
Automated Design Space Exploration for
Resource Allocation in Software-Defined Vehicles

Fengjunjie Pan, Jianjie Lin, Markus Rickert, and Alois Knoll

Abstract— Modern vehicles include an increasing amount of
software, e.g., for autonomous driving capabilities, connectivity,
and personalized user experience. The capabilities in current
vehicles are still mostly provided by multiple separated em-
bedded systems, while the current trend goes toward purely
software-defined vehicles (SDV). Traditional distributed elec-
trical/electronic (E/E) architectures have tightly coupled hard-
ware/software, and the computational power is optimized for the
included feature set. For SDVs, a centralized E/E architecture
utilizing high-performance computers has been proposed. In
contrast to individual embedded systems with limited and
fixed functionality, combing a large set of individual software
components in a single system leads to a high complexity in the
proper allocation of resources. Model-based system engineer-
ing (MBSE) has been promoted in the automotive industry
to handle complex system design. However, existing MBSE
approaches focus mainly on traditional E/E architectures. In
this work, we propose an automated and model-based approach
that can address the resource allocation problem in SDVs. Users
can formally describe the vehicle’s resources, safety/non-safety
requirements, and optimization objectives based on existing
software engineering standards. The proposed method is not re-
stricted to specific system models, requirements, or optimization
goals and is, therefore, compatible with other E/E architectures.
By introducing a model-independent transformation from the
model information to solver-independent optimization formulas,
the resource allocation problem can be solved automatically by
a wide range of state-of-the-art solvers. We demonstrate the
applicability of this approach in a SDV scenario with a high-
performance computer and multiple applications.

I. INTRODUCTION

Intelligent vehicles are drawing increasing attention from
the automotive industry. Current cars and automotive elec-
trical and electronic (E/E) architectures are primarily based
on embedded systems with separated functionality and op-
timized hardware. Their functionality cannot be modified
or updated on demand in the same scope as other devices
such as computers or mobile phones. Domain and zone-
oriented E/E architectures are currently investigated, where
ECUs are grouped based on related function or locations
in the car. The increasing complexity of autonomous driving
functionality and the demand for up-to-date software in areas
such as entertainment leads to the discussion of Software-
Defined Vehicles (SDVs). In such a platform, software
installation and updates can happen frequently and change
the functionality of the whole system. To achieve maximum
flexibility and scalability in SDVs, centralized architectures
with high-performance central computers are discussed [1].
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Fig. 1: Centralized E/E architecture in SDVs with support
for applications and their resource and safety requirements.

Fig. 1 illustrates a possible SDV architecture based on a
central computer, where virtualization technology is utilized
to create independent virtual machines (VMs). Hardware
resources and mixed-criticality applications are allocated to
individual VMs for the safe execution of vehicle functions.

Designing resource allocation in SDVs is a design space
exploration (DSE) process involving various (non-)safety
requirements and optimization objectives. Consider the high
complexity and the agile development cycle of SDVs, per-
forming the DSE cannot remain a purely manual procedure.
In our previous work [2], we formalized the resource al-
location as a mathematical problem and utilized state-of-
the-art solvers to perform the design task. This requires
expertise in describing the problem in a mathematical format
suitable for the solver. Therefore, we propose a model-
based approach to further automate and simplify the design
process of SDVs. Model-based system engineering (MBSE)
has a proven track record in the aerospace industry and has
received a lot of attention in the automobile industry in recent
years [3], [4]. It leverages formally-described information for
system design, analysis, verification, and validation. In the
automotive domain, existing model-based design approaches,
e.g., [5] and [6], mainly target distributed E/E architectures
and only support limited types of requirements/objectives via
custom domain-specific languages (DSL).

This paper proposes an automated and model-based DSE
approach for resource allocation in SDVs. Our method is
compatible with different architecture scenarios, require-
ments, and objectives so that it can be seamlessly ap-
plied to design SDVs. We introduce a model-independent
transformation to encode model information (meta-models,
instance models, constraints, and objectives) as mathematical
expressions. Instead of a custom DSL, we rely on well-



known definitions from the software and systems engineer-
ing domain. Via state-of-the-art solvers, users can explore
different design alternatives. To demonstrate the feasibility
of our approach, we provide examples of SDV meta-models,
requirements, and optimization goals. We further show how
the proposed approach can be applied to a SDV scenario
with multiple applications on a platform with many cores.

This paper is structured as follows: Section II introduces
related work about automotive DSE and general MBSE
methods. Section III shows fundamentals of model-based
system description and provides examples of SDV-related
models. In Section IV, the proposed DSE approach is
presented, including model transformation. To show the
applicability of our method, a concrete experiment is detailed
in Section V.

II. RELATED WORK

There are various research works discussing the design
space exploration for resource allocation in automotive sys-
tems. Pohlmann et al. [5] presented the MechatronicUML
approach for resource allocation in distributed vehicular sys-
tems. They created a platform-specific description language
to model system components (e.g., cores, memories) and a
custom DSL to specify five types of allocation constraints.
Each constraint type was combined with a transformation
template so that an integer linear programming (ILP) prob-
lem could be generated for the DSL automatically. ILP
solvers were employed to process the generated formula-
tions and to find feasible resource allocation configurations.
Eder et al. [6] developed AutoFocus3 to map software into
hardware. They utilized customized meta-models and a self-
defined DSL for the formal description of system com-
ponents, allocation constraints, and optimization objectives.
Constraints and objectives following particular patterns were
categorized and specified in the DSL. These DSL patterns
can be translated to satisfiability modulo theories (SMT)
expressions through pre-defined templates and further be
optimized. Both MechatronicUML and AutoFocus3 target
distributed automotive E/E architecture and offer limited
support for the SDV architecture and requirements.

Al-Azzoni et al. [7] presented an adaptable framework to
solve resource allocation problems, in which users can de-
velop individual meta- and instance models to describe their
systems. This framework differs from the above-mentioned
works, whose meta-models were designed for particular
systems; it provides a customized meta-model for software
component allocation problems containing classes for target
components and constraints. Models conforming to this
meta-model can be translated to a mixed integer linear pro-
gramming MILP problem and solved accordingly by MILP
solvers. However, before the model can be applied to the
automotive systems, a model transformation has to be defined
by the user to convert into problem description models that
conform to the framework’s meta-model. Additionally, any
undefined constraints in the meta-model cannot be resolved.

Compared to individual implementations, standard-based
technologies can provide more comprehensive functionalities

and broader industry acceptance. In the industry, the Eclipse
Modeling Framework (EMF) is the de-facto modeling frame-
work. Object Constraint Language (OCL) [8] is a widely
acknowledged standard for constraint description. Thus, our
research also draws on standard-based tools for validating
and optimizing EMF- and OCL-based models. EMF2CSP [9]
provides an automated translation from OCL expressions to
constraint satisfaction problems to prove model consistency.
It verifies if a meta-model can be instantiated according to
the meta-model multiplicities and the OCL constraints. A
valid instance model that conforms to the verified meta-
model and follows the specified OCL constraints can be
created. However, this tool cannot obtain information from
the existing instance model, which typically contains hard-
ware/software information and partial resource allocation
decisions in an automotive DSE approach. EFinder [10]
utilizes the USE Model Validator [11] to transform meta-
models and OCL constraints into boolean satisfiability (SAT)
problems and solves them with an SAT solver. In addition to
maintaining consistency within the model, it can also identify
and fill in missing information in terms of instance objects,
references, and attributions for incomplete instance models.
However, for the automotive resource allocation, instance
objects of hardware resources should not be added during
DSE. Besides, optimization problems can neither be defined
nor executed.

To our knowledge, no existing DSE tool fulfills the fol-
lowing requirements simultaneously: (1) can be seamlessly
applied for a centralized SDV architecture, (2) is based on ex-
isting systems and software engineering standards, (3) offers
the freedom for specifying different kinds of requirements,
(4) allows the specification of different optimization goals.

III. MODEL-BASED SYSTEM DESCRIPTION

In MBSE, models that represent system information serve
as the basis for analysis. Our work builds upon the existing
standards for model description. Thus, it can easily combine
with other tools conforming to the same standard, e.g., for
model verification. The model-based description in this work
contains several parts: meta-model, instance model, formal
expressed requirements, and optimization objectives.

A. Meta-model and instance model
A meta-model is an abstraction of a target system and

defines rules, meta-types, and properties needed for cre-
ating semantic models. The meta-models of systems have
no distinctive design since they can be based on different
abstraction levels or notions. An instance model instantiates
a specific meta-model to describe a particular system. Due
to industry-wide acceptance, we employ the Object Manage-
ment Group (OMG) standards for the specification meta- and
instance model. The OMG Meta Object Facility MOF defines
a meta-data architecture in which every model element on
every layer (instance) is strictly in correspondence with a
model element of the layer above (classifier) [12]. It is
supported by state-of-the-art modeling languages, including
Unified Modeling Language (UML) and Systems Modeling



Fig. 2: An example meta-model for SDVs with classes for
hardware and software components and their mapping.

Language (SysML). In the Eclipse Platform, the EMF is
designed to realize the MOF standard [13]. EMF supports the
specification of individual meta- and instance models using
diagrammatic notations.

Fig. 2 presents an example of the EMF meta-model
illustrated using the Eclipse Ecore Editor and describes the
central-computer-based SDV architecture presented in Fig. 1.
In the meta-model, we use classes (blocks) and attributes to
specify hardware/software components and their properties.
Various references (lines with arrows) are defined to express
relationships among components, e.g., resource allocation
or containment. We set the Mapping class as the starting
point of the system modeling, which includes Board, Vm,
App, and UniversalSerialBusDevice. Hardware components
of the central computer are defined as separate classes (e.g.,
Cpu) contained by Board. The properties of each board
component are modeled as attributes in each class. For
example, we define a boolean attribute turboBoost in Cpu for
the overclocking feature. Here, we assume that overclocking
might jeopardize the stability of applications. Thus, we con-
sider it safety-related. Furthermore, a separate class Power
is created to express single core’s power consumption as
linear functions. With proper approximation, complex power
functions can be described via piecewise linear functions
instantiated by multiple instances of Power. In SDVs, Vm
instances are isolated partitions to host applications. System
configurations and resource allocations of Vm can be spec-
ified via attributes (e.g., safetyLevel) and references (e.g.,
core). The Class UniversalSerialBusDevice can be used to
model sensors and heterogeneous hardware, e.g., cameras
and AI accelerators. Application requirements are modeled

Fig. 3: Instance model example (partial) for a SDV system.

as attributes of App (e.g., ramSize). We consider each App
instance a service segment that requires a maximum of
one Core instance. Resource mappings of App are defined
via references (e.g., vm). In addition, we define references
coLocation and sepLocation to specify applications that
need to be mapped to the same or different VMs. Apart
from component descriptions, we can also specify basic
allocation constraints via reference boundaries. For instance,
the reference vm of Core is bounded from 0 to 1. It indicates
that one core can be allocated to a maximum of one VM.
Fig. 3 presents the instantiation of a SDV system based on
the meta-model defined in Fig. 2. It describes part of the SDV
system specified in Section V, where multiple hardware,
VMs, and applications should be allocated. The properties
of each instances are specified in a separate property view.

While system components and basic allocation constraints
can be specified formally in EMF models, advanced con-
straints (e.g., freedom of interference) can hardly be ex-
pressed. Therefore, complementary constraint models need
to be introduced for formal requirement specification.

B. Requirements
Formal constraint languages are designed as additions

to the meta-model for constraint specification. In MBSE,
they are typically employed for model verification. OMG
introduces a declarative formal language, the OCL to sup-
port MOF-based models (EMF, UML, SysML, etc.) for
describing constraints that cannot otherwise be expressed [8].
An OCL constraint contains a context (context) and an
invariant (inv). In the OCL syntax, the context specifies the
target of constraints. The rule of each constraint is defined
as the OCL expression in each invariant. Due to its first-
order-logic-like nature, OCL can be used to describe different
automotive requirements. In this section, we will present
some SDV-related requirement examples expressed via OCL.

1) Resource availability: The availability of resources
is the fundamental requirement of resource allocation. In
SDVs, the physical hardware is partitioned into VMs. In



order to host applications, sufficient sources (e.g., cores,
memories, devices) must be assigned to each individual VM.
The following OCL invariant VmRamSize shows an example
of VMs’ RAM allocation.
context Vm
inv VmRamSize:
app->collect(ramSize)->sum() <= ramSize

2) Application relationships: Automotive applications are
interactive components that are dependent on each other.
Thus, constraints are defined for the specification of rela-
tionships among different applications. The OCL invariant
CoLocation specifies that co-locational applications should
be assigned to the same VM. Similarly, the OCL invariant
SeperateLocation describes that applications requiring sepa-
rate locations should be executed on different VMs.
context App
inv CoLocation:
coLocation->forAll(vm = self.vm)
inv SeparateLocation:
sepLocation->forAll(vm <> self.vm)

3) Safety requirements: Freedom from interference (FFI)
is an essential safety requirement introduced by
ISO 26262 [14]. It defines the absence of cascading
failures between two or more elements that could lead
to the violation of safety goals. Automotive applications
are categorized into different safety levels based on the
risk classification scheme presented in ISO 26262. The
Automotive Safety Integrity Levels (ASIL) A, B, C,
and D are used to identify safety-critical applications,
such as pedestrian detection. In turn, QM identifies non-
safety-critical applications, such as infotainment. Based
on the ASIL classification, we define that applications
of different ASIL levels cannot influence each other. An
OCL interpretation of FFI is presented in the constraint
AppAndVmSafety. It specifies that applications can be only
hosted by VMs with the same safety levels (e.g., an ASIL
D application can only be executed on a VM which satisfies
ASIL D).
context App
inv AppAndVmSafety:
safetyLevel = vm.safetyLevel

4) Safety-related platform constraints: Apart from system
requirements, platform restrictions should also be addressed
by the design of automotive systems. In SDVs, hardware
should be appropriately configured to meet individual safety
requests of VMs and applications. For example, a CPU
overclocking feature (e.g., turboBoost) might jeopardize the
stability of safety-critical applications. As a result, we define
the constraint VmSafetyConfig as the core hosting safety
applications should have turboBoost feature disabled.
context App
inv VmSafetyConfig:
safetyLevel > 0 implies
core.cpu.turboBoost = false

OCL is capable of expressing various kinds of require-
ments. When using formal OCL constraint descriptions,

instance models can be easily verified using pre-existing
OCL verification tools without additional effort in imple-
mentation. In this paper, we aim for automated solving
and optimization of the resource allocation problem. Thus,
the OCL constraints will be transformed into mathematical
formulations for further processing (Section IV).
C. Optimization objectives

In automotive system design, optimization improves sys-
tem performance by adjusting system configurations with-
out violating pre-defined constraints. Varying optimization
goals can lead to different design solutions. OCL is a for-
mal language initially developed for constraint specification.
However, it may be utilized for querying model information
as well. In this work, we combine OCL query expressions
and optimization directions (minimize/maximize) to formally
state different optimization objectives. We present three
examples of SDV-related optimization objectives to show the
feasibility of this approach.

1) Minimize VM numbers: In SDVs, VMs provide dif-
ferent execution environments to meet the requirements of
applications. However, unnecessary VMs might influence the
overall system performance. By minimizing the number of
VMs that are instantiated, system overheads caused by VMs
can be optimized. The optimization objective of minimizing
the number of VMs (minVm) can be formally expressed as:
minimize:
Vm.allInstances()->select(app->size() > 0)
->size()

2) Minimize number of utilized cores: CPU cores are the
most crucial components of a modern vehicle, and host the
majority of the calculations. However, due to the resource
limitations of automotive platforms, the number of utilized
cores has to be considered during the design of the E/E
architecture. An SDV should be a dynamic system where
new VMs and applications can be added to the system with
restricted influence on existing configurations. Therefore, we
set the minimal core number as the optimization goal. In
a system utilizing a minimal number of cores, new VMs
and applications can easily be allocated with free cores
without interfering with the previous core configuration. The
optimization objective of minimizing the number of cores
(minCore) can be formally expressed as:
minimize:
Core.allInstances()->select(app->size() > 0)
->size()

3) Minimize power consumption: Energy efficiency is
a vital property for automotive platforms. Reduced power
consumption benefits not only the environment but also the
customer’s experience and expense. For example, vehicles
can travel with less fuel or electricity for longer distances
with efficient power usage. The power consumption of a
CPU core is typically a non-linear function, which can be
approximated with piecewise linear functions. In Fig. 2, the
class Power is created to define linear power consumption.
Therefore, the OCL optimization goal for minimizing cores’
power consumption (minPower) can be expressed as:
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Fig. 4: Overview of the presented DSE approach.

minimize:
Power.allInstances()->collect(
p | Core.allInstances()->collect(
app.coreSize->sum()
)->collect(
u | if (u > p.lb and u <= p.ub)
then u * p.coeffA + p.coeffB
else 0 endif

)
)->sum()

Given OCL’s broad expressiveness, we consider it a suit-
able formal language to describe various optimization goals.
In this work, the OCL objectives will be encoded together
with OCL constraints to mathematical formulations for the
DSE.

IV. DESIGN SPACE EXPLORATION

DSE is the procedure of searching for design solutions
from a space of design possibilities that fulfill the desired
criteria [15]. For the resource allocation in SDVs, the design
space includes the configuration of hardware (e.g., safety-
related CPU settings), the resource assignment to applica-
tions and VMs, and the mapping of applications to VMs. In
this work, we propose an automated and model-based DSE
approach (Fig. 4).

The starting point for our method is different models
containing system information and requirements. The in-
put models (including meta-model, partial instance model,
constraints, and optimization objectives) should conform to
existing modeling standards and can be defined by users
according to individual project needs. A partial instance
model can contain primitive system configurations depending
on individual use cases. These configurations are preserved
in the DSE solution. In Section III, we presented exemplary
models for SDVs based on EMF and OCL. However, the
proposed approach is not limited to EMF models. Other
standardized modeling languages, e.g., UML and SysML,
can also be applied. The information that is contained in the
input models will be transformed automatically into a solver-
understandable format. We utilize the solver-independent
format, SMT-lib [16], to express optimization problems.
The SMT-lib format is a standard that is used to describe
SMT problems that determine whether a set of mathematical
formulas can be satisfied. This format uses first-order logic

Algorithm 1 EMF2SMT to transform EMF models along
with OCL expressions to SMT expressions
Require: OCL expressions, EMF models

1: for 𝑐𝑙𝑎𝑠𝑠 in classes of the meta-model do
2: for 𝑖𝑛𝑠 in instances of 𝑐𝑙𝑎𝑠𝑠 in instance model do
3: for 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 in properties of 𝑐𝑙𝑎𝑠𝑠 do
4: if 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 refers to a reference then
5: Create binary decision variables for refer-
6: red instances of 𝑖𝑛𝑠
7: else
8: Create decision variable for 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦
9: of 𝑖𝑛𝑠 according to the attribute type

10: end if
11: if 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 of 𝑖𝑛𝑠 is set then
12: Assign values to decision variable
13: end if
14: end for
15: end for
16: end for
17: for 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 in OCL expressions do
18: for 𝑖𝑛𝑠 in instances of context class do
19: Set ins as context instance for 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
20: 𝑟𝑒𝑠 ← visitExpression(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)
21: Add 𝑟𝑒𝑠 to the list of SMT expressions
22: end for
23: end for
24: return list of SMT expressions

as its underlying logic and can be processed by state-of-
the-art SMT solvers, e.g., Z3 [17] and OptiMathSAT [18].
The description of optimization objectives is not contained
in the current SMT-lib specification. Thus, we employ the
extended definition of Z3 and OptiMathSAT to express op-
timization objectives [19]. Multiple optimization objectives
can be defined and considered by a lexicographic priority.
The objectives that are declared first have higher priorities
during optimization. Apart from the proposed SMT-based
DSE approach, the use of ILP or MILP solvers could
be conceivable, but the automatic encoding from model
information to solver-specific formats would be more com-
plicated [20]. Once the solver completes the calculation, the
solver solutions are transformed back to the EMF model for
further inspection.

The key enabler of the proposed DSE approach is the
automatic transformation from meta-/instance models, con-
straints, and objectives to a solver-understandable format. It
is an exogenous and vertical model transformation since its
source/target models are expressed in different languages and
reside at different abstraction levels [21]. We propose the
algorithm EMF2SMT (Alg. 1) to transform EMF models
(meta- and instance models) and OCL expressions (con-
straints and objectives) to SMT expressions. The transfor-
mation can be categorized into two steps.

In the first step, EMF models will be parsed and analyzed.
The information on classes and their properties is obtained



Algorithm 2 visitExpression() to visit OCL expressions
Require: OCL expression

1: switch type of OCL expression do
2: case OperationCallExp
3: 𝑠𝑟𝑐𝑅𝑒𝑠 ← visitExpression(source expression)
4: 𝑠𝑟𝑐𝑅𝑒𝑠 ← visitExpression(argument expression)
5: 𝑜𝑝𝑡 ← get expression operator
6: Combine 𝑠𝑟𝑐𝑅𝑒𝑠, 𝑎𝑟𝑔𝐸𝑥𝑝, 𝑜𝑝𝑡
7: Formulate expression as SMT
8: case PropertyCallExp
9: 𝑠𝑟𝑐𝑅𝑒𝑠 ← visitExpression(source expression)

10: 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 ← get referred property
11: Query decision variables of 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 for 𝑠𝑟𝑐𝑅𝑒𝑠
12: and represented instances (if applicable).
13: Combine 𝑠𝑟𝑐𝑅𝑒𝑠 and decision variables
14: Formulate expression as SMT
15: case IteratorExp
16: 𝑏𝑜𝑑𝑦𝐸𝑥𝑝 ← get body expression
17: 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ← visitExpression(source expression)
18: for 𝑖𝑛𝑠 in 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 do
19: Set 𝑖𝑛𝑠 as context instance for 𝑏𝑜𝑑𝑦𝐸𝑥𝑝
20: visitExpression(𝑏𝑜𝑑𝑦𝐸𝑥𝑝)
21: end for
22: case ...
23: return SMT expression, represented instances, etc.

from the meta-model. In EMF, a property can be either an
attribute, which is a value of different types, or a reference,
which links to other instances. In the instance model, all
instances and their properties will be iterated and checked
for existence. For each attribute property, individual decision
variables of specific types will be created. For instance, we
can create an integer variable 𝑎𝑝𝑝1_𝑟𝑎𝑚 to represent the
memory size of application 1. Since we focus on the automo-
tive resource allocation problem, we mainly consider numer-
ical representative attributes. For each reference property of
a single instance, we propose to create binary decision vari-
ables for all possible referred instances to achieve a generic
model transformation, e.g., to describe application 1’s core
assignment, we can create binary variables 𝑎𝑝𝑝1_𝑐𝑜𝑟𝑒1, etc.,
to link all possible cores. If a property already has defined
values in the instance model, these values will be assigned
to related decision variables as constants.

After reading the model information and creating deci-
sion variables, the OCL expressions will be analyzed and
reformulated into SMT expressions. Both expressions of
constraints and objectives follow the same OCL syntax. Each
OCL expression has a recursive structure, which means an
OCL expression can have other OCL expressions as subcom-
ponents. OCL expressions can be categorized into different
types: OperationCallExp, PropertyCallExp, IteratorExp, etc.
As presented in Section III-B, the automotive requirements
are typically expressed as OperationCallExps with different
operators, e.g., plus/minus, multiplication/division, size, etc.
Each expression type and each operator must be handled sep-

arately during the transformation. Alg. 2 presents examples
of handling different OCL expression types. The algorithm
takes a single OCL expression as input, queries instance
model information according to the OCL expression, in-
serts decision variables, and produces SMT expressions that
solvers can process. Examples of encoding OCL expressions
to SMT expressions are presented in Section V.

V. EXPERIMENT

In this section, we present a demonstration of exploring
the resource allocation design alternatives in SDVs to show
the feasibility of the proposed method. The experiment was
conducted with Eclipse IDE 2022-06 on a Windows 10 plat-
form with Intel i7-8568U CPU (four cores) and 40 GB RAM.
The meta-model was created using Eclipse Modeling Tools
4.24.0.20220609-1200. The OCL constraints and objectives
were defined as text-based files via OCL All-In-One SDK
6.17.1.v20220309-0840. Moreover, we utilized the OCL
visitor API and Java SE Development Kit 16.0.1 for the
implementation and execution of transformation algorithms.
The state-of-the-art SMT solver, Z3 (version 4.8.17), was
employed to solve the transformed SMT problem.

The SDV scenario is defined in an instance model based
on the meta-model in Fig. 2. Part of the instance model
is illustrated in Fig. 3. We specified a central computer
equipping one memory in size 40 GB, one CPU with 16
cores, one bus with two ports, and two devices. The power
consumption 𝑝 of each core was defined as a piecewise linear
function with the core usage 𝑢 as the input variable.

𝑝 =
{5𝑢 + 0.2 , 0 < 𝑢 ≤ 0.6
15𝑢 − 5.8 , 0.6 < 𝑢 ≤ 1

In addition, we modeled 10 VMs and 40 applications with
randomly generated requirements that need to be deployed
onto the central computer. Part of the application require-
ments is listed in Table I. In the instance model, properties
related to resource allocation (e.g., turboBoost in Cpu0, vm
in App0) remained unset, since the DSE process should
search for their solutions. To solve the resource allocation
problem in SDVs, different requirements (Section III) should
be considered at the same time. Thus, we prepared eleven
OCL expressions to describe those requirements:

∙ Each application should be assigned to one core. (Sec-
tion III-B.1)

∙ Each application should be assigned to one VM. (Sec-
tion III-B.1)

∙ The core performance should not be exceeded. (Sec-
tion III-B.1)

∙ Application should be mapped to VMs with the respec-
tive safety levels. (Section III-B.3, AppAndVmSafety)

∙ Co-location applications should be mapped on the same
VMs. (Section III-B.2, CoLocation)

∙ Separate-location applications should be mapped on
different VMs. (Section III-B.2, SeparateLocation)

∙ Cores assigned to safety-critical VMs should disable the
turbo boost feature. (Section III-B.4, VmSafetyConfig)



TABLE I: Partial application requirements. This table shows
the requirements of 8 out of 40 applications in the example
SDV system.

id ramSize coreSize safetyLevel colLocation sepLocation

0 120 0.1 QM (0) 5 -
1 559 1.0 ASIL A (1) - -
2 75 0.2 ASIL B (2) - -
3 250 0.6 ASIL C (3) - -
4 109 0.4 ASIL D (4) - -
5 222 0.4 QM (0) 0 6
6 328 0.5 QM (0) - 5
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

39 66 0.3 QM (0) - -

∙ VM should provide sufficient cores for applications.
(Section III-B.1)

∙ VM should provide sufficient memory for applications.
(Section III-B.1, VmRamSize)

∙ VM should provide sufficient ports for necessary de-
vices. (Section III-B.1)

∙ VM’s memory assignment should not exceed the limi-
tation of the hardware platform. (Section III-B.1)

Furthermore, we performed single-objective optimization for
each optimization goals presented in Section III to discover
different system configuration alternatives.

A. Automated model transformation
During DSE, the model-based information is converted

into SMT formulations. In the transformed SMT expressions,
each assertion (assert) is an instantiation of an abstract OCL
constraint against a specific model instance. It is a boolean-
valued function expressed as a logical proposition using the
variables. In the demonstration, 3632 assertions are generated
to describe the demonstrated scenario as an SMT problem. In
order to increase the readability of the SMT formulation, we
defined the name of each variable based on the corresponding
class/reference/attribute name. The prefix ref is used for the
specification of boolean variables representing the reference
relationship in the models. For instance, ref_app0_core0 is
a boolean variable representing the mapping relationship
between app0 and core0. vm0_ram defines the RAM size
of vm0. As all resources (e.g., resource amount, hardware
containment relationship, and VM numbers) are predefined
in the instance model, these values are presented as known
values in expressions. Most OCL operators can be translated
to corresponding SMT operators. In addition, we use the if-
then-else (ite) operator in SMT to convert boolean variables
to the numerical value 0 or 1. The following example
shows transformed assertions of the constraint VmRamSize
(introduced in Section III-B). The OCL constraint is ex-
pressed in the context of VM. Thus, ten SMT assertions are
created for ten VM instances. In the assertions, the memory
consumption of applications is given as values obtained from
the instance model.
(assert (<= (+
(* (ite ref_app0_vm0 1 0) 120) ...
(* (ite ref_app39_vm0 1 0) 66))

(* (ite (and true) 1 0) ramSize_vm0)))
...
(assert (<= (+
(* (ite ref_app0_vm9 1 0) 120) ...
(* (ite ref_app39_vm9 1 0) 66))
(* (ite (and true) 1 0) ramSize_vm9)))

Optimization objectives in SMT problems are formalized
via extended definition, where keywords minimize and max-
imize are specified. Each OCL objective will be transformed
into a single SMT objective. The following SMT expression
represents the objective of minimizing power consumption
(introduced in Section III-C). To better show the transformed
SMT expression, we use additional variables to replace part
of the expression, e.g., util0 represents the SMT formula
calculating the utilization of core0: (+ (* (ite ref_app0_core0
1 0) 0.1) ... (* (ite ref_app39_core0 1 0) 0.3)), in which 0.1
and 0.3 represent known core usages of app0 and app39.

(minimize (+
(ite (and (> util0 0.0) (<= util0 0.6))
(+ (* util0 5.0) 0.2) 0) ...
(ite (and (> util15 0.0) (<= util15 0.6))
(+ (* util15 5.0) 0.2) 0)
(ite (and (> util0 0.6) (<= util0 1.0))
(+ (* util0 15.0) -5.8) 0) ...
(ite (and (> util15 0.6) (<= util15 1.0))
(+ (* util15 15.0) -5.8) 0)))

B. DSE solutions

We utilized the Z3 solver to explore the design possibil-
ities of the SDV. The processing time varied based on the
optimization engines used and based on the complexity of
the problem. In our demonstration, we set the maximum
processing time of the Z3 solver to 60 min. By enabling
the WMax engine [19], the Z3 could return sub-optimal
solutions, if no optimal solution can be determined within the
time limit. After each DSE process, a solution instance model
containing a complete resource allocation decision (including
VM resource assignments, VM safety features, application
mapping) was generated automatically. It can be further
inspected by system engineers and used for deployment.

Fig. 5 shows system configurations optimized for different
objectives. The axes represent the processing time and three
system properties to be optimized: the power consumption,
the number of VMs, and the number of cores. Each area
illustrates a feasible resource allocation solution. Solution
minPower (blue) and minCore (cyan) are resource allocation
decisions optimized against power consumption and core
number. Compared with other results, solution minPower has
the least power consumption; solution minCore consumes
the least cores. However, they are considered sub-optimal
solutions since Z3 reaches the predefined calculation time
limit. In solution minVm (orange), the optimal solution with
the least VMs is presented. As the demonstration scenario
has fewer VM components than cores, the optimization
against objective minVM requires less processing time than
minPower and minCore. Solution default (green) shows one
of the feasible system configurations. Without any optimiza-
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Fig. 5: SDV design alternatives applying different opti-
mization objectives. Solution minPower, minCore, minVm
are system configurations optimized for power consumption,
core number, VM number respectively. Solution default is a
feasible solution without any optimization.

tion objective, Z3 was able to solve the resource allocation
problem within 2 min.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present an automated and model-based
DSE approach for resource allocation in SDVs. We aim to
accelerate the system design in SDVs through formal system
descriptions. The presented method provides the flexibility
of defining different systems, requirements, and objectives.
Thus, it can be seamlessly applied to different scenarios
derived from the development of SDVs. By introducing
the model-independent EMF2SMT interface, model-based
system information, including constraints and optimization
goals, can be transformed into optimization problems in
the SMT-lib format. Design solutions are generated auto-
matically via state-of-the-art solvers and reflected in the
models. The feasibility of this approach is illustrated through
a complex SDV scenario.

This work builds upon widely-accepted MBSE standards
MOF and OCL. Via the formal constraint language OCL,
users are able to describe resource allocation problems with-
out any expertise in the specific problem formulation. It can
be easily extended with additional engineering steps (e.g.,
model validation via Eclipse OCL plugin). Furthermore, the
presented DSE process is fully automated; therefore, it can
be placed on the cloud or the vehicle itself for user-triggered
software installations and updates.

As a future work, we plan to further simplify this process
by combining natural language processing (NLP) techniques
such that OCL constraints can be generated from require-
ments in natural language. In addition, constraint program-
ming (CP) or ILP could also be utilized to express resource

allocation problems. We plan to investigate and compare the
performance of CP and ILP vs. SMT.
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