures, we see that the
variation in the collected data for each TXP value is very low. Since we collected the data
over a long period of time and the variation is still low, it proves that the collected data
is quite consistent. Given below are the explanations for the visible KPI variation against
the control parameters to prove that the simulator-generated data matches the behavior
of a real life network. It is to be noted that to observe the changes in the network better,
the TXP in all the five cells is varied simultaneously by the same amount.

3.2.7.1 Load vs TXP

When the TXP of a cell is increased, its coverage area increases, which increases the load
of the cell. As shown in Fig. 3.7, the cell load increases with the TXP to 40 dBm. After
that, the coverage and capacity of the cell start decreasing with TXP because of (i) the
increasing interference from all the neighboring cells, and, (ii) the increasing number of
handovers as the overlap between two cells becomes clearer. Beyond 60 Dbm, the cell load
becomes almost constant as these effects start canceling each other.

3.2.7.2 Successful handovers vs TXP

When the TXP of a cell is increased, its coverage area increases, which means that more
number of handover events originate from the cell. As we see from Fig. 3.8, beyond 50
dBm, the cell coverage does not increase much further, keeping the number of handovers
almost constant.

3.2.7.3 User throughput vs TXP

When the TXP of a cell is increased, its coverage area increases, which increases the
load of the cell and decreases the average downlink throughput. This is why initially the
throughput decreases with the TXP. After a certain point, as load decreases with TXP (as
explained earlier), the average throughput increases. Then, as the interference from the
neighboring cells increases with increasing TXP, the throughput does not increase further
and becomes almost constant.

2simulator generated dataset available online: https://tinyurl.com/mnma-dataset
3these are the three KPIs which have been used the most in this thesis

https://tinyurl.com/mnma-dataset
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Figure 3.7: Cell load vs TXP
Figure 3.8: Successful han-
dovers vs TXP

Figure 3.9: Average user
throughput vs TXP

3.3 CAN Extension for the Simulator

3.3.1 Objective

The main idea behind the implementation of CAN is to show that CFs can function
reactively in a dynamic environment. For example, let us assume that at time t0 in a cell,
number of connected users: n0, downlink average user throughput: T0 Mbps, TXP: x dBm,
RET: d deg. Let us assume that at a time t1 > t0, the number of connected users suddenly
increases to n1, n1 > n0 and because of the sudden increase in the number of connected
users, throughput drops to T1, T1 < T0. Now, the CF which is responsible for optimizing
throughput is expected to propose new values of TXP and RET to the Controller, as soon
as throughput drops so that throughput is restored to T0 or close to T0. Our main aim is
to demonstrate that this expectation can be achieved by implementing CAN.

3.3.2 Implementation Overview

To implement CAN in a simulation environment, the extended simulator shown in Fig. 3.10
is used. Different CFs have been implemented as different methods in a Python module,
giving the flexibility to add any number of CFs in the simulation. Within the method, the
ICP(s) and KPI(s) of the CFs are defined.

There is a continuous two-way interaction between the CAN module and the simulator:

(i) from the simulator, network-related data and KPIs always come to the CFs via the
data processing module (DPM). The DPM has been implemented as an individual Python
module that acts as a bridge between the simulator and the CF. It collects all the data
from the simulator, processes the data, and sends only the relevant data to the CF. This
data is used by the CF to improve its learning and performance.

(ii) as already mentioned previously, the Controller calculates the final optimal values
based on the preferences of the CFs. The Controller then sends the value directly to the
user input interface of the simulator, so that the necessary configurations are changed
without requiring any help from the simulation user.

3.3.3 CFs and Controller Implementation

Our entire thesis discusses different aspects of CAN: coordination issues, trust issues,
and orchestration issues. Before discussing those aspects, it is necessary to show that
CAN exhibits the expected behavior. To demonstrate the complete workflow of CAN, we
implement two CFs - MLB and CCO, and a Controller in the central cell of our simulation
environment. To implement a CF, we use several logical blocks and a neural network (NN)
which has 5 fully connected layers with 50 nodes in each hidden layer, Adam optimizer, and
MSE loss function. While determining the optimal NN architecture for a CF, we started
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Figure 3.10: Extended simulator for CAN implementation

with a relatively small NN and iteratively looked for an optimal architecture that provides
the required performance with the least time and space complexity. While implementing a
CF, network state4 and the ICPs act as the inputs of the NN and the UF acts as the output
of the NN. The NNs are trained periodically with the data collected from the simulator.
After the NN is trained, it can predict the KPI value given a network state and ICP value.
Along with NN, another logical block in Python is implemented to generate the UF. This
logical block is called UF generator. In a given network state, UF generator provides
different values of the ICP to the NN, collects the NN predicted KPI values, normalize
them in a [0:10] scale and generates the UF.

Implementation of the Controller is straightforward. The functionality of the Controller
is implemented as a separate method inside the CAN module. Throughout the thesis for
all CAN related implementations, we used Python 3.7.8. and PyTorch 1.7. to implement
the NNs.

3.3.4 Demonstration

After discussing the details CFs and Controller implementation, here we demonstrate that
the CFs can learn and act dynamically and plot them in Fig. 3.11, 3.12, 3.13, 3.14. For
each CF, we show two images sequentially - (a) how the CFs react when the network state
(number of RRC connected UEs) changes (Fig. 3.11, Fig. 3.13), and, (b) the outcomes of
their reactions which can be observed from the KPIs (Fig. 3.12, Fig. 3.14). We select five
time instances and in each instance, we deploy a different number of UEs across the 4 sq
kilometer area while the simulation is going on (orange bars in Fig. 3.11 and Fig. 3.13). For
example, at the time t0 and t1, the number of connected UEs are 200 and 500, respectively.
Each time the MLB detects a new network state, it calculates the optimal TXP for itself
in the new network state (Fig. 3.11). For example, at the time t0 TXP is 48 dBm. Since
at t1 the network state changes, the MLB calculates a new optimal TXP value: 55 dBm.
To display the effectiveness of the learning capability of MLB, in Fig. 3.12 we plot two
bars side-by-side: (i) the load value with the existing TXP value (blue bar), and, (ii) the
load value if TXP is changed according to MLB’s suggestion (green bar). Following the

4for this demonstration purpose, we use the number of RRC connected UEs as the sole parameter in
the network state; later in the thesis we use a more complex and complete network state implementation
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same example, at t1 with the existing TXP, load is 0.64, but, if TXP is set to 55 dBm
(as suggested by MLB), load decreases from 0.64 to 0.6. We see from Fig. 3.12 that in all
cases, load is reduced if TXP is set at the value suggested by MLB, i.e., it proves that the
MLB is able to learn and react continuously in a dynamic environment.

Similarly, from Fig. 3.14, we see that the throughput always increases if the TXP is set
as per CCO’s recommendation. These plots show that the CFs we implemented can learn
and work continuously in a dynamic environment to achieve their targets and both of
them improve their assigned KPIs, which proves that our way of implementing the CFs is
efficient and reliable.

From Fig. 3.11 and Fig. 3.13, we see that the TXP values suggested by MLB and CCO
are always different in a certain time instance. As we already mentioned, in such cases,
it is the responsibility of the Controller to select a value of TXP which is optimal for the
combined interest of MLB and CCO. In Fig. 3.15 for each time instance, we plot three bars
side-by-side: (i) TXP value which is proposed by MLB, (ii) TXP value which is proposed
by CCO, and, (iii) the final TXP value which is calculated by the Controller. For example,
from Fig. 3.15 we see that at time t2, MLB suggested 31 dBm and CCO suggested 56 dBm
as TXP value, but the Controller finally sets 45 dBm as the final value which is in between
the CFs’ suggested values.
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3.4 Conclusion and Key Takeaways

This Chapter discussed the simulation environment used to evaluate the ideas presented
in this thesis. For the sake of uniformity, the same simulation environment has been
used throughout the thesis. We presented the generic architecture of the mobile network
simulator and its end-to-end workflow. We then discussed each element of the simulator
in detail: how it works and its default configuration used in the evaluation environment.
After that, we presented the extra extensions that we wrote in Python, to implement
CAN in the simulation environment. We also experimentally demonstrated that the CAN
module works as expected, making it competent to use in the rest of our thesis.

List of Abbreviations Used in This Chapter

CCO coverage and capacity optimization

CSS cell selection signalling

DPM data processing module

HOS handover signalling

KPIs key performance indicators

LOS line of sight

MLB mobility load balancing

MNO mobile network operator

NLOS non line of sight

RLF radio link failure

RLFS radio link failure signalling

RRCC radio resource control connected

RRCI radio resource control idle

TXP transmission power

UEs user equipments
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Coordination
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4. Coordination: Problem and Related Works

In this chapter, we describe the problem related to coordination in CAN. For better un-
derstanding, we abstract CAN as a multi-agent system (MAS) and explain different types
of conflicts in CAN. Then we cover the reasons why coordination in CAN is a challenging
task to address. We also summarize prior research works, highlight the existing gap in
state-of-the-art and prove the necessity of our proposed work. Content in this chapter is
from the following paper by the author:

[22] A. Banerjee, S. S. Mwanje, G. Carle. Optimal configuration determination in cogni-
tive autonomous networks. In 2021 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM).pages 494-500. IEEE, 2021.

4.1 CAN as a Multi-Agent System

The MAS abstraction is an efficient method to simplify the architectures of complex sys-
tems. The concept of MAS abstraction can be applied across numerous research domains,
which creates a vast state-of-the-art of this field. This motivates us to abstract can as
MAS to look for existing solutions to the coordination problem explained in this chapter.
The architecture of CAN can be visualized in a simpler way with the help of MAS ab-
straction. In this abstraction, each CF and the Controller act as an independent agent
where all the CFs are in the same layer and the Controller is in a different layer. Following
the coordination model discussed in the Section 2.5, all the CFs, in the MAS abstraction,
should have the following four properties:

P1 Since each CF is a learning agent, it can learn and decide what is the best action for
it by itself in a dynamic environment.

P2 The CFs do not communicate with each other and no one has complete knowledge of
the system (i.e., aware of other CFs or any other entity apart from the Controller).

P3 Some or all of these CFs share the same resources (network control parameters) and
there may exist conflicts of interests among them regarding the common resource
sharing.

P4 The CFs try to optimize their targets or goals simultaneously, and the concept of a
common or team goal does not exist.
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CF

p1

p2

o1fT

Figure 4.1: CF Modeling

When there is a conflict among the CFs (P3), it is the responsibility of the Controller
to resolve the conflict. Under any circumstances, the decision of the Controller is always
treated as the final and the Controller is the only one allowed to make any change to the
network.

After giving a brief overview of the properties of a CF, let us elaborate on how a CF is
modeled. Let us assume a CF F1 with output o1 snd ICPs: p1 and p2. In a mobile network,
the relationship between o1 and (p1, p2) can be visualized as o1 = fT (p1, p2), where fT
is a transfer function that includes the mobile network and all other external factors into
a single function. When the network state changes, o1 also may change, and so, f is not
constant and it changes when the network state changes. Basically we can assume that fT
is a function which is not constant, rather it is dependent on the network state. To state
the obvious, fT is not known to anyone beforehand and it is one of the intrinsic properties
of the mobile network.

The functionality of the CF is to imitate and model the fT . If we can model the CF such
that it is the same as the fT , we can:

• get the value of output o1 for any (p1, p2) without trying (p1, p2) directly on the
network, and,

• determine in advance the values of (p1, p2) for which o1 is optimum while fT is fixed.

To model fT as accurately as possible, the CF always observes o1 and figures out the
dependence of o1 on (p1, p2).

4.2 Conflicts in CAN

In Section 2.3 we established the necessity of the Controller in CAN. In this Section we
describe the conflicts, which may arise in CAN and the Controller is supposed to resolve
them. To explain these different types of conflicts and how they may appear in CAN,
we assume the simplest CAN model (shown in Fig. 4.2) with 2 CFs (F1 and F2) and no
Controller. The ICPs and outputs of F1 and F2 are as shown in Fig. 4.2.

In CAN, primarily three types of conflicts can be observed between F1 and F2 (shown in
Fig. 4.4):
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Figure 4.2: Example CAN model

o1

p1 fT o1
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Figure 4.3: Difference between Type B and
Type C conflicts

4.2.1 Configuration Conflict

this type of conflict, also known as Type A conflict, is induced by changes to a network
control parameter. When two or more CFs share the same set of ICP(s), the chance of
this type of conflict arises. The conflict emerges when F1 requests to increase the value of
p1 and F2 requests to decrease the value of p1 either simultaneously or after a short time
interval and vice versa. This type of conflict leads to an oscillatory behavior for parameter
p1 which is completely undesirable.

4.2.2 Measurement Conflict

this type of conflict, also known as Type B conflict, is induced by the change to a measure-
ment. When the decision-making of one CF is subject to the influence of another CF, the
chance of this type of conflict emerges. The conflict arises when F1 and F2 compete over
different time scales where the actions of F2 may interfere with the measurements which
are needed by F1 to make its decisions.

4.2.3 Characteristic Conflict

this type of conflict, also known as Type C conflict, is induced by the change of character-
istic of a CF. The chance of this type of conflict arises when there is a logical dependency
between the metrics influenced by F1 and F2. For example, if F1 takes some actions which
influence o1, that in turn is an input of F2, then this type of conflict emerges.

4.2.4 Difference between Type B and Type C Conflict

Although Type B and Type C conflicts may sound similar, there is a significant difference
between these two types of conflicts which is depicted in Fig. 4.3. Let us assume that F2

mimics the behavior of the transfer function fT shown in the Fig. 4.3. Now, if o1 influences
p1, then it is a Type C conflict between F1 and F2; if o1 influences fT , then it is a Type
B conflict between F1 and F2.

4.3 Problem Description

As already stated in Section 4.1, it is the responsibility of the Controller to resolve these
types of conflicts in CAN. As described in Section 2.4, even though the Controller can
understand the actual preferences of a CF by the OCRS and UF while determining the
optimal value of a control parameter which is shared among multiple CFs, a Controller
encounters several challenges:

Unknown behavior of CFs: CFs are always learning, and they are periodically generating
OCRS and UF based on their learning. Since their learning is influenced by the network
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Figure 4.4: Types of conflicts in CAN

state which is not known beforehand, the behavior of a CF in the future can also not
be predicted with certainty. Since the Controller cannot make any prediction of any CF
behavior, it has to make decisions as soon as it receives information from the CFs.

Dynamic behavior of CFs: CFs are learning based on the external environment and as the
external environment changes from time to time, and quite frequently in a 5G scenario [6],
the behavior of a CF also changes with the changing environment. So, all the CFs exert
a dynamic behavior and thus, the Controller also has to act reactively.

Calculation of combined interest : this is the most significant challenge faced by the Con-
troller in CAN.When a control parameter is shared among multiple CFs, while determining
the value of that control parameter, it has to find a compromise among their preferred
choices which is a good balance for all.

So, in CAN the Controller should be able to overcome all three aforementioned challenges
and resolve all types of conflicts among the CFs. In the next two chapters, we propose the
design of Controllers which overcome those challenges and can resolve any type of conflict
in CAN.

4.4 Related Works

In this section we cover the existing research works related to the coordination in CAN.
At the start of this chapter, we abstracted CAN as a MAS which creates a wide state-of-
the-art for this problem. However, not every MAS is relevant in this context; we consider
only those cases where agents have similar properties like the CFs.

4.4.1 Related works in MAS

In this section we study already existing research works on MAS ([36, 28]) and the removal
of conflicts (or, reaching consensus) in a MAS ([32, 37]).

In the MAS model used in this thesis (Section 4.1), we already highlighted that each CF
should have four properties (P1, P2, P3 and P4 as described in Section 4.1). Based on
the agent characteristics, we divide existing research works on MAS into several categories
so that a combination of these features is covered in each category. These categories are
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Table 4.1: Existing works on MAS features

P1
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

P2
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

P3
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

P4
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] X

listed in Table 4.1. From Table 4.1 we see that there are a number of prior research articles
which encompass one or some combinations of those four features described above, but
there does not exist any paper which covers all the four features. Ours is the first one
that considers a MAS with all of these four properties and proposes a solution for conflict
removal (or, reaching consensus) in such a MAS.

4.4.2 Related works on controller

As mentioned earlier, the idea of a controller for network automation functions is not
new and already exists in SON [38, 39, 40]. In these papers some external controllers
have been proposed that work on top of the SON Functions and these controllers also
coordinate and remove conflicts among SON Functions. SON coordination has extensively
been researched in SOCRATES (2008) [41] and SOCRATES (2011) [42] also. But these
coordination mechanisms or controllers cannot be used in CAN because these are rule-
based controllers which follow predefined rules and rule-based coordination does not work
in CAN.

4.5 Conclusion and Key Takeaways

In this chapter, we modeled CAN as a MAS to widen our search for existing research
works related to coordination in CAN. After a thorough search of prior arts, we found
an existing gap that justifies the necessity of our research. Along with that, we also
summarized why coordination in CAN is a challenging task and worth addressing. In the
next two chapters, we propose two new methods for coordination in CAN to address the
Q2 described in Section 1.3.3.

List of Abbreviations Used in This Chapter

ICPs input control parameters

MAS multi agent system

OCRS optimal configuration range set

SON self organizing network

UF utility function
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5. Conflict resolution among CFs

In this chapter, we propose a solution for coordination in CAN. We propose a Controller
that overcomes all the challenges mentioned in Section 4.3 and resolves conflicts in CAN.
We also performed a numerical analysis of the controller’s performance. The results show
that our proposed design fulfills all the requirements and is beneficial for use in real-life
scenarios. The majority of the content in this chapter is from the following publication
and patent application by the author:

[14] A. Banerjee, S. S. Mwanje, and G. Carle. Game theoretic conflict resolution mech-
anism in cognitive autonomous networks. In 2020 International Symposium on Perfor-
mance Evaluation of Computer and Telecommunication Systems (SPECTS), pages 1–8.
IEEE, 2020.

A COORDINATION AND CONTROL MECHANISM FOR CONFLICT RESOLUTION
FOR NETWORK AUTOMATION FUNCTIONS
Anubhab Banerjee, Stephen S Mwanje
WO, PCT application no.: PCT/EP2020/061183, filed 10 April 2020

The discussion in this chapter expands on the content taken from the these with a more
in-depth discussion on multi-agent resource allocation and numerical analysis.

5.1 Multi Agent Resource Allocation

Since we abstract CAN as a MAS, the coordination among CFs can be formulated as a
multi agent resource allocation (MARA) scenario because:

• MARA is a research area that studies mechanisms for distributing a set of shareable
resources among a group of agents [43]; similarly, in CAN also we focus on sharing
control parameters among multiple CFs.

• in MARA, each agent has its preference over the resources it may receive, and the
perceived quality of a chosen outcome (allocation of resources to agents) depends on
these individual preferences [44]; similarly, in CAN, each CF has its preference over
the network control parameters and KPIs.

Version: 2024/01/25 – 10:50:11
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A MARA scenario is defined as a triple < A,R,U >. A is a finite set of n agents
A = {1, 2, .., n}. R is a finite set of m resources R = {r1, r2, .., rm}. U is a set of utility
functions U = {u1, u2, .., un}, one for each agent. Each ui ∈ U is a mapping from the set
of resources to the objective of each agent expressed in a non-negative real number, i.e.,
ui : 2

R → R+ ∪ {0}. Utilities are often expressed within a predetermined scale to make
the comparison among them easier. A utility profile for a particular resource allocation
combination J is a vector that contains the utility of all agents for this particular allocation
J and is defined by u(J) = (u1(J), u2(J), .., un(J)). A collective utility function (CUF) is
a function that operates on all the utility profiles and maps u(J) to some real number.

From the perspective of CAN, we consider two main notions of CUF to be satisfied:

The Utilitarian CUF : in this notion, a higher average utility of the agents is preferred,
i.e.,

∑
i∈A ui is maximized.

The Egalitarian CUF : in this notion, it is preferred that the worst-off agent is better off.
If {uk|k ∈ A} is the lowest utility of all the utilities, that particular allocation is always
preferred when uk is the highest.

One of the shortcomings of the utilitarian CUF is that only average utility is considered
without any provision for fairness or equality. For example, in this notion, a utility profile
of (100,1) is preferred over the utility profile (50,50), although the latter ensures better
equality with a small cost for the average utility. On the other hand, the egalitarian CUF
is inconsiderate about the overall utility as long as the worst-off agent performs better,
i.e., it prefers a utility profile of (25, 25) better than (24, 76) although the latter provides a
much higher average utility with a small cost for the worst-off agent. From the perspective
of CAN, we want a CUF that satisfies both the notions simultaneously, i.e., higher average
utility is achieved while the worst-off CF also performs the best.

5.2 Conflict resolution using NSWF

The Nash CUF is the one that balances both utilitarian and egalitarian notions, i.e., it
balances efficiency and fairness ([45, 44]), and it is sensitive to change in overall welfare.
The Nash CUF, or the NSWF, is defined as the product of the individual agent utilities
for a particular resource allocation J :

NSWF (J) =
∏
i∈A

ui(J) = u1(J) · u2(J) · u3(J)...un(J) (5.1)

In NSWF, the fairness in allocation can be observed from the lowest difference in the
obtained utilities. For example, NSWF prefers the utility profile (50,50) to (99,1) or
(24,76) as (50,50) provides the best and equal fairness to all.

However, NSWF can only be applied as long as the following three conditions are satisfied
[46]:

• Pareto optimality : this condition states that the preference of an agent between two
alternatives should depend only on the individual’s preference between these two
alternatives and should be independent of the individual’s preferences over other
alternatives.

• Independence of irrelevant alternatives with neutral property : this condition states
that the naming of the agents should be irrelevant and the principle of equity should
be satisfied.
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F1 F2 F3 F4 F5 F6

Controller

p1p2 p3 p4 p5 p6 p7 p8 p9 p10

{p1, p2, p3, p4, p5, p6, p7, p8, p9, p10}

o1 o2 o3 o4
o5 o6

Observational dependency Logical dependency

Figure 5.1: CAN model 1

• anonymity : this condition states that the ordering of the individual utilities in the
CUF should be irrelevant, i.e., for any permutation of the utilities, the outcome
should always be the same.

We see that all these three conditions are satisfied from the perspective of CAN:

• since the CFs do not interact with each other, a CF is not influenced by any other
CF and its preference is solely based on its learning.

• in our proposed CAN model, all CFs have equal importance.

• ordering or particular permutation of CFs does not have any relevance in our pro-
posed CAN model.

Hence, to calculate an optimal value in CAN, NSWF can be used. In the proposed CAN
model, objective of each CF is equally important in the system, that is why the Controller
uses NSWF to obtain a solution which provides equal importance to each CF and is optimal
for their collective interest. For example, if we consider the simple CAN model of Fig. 4.2
again, there is a possibility of conflict (type A) between F1 and F2 over p1. In such cases,
the Controller selects the value of p1 such that the product of the UFs of F1 and F2 is
maximum.

5.3 Evaluation

After we establish that NSWF based conflict resolution approach is the most suitable
method for CAN, we evaluate the effectiveness of our proposed solution by showing that
the Controller can resolve:

• any kind of conflicts which may arise among the CFs

• conflicts among any number of CFs

• any number of simultaneously existing conflicts between the CFs

To that extent, we use three separate CAN models as shown in Fig. 5.1, Fig. 5.2 and
Fig. 5.3:
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Figure 5.2: CAN model 2
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Figure 5.3: CAN model 3

• CAN Model 1 with six CFs (F1, F2, F3, F4, F5, F6) and a controller (as shown
in Fig. 5.1). From this model we see that: both F1 and F2 share the same input
parameter (p1), so if they have an input parameter conflict (A). As actions of F3

affect the measurement of the output of F4, it is a measurement conflict (B). Also,
changing p7 affects o5 and o6 is dependent on o5, hence it is a logical dependency
conflict (C). Thus, this model exhibits all possible types of conflicts.

• CAN Model 2 with four CFs (F ′
1, F

′
2, F

′
3, F

′
4) and a controller (Fig. 5.2). We see

that four CFs (F ′
1, F

′
2, F

′
3, F

′
4) have input parameter conflict over input parameter

p′1. It is to be noted that, although we use only 4 CFs in this model, the model can
be extended to have any finite number of CFs.

• CANModel 3 with two CFs (F ′′
1 , F

′′
2 ) and a controller (Fig. 5.3). Here we see that F ′′

1

and F ′′
2 have - input parameter conflict over p′′1, measurement conflict (as the action of

F ′′
1 impacts the measurement of o′′2), and, characteristic conflict (logical dependency

conflict, o′′2 →o′′1 →p′′2), i.e., all three types of conflicts are existing simultaneously.

If the controller can resolve all the conflicts in CAN Model 1, we can say that it is able
to resolve any kind of conflicts that may arise among the CFs. Similarly, if the controller
is able to resolve the conflicts in CAN Model 2 and Model 3, we can say that it is able
to resolve conflicts among any number of CFs and any number of simultaneously existing
conflicts respectively.

During numerical analysis, we assume that - oi∀i ∈ {1, 6}, o′j∀j ∈ {1, 4} and o′′k∀k ∈ {1, 2},
are all Gaussian distribution functions. The reason behind this assumption is that in a
real-life scenario, mobile network parameters resemble this distribution very often. For
example, from [47] we see that both SNR and Latency on a loaded cellular network follow
Gaussian distribution. The outputs of the CFs are given by:
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o1 = e
− (p1+50)2

2p22 (5.2)

o3 = e
− (p4+60)2

2p25 (5.3)

o5 = e
− (p7+70)2

2p28 (5.4)

o′1 = e
− (p′1+100)2

2p′22 (5.5)

o′2 = e
− (p′1+50)2

2p′23 (5.6)

o′′1 = e
− (p′′1+50)2

2p′′22 (5.7)

o2 = e
− (p1−50)2

2p23 (5.8)

o4 = e

− (p6−60)2

2
o23 (5.9)

o6 = e
− (p9−o5)

2

2p210 (5.10)

o′3 = e
− (p′1−50)2

2p′24 (5.11)

o′4 = e
− (p′1−100)2

2p′25 (5.12)

o′′2 = e

− (p′′1−50)2

2
o′′21 (5.13)

These equations have been formulated in such a way that between a pair of CFs, the
conflict(s) as mentioned hold true. For example, when p1 is -50, o1 is maximum and when
p1 is 50, o2 is maximum, and thus, F1 and F2 have a conflict over p1. In the second
case, o4 does not have any direct dependency on p5. However, increasing p5 increases o3
which decreases o4, and thus, F3 and F4 have a measurement conflict over p5. Lastly, o6
is dependent on o5 and o5 is dependent on p7 (and p8), thus, F6 has a logical dependency
conflict with F5 over p7 (and p8). Using a similar analysis, input parameter conflict can
be observed among (o′1, o

′
2, o

′
3, o

′
4) and all three types of conflicts can be observed between

(o′′1, o
′′
2). Moreover, for better analysis and graphic visualization, we model all conflicts as

parameterized conflicts without any loss of generality.

5.3.1 Analysis Setup

In reality, the underlying relationship between the outputs and network states (or, config-
urations) is not known beforehand. As mentioned previously, the main functionality of a
CF is to learn the variation of its output when the network state or configuration changes,
so that it can predict its output and generate the utility function for any particular net-
work state or configuration. To make the numerical analysis as close to reality as possible,
we create dummy datasets, using which the CFs can learn the variation of output w.r.t.
input parameters. For each CF Fi, we create a dummy dataset Di following equation oi.
Next, we create a machine learning model (MLM) and train the MLM using the dummy
dataset. After the training is complete, the MLM, which now acts as a CF, is able to
predict its output corresponding to a particular input configuration.

5.3.1.1 Dummy Dataset Generation

To create a dummy dataset(e.g., D1 for F1) we take a random combination of the input
parameters (p1, p2), calculate the output o1 (using Eq. 5.2), and store them in a table. We
select the value of p1 and p2 randomly from their predefined range (which can be found
in Table 5.1) and make sure they are unique. The total number of instances of (p1, p2),
which is used for generating D1, is denoted by training-size.

5.3.1.2 MLM Training

To model the CFs in Python, we use Polynomial Regression block of order 5 using Python
package Sklearn. Each Fi is trained using dummy dataset Di, so that, Fi can predict its
output oi for any combination of its input parameters.
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Table 5.1: Parameters and their default values

Parameter Value Parameter Value

p1 [-150, 150] p2 20

p3 60 p4 0

p5 [-50, 100] p6 100

p7 [-150, 80] p8 80

p9 40 p10 60

p′1 [-200, 200] p′2 35

p′3 60 p′4 85

p′5 150 p′′1 [-100, 100]

p′′2 40
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Figure 5.4: Conflict resolu-
tion between F1 and F2
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Figure 5.5: Conflict resolu-
tion between F3 and F4

−150 −100 −50 0 50
parameter p7

0.2

0.4

0.6

0.8

1.0

ou
tp

ut

Function 5 Function 6 Solution

Figure 5.6: Conflict resolu-
tion between F5 and F6

5.3.1.3 Parameter Values

Relevant parameters and their values used in the numerical analysis are:

1. KPI optimality spread (KOS): the default value is 25% unless stated otherwise.

2. controller-sampling-size: the default value is 2000 unless stated otherwise.

3. training-size: Unless stated otherwise, the default value of this variable used in the
analysis is 2000.

4. pi, p′i, p′′i : The input parameters of the system are chosen in a way such that the
outputs are distinct from one another and the impact of the proposed solution is visible.
The parameters with their default values or range of values are described in Table 5.1.

5.3.2 Numerical analysis of the controller performance

5.3.2.1 CAN Model 1

Let us start the analysis with the variations of the outputs (oi) w.r.t. the parameter of
conflict. For example, F1 and F2 have a conflict over parameter p1, and in Fig. 5.4 we
show the variations of o1 and o2 w.r.t. p1. The black vertical line shows the output values
corresponding to the calculated solution and each other vertical line shows the maximum
output of the function with the same color. For example, in Fig. 5.4, the red vertical
line shows the optimal configuration for F1, the green vertical line shows the optimal
configuration for F2, and the black vertical line corresponds to the calculated optimal
configuration which lies between the other two vertical lines. From Fig. 5.4 we see that
when the value of p1 is as depicted by the black line, neither o1 nor o2 has their maximum
values, but it is a good balance between these two outputs. In the same way, we plot F3

and F4 in Fig. 5.5 and F5 and F6 in Fig. 5.6. However, from Fig. 5.6 we see that, although
F5 and F6 have a logical dependency conflict over p7, o6 remains almost constant w.r.t.
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Figure 5.7: Numerical analysis of CAN
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Figure 5.8: Numerical analysis of CAN
Model 3

p7, i.e., the maximum of o6 is independent of p7. In such cases, the ideal configuration
is the point where the other function has its maximum output. Now from Fig. 5.6 we
can see that the proposed configuration in this case coincides with the point where o5
has its maximum, proving that proposed NSWF based method always provides the best
configuration.

5.3.2.2 CAN Model 2

Using this model we show that the proposed controller can resolve conflict among any
number of CFs. We consider a CAN model with 4 CFs - F ′

1, F
′
2, F

′
3, F

′
4, all of which share

the same input parameter p1 and have a conflict over it. To resolve this conflict, we use
the same controller and plot the result in Fig. 5.7 to show the optimal configuration for
the combined interest of all four CFs. Although in this model we consider only 4 CFs, the
solution idea can be extended and used for any finite number of CFs.

5.3.2.3 CAN Model 3

To show that the proposed controller can resolve any number of simultaneously exist-
ing conflicts among CFs, we consider CAN model 3 with 2 CFs - F ′′

1 , F
′′
2 as shown in

Fig. 5.3. All three types of conflicts exist simultaneously between F ′′
1 and F ′′

2 - they have
input parameter conflict (over p′′1), measurement conflict (as the action of F ′′

1 influences
measurement of o′′2) and logical dependency conflict (o′′2 →o′′1 →p′′2). To resolve all these
conflicts simultaneously, we use the same controller and plot the result in Fig. 5.8 to show
the optimal configuration. It proves that the proposed controller is able to resolve any
number of conflicts that may exist simultaneously.

5.4 Conclusion and Key Takeaways

In this chapter, we provided a controller that coordinates among CFs in CAN and dynam-
ically resolves: any type of conflict among CFs, any number of simultaneously existing
conflicts among CFs, and conflict among any number of CFs. To prove the validity of the
proposed controller, we implemented three separate scenarios of conflict in CAN and per-
formed a numerical analysis of the controller’s performance in each scenario. The results
show that the controller works as expected in each case. Our proposed design is generic
(i.e., for different scenarios, a single mechanism is used), it has the ability to resolve the
conflict reactively (i.e., whenever the conflict arises), and it is scalable (i.e., it works for
any number of CFs). Most importantly, the proposed mechanism resolves conflicts us-
ing NSWF, so that the calculated value is optimal for the collective interest of the whole
system.
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List of Abbreviations Used in This Chapter

CUF collective utility function

MARA multi agent resource allocation

MLM machine learning model

NSWF Nash social welfare function
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6. Interest based optimal configuration
calculation

In this chapter, we highlight the shortcomings of the NSWF based method and propose a
new method that overcomes those shortcomings. We compare the new method with the
NSWF based method and highlight the advantages of the new method. We evaluate our
proposed solution both numerically, and in the simulation environment used in this thesis.
The majority of the content in this chapter is from the following peer-reviewed journal
paper and patent application by the author:

[48] A. Banerjee, S. S. Mwanje, and G. Carle. Towards Control and Coordination in
Cognitive Autonomous Networks. In IEEE Transactions on Network and Service Man-
agement (TNSM), 19(1): 49-60, 2022.

METHODS AND APPARATUSES FOR DETERMINING OPTIMAL CONFIGURA-
TION IN COGNITIVE AUTONOMOUS NETWORKS
Anubhab Banerjee, Stephen S Mwanje
US, Provisional application no.: 63/056084, filed 24 July 2020

The discussion in this chapter expands on the content by providing a more in-depth dis-
cussion on Fisher Market Model, Eisenberg-Gale optimization and Shapley value based
configuration weight calculation method.

6.1 Drawbacks of NSWF solution

In the last chapter, we discussed the process of conflict resolution in CAN and also discussed
how the Controller uses NSWF to find an optimal value for the combined interest of the
CFs. While using NSWF, we assumed that while sharing a resource (in the perspective of
CAN, while setting the value of a control parameter), all CFs have equal priority in that
parameter. However, in a real-life scenario, a control parameter may have different levels
of influence on different CFs, which leads to the conclusion that different CFs should not
necessarily have equal priority over a control parameter. The CF, which is influenced by
the parameter more, should have more priority in that parameter and vice versa. Let us
explain this with an example.

Version: 2024/01/25 – 10:50:11
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Figure 6.1: Example CAN model
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Figure 6.2: KPI variations over shared parameter

Let us consider a CAN (shown in Fig. 6.1) with two KPIs: o1 and o2 and both of them have
a common ICP: p1. Two CFs: F1 and F2 are tasked to optimize o1 and o2 respectively.
Let us assume that in a certain network state, we plot the variations of o1, o2 while only
p1 is varied and p2, p3 are kept constant, and, we obtain the plot as shown in Fig. 6.2.
From this image we see that when p1 is varied by a certain amount, o1 varies more than
o2 varies. For example, when the value of p1 is changed from p11 to p12, the value of o2
decreases slightly whereas the value of o1 decreases from maximum to minimum. So, if
the value of p1 is set at p12 instead of p11, it is of little importance for F2 but of significant
importance for F1. Now it is evident that F1 should be given more priority than F2 while
determining the value of p1, else the final value of p1 might be set at a sub-optimal range.

To express the priority mathematically, while determining p1, if the Controller gives im-
portance wp1

F1
to F1 and importance wp1

F2
to F2, then wp1

F1
should be greater than wp1

F2
,

i.e., wp1
F1

> wp1
F2
. We denote these importance values (wp1

F1
and wp1

F2
) as configuration

weight (CW) values. Later in Section 6.4 we discuss how the CW values can be calculated.
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6.2 Fisher Market Model of CAN

Although we deduce that F1 should be given more priority than F2 while determining
p1, quantifying and setting the priority values for these two CFs is a challenging task. To
overcome this challenge and quantify the importance of a CF towards a control parameter,
we model the CAN as a Fisher Market Model (FMM) [49]. The reason we model CAN as
FMM in optimal configuration calculation is because FMM provides optimal value for the
combined interest of all the CFs while taking individual importance into account.

An FMM M consists of a set of buyers D = {d1, d2, . . . . , dd} and a set of items C =
{c1, c2, . . . . , cc}, where every buyer di has:

• An initial budget (bi) which can be visualized as money that can only be utilized to
purchase the items and has no intrinsic value to the buyer.

• A UF ui:[0,1]
c →R, that maps a quantity vectors of the c items to some real prede-

fined scale.

ui(xi) represents the buyer’s utility when receiving xi amount of items. An agent’s utility
in this game is his utility of the allocated items with respect to his true preference. The set
of budgets is denoted by B = {b1, b2, . ., bd}. Without any loss of generality, the supply of
each good is assumed to be one unit, and the total budget of all buyers is normalized to one,
i.e.,

∑d
i=1 bi = 1 [50]. These assumptions are often made for convenience in analyzing the

model without affecting the results. When the FMM is used for allocating resources among
self-interested agents, it induces an FMM game. In an FMM game, each agent reports
its true preferences on the items of C to some central entity, which, in turn, determines
a market equilibrium according to the budgets of the agents. Based on the budget bi of
a buyer di, the target of the central entity is to determine the set of items (ci) the buyer
should possess for an optimal allocation of items [50].

Let us use the FMM game to formulate the process of calculating optimal configurations in
CAN. We use a single FMM game to determine the optimal value of a single configuration.
The Controller can be visualized as the central entity and CFs can be visualized as the
buyers. Considering example of Fig. 6.1, while determining optimal p1, D = {F1, F2} and
C = {p1}. Now, we visualize the wp1

Fi
values as their respective budgets, e.g., wp1

F1
= w1,

wp1
F2

= w2 (calculation of wi values can be found in Section 6.4) and respective UFs are
f1(p1) and f2(p1). It is important to note that wi values are non-negative, non-zero and
0 < wi ≤ 1. These fi(p1), i ∈ {1, 2} are linear functions which map their objective values
to the predefined scale ([0:10]). Now, the game model is complete as: D = {F1, F2}, C =
{p1} and B = {w1, w2} and the target is to find optimal p1.

6.3 Eisenberg-Gale solution to FMM

To obtain the optimal value of a control parameter in an FMM game (p1 in our example),
it is important to find the equilibrium solution in that game which can be captured by
Eisenberg-Gale Solution (EGS) [51]. EGS can be applied if the UFs of the buyers belong
to the same class in the constant elasticity of substitution (CES) family [50]. UFs in the
CES family take the form of

ui(xi) =
( c∑
j=1

aijx
ρ
ij

) 1
ρ (6.1)
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where ui(xi) represents the buyer’s utility when receiving xi amount of items, aij is a
parameter which quantifies how receiving more item j affects buyer i’s utility and ρ pa-
rameterizes the family, −∞ < ρ ≤ 1, ρ ̸= 0. The Leontief, Cobb-Douglas, and linear UFs
are obtained when ρ approaches −∞, 0, and equals 1 respectively [50]:

Leontief : ui(xi) = minj∈[c]

{
xij
aij

}
(6.2)

Cobb−Douglas : ui(xi) =
∏
j∈[c]

x
aij
ij (6.3)

Linear : ui(xi) =
∑
j∈[c]

aij · xij (6.4)

For these three types of UFs, the EGS takes the following form [50]:

max
d∏

i=1

ubii (6.5)

s.t. ui =
( c∑
j=1

aijx
ρ
ij

) 1
ρ ,∀i ∈ [d]

d∑
i=1

xij ≤ 1,∀j ∈ [c]

xij ≥ 0,∀i ∈ [d], j ∈ [c]

For some values of ρ, e.g., ρ = 1, the objective function of EGS is not strictly concave,
which means that there can be multiple market equilibria [50].

While using Eq. 6.5 to calculate optimal p1,we find that ui(xi) becomes fi(p1) and bi
becomes similar to wi but not equivalent, because, bi values are normalized (

∑d
i=1 bi =

1) but wi values are not normalized. So, if w1 and w2 are normalized to w
′
1 and w

′
2 such

that w
′
1 + w

′
2 = 1, then w

′
i becomes equivalent to bi. When the network state is fixed,

f(px) =
cx
10 , f(py) =

cy
10 , and so on, thus, the UF of the CF is equivalent to Eq. 6.4 with

i = 1 (as we calculate only one configuration at a time), ρ = 1 and aij = 1
10 . ρ = 1 also

signifies the possibility of the existence of multiple optimal values for p1.

Considering Fig. 6.1 again, let us assume that when the Controller calculates p1, the values
of OCRS, UF and CW, for F1 are - {[pF1

1min, p
F1
1max], w

F1
p1 , f1(p1)} and for F2 are - {[pF2

1min,

pF2
1max], wF2

p1 , f2(p1)}. The Controller combines two OCRSs into a final optimal config

set (FOCS) taking the minimum of (pF1
1min, p

F2
1min) and the maximum of (pF1

1max, p
F2
1max)

and selects the p∗1 from the FOCS, for which f1(p
∗
1)

w
′
1 · f2(p∗1)w

′
2 is maximum.

As we already mentioned, the linear nature of the UFs by the CFs gives rise to the
possibility of having multiple optimal values. In case there are multiple values of p1 for

which f1(p1)
w

′
1 · f2(p1)w

′
2 is maximum, the one for which the weighted utility values are

closest to one another is selected. Standard deviation is used to measure the relative
closeness of the weighted utility values. The lower the standard deviation value, the closer
the values are the values to one another. For example, let us assume p11 and p12 are two
values of p1, which belong to the FOCS and f1(p11) = 10, f2(p11) = 6, f1(p12) = 6, f2(p12)

= 5.83, w
′
1 = 0.3, w

′
2 = 0.7. For both p11 and p12, value of f

w
′
1

1 · fw
′
2

2 is 6.992. As the

final value is equal for both p11 and p12, we measure the standard deviation of [f
w

′
1

1 , f
w

′
2

2 ]
for both cases. For p11, the standard deviation value is 0.755 and for p12, the standard
deviation value is 1.186 and so, p11 is selected as the optimal value of p1.



6.4. CALCULATION OF CW VALUES 59

6.4 Calculation of CW values

CW values give an estimation and quantification of the importance of each control param-
eter on each KPI in a cellular network. In a general multiple input single output (MISO)
system the impact of each input variable on the output variable is called Sensitivity In-
dex (SI). Although several SIs have been proposed in the literature, the most generic and
popular one is called Sobol indices [52]. In [53] the authors showed that when the input
variables are independent, many Sobol indices become equal to zero, and a different index
is required for such cases. As control parameters in CAN are independent and they do not
affect each other, in this paper we formulate the wi values as Shapley values [11]. Shapley
value provides the marginal contribution of each player in a multi-player single-objective
cooperative game. In a single-objective cooperative game, a coalition of players cooper-
ates, and obtains a certain overall gain from that cooperation. Since some players may
contribute more to the coalition than others, the Shapley value calculates the importance
of each player to the overall cooperation. An example use case of the Shapley value is game
theoretic centrality [26], which figures out the most important node in a graph towards a
single objective completion.

Let us consider a cooperative game with players N = {1, 2, .., n}. In a cooperative game,
the players try to come to an agreement, and they also have a choice to bargain with each
other, so that individually they can gain maximum benefit. This benefit is higher than
what they could have obtained by playing the game without cooperation. In the game, any
number of players can form a coalition S. A payoff function pf(S) is defined to calculate
a utility value from each coalition. Then, for each player i, i ∈ {1, 2, .., n}, the Shapley
value is calculated as

ζi(pf) =
∑

S⊆N,i/∈S

|S|!(|N | − 1− |S|)!
|N |!

· [pf(S ∪ {i})− pf(S)] (6.6)

In a CF, usually there are multiple ICPs and each of them influences the output by a
different amount. We formulate the CW value of an ICP same as the marginal contri-
bution of that ICP in achieving the objective of the CF. To formulate the game among
the ICPs, we need to define the payoff function for each coalition of the ICPs. The
payoff function is defined per coalition basis and it is defined as the normalized differ-
ence between the maximum and the minimum obtainable output when the parameters
of the coalition are varied. For example, suppose a CF has inputs: {r1, r2, r3, r4} and
output: o. omax is the maximum possible output of the CF and corresponding inputs
are: {rmax

1 , rmax
2 , rmax

3 , rmax
4 }. Similarly, omin is the minimum output of the CF and cor-

responding inputs are: {rmin
1 , rmin

2 , rmin
3 , rmin

4 }. An example of a coalition is R which is
formed between r1 and r2, i.e., R = {r1, r2}. Then, r1 and r2 are varied simultaneously,
and, r3 and r4 are kept fixed at rmax

3 and rmax
4 respectively. If the minimum obtainable

output, by varying only r1 and r2, is oR, then,

pf(R) =
omax − oR
omax − omin

(6.7)

The motivation behind defining the payoff is: to ensure the optimal performance of the
CF, we measure how much the objective of the CF degrades when one ICP is varied and
the ICP, for which the degradation is maximum, has the highest CW value. In Appendix A
we validate the effectiveness of Shapley value based CW calculation both mathematically
and by simulation.

6.5 Numerical analysis of proposed solution

In this section, we show the significant advantages of using our proposed solution over the
NSWF solution using analytical models. Let us again consider the CAN model shown in
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Fig. 6.1 and assume that the CFs can generate the UFs using their learning. As both F1

and F2 share the same ICP p1, the calculation of p1 involves getting OCRS, UF and CW
from both CFs. It is important to note that the values of all the parameters have been
assumed in accordance with those assumed in Chapter 5.

We assume the UFs generated by F1 and F2 to be modeled as Gaussian distributions:

f1(p1, p2) = 0.5e
−(p1+50)2

2p22 (6.8)

f2(p1, p3) = e
−(p1−50)2

2p23 (6.9)

Furthermore, while discussing the calculation of optimal p1, we keep p2 and p3 constant
at 60 and 20 respectively throughout our analysis. These values have been chosen in a
manner to highlight the contrast between the UFs. Both F1 and F2 have been trained on
p1: [0, 100] and their UFs are formulated on a [0:1] scale. The reason behind assuming
UFs as Gaussian Distributions is: in real life, distribution of KPIs resembles Gaussian
Distribution to a great extent [47]. We assume KOS (β) as 50%, so that from Eq. 6.8, F1

calculates OCRS as [0, 36] and from Eq. 6.9, F2 calculates OCRS as [27, 73].

As the next step, F1 has to calculate the CW values of p1 and p2 and F2 has to calculate
the CW values of p1 and p3. In a two-person game with g1 and g2 being the two players,
the Shapley value, from Eq. 6.6, becomes

ζg1/g2(pf) =
1

2
[1 + pf(g1/g2)− pf(g2/g1)] (6.10)

From Eq. 6.8, we see that output of F1 (o1) is maximum when p1 = 0 and minimum
when p1 = 100, i.e., pmax

1 = 0, pmin
1 = 100. Maximum value of o1 is 0.441 and minimum

value is 0, i.e., omax
1 = 0.441, omin

1 = 0. p1 and p2 can form four possible coalitions =
{{∅}, {p1}, {p2}, {p1, p2}}. Payoff for each coalition, calculated using Eq. 6.7, are -

pf(∅) 0 pf(p1) 0.633

pf(p2) 0.955 pf(p1, p2) 1

Thus, when we calculate the Shapley values of p1 and p2 using Eq. 6.10, we get them as
ζp1 = 0.339, ζp2 = 0.661. As ζp1 + ζp2 = 1, there is no need for further normalization.

Similarly, while calculating the CW values for F2, from Eq. 6.9, we get pmax
1 = 50,

pmin
1 = 0 and omax

2 = 1, omin
2 = 0. p1 and p3 can form four possible coalitions =

{{∅}, {p1}, {p3}, {p1, p3}}. Payoff for each coalition, calculated using Eq. 6.7, is -

pf(∅) 0 pf(p1) 1

pf(p3) 0 pf(p1, p3) 1

Thus, when we calculate the Shapley values of p1 and p3 using Eq. 6.10, we get them as
ζp1 = 1, ζp3 = 0. As ζp1 + ζp3 = 1, there is no need for further normalization.

6.5.1 Optimal p1 Calculation

After a CF generates OCRS, UF, and CW, and sends them to the Controller, the Controller
calculates the optimal configuration using EGS. The value of w1 (CW of p1 for F1) is 0.339
and the value of w2 (CW of p1 for F2) is 1. Normalizing the weights we get, w

′
1 = 0.25 and

w
′
2 = 0.75. When the Controller combines the OCRSs from F1 and F2 into the FOCS, it

becomes [min(0, 27), max(36,73)] or, [0, 73]. As both F1 and F2 have been trained when
p1 is varied in steps of 1, the Controller also samples values in [0, 73] in steps of 1 and

selects the value for which f
w

′
1

1 · fw
′
2

2 is maximum.
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Figure 6.3: Comparison between NSWF and EGS

6.5.2 Comparison between NSWF and EGS

In Fig. 6.3 we plot the UFs of F1 and F2 for p1. The red and green plot shows the UF
of F1 and F2 respectively. According to NSWF, the optimal p1 for the system is 40 and
according to EGS, the optimal p1 is 46. However, we see that, when we use EGS, the
utility of F1 decreases by 2.4% but the utility of F2 increases by 10.1%, so the overall
system performance improves by 7.7%.

6.6 Evaluation in the simulation environment

We evaluate our proposed solution in the same simulation environment discussed in Sec-
tion 3.2. We use four CFs in our simulation: MLB, MRO, CCO and ES. As already shown
in [1], TXP has major impact on MLB and MRO, and it has minor impact on CCO and
ES. So, we use the calculation of TXP to demonstrate the effectiveness of our proposed
solution about finding the best balance among multiple CFs.

6.6.1 UF interpretation

In Fig. 6.4 we plot how the utilities of the four CFs vary when TXP is varied. From Fig. 6.4
we see that when the TXP is increased, the utility value of MLB gradually decreases, and
then after a certain value of TXP, it increases again. This happens because when TXP
increases, the size of the cell increases, and load on the cell also increases, so the utility of
MLB decreases. After a certain TXP, the capacity of the cell starts increasing, which, in
turn, reduces the load and increases the utility value of MLB.

From Fig. 6.4 we see that initially, the utility of CCO decreases when TXP is increased
because with increasing TXP, cell size and load on the cell increase which in turn reduces
the capacity. After TXP = 30 dBm, the utility value increases almost linearly with TXP as
the load remains almost constant whereas the capacity increases, which, in turn, increases
the utility value. Beyond 70 dBm, interference from neighboring cells becomes so high
that further increasing TXP reduces the capacity and utility.

From Fig. 6.4 we see the variation of utility values of ES when TXP varies. ES has the
highest utility (1) when TXP is lowest (20 dBm), and the lowest utility (0) when TXP is
highest (80 dBm).



62 6. Interest based optimal configuration calculation

20 30 40 50 60 70 80
TXP (dBm)

0.0

0.2

0.4

0.6

0.8

1.0

Ut
ilit

y

MRO
MLB

ES
CCO

NSWF
EG

Figure 6.4: UFs of all CFs

From Fig. 6.4 we see that initially, the utility value of MRO increases when the TXP
increases because with increasing TXP, the overlap between neighboring cells becomes
more prominent and the percentage of failed handovers decreases. After 50 dBm it becomes
almost constant.

From these plots we make the following observation about optimal TXP for different CFs:
optimal TXP for MLB is either 20 dBm or 70 dBm, for CCO it is between 60 - 70 dBm,
for ES it is near 20 dBm and for MRO it is between 50 - 80 dBm. So, apart from ES, for
the rest 3 CFs optimal TXP is 70 dBm or some value close to 70 dBm. In the next section,
we show that when optimal TXP is calculated using NSWF and EGS, in both cases the
value comes near or at 70 dBm. This validates the methods proposed by us for optimal
configuration calculation is suitable to be used in a real-life scenario.

6.6.2 Optimal control parameter calculation

We calculate optimal TXP using both NSWF and EGS. According to NSWF, optimal
TXP is 64 dBm and according to EGS, optimal TXP is 70 dBm (Fig. 6.4). For each CF,
we calculate how much improvement in utility scale we get using EGS instead of NSWF:

Table 6.1: Improvement in utility

CF
Improvement
(%)

CF
Improvement
(%)

CF
Improvement
(%)

CF
Improvement
(%)

MLB 6.35 ES -8.76 CCO 12.99 MRO -1.4

So, from Fig. 6.4 we see that, although the EGS solution degrades the performance of
ES and MRO, the overall system performance improves by 9.18% using EGS. As stated
earlier, we give equal importance to all CFs in CAN and our target is to find optimal TXP
for the combined interest of all the CFs, EGS serves our purpose.

6.6.3 Time Complexity

Our proposed solutions are beneficial to use in real life if another configuration recalculation
request does not arrive before the previous configuration recalculation is complete. We
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run the simulations to determine the time consumed while calculating optimal values of
each of the control parameters (TXP, TTT, CIO, RET) and the results are shown in the
following tables -

Table 6.2: Time consumed in NSWF

Param
Time
(ms)

Param
Time
(ms)

Param
Time
(ms)

Param
Time
(ms)

TXP 0.21 TTT 0.19 CIO 0.19 RET 0.2

Table 6.3: Time consumed in EGS

Param
Time
(ms)

Param
Time
(ms)

Param
Time
(ms)

Param
Time
(ms)

TXP 0.35 TTT 0.22 CIO 0.22 RET 0.32

6.7 Conclusion and Key Takeaways

Table 6.4: Comparison between Controllers

Comparison aspect NSWF based Controller [14] EGS based Controller [22]

Easiness to implement X

Performance X

Time complexity X

Usefulness in real life X X

As we saw, the EGS based solution includes the impact of a network parameter of a CF
(denoted as CW) and, thereby, overcomes the drawbacks of the NSWF based solution
proposed in the last chapter. In this thesis, we used a Shapley value based method to
calculate the CW values. When we performed a numerical analysis between these two
methods, we also found an improvement of 7.7% in the EGS based method. However,
NSWF based solution works much faster than the EGS based solution since, in the EGS
based solution, CW values also need to be calculated. An overview of comparisons on
different aspects between these two solutions is given in Table 6.4. In conclusion, the time
consumed by any of the two methods is so tiny that we can safely assume that no change
in network state can happen within this short time, and both of these solutions are feasible
to be used in real life.

List of Abbreviations Used in This Chapter

CCO coverage and capacity optimization

CES constant elasticity of substitution

CW configuration weight

EGS Eisenberg-Gale Solution

ES energy savings

FOCS final optimal config set

FMM Fisher Market Model

MISO multiple input single output

MLB mobility load balancing

MRO mobility robustness optimization

SI Sensitivity Index

UF utility function
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7. Trust: Problem and Related Works

In this section, we discuss how open and multi-vendor-enabled CAN deployment may raise
a serious issue concerning trust in the system. When different CFs come from different
vendors, all of them may not be equally trustworthy, We propose the idea of an MCF that
can degrade the overall network performance to achieve its own objective by manipulating
the Controller. In the simulation environment, we experimentally validate the existence
of MCF and formulate two essential problems which need to be answered. The content in
this chapter is from the following paper by the author:

[54] A. Banerjee, S. S. Mwanje, G. Carle. On Detection of Manipulative Cognitive Func-
tions in Cognitive Autonomous Networks. In 2021 17th International Conference on
Network and Service Management (CNSM).pages 194-200. IEEE, 2021.

7.1 Problem Statement

The vision of open, multi-vendor network automation is to allow anyone (e.g., startups,
universities, or any vendor) to develop and deploy CFs in the same network management
automation (NMA) architecture, enabling a more competitive and vibrant supplier ecosys-
tem. Similarly, open-source software and hardware reference designs enable faster, more
democratic, and permission-less innovation [8]. In multi-vendor environments, CFs may
be supplied by different vendors, creating new opportunities for participation to small as
well as new vendors. However, to establish itself in competition with others, a new vendor
needs to advertise the superiority of its product and such a vendor may be tempted to do
so by unfair means. There remains a possibility that a vendor designs a CF that optimizes
its own objective, disregarding the interests of all other CFs, to advertise the superiority
of its product. Such a CF, denoted as an MCF, deliberately sends misinformation on its
preference, e.g., an inaccurate UF (discussed in Section 2.4), intending to manipulate the
Controller [54].

Now, when we propose this concept of MCF, two questions arise:

(i) Can MCF exist, i.e., is it possible for a CF to manipulate the Controller?

(ii) Is it beneficial for the MCF to manipulate the Controller, i.e., can the MCF better
its achievements by manipulating the Controller?

Version: 2024/01/25 – 10:50:11
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Figure 7.1: CAN MCF Example

Later in Section 7.1.1 we discuss how an MCF can manipulate the Controller and in
Section 7.1.2 we experimentally demonstrate how the MCF can profit from manipulating
the Controller.

Since we established that

• an MCF can manipulate the Controller and the MCF has enough leverage to so,
and,

• a vendor has enough motivation to produce and sell such MCFs,

in this context, two important questions arise which need to be answered to maintain
operational efficiency of CAN:

1. Can such an MCF be detected?

2. More importantly, what is the best way to handle such an MCF?

We address the 1st question in Chapter 8 and the 2nd question in Chapter 9. It is to be
noted that while addressing both these questions, we assume that there is only one MCF
present. If there are multiple MCFs present, and all of them send manipulated preferences
to the Controller, behavior of the Controller becomes erratic and no clear pattern is visible
in that behavior. Lack of a learnable pattern in the behavior of the Controller is against
the notion of the existence of an MCF. This is validated experimentally as well. That is
why we always assume there is only one MCF present.

7.1.1 How manipulation occurs

In this section we experimentally demonstrate that such type of manipulation of Controller
is possible. Consider the CAN in Fig. 7.1 with two CFs: F1, F2 and a Controller, with p as
a shared parameter between F1 and F2, and, F1 as an MCF. In Section 2.4 we mentioned
that a CF sends two pieces of information: OCRS and UF, to the Controller to express
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1. CF computes {OCRS, 
UF} in network state si

based on its learning

Final 
value (fi)

{OCRS, 
UF} (pi)

Network 
state (si)

2. CF sends {OCRS, 
UF} to Controller

3. Controller computes 
final value based on 
OCRSs, UFs of all CFs

Figure 7.2: Learning objective of an MCF

its preference. It is important to note that since the UF is more effective than OCRS in
influencing the decision making of the Controller [54], hereafter, a CF’s preference only
refers to the UF. In a network state s1, F1 observes that if F1 proposes p1 to the Controller
(as a preferred value for p), the Controller calculates the final value as f1. Again, F1

observes that in another network state s2, if it sends p2 to the Controller, the Controller
sets f2 as the final value. So, eventually after n such instances, F1 observes that for its
preferred values p1, p2...pn of the parameter p in network states s1, s2 ..sn, the Controller
computes values f1,f2...fn respectively. Given observations over multiple instances, F1

may become able to learn the relationship among the variables < si, pi, fi > as depicted
in Fig. 7.2, i.e., in a network state si, F1 can predict what the value of fi will be if F1

proposes pi to the Controller.

Now, in a network state sn+1, F1 computes its preferred value as pn+1, but F1 also predicts
that if it sends pn+1 to the Controller, the final value, set by the Controller, will be fn+1.
To manipulate the Controller’s outcome, F1 may propose a false value p′n+1, to ensure that
the new final value (f ′

n+1) will be equal to or as close as possible to pn+1. Thereby, F1 is
able to manipulate the Controller to optimize F1’s own objective, but at the cost of overall
network performance and stability.

Algorithm 7.1 shows an example for computing p′n+1. Consider that the Controller allows
(from any CF) only the δ-spaced discrete values in [pmin, pmax], where pmax = pmin+m∗δ,
m ∈ Z+. Also consider that F1 has learned the function g(·), so that fn+1 = g(sn+1, pn+1),
i.e., given the current network state and F1’s preference, F1 can predict the final value to
be set by the Controller. F1 wishes to compute p′n+1 such that f ′

n+1 (=g(sn+1, p
′
n+1)) and

pn+1 are as close as possible, i.e., |pn+1 - f ′
n+1| is minimum. For that (see Algorithm 7.1),

F1 could iterate over all possible values of p (since they are finite in number) and find the
one for which |pn+1 - f ′

n+1| is minimum.

7.1.2 Demonstration of MCF manipulation

To experimentally demonstrate manipulation and its impact on performance, we use the
simulation set-up described in Section 3.2 with the two CFs: MLB and MRO. There
is also one Controller to coordinate between these two CFs which is flexible to use both
NSWF (Chapter 5) and Eisenberg-Gale solution (EG) (Chapter 6) based solutions. We
wish to show the extent to which an MCF (MLB in this case) can learn the relationship
among < si, pi, fi >.

Fig. 7.3 shows the prediction success of an MCF’s prediction on fi values relative to
the Prediction margin. The Prediction margin is the maximum allowed deviation of the
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Algorithm 7.1: MCF manipulation

Input: pn+1, sn+1, g(·), [pmin, δ, pmax]
Output: p′n+1

fn+1 = g(sn+1, pn+1)
if |pn+1 - fn+1| == 0 then

p′n+1 = pn+1

else
d = |pn+1 - g(sn+1, pmin)|
r = pmin + δ
while r <= pmax do

if |pn+1 − g(sn+1, r)| < d then
p′n+1 = r
d = |pn+1 − g(sn+1, r)|

r = r + δ

Figure 7.3: MCF prediction accuracy

prediction from the actual value, i.e., if the value of fi is x dB, and prediction margin is y
dB, the prediction is considered a success if the MCF’s prediction falls within [x± y] dB.
Naturally, a higher value of y increases the prediction success range ([x± y]), and in turn
increases the accuracy of the MCF. Fig. 7.3 also shows that an MCF is least successful
in predicting fi values when: (i) the Controller uses EG instead of NSWF, which can be
attributed to the use of CW values in computing fi in EG, and, (ii) the MCF is MLB
instead of MRO. So, it is reasonable to assume that in all other cases (MRO + NSWF,
MRO + EG, MLB + NSWF), MCF’s prediction success, and the degree of manipulation
of the Controller, is at least the same or more. So, in the next paragraph, we discuss the
degree of manipulation of the Controller and overall performance degradation when the
MCF is MLB and the Controller uses EG.

Next, we investigate the impact on the system-wide performance degradation which can be
caused by the MCF. System-wide performance degradation is computed as the sum of the
degradations of the individual CFs’ performance. We consider the scenario which is least
favorable for the MCF, i.e. MLB + EG, since the degree of manipulation and consequent
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Figure 7.4: self-interested CIO proposal by
MLB

Figure 7.5: Observed overall performance
degradation

system performance degradation will be the same or more in all other cases. Thereby, for
8 random network states, Fig. 7.4 plots three bars side by side for: (i) the original CIO
value computed by the Controller using EG and without manipulation (fn+1), (ii) the
optimal CIO value for MLB in that network state (pn+1), (iii) the CIO value computed
by the Controller when manipulated by MLB (f ′

n+1). We see that in 75% of the cases (6
out of 8), MLB is successful in manipulating the Controller into setting a CIO value that
is more favorable for MLB’s interest than the overall system. From Fig. 7.5 we see that
in these cases, overall performance degrades by up to 10%. Since we show these results
considering a scenario that is least favorable for an MCF, we can expect that for any other
CF and Controller combination, the manipulation and system performance degradation
will be equivalent or even more, and this proves the necessity of a mechanism to tackle
the MCF(s) that may be present in a system unknown to the MNO.

7.2 Related Works

We divide this section into two parts: in the 1st part, we give a brief overview of existing
research works that are relevant to trust in CAN, and in the 2nd part, we discuss standards
related to our work and the impact of our work on ongoing 3GPP standardization efforts.

7.2.1 Related Literature

The concept of a rogue agent or manipulative agent exists in a number of research domains,
including social networks [55, 56], distributed systems [57, 58], multi-agent systems [59,
60, 61], robotics [62, 63], and many others. However, there are significant differences
between a rogue agent in any of those fields and an MCF in terms of definition and
functionality. The concept of an MCF is most similar to the concept of signal jamming in
duopoly (SJD) [64, 65], so we briefly review SJD and the prior research works conducted on
SJD to understand its similarity to our problem and highlight the novelty of our research
compared to the state-of-the-art.

SJD refers to the scenario where one firm intentionally sends manipulative information into
a marketplace to force other firms to adjust their market prices of a given product. In an
open market, several firms can manufacture the same product and compete in selling the
product to the customers. Although a firm A cannot know the internal business strategies
of a rival firm B, firm A can always observe the product’s market price set by the B.
Based on the observations, firm A can roughly estimate the values of different unknown
parameters of each rival firm’s demand and production curve. Based on that, a firm can
potentially signal jam, i.e., strategically vary its production level and market price in order
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to manipulate the distribution of estimated market prices [64]. It is to be noted that the
market prices of the rival firms are subject to random disturbances and may provide noisy
information to the firm, which may potentially harm the process of estimation of the firm.

This scenario is important to CAN, since the CFs act like the firms and the characteristics
of a shared control parameter match with the common market product. Just like the
firms, a CF cannot observe the actions of other CFs, but it can observe the final value of
the shared control parameter set by the Controller. Based on it, an MCF can potentially
deduce other CFs’ preferences and the Controller’s final value calculation method and
send misleading information to the Controller to manipulate the final value of the shared
parameter. The final value of a shared parameter is calculated taking the preferences of all
CFs into account, and their preferences may change from time to time, which may provide
noisy information to the MCF. So, we see that all the characteristics of an SJD match
perfectly with the context provided in this paper, presenting SJD as the most relevant
state-of-the-art for this paper.

Over the years different types of problems on SJD, along with different types of solutions,
have been discussed in multiple publications. Although SJD has been proposed in earlier
research works like [66, 67, 68], these papers assumed information transmission among the
firms. This is in contrast to our assumption that no direct information transmission or
communication takes place among the CFs. For example, in [69, 70, 71] it was assumed
that private information about a firm can be perfectly transmitted through its perfectly
observed actions, which is not applicable in CAN since a CF cannot directly observe the
action of another CF. Relatedly, the signal jamming models in [72, 73, 74, 75, 76] assume
that the signal jammer knows the information that is the subject of signal jamming, which
also does not hold true in CAN. The signal jamming models proposed in [77, 64] resemble
CAN the most, but even here, the firms try to observe rivals and then develop a strategy
to reach an equilibrium. This does not directly apply to our considered scenario, where
the focus is on developing a different solution that forces the MCF to stop its manipulative
behavior completely and restores the network to its optimal operating point. So, we see
that, although CAN resembles SJD in multiple aspects, currently there does not exist any
SJD scenario or solution which is applicable to our work.

Currently, with the advancement of AI and ML, there is an ongoing trend of using more
AI and ML-based solutions for network management and automation purposes. In [78]
the authors introduced the concept and discussed the limitations of AI-enabled zero-touch
network and service management (ZSM). In [79] the authors laid out their vision for AI
driven closed-loop network automation in 5G and beyond mobile networks. On a similar
note, in [80] the authors used NN for small cell coverage optimization, and researchers
designed an NN-based adaptive routing scheme for QoS optimization in [81]. Although
there are a lot more research works on using AI/ML in the networks, however, none of the
existing works discusses trust and performance issues in multi-vendor, open AI-enabled
network management automation.

7.2.2 Related Standardizations and relevance to our work

The most real-life application of the Controller-CF based CAN framework is the 3GPP
SON [82] and 5G SON [83]. In SON, the network automation functions (NAFs) both
in the control and in the management layers monitor the network events, analyze the
network data and make decisions on the SON actions based on their analysis. A SON
management function provides policies and targets to the NAFs and resolves any types
of issues among the NAFs. The NAFs are similar to CFs, but CF decisions are learned
and not pre-programmed while the role of SON management is similar to the role of the
Controller in CAN. These functionalities remain true for 5G SON as well [83], but 3GPP
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has started introducing learning-based functionality including the network Data Analytics
Function [84] and Management data Analytics [85].

The advancements in ML and deep learning (DL) in recent times are also driving vendors
to produce ML based solutions for SON, i.e.slowly pushing towards the CAN framework.
For example, if we consider the specifications of MRO in 3GPP [83], we see that the func-
tionalities, like, analyzing reports from UEs and network slice information, and mitigating
HO issues by adjusting HO related parameters (TTT, CIO), can be better achieved by
using ML and DL capabilities. Relatedly, the specifications present network automation
as a multi-vendor environment where 5G SON functions in the management layer can be
sourced separately from the base stations or their Distributed SON functions. This is
done with the assumption that the SON management layer in the base station will coordi-
nate the actions of these different multi-vendor automation functions. This deployment of
multiple learning automation functions (i.e. CFs) in a multi-vendor environment directly
runs into the trust and performance issues discussed in this paper. In other words, as a
minimum the SON management layer shall need to be adapted to account for the likeli-
hood of manipulation as we have discussed here. For optimal results, however, the entire
management automation architecture may need to be overhauled fairly soon before the
ML/DL based network automation solutions become prevalent.

7.3 Conclusion and Key Takeaways

Although openness and multi-vendor deployment of mobile network management provide
lots of benefits (e.g., cost-efficiency, agility), it can also introduce a significant drawback
regarding trust in the management system. We conceptualized the idea of an MCF: a
CF that learns how the Controller behaves and manipulates the Controller to achieve its
objective sacrificing overall network performance. We experimentally demonstrated that
such a type of MCF can exist and can cause severe network performance degradation.
After establishing the seriousness of the issue, we framed two critical questions on this
topic, which are addressed in the following two chapters. We concluded this chapter by
summarizing prior research works and standardization activities on this topic.

List of Abbreviations Used in This Chapter

3GPP 3rd generation partnership project

CIO cell individual offset

DL deep learning

EG Eisenberg-Gale solution

MCF manipulative cognitive function

ML machine learning

MLB mobility load balancing

MNO mobile network operator

MRO mobility robustness optimization

NAFs network automation functions

NMA network management automation

NSWF Nash social welfare function

OCRS optimal configuration range set

SJD signal jamming in duopoly

SON self-organizing network

TTT time to trigger

UF utility function

ZSM zero-touch network and service man-
agement
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8. Manipulative Cognitive Function Detection

In this chapter, we address the Q3 described in Section 1.3.3 by proposing a solution
to detect an MCF in CAN. Our solution is based on polynomial regression, which is
compatible and easy to implement in CAN. We evaluate our proposed solution extensively
and observe key findings regarding the proposed solution. The majority of the content in
this chapter is from the following paper and patent application by the author:

[54] A. Banerjee, S. S. Mwanje, G. Carle. On Detection of Manipulative Cognitive Func-
tions in Cognitive Autonomous Networks. In 2021 17th International Conference on
Network and Service Management (CNSM).pages 194-200. IEEE, 2021.

DETECTING MANIPULATIVE NETWORK FUNCTIONS
Anubhab Banerjee, Stephen S Mwanje, Abdelrahman Abdelkader
WO, PCT application no.: PCT/IB2021/054489, filed 24 May 2021

The discussion in this chapter takes elements from these, but expands on the description
of the solution and evaluation results.

8.1 Brief Overview on Polynomial Regression

In this section we give a brief overview on polynomial regression, based on which our
solution MCD is designed. Polynomial Regression is a regression algorithm that models
the relationship between a dependent(y) and independent variable(x) as a n-th degree
polynomial. The relationship between x and y, i.e., the n-th degree polynomial, is given
by:

y = b0 + b1x+ b2x
2 + ...+ bnx

n

Polynomial regression is beneficial to use in cases where the relationship between two
variables (x and y in this case) is non linear and difficult to depict. The value of n is
not constant and it is adjusted to a suitable value to model the relationship better. The
goodness of the model, i.e., how accurately the polynomial represents the true relationship
between x and y, is usually measured by root mean squared error (RMSE) or R2 score.

It is important to keep in mind that in polynomial regression, there is always a bias vs
variance trade-off. Bias refers to the error due to the model’s simplistic assumptions in
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Figure 8.1: MCD and MCF Detection by MCD

fitting the data. A high bias means that the model is unable to capture the patterns in
the data and this results in under-fitting. On the other hand, variance refers to the error
due to the complex model trying to fit the data. High variance means the model passes
through most of the data points and it results in over-fitting the data. So, while using
polynomial regression, one has to always find the appropriate balance between bias and
trade-off.

8.2 Manipulative CF Detector

In this Section we propose a method, called MCD, to detect an MCF in CAN. The proposed
solution is effective and easy to implement, and can be incorporated as an added feature
of the Controller. After MCD becomes operational, it keeps tracking <si, pi> values of
each CF and learns how pi varies when si varies for each CF. This learning is a continuous
process which lasts as long as MCD is active. As soon as MCD receives a pi value from
a CF which is not in par with MCD’s learning, MCD raises an alarm. After a certain
number of alarms, value of which can be set by network operator or the Controller, MCD
marks the CF as an MCF.

Let us consider the CAN model of Fig. 7.1 again, where F1 is an MCF, to explain how MCD
works. After MCD becomes operational, every time F1 sends Request to the Controller,
MCD records the si and pi values and applies polynomial regression to make a predictive
model to learn the variation of pi with si (Fig. 8.1). For depiction purposes, we express
both si and pi by numerical values with units and they can be adjusted based on how si
and pi are defined in simulation environments. Every time the network state changes and
the Controller receives a request from F1 for configuration recalculation, MCD predicts p

′
i:

the value F1 should send in the current network state based on previous experience. If a
pi is not close to p

′
i, MCD marks it in red (shown in Fig. 8.1) and raises the alarm.

There are a few points to be noted while using polynomial regression in MCD:

• We use degree of polynomial as 3 when the MCF is MLB or MRO. This value has
been chosen such that RMSE of the regression model is always at less than 1 for a
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Figure 8.2: MCD starts be-
fore MCF

Figure 8.3: MCD and
MCF start simultaneously

Figure 8.4: MCF starts be-
fore MCD

good fit. This value is determined based on trial-and-error. If any other CF is used,
the degree of the polynomial may need to be adjusted.

• In our implementation, we allow an error margin (|pi−p
′
i|) of 5% on predicted values

by MCD. This value can be adjusted based on requirement. If the value is too high,
learning of MCD converges faster, but also the learning is more erroneous; if the value
is too low, the learning is more accurate, but it takes more time for the learning to
converge. This trade-off should be kept in mind while choosing the error margin.

• If enough number of data points are available, use of deep learning or other sophisti-
cated supervised learning algorithms in MCD and further lowering of error margin on
MCD predictions may result in a much better performance by MCD. However, since
our target was to demonstrate that such an idea would work well, we implemented
the regression based solution.

8.3 Evaluation

8.3.1 Set-up

In this Section we evaluate the performance of our proposed solution (MCD) in the same
simulation environment, in which the problem statement was described (Section 3.2), with
2 CFs: MLB and MRO. We make one CF to behave as MCF, regarding the CIO values,
at one time and measure how quickly MCD can detect the manipulative behavior. We
change the network state every certain time interval and perform measurements in terms
of number of time intervals, so that is why we express the time in ”unit”. The time unit
can be anything: minute, hour or day, as long as network state changes every minute, hour
or day respectively. The time unit can be non uniform as well, i.e., interval between two
consecutive network states may not always be constant.

8.3.2 Observations

We consider three cases:

• case 1 : MCD becomes operational t time units before MCF, results of which are
shown in Fig. 8.2.

• case 2 : MCD and MCF start operating simultaneously, results of which are shown
in Fig. 8.3.

• case 3 : MCF becomes operational t time units earlier than MCD, results of which
are shown in Fig. 8.4.
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Figure 8.5: MCF learning EGS based Con-
troller behavior

Figure 8.6: MCF learning NSWF based
Controller behavior

Both in case 1 and case 3, we consider t = 5. Later in this section we discuss the impact
of t on MCD performance.

Out of these three cases, time taken to catch an MCF is highest in case 2, because, MCF
starts exhibiting manipulative behavior at the same time MCD becomes functional, which
makes it difficult for MCD to become certain of the manipulative behavior of MCF. In
case 1 MCD starts earlier than MCF, so MCD has enough correct observations from
MCF to accurately model the behavior of MCF, and so, it is easier for MCD to detect a
manipulative behavioral sign from MCF. In case 3, when MCD starts functioning, MCF
already started manipulative behavior, which makes it easier for MCD to see the erratic
suggestions proposed by the MCF and, therefore, detect the MCF.

There are two more important things which can be observed from these plots:

• out of those two CFs: MLB and MRO, CIO has more importance for MLB, so that
MLB output variation with respect to CIO can be learned very well by MCD, and
hence MLB is easier to be detected for manipulative behavior.

• when the Controller uses EGS, as CW values (Section 6.1) are involved in the final
value calculation, it is equally hard for MLB and MRO to learn Controller behavior;
that is why MCD takes almost the same time for both the CFs.

It is quite intuitive that the more earlier MCD becomes operational than MCF, the better
MCD can learn the MCF behavior and the faster MCD can catch MCF. However, in
real life, network operator does not have any control over MCF or the start time of its
manipulative behavior; so case 2 is the most probable scenario in real life when both MCD
and MCF start as soon as the whole system becomes operational. In Fig. 8.5 and Fig. 8.6
we plot how well an MCF can learn Controller behavior when the MCF starts manipulating
the Controller tm time units after the system becomes operational. We see that when tm
is low, mean squared error (MSE) of the MCF predictions about Controller choices is very
high, because MCF does not have enough instances to learn the Controller behavior. The
higher the value of tm is, the more instances MCF gets to learn the Controller behavior,
the lesser becomes the MSE. As per expectation, MSE is higher when the Controller uses
EGS instead of NSWF. From tm > 15, the MSE becomes almost close to zero, which
means that the MCF has successfully learned the Controller behavior. So to conclude, if
MCD starts 15 time units or later than MCF, it becomes very difficult for MCD to catch
the MCF.



8.4. ALTERNATIVE APPROACHES 79

Figure 8.7: Controller using NSWF Figure 8.8: Controller using EGS

This conclusion is supported by Fig. 8.7 and Fig. 8.8. We make MCF operational tc time
units before MCD starts, and plot how much time is taken by MCD to catch MCF. When
tc is low, MCF has not learned Controller behavior properly, so MCD catches MCF really
fast. However, as tc goes higher, MCF has more instances to learn Controller behavior,
catching MCF becomes more difficult. At tc > 15, it is almost impossible to catch MCF.

8.4 Alternative Approaches

In this thesis, we used polynomial regression based detection mechanism since it is easy to
understand and implement. Also, during our simulation, the dataset size was not huge, so
regression based detector worked well. However, in real life, when the size of the dataset
is huge, a feed-forward NN can be used. The internal features of the NN (e.g., number of
hidden layers, number of nodes in each layer) are to be determined experimentally. In Ap-
pendix B we discuss one such use case where the optimal NN is determined experimentally.
The same approach can be taken here as well.

8.5 Conclusion and Key Takeaways

In this chapter, we proposed and evaluated a solution called MCD to detect an MCF in
CAN. From the evaluation results, we made two critical conclusions as follows. First, if
there is a significant time difference between the start time of the MCF and MCD, MCD
might not be able to catch the MCF at all. So, in a multi-vendor system where the CFs
come from different vendors and not all of them are trustworthy, it is always better to use
MCD from the start. Second, if the Controller uses EGS instead of NSWF, CW values
are also present, which are difficult for an MCF to learn. So, if the Controller uses EGS,
an MCF can always be caught much faster.

List of Abbreviations Used in This Chapter

CCO coverage and capacity optimization

CW configuration weight

MCD manipulative CF detector

MCF manipulative CF

MLB mobility load balancing

MRO mobility robustness optimization

MSE mean squared error

NN neural network

RMSE root mean squared error
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9. CoDeRa: Controller Decision Randomizer

We proposed a method to detect a manipulative CF (MCF) in the previous chapter.
However, sometimes in an operational system, the detection and removal of an MCF are
not feasible. In those cases, it is necessary to force the MCF to give up its manipulative
behavior. In this chapter, we propose a solution that forces the MCF to abandon its
manipulative behavior instead of taking the MCF out of an operational system and address
the Q4 described in Section 1.3.3. The majority of the content of this chapter is from the
following peer-reviewed journal article and patent application by the author:

[86] A. Banerjee, S. S. Mwanje and G. Carle, ”Trust and Performance in Future AI-
enabled, Open, Multi-Vendor Network Management Automation,” in IEEE Transactions
on Network and Service Management (TNSM), 2022, doi: 10.1109/TNSM.2022.3214296.

REDUCING SYSTEM DEGRADATION CAUSED BY MANIPULATIVE FUNCTIONS
Anubhab Banerjee, Stephen S Mwanje
WO, PCT application no.: PCT/IB2021/054486, filed 24 May 2021

In addition to the content described in the patent application and the publication, this
Chapter provides additional information on: (i) deflection computation (Section 9.2) and
(ii) discussion on CoDeRa (Section 9.6).

9.1 Basic Concept

Although MCD can detect an MCF, the MCF cannot be just removed or replaced in an
operational system, since:

• we cannot shut down an MCF abruptly because then its managed KPI will be heavily
affected.

• replacement may require shutting down and we cannot shut down the whole system
just to replace an MCF.

• most importantly in case of replacement, there is no guarantee that the new CF
won’t be manipulative.

Version: 2024/01/25 – 10:50:11
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Algorithm 9.1: Deflection calculation

Input: UF1(·), UF2(·), fn+1, δ, γ, dmax

Output: d
r = δ
while r < dmax do

u1 = UF1(fn+1), u2 = UF2(fn+1)
u′1 = UF1(fn+1 + d), u′2 = UF2(fn+1 + d)

x =
u1−u′

1
u1

+
u2−u′

2
u2

if 100 ·x <= γ then
d = r

r = r + δ

Since there is currently no available framework to detect for possible manipulative behavior
prior to deployment, there is always a chance of one or more MCFs being present in the
system. Since an MCF cannot be just shut down or taken out, the only feasible approach
is to force the MCF to give up its manipulative behavior. We can validly assume that the
MCF will abandon its manipulative behavior when the MCF fails optimize its objective
by manipulation. An MCF fails to optimize its objective by manipulation when it cannot
learn completely how the system (in this case, the Controller) works. In this case, an MCF
will stop manipulative behavior when the MCF is unable to learn the relationship among
< si, pi, fi >, since sending unsure preferences to the Controller can cause more harm
than benefits to the MCF.

Since out of the three variables {si, pi, fi} (7.1.1), the Controller (or, the MNO) only has
control over fi, we propose to stop MCF from learning the relationship among < si, pi,
fi >, by adding unpredictability to the computed fi values. The unpredictability (a form
of deflection or noise) makes the relationship among < si, pi, fi > difficult (especially
when the deflection is high, almost impossible) to learn. We call our proposed solution
Controller Decision Randomizer, or in short, CoDeRa [86].

9.2 Deflection Computation

Although adding deliberate noise or deflection is the most reasonable approach, it is also
important to minimize the performance degradation caused by the deflection. Using the
same example in Section 7.1 with F1 as the MCF, assume that UF1(·) and UF2(·) are the
UFs of F1 and F2 respectively, while fn+1 is the final value computed by the Controller
at network state sn+1. CoDeRa seeks to find the maximum possible deflection (d) that
maintains the sum of individual performance degradation below the allowed system per-
formance degradation (γ). To compute the deflection d, CoDeRa computes u1 and u2, the
respective utility values of F1 and F2 when p = fn+1. Then, CoDeRa computes the sum of
the degradation in utility values (or, performance) of the CFs when the final value of p is
set at (fn+1 + r) instead of fn+1 where r is the added deflection. If the total degradation
is less than (µ), the deflection is increased and the process repeated until a maximum
allowed range (dmax).

9.3 CoDeRa Parameters

There are four important parameters in CoDeRa: α, β, γ and deflection.

9.3.1 α

It denotes the time gap between the start of the system and CoDeRa. If the system starts
at time t0 and CoDeRa starts at time t1, then α = t1 - t0. α = 0 means the CoDeRa starts
with the system.



9.4. CODERA WITH MCD 83

9.3.2 β

The longer an MCF keeps learning while CoDeRa is active, due to the added noise, the
MCF is likely to experience deterioration in its learning. So, it is beneficial for the MCF to
stop learning and use whatever it has learned after a certain point. β denotes the number
of time units after which the MCF stops learning but we also consider the case where the
MCF never stops learning (i.e., β=∞). Note that the Controller does not influence β, it
is entirely up to the MCF and the vendor supplying the MCF.

9.3.3 γ

It denotes the allowed total system performance degradation, to be derived as the sum of
the percent performance degradation of the individual CFs.

9.3.4 deflection

This is the shift in the value computed by the controller. Since a higher deflection leads to
more potential network degradation, d has to be limited by the allowed degree of network
degradation. The deflection may be added either as a fixed amount d or as a random value
of up to d, i.e.,

fi =

{
fi ± d ; deflection = simple

fi ± rand(0, d] ; deflection = random

9.4 CoDeRa with MCD

If we keep CoDeRa operational the whole time, two major problems arise:

• Running CoDeRa is not economical and consumes more energy, so it creates wastage
of energy when there is no MCF in the system.

• If there is no MCF in the system, using CoDeRa always causes some amount of
overall performance degradation, so the network operates sub-optimally without any
reason.

So, it is beneficial to use CoDeRa in the system along with an MCD. If MCD detects an
MCF in the system, it can alert CoDeRa about the MCF. CoDeRa then starts adding
noise to fi only when the request comes from the MCF, and in all other cases, CoDeRa
does not add any noise. Similarly, when the MCF stops exhibiting manipulative behaviors,
MCD can notify the CoDeRa and it can go to the sleep mode, thus conserving energy.
Just like MCD, CoDeRa can also be implemented either within the Controller, or, as an
added functionality.

9.5 Evaluating CoDeRa

To evaluate CoDeRa, we use the experimental setup described in Section 7.1.1 and assume
that at any time, one CFs acts as an MCF. We study the impact of the MCF on the
network performance over multiple iterations. We assume that each iteration takes place
in every time unit selecting a new randomly-selected network state. This is the same unit
introduced in Section 8.3.

We vary the parameters α, β, γ and deflection one at a time and plot the error in the
MCF’s predicted values. Naturally, we prefer higher errors in the MCF’s predicted values
which indicates failure to predict controller behavior, which in turn signifies lesser degree
of manipulation and overall performance degradation. To demonstrate the efficiency of
CoDeRa, we test it in the worst-case scenario, i.e., when the MCF has enough opportunity
to learn the Controller behavior before CoDeRa is activated. If not otherwise stated,
default values of the parameters are: α = 20, β = 50, γ = 5, simple deflection. The
default values have been chosen to create the desired worst-case scenario.
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Figure 9.1: Deflection Type 1 Figure 9.2: Deflection Type 2

Figure 9.3: Performance
degradation 1%

Figure 9.4: Performance
degradation 5%

Figure 9.5: Performance
degradation 10%

9.5.1 Impact of deflection type

Fig. 9.1 and Fig. 9.2 show that for simple deflection, the error in MCF predictions is low.
This is because with a constant amount of deflection, MCF can still learn the Controller
behavior - both the original relation among < si, pi, fi > and the amount of added deflec-
tion. In ML, sometimes a small constant noise is added to training dataset to prevent over
fitting and in this case, simple deflection serves the same purpose. When deflection is
random, i.e., it introduces a random amount of “noise” at each time point, which makes it
then difficult for MCF to learn the Controller behavior. This is why we see from Fig. 9.2
that MCF fails to learn, when deflection is random, even after 500 iterations. Moreover,
random deflection avoids a constant degradation, e.g, for γ = 5, the system performance
degradation is 5% for simple deflection but it varies between 0 - 5% for random deflection.
For these reasons, random deflection is always the preferred over simple deflection.

9.5.2 Impact of γ

Fig. 9.3, Fig. 9.4 and Fig. 9.5 show that a higher performance degradation limit results
in more error in MCF predictions, which is because it allows for a higher deflection.
From Fig. 9.5 we see that in this case, the deflection value is so high that MCF fails to
learn even after 500 iterations. However, although a very high limit (e.g. of γ is 30 or
higher) completely inhibits the MCF’s learning, it also leads to unacceptably high system
performance degradation.

9.5.3 Impact of α

Fig. 9.6, Fig. 9.7 and Fig. 9.8 show that a higher the α value lowers the MCF prediction
error, because the MCF gets more noise-free, accurate data to use to learn. So, for the
MNO, it is always beneficial to keep α = 0, i.e., start CoDeRa as soon as the system starts.
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Figure 9.6: α = 0 Figure 9.7: α = 20 Figure 9.8: α = 100

Figure 9.9: β = 20 Figure 9.10: β = 100 Figure 9.11: β = 500

9.5.4 Impact of β

Although, β cannot be configured by the MNO and solely depends on the vendor, we still
need to understand its impact on CoDeRa performance. Fig. 9.11 shows that since the
deflection type is simple, despite the added noise, over time MCF is able to learn the
Controller behavior and prediction error decreases when β increases.

9.6 Discussion on CoDeRa

Although we argue that MCFs can be neutralized using CoDeRa, there are several draw-
backs with the approach:

• From the results we see the best possible configuration for CoDeRa is: α = 0, γ = as
high as possible and random deflection. Now, we know α = 0 means CoDeRa starts
with the system, but, we also mentioned that keeping CoDeRa always active is not
economical and causes unnecessary network performance degradation. Conversely,
if CoDeRa is activated only after MCD detects an MCF, it might be too late since,
by then, MCF could have completely learned how the Controller works, and thus,
activating CoDeRa after that point is meaningless.

• CoDeRa is designed assuming an MCF gives up its manipulative behavior once it
fails to learn how the Controller works. However, an MCF might be designed in a
way to be manipulative irrespective of its success in learning the Controller behavior.
CoDeRa is ineffective against such MCF(s).

• Finally, even if CoDeRa is successful in disabling MCF(s), there is unavoidable per-
formance degradation and the network can not achieve its optimal performance.

As we argued and established in Section 9.1, with the current NMA architecture, CoDeRa
is the only solution to disable an MCF in an operational system. So, the limitations stated
here motivate us to find an alternate architecture to overcome these shortcomings. This
alternate architecture is added in Appendix B.
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9.7 Conclusion and Key Takeaways

In this chapter, we proposed a method that forces an MCF to give up its manipulative
behavior and evaluated our proposed method in the simulation environment. The solution
is based on certain assumptions and has some limitations highlighted in Section 9.6. Al-
though the solution has certain drawbacks, we established that CoDeRa is the only solution
to disable an MCF in the current mobile network management architecture. These draw-
backs also forced us to think of an alternative mobile network management architecture
described in Appendix B.

List of Abbreviations Used in This Chapter

CCO coverage and capacity optimization

CW configuration weight

MCD manipulative CF detector

MCF manipulative CF

MLB mobility load balancing

MNO mobile network operator

MRO mobility robustness optimization

MSE mean squared error

NMA network management automation

RMSE root mean squared error
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10. Orchestration: Problem and Related
Works

Customizing multiple cell configurations simultaneously is a complicated task for a network
operator. However, the task becomes easier if the knowledge of CAN is utilized. To utilize
the knowledge of CAN, some type of interface is needed between the operator and CAN. In
this chapter, we justify the need of the interface and discuss why an intent-driven interface
is the most suitable one. The majority of the content in this chapter are from the following
peer-reviewed article:

S. S. Mwanje, A. Banerjee, et al. Intent-Driven Network and Service Management: Defi-
nitions, Modeling and Implementation. ITU Journal on Future and Evolving Technologies
(ITU J-FET), 3(3):555-569, 2022.

Some of the definitions related to intent based networking (IBN) have been taken from the
author’s contributions to the standard documents, namely ETSI ZSM 011 [12] and 3GPP
SA5 Technical Report (TR) 28.912 [13].

10.1 Problem Statement

While providing a background on mobile networks and CAN, we mentioned that in a
cell there are multiple adjustable network control parameters (NCPs) (e.g., TXP, RET)
and observable KPIs (e.g., downlink throughput, RLF). A KPI value may change if one
or multiple NCPs are changed. For example, downlink throughput may change if TXP
and/or RET are/is modified. On the other hand, changing a single NCP might affect
several KPIs simultaneously. For example, changing CIO might affect both RLF and the
load in the cell. In [1] the authors depicted the interconnection among the NCPs and KPIs
as shown in Fig. 10.1. We see from Fig. 10.1 that a single NCP has influence over multiple
KPIs and simultaneously a KPI is influenced by multiple NCPs as well. For a KPI, an
NCP can be one of the two types:

• Primary parameter, or,

• Secondary parameter

A primary parameter means that the NCP has a direct influence over the KPI, i.e., chang-
ing the NCP also changes the KPI significantly. On the other hand, a secondary parameter
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Primary parameter Secondary parameter
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configuring

Figure 10.1: Interconnection among the cell NCPs and KPIs [1]

means that there is an indirect connection between the NCP and the KPI, and changing
the NCP may not produce significant change in the KPI value. In any case, this type of
inter-connected relationships among NCPs and KPIs make the radio access network (RAN)
management a challenging task. Since all the KPIs are crucial in determining the quality
of service (QoS) of the network, at any time MNO might need to fulfill several KPI related
targets simultaneously. To achieve so, the MNO needs to have a complete knowledge of the
inter-dependencies among the NCPs and KPIs across different network states, including
the degree of change required in a certain NCP to obtain a required target KPI value.

Let us explain the problem with an example. Let us assume that, in cell X, the MNO
wants to reduce TXP without affecting the handover related performances. To achieve
so, the MNO needs to learn the relationship between TXP and handover related KPIs in
the current network state. Now, as we already discussed in Section 1.1, MRO already has
the knowledge; however, since there is currently no way of communication between MNO
and MRO, MNO cannot utilize the knowledge of MRO to serve her purpose. The job
of MNO becomes easier if there is a layer of abstraction between MNO and MRO where
MNO specifies her intentions (multiple targets regarding handover related performances)
and the layer of abstraction generates the appropriate actions to be executed by MRO
to achieve the targets. This type of network management is called intent-driven network
management (IDNM) where MNO specifies her targets (or, intentions) in the form of a
sentence or multiple sentences and the network fulfills her targets (or, intentions) [12].
IDNM makes the job of network management easier for MNO since the MNO only needs
to specify the targets and does not have to explicitly specify how those targets can be
achieved. In this part of the thesis, we investigate this hypothetical layer of abstraction
between MNO and MRO and propose methods to realize this abstraction in real life.

10.2 An Overview on IDNM

Before discussing our proposed solution on the realization of the abstraction between MNO
and MRO, in this section we provide a brief overview on IDNM. An intent is the formal
specification of the expectations, including requirements, goals and constraints, given to
a technical system without specifying how to achieve them [87]. Intentions of MNO, or
the expectations, originate from the existing business strategies or contractual agreements
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which are then expressed as “intents” by MNO. An intent in an autonomous management
framework is expressed declaratively, i.e., as a goal that describes the properties of an
outcome rather than prescribing a specific solution - it gives the framework the flexibility
to explore various options and find the optimal one [12]. Unlike traditional software sys-
tems, where requirements are analyzed offline to detect and resolve conflicts prior to the
implementation, intents are added to an autonomous framework during runtime. Adap-
tation to changed intent as well as conflict detection and resolution are therefore essential
capabilities of an intent-driven autonomous framework [12]. In IDNM, intents are used for
interactions between the management service consumer (e.g., MNO) and the management
service producer (e.g., CAN). In short, the intent establishes a universal mechanism for
defining expectations of the network operations by expressing goals, utility, requirements
and constraints [12].

10.3 Related Works

Interest in IDNM comes from multiple institutions with concepts published in multiple
pieces of work. The subsections below review the most relevant technical surveys, stan-
dards activities and open-source projects on or related to IDNM.

10.3.1 Related Literature

Although the earliest work on IDNM is focused on fixed networks, the most recent ones
[88, 89, 90] have focused on IDNM for mobile networks as well. Very detailed and compre-
hensive structural reviews on this topic are covered in [91, 92]. In [91] the authors went
beyond the scope of mobile networks to focus on generic intent-driven systems where the
proposed system is expected to be utilized in the context of business support systems.
The authors intended to find: 1) existing methods/techniques supporting intent-driven
systems and 2) proposals for enabling realizations of intent-driven systems. Their observa-
tion was that intention 1) has been covered extensively but that there is inadequate work
or techniques that can be combined to realize an intent-driven system.

In [92] the authors analyzed the IBN methods proposed in [88, 89, 90], identifying a number
of shortcomings in those methods. They observed that the existing work missed at least
one of the four core research areas: (i) processing and life cycle, (ii) orchestration and
management, (iii) use-cases analysis and (iv) an architecture framework for intent-driven
networks. The authors then introduced an architectural framework that relied on closed
loop feedback for intent processing and interpretation. However, they still didn’t answer
all the questions, so we take a step beyond the architecture to present other framework
aspects that are crucial to realizing IDM systems.

The common outcomes from these publications is a set of enablers and architectural fea-
tures along with a list of open issues. The open issues noted as requiring further work
include intent description and translation, the description of services, processes etc. via
data modeling languages and the integration of machine learning functionality.

10.3.2 Related Open Source Projects and Standards

Several open-source projects such as Open Network Foundation [93] have specified stan-
dardized intent-based northbound interfaces for software-defined networking (SDN) but
have rarely published the conceptual ideas and evaluations of these specifications or im-
plementations. On the other hand, IDM has only been recently introduced as a topic for
discussion in most standards development organizations, only the Network Management
Research Group (NMRG) of Internet Research Task Force (IRTF) has previously released
Internet drafts on IDNM in [94] and [95]. The NMRG clarifies the concept of network in-
tents, highlights stakeholder perspectives of intents, describes methods to classify intents,
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defines relevant intent terminologies and provides an overview of functionalities that serves
as the foundation for further intent-based network management research. [96] describes
the intent-driven management architecture, its key elements and their interfaces.

Experiential Networked Intelligence (ENI) [97] examined design options for integrating in-
tent operations into its system architecture. This includes accepting, translating and vali-
dating intent statements; determining how intents affects the system’s goals and operations
as well as their use by business users, application developers and network administrators.
Another background study is the 3GPP TR 28.812 [98] that describes the concepts of
intent-based network management for service-based architecture (e.g., intent expression,
intent translation, intent life cycle) covering various scenarios and key stakeholders. The
potential use cases, their requirements, needed management services, operations and no-
tifications to support intent-driven management for network and service management are
described in 3GPP Technical Specification 28.312 [99].

TM Forum has proposed intent-based operation in IG1253 [100], introducing the intent
management function as an architectural building block for intent-based operation which
will receive an intent, make decisions about suitable actions towards fulfilling the intent,
control the execution of these actions and report on the progress. Then, IG1253A [101]
introduces the modeling concepts and artifacts that determine how an intent must be
expressed, while IG1253C [102] defines the details of the intent life cycle including the
related roles and tasks of the intent management function. Furthermore, [102] defines the
interface through which the intent objects are exchanged, negotiated and managed as part
of the life cycle management process. It however focuses on only the usage and management
of intents within a single organization and so the proposed models and interfaces are not
applicable for multi-vendor interactions.

Currently, ETSI ZSM 011 [12] is investigating intent-based network and service manage-
ment within the ZSM framework evaluating different ways to model intents and intent-
based interfaces as well as their use ZSMmanagement domains and ZSM end-to-end service
management domains. The research topics and potential future directions related to ZSM
011 are outlined by the original work [103] on Intelligent Intent Based Networks (I2BN).
I2BN concept argues that intents are easier fulfilled if they are aligned with the capabilities
of the network management micro-services, rather than having a broad intent language
with free open-ended formalities that are not supported by the network’s implementation.
This approach enables the network management to autonomously find and assemble those
micro-services that together fulfill an intent in a closed loop manner.

10.4 Conclusion and Key Takeaways

In a cell, there is a complex inter-dependency among the network parameters and KPIs,
as shown in Fig. 10.1. So, if the MNO wants to customize multiple parameters and KPIs
simultaneously, the MNO has to gain complete knowledge of this inter-dependency. It is
a difficult and lengthy process to gain this knowledge. On the other hand, this knowledge
is already possessed by CAN. So, to enable MNO to use the knowledge of CAN, some
interface between them is needed through which MNO can utilize the knowledge of CAN.
In this chapter, we proposed the idea of having an intent-driven interface between the
MNO and CAN, and justified its usefulness. For better understanding, we also provided
a detailed overview of intent-driven networking and summarized prior arts and standards
in this field.



10.4. CONCLUSION AND KEY TAKEAWAYS 93

List of Abbreviations Used in This Chapter

CIO cell individual offset

ENI Experiential Networked Intelligence

IBN intent based networking

IDNM intent-driven network management

I2BN Intelligent Intent Based Networks

IRTF Internet Research Task Force

KPIs key performance indicators

MNO mobile network operator

NCPs network control parameters

NMRG Network Management Research
Group

QoS quality of service

RAN radio access network

RET remote electrical tilt

RLF radio link failures

SDN software-defined networking

TXP transmit power
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11. Intent-driven Network Automation
Function Orchestration

In this chapter, we address the Q5 described in Section 1.3.3, i.e., we propose a method for
intent-driven orchestration of CAN. The proposed method utilizes the existing knowledge
of CAN for better management of cell parameters and acts as a bridge between the MNO
and CAN. We start the chapter by describing a generic intent-driven architecture, which
we modify later for the orchestration of CAN. We also evaluate our proposed solution in
the simulation environment. The majority of the content of this chapter is based on the
following peer-reviewed article:

A. Banerjee, S. S. Mwanje, and G. Carle. An Intent-Driven Orchestration of Cognitive
Autonomous Networks for RAN management. In 2021 17th International Conference on
Network and Service Management (CNSM), pages 380-384. IEEE, 2021.

The author also won the Student Travel Grant (STG) Award 2021 in that conference for
this paper. Apart from this paper, some content is from the following patent application:

A SYSTEM AND METHOD TO EXECUTE INTENT DRIVEN COGNITIVE AU-
TONOMOUS NETWORKS
Anubhab Banerjee, Stephen S Mwanje
WO, PCT application no.: PCT/EP2021/065607, filed 10 June 2021

In addition to the content described in the aforementioned entities, this chapter provides
a brief overview on intent model and intent-driven system architecture. In particular,
this chapter includes intent as sentence of components (Section 11.1.1), declarative intent
model (Section 11.1.2) and imperative intent model (Section 11.1.3).

11.1 Intent Model and System Architecture

In Section 10.2 we gave a brief overview on IDNM. In this section we discuss different
types of intent modeling and an end-to-end architecture of IDNM for different types of
intent models. Intents may be specified in different forms and degrees of complexity. We
discuss an intent’s information elements and the related simple intent model, which we
then evolve into a fully declarative model with multiple different information elements as
well as an imperative model supporting the use of verbs.
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11.1.1 Intent as sentence of components

From the perspective of the MNO, there can be many kinds of intents, from simple in-
tents achievable via one command on one object to complex intents that include several
commands on several network objects and nodes. Example intents may include:

• Restrict Handovers of fast-moving users to small cells.

• Allow load balancing to a cell Y or to only urban cells.

• Rehome a BS from controller A to controller B.

• Create a network slice of type IIoT.

From these examples, we see that an intent may be composed of a set of components,
specifically:

• Intent targets, e.g.: Cells shall have a range of 1.5 km.

• Scope of the intent, e.g.: If they are macro-cells.

• Bordering conditions and constraints, e.g.: if cell border interference from neighbors
is below -70dB

It is to be noted that the intent may include multiples of each component type, e.g. besides
interference the constraint may also include ”and if the signal strength at the cell border
is above -60 +/-5 dB.” The desired outcome, a list of measurable (state) values sn[t] that
describe a managed network at discrete time t, can be collected into a state vector:

s[t] = (s1[t], s2[t], . . . , sN [t])T for t = 0, 1, . . . ,

where t represents a generalized discrete time index that is derived from the measurement
periods of the respective network functions. The state values include, among others,
configuration parameters of the network functions, QoS metrics, performance management
(PM) counters, latency values, failure counters and any other observed or derived metric
while their combination refers to the state of the network or the fulfillment of the intent.
For example, for the intent to ”rehome a BS”, the state dimensions and values could
be scope=BS, homeNB=B. Given this observation, one might consider the intent to be
modeled as a simple list of these components, i.e., as:

intent := [ scope(s), target1, target2, ...
constraint1, constraint2, ...]

Throughout this thesis, we use this structure of intent for implementation and evaluation of
our proposed solutions. This, in fact, matches the idea that an intent defines a subspace (a
set of points) in a multi-dimensional space, i.e. the intent specifies the desired/acceptable
regions of the subspace. In that case, the challenge is that the intent does not only state
the boundaries of regions but also includes conditions under which those boundaries will
be applied, i.e., the intent must explicitly state the objects under consideration and their
context as well as the context to be applied as boundary conditions or constraints for a
single target or a group of targets. The intent should be extensively modeled to distinguish
these information elements as discussed in the next section.
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Figure 11.1: Intent Model

11.1.2 Declarative intent model

The intent information model needs to include the information elements that identify its
scope, requirements or goals and its constraints. The declarative model, shown in Fig. 11.1,
explicitly defines each intent consisting of three components: intent expectations, intent
targets and contexts.

The intent expectation is the set of requirements, goals and constraints for one type of
object and an intent may have one or more such sets e.g. one for cells and another for
network slices. A desired outcome in an intent expectation is the list of one or more intent
targets, to be enforced by the IDNM system. Each intent target is a triplet of the attribute
on which the target is set, the condition constraining the outcome (e.g. ”=”, ”<”,”>”) and
the desired outcome. In this case, the attribute is any aspect of the control or observation
state spaces of the system under control.

Each information element may have a context that defines its scope and/or constraints.
Context may be set for the intent target and intent expectation as target context and
expectation context respectively. On the same note, a global intent context may be added
to apply to all intent expectations within an intent.

11.1.3 Imperative intents: using verbs in intents

The declarative model is explicit in defining all the desired components of the intent but it
is not concise. For human users and as illustrated by Table 11.1, the declarative statement
can be very complex to compile and requires a lot of prior information.

For example, let us consider that an operator wishes to request that no ES should be
executed for a given cell or for cells in location X as example 3 in Table 11.1. Stating this
intent declaratively is challenging, since:

• Either, the operator has to know the parameters that manage ES in the cell (i.e.
ES On) on which to state the desired values,

• Or, the operator must know the metrics to which ES contributes for the operator to
set values for these metrics which are then interpreted by the system to disable ES.
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Table 11.1: Example specification of network management intents

Goal (Imperative In-
tent)

Declarative Intent (En-
sure that ..)

Imperative Intent Chal-
lenge

1.
Restrict Handovers of
high mobility users to
small cells

for Object [cell, Size =
small] [ HO Allowed =
True] Object [cell, Size̸=
small], [HO Allowed =
False] if cellMobilitiy =
high

Interpret “Restrict” and
”small cells” as ”True”
for small cells; ”False”
otherwise

2.
Restrict ES to Rural
cells on week days

for Object [cell, Location
=Rural] [ES On=False;
Time=Weekdays;]

Interpret “Rural” as fil-
ter to ”create cell”; and
“week days” as context
for ES On=False

3.
Avoid ES for cell Y /
small cells / cells in Lo-
cation X

for Object [cell, Loca-
tion=X, ES On=False]

Interpret “Location X”
as a filter on object cell
list

4.
Rehome a nodeB from
RNC A to RNC B

for Object [cell id= x];
[RNC is B]

Interpret “Rehome” into
“cell attribute, RNC“ ”is
equal to”

5.
Create an IIoT network
slice

for Object [Slice,
id=”new”] [SlicePro-
file=IIoT]

Interpret “Create” into
“id=new“

On the other hand, the imperative statement (as stated in the “Imperative” column in
Table 11.1) is very concise and can be stated with the same degree of completeness. The
statements ”Restrict ES to Rural cells” and ”for Object Rural cells [ES On=False]” are
equivalent, but it is easier for the operator to state this intent using the verb, as opposed
to determining the parameter ”ES On” and its possible values before stating the intent.
Such imperative intents can thus be modeled by adding a verb to the declarative model. As
a default, an imperative intent expectation implies that by using some terms (e.g., by using
a verb), not all the fields of the intent expectation model (as expected for declarative intent
expectations) need to be fully stated. However, for intent realization, any such imperative
intent needs to be interpreted into a declarative intent, e.g. as illustrated by the examples
in Table 11.1.

11.1.4 End-to-end architecture

The intent models as discussed above characterize the interface(s) over which the consumer
and the producer of the IDNM service can interact with one another to express and receive
the intents. However, for the fulfillment of the intents, it is necessary to insert the interfaces
into the end-to-end architecture of the IDNM system. The proposed architecture (shown
in the upper half of Fig. 11.2) provides the means to capture intents, format them into
realizable outcomes and execute their fulfillment. The intents may be submitted in a form
of text e.g. via a text file, legacy commands via a command line interface (CLI), through
interaction with a graphical user interface (GUI) or as speech e.g. via an audio interface
that captures the operator’s audio commands. Regardless of any such input interface, the
operator has access to an intent specification platform (ISP) to which she specifies the
intent to be executed. The ISP may take in the operator’s request and parses the input
to identify the fields fitting to the defined intent specification syntax, according to the
imperative or the declarative intent models.
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Figure 11.2: Proposed end-to-end IDNM architecture

The outcome of the ISP, which is a hierarchy of hash functions according to the declarative
intent model that describe the features of the intent to be fulfilled, is denoted as “formal
intent”. For example, The intent specifications may be similar to the declarative intent
entries in Table 11.1. The declarative intent is the input to the intent fulfillment system
(IFS) which then undertake actions to realize the intent. There can be multiple methods
for fulfilling intents, which may also depend on the nature and contents of the intents. So,
in short, IFS acts as a bridge between ISP and the network.

11.2 Intent-driven CAN orchestration

In this section, we modify the generic end-to-end IDNM architecture to use it for managing
CAN. It is to note that, in a similar way, this generic design can always be modified to
develop intent-based management solution for any other type of network.

Our proposed IDNAFO takes a formal intent as its input and generates appropriate actions
for the Controller and CFs at its output. End-to-end workflow of IDNAFO consists of three
sequential steps, based on which we introduce three different functionality blocks within
IDNAFO, as depicted in Fig. 11.3. Those are described as follows:

• As soon as IDNAFO receives a formal intent from ISP, its first task is to check if the
intent is valid for CAN, i.e., if the intent can be executed by the Controller or CFs.
This task is done by the block Intent Identifier (II).

• After the II identifies that an intent is executable by CAN, next task is to classify
the intent based on its content. This task is done by Intent Classifier (IC).

• After the classification is done, based on the type of intent, IDNAFO takes subse-
quent actions like sending specific commands to the Controller or CFs or both. This
is done by Intent Decision Maker (IDM).

11.2.1 Intent Identifier (II)

As we already know, only the intents which deal with key performance indicator (KPI)(s)
and/or network control parameter (NCP)(s) are relevant for CAN. An intent like ”switch
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Figure 11.3: Proposed architecture of IDNAFO

Algorithm 11.1: Algorithm of Intent Identifier

Input: target, constraint
Output: intent accept, intent reject
for each target do

if (target related to NCP ) or (target related to KPI) then
for each constraint do

if (constraint related to NCP ) or (constraint related to KPI) or
(constraint is ∅) then

intent accept

else
intent reject

else
if target is ∅ then

for each constraint do
if (constraint related to NCP ) or (constraint related to KPI) then

intent accept

else
intent reject

else
intent reject

cell X off/on”is beyond the operational capability of CAN. So, as soon as IDNAFO receives
a formal intent from ISP, its first task is to check if the intent is relevant for CAN which is
done by II. To accomplish this task, we propose Algorithm 11.1 for II to check the validity
of the intent. If II finds the intent to be valid for CAN, it passes the intent to IC for further
processing. Otherwise, II may send the intent back to the MNO or to other components
in the IDNM system based on the implementation.

11.2.2 Intent Classifier (IC)

Based on the components of CAN, by which an intent can be executed, IC classifies a
formal intent into three distinct categories. Classification is done to find out by whom the
intent is to be executed. Classification is done by evaluating an intent following the three
rules:

Rule 1 : If either the target(s) and constraint(s) are defined on a NCP while the other is
not defined or both are defined on a NCP, then the intent is Type 1 intent.
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Table 11.2: Categorization of intents

Type Description Example intents

Type
1

Intent fulfills one of:
1.1 target(s) defined on NCP, no
constraint(s) defined
1.2 constraint(s) defined on NCP, no
target(s) defined
1.3 both constraint(s) and target(s)
defined on NCP

1.1 increase cell X TXP
1.2 make cell X TXP remain con-
stant
1.3 make cell X TXP remain con-
stant and change RET by 3 degree

Type
2

Intent fulfills one of:
2.1 target(s) defined on KPI, no con-
straint(s) defined
2.2 constraint(s) defined on KPI, no
target(s) defined
2.3 both constraint(s) and target(s)
defined on KPI

2.1 reduce cell X interference
2.2 avoid increase in cell X interfer-
ence
2.3 increase cell X throughput with-
out changing interference

Type
3

Intent fulfills one of:
3.1 target(s) defined on NCP, con-
straint(s) defined on KPI
3.2 target(s) defined on KPIs, con-
straint(s) defined on NCP

3.1 make cell X TXP constant and
reduce interference
3.2 change cell X TXP to 45 dBm
without changing interference

Rule 2 : If either the target(s) and constraint(s) are defined on a network metric like a KPI
while the other is not defined or both are defined on a network metric like a KPI, then the
intent is a Type 2 intent.

Rule 3 : Rest all are Type 3 intents. In these intents one of either the target(s) or the
constraint(s) is defined on a NCP while the other is defined on a network metric like a
KPI.

The corresponding categories may be grouped as described in Table 11.2.

11.2.3 Intent Decision Maker (IDM)

Based on the category of the intent, IDM decides what instructions are to be sent to the
Controller and/or CFs.

Type 1 : As Type 1 intent contains only NCP, it is executed only by the Controller.

Type 2 : To execute a Type 2 intent, IDM first identifies the CFs which are responsible
for managing the KPIs. After that, instructions are sent to those CFs to take specific
actions (increase, keeping constant or decrease) on their managed KPIs. At the same
time, instructions are also sent to the Controller to make all the changes in the network
as proposed by those particular CFs.

Type 3 : Type 3 intent contains both KPIs and NCPs, so instructions are given to both
the CFs and the Controller. Instructions are sent to the specific set of CFs to take specific
actions (increase, keeping constant or decrease) on their managed KPIs. At the same time,
two types of instructions are sent to the Controller: (i) take instructed actions on control
parameters, and, (ii) make all the changes in the network as proposed by those particular
CFs.
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Figure 11.4: Intent classification by IC

11.2.4 Alternate Design

In an alternate design, functionality of II and IC can be combined into a single block which
implements the decision tree shown in Fig. 11.4.

11.3 Implementation and Evaluation

To show that our proposed architecture can be used in a real-life scenario, we implement
the end-to-end design in the same simulation environment described in Chapter 3 and
provide the implementation of each component in detail.

11.3.1 ISP implementation

ISP can be implemented in one of these two ways:

• In the first way, an intent from MNO does not necessarily follow a predefined struc-
ture, it can be just an intention or wish of MNO expressed in valid English [89]. In
this case natural language processing (NLP) can be used for parsing the language,
for example, the algorithm proposed in [104] is a suitable candidate for use in this
purpose. However, our focus in this paper is to provide an end-to-end design for
intent driven CAN, so we do not concentrate on NLP based ISP or propose any
new algorithm for implementation, rather we focus on how a formal intent can be
executed by CAN.

• In the second way, MNO has to express the intent in a particular language structure.
In this case a rule based parsing algorithm can be used in ISP to convert the intent
into machine understandable format.

Both these ways of ISP implementation have some advantages and disadvantages. First
way of implementation gives more flexibility to MNO, but it is difficult to implement
whereas the second way is easy to implement but provides less flexibility to MNO. Since
the way of implementation does not have any impact on the final result, in this thesis we
implement ISP using the second way.
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11.3.2 IDNAFO implementation

We use Python 3.7 to implement IDNAFO in a simulation environment. We use two
separate lists to store names of all the predefined KPIs and NCPs. These lists are used by
II to check if the targets and constraints in the intent are defined on KPIs and/or NCPs.
In a real life scenario, these lists can be defined by MNO before the system starts and
can be modified at any time without affecting rest of the system. Next we implement the
decision tree shown in Fig. 11.4 which is equivalent to the implementation of both II and
IC. Using the decision tree II can determine if an intent is relevant for CAN. If an intent
is found to be relevant for CAN, corresponding to the tree traversal we assign the intent
type. Under the green boxes in the tree, we also mention the type of intent, detecting
which is the functionality of IC. For example, for the leftmost tree traversal, i.e., when
target is defined on KPI and constraint is defined on KPI, the intent is defined as Type
2.3. Corresponding to each type of intent, we initialize a set of commands which are to be
sent to the Controller and/or CFs which have predefined structures where the names of the
KPIs and/or the constraints can be directly filled from the formal intent. This standalone
module does not have any simulator specific dependency and can be integrated on top of
suitable networking simulators for demonstration purposes as well.

11.3.3 CAN implementation

Implementation of CAN is the same as described in Section 3.3.

11.3.4 Observation

The simulator automatically updates the changes done by the CAN module and reconfig-
ures the radio processes, and thus, in this way the whole system remains up and running
all the time just like a real life network. Since we implement our proposed design on top
of this simulator, it proves that our proposed design is fit for use in real life. Since no
intent database for RAN management is currently available, we create a database with 20
intents by ourselves, test and observe that all of them can be executed using our proposed
design. Average execution time is 0.12 ms, which proves that our proposed design works
fast and worthy for real life use. We also observe the necessity of a feedback mechanism
for the intents which cannot be fulfilled by IDNAFO.

11.4 Conclusion and Key Takeaways

In the previous chapter, we discussed the problem of cell parameter customization in the
mobile network. We highlighted that the problem could be addressed by having an intent-
driven interface between the MNO and CAN. In this chapter, we proposed the end-to-end
design of such an intent-driven interface. We implemented the interface in the simulation
environment and showed that our interface works as per expectation. From the simulation
results, we also can conclude that the interface is fit for use in real-life scenarios.

List of Abbreviations Used in This Chapter

CLI command line interface

ES energy savings

GUI graphical user interface

IC Intent Classifier

IDNAFO intent-driven network automa-
tion function orchestrator

IDM Intent Decision Maker

IDNM intent-driven network management
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IFS intent fulfillment system

II Intent Identifier

ISP intent specification platform

KPI key performance indicator

MNO mobile network operator

NCP network control parameter

NLP natural language processing

PM performance management

QoS quality of service

RNC radio network controller
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12. Intent-driven Conflict Detection and
Resolution

In this chapter, we address the Q6 described in Section 1.3.3, i.e., we discuss possible
shortcomings of IDNAFO and how they can be overcome. Although in the last chapter,
we saw that IDNAFO could successfully coordinate with CAN to serve the purpose of the
MNO, it has one primary shortcoming: it cannot detect conflicts within an intent. The
conflicts, that arise from the same intent, are denoted as contradictions, and can only be
detected in runtime. In this chapter, we propose a method to detect such contradictions
and evaluate our proposed solution in the simulation environment. The majority of the
content in this chapter is from the following peer-reviewed article:

A. Banerjee, S. S. Mwanje, and G. Carle. Contradiction management in intent-driven
cognitive autonomous ran. In 2022 IFIP Networking Conference (IFIP Networking), pages
1–6. IEEE, 2022.

This chapter expands the content of the aforementioned article on different aspects of the
proposed solution.

12.1 Contradiction in intent-driven CAN

Although in Chapter 11 we found that IDNAFO with CAN provide an end-to-end design
to execute MNO intents, it does not detect the contradictions arising from the same intent.
To elaborate the concept of contradiction, let us consider the following intent: ”Increase
handover success to x1% and reduce network load by y1%”. MRO and MLB are the two
CFs responsible for managing the KPIs “successful handovers” and “network load”. Both
MLB and MRO share two ICPs: TTT and CIO. To achieve x1% handover success and
y1% load reduction, let us assume that MRO and MLB propose t1 and t2 respectively as
required TTT values. If t1 ̸= t2, it gives rise to a contradiction in TTT value. Similarly,
if MLB and MRO propose different CIO values, that gives rise to a contradiction in CIO
value as well.

Now, it is not possible for MNO or IDNAFO to know beforehand what TTT or CIO values
MLB and MRO will suggest and if those values will be equal. As already mentioned in
Chapter 2, depending on the network state, these TTT or CIO values are generated by
the CFs based on their learning and unknown to any other entity. Since IDNAFO is

Version: 2024/01/25 – 10:50:11
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Figure 12.1: End-to-end architectural design of our proposed solution

not capable of detecting or removing this kind of contradiction within an intent, any
intent with multiple KPIs can potentially give rise to contradictions which are not visible
until execution. To circumvent the contradictions, it is recommended to have a system
or solution that enables MNO to visualize potential contradictions before the intent is
executed.

12.2 Proposed solution

To overcome the aforementioned problem, we propose a new functionality, called ICDR,
which can be implemented separately or within the Controller. The functionality of ICDR
is two-fold:

• Contradiction detection, i.e., it notifies MNO if an intent contains any type of po-
tential contradiction.

• Contradiction removal, i.e., ICDR also notifies MNO about possible alternatives to
circumvent the contradiction.

Our proposed design, depicted in Fig. 12.1, consists of two parts: (i) a GUI or similar
interface that interacts with MNO, and, (ii) ICDR that interacts with CAN. The interface
provides two options:

• Option 1 (”GET OVERVIEW”): if MNO is unsure if the intent is contradiction free,
it is always recommended to use this option. If the intent is contradiction free, via
the GUI display ICDR informs MNO that the intent can be executed as it is. If
ICDR detects contradiction(s) in the intent, it proposes a few possible alternatives
to MNO to circumvent the contradiction.

• Option 2 (”EXECUTE”): if MNO is sure that the intent is contradiction free, it is
recommended to select this option. Usually intent that deals with a single NCP or
KPI can be safely selected for this.

12.2.1 Contradiction detection

As soon as ICDR is triggered, it separates the NCPs from the KPIs and requests the CFs,
who manage those KPIs, to propose configurations so that each individual KPI target
can be achieved. Following the previous example, ”increase handover success to x1% and



12.2. PROPOSED SOLUTION 107

reduce load by y1%”, ICDR identifies the KPIs (handover success, load) and requests the
CFs managing those KPIs (MRO, MLB) to propose configurations (values of TTT and
CIO) so that the targets can be achieved. Now it might be the case that both targets
cannot be achieved simultaneously, for example, MLB finds that in the current network
state, load can be reduced by y′1% at maximum, y′1 < y1. In that case, MLB always sends
the TTT and CIO values for which load reduction is y′1%.

Now, for the sake of explanation, without any loss of generality, let us assume that MLB
proposes (tl, cl) and MRO proposes (tr, cr) as required (TTT, CIO) values to achieve the
targets specified in the intent. There are four possibilities:

• Possibility 1 (P1): tl = tr and cl = cr.

• Possibility 2 (P2): tl = tr and cl ̸= cr.

• Possibility 3 (P3): tl ̸= tr and cl = cr.

• Possibility 4 (P4): tl ̸= tr and cl ̸= cr.

Out of these four possibilities, only in P1 there is no contradiction, in P2 and P3 there is
one contradiction each and in P4 there are two contradictions.

12.2.2 Contradiction removal

For contradiction removal, ICDR uses a NSWF (discussed in Section 5.2) based approach.
The reason behind using NSWF based solution is: in [45], it has been mathematically
proven that in a traditional resource sharing scenario, NSWF provides the ‘optimal’ solu-
tion, where ‘optimal’ signifies that the solution is optimal for all the parties involved in
the sharing. Since in CAN all the CFs are given equal priorities, NSWF is therefore used
to remove contradictions and find values which are optimal for the combined interests of
all the CFs.

In case of a contradiction, ICDR requests all the CFs involved (following the same example,
MLB and MRO) to send their utility functions (UFs) (discussed in Section 2.4) over the
conflicting NCP(s) (in P2, conflicting NCP is CIO, in P3 it is TTT and in P4, both TTT
and CIO). After obtaining the UFs, ICDR finds the conflicting NCP value for which the
product of the UFs is maximum since that is how NSWF optimal is calculated. To find
the NSWF solution, for each configuration value, the Controller calculates the product of
the UFs and selects the one for which the product is maximum. To put it mathematically,
if p is a shared configuration among CFs: F1, F2, . . . , Fn, UFs of the CFs are: f1(p),
f2(p), . . . , fn(p) and {p1, p2, ..., pm} are acceptable values of p, then pi is an NSWF
solution provided

n∏
r=1

fr(pi) >
n∏

r=1

fr(pj)

∀j ∈ [1,m], j ̸= i.

Let us elaborate further with an example. Let us assume that ICDR finds a contradiction
in the intent and it is the case P2, i.e., there is a contradiction over CIO. ICDR asks both
MLB and MRO to send their UFs, calculates NSWF and finds cn to be the NSWF value of
CIO. Then ICDR asks MLB to send the load values corresponding to cn, cr and asks MRO
to send the handover success values corresponding to cn, cl. Then ICDR puts everything
in a table as shown in Fig. 12.2 and send them to MNO to choose from, highlighting the
recommended option. Targets specified in the intent are highlighted in the first two rows,
and ICDR recommended option is listed in the last row. MNO can choose the one that
suits her interests the best from these alternatives.
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Option CIO Load reduction
Handover success 

increase

1 cl y1 x2

2 cr y2 x1

3 cn yn xn

Figure 12.2: Suggestions to MNO from ICDR as alternatives

12.2.3 End-to-end workflow

After MNO inputs an intent, the intent is sent to ISP and is converted into a formal intent.
The formal intent is then forwarded to II by ISP to check if the intent can be executed
by CAN. If II finds the intent to be invalid, it sends the intent back to MNO or to other
networking entities, based on the implementation. Otherwise, II forwards the intent to IC,
which classifies the intent based on its content and separates the control parameters and
KPIs. These are then forwarded to IDM, which identifies the CFs managing the KPIs and
forwards the control parameter and KPI related instructions to the Controller and those
CFs respectively.

If MNO chooses ”EXECUTE” while inputting the intent, IDM asks the Controller to
execute the parameter related actions. IDM also asks the CFs to send the necessary con-
figurations to the Controller which are required to execute the KPI related actions and
IDM asks the Controller to change the configurations proposed by the CFs. In case of a
conflict, the Controller resolves it using NSWF based approach (Chapter 5) or Eisenberg-
Gale based solution (Chapter 6). If MNO chooses ”GET OVERVIEW”, IDM sends the
parameter related instructions to ICDR. IDM also asks the CFs to send the necessary
configurations to the ICDR which are required to execute the KPI related actions. After
ICDR receives the configurations from the CFs, it checks for potential contradictions (over-
laps) in those suggested configurations. If no contradiction is found, ICDR informs MNO
that the intent is contradiction-free and ready for execution. If ICDR finds contradiction,
it calculates the possible alternatives as discussed in the previous section and sends these
alternatives to MNO.

End-to-end workflow of our proposed solution (ICDR combined with IDNAFO) is shown
in Fig. 12.3.

12.3 Evaluation

12.3.1 Experimental setup

To evaluate ICDR, we implement the end-to-end system in a simulation environment. The
implementation of IDNAFO and CAN have already been covered in the previous chapter
and they are not reproduced here. Implementation of ICDR is pretty straightforward and
is done using Python 3.7. Since the performance of ICDR is independent of how IDNAFO
takes the intent as its input, we did not implement ISP and used formal intent as input.
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Figure 12.3: Flowchart of our proposed solution

Most challenging part of the implementation is creating an intent database for RAN
(IDB-R) since there is currently no such database is publicly available. We created an
IDB-R consisting of 30 formal intents manually by ourselves, while making sure that each
intent contains at least 1 contradiction. Theoretically, any finite number of contradictions
can exist in an intent, however, in IDB-R, maximum number of contradictions in a single
intent is currently 4. However, since the contradiction removal process of ICDR is indepen-
dent of the number of contradictions, this value does not affect our evaluation framework.
On an average, an intent in IDB-R contains 3 contradictions.

12.3.2 Observation

We already mathematically established that when NSWF is used, contradiction removal
process is optimal. So, instead of evaluating the optimality of our proposed solution, in
this Section use the following three metrics for performance evaluation of our proposed
framework:

(i) Success in contradiction detection: as the name implies, this measures the success rate
of ICDR in detecting a potential contradiction in an intent. For our proposed solution,
the success rate 100%, i.e., ICDR is able to detect all the 90 contradictions.

(ii) Success in contradiction removal : this measures the success rate of ICDR in removing
a potential contradiction using NSWF. For our proposed solution, this success rate is also
100%, i.e., ICDR is able to remove all the 90 contradictions using NSWF.

(iii) Time: this accounts for the total time taken to detect and resolve a contradiction and is
measured in ms. For our proposed solution, we used a quadcore Intel Core i5-10310U@1.7
GHz CPU, where this value varies between 0.012 - 0.019 ms.

From these three metrics, we see that our proposed solution is efficient for use in real time
network management.

12.4 Standardization impact

After discussing the existing standards on intent-driven RANmanagement in Section 10.3.2,
in this Section we discuss the impact of our work on ongoing standardization efforts. It
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is advisable that any real-life deployment of ICDR supports multi-vendor integration. To
achieve so, inputs and outputs of ICDR need to be specified in network management spec-
ifications, for example, in 3GPP SA5 or ETSI ZSM. Although 3GPP SA5 already provides
descriptions on controlling the behavior of the CFs by configuring their goals, it does not
provide any mean for configuring the Controller. So, in that case 3GPP resource model
needs to be extended with models for CAN Controller functionality and the methods to
configure such Controller.

On the other hand, the ICDR takes a formal intent based on which it determines if the
intent can be fulfilled without any contradiction. Such a formal intent may be generated
and compiled by an ISP coming from any non-telco vendor like a ML audio processing
startup. To allow for integration between these non-telco-centric ISPs and the telco-centric
ICDR, the intent specification interface and specifically the structure of formal intent
need to be standardized. This is actually an in-extensive extension to existing standards
since the formal intent’s attributes and their values are already speechified in the existing
specifications. For example, managed objects, control parameters and metrics are already
specified in the 3GPP network resource models. Additionally, the intent specification
interface needs to be extended with messages through which

• The ICDR indicates to the operator that a given intent contains contradictions.

• The ICDR informs the MNO of possible alternatives.

• The MNO specifies a given preference among the candidate options.

12.5 Conclusion and Key Takeaways

IDNM plays a crucial part in network and service management in the next-generation net-
works. Although quite a number of research papers exist on IDNM based RAN manage-
ment, the majority of them only provide an abstract overview without any implementation
design. In this chapter, we discussed contradiction detection and removal in intent-driven
CAN orchestration for cell configuration management and implemented our proposed so-
lution in a simulation environment for evaluation purposes. Apart from that, we also
discussed the impact of our work on worldwide network standardization activities. From
these discussions, we can conclude that our proposed solution can address the problem
above and is fit for use in real-life scenarios.

List of Abbreviations Used in This Chapter

CIO cell individual offset

GUI graphical user interface

ICDR Intent Contradiction Detector and
Remover

ICPs input control parameters

IDB-R intent database for RAN

IDNAFO intent-driven network automa-
tion function orchestrator

IDNM intent-driven network management

ISP intent specification platform

KPIs key performance indicators

MLB mobility load balancing

MNO mobile network operator

MRO mobility robustness optimization

NCP network control parameter

NSWF Nash Social Welfare Function

TTT time to trigger

UFs utility functions
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13. Conclusion and Future Directions

This chapter summarizes all the key contributions, spread throughout the thesis in multiple
chapters, into a single container. Along with our key findings, in the latter half of this
chapter, we also talk about certain aspects of our work that are considered worthy of
further investigation in the future.

13.1 Thesis Contributions

One of the critical components of any research activity is the environment in which the
research has been conducted. The environment is used to study and evaluate the solutions
proposed in the research activity. In our case, we used a simulation framework for this
purpose. We used a Nokia internal system-level mobile network simulator in our thesis,
implemented some independent Python modules on top of it, and kept the simulation
environment homogeneous throughout the thesis.

The premise of this thesis is the study of cognitive, open, multi-vendor network manage-
ment automation. Based on this premise, we studied three essential aspects: (i) coordi-
nation, (ii) trust, and (iii) orchestration. For each aspect, we identified relevant critical
research problems, justified the importance of those problems, proposed solutions to those
problems, and provided a description of the state-of-the-art to show the novelty of our
proposed solutions. The thesis is divided into three parts, where each part covers the
problem statements and proposed solutions pertaining to each aspect. So, while summa-
rizing the crucial observations related to each aspect, we divide this section also into three
subsections, and each subsection is devoted to one aspect. In each subsection, we briefly
introduce the problem we studied and summarize our proposed solutions, evaluations, and
key findings.

13.1.1 Coordination

Earlier, we mathematically established that: (i) coordination is necessary among the CFs,
and (ii) centralized coordination is the most suitable one. Coordinating multiple intelligent
Cognitive Functions (CF) using a centralized coordinator (referred to as the Controller in
this thesis) is a challenging task since

• the behavior of the CFs is dynamic and cannot be predicted beforehand, and,

• while resolving a conflict, the chosen value by the Controller has to be optimal for
the combined interest of all the CFs.

Version: 2024/01/25 – 10:50:11
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To solve the coordination problem, in Chapter 5, we proposed a Controller which uses an
Nash Social Welfare Function (NSWF) based method to resolve conflicts among the CFs.
We used NSWF since it has already been established in [45] that NSWF provides a value
that is optimal for the combined interest of all. We used multiple Gaussian functions,
where each function represented the behavior of one CF, to perform a numerical analysis
of the proposed NSWF-based solution and proved that our proposed solution works can
resolve

• any type of conflict,

• any number of simultaneously existing conflicts and

• conflicts among any number of CFs.

Although it makes the solution fit for use in real-life scenarios, this solution has a potential
drawback. It assumes that all the CFs have equal priority while determining the value of
a network control parameter. In reality, all network parameters are not equally important
to all the CFs simultaneously. To overcome this drawback, we proposed an EGS-based
solution in Chapter 6. In this solution, the importance of each network parameter on each
CF is quantized, and the CFs are prioritized accordingly while determining the final value
of a network parameter. To quantify the importance of a network control parameter to
the functionality of a CF, we use a Shapley value based method. We performed numerical
analysis between these two solutions and found an improvement of up to 7.7% using EGS
over NSWF based solution. For further evaluation, we implemented the EGS based solu-
tion in the simulation environment, determined the optimal value of the shared parameter,
and measured the time elapsed to resolve conflicts in different scenarios.

We made the following observations: in both the proposed approaches, a conflict is resolved
in a way optimal for the combined interests of all the CFs. We found that although both
the proposed solutions resolve all types of conflicts, EGS is preferable to NSWF since it
provides an improvement in overall network performance. Also, an EGS based solution
can be implemented such that it takes a few milliseconds to resolve any type of conflict in
any possible scenario, so that the solution can be used in real-life environments.

13.1.2 Trust

In a multi-vendor scenario, different CFs can be supplied by different vendors, creating
new opportunities for participation to small as well as new vendors. However, to establish
itself in competition with others, a new vendor needs to advertise the superiority of its
product, and such a vendor may be tempted to do so by unfair means. There remains a
possibility that a vendor designs a CF that optimizes its own objective, disregarding the
interests of other CFs, thereby allowing to advertise the superiority of its product. Such
a CF, denoted as an MCF, deliberately sends misinformation on its preference, intending
to manipulate the Controller.

Although this was a theoretical concept visualized by us, to validate this concept, in this
thesis

• we experimentally demonstrated that it is possible for an MCF to learn how the
Controller works and manipulate the Controller.

• the manipulation can cause severe performance degradation of the network.

In this thesis, we proposed two ways to address the problem of MCFs:
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1. One option we proposed is to detect the MCF and to handle it after that (e.g.,
removed or replaced). We proposed a solution called MCD in Chapter 8.

2. On the other hand, for the cases in which the MCF cannot be eliminated, we proposed
to neutralize the MCF without detecting it explicitly at first. We proposed a solution
called CoDeRa to neutralize an MCF in Chapter 9.

In Chapter 8, we proposed MCD, a polynomial regression-based MCF detection mecha-
nism. We also evaluated MCD to analyze how fast it can detect an MCF in an operational
system. During the evaluation, we considered three different cases:

• case 1 : MCD becomes operational before MCF.

• case 2 : MCD and MCF become operational simultaneously.

• case 3 : MCD becomes operational after MCF.

Out of these three cases, we found that the time taken to detect the MCF by MCD is
highest for case 2. We also found that when the Controller uses EGS instead of NSWF, it
is easier for MCD to catch the MCF. Apart from that, we also observed that if the MCF
starts way ahead of MCD, and the difference in their start time exceeds a certain value,
MCD can no longer catch the MCF. This proves the necessity of having an MCD, i.e.,
MCD should be used before it is too late.

Although MCD can successfully detect an MCF, taking a CF out of an operational system
may affect the managed KPI and overall network performance. This is why the MCF
needs to be kept active until an alternative is found. Also, taking an MCF out of a
complex operational system may not always become feasible in real life. Under these
circumstances, it is better to neutralize the manipulative behavior of the MCF than to
take it out entirely. In Chapter 9, we proposed a solution named CoDeRa to neutralize an
MCF without taking it explicitly. Earlier, we established that an MCF could manipulate
the Controller as long as the MCF can successfully predict the Controller’s behavior. By
adding a small amount of random noises in the decisions made by the Controller, CoDeRa
makes it very difficult for the MCF to learn and predict Controller outputs. Although
the deliberately added noise causes some degradation of overall network performance, we
experimentally determined the amount of noise that can be added without affecting the
network performance severely.

From our work in this part, we concluded that even though MCD can detect an MCF,
CoDeRa is more effective than MCD since CoDeRa can neutralize the manipulative be-
havior. However, CoDeRa also causes a certain amount of, no matter how minimal, un-
avoidable network performance degradation. This is why an alternative architecture, that
is proposed in Appendix B, should be considered in the future. In the alternative archi-
tecture, we propose to combine the functionalities of CFs and the Controller into a single
entity, thereby removing the problems discussed above.

13.1.3 Orchestration

A network operator might need to customize cell configurations during certain times for
better quality of service. To customize several cell parameters and KPIs simultaneously,
the operator needs complete knowledge about the dependence among the parameters and
KPIs across different network states. Gaining this knowledge is a difficult and lengthy task
for the operator. Since the CFs already possess this knowledge, it will be beneficial for the
operator to use it. The current architecture, however, does not allow the operator to access
this knowledge. Therefore, we proposed an intent-driven interface between the operator
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and CAN in Chapter 11. An intent is a human readable sentence. The operator can express
the coveted customization to achieve in the form of a single or multiple intents, and CAN
is expected to execute those intents. The proposed intent-driven interface contains three
primary functional elements:

• Intent Identifier, which identifies if the intent can be executed by CAN,

• Intent Classifier, which classifies the intent based on its content, and,

• Intent Decision Maker, which generates appropriate commands to be executed by
CAN.

We also implemented this intent-driven interface in the simulation environment to evaluate
different metrics.

While implementing this interface, we found that the most challenging issue is the conflicts
and contradictions which may reside in an intent. Although conflicts are easier to detect
and resolve, contradictions, which arise during runtime, are harder to detect and resolve. In
Chapter 12, we proposed an intent contradiction detector and remover (ICDR) to address
that problem. We also evaluated ICDR in the simulation environment and showed that it
could detect and resolve contradictions with almost 100% accuracy.

From our work in this part, we learned that with the help of an intent-driven interface,
knowledge of CFs can be used to enable the MNO to customize the cell configurations.
Since our proposed intent-driven interface can operate conflict-free, it is suitable for use
in real-life.

13.2 Future Directions of Work

Although this thesis covers essential aspects related to open, multi-vendor network man-
agement automation and addresses the important problems, there are open issues that can
be further studied. Network management automation will experience changes induced by
future technologies (5G Advanced and 6G), and the concept of CAN, which evolved from
SON, will be further developed. For example, current handover optimization functions
like MRO may not remain relevant since future mobile networks will be highly dense and
heterogeneous. Thus, most of the traffic load will be carried by small cells which, in turn,
will lead to frequent handovers. Hence, conceptualization of new network functions will
be necessary. Additionally, CAN also needs to operate with legacy SON functions until
a complete transition to cognitive networking takes place. So, CAN, as we formulated
in this thesis, will take at least a few years to be fully implemented in mobile networks.
Keeping these points in mind, we highlight the scopes that can be further investigated in
the future.

13.2.1 Coordination for Combined Optimization

Throughout the thesis, we implemented and studied the CFs in a single cell (the central
green cell in Fig. 3.4). However, CFs like MLB or MRO also have an impact on the
neighboring cells. When the network load in a cell is high, MLB tries to offload some
UEs to the neighboring cells by reducing the CIO value. Let us explain with an example
how it works. In the left side of Fig. 13.1, we showed two cells: the source cell and the
target cell, in two different colors. When a UE moves from the source cell to the target
cell (e.g., from point A to point B), somewhere near point C, the handover takes place.
If the handover margin and the CIO of the target cell are not changed, the source cell
can offload the network load quicker by lowering its CIO value. That is precisely what
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Figure 13.1: Effect of CIO on Handover

MLB of the source cell (in our case, the central green cell in Fig. 3.4) does. In Fig. 13.1,
we illustrate how the handover can be done faster by lowering the CIO value. Now, if in
both neighboring cells, the MLBs start lowering their respective CIO values, the handover
margin will be challenging to achieve, and the handover events will be disturbed. Not only
by MLB, but handover events can also be affected by CCO. To increase the average user
downlink throughput, CCO can reduce the cell transmit power so that cell coverage area
decreases and fewer UEs are served. If the coverage area of both neighboring cells keeps
decreasing, there will be no overlap between two neighboring cells, and many UEs will not
be served at all.

This is why we see that, along with coordinating different CFs in the same cell, it is also
important to have coordination among different cells simultaneously. The coordination
among cells can possibly be done by coordinating not only the CFs in the source cell, but
also taking the CFs of the neighboring cells into account. The advantage of our proposed
solutions (NSWF or EGS) is that both are scalable, so any number of CFs from the
neighboring cells can be included in the coordination process. The challenge, however, in
that case, is to calculate the utility function of a CF from a neighboring cell.

13.2.2 Other Application Areas

Although the thesis has been written keeping the scenario of network management au-
tomation in mind, the proposed ideas can be applied to other fields as well. As already
discussed earlier in Section 4.1, CAN can be visualized as a MAS with specific properties.
The problem statements and solutions, covered in this thesis, are valid for any MAS with
the properties mentioned in Section 4.1. So, it would be interesting to find other research
areas that, when abstracted, resemble CAN and see if the problem statements and our
proposed solutions are applicable or how much they need to be adjusted.

13.2.3 Machine Readable Intent Translation

While evaluating the intent-driven solutions proposed in this thesis, we always assumed
that an MNO provides an intent in a particular format (denoted by formal intent). This
enables our proposed intent-driven solution to parse the intent quickly and act accord-
ingly. However, to make the intent input from the MNO side much more accessible, the
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MNO should have the flexibility to input the intent in any format the MNO wants. The
intent-driven system should have additional capabilities to translate any intent and act
accordingly. This is an advanced feature that should be incorporated into the future
intent-driven management solutions. Advanced deep learning based parsers (e.g., LSTM,
Transformer) may be used for this purpose, although it needs further detailed study and
evaluation.

List of Abbreviations Used in This Chapter

CF Cognitive Functions

CoDeRa Controller Decision Randomizer

EGS Eisenberg-Gale Solution

MAS multi-agent system

MCD Manipulative CF Detector

MCF Manipulative Cognitive Function

NSWF Nash Social Welfare Function
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Appendix A. Effectiveness of Shapley value
based of CW calculation

Here we establish the effectiveness of the Shapley value based CW value calculation pro-
posed in Section 6.4. We prove the effectiveness both mathematically and by simulation.

Cross validation via Mathematics

In this section, we prove mathematically that our proposed definition of calculating CW
values, described in Section 6.4, is the best one. To prove so, we take the UFs defined in
Eq. 6.8 and Eq. 6.9, and maximize

v
w

′
1

1 v
w

′
2

2 − v1v2 (13.1)

where v1 = e
−(p1+50)2

2p22 , (13.2)

v2 = e
−(p1−50)2

2p23 , (13.3)

p1, w
′
1, w

′
2 vary simultaneously, 0 < w

′
1, w

′
2 < 1, w

′
1 + w

′
2=1, p2 = 60 and p3 = 20.

Putting p22/p
2
3 = 9 further simplifies Eq. 13.1 to

e
− 1

9p3

[
eg1 − eg2

]
(13.4)

where

g1 = w
′
1(p1 + 50)2 + 9w

′
2(p1 − 50)2 (13.5)

g2 = (p1 + 50)2 + 9(p1 − 50)2 (13.6)

If we consider g1, we know that, by definition of CW, w
′
1 > 0 and w

′
2 > 0. If p1 = -50,

w
′
1(p1+50)2 becomes 0 but 9w

′
2(p1−50)2 becomes > 0. Similarly, if p1 = 50, 9w

′
2(p1−50)2

becomes 0 but w
′
1(p1 +50)2 becomes > 0. So, we see that, for all possible values of p1, w

′
1

and w
′
2, g1 > 0. Following the same logic, we can also conclude that g2 > 0.

As, both g1, g2 > 0, Eq. 13.4 is maximized when

F = g1 − g2 (13.7)

is maximized.

After putting the values of g1, g2 in Eq. 13.7 and simplifying, we get the final expression

F = w
′
1(p1 + 50)2 − (p1 + 50)2 − 9w

′
1(p1 − 50)2 (13.8)

which needs to be maximized.

Theorem. (Second Partials Test) If z = f(x, y) has a critical point at (x0, y0), so
∂f
∂x |(x0,y0)

= 0 and ∂f
∂y |(x0,y0) = 0. Let
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D =
∂2f

∂x2
|(x0,y0) ·

∂2f

∂y2
|(x0,y0) −

( ∂2f

∂x∂y
|(x0,y0)

)2
(13.9)

(1) If D > 0 and ∂2f
∂x2 |(x0,y0) > 0, then (x0, y0) is a local minimum.

(2) If D > 0 and ∂2f
∂x2 |(x0,y0) < 0, then (x0, y0) is a local maximum.

(3) If D < 0, then (x0, y0) is a saddle point (neither maximum nor minimum).
(4) In all other cases, no conclusion can be drawn.

From Eq. 13.8 we see that F has two variables: w
′
1 and p1. So, F is maximized when both

∂F
∂p1

= 0 and ∂F

∂w
′
1

= 0 hold simultaneously. From Eq. 13.8, we get

∂F

∂p1
= 0 =⇒ p21 − 125p1 + 2500 = 0

Solving which, we get p1 = 25 or 100.

Again, from Eq. 13.8, we get

∂f

∂p1
= 0 =⇒ w

′
1 =

2p1 + 100

1000− 16p1
(13.10)

In Eq. 13.10, putting the values of p1 = 25 and 100, we get w
′
1 = 0.25 and -0.5 respectively.

As w
′
1 > 0, only critical point for F is (p1, w

′
1) = (25, 0.25).

However, (p1, w
′
1) = (25, 0.25) is only a critical point for F , i.e., F can be either maximum

or minimum at this point. For F to be maximum at this point, condition (2) from the

Theorem has to hold true. As ∂2F

∂w
′2
1

= 0, ∂2F
∂p21

= -(16 w1 + 2), ∂2F

∂p1∂w
′
1

= 1000 - 16 p1, from

Eq. 13.9 we see that D = 16 p1 - 1000 = 600 > 0, thus F is maximum for w
′
1 = 0.25.

Now, when calculated using our proposed Shapley value based method in Section 6.5.1, we
got the value of w

′
1 as 0.25. In this Section, we mathematically prove that optimal value

for w
′
1 is 0.25. This shows that our proposed Shapley value based CW calculation method

is optimal.

Cross-validation via Simulation

To prove the effectiveness of our proposed method of calculating CW values (Eq. 6.7),
we also cross-validate the results using simulation. We vary w

′
1 and w

′
2 in between 0

and 1 simultaneously in steps of 0.01 while ensuring that w
′
1 + w

′
2 is always 1. For each

combination of (w
′
1, w

′
2), we calculate the optimal p1 value and correspondingly find the

overall improvement (sum of the improvement in individual utility) of using EGS over
NSWF. From Fig. 13.2 we find that the overall system utility becomes maximum when
(w

′
1, w

′
2) = (0.25, 0.75), which is in par with our earlier result and proves again that our

CW calculation method is the best.
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Appendix B. Alternate Mobile Network
Management Architecture

Motivation

The mobile network is a complex system bound to produce erroneous measurements or
sometimes completely fail to report. CFs are usually trained on complete and accurate
datasets, so they may not be robust against such data corruption. In [105] researchers
showed that a single corrupted input to an ML model, which is part of an ML model
chain, can generate multiple corrupted outputs with each step in the chain multiplying
the effect. In networks, multiple CFs often share the same input control parameter (ICP),
implying that missing or corrupted data for the ICP will affects the learning of all the CFs.
With the UFs of CFs used by the Controller, the final value computed by the Controller
may be sub-optimal due to the inaccurate UFs, and thus, there is likely to be major
degradation in all the KPIs influenced by the ICP. Naturally, the more the CFs that share
an ICP with corrupted or missing data, the more is the likelihood of large deviations of
final ICP value from the optimal value and the more likely is the network performance
degradation. Fig. 13.3 illustrates the error propagation: a single error (say, corrupted
value) in an ICP, goes to all the CFs affecting their learning and resulting in erroneous
UFs produced by the CFs (shown by a different color in Fig. 13.3). When the Controller
uses multiple of these erroneous UFs, its decision is distorted, so the changes the Controller
makes in the network lead to network degradation.

Since real-life systems do encounter corrupted or missing data, this degradation is more
or less guaranteed, caused by the multiplication of effects of the erroneous measurement
across multiple CFs and the Controller in current network management automation (NMA)
architecture. The multiplication effect can be reduced if the number of entities propagating
the error is low, so this motivates the need for an alternative architecture with a lower
number of entities.

Alternative architecture

A single ML Model

We hypothesize that it is better to replace all the CFs and the Controller with a single
ML Model, specifically a neural network (NN) as shown in Fig. 13.4. The NN takes the
combination of network state, network control parameters and KPIs as input, and, it is
expected to change the network control parameters appropriately such that all the KPIs in
the input network state are optimized. This architecture has a scalability limitation since
the CFs, which are to be concurrently operated, must be tested and deployed together. It
however, addresses the identified shortcomings, such as:

1. Trust issue: a single NN completely destroys the idea of an MCF, since all CFs are
merged into one. This, in effect, removes all the trust-related problems (of Chapter 7)
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Figure 13.3: Error propagation in current NMA architecture

and the shortcomings arising from having MCF, MCD and CoDeRa in the system
since all these functions are not needed anymore.

2. Performance issue: Data corruption in one control parameter is captured only once
in the computation of the final value, so multiplication effect does not occur anymore.

3. simplicity : The reduction to only one ML model makes results onto a simpler im-
plementation, avoiding the information exchange among modules.

As an example implementation of our proposed architecture, we use a fully connected NN
with 5 hidden layers and 50 nodes in each hidden layer using ReLU as activation function
in each node, Adam as optimizer and MSE as loss function. Inputs and outputs of the
NN are as shown in Fig. 13.4. Network state consists of the combination of TXP, RET,
timestamp, connected UEs, antenna height and antenna gain. For a first demonstration,
we use the default model but we later also vary the number of hidden layers and nodes in
each layer to find the optimal NN architecture. The NN is always trained with a batch
size of 64 over 50 epochs.

Demonstration of expected benefit

To experimentally demonstrate the problem depicted in Fig. 13.3 and the advantages of our
proposed solution, we wish to compare our proposed architecture of a single NN (hereafter
referred as Model 1) with a current architecture with 2 CFs: MLB, MRO (hereafter referred
as Model 2), so we only take the control parameters and KPIs into consideration which
are relevant for MLB and MRO, i.e., control parameters: TTT, CIO and KPIs: network
load, late handovers (LHO), early handovers (EHO) and ping-pong handovers (PPHO).
We consider the same simulation setup but different data scenarios for training the models
before deploying them in the simulator to observe changes in KPI values. specifically, we
consider the following scenarios:

• scenario 1 : the dataset is complete and error free.

• scenario 2 : the dataset is incomplete (has some missing datapoints), but all the
datapoints are accurate.
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Figure 13.4: Proposed NMA architecture

Figure 13.5: Load in Sce-
nario 1

Figure 13.6: Load in Sce-
nario 2

Figure 13.7: Load in Sce-
nario 3

• scenario 3 : the dataset is complete but it has some erronesous datapoints.

• scenario 4 : the dataset is incomplete (missing data points) and some existing data-
points are erroneous.

Since scenario 4 is a combination of scenarios 2 and 3, we argue that if Model 1 outperforms
Model 2 in both scenarios 2 and 3, the same will hold scenario 4 as well.

When the dataset is complete and error free (Scenario 1), we see from Fig. 13.5 and
Fig. 13.8 that both Model 1 and Model 2 perform equivalently. However, both in scenario
2 and scenario 3, using Model 1 we get lesser load values and better handover performance,
i.e., Model 1 outperforms Model 2 in both KPIs. This degradation in the performance of
Model 2 happens because of the error propagation through current architecture, that we
explained earlier, and it proves the necessity of an alternate architecture.

Figure 13.8: Scenario 1
Handover performance

Figure 13.9: Scenario 2
Handover performance

Figure 13.10: Scenario 3
Handover performance
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Figure 13.11: error margin
0.01

Figure 13.12: error margin
0.02

Figure 13.13: error margin
0.025

Figure 13.14: error margin
0.03

Figure 13.15: error margin
0.04

Figure 13.16: error margin
0.05

Evaluation of the proposed architecture

Since we already showed that when the dataset is complete and error free both the current
architecture and our proposed architecture perform equivalently, we evaluate the accuracy
of our proposed architecture (a single NN) against the Controller choices over different NN
architectures and hyperparameters. We found experimentally that for NN predictions, a
deviation of up to 5% does not affect the overall network performance. Correspondingly,
unless otherwise stated, we allow for an error margin of up to 5% and consider the NN
prediction to be a success, if, for a controller value x, the NN prediction is within 5% of x
((1± 0.05)x).

NN accuracy for different error margins

Although we found that an error margin up to 5% can be allowed, we wish to consider the
effect of the error margin while determining an optimal architecture. For each margin, we
vary the number of hidden layers and nodes in each layer with the accuracy result plotted
in Fig. 13.11 - Fig. 13.16. Specifically, for an error margin of 5%, we see that the accuracy
is highest with 2 or more hidden layers and 20 or more nodes in each layer. However, as
the error margin is lowered the accuracy of each specific NN model instance reduces. In
general however, a NN with 5 hidden layers and 40 nodes in each layer performs well in
all cases and increasing beyond this does not provide any better accuracy.

NN accuracy for different network states

The ML model uses a combination of the network control parameters, listed in Table 13.1,
as the network state and we see that the more parameters we include in the network state,
the better is the NN accuracy. This is because every extra parameter provides a better
insight on the state of the network allowing for better learning of the NN.
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Table 13.1: Efficiency of the NN depending on the parameters in network state

TXP RET timestamp
connected
UEs

antenna
height

antenna
gain

NN efficiency
(%)

✓ ✓ 91.02

✓ ✓ ✓ 92.59

✓ ✓ ✓ 92.67

✓ ✓ ✓ ✓ 92.77

✓ ✓ ✓ ✓ ✓ 93.72

✓ ✓ ✓ ✓ ✓ 93.83

✓ ✓ ✓ ✓ ✓ ✓ 95.21

Figure 13.17: Accuracy of the NN for
different activation functions

Figure 13.18: Accuracy of the NN for
different optimizers

NN accuracy for different hyperparameters

We also change other hyperparameters of the NN, like optimizer, activation function and
weight decay, and evaluate the performance of the NN. We see in Fig. 13.17 that using the
activation function ReLU gives the highest accuracy but other activation functions like
Leaky ReL and Tanh also provide almost similar accuracy. Fig. 13.18 shows that Adam is
the most suitable optimizer here but Rprop and RMSprop also perform quite well. Finally,
Fig. 13.19 investigates the impact of weight decay shows that it is better to not use any
weight decay.

Figure 13.19: Accuracy of the NN for different weight decays
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Table 13.2: Time (s) required to train different NNs

Number of Hidden Layers

Number
of

nodes
in

each
hidden
layer

1 2 3 4 5
10 11.8028 13.3601 15.3602 17.7529 19.5792
20 11.8785 13.7531 15.8903 18.1351 19.9858
30 11.9136 14.3287 16.1308 19.8758 21.2116
40 11.9672 16.1902 17.2016 20.4782 27.2301
50 12.0296 17.0586 18.0273 22.1835 30.2202
60 12.0857 18.0924 20.8091 24.2016 32.1022
70 12.1205 19.1934 22.2585 26.3187 33.6997
80 12.1801 20.7132 24.2271 28.8041 35.8526

Complexity analysis of the proposed architecture

We also perform the complexity analysis of our proposed architecture to find the trade-off
between the performance and computational efficiency. We run the simulations and train
the neural networks in an Quadcore Intel Core i5-10310U@1.7 GHz CPU. Time taken (in
seconds) to train each NN is given in Table 13.2. From this Table we see that on an average
it takes less than a half a minute to train the NN and the maximum time difference in
training any two types of NNs is 24 seconds, which makes it fit to use in real life system.
We also see that the amount of RAM needed to train the NN varies between 4.01 MB and
4.14 MB, i.e., our proposed solution can be implemented using any modern computer.

Standardization impact
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Figure 13.20: 3GPP D-SON and proposed architecture

3GPP defines distributed SON (D-SON) when the SON algorithm is located in the net-
work function (NF) layer [82]. For D-SON, the NFs (like, QoS management, mobility
management) monitors the network events, analyses the network data, makes decision on
SON actions and executes those actions (shown in Fig. 13.20). The advancements in ML
and DL in recent times are driving vendors to produce ML based NFs. For example, if
we consider the specifications of MRO in 3GPP [83], we see that the functionalities, like,
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analyzing reports from UEs and network slice information, mitigating HO issues by ad-
justing HO related parameters (TTT,CIO), can be better achieved by using ML and DL
capabilities. The deployment of multiple learning-based NFs (i.e. CFs) in a multi-vendor
environment directly runs into the trust and performance issues discussed earlier. For that
reason, as a minimum, the SON management layer shall need to be adapted to account
for the likelihood of manipulation (MCD, CoDeRa) as shown in Fig. 13.20. However, if we
follow the alternate architecture proposed here, we do not need separate D-SON manage-
ment and NF layers. The functionalities of both these layers can be combined into a single
model in a single layer as shown in Fig. 13.20. This makes the architecture less complex
and easy to implement.

List of Abbreviations Used in This Chapter

EHO early handovers

ICP input control parameter

LHO late handovers

MSE mean squared error

NMA network management automation

NN neural network

PPHO ping-pong handovers

RET remote electrical tilt

TXP transmit power

UEs user equipments
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