
 

Technische Universität München 

TUM School of Computation, Information and Technology 

 

 

 

 

Computer-Aided-Diagnosis for Laryngeal Lesion Assessment: A 

Feature Extraction and Machine Learning Approach Applied on 

Enhanced Contact Endoscopy Images 

 

 
Nazila Esmaeili 

 

 

 

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology 

der Technischen Universität München zur Erlangung einer 

                                       Doktorin der Naturwissenschaften (Dr. rer. nat.) 

genehmigten Dissertation. 

 

 

Vorsitz:                     Prof. Dr. Rüdiger Westermann  

 

Prüfende der Dissertation: 

 

1.     Prof. Dr. Nassir Navab  

2.     Prof. Dr. Michael Friebe  

3.     Prof. Dr. Felix Nensa 

 

Die Dissertation wurde am 21.06.2023 bei der Technischen Universität München eingereicht 

und durch die TUM School of Computation, Information and Technology am 02.09.2024 

angenommen. 



 

II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

III 

 

Abstract 

Over the last decade, advances in medical imaging technologies have led to the development of 

several image-based diagnostic techniques in clinical practice. These techniques aim to provide 

clinicians with high-quality, accurate, and detailed views of the targeted tissue or organ and 

provide patients with efficient care. However, it is found that there are new challenges related 

to analyzing and interpreting the presented information in the images, especially for less-

experienced clinicians. Recently, numerous Computer-Aided-Diagnosis (CAD) systems have 

been introduced to tackle such issues and support clinicians in various diagnostic fields.  

When it comes to laryngeal lesion diagnosis, Otolaryngologists utilize endoscopic imaging 

modalities to examine the status of the vocal fold before performing any surgical biopsy. This 

examination can provide them with noticeable information, such as the changes in morphology 

and distribution of sub-epithelial blood vessels in the vocal fold associated with the evolution 

of benign or malignant pathologies. Otolaryngologists can use magnified and enhanced 

endoscopic imaging techniques like Contact Endoscopy (CE) combined with Narrow Band 

Imaging (NBI) to get more detailed visualization of these vascular architectures. Such a 

modality allows them to perform a detailed examination of vascular changes that can indicate 

various laryngeal pathologies and reduce the chance of applying surgical biopsy. However, in 

the visual assessment of CE-NBI images, the similarity and complexity between the vascular 

patterns of benign and malignant pathologies raise the issue of subjective interpretation during 

diagnosis, which requires extensive learning from Otolaryngologists.   

This thesis presents the development and validation of different feature extraction and Machine 

Learning (ML) based techniques for laryngeal lesion assessment using CE-NBI images. The 

methods are designed into two pipelines according to the requirements studied throughout a 

clinical evaluation with Otolaryngologists, where the subjective analysis of CE-NBI images 

was assessed and confirmed. In pipeline 1, handcrafted features are combined with ML 

classifiers to evaluate the visually detectable information on this uncharted imaging modality, 

including the correlation between laryngeal lesions and geometrical characteristics of vascular 

patterns, as well as textural attributes. The strategy in pipeline 2 involves the development of 

Deep Learning (DL) based solutions where the entire image is taken as the source of 

information. These approaches incorporate different architectures and categorize laryngeal 

lesions on CE-NBI images. 

As data plays a crucial role in the procedure, clinical data acquisition and collection were 

conducted continuously throughout the development process to generate a data set of CE-NBI 

images. Following several classification scenarios on this data set, all methods demonstrated 

the importance and value of the investigated source of information in CE-NBI images for 

diagnosing laryngeal lesions. Therefore, applying these methods in a CAD system reduces the 

chance of subjective interpretation that causes the necessity of performing the surgical biopsy 

in clinical practice. With that, this thesis is positioned in the research area of CAD systems that 

offers a series of steps toward applying magnified imaging and Optical Biopsy for a more 

accurate and reliable minimally invasive larynx lesion assessment. 
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Zusammenfassung 

Fortschritte in der medizinischen Bildgebung haben im vergangenen Jahrzehnt zur Entwicklung 

mehrerer bildgebungsbasierter Diagnosetechniken beigetragen. Diese Techniken zielen darauf 

ab, Ärzten hochqualitative, hochaufgelöste und detaillierte Sicht auf das betroffene Gewebe 

oder Organ bereitzustellen um somit eine effektive Patientenversorgung zu erzielen. 

Insbesondere weniger Erfahrene Ärzte sehen sich dennoch Herausforderungen bei der Analyse 

und Interpretation der dargestellten Information in den Bildern gegenüber. Zahlreiche 

computergestützte Diagnosesysteme (CAD, engl.: Computer-Aided-Diagnosis) wurden jüngst 

vorgestellt um diese Problematik anzugehen und die Ärzte in unterschiedlichen diagnostischen 

Feldern zu unterstützen. 

Im Zusammenhang mit der Diagnose von Kehlkopfläsionen, nutzen Otolaryngologen 

endoskopische Bildgebungsverfahren um den Zustand der Stimmlippen zu untersuchen, bevor 

eine chirurgische Biopsie unternommen wird. Diese Untersuchung liefert wertvolle 

Informationen über Morphologische Änderungen und die Anordnung von subepithelialen 

Blutgefäßen in den Stimmlippen, die mit der Entstehung gut- oder bösartiger Pathologien 

einhergehen. Otolaryngologen können von Bildgebungtechniken, wie Kontaktendoskopie (KE) 

kombiniert mit Narow Band Imaging (NBI, dt. Schmalband-Bildgebung) Gebrauch machen, 

die durch eine vergrößerte und verbesserte Darstellung eine detailliertere Visualisierung dieser 

vaskulären Architekturen ermöglichen. Dieses Verfahren erlaubt es eine eingehende 

Untersuchung vaskulärer Veränderungen durzuführen, die unterschiedliche Pathologien der 

Stimmlippen indizieren können und so den Bedarf nach einer chirurgischen Biopsie reduzieren 

. Dennoch besteht bei der visuellen Bewertung, durch die Ähnlichkeit und Komplexität der 

vaskulären Muster von KE-NBI Abbildungen, die Problematik einer subjektiven Interpretation 

während der Diagnose, was umfangreiches Lernen von den Otolayryngologists erfordert. 

In dieser Arbeit wird die Entwicklung und Validierung unterschiedlicher, auf 

Merkmalsextraktion und maschinellem Lernen basierender, Techniken zur Bewertung von 

Kehlkopfläsionen in KE-NBI vorgestellt. Die Methoden sind in zwei Vorgehensträngen 

entsprechend der vorab eruierten Anforderungen konzipiert. Diese gehen aus einer klinischen 

Auswertung mit Otolaryngologen hervor, in der die subjektive Analyse von KE-NBI-Bildern 

ausgewertet und bestätigt wurde. Im Vorgehensstrang 1, werden manuell konstruierte 

Merkmale mit auf maschinellem Lernen (ML) basierenden Klassifikatoren kombiniert um die 

visuell detektierbaren Informationen, einschließlich der Korrelation zwischen 

Kehlkopfläsionen und geometrischen Charakteristika der vaskulären Muster, sowie 

Textureigenschaften, zu evaluieren. Die Strategie im Vorgehensstrang 2 beinhaltet die 

Entwicklung einer Deep Learning (DL) basierten Lösung bei der das Bild ganzheitlich als 

Informationsquelle eingesetzt wird. Dieser Ansatz umfasst unterschiedliche Architekturen und 

kategorisiert Kehlkopfläsionen auf KE-NBI Bildern. 

Da Daten eine essentielle Rolle bei diesem Diagnoseverfahren einnehmen, wurden im 

Entwicklungsprozess kontinuierlich klinische Daten akquiriert und gesammelt um ein Datenset 

der KE-NBI-Bilder zusammenzustellen. In mehreren Klassifikationsszenarien, die auf dieses 
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Datenset angewandt wurden, zeigten alle Methoden die Relevanz und den Mehrwert der 

untersuchten Informationsquellen in KE-NBI-Bildern für die Diagnose von Kehlkopfläsionen 

auf.  Daraus geht hervor, dass durch die Anwendung dieser Methoden in einem CAD-System 

die Wahrscheinlichkeit einer subjektiven Interpretation und die damit einhergehende 

Notwendigkeit einer chirurgischen Biopsie gesenkt werden. Damit ist diese Arbeit im 

Forschungsbereich von CAD-Systemen angesiedelt und stellt eine Reihe von Maßnahmen für 

eine erweiterte Bildgebung und optische Biopsie bereit um ein akkurateres und verlässliches 

minimalinvasives Bewerten von Kehlkopfläsionen zu ermöglichen. 
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Chapter 1 – Introduction  

 

1.1 Laryngeal lesions – from origin to clinical pains 

The larynx - commonly referred to as the voice box - is a cartilaginous segment in 

the respiratory tract placed at the anterior aspect of the neck. The internal space of 

the larynx is divided into three main anatomical parts, as shown in Figure 1.1: 

1. The supraglottic region forms an oval cavity and comprises five separate 

subsites, including the suprahyoid epiglottis, infrahyoid epiglottis, false vocal 

folds, arytenoids, and aryepiglottic folds. 

2. The Glottis includes the true vocal folds themselves and the space between them 

known as the Rima Glottidis. The true vocal folds are made up of a layer of 

stratified squamous epithelium overlying the lamina propria, a gel-filled space that 

is comprised of a superficial, middle, and deep layer. 

3. The subglottic region is the space below the glottis and extends from a horizontal 

plane to the end of the cricoid cartilage [1, 2].  

The larynx is responsible for three primary physiological functions, including 

breathing through the Rima Glottidis, vibration to allow for speech, and airway 

protection during swallowing. However, this multi-function organ can be affected 

by a wide range of conditions that influence its performance. Among all the causes 

of laryngeal malfunction, such as infection, airway obstruction, neurologic 

disorders, and surgery, the appearance of a lesion turns the red light on and requires 

more investigation [3]. 

 

 
Figure 1.1. Anatomical structure of larynx in the head and neck region. 
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1.1.1 What does refer to laryngeal lesion? 

Laryngeal lesion indicates a form of abnormal tissue growth in any epithelial and 

nonepithelial structures of the larynx. Laryngeal tumors include a broad spectrum 

of histopathologies localized in different regions in the larynx that can result into 

a certain form of organ malfunction. Several classifications based on the 

geometrical and histopathological attributes of the laryngeal lesions were proposed 

to structure this large scope of definitions. Nevertheless, the classification of World 

Health Organization (WHO) turns out to be the most comprehensive division that 

is mainly recommended for clinical practice. According to this classification, 

laryngeal lesions are divided into two main categories known as benign and 

malignant. Figure 1.2 represents an overview of this classification which also 

indicates the behavior of each histopathology towards malignancy [4, 5].  

In this classification, the benign lesion refers to any mass of tissue in the larynx 

that does not present characteristics of malignancies. Many laryngeal 

histopathologies are classified into benign categories, including Cyst, Polyp, 

Reinke’s edema, Hemangioma, Nodule, Granuloma, Amyloidosis, Papillomatosis, 

Hyperplasia, Hyperkeratosis, and Low-Grade Dysplasia. On the other hand, the 

malignant laryngeal lesions include a form of malignancy originating from the 

larynx, where the cellular changes can lead to laryngeal precursor lesions, such as 

High-Grade Dysplasia and Carcinoma in Situ. If these conditions are not treated, 

they can eventually lead to an invasive stage known as Larynx Cancer (LC). 

Squamous Cell Carcinoma (SCC) is the most common histopathology variant of 

LC derived from the mucosal epithelium and accounts for 85-95% of all malignant 

tumors of the larynx. According to the studies, LC is the second most common 

cancer in the head and neck region, where almost two-thirds (75-80%) of these 

lesions are confined to the Glottic area. In addition, Low-Grade Dysplasia is 

usually categorized as benign lesions, while High-Grade Dysplasia and Carcinoma 

in Situ are considered malignant cases [6–8].  

 

 
Figure 1.2. The selection of common laryngeal histopathologies according to WHO 

classification. The level of severity increases from left to right. 
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1.1.2 What can cause laryngeal lesion development? 

LC is the most invasive type of lesion in larynx that requires immediate attention. 

There are several well-known risk factors related to the advancement of LC; 

however, all these risks cannot be delineated as the factors leading to the 

development of other benign laryngeal lesions. The reason behind this fact relies 

on the classification of risk factors of LC: 

1.1.2.1 Epidemiological risk factors: The risk factors listed in this category can 

be leading causes for the occurrence of all types of laryngeal lesions. Chronic 

tobacco use and excessive alcohol ingestion are the more critical risks that can 

increase the chance of cancer by up to 6-fold to 30-fold. On the other hand, this 

category also includes occupational causes as other risk factors, including asbestos 

exposure, ionizing radiation, and ingestion of aerosols containing sulfuric acid [4, 

8]. 

1.1.2.2 Histological precursor lesions risk factors: The risk factors in this 

category are defined explicitly as one of the critical causes for malignant laryngeal 

lesions, including LC. Accordingly, precursor lesions refer to a range of laryngeal 

pathologies with a high and variable chance of transforming into a malignancy 

from 1% to 40%. It is reported that around 90% of malignant tumors in the larynx 

are raised from this type of lesions. From the clinical point of view, although these 

pathologies can appear with benign characteristics, they should be considered as a 

group of risk factors for LC and must be monitored closely. Laryngeal 

Leukoplakia, Papillomatosis, and laryngeal Dysplasia, mostly found on the vocal 

fold in the Glottic region, are the primary concerns. Leukoplakia is a descriptive 

term that refers to a white plaque on the vocal fold and can correspond to various 

histopathological diagnoses from benign Keratosis to Dysplasia or LC. The 

spectrum of these cellular changes, from Low- to High-Grade Dysplasia, can 

expand to Carcinoma in Situ and finally develop into invasive LC. Therefore, the 

close observation of precursor lesions plays an essential role in the early detection 

of laryngeal malignancies [9, 10].  

1.1.3 Laryngeal lesion diagnosis: how does it work? 

All forms of laryngeal lesions can manifest with similar symptoms; however, 

hoarseness and dysphagia (difficulty in swallowing) are the most frequent 

symptoms in the presence of laryngeal tumors. According to the guidelines, all 

patients with any suspicious signs of these symptoms lasting for 3 to 4 weeks need 

to visit an Otolaryngologist and undergo two types of examination to achieve a 

precise diagnosis. The ideal is to combine these examinations with the patient's 

medical history to reduce the time of the diagnosis process and follow a treatment 

plan [4].  
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1.1.3.1 Clinical examination: In this stage, the patient will go through a full Ear, 

Nose, and Throat (ENT) examination. As the laryngeal mucosa is not accessible 

for a direct assessment, visible tissue changes in the larynx cannot be directly 

examined by Otolaryngologists. This problem is solved in two ways in the standard 

and conventional clinical examination: 

1. The first solution is the indirect examination of the larynx called “indirect 

laryngoscopy,” which is performed by placing a small mirror in the back of 

the throat and angling it down towards the larynx (Figure 1.3-a). Indirect 

laryngoscopy usually is done in the doctor’s office to evaluate mucosal 

changes in the larynx, observe the Glottis with particular attention to 

involvement and mobility of vocal folds, and assess the possible invasions 

[11].  

2. The second solution is called “direct laryngoscopy,” where 

Otolaryngologist inserts a blade shape instrument called a laryngoscope via 

the mouth and looks through it to examine the larynx (Figure 1.3-b). This 

procedure is usually conducted without anesthesia; however, the gag reflex 

can cause difficulties during the examination. Therefore, this procedure can 

also be done in the operating room under general anesthesia in the inpatient 

or outpatient centers. This way, the overall anatomical structures and 

mucosal changes can be examined with a direct view of the larynx [4].  

The application of medical imaging in laryngeal lesion diagnosis is the 

complementary approach to these two solutions. Nowadays, medical imaging is 

the standard element of the clinical examination process of laryngeal lesions and 

is powerfully integrated into indirect and direct laryngoscopy procedures. A more 

detailed discussion of this topic is provided in Section 1.2. 

 

 
Figure 1.3. Clinical examination. (a): Indirect mirror laryngoscopy, and (b): Direct 

laryngoscopy. 
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1.1.3.2 Histopathological examination: The clinical examination offers a 

complete set of information regarding the larynx's anatomical characteristics and 

functional attributes; however, it cannot provide any information on the level of 

cellular changes of the suspicious tissue. As a rule, any mucosal changes in the 

larynx persisting for longer than 3 to 4 weeks are suspicious of malignancy and 

must be clarified. Hence, surgical biopsy followed by histopathological 

examination is the golden standard for a definitive diagnosis of laryngeal lesions. 

Nowadays, the procedure is combined with direct laryngoscopy (direct 

laryngoscopy biopsy), meaning that the immediate investigation is carried out 

before the tissue sample is taken. The surgical biopsy is usually performed under 

general anesthesia in the operation room of the hospitals [3].  

1.1.4 What option is available for laryngeal lesion treatment? 

A particular treatment method is often determined by lesion anatomy and 

resectability, perceived functional outcomes, patient preference, and departmental 

experience. Additionally, the type of lesion and level of invasiveness of the tumor 

can lead to different standard treatment strategies. In this regard, surgical 

techniques used to remove the lesion fall into abroad class, where all the guidelines 

suggest conducting the operations in the form of Minimally Invasive Surgery 

(MIS) such as transoral laryngoscopy as much as possible [12–14].  

 

1.1.4.1 Benign laryngeal lesions: The benign lesions can be managed with one or 

a combination of several strategies, including conservative medical treatment, 

speech therapy, and surgical procedures. However, the symptom-free outcome 

may not be reachable in all the cases. It is recommended to set up some follow-up 

sessions to observe the patient’s conditions and perform the surgery when 

necessary [6].  

1.1.4.2 Precursor laryngeal lesions: Surgical excision combined with the follow-

up sessions to observe the possible recurrence of the tumor is the primary treatment 

strategy to manage precursor laryngeal lesions. Laryngeal Dysplasia creates the 

most challenges for Otolaryngologists in this category because this histopathology 

shows a wide range of cellular changes that can be classified as benign or 

malignant. Low- to High-Grade Dysplasia treatment starts usually with surgical 

tumor removal. After the surgery, patients with Low-Grade Dysplasia have a long 

time between follow-up appointments, whereas patients with High-Grade 

Dysplasia have more frequent follow-up appointments during a more extended 

period [15].  

1.1.4.3 Larynx cancer: In the case of LC, cancer staging is the preliminary step to 

prepare treatment planning. Early LC (T1-T2a, Stage I and II) can be managed via 

single modality treatment. The application of surgery as an introductory treatment 

approach gives the chance to reserve radiotherapy as a second-line option if the 
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tumor recurs. The management of moderately advanced LC (T2b-T3, stage II and 

IV M0) focuses on laryngeal preservation therapy as guidelines recommend it. This 

treatment includes the application of radiotherapy and chemotherapy to avoid 

significant lifestyle change and long-term morbidity associated with a 

laryngectomy. For the advanced stage LC, many centers are moving from 

conventional surgical treatment to therapeutic approaches that hopefully preserve 

the organ's function and survival with better quality of life for the patient. However, 

the high invasion rate in this stage means many patients will not be suitable for 

laryngeal preservation treatment and will require surgery in the form of a total 

laryngectomy followed by radiotherapy [4, 16].  

1.1.5 What are the potential challenges in laryngeal lesion assessment?  

For the past three decades, LC's incidence and prevalence have increased by 12%-

24%. Meanwhile, the LC 5-year survival rate did not improve and faced a decrease 

of 3%. In 2018, Germany reported 3,310 new LC cases, including 1400 deaths, 

with the median age of 66 for women and 67 for men, which is earlier than usual 

for cancer overall. One of the main reasons behind this issue could be the late 

diagnosis of laryngeal lesions that happens in advanced stages. Although the 

treatment in the early stages is favorable, over 75% of LC cases are diagnosed at 

stage III or stage IV. On the other hand, the treatment in advanced stages is too 

aggressive and reduces the patient's social abilities, leading to decreased quality of 

life in various parts [7, 8, 17].  

A significant portion of malignant laryngeal cases develops from the precursor 

lesions, classifying LC in a group of cancers suitable for early detection. Recent 

studies show that the close monitoring of these lesions and scheduled follow-up 

sessions after their surgical treatment can increase the chance of early detection of 

malignant changes and improve their prognosis. Furthermore, it is recommended 

to include repeated histopathological examination during the monitoring process 

for a more precise assessment of laryngeal tissue.  

Screening programs in high-risk populations can be another way to reach the early 

detection of laryngeal lesions. Nevertheless, in many countries, including 

Germany, the health insurance screening program does not involve examining LC's 

risk groups. Additionally, there is a considerable lack of evidence regarding this 

kind of program's efficiency in reducing laryngeal lesions' incidence and mortality, 

making it challenging to convince health insurances to include it in their routine 

programs.  

The key message behind all these evaluations and investigations points out the 

significant role of prompt diagnosis of laryngeal lesions in reaching optimum organ 

preservation. Now a question may arise: what are the main concerns during the 

conventional diagnostic procedure that can be an obstacle to early detection? 
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The first concern derives from the clinical examination procedure. The 

conventional indirect and direct laryngoscopy without the application of medical 

imaging could not be accurate enough in diverse conditions. Mirror laryngoscopy 

could be challenging for both the examiner and the patient and could provide only 

a limited view of the larynx and proximal trachea. Additionally, the direct 

laryngoscopy suffered from a lack of magnified view of the larynx, as the examiner 

looks through the laryngoscope with the naked eye. 

The second concern is related to the histopathological examination. Although 

surgical biopsy remains the gold standard to find the final diagnosis of laryngeal 

lesions, it is an aggressive procedure for the patient and may cause laryngeal 

dysfunction. One issue with this procedure can involve the difficult differentiation 

of cancerous lesions after treatment due to changes in the characteristics of the 

tissue. Moreover, there is a chance of an uncertain diagnosis on a single biopsy that 

requires a second operation to collect more specimens. 

Therefore, there is an essential need to instruct a less invasive diagnostic method 

in clinical practice that can provide sensitivity and specificity close to 

histopathology examination. The application of medical imaging for diagnosing 

and treating laryngeal lesions extended the opportunities to develop a minimally 

invasive technique for a more practical examination of the larynx. 
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1.2 Medical imaging – beginning of an era in laryngeal lesion 

assessment 

Throughout the past century, medical imaging has faced significant advances. This 

development has allowed clinicians to see a range of body structures and functions 

to diagnose and manage different diseases and pathological conditions.  

The use of medical imaging in diagnosing and treating laryngeal lesions has been 

integrated into several national guidelines, including in Germany. Due to this 

organ's particular location and anatomy, only specific imaging modalities have 

been introduced into the standard process of laryngeal lesion assessment. The 

surgical microscope was the first imaging tool used during the laryngoscopy 

procedure in 1960. A few years later, endoscopy imaging started to be integrated 

into the clinical and histopathological examination of the larynx. The application 

of this technique resulted in the generation of multiple endoscopy-based 

procedures, with the primary objective of providing better visualization of the 

examined region for the clinicians, along with more optimum care for the patient. 

From the 1980s, other imaging modalities such as Computed Tomography (CT), 

Magnetic Resonance Imaging (MRI), and Ultrasound (US) emerged to detect 

pathological and metastatic malignancies of advanced LC stages in the laryngeal 

region [18–20].  

All these advances resulted in micro-laryngoscopy, endoscopic laryngoscopy, and 

laryngeal CT/MRI imaging to assess laryngeal mucosa and vocal fold's function 

more accurately and improve the clinical and histopathological examination of the 

laryngeal lesions. 

1.2.1 Endoscopy and clinical examination of laryngeal lesions 

Among all the available imaging modalities, endoscopy is the most popular and 

applicable technique to examine the characteristics of laryngeal pathologies. 

Endoscopy is an optical imaging technique that provides an inspection of the inner 

cavities of the human body. Several endoscopy systems are designed and built to 

provide digital imaging from the examined region, but the general structure of all 

systems includes four main components: an endoscope, a camera, a video 

processing unit, and a light source [21].  

Nowadays, the clinical examination for the laryngeal lesion assessment should 

include endoscopic evaluation of the larynx in phonation and respiration position 

to evaluate discrete mucosa changes and functional aspects, such as vocal fold 

morphology. The great advantage of this application goes with precursor and 

cancerous lesions assessment, as the tissue changes can be visualized more 

accurately in the framework of endoscopic clinical examination. In the case of 

suspicious findings, more investigation, such as histopathological evaluation, 
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should be performed, where the specimen can be taken under microscopic 

guidance, known as micro-laryngoscopy [4].  

Different endoscopy-based methods were introduced based on the components of 

the endoscopy system to assess laryngeal structure and function. It is conveyed that 

the combination of these options arrives in better performance that meets the 

clinicians’ need. However, the application of them mainly relies on the facilities 

that the doctor’s office and hospitals can offer [22].  

1.2.2 Rigid versus flexible endoscopes 

The rigid endoscope (RE) was one of the first tools integrated into the clinical 

examination of the laryngeal lesion. Transoral Rigid Laryngoscopy (TRL) is a 

minimally invasive procedure that operates along with the same principles as 

indirect laryngoscopy, where a 70° or 90° rigid endoscope is inserted into the 

larynx cavity via the mouth. Nowadays, the rigid endoscope application is also 

integrated into direct laryngoscopy usually performed under general anesthesia to 

provide a more detailed visualization of the examined area in the larynx. These 

types of rigid endoscope are longer and have various diameters and viewing angles 

[23].  

Many patients with malignancies in the laryngeal region experience gag reflex, 

which creates challenges during TRL clinical examination. In this condition, the 

transnasal use of flexible endoscope (FE) can offer better visualization for 

laryngeal lesion assessment. Transnasal Flexible Laryngoscopy (TFL) is also a 

minimally invasive procedure where the flexible endoscope with a diameter of less 

than 4 mm is inserted through one nostril and is guided to the larynx via the lower 

nasal passage and pharynx [24].  

In clinical examinations, TFL is widely available for the primary assessment of the 

larynx as it provides more tolerability for patients than TRL. However, this story 

may change when we focus on evaluating precursor and cancerous laryngeal 

lesions. Although TFL is a fast and valuable tool for screening and follow-up 

examination of laryngeal lesions, controlling the position of the flexible endoscope 

tip and maintaining the symmetry and orientation of the endoscope's image is more 

complex than the rigid endoscope. This issue can result in low-quality visualization 

of mucosa change, wrong tissue differentiation, and an inaccurate assessment. 

Moreover, the FEs are more sensitive to heat and chemical materials of the typical 

sterilization process, making the sterilization procedure time-consuming. 

Nevertheless, the new set of flexible endoscopes could solve this issue by 

providing immediate sterilization at the examination site, reducing the number of 

endoscopes required for routine TFL in a day [24–26]. The type of endoscope is 

one of many criteria of the endoscopy system that should be considered in the 

diagnosing process, as the light source plays a more critical role. 
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1.2.3 Enhanced endoscopy and laryngeal lesion mucosal vascularization 

The endoscopic laryngoscopy can be performed under different light source 

conditions. White light is the conventional light source in endoscopy systems, 

providing sufficient illumination for the inspected path and cavity. However, the 

actual Wight Light Endoscopy (WLE) imaging has certain limitations, as it cannot 

precisely visualize the target region to distinguish between epithelial differences. 

In this case, the pre-operative clinical examination is not always in agreement with 

the result of histopathological examination and precursor and cancerous lesions 

might be overlooked [27, 28].  

Considering these issues, a new area of endoscopy imaging complementary to 

WLE emerged, known as Biologic Endoscopy techniques, to provide a deeper 

insight into the structure of a target lesion and improve the visualization of the 

tumors’ characteristics that are not visible in normal WLE. Enhanced endoscopy 

imaging is one of these techniques that became the most advanced modalities for 

better visualization of the laryngeal mucosal changes, tumor margins, and 

specifically vascularization networks. When laryngeal tissue begins with 

pathological changes, sub-epithelial vessels of the mucosa lose their typical 

architecture and tend to show more irregularities. This type of change may form 

intraepithelial papillary capillary loops (IPCL) around or inside the lesion, which 

is a critical indicator of the development of precursor and malignant tumors. 

Enhanced-endoscopy techniques can visualize this variation of vascular structures 

in real-time as a piece of complementary information during the clinical 

examination.  

Narrow Band Imaging (NBI) [29], Autofluorescence Imaging [30], Hyperspectral 

Imaging [31], Storz Professional Image Enhancement System (SPIES) [32], and i-

SCAN System [33] are the enhancements tools used in endoscopic laryngoscopy. 

However, the first place usually goes to NBI application due to its availability and 

efficiency in diagnosing. Figure 1.4 represents an example of each enhancement 

technique.  

NBI is the most well-known and applicable type of enhanced-endoscopy technique 

in assessing overall head and neck lesions, especially laryngeal pathologies. The 

technology is provided by Olympus Corporation, Tokyo, Japan, and is 

recommended by all the guidelines to be used with rigid or flexible endoscopes 

during the clinical examination of laryngeal lesions, in the case of availability [4]. 

NBI mode is designed based on the principal correlation between the depth of light 

penetration and light wavelength, where the longer wavelength results in deeper 

penetration. With a broadband white light from a xenon or light emitting diode 

(LED) lamp, an optical NBI filter can allow the passage of a narrowband blue light 

centered at a range of 400–430 nm, parallel to a narrowband green light centered 

at a range of 525–555 nm [29]. 
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Figure 1.4. White light versus enhanced endoscopy. (a): WLE [26], (b): NBI [26], (c): SPIES 

Imaging [32], (d): Autofluorescence Imaging [30], (e): i-SCAN Imaging [33], and (f): 

Hyperspectral Imaging [34]. 

The narrowband blue light can penetrate through the normal mucosa and the sub-

epithelial tissue. In contrast, narrowband green light can penetrate deeper into the 

tissue and depict vessels in the submucosa [29]. With the use of NBI filter, the 

evaluation of mucosal vascularization has become an added step into the clinical 

examination to move toward Biologic Endoscopy. Multiple classification systems 

were proposed to guide the examiner, where the European Laryngological Society 

(ELS) guideline is more straightforward and applicable to correlate vascular 

changes to type of laryngeal lesions. This classification describes benign 

vascularization as longitudinal vascular changes (LVC) with increase in the 

number and density of blood vessels along with changes in direction, while 

malignant lesions are characterized by their newly formed perpendicular vascular 

changes (PVC), identified as dot-like vessel or IPCLs. However, the vascular 

variations of some precursor lesions, such as Papillomatosis can create significant 

challenges on visual differentiation of lesion as they usually do not follow the 

pattern classification in the guidelines [35–37].  

1.2.4 Medical imaging in advanced larynx cancer 

Endoscopy is the first imaging option for performing the clinical examination 

aiming to provide a better perception of laryngeal lesions characteristics. However, 

due to the necessity of further investigation, such as histopathological examination 

and metastasis assessments, other imaging modalities have to be involved in 

laryngeal lesions assessment to overcome the limitation of endoscopy. 

For decades, micro-laryngoscopy has been the leading approach to guide the 

process of surgical biopsy by providing deepened and stable visualization of the 

target lesion. Moreover, surgeons have used micro-laryngoscopy as the primary 
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visualization tool during minimally invasive surgical treatments of laryngeal 

lesions to resect the tumor with the optimum margin [20].  

In the case of benign and malignant lesions as well as early-stage LC, the tumor 

mainly has a small size and is located at the superficial layer of the mucosa. 

Therefore, endoscopic imaging can provide a good visualization of the lesion and 

surrounding tissue. Nevertheless, the application of CT or MRI is crucial in patients 

with advanced stage LC. Both imaging techniques aim to evaluate the involvement 

of deep structures such as cartilages or lymph nodes. Although MRI can provide 

better visualization of the soft tissue, CT is the most available tool to evaluate the 

status of metastasis. CT is not affected by the motion artifacts, and its cross-

sectional imaging allows evaluation of the intrinsic and deep soft tissues of the 

larynx as well as the cartilaginous skeleton [38–40].  

1.2.5 What can go wrong with medical imaging? 

Figure 1.5 illustrates the current laryngeal lesions assessment process in doctor’s 

office and clinical settings. In the first step, a patient with specific symptoms visits 

an Otolaryngologist. As most doctors' offices are not equipped with high-tech 

endoscopy systems or cannot afford one, indirect mirror laryngoscopy is the best 

examination option. However, in the case of any suspicious finding, the 

Otolaryngologist must refer the patient to a more equipped center for more detailed 

investigations. In this step, the patient will undergo clinical examination supported 

by different medical imaging techniques, where surgical biopsy for 

histopathological evaluation of suspected lesions remains the primary diagnostic 

tool. During this step, most Otolaryngologists have a primary diagnosis of the type 

of lesions and usually decide to proceed with surgical tumor resection to save 

treatment time. This strategy mainly works for benign and early-stage LC cases as 

the lesions are minor and superficial. In this case, the biopsy outcome will guide 

the Otolaryngologists in planning the subsequent follow-up session and treatment 

procedures.  

Now, one question may arise: why imaging, particularly endoscopy, has not 

improved the early detection of laryngeal lesions, leading to better preservation of 

the larynx and a reduction in the number of biopsies? 

The application of imaging techniques in each phase of clinical examination may 

deviate according to the facilities of the doctor's offices or hospitals as well as the 

preferences of the examiner. Nevertheless, endoscopy is a critical element of 

everyday clinical examination due to its potential to provide a better visualization 

of the examined region. The evidence in the literature indicates the notable 

improvements offered by endoscopy in tissue differentiation that was missing in 

the conventional indirect and direct laryngoscopy. The main proof for this fact is 

the actual use of this imaging modality in the current diagnosis process [26, 29].  
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Besides the advantages, introducing a new imaging technique into a routine and 

standard clinical procedure may raise some challenges. The first concern is related 

to the learning process. The Otolaryngologist must learn how to operate the 

imaging system and, more importantly, interpret the newly acquired data with 

existing information. This issue can be a significant concern for younger doctors 

due to their level of experience. Therefore, they usually demand more extended 

supervision and learning [41, 42]. 

The next issue is associated explicitly with Biologic Endoscopy, a new vision that 

has been studied during the last decade. Among all the proposed methods in this 

field, only enhanced endoscopy is integrated into routine clinical procedures and 

is used by multiple hospitals in Europe. Several studies pointed out the prominent 

advantage of the NBI over WLE in better differentiation of mucosa changes in the 

larynx, that can be essential in variation of laryngeal lesions. NBI shows more 

precise performance in distinguishing mucosal changes of laryngeal precursor 

lesions, especially for Dysplasia, and early-stage malignant lesions. However, 

despite the improved accuracy and sensitivity, the specificity of using NBI versus 

WLE is not significantly higher in the differentiation of benign and malignant 

lesions [28, 37, 43–45]. One reason behind this concern is associated with the 

laryngeal tissue changes that human eyes may not recognize. These critical 

transitions occur in the epithelial layer via the presence of leukoplakia condition 

and in mucosal vascular structures. Although several guidance tools were proposed 

to help Otolaryngologists identify these indicators in enhanced endoscopy and 

interpret them for the diagnosis process, these mechanisms are considered 

complicated and time-consuming for clinical practice use and again raise the issue 

of the learning process [35, 46, 47].  

All these factors work together to make surgical biopsy followed by 

histopathological examination the safest diagnosis option, where endoscopic 

laryngoscopy with the assessment of vocal fold function, micro-laryngoscopy, and 

CT/ MRI remain the cornerstones of the diagnostic workup. At this moment, 

computer-based solutions started entering clinical research settings to assist 

Otolaryngologists during the diagnosis process. 
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Figure 1.5. Laryngeal lesion assessment process in current clinical settings.
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1.3 Computer-based technology – game changer in laryngeal lesion 

assessment  

Along with the advantages of digitalization of the medical imaging modalities, 

imaging data complexity has introduced several challenges to the diagnostic and 

treatment process. Nevertheless, the availability of medical imaging big data has 

formed new opportunities for Medical Image Analysis (MIA). In this regard, 

Medical Image Computing (MIC) – an intradisciplinary branch of scientific 

computing – has emerged to develop (semi-)automated evaluation strategies for 

MIA and cope with the complexity of imaging data. Recently, the tremendous 

advances in MIC have been dramatically impacted by a field of data science – 

known as Machine Learning (ML) - that uses computers to perform tasks via 

building data-driven mathematical model-based strategies that optimize task 

performance.  

ML, the most evolved form of Artificial Intelligence (AI) in medicine, has 

presented different types of these strategies for various MIA tasks, including image 

segmentation, image registration, image visualization and image classification. 

The supervised, unsupervised, semi-supervised, reinforcement, and evolutionary 

learning methods are the main categories of ML algorithms, while Deep Learning 

(DL) is the most advanced form of ML techniques that leads the third AI boom. 

DL has been developed by layering conventional Artificial Neural Networks 

(ANN) and has become a replacement for traditional image processing techniques 

in MIC.  

1.3.1 Computer-aided-diagnosis systems for endoscopic image analysis 

The rapid engagement of technology in MIA leads to the creation of Computer-

Aided-Diagnosis (CAD) systems – as a subset of the MIC field – to put all the 

technology elements together and form a system that can provide real-time 

assistance for physicians in a variety of everyday clinical tasks. Nowadays, CAD 

systems are one of the most critical areas of research and development in MIA, 

where ML-based technologies could be potentially used to enhance human 

judgment capability or promote physicians' learning process.  

From the early research activities in the 1960s, one spotlight of CAD systems was 

lesion detection and cancer diagnosis by comprehensive evaluation of medical 

images in a short time [48]. Endoscopic image analysis was no exception to this 

trend, where the primary effort was started on the development of CAD systems 

based on endoscopic images of the Gastrointestinal (GI) tract. Depending on the 

endoscopic technique, different sorts of machine-vision-based systems were 

developed during the last decade; nevertheless, the application of image processing 

and ML technologies derives specific architectures divided into two main 

categories: conventional CAD and DL-based CAD systems.  
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The general workflow of a CAD system in endoscopic image analysis can be 

divided into three main steps: image pre-processing, features extraction, and 

classification [49]. As presented in Figure 1.6, the main architectural difference 

between conventional and DL-based CAD systems is in the feature extraction and 

classification steps.  

Endoscopic images commonly suffer from noise, such as lens distortions, 

illumination invariance, scale invariance, rotation invariance, and specular 

highlights. Therefore, the endoscopic images are pre-processed using different 

methods according to the image acquisition environment and noise condition. This 

step may include image normalization, contrast enhancement, image compression, 

image scaling, image rotation and color space transformation. In some systems, the 

image pre-processing also involves the region of interest (ROI) segmentation and 

identification [50]. 

In conventional endoscopic CAD development, features are manually engineered 

by a human data scientist using traditional image processing techniques – known 

as handcrafted features – that can be divided into two main groups. First are the 

frequency domain features, where the image is transformed into the frequency 

domain using a frequency transformation technique, and the features are extracted 

from the processed image. Second are the spatial domain features that refer to 

direct manipulation and extraction of information from the pixel values in a digital 

image. Color, texture, and morphological features are the main spatial and 

frequency feature sets in conventional endoscopic CAD systems. Sometimes, a 

feature selection step is added to the development workflow to choose suitable and 

relevant features from the high-level feature sets. Then, supervised classifiers, as 

the most popular ML strategy in the development of conventional endoscopic CAD 

systems, are used. They build the final set of features and their relationships – 

known as the predictive model – through the guidance of the predictive 

performance in the set of labeled data. This predictive model is the decision-

making part of a conventional CAD systems [49, 51, 52]. 

 

 
Figure 1.6. The architecture of conventional versus DL-based CAD systems for endoscopic 

image analysis [49].  
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In DL-based CAD systems, features – known as learned features – are 

automatically extracted from the endoscopic images without explicitly defining 

attributes. In this way, the image representation does not require hard coding for 

manual feature design. Moreover, DL-based methods have the ability to solve 

problems from end-to-end rather than breaking them down as in the case of 

traditional ML algorithms. They use the power of multi-layer ANN to learn 

compact information from the images and transform it into an output. The number 

and type of layers, their connection form, and output layer units are adopted 

according to the application of the DL method which resulted into a wide variety 

of DL architectures. Convolutional Neural Network (CNN) is the most successful 

deep model for image and time series data classification. The general architecture 

of a CNN has three main layers as the combination of convolutional and pooling 

layers followed by the fully connected layers. These layers are responsible for 

feature extraction, size reduction of the feature representation, as well as 

connecting the neurons between two different layers and classification. The 

application of CNN combined with supervised strategy is the most functional 

approach in developing endoscopic DL-based CAD systems. In these systems the 

final trained CNN model plays the role of decision-making section by providing 

objective guidance [49, 51, 53, 54].  

In laryngeal endoscopic image analysis, the first problem is raised from similar 

visual characteristics in laryngeal tissue that human eyes may not differentiate. 

Consequently, another issue appeared due to the user-dependent nature of 

endoscopic image evaluation and its influence on the relatively long learning curve. 

These reasons resulted in several attempts at developing CAD systems to assess 

laryngeal lesions, established for laryngeal tissue characterization, lesions 

classification, and more advanced histopathology classification. All the proposed 

methods and architectures followed the footsteps of research paths on CAD system 

development in endoscopic images of the GI tract and fell into the general scheme 

of conventional or DL-based CAD systems. Apart from architectural differences, 

the conventional CAD and DL-based systems mainly differ on the amount of data 

required for their implementation and the number of needed pre-processing steps 

[55–58]. 

1.3.2 Laryngeal endoscopic image data sets 

Data is the first and most critical element in creating any robust ML-based 

algorithm. The data set should be large enough to represent the sample data from 

the target population. In this way, the algorithm can adequately learn the properties 

of the population to generate a model that can evaluate any new unknown subject 

from the same population.  

In the available investigations, the WL or NBI endoscopic images utilized for 

forming laryngeal CAD architectures are collected by single or multiple clinical 
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centers and are submitted mainly as private data sets. These images are acquired 

directly during the operation or post-extracted from the endoscopic videos captured 

throughout the procedure. The data annotation involves labeling image data based 

on the histopathological examination results or the visual assessment of one or 

more Otolaryngologists. It can also include the manual segmentation of a target 

region in the image performed by Otolaryngologists. The number of images on 

these evaluations varies from a minimum of 300 to a maximum of 20000 [59–73]. 

Publicly available data sets with a limited number of endoscopic images are also 

used for some of the evaluation phases. The first data set was introduced in 2017 

and included 1320 patches with a dimension of 100*100 pixels of 330 NBI images 

of 33 patients affected by SCC. The data was labeled into four groups according to 

the tissue characterization of the vocal fold and are named tissue with IPCL-like 

vessels, leukoplakia, tissue with hypertrophic vessels, and healthy tissue [61]. The 

second data set was published in 2019 as part of an automated segmentation study. 

It comprises 535 color images of two patients captured with the stereo endoscope. 

Each data with a resolution of 512x512 pixels is manually segmented into seven 

different classes void, vocal folds, other tissue, glottal space, pathology, surgical 

tool, and intubation [63]. The third data set – known as Laryngoscope8 – is a 

laryngoscope image data set and aims to move toward an automatic diagnosis of 

laryngeal disease. It contains 1950 cases with 3057 images that professional 

Otolaryngologists categorized into eight classes: seven correspond to laryngeal 

disorders, and one category represents normal tissue [70]. 

Apart from the data availability, the portion of data in every class of data set should 

ideally be balanced to reach a robust predictive model. Sometimes, extra effort is 

required to collect data, especially in rare cases. MIC offers data augmentation as 

an easy-to-implement solution to save time and effort during data collection [74]. 

With this method, native data is transformed randomly to create new images. 

Typical interpretations include rotations, translations, cropping, and image contrast 

and brightness alterations [75]. However, the proper method selection is crucial to 

avoid any threat of producing redundancy in data. 

Data separation is required in every evaluation scenario in ML development to 

assess the predictive model accurately. Therefore, the data set is typically divided 

into training and testing sets. In this way, the training and validation steps are 

performed on the training set, where two subsets of data are generated. After 

arriving at the optimum model, the testing set is introduced to the model as unseen 

data to test the model’s performance. An alternative way is to split the data set 

directly into training, validation, and testing sets. In this configuration, the model 

is trained on the training set and then is validated and tested separately on the 

validation and testing sets, respectively [57].  
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There are three main techniques to create the training and testing sets out of the 

data set. The k-fold cross-validation technique divides the data set into k folds or 

groups, selects k-1 groups for the training set to perform the training, and tests the 

model with the remaining fold. This process is iterated k times, in which a different 

fold is reserved as the testing set. However, in the case of imbalanced data 

distribution in the data set, stratified k-fold cross-validation is a better technique 

than k-fold cross-validation. This method also splits the data into k folds and 

follows the same strategy for the training and testing process; however, it ensures 

that each data fold includes the same proportion of samples with a given label. 

Finally, hold-out cross-validation is a simple way to split the data set into two 

training and testing sets. Each set's portion depends on the overall size of the data 

set, but 80% for training and 20% for testing is the most common split using this 

method [76]. 

1.3.3 Pre-processing strategies on laryngeal endoscopic images 

Among all the known pre-processing methodologies, the studies on laryngeal 

endoscopic images applied techniques that have already shown reliable 

performance on GI tract endoscopic image analysis. Furthermore, the level of 

complexity of the pre-processing methods is usually correlated to the size of the 

data set. For example, several reports showed that the studies with a limited number 

of images involved more pre-processing steps than those with larger data sets [58]. 

In conventional CAD systems, the pre-processing strategies aimed to either reduce 

the noise – especially specular reflection – or enhance some essential 

characteristics in the image or both. In this case, bilateral filter and anisotropic 

diffusion filtering followed by specular reflection (SR) masking are the two 

proposed approaches [59, 61]. The bilateral filter [77] is a non-linear filter that uses 

tonal weights beside the spatial weights to replace a pixel value in the image. The 

anisotropic diffusion [78] is a non-linear and space-variant transformation of the 

image and, similar to the bilateral filter, aims to reduce the noise and smooth the 

appearance while preserving the sharp edges. The studies in laryngeal lesion 

assessment dealt with the specular reflections issue, using adaptive thresholding in 

the HSV color space approach [79]. It automatically identified SR by exploiting 

intense brightness and low saturation regions and then masked it. 

In DL-based CAD systems, the pre-processing phase primarily focuses on 

preparing images according to the conditions of the network, for example, image 

compression, image scaling and image rotation [49]. However, applying contrast 

enhancement techniques is sometimes instructed to improve the detailed 

information given to the DL algorithm. In this context, one study involved contrast 

limited adaptive histogram equalization (CLAHE) to WL and NBI images to 

enhance the textural attributes in the input image [72]. CLAHE computes 
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histograms corresponding to the particular sections of the image and uses 

distribution parameters to define the shape of the histogram [80]. 

1.3.4 Conventional CAD systems for laryngeal endoscopic image 

The development of conventional CAD for laryngeal endoscopic image analysis is 

continued after image pre-processing step by three more phases. 

1.3.4.1 ROI segmentation: In conventional CAD architecture, ROI segmentation 

is mainly performed to focus on the characteristics of a specific structure in the 

larynx region and extract the features from it. The primary areas involved in this 

workflow are the vocal fold, laryngeal lesion, and vascular structures. On this 

subject, morphological region growing, morphological closing operation, 

morphological Black-Top-Hat operation, skeletonization operation, histogram of 

oriented gradient (HOG), Canny edge detector, and first-order derivatives of 

gaussian (FODG) are some of the proposed and validated approaches for ROI 

segmentation. 

The proposed approach by Barbalata et al. studied two paths for segmenting lesions 

and vascular structures [59]. First, the lesion segmentation was implemented 

according to a proposed approach for polyp segmentation in endoscopic GI tract 

images [81]. Then, the Canny edge detector was used to find the boundaries of the 

lesion within the image based on discontinuities in brightness. The task was 

completed with a morphological closing operation to close the small gaps. The 

vessel segmentation process followed a path used for retinal blood vessel 

segmentation [82]. The study used the matched filter (MF) based on the FODG to 

extract the blood vessels and performed the final refinement on large and small 

vascular structures based on the Gabor filter and morphological Black-Top-Hat 

operation, respectively. 

Another investigation on laryngeal endoscopic image analysis proposed a two-step 

process for automatic detection of the vocal fold along with an independent 

algorithm for vessel segmentation [60]. First, it applied the HOG algorithm [83] – 

a well-known traditional computer vision technique in object detection – to detect 

the vocal fold region based on the distribution of edge directions or intensity 

gradients. The process was followed by applying a region growing technique to 

segment the glottis in the vocal fold region, where threshold values were defined 

to avoid the distribution of the region’s homogeneity. The vessel segmentation 

process started with a morphological region growing operation based on the seed 

points detected by the Canny edge detector. Then, the skeletonization of vessel was 

segmented by an iterative thinning operation and the final centerlines were 

generated by connecting the validated points [84]. 
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1.3.4.2 Handcrafted feature extraction: The handcrafted feature extraction 

methods for laryngeal endoscopic analysis are categorized into three leading 

groups and are instructed as morphological, texture and statistical feature sets.  

• The morphological features describe the geometrical characteristics of the 

segmented ROI, including the vocal fold and vessels. In the study by 

Barbalata et al., features related to the direction, width, and tortuosity of 

vascular structures were extracted from the segmented regions of the lesion. 

The width of vessels was established on the distance between the skeletons 

of one vessel using simple mathematical operations. The tortuosity of 

vessels was calculated based on the average value of angles among three 

different points on every skeleton [59]. In another study, Turkmen et al. 

considered the shape-related attributes of the vocal fold edge and the vocal 

fold's vascular characteristics. They defined the vocal fold edge curve based 

on the segmented glottic area and extracted four features, including size, 

location, splay portion, and symmetry of lesion. Moreover, they translated 

the visual elements of the segmented blood vessels and its orientation 

toward the lesion into the tortoise and longitudinal vascular vectors based 

on their angle to the baseline and finally computed four features from them 

[60].  

• Texture features are placed in the spatial domain features group and are 

directly computed from the pixel values in the image. Moccia et al. 

implemented a texture-based feature extraction pipeline on endoscopic 

image patches, using Local Binary Patterns (LBP) and Gray Level 

Cooccurrence Matrix (GLCM) [61]. These strategies are invariant to some 

conditions under which larynx endoscopic images are captured, such as 

changes in endoscope pose and illumination conditions. LBP is a texture 

descriptor that labels the pixels of every patch by thresholding the 

neighborhood of each pixel, where it was calculated as a features vector in 

the form of a normalized histogram. GLCM evaluates the spatial 

relationship among pixels and estimates how frequently pair of pixels are 

present in a given direction and distance. Contrast, correlation, energy, and 

homogeneity are features derived from this descriptor and are also known 

as second-order statistical features [85]. 

• The last category directs to the statistical features explored by Moccia et al. 

for analyzing NBI patches [61]. Intensity mean, variance, and entropy were 

three first-order statistical features used in this study to represent the spatial 

distributions of the image patches.   

1.3.4.3 ML classifiers: Supervised classifiers are the central part of the 

conventional CAD systems that involve the contribution of ML techniques. Every 

ML classifier learns the target population's characteristics according to the 

attributes and representation transformed into the input feature set. Although all 
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the ML classifiers follow the same objective, each has a unique set of 

hyperparameters that requires optimization to reach the highest performance. For 

this reason, different optimization techniques, such as manual search, grid search, 

randomized search, and Bayesian optimization [86], are commonly used for the 

optimization of both ML classifiers and DL networks to find the most optimum 

hyperparameters for creating the target predictive model. The optimization process 

is usually applied to the training set or part of it.  

Among all the available ML classifiers, Support Vector Machine (SVM), k-

Nearest Neighbors (kNN), Random Forests (RF), Naive Bayes (NB), Linear 

Discriminant Analysis (LDA), and Multilayer Perceptron (MP) are the applied 

approaches for laryngeal endoscopic image classification. Each ML classifier 

considers specific attributes of the feature set to perform the classification, leading 

studies to use more than one classifier in their development and select the one with 

the best performance.  

• SVM performs classification by finding the optimal hyperplane in an N-

dimensional space that maximizes the margin between the classes. The 

kernel function is the main hyperparameter of the SVM classifier. Linear, 

polynomial, and radial kernels are standard functions that map the data into 

some feature space. Then, the type of kernel function may introduce more 

hyperparameters for the SVM, such as regulation and kernel parameters 

[87]. 

• kNN is a nonparametric method and performs classification by finding the 

most similar data points in the training data and making an educated guess 

based on their categories. Therefore, the number of neighbors is the most 

critical hyperparameter of the kNN classifier. Moreover, it is recommended 

to optimize the distance metrics for selecting the combination of the 

neighborhood [88]. 

• In RF, the bootstrap sample, which comprises a sample of data drawn from 

a training set, is used to create an ensemble learning method that consists 

of a collection of decision trees. RF has several hyperparameters; however, 

the depth of trees and the number of estimators (trees) require the tuning 

process [89]. 

• NB is a probabilistic ML technique that is used as a classifier. It is based 

on probability models of Bayes theorem that incorporate strong 

independence assumptions [90].  

• LDA is a technique for reducing dimensionality in which features are 

combined into linear combinations to represent or separate two or more 

groups [91].  

• MLP is a feed-forward ANN supplement with at least an input layer, a 

hidden layer, and an output layer. Except for the input nodes, each node is 
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a neuron that uses a nonlinear activation function and utilizes 

backpropagation for training [92]. 

In the primary attempt in 2014 to develop a CAD system for laryngeal lesion 

detection and classification, Barbalata et al. applied the LDA classier as the ML 

classifier. The confidence measure based on the malignancy probability that was 

computed from the feature values led to benign-malignant image classification 

[59].  

In the subsequent investigation conducted in 2015, a group of five ML classifiers, 

including SVM, kNN, RF, NB, and MLP, were used to perform a binary image 

classification in the form of a hierarchical decision tree architecture. A specific 

feature set and defined classification scenario were portrayed in every tree node to 

arrive at a final decision representing laryngeal histopathology [60]. 

The last study in this context, from 2017, compares the classification performance 

of four ML classifiers during the laryngeal tissue classification in endoscopic NBI 

images. SVM with Gaussian Kernel, kNN, RF, and NB were individually trained 

and tested on the different mixtures of normalized feature sets. Moreover, one 

additional step, confidence estimation, was added to the classification workflow to 

calculate the procedure's reliability [61]. 

1.3.5 DL-based CAD systems for laryngeal endoscopic image 

The rapid advancement of the DL in MIC was spread to the laryngeal endoscopic 

image analysis field in the last five years. DL takes advantage of learning multiple 

levels of features from the data by iterative adjustment of layers’ weight. Therefore, 

a large number of data is needed to reach high-performance outputs, especially in 

complex tasks [54, 55]. 

1.3.5.1 DL model training: Training the CNN is the most crucial part of building 

a DL-based CAD. There are three paths to train the CNN model. In the first 

method, CNN is designed and trained from scratch. Although this path can result 

in high accuracy, it requires hundreds of thousands of labeled images and 

considerable computational resources. The second path relies on the transfer 

learning concept that allows reusing a pre-trained model as a starting point for a 

new classification task with comparatively little data. The pre-trained network is a 

network that has already been introduced to a specific data set and learned to 

extract valuable features from it. The data set used for the pre-training is not always 

the same as the actual data set for the second classification task, but the extracted 

features are similar in nature. This network can then be used as a starting point to 

learn a new classification task. Finally, the third method uses a pre-trained CNN to 

extract learned features for training the ML classifier. This path requires fewer data 

and computational resources than the last two approaches [93, 94]. 
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1.3.5.2 DL model fine-tuning: Independent from the path that is followed for 

training the CNN, hyperparameter tuning is an inevitable step. The same 

optimization techniques used for ML classifiers are usually applied for CNN 

hyperparameter tuning. However, the hyperparameters are defined before the 

training and are divided into the variables that define the network structures and 

the parameters that determine how the network is trained.  

Dropout and activation functions are the primary hyperparameters related to the 

CNN structure. The dropout helps to reduce the model’s size and avoid overfitting, 

meaning the predictive model performs very well on the trained data but does not 

generalize enough to classify the new unseen data. The activation functions learn 

and predict continuous and complex connections between variables of the network 

[95, 96].  

The principal hyperparameters to define the training process are the optimizer, loss 

function, learning rate, number of epochs, and batch size. Stochastic Gradient 

Descent (SGD) and Adam are two common examples of optimizers that aim to 

adjust the weights in the model to arrive at the possible highest accuracy or the 

lowest loss function. The learning rate describes how fast the network’s parameters 

are updated to reach the minimum loss function. Usually, a lower learning rate 

increases the chance of meeting the minimum loss function, but it requires more 

time and computation resources. The batch size is the number of sub-samples of 

training data introduced to the network. Defining a bigger batch size affects slower 

learning but with lower variance in validation accuracy. The loss function is an 

evaluation method that measures the label and predicted output values to represent 

whether the model fits the data well. Finally, the number of epochs decides the 

number of iterations the learning algorithm will perform throughout the whole 

training set. Notably, a too-small and too-big number can end with underfitting – 

meaning that the model has not learned enough – and overfitting, respectively [95, 

96]. 

1.3.5.3 DL architectures: Transfer learning integrated with the fine-tuning 

process is the most appropriate training path in forming the DL-based CAD for 

laryngeal endoscopic image analysis. All the networks involved in this field have 

been first trained on the ImageNet database [97], an image data set with more than 

14 million data in 27 high-level categories organized hierarchically. The trained 

networks have learned to identify low-level and high-level features in the images 

of ImageNet. Therefore, they can use their weights as a starting point and get 

adopted via the fine-tuning operation for other image classification and object 

detection tasks. VGG Network (VGGNet), Inception Network, Residual Networks 

(ResNets), and Efficient Network (EfficientNet) are the four main pre-trained 

networks used for implementing DL-based CDA systems on laryngeal endoscopic 

images.  
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• VGGNet is an architecture focusing on depth as a vital element of CNNs 

[98]. It uses very small 3x3 convolution filters, one after the other, to 

increase the depth while lowering the parameters and improving the 

training time and performance. Moreover, the network incorporates 1x1 

convolution filters as a linear transformation to make more non-linear 

predictions. There are variants of VGGNet, including VGG16 and VGG19, 

which differ only in the number of convolutional layers of the network (See 

Figure 1.7-b). The pre-trained VGG16 with around 18 million parameters 

was used in a study in 2022 for laryngeal image classification as binary 

benign-malignant and multi-class benign histopathology classification 

[71]. The analysis contained quite an extensive data set with 19353 labeled 

endoscopic image data; however, the authors do not give the characteristics 

of the adopted VGG16 network for this specific classification. 

• Increasing the deep convolution layers in a model is not always beneficial, 

as the issue of overfitting and computational expenses may arise. So, other 

more optimum CNN architectural designs were started and presented, such 

as Inception Network [99]. This heavily engineered architecture introduced 

a new level of organization inside the network, called Inspection modules. 

The network follows the concept of placing multiple convolutional filters 

but with different sizes that operate on the same level. Therefore, the 

created architecture is wider rather than having deep layers. The continuous 

evolution of the Inception Network resulted in the creation of numerous 

versions of the network. InceptionV3, with 25 million parameters, is the 

most practical model of this category for laryngeal endoscopic image 

classification. One application of pre-trained InceptionV3 was reported in 

2019. First, the model was modified for a multi-class classification task 

with four classes. Then, it was fine-tuned using GSD optimizer and cross-

entropy loss function on a large data set with 13721 endoscopic larynx 

images [64]. The second study was conducted in 2021, and the pre-trained 

InceptionV3 model was used as the backbone of a DL-based CAD in which 

the model was adopted and fine-tuned on 4591 NBI images for laryngeal 

SCC diagnosis [69]. 

• One year after the introduction of Inception Network, ResNets stepped into 

the computer vision world [100]. The deepness level of ResNets is related 

to the network's capability to capture high or higher patterns. ResNets 

optimize toward zero, accelerating the convergence to the optimal point in 

the solution space instead of an actual number. Batch normalization is 

another exciting feature that is embedded in ResNets structure. It speeds up 

the convergence and, in doing so, reduces the training epochs required. It 

also has a regularization effect during the training phase. Several variants 

of ResNets architecture have a different number of layers (See Figure 1.7-

a).  
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Figure 1.7. Examples of DL-based network architecture. (a): ResNets with 34 parameter 

layers, and (b): VGGNet with 19 convolutional layers [100]. 

b a 



 

40 

 

ResNet34, RedNet50, ResNet101, and ResNet186 are the pre-trained 

models used in the context of DL-based CAD systems on larynx 

endoscopic images. The first study in 2020 informed the application of a 

pre-trained ResNet50 for extracting a learned feature map from the input 

image used for the laryngeal tumor detection task [65]. The model was part 

of a more extensive architecture called RetinaNet [101], which was adopted 

for the laryngeal tumor detection task. The second study's focus was on 

using a pre-trained ResNet101 model adopted for a multi-class 

classification of the endoscopic larynx images. GSD optimizer and cross-

entropy loss function were selected for the training and fine-tuning process 

over 24667 endoscopic images [67]. Finally, the most recent study in this 

category from 2022 proposed a two-stream classification network in an 

upstream manner. The architecture adopted pre-trained ResNet18 and 

ResNet34 as the small and the large stream, respectively. The Adam 

optimizer was applied for these two models' training and fine-tuning steps 

on the open-access Laryngoscope8 data set [73].  

• The traditional methods of scaling a CNN model are random. They are 

mainly used as a standalone technique focusing only on one aspect of the 

network such as depth or width and require manual tuning. As illustrated 

in Figure 1.8, the development of EfficientNet showed that a better scaling 

could be achieved by compound scaling, meaning a uniform scaling of all 

networking dimensions like depth, width, and resolution using a constant 

ratio [102]. Different versions of EfficientNet are generated by scaling up 

the baseline network. The pre-trained EffificientNetB0 was adopted and 

fine-tuned by Cho et al. using Adam optimizer. The data set of this study 

included 4106 endoscopic images designed for a multi-class classification 

task based on nine laryngeal histopathologies [68]. 

 

 
Figure 1.8. Model scaling in EfficientNet. (a): Baseline network, (b) to (d): Conventional 

scaling that only increases one dimension of network width, depth, or resolution, and (e): 

Compound scaling method [102]. 
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1.3.6 Laryngeal endoscopic image and hybrid CAD systems 

With the recent advances in MIC, multiple modified versions of the CAD system 

were introduced for MIA. The main characteristic of these architectures relies on 

combining the feature extraction and classification steps of conventional and DL-

based CAD systems into one architecture. There are two examples of these systems 

in larynx endoscopic image analysis. 

The first study was presented in 2019 and was developed based on the concept of 

extracting both handcrafted and learned features and using them for training a ML 

classifier. In this way, a more comprehensive range of attributes was fed into the 

model to learn the target population's aspects. LPB and first-order statistical 

features were included as handcrafted feature sets. Also, learned features were 

extracted from pre-trained variations of ResNets and Inception Network. The fine-

tuning process was carried out on particular layers of each network, in which a 

stopping point was defined to extract the features. Finally, the SVM classifier with 

Radial Basis Function (RBF) was trained and validated for a multi-class 

classification task using an open-source data set of larynx NBI images for laryngeal 

tissue classification [62].  

The second version of CAD systems was proposed based on the concept of 

ensemble modeling. It is reported that a single ML model can have bias and high 

variability. Therefore, generating two or more related but different models 

followed by aggregating the results into a single score can help to reduce the 

model’s error and maintain the model’s generalization. In this study, 8 different 

pre-trained CNN architectures including VGG16, VGG19, ResNet50 and 

ResNet101 were trained and fine-tuned on different data sets. Moreover, 12 

handcrafted texture, color, and morphological features were extracted and used to 

train the SVM classifier separately. Finally, the prediction was made based on the 

ensemble model generated from all trained models using the weighted sum rule 

technique. This ensemble model was validated on an open-source data set of larynx 

NBI images for laryngeal tissue classification [66]. 

1.3.7 What is needed to improve the performance of CAD systems? 

The application of MIC solutions for the endoscopic image analysis of the larynx 

faced considerable improvement in the last decade. The purpose of such 

explanations was first focused on providing a better understanding of presented 

information in the endoscopic images, such as structural characteristics, via 

traditional image processing techniques. These solutions were later extended into 

more advanced decision-based paths in the form of CAD systems built based on 

ML methods. All these techniques aimed to move toward providing objective 

assistance for laryngeal endoscopic image analysis. They also showed their 

potential to reduce the user-dependency level and consequently shorten the 



 

42 

 

learning curve for younger clinicians. With these strategies, CAD systems have 

claimed to facilitate and improve early diagnosis of laryngeal lesions to preserve 

the organ’s functionality and reduce the number of unnecessary biopsies. However, 

the ML applicability is not well developed and integrated into actual clinical 

practice on laryngeal lesion assessment to truly implement what these systems 

contend [49, 51, 52].  

ML development falls into the group of data-driven solutions. These approaches 

require extensive data sets to provide robust and reliable assistance. Furthermore, 

creating such a data set usually demands multi-center cooperation, a standardized 

image acquisition and evaluation strategy that must be included in the current ML-

based laryngeal lesion assessment workflow. Besides, the endoscopic data for 

generating a data set is mainly post-extracted from video recordings. This process 

mandates frame adjustment and selection to include images with relevant anatomy 

and pathology in the data set. Therefore, a comprehensive technical and clinical 

effort is needed to create a proper data set. Moreover, ML methods are 

characterized by many parameters; therefore, their real-time application is 

computationally expensive and requires sufficient hardware and software 

infrastructures in clinical facilities.   

But there are more challenging conditions related to using WLE and NBI for 

computer-based laryngeal image analysis that can affect the ML approaches or 

cannot be solved by the proposed methods [49, 51, 52]. 

It is known that the stable visualization of target anatomical structures in WLE and 

NBI images is challenging because it is essential to have the proper distance of the 

endoscope from the mucosa. This problem results in limited resolution in 

endoscopic images that can affect the implementation of the applied ML method. 

Nonetheless, this problem is addressed during the development of most ML-based 

techniques for laryngeal image analysis. 

The second concern is directed to a more critical issue that can affect the 

performance of the ML approaches but cannot be solved with these solutions. 

Laryngeal lesions and their vascularization structures vary significantly in form, 

color, texture, and size. Therefore, stable, detailed, focused, and magnified 

visualizations of these particular structures are required for better understanding 

and assessing the pathological conditions. Unfortunately, the level of 

magnification and focus needed to achieve this goal is not covered by the 

commercially available endoscopic imaging systems in the form of normal WLE 

and NBI images for laryngeal lesion assessment. However, these concerns in the 

field of laryngeal lesion assessment are investigated through the integration of a 

new endoscopy-based imaging modality. 
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1.4 Magnifying endoscopy - a new advancement in laryngeal lesion 

assessment 

The high-resolution and magnified endoscopic images can lead Otolaryngologists 

to better detection of laryngeal lesions during clinical examination and provide 

appropriate and adequate input data for developing CAD systems. 

The application of High Definition (HD) endoscopy systems was first introduced 

to the endoscopic diagnosis of GI tract diseases. Then, with a gap of a few years, 

the first HD endoscopy systems were adopted for examination and diagnosis 

purposes in Otolaryngology. The systems could also be combined with 

enhancement imaging techniques for high-resolution visualization of the target 

lesion. However, this system integration in Otolaryngology still needed the 

component of detailed and focused visualization of the lesion that could be filled 

with magnifying imaging technology [103]. 

Magnifying Endoscopy (ME) is an optical and powerful imaging modality that can 

provide enlarged visualization of the microstructures of surface mucosa, including 

vessels and cellular nuclei. This diagnostic endoscopic technique offers a real-time 

representation of tissue characteristics with several hundred-fold magnifications. 

Therefore, minor structures missed by conventional endoscopic systems can be 

detected via this modality [104].  

The ME can work based on two leading technologies. First is the electronic 

magnification that is usually embedded in the endoscopy system and expands the 

image to a certain level. However, image quality is highly deteriorated in electronic 

magnification because the image consists of fewer pixels at every step of 

magnification, resulting in low resolution. The second technique is optical 

magnification in the form of magnifying endoscopes. It provides high-magnified 

images using movable focus lenses that can move very close to the mucosal surface 

without losing the image resolution [105, 106].  

The combination of ME with HD endoscopy systems and enhancement techniques 

has introduced a novel branch of Biologic Endoscopy known as Optical Biopsy 

that aims for early diagnosis of lesions without performing a surgical tissue 

excision [107, 108]. Integrating ME with NBI is the most well-known and 

applicable example of Optical Biopsy strategies. This approach was first 

established and operated in GI tract disease diagnosis [103]. The standalone 

application of high-resolution NBI can improve the contacts between the target 

lesion and background epithelium, visualized as a well-marked brownish area. 

After adding magnification, subtle changes in mucosa structures and vascular 

architecture can be identified. Therefore, the added value of the ME can provide a 

histological diagnosis for the early detection of pathological conditions. The ME 

with NBI has shown a powerful diagnostic performance in GI tract disease and 
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could be used as a promising screening technique for patients with medical 

conditions that have a high probability of evolving cancer [106, 109]. 

Considering the similarity of mucosal characteristics of the GI tract and larynx, the 

application of ME combined with high-resolution enhancement endoscopy was 

translated to the field of Otolaryngology in the last decade. This trend followed the 

main objectives of Optical Biopsy for laryngeal lesion assessment. Several studies 

reported combining magnifying GI endoscopy systems with NBI for laryngeal 

lesion assessment. The improved visualization of mucosal structures and 

vascularization networks in these investigations showed a more accurate 

endoscopic diagnosis of the pathological condition in larynx. Although GI 

endoscopic systems are powerful tools, they are not suitable for Otolaryngology 

procedures due to their large size, which makes them unsuitable for transnasal and 

transoral applications [107, 110, 111]. 

1.4.1 ME with contact endoscopy 

Contact Endoscopy (CE) is an optical diagnostic imaging technique that allows in 

vivo and in situ examination of superficial layers of mucosal epithelium. A contact 

endoscope is a magnifying endoscope developed by KARL STORZ, Tuttlingen, 

Germany (Figure 1.9), for laryngeal applications using optical magnification 

technology with three 1x, 60x, and 150x magnification levels. The endoscope is 

commercially available with a straight-forward telescope at 0° or a forward-

oblique telescope at 30° viewing angle in two different diameters and lengths. In 

clinical examination, the patients need to go through general anesthesia to 

introduce the contact endoscope via laryngoscope to the vocal fold region. For 

visualization, the endoscope should be in contact with mucosa and then can be 

moved gently over the target area [112, 113]. 

CE has a great history in laryngeal lesion assessment [114–116]. The early 

application of CE on the larynx focused on evaluating the cellular architecture of 

mucosal epithelium in the vocal fold. The mucosal surface was stained with 1% 

methylene blue, a nontoxic short-effect dye that transmits a dark blue color to the 

nucleus and a light blue color to the cytoplasm. Higher mitotic activity and greater 

concentration of nuclear material make mucosal epithelium with pathological 

conditions more stained. Therefore, Otolaryngologists or histopathologists could 

assess this real-time and non-invasive visualization of cellular architectures to 

perform the histological diagnosis of laryngeal lesions without surgical biopsy. 

Nevertheless, one of the main limitations of CE with methylene blue is related to 

the restricted penetration depth of the dye [117–119]. 
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Figure 1.9. The contact endoscope with a forward-oblique telescope at 30° viewing angle. 

 

The lesion's growth in every anatomical organ is followed by its vascularization, 

where micro blood vessels surrounding the tumor usually develop abnormally in 

higher quantity with more tortuosity. The CE technique without staining allows the 

detailed and magnified examination of this vasculature network of mucosal 

epithelium in the vocal fold. Moreover, the high magnification level of CE provides 

visualization of the distribution and dynamics of the microcirculation in the 

mucosal surface [112]. During the early application of the CE on clinical 

examination of larynx, evaluation of this microvasculature around the lesion was 

considered as the secondary source of information for the initial assessment of 

laryngeal lesions. However, recent advancements have shown that evaluation of 

the vascularization networks of superficial mucosal epithelium in vocal fold can 

provide Otolaryngologists with more critical information than the cellular 

architectures of the lesion [35]. Therefore, the CE technique could be the potential 

solution to the high-resolution and magnified endoscopic diagnosis of laryngeal 

lesions. This step-by-step progress of the CE technique and its integration into HD-

enhanced endoscopy systems have introduced a new path to the domain of Optical 

Biopsy of laryngeal pathologies focusing on vascular architectures of superficial 

layers of mucosal epithelium. 

1.4.2 Enhanced CE and vocal fold mucosal vascularization 

As discussed in Section 1.2.2, the standalone enhanced endoscopy techniques have 

introduced the evaluation of vascular architecture as a new source of information 

to the clinical examination during the laryngeal lesion diagnosis procedure. 

However, assessing the most profound changes in abnormal microvascular 

structures required a more magnified view. The Enhanced CE (ECE) is the exact 

tool for this purpose by focusing on high-resolution and magnified visualization of 

the microvascular network of the superficial layer of mucosa. This endoscopic 

diagnosis technique in the larynx was first introduced in 2015 [120]. It combines 

the CE technique with well-known high-resolution enhancement endoscopy 

techniques, either NBI or SPIES. Figure 1.10 represents some examples of ECE 

imaging using NBI. 
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Figure 1.10. ECE imaging using NBI for different histopathologies of vocal fold. (a): Cyst, 

(b): Reinke’s edema, (c): Hyperkeratosis, (d): Papillomatosis, (e): Low-Grade Dysplasia, (f): 
High-Grade Dysplasia, (g): Carcinoma in Situ, and (h): SCC [122]. 

The ECE can be added to the current clinical examination procedure of laryngeal 

lesions during clinical examination and after direct laryngoscopy using RE under 

general anesthesia (Figure 1.5). In this way, the Otolaryngologist first examines 

the overall anatomical structures and geometrical characteristics of the vocal fold, 

target lesion and surrounding regions and then moves to the application of ECE to 

get a more detailed examination of superficial mucosa of the lesion and its 

surrounding area, especially vascularization network. As presented in Figure 1.11, 

with this strategy, ECE allows the real-time study of multiple regions that can 

arrive at a non-invasive and faster histological diagnosis compared to surgical 

biopsy [121].  

The diagnostic strategy of laryngeal lesions based on vascular architecture relies 

on the concept of neoangiogenesis. It means the development of new blood vessels 

from a pre-existing vasculature which plays a vital role in the growth of lesions. 

The abnormal tissue cells continuously release the factors that stimulate the 

unusual development of IPCLs to create enough suppliers for the tumor. Therefore, 

the level of development of a microvascular network of cancer is correlated to the 

degree of lesion progression. Furthermore, it means that the neoangiogenic 

stimulus increases from benign to pre-malignant and invasive cancer lesions 

resulting in the vascularization network with more levels of chaos and disorder 

[120, 123].  

ECE can provide a detailed evaluation of these abnormal changes in vascular 

structures of the laryngeal mucosa. However, among the studies that correlate the 

level of disorder of vessels to the type of lesion and histopathology, there is only 

one guideline with a specific focus on vasculature architectures represented in ECE 

images. In this study, the vascular patterns are divided into five groups correlated 

to the diagnosis normal, inflammation, hyperplasia, mild to moderate dysplasia, 

and high-grade dysplasia/carcinoma in situ/ invasive carcinoma [120, 124]. 
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Figure 1.11. Application of CE-NBI during clinical examination of laryngeal lesion. 

 

Nevertheless, the ELS guideline is more studied and applied to standalone 

enhanced endoscopy and ECE images as a guidance tool for the clinical 

examination of laryngeal lesions. The main principle of this guideline is simple to 

implement and is expanded for both non-magnified and magnified visualization of 

the vascular structures in the superficial larynx mucosa. Moreover, it represents 

how the magnified view facilitates the correlation of LVC and PVC to the benign 

and malignant laryngeal lesions [121, 123, 125]. Therefore, the potential of the 

ECE imaging technique with a focus on the high-resolution presentation of 

vascular structures of mucosal epithelium boosted the expectancy of bringing the 

application of Optical Biopsy into the actual clinical settings for early assessment 

of pre-malignant and malignant lesions and avoiding the unnecessary invasive 

tissue biopsy. 

1.4.3 Challenges to integrate ECE into the clinical setting 

In the last two decades, significant improvements in endoscopic imaging facilitated 

the clinical examination of laryngeal lesions and provided the potential to perform 

Optical Biopsy. Potential advantages of this development are directed to the 

patients because high-resolution and magnifying visualization allow 

Otolaryngologists to better distinguish malignant lesions from non-cancerous ones 

without conducting surgical biopsy. In addition, this development can prompt 

diagnosis procedures in the early stages to reach optimum organ preservation. 

Several studies have reported the high performance of ECE as an Optical Biopsy 

technique in diagnosing different types of mucosal lesions in the head and neck 

region [120, 121, 125]. CE, especially when coupled with the NBI enhancement 

technique, offers a wide range of advantages compared to the other Biologic 
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Endoscopy modalities. First, ECE offers magnified visualization of the examined 

region, such as the vascularization network of the lesion, which the normal WLE 

and NBI modalities cannot provide. Second, ECE resolves the issues created by 

the inconsistent distance between the endoscope tip and the examined region in 

standard endoscopic imaging, including limited resolution. Because the contact 

endoscope should have a fixed distance and direct contact with the tissue. Third, 

ECE is quick, simple, and produces real-time and repeatable results that can be 

reviewed as many times as needed. Moreover, it does not have the risks related to 

surgical biopsy [112]. However, it is recognized that the limiting factors of ECE 

prevented it from gaining an acceptable place in routine clinical practice for 

performing Optical Biopsy. 

Increased levels of detailed information in ECE images raised significant problems 

in the visual assessment of the represented superficial mucosa. The ECE image 

interpretation drives toward a subjective process. Although several guidance tools 

were proposed to help Otolaryngologists with the understanding of vascularization 

networks, the similarities between these vascular structures in precursor and 

malignant laryngeal lesions raise a new challenge. For instance, as observed in 

laryngeal Papillomatosis (Figure 1.10-d), PVC with wide-angled turning points can 

be difficult to distinguish from PVC with narrow-angled turning points, as 

observed in pre-malignant and malignant histopathologies (Figure 1.10-h). 

Therefore, extracting the diagnostic information from ECE images highly depends 

on the experience of the Otolaryngologists. Several studies addressed the issue of 

subjective interpretation in ECE image analysis and reported moderate to high 

interobserver agreement in less experienced and experienced groups. Moreover, 

there is always a learning curve in this procedure that highlights the necessity of 

extensive training to minimize the risk of subjective evaluation [121, 125]. All 

these challenges can result in a complicated laryngeal lesions assessment that may 

cause an increased number of false positive diagnosis and potential over/ under 

treatments. The presence of these risks limited the application of ECE in research 

use and constituted primary impediment to the adoption of ECE as an Optical 

Biopsy technique in clinical settings. 
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Chapter 2 – Contributions 

 

2.1 Motivation and contributions 

As discussed in Chapter 1, finding a minimally invasive, fast, reliable, and accurate 

approach for early diagnosis remains the main challenge in laryngeal lesions 

assessment. Recent improvements in endoscopic imaging techniques and ML-

based strategies using WLE and NBI images have aimed to address this challenge 

by moving towards performing Optical Biopsy. However, the challenge remained 

unsolved for the following reasons:  

• There is a lack of magnified visualization of the vascularization network in 

normal WLE and NBI images that could provide valuable information 

about the status of the lesion. This issue could also adversely impact the 

performance of the developed ML-based methods that rely on this 

information.  

• The proposed ML-based methods are intended for research purposes and 

contain intricate algorithms that may overlook critical aspects necessary for 

clinical application. Such elements include being easy to understand, easy 

to use, and adaptable to the standard clinical workflow. 

The application of magnifying and enhanced endoscopic imaging techniques, 

mainly the CE-NBI modality, holds promise in providing a solution for performing 

Optical Biopsy. The main advantage of CE-NBI modality over standard 

endoscopic imaging techniques is related to the enlarged visualization of the 

vascularization network, providing principal complementary value for 

Otolaryngologists during laryngeal lesion assessment. However, interpreting 

complex information from CE-NBI images remains subjective due to the similarity 

of vascular patterns and imposes extensive learning on users. Therefore, CE-NBI 

has yet to be integrated into the standard clinical examination procedure for 

laryngeal lesions.  

While there is currently no publicly available data set of CE-NBI images, several 

reports emphasized the clinical values of this modality in assessing laryngeal 

lesions. However, no studies have explored the technical aspects of CE-NBI 

modality by developing and validating computer-based techniques. This option 

could overcome the limitation of CE-NBI, making it a standard modality for 

performing Optical Biopsy and enabling early diagnosis of laryngeal lesions. To 

achieve this goal, this thesis aims to develop a pipeline for a CAD system on 

laryngeal lesion assessment using CE-NBI images, where the main focus is divided 

into two main categories: 
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1. The first main task of the thesis is related to CE-NBI data set generation to 

address the need for publicly available data in this area. The data was 

collected from the Department of Otorhinolaryngology, Head and Neck 

Surgery of Magdeburg University Hospital, along with an active 

collaboration with the clinical team that has rich experiences in endoscopic 

data collection as well as laryngeal lesion diagnosis and treatment. After 

passing the required ethical approval, data collection, preparation and 

annotation were conducted simultaneously during the four years of the 

project by the author of this thesis. Every video file of CE-NBI was first 

annotated manually to extract the time intervals with good image quality. 

Then, the frames were extracted from the defined intervals, and images 

with good resolution and a unique vascularization network were selected 

for every patient. Two experienced Otolaryngologists verified the chosen 

images and labeled them based on the type of vascular pattern. After this 

step, the CE-NBI image labeling was completed by annotating the data 

based on the diagnosed laryngeal histopathology, type of laryngeal lesion, 

and leukoplakia diagnosis. The final version of the generated data set – with 

11144 CE-NBI images of 210 adult patients – is currently available in a 

public repository [122]. 

As a part of the first task and in collaboration with the clinical team, a 

clinical study was conducted on the part of the final data set to evaluate the 

subjective assessment of the CE-NBI images, analyze the intra-user 

variabilities during the visual assessment of the images and highlight the 

values of vascular structures on laryngeal lesion assessment [121]. The 

outcome of this evaluation was used as a guideline to plan the development 

strategy and design the pipelines of the CAD system according to the 

clinical requirements. 

2. The second main task of the thesis is related to technical exploration of CE-

NBI images in the form of developing the CAD system. This task addressed 

the need for technical exploration of this new imaging modality to 

overcome its limitation on laryngeal lesion assessment. For that, two 

pipelines for assessing laryngeal lesions based on image classification tasks 

with a focus on the vascular characteristics in CE-NBI images were 

developed: 

a. Pipeline 1 is based on feature engineering techniques combined 

with ML classifiers for supervised classification of CE-NBI images. 

This strategy was selected because of two reasons. First, CE-NBI 

data were collected from patients with pathological conditions on 

the vocal fold. Some histopathologies, such as Reinke's Edema and 

Dysplasia are more common in this target patient group. Therefore, 

in the first two years of the project, the data set included a limited 

number of images with only specific histopathologies. Second, it 
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was crucial to develop techniques that are easy to understand in the 

clinical community to create the infrastructures and involve 

clinicians in the development phases as the primary users. 

Therefore, the development strategy in pipeline 1 was focused on 

the handcrafted features that could describe the characteristics 

visualized in CE-NBI images and could explain the physiological 

changes happening in superficial mucosal vessels with the 

appearance of pathological conditions. Pipeline 1 included two sets 

of self-explainable features related to the geometrical and textural 

characteristics of CE-NBI images. 

i. Method 1 focused on the geometrical attributes of 

vascularization networks in CE-NBI images based on 

visualized and understandable characteristics. The proposed 

approach includes a three-step image pre-processing 

strategy. Then, five geometrical indicators are defined to 

assess the level of disorder of vascularization networks, 

including two direction-based and three curvature-based 

indicators. In the next step, 24 Geometrical Features (GF) 

are defined after qualitatively analyzing the indicators' 

behavior on three main categories of vascular patterns. 

Finally, the supervised classification step takes place where 

four ML classifiers are trained and tested using GF for 

automatic CE-NBI image classification based on the 

vascularization networks as well as benign and malignant 

histopathologies. The outcome of this approach is presented 

in Contribution 1.    

After discussions with the clinical team, the decision was 

made to stay with benign-malignant lesion classification for 

further development. The main reason for this decision was 

that the type of lesion is the first primary input for the 

Otolaryngologists during the clinical examination to 

proceed with the additional treatment plans. 

In the next step of development in pipeline 1, the impact and 

value of Method 1 on the current workflow of clinical 

examination for laryngeal lesions are investigated. The 

manual and automatic image classification scenarios are 

planned to compare the performance of Method 1 to the 

assessment of less-experienced and experienced 

Otolaryngologists on CE-NBI image classification, 

focusing on vascular characteristics. The image data set for 

this evaluation contains 10 to 50 images per patient. 

However, three to five images per patient are selected for 
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the manual approach and later were used as the testing set 

in automatic classification. Four different supervised ML 

classifiers are trained on GF computed on training sets of 

CE-NBI images. First, the classification performance of the 

two approaches is compared separately. Then, an evaluation 

strategy is developed to compare the results of both methods 

based on the routine clinical examination procedure of 

laryngeal lesions. The result of this evaluation is presented 

in Contribution 2. 

ii. Method 2 explored textural characteristics of the CE-NBI 

images, focusing on simple and self-explainable features 

with minimum need for an image pre-processing step. This 

imaging modality visualizes a magnified representation of 

vascularization networks, which renders the application of 

traditional texture feature extraction techniques ineffective. 

In Method 2, every image is first divided into line profiles 

that are easy to process. As the pixel values of the vessels 

differed significantly from those of the image background, 

the line profiles deflected maintain-shaped behavior with 

various degrees of slopes on images with different 

vascularization networks. These behaviors resemble a 

cyclist stage profile where two Cyclist Effort Features 

(CyEfF) are calculated based on the effort a cyclist should 

take to travel through each stage profile. The 

implementation of this approach was complex as there was 

a physics concept behind calculating the features, and there 

were many parameters to adjust. The supervised image 

classification is performed where four ML classifiers are 

trained and tested using CyEfF to classify CE-NBI images 

into benign and malignant classes and then is compared with 

the performance of GF as well as standard texture-based 

features. The outcome of this study is presented in 

Contribution 3. 

b. Pipeline 2 is based on DL-based architectures for the supervised 

classification of CE-NBI images. The development strategy chosen 

for this pipeline addresses the challenge posed by an increased 

number of images in the data set. Although the data set started to 

have a wide variation of histopathologies, it raises concern about 

the complexity of the data due to the greater variety in patterns of 

vascularization networks. This issue affected the performance of the 

methods in pipeline 1, where the ML models could not generalize 

well on the new data. Therefore, there was necessary to change the 



 

53 

 

strategy to the DL-based methods for a more robust and objective 

assessment of CE-NBI images. But it was still in mind to choose a 

path that is simple, easy to understand, and optimal for real-time 

application in clinical examination. 

i. Method 3 focused on fully automatic CE-NBI image 

classification based on transfer learning and cut-off layer 

technique. By the time of development, the CE-NBI data set 

has reached approximately 8000 images, but this number 

was not sufficient to develop and train a DL-based model 

from scratch. Therefore, this option was discarded in favor 

of a transfer learning approach. After researching 

supervised classification methods of endoscopy images, 

pre-trained VGG19 and ResNet50 architectures are selected 

as two well-known and profound networks. However, the 

preliminary training and validation results lead to the 

decision to choose ResNet50 as the final architecture for 

Method 3. In three different experiments, the fine-tuning 

strategy and image augmentation techniques are applied to 

adopt the network’s performance for CE-NBI image 

classification. Moreover, the ResNet50 is combined with the 

cut-off layer technique to optimize the network size to move 

toward real-time application. The result of this investigation 

is provided in Contribution 4. 

Besides Method 3, the DL-based pipeline included the image classification strategy 

based on ensemble modeling implemented on the final CE-NBI data set. Since the 

results of this approach have yet to be published, Method 4 is not presented as a 

core contribution to this thesis. However, this strategy and its performance are 

discussed and demonstrated in Chapter 3 and Appendix B as Method 4.  

Moreover, some parallel projects are ongoing on this topic, focusing on 

leukoplakia cases that are outside the domain of this thesis. 
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2.2 Contribution 1: Novel Automated Vessel Pattern 

Characterization of Larynx Contact Endoscopic Video Images 

 

2.2.1 Summary 

In this paper, we designed and implemented a set of handcrafted features – GF – 

to characterize the level of disorder of vessels in CE-NBI images. By using these 

features for different image classification tasks, we were aiming to see how these 

features can represent the geometrical characteristics of vascularization network 

and how these characteristics can be correlated to the type of laryngeal lesion and 

histopathology.  

The main implementation block of this approach included the selection of proper 

image pre-processing techniques, designing indicators that characterize 

geometrical attributes of vascularization networks in CE-NBI images, extracting 

handcrafted features from the indicators, and performing four supervised image 

classification scenarios according to the type of vascularization networks, type of 

laryngeal lesion, as well as benign and malignant laryngeal histopathology.  

The image pre-processing phase employed a three-step approach to enhance and 

segment vascularization networks in CE-NBI images. This step involved applying 

the Daubechies level 7 discrete wavelet transformation to the images, followed by 

the Frangi filter and skeletonization techniques. Subsequently, five indicators were 

computed based on the primary geometric characteristics of vascularization 

networks typically observed by Otolaryngologists in CE-NBI images. The 

direction-based indicators included the histogram of gradient direction (HGD) and 

rotational image averaging (RIA). Additionally, three indicators, namely angle 

(ANG), distance (DIS), and curvature (CUR), were introduced to capture the level 

of curvature exhibited by the vessels. Through qualitative analysis of the behavior 

of each indicator on three distinct types of vascularization networks, 24 

handcrafted features were extracted using conventional mathematical and 

statistical operations. Finally, supervised classification scenarios were performed, 

where four ML classifiers were trained using GF and subsequently tested on 

various subsets of the data set. 

2.2.2 Contribution 

The author of this thesis initiated the main idea and conducted the design and 

implementation of vessels’ pattern characterization indicators, handcrafted 

features, and image classification scenarios. Moreover, the author of this thesis 

reimplemented the image pre-processing techniques, performed the qualitative 

analysis of indicators’ behavior, and evaluated features’ performance on ML-based 

techniques. Finally, co-authors contributed to the data collection and preparation, 

results assessment, and manuscript revision.
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2.2.3 Novel Automated Vessel Pattern Characterization of Larynx Contact 

Endoscopic Video Images 
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Abstract
Purpose Contact endoscopy (CE) is a minimally invasive procedure providing real-time information about the cellular
and vascular structure of the superficial layer of laryngeal mucosa. This method can be combined with optical enhancement
methods such as narrow band imaging (NBI). However, these techniques have some problems like subjective interpretation
of vascular patterns and difficulty in differentiation between benign and malignant lesions. We propose a novel automated
approach for vessel pattern characterization of larynx CE + NBI images in order to solve these problems.
Methods In this approach, five indicators were computed to characterize the level of vessel’s disorder based on evaluation
of consistency of gradient and two-dimensional curvature analysis and then 24 features were extracted from these indicators.
The method evaluated the ability of the extracted features to classify CE +NBI images based on the vascular pattern and based
on the laryngeal lesions. Four datasets were generated from 32 patients involving 1485 images. The classification scenarios
were implemented using four supervised classifiers.
Results For classification of CE + NBI images based on the vascular pattern, polykernel support vector machine (SVM),
SVM with radial basis function (RBF), k-nearest neighbor (kNN), and random forest (RF) show an accuracy of 97%, 96%,
96%, and 96%, respectively. For the classification based on the histopathology, Polykernel SVM showed an accuracy of 84%,
86%and 84%,RBFSVMshowed an accuracy of 81%, 87%and 83%, kNN showed an accuracy of 89%, 87%, 91%,RF showed
an accuracy of 90%, 88% and 91% for classification between benign histopathologies, between malignant histopathologies
and between benign and malignant lesions, respectively.
Conclusion These promising results show that the proposed method could solve the problem of subjectivity in interpretation
of vascular patterns and also support the clinicians in the early detection of benign, pre-malignant and malignant lesions.

Keywords Contact endoscopy · Larynx · Vascular pattern · Feature extraction · Classification

Introduction

The larynx (voice box) is part of the head andneck region, and
laryngeal cancer belongs to the most common cancer types
with high incidence andmortality. Precancerous lesions such
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(Grand Number 03IPT7100X and by EFRE funding in context of the
ego.-INKUBATOR program (ZS/2016/09//81061/IK 01/2015)).
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1 INKA, Institute of Medical Technology, Otto-von-Guericke
University Magdeburg, Magdeburg, Germany

2 Department of Otorhinolaryngology, Head and Neck Surgery,
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as laryngeal dysplasia precede the development of laryngeal
cancer. 85–95%of laryngeal cancers are squamous cell carci-
nomas (SCC) [1]. Early detection and diagnosis of suspicious
mucosal lesions could provide an important opportunity to
preserve the larynx and vocal fold function. Histopathologi-
cal examination of suspicious laryngeal tissue using surgical
biopsy is currently the gold standard for diagnosis, which is
an invasive procedure and can cause serious problems for the
patient [2].

The development of larynx endoscopy techniques provide
a minimally invasive examination along with the possibil-
ity of early detection of vocal fold disorders. Barbalata and
Mattos [3] proposed a method for laryngeal tumor detection
and classification in narrow band imaging (NBI) endoscopic
images. They reported an accuracy of 84.3% in recognizing
malignant laryngeal tumors based on vascular characteriza-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-019-02034-9&domain=pdf
http://orcid.org/0000-0001-9741-9788


1752 International Journal of Computer Assisted Radiology and Surgery (2019) 14:1751–1761

tion of the tumor. Turkmen et al. [4] proposed an approach
to classify vocal fold disorders based on visible blood ves-
sels and shape of vocal fold edges, with a sensitivity of 86%,
94%, 80%, 73%, and 76% for healthy, polyp, nodule, laryngi-
tis, and sulcus vocalis classes, respectively. Moccia et al. [5]
applied texture-based and first-order statistical features on
100 × 100 px patches in NBI endoscopic images to classify
laryngeal tissue into four classes: tissue with intraepithe-
lial papillary capillary loop (IPCL)-like vessels, leukoplakia,
tissue with hypertrophic vessels and healthy tissue. They
used support vector machine (SVM) classifier and reported
achieved median classification recall of 93% with the best
performing feature. In a recent study by Nanni et al. [6],
an ensemble of convolutional neural networks (CNNs) and
handcrafted features for bioimage classification was pro-
posed. This ensemble obtained promising performance on
the NBI endoscopic images dataset [5] with 97.33% accu-
racy to differentiate between four laryngeal tissue classes.
Despite all the advantages, standalone application of nor-
mal white light video laryngoscopy or NBI cannot provide
highly magnified visualization of color, contour, texture, and
extent of mucosal lesions. For this reason, there is a need
to have a technique that provides more precise evaluation of
histopathology of laryngeal tissue for differential diagnosis
of laryngeal cancerous lesions.

Contact endoscopy (CE) is anoptical technique that allows
detailed examination of the superficial layers of laryngeal
mucosa providing a visualization of cells and vascular struc-
tures. This procedure is regularly performed usingwhite light
imaging, but it can also be combined with optical enhance-
ment technologies like NBI. NBI is able to increase tissue
contrast and to enhance the superficial vascular pattern at the
site of examination [7]. The first application of CE in the lar-
ynx was reported in [8] and its efficiency was subsequently
confirmed as a diagnostic tool in the evaluation of various
pathologies in the larynx [9].

In the early application of larynx CE, the main focus was
on finding histopathological information by evaluating the
cellular architecture of the tissue. An example of that is
the study [10], where a computer-assisted image analysis
for diagnosis of precancerous and cancerous lesions based
on the characterization of the cellular architecture in CE
images was used. Recent studies showed that the evalua-
tion of vascular patterns of the larynx superficial network
can provide the surgeons more information than the cellu-
lar field. This is because the structure and the organization
of blood vessels in the vocal fold is dynamic and undergoes
significant changes in non-cancerous and cancerous stages
[11,12]. Puxeddu et al. [13] visually classified vascular pat-
terns in enhanced contact endoscopy (ECE) images into five
categories for differential diagnosis between normal tissue
and hyperplasia versus mild dysplasia and carcinoma. But,

there is no study on automatic classification of the CE vas-
cular patterns.

It is recognized that the limiting factors of CE prevented
it to gain acceptable place in routine clinical practice despite
its potential advantages. Interpretation and evaluation of CE
require extensive learning from the clinicians [14,15]. Stud-
ies showed that at the beginning of the training, there is a risk
of subjective interpretation of vascular patterns [13,16]. This
problem may cause an increased number of false positives
which results in unnecessary biopsies [17]. Also, difficulty
in differentiation between hyperplasia and mild-to-moderate
dysplasia as well as an inability in differentiation of carci-
noma in situ from carcinoma was reported [2,13,15].

The main objective of this work is to automatically char-
acterize and assess vascular patterns in CE + NBI images to
classify images based on the vascular pattern and laryngeal
histopathology. For this, a new algorithm is proposed to eval-
uate the level of disorder in vessels based on the consistency
of gradient direction and the vessels’ curvature. Five indi-
cators were computed after image preprocessing and vessel
segmentation and then 24 features were extracted based on
the qualitative properties of the indicators. The extracted fea-
tureswere fed into four different classifiers to classify images
based on the vascular pattern and on larynx histopathology.

Material andmethods

Data acquisition

Video scenes of 32 patients presenting different primary
diagnosis were acquired during the examination of vocal
folds with a frame rate equal to 30 frame per seconds (fps)
in the department of Otorhinolaryngology at the University
Hospital Magdeburg. A contact endoscope (KARL STORZ,
Tuttlingen, Germany) in combination with an endoscopic
imaging system (VISERA 4K UHD, Olympus, Japan) was
used to capture the video scenes in Audio Video Interleave
(AVI) format. In all procedures, the magnification of the con-
tact endoscope was fixed at 60× in order to have a fixed
camera–tissue distance. For each patient, video segments
where contact endoscope was used were manually extracted.
Inside the video segments, we manually selected the inter-
vals where the video quality was acceptable to see the vessels
(good resolution without blur and artifacts). Then, one frame
every three frames were extracted from the selected intervals
in JPEG format images (1008 × 1280 px) and stored in the
patient datasets to use them for the further processing.

Patients’ data were pseudonymized, and only biopsy
results were used as the final diagnosis for each patient, based
on the classification of laryngeal histopathologies used by
the medical doctors at the Magdeburg University Hospital
(Fig. 1). In this classification, laryngeal histopathologies are
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Fig. 1 A classification for laryngeal histopathology used at the University Hospital Magdeburg. The severity increases from left to right

Fig. 2 Examples of CE + NBI images of six different cases: a healthy, b polyp, c reinke’s edema, d dysplasia mild, e carcinoma in situ, f carcinoma

divided into two main groups: benign and malignant, which
each of them subdivided in different histopathologies.

Image preprocessing and indicators extraction

Figure 2 shows examples of vocal fold images extracted from
videos belonging to 6 different histopathologies. One of the
main characteristics that clinicians observe in these images is
the level of disorder in vessels. In conversationwith our clini-
cians and based on recent publications, where vessel patterns
were manually analyzed and classified [12–14], 5 indica-
tors were proposed for characterizing vessel patterns. These
indicators intended to take into account geometrical charac-
teristics to assess the level of disorder of vascular patterns.
The main idea was to extract features from the indicators
and use them for classifying images according to the ves-
sel’s level of disorder and laryngeal histopathology. Figure 3
shows the main steps for the automatic feature extraction and
classification procedures which are subsequently described
in more details.

Image preprocessing and vessel segmentation

In order to remove the very low frequency trend in the image,
aDaubechies level 7 discretewavelet transformationwas first
applied to detrend each row and column of the image matrix
[18]. Then a Frangi filter was used for vessel enhancement
[19]. Frangi filter is a multiscale method using second order
local structure of an image (Hessian) to find tubular structures
as well as first-order transaction (gradient vector) to estimate
the direction of these structures. In the image, vessels appear
in different sizes. So it is important to have a measurement
scale (Sigma) which varies within certain range in order to
cover all different width and detect all vessels. The empiri-
cal tests performed in [19] showed that the range of Sigma
between 1 to 8 can cover all the possible vascular structures.
In this study, we have set the Sigma to the already tested
values in order to extract the vessels in CE + NBI images.
The resulting image was converted to a binary image fol-
lowed by a skeletonization procedure using iterative thinning
to reduce vessels to one-pixel-wide lines. This step resulted in
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Fig. 3 Block diagram with the
main steps of the proposed
approach

Fig. 4 Image preprocessing for three different vascular patterns in CE + NBI images: a original image, b homogenization, c Frangi filter,
d skeletonization

three processed images: enhanced, filtered, and binary skele-
tonized referred as IH , IF and IS , respectively (see examples
in Fig. 4).

Image indicator extraction

As previously explained, five different indicators were com-
puted to distinguish among the different vascular patterns

based on direction-based and curvature-based characteris-
tics.

Direction-based indicators Two indicators were based on
the consistency of the vessel direction, corresponding to his-
togram of gradient direction (HGD) and rotational image
averaging (RIA). HGD was computed over the image IH
and RIA was computed over the image IF .

123



International Journal of Computer Assisted Radiology and Surgery (2019) 14:1751–1761 1755

The gradient of an image is a directional change in inten-
sity. The image gradients are useful because the direction of
gradients are more consistent (similar directions) in straight
objects than in curved objects. For the HGD computation an
algorithm was designed to compute magnitude and direction
of the image gradients based on themethod explained in [20].
The magnitude is computed to localize regions of significant
gradient and the direction is used to compute an histogram
of distribution of angles. The gradient direction was normal-
ized based on the gradient magnitude values. In summary,
the HGD indicator correspond to the normalized histogram
of significant gradient directions.

RIA consists of computing the average over the rows of
IF for different rotation angles of the image. This average
should be peaky when vessels are more or less parallel at a
given angle and should showflatter behaviorwhen the vessels
are more curved. For that, the image was rotated from 0 to
360 degree in steps of 45 degrees, and at each rotation the
average over the image was calculated as:

sθ
row(x) = 1

N
×

N∑

y=1

IF (x, y) (1)

where sθ
row is the resulting average row vector for the rotation

angle θ , IF (x, y) represents the intensity value of the pixel at
the location (x, y) and N is the number of rows of the image.
The final RIA indicator correspond to the concatenation of
each sθ

row.

Curvature-based indicators For these indicators, vessel seg-
ments greater than 20 px in the image IS were taken into
account.

The first two indicators, angle (ANG) and distance (DIS),
were computed from the distance and the angle between a
defined reference point (A in Fig. 5) and each pixel belong-
ing to the vessel’s skeleton (C(x, y) in Fig. 5). The distance
is simply calculated as the Euclidean distance between the
reference and the skeleton point. For the angle computation
a second reference point (B in Fig. 5) was defined and then
the angle was computed between the vectors formed by the
two reference and by the original reference with the skeleton
point:

d(A,C) =
√

(xA − xC )2 + (yA − yC )2 (2)

θ(A,C) = arctan

(
‖−→AB × −→

AC‖
−→
AB · −→

AC

)
(3)

ANG andDIS correspond to vectors containing the result-
ing d and θ respectively for each pixel of a vessel segment.
For each image an ANG and DIS vector per vessel segment
is stored into a cell format.

Fig. 5 Computation of indicators ANG and DIS

The third curvature-based indicator, curvature (CUR),was
extracted directly from the level of curvature of the vessels.
For each identified segment, the curvature at each pixel point
is estimated using the method presented in [21], where a
global approximation of tangents using a two linear digital
straight segment is applied. TheCUR indicator corresponded
to the concatenation of the resulting curvatures of each iden-
tified vessel segment.

Results

Dataset generation

Four different datasets were generated in order to evaluate
the performance of the proposed approach. The approach
was first validated in terms of classifying CE + NBI images
based on the vascular patterns. The reason of performing
this test was to evaluate the ability of the algorithm to solve
the problem of subjective interpretation of vascular patterns.
Then the approach was validated in terms of its suitability to
classify images based on the histopathologies of the larynx,
with respect to level of disorder of vessels. These tests were
performed to evaluate the ability of the algorithm to solve
the problems related to difficulty in differentiation between
benign and malignant lesions.

Dataset based on the degree of disorder of vascular
patterns

Dataset I was generated to evaluate the performance of the
proposed approach to differentiate between different degrees
of disorder of vascular patterns. It included 1485 CE + NBI
images from 32 patients and two medical experts came to a
consensus to label them into three groups based on the vascu-
lar patterns: “order”, “disorder” and “very disorder”. “Order”
vascular patterns relate to thin and parallel vessels. “Disor-
der” vascular patterns refer to longitudinal vascular changes.
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Table 1 Histopathologies used
for the generation of the three
datasets

Type of cancer Histopathology Patients Images Total

Benign Cyst 3 150 20 patients 890 images

Polyp 4 130

Reinke’s edema 5 250

Papilloma 5 230

Dysplasia mild 3 130

Malignant Dysplasia severe 4 130 11 patients 465 images

Carcinoma in situ 4 155

Carcinoma 3 180

Total 31 1355 –

“Very disorder” vascular patterns involve perpendicular vas-
cular pattern representing dilated IPCLs [12].

Dataset based on the histopathologies of the larynx

Three datasets were generated following the classification of
laryngeal histopathologies (Fig. 1). Table 1 shows the dif-
ferent histopathologies including the number of patients and
images per patient that were used to generate these datasets
and to evaluate the performance of the proposed approach to
differentiate between different laryngeal histopathologies:

– Dataset II CE + NBI images of the benign histopatholo-
gies. 20 patients with 890 images labeled into four
groups: cyst, polyp & reinke’s edema, papilloma, and
dysplasia mild.

– Dataset III 465CE+NBI images belonging to 11patients
diagnosed with malignant histopathologies labeled into
three groups: dysplasia severe, carcinoma in situ and car-
cinoma.

– Dataset IV CE + NBI images belonging to 31 patients
with benign andmalignant histopathologies that included
a total of 1355 images labeled into two groups: benign
and malignant.

Qualitative analysis

Figure 6 shows the five indicators for three different vascular
patterns. The indicators have qualitative characteristics that
can be used to differentiate between different vascular pat-
terns. A visual analysis of the indicators allows the following
observation:

– The HGD indicator shows changes in the energy concen-
tration with respect to the angle of the gradient vectors.
Parallel vessel patterns show energy concentration of the
gradient vector in two angles, while more chaotic ves-
sel structures show a leakage in the energy distribution
and even an equal distribution of energies (flat indicator)

in the presence of spiral vessel patterns. It is possible to
assume that the energy and energy-related characteristics
of the HGD indicator can differentiate between different
vascular patterns.

– The matrix of row averages for each rotation angle of
the RIA indicator displays highly concentrated energies
in two rotational angles when vessel patterns are paral-
lel. This produces a final RIA containing a few number
of main peaks of high amplitude. The more the ves-
sel patterns become chaotic, the quantity of peaks and
the energy leakage increase in the RIA. Energy-related
features can therefore be used for characterizing vessel
patterns.

– The displayed signal for both ANG and DIS indicators
(Fig. 6) are a concatenated version for several vessel seg-
ments. This is why some signal discontinuities can be
observed in the indicators. Disrespecting these disconti-
nuities,we canobserve that a vesselwith significant curve
patterns produces ANG and DIS indicators involving
an increased number of changes per distance unit. This
means that the quantity of changes of sign in their deriva-
tives and the polynomial fitting errors will be higher for
disorder patterns than for ordered ones, making it more
suitable for distinguishing between patterns.

– CUR indicator variance increases when the vessel pat-
terns become disorder. This is mainly because disorder
patterns involve a higher number of loops and therefore
more significant curvature’s values. For this indicator the
features are also based on energies and peaks in the signal
and also statistical values as variance.

Following this analysis, 24 features extracted from the
5 indicators are proposed for assessing vessel patterns,
explained in the following.

HGD features Four features are proposed from the HGD
indicator. The first, second, and third features, F1, F2, and
F3, are simply computed as the total energy and the minimal
value of theHGD indicator, and as the difference between the
maximum and minimum value of the indicator, respectively.
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Fig. 6 Five indicators for three
different vascular patterns in
CE + NBI images: a original
image, b HGD indicator, c RIA
indicator, d ANG indicator, e
DIS indicator, f CUR indicator

(a)

(b)

(c)

(d)

(e)

(f)
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F1 =
NHGD∑

g=1

HGD2(g) (4)

F2 = min
g

[HGD(g)] (5)

F3 = max
g

[HGD(g)] − min
k

[HGD(g)] (6)

where g correspond to the sample index of the indicator and
NHGD correspond to the total number of samples of the HGD
indicator. The fourth HGD indicator F4 intends to assess
localized energy concentration of the indicator’s peaks. For
that, significant peaks in HGD are first identified using a
simple signal peak detector. Let oni and offi being the onset
and offset of the HGD peak waveform i (HGDPi ) and n p the
number of significant peaks identified in the HGD indicator.
Then F4 is computed as the ratio between the sum of the
energy of the peaks of HGD and its total energy.

F4 =

n p∑
1

[
off i∑
oni

HGDP2i

]

F1
(7)

RIA features Four features are extracted from the RIA indi-
cator. The first two features, F5 and F6, are computed as the
total energy and as the number of significant peaks in the
RIA indicator, respectively.

F5 =
NRIA∑

g=1

RIA2(g) (8)

F6 = Peaks[RIA] (9)

where g correspond to the sample index of the indicator,
NRIA correspond to the total number of samples of the RIA
indicator and Peaks denote a function for significant signal
peaks detection using a standard peak detector. For the third
RIA feature F7, a similar approach than for the computation
of F4 is proposed but using the average of the peak energies
instead of the summation.

F7 =
1
n p

n p∑
1

[
off i∑
oni

RIA2
i

]

F5
(10)

The fourth RIA feature F8 is computed as the average of the
ratios between amplitude and width of each peak waveform
of the indicator.

F8 = 1

n p

np∑

1

[
Amplitude (RIAPi )

Width (RIAPi )

]
(11)

where RIAPi correspond to the RIA peak waveform i , n p

to the number of identified RIA peaks and amplitude and

width correspond to functions that compute the amplitude
and width of each peak waveform.

ANG features Six features are extracted from the ANG indi-
cator. One of the main characteristic of the ANG and DIS
indicators is the change of sign in the derivative. Therefore,
the first four ANG features, F9, F10, F11 and F12, are com-
puted by exploiting this characteristic. Let M be the number
of vessel segments identified in an image. For each vessel
segment m, the derivative of the ANG indicator is first com-
puted using the derivative filter presented in [22]. Then, the
number of changes of sign sm is computed for each segment
m and is used for computing the features. F9, F10, F11 and
F12 are computed as the mean of sm , the total number of
changes of sign in an image, the maximal and the median of
sm , respectively.

F9 = 1

M

M∑

m=1

sm (12)

F10 =
M∑

m=1

sm (13)

F11 = max
m

[sm] (14)

F12 = median [sm] (15)

Additionally, two features are computed based on the error
em of a 3rd degree polynomial fitting for each vessel segment
m.

F13 = 1

M

M∑

m=1

em (16)

F14 = median [em] (17)

DIS features Six features were extracted from the DIS indi-
cator (F15 to F20) using the same equations which were
explained for the ANG indicator.

CUR features Four features are proposed from the CUR
indicator. The first three CUR features, F21, F22 and F23 are
simply computed as the total energy, the number of signifi-
cant peaks and the variance of the CUR indicator.

F21 =
NCUR∑

g=1

CUR2(g) (18)

F22 = Variance [CUR] (19)

F23 = Peaks [CUR] (20)

where g correspond to the sample index of the indicator and
NCUR correspond to the total number of samples of the CUR
indicator. The fourth CUR feature F24 takes into account
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the observation that more chaotic vessel patterns will result
in a bigger number of curves whose curvature level also is
bigger. This is why we proposed as feature the number of
signal peaks times the amplitude of the peak.

F24 = n p ×
n p∑

1

Amplitude (CUR) (21)

The approach was implemented inMATLABR2016b and
executed on a PCwith a CPUoperating at 2.30GHz resulting
in an execution time of 4.02 seconds per image for image
preprocessing, indicator computation, and feature extraction.

Features classification performances

SVM, k-nearest neighbors (kNN), and random forests (RF)
were used to classify CE + NBI images first based on three
different vascular patterns (database I) and then based on the
different histopathologies of the larynx (database II, III, and
IV).

SVM performs classification by finding the hyperplane
thatmaximizes themargin between the classes. The objective
of the SVM algorithm is to find an optimal hyperplane in an
N-dimensional space that distinctly classifies the data points.
In this study, SVM with polykernel and radial basis function
(RBF) kernel were used in order to classify linear and nonlin-
ear separable data, respectively. The grid search method was
used in order to optimize the SVM parameters using ten-
fold cross-validation and the classification was performed
using a sequential minimal optimization (SMO) algorithm.
In SVMPolykernel, there is one important parameter to opti-
mize which is C , while in SVM with RBF kernel, there are
two main parameters to optimize which are C and γ . C is
the regulation parameter that controls the cost of misclassifi-
cation on the training data and γ is the kernel parameter that
defines how far the influence of a single training example
reaches. In our study, we decided to make the range of C and
γ from 0.01 to 1000 with 10 times increment. The SVMwith
Polykernel performed the best with C = 1 and SVM with
RBF kernel showed the best performance with C = 1 and
γ = 0.01. Furthermore, for solving the multi-class problem,
a pairwise classifier trained the SVM to assign features into
multi-class [23–25].

kNN is a nonparametric method and performs classifica-
tion by finding the most similar data points in the training
data and making an educated guess based on their classifica-
tions. The input consists of the k closest training examples
in the feature space and the output is a class membership. In
this study and in order to classify and assign a new sample
to a new class, the distance of a sample was calculated using
Euclidean distance algorithm. In kNN, k is the main param-
eter to optimize. For that, we used grid search method to find

Table 2 Classification results using Polykernel SVM classifier

Database Accuracy Sensitivity Specificity AUC

Dataset I 0.973 0.980 0.983 0.977

Dataset II 0.846 0.819 0.942 0.917

Dataset III 0.864 0.856 0.931 0.917

Dataset IV 0.847 0.806 0.868 0.837

the optimized value with a range of k from 1 to 10 with step
size equal to 1 and used tenfold cross-validation to select the
best value. The classifier showed the best performance with
k = 3 [26].

RF is an ensemble learning method for classification that
operates by constructing amultitude of decision trees at train-
ing time and outputting the class. In this study, RFwas trained
via the bagging method. Bagging consists of randomly sam-
pling subsets of the training data, fitting a model to these
smaller data sets, and aggregating the predictions. Hence,
instead of searching greedily for the best predictors to cre-
ate branches, it randomly samples elements of the predictor
space, thus adding more diversity and reducing the variance
of the trees at the cost of equal or higher bias. There are
many parameters in RF that can be optimized. In this study,
we optimized only two important parameters which were the
depth of the trees and number of estimators. The depth of
the trees specifies the maximum depth of each tree and the
number of estimators specifies the number of trees in the
forest of the model. We made the range for the depth of the
trees from 1 to 10 with step size equal to 1 and for num-
ber of estimators from 10 to 100 with step size equal to 5.
The optimum parameters that were obtained after using grid
search method with tenfold cross-validation were the depth
of 8 with 50 trees [27].

A 24-dimensional space was fed into each classifier. The
selected classifiers were applied by employing WEKA 3.8.1
as a machine learning tool. For all classification scenarios,
a tenfold cross-validation was used for testing as well as for
hyperparameter tuning. In order to measure the performance
of each classifier, a confusion matrix was computed for each
classification scenario and the accuracy, sensitivity, speci-
ficity, and area under the curve (AUC) receiver operating
characteristics (ROC) were obtained from it. Tables 2, 3, 4,
and 5 illustrate the classification results for each classifier.
As we used tenfold cross-validation for all the classification
scenarios, the values presented in these tables are the average
results.

Discussion

To our knowledge, this is the first study on automatic char-
acterization of vascular patterns in CE + NBI images with
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Table 3 Classification results using RBF SVM classifier

Database Accuracy Sensitivity Specificity AUC

Dataset I 0.968 0.976 0.978 0.973

Dataset II 0.816 0.757 0.926 0.901

Dataset III 0.873 0.864 0.931 0.921

Dataset IV 0.837 0.834 0.839 0.837

Table 4 Classification results using kNN classifier

Database Accuracy Sensitivity Specificity AUC

Dataset I 0.965 0.974 0.978 0.989

Dataset II 0.892 0.879 0.958 0.969

Dataset III 0.877 0.873 0.939 0.956

Dataset IV 0.912 0.871 0.933 0.953

Table 5 Classification results using RF classifier

Database Accuracy Sensitivity Specificity AUC

Dataset I 0.966 0.975 0.979 0.996

Dataset II 0.906 0.900 0.965 0.981

Dataset III 0.884 0.879 0.943 0.973

Dataset IV 0.911 0.939 0.858 0.979

classification of the images using a set of features describing
the level of disorder of vascular patterns.

Regarding the evaluation of the vascular structure in the
CE images, there is a study [13] which classified the vascular
patterns in ECE images into five groups. This classification
was matched to the final diagnosis, with accuracy in the dif-
ferential diagnosis between normal tissue and hyperplasia
versus mild dysplasia and carcinoma of 97.6%. The result of
this classification was based on the experience of the clin-
icians with a risk of subjective interpretation of vascular
patterns in CE images [13,16]. In contrast to that, we used
an automated algorithm to characterize the level of disorder
of vascular patterns. This method showed the ability to dif-
ferentiate between three different vascular patterns with the
accuracy, sensitivity, specificity, and AUC of over 96%. For
the final diagnosis based on the vascular patterns in the ECE
images of the vocal fold, [13,15] reported the difficulty in
differentiation between hyperplasia and low tomoderate dys-
plasia. In comparisonwith our study, a different classification
was used for laryngeal histopathologies and the RF classi-
fier showed the best results to differentiate between benign
histopathologies with an accuracy of 90%, a sensitivity of
90%, a specificity of 96%, and AUC of 98%.

For the evaluation of the cellular architecture of the most
superficial mucosa in the head and neck area, according to
[28] CE has an accuracy of 72–92%, a sensitivity of 77–
100%, and a specificity of 66–100% to diagnose benign

and malignant head and neck mucosal lesions. These results
depend on the experience of clinicians and are based on the
evaluation of cellular structures. Our proposed approach can
perform an automatic differentiation between benign and
malignant lesions based on vascular structure. All classi-
fiers resulted in accuracy, sensitivity, specificity, and AUC
of over 83%. The studies that focus on the cellular struc-
ture of the laryngeal tissue in CE reported the difficulty in
diagnostic differentiation of carcinoma in situ from carci-
noma [2], as well as dysplasia severe from carcinoma in situ
and carcinoma [10,29]. Our approach has the potential to
solve these problems by distinguishing between three malig-
nant histopathologies. For that, RF classifier showed the best
results with the accuracy, sensitivity, specificity, and AUC of
88%, 87%, 94% and 97%, respectively.

Conclusion

Based on the results, the presented approach could provide
a confident way for clinicians to interpret vascular patterns
in CE + NBI images with high accuracy. It also confirms
the relevance of the vascular structures to the laryngeal
histopathologies and to the stage of laryngeal cancer. Our
approach has the potential to operate as an assisting sys-
tem to help the clinicians make the final decision about the
histopathology of the laryngeal tissue in the routine and sur-
gical procedures.

As a first work in this field, our main objective was to
propose an approach for characterization of the vascular
patterns. Based on the discussion with clinicians and their
requirements, we planned first to test the ability of the algo-
rithm to differentiate between benign and malignant cases
and then test the performance of the algorithm in each group
(benign and malignant) to differentiate between different
histopathologies. The next step of our work will be a multi-
class classification with other features and considering all
benign and malignant histopathologies. Further work is nec-
essary to improve the results by computing more indicators,
applying other feature extraction methods and implementing
feature selection techniques to evaluate the influence of each
class of features on the final results.

Also, the presented CE problems seem to be an ideal
basis for machine learning approaches such as shown by
[5,6] using texture-based features and CNNs. This is pos-
sible when a high amount of data is available. CE is not
a routine procedure in the clinical settings which caused a
limitation on the number of patients available for our study.
This problem also led to other limitations in the variety of
histopathologies, especially in the benign cases. Therefore,
the classification scenario of the benign cases was conducted
with only available histopathologies. Hence, increasing the
number of images per each dataset, testing the algorithm
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with other available classification of vascular patterns in CE
images, and applying other classification methods are sug-
gested for the future.
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2.3 Contribution 2: Laryngeal Lesion Classification Based on 

Vascular Patterns in Contact Endoscopy and Narrow Band 

Imaging: Manual versus Automatic Approach 

 

2.3.1 Summary 

In this paper, we designed and implemented a scenario for laryngeal lesion 

assessment based on manual and automatic CE-NBI image classification. We first 

aimed to compare the performance of both approaches on the classification of 

benign and malignant laryngeal lesions based on the vascular patterns in CE-NBI 

images. Then, we studied and evaluated the challenges of manual classification and 

showed how the GF combined with ML classifiers as a computer-based approach 

can assist Otolaryngologists in overcoming these problems.  

The main implementation block of this approach focused on the automatic 

classification strategy that was designed based on the routine and standard clinical 

examination of the laryngeal lesions. It included updating the CE-NBI data set, 

improving the image pre-processing step, fine-tuning the ML classifiers, and 

comparison of manual and automatic approaches based on the level of agreement/ 

disagreement between Otolaryngologists as well as misclassification levels of each 

approach based on the laryngeal histopathologies. 

The CE-NBI subset 1 consisted of two to five randomly chosen CE-NBI images 

per patient, which were subjected to manual evaluation by Otolaryngologists. This 

subset was subsequently employed as the testing set for the automatic approach. In 

the manual approach, three specialists and three resident Otolaryngologists 

visually assessed the CE-NBI images and categorized the patients into benign and 

malignant groups based on the appearance of PVCs in the images. For the 

automatic approach, Method 1 was utilized for CE-NBI image classification. This 

method integrated the GF with four ML classifiers. Notably, the Frangi filter was 

substituted with the Jerman filter, and the tuning parameters of the ML classifiers 

were adjusted accordingly. Two procedures were developed and implemented to 

compare the results obtained from the manual and automatic approaches. The study 

indicated that the subjective evaluation during visual assessment could be reduced 

by Method 1, especially in case of disagreements among Otolaryngologists. 

2.3.2 Contribution 

The author of this thesis initiated the main idea and conducted the design and 

implementation of the automatic classification scenario. In addition, the adjustment 

of the image pre-processing techniques and hyperparameter tuning of four 

supervised ML classifiers have been done by the author of this thesis. Finally, co-

authors helped conduct the manual classification scenario and contributed to the 

data collection and preparation, results assessment, and manuscript revision.
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Abstract: Longitudinal and perpendicular changes in the vocal fold’s blood vessels are associated
with the development of benign and malignant laryngeal lesions. The combination of Contact
Endoscopy (CE) and Narrow Band Imaging (NBI) can provide intraoperative real-time visualization
of the vascular changes in the laryngeal mucosa. However, the visual evaluation of vascular patterns
in CE-NBI images is challenging and highly depends on the clinicians’ experience. The current
study aims to evaluate and compare the performance of a manual and an automatic approach
for laryngeal lesion’s classification based on vascular patterns in CE-NBI images. In the manual
approach, six observers visually evaluated a series of CE+NBI images that belong to a patient and
then classified the patient as benign or malignant. For the automatic classification, an algorithm based
on characterizing the level of the vessel’s disorder in combination with four supervised classifiers was
used to classify CE-NBI images. The results showed that the manual approach’s subjective evaluation
could be reduced by using a computer-based approach. Moreover, the automatic approach showed
the potential to work as an assistant system in case of disagreements among clinicians and to reduce
the manual approach’s misclassification issue.

Keywords: laryngeal cancer; contact endoscopy; narrow band imaging; automatic classification;
feature extraction; machine learning

1. Introduction

Laryngeal cancer is the second most frequent malignant tumor of the head and neck region [1].
The vast majority of primary laryngeal cancers are Squamous Cell Carcinomas (SCC) arising from the
epithelial lining of the larynx, mostly as a result of tobacco and alcohol consumption. A total of 40% of
these cancers are diagnosed at an advanced stage, which is associated with a poorer prognosis and
quality of life [2]. The early diagnosis of laryngeal cancer is crucial to reduce patient mortality and
preserve vocal fold function.

Specific changes in the morphology and three-dimensional orientation of the vocal fold’s
sub-epithelial blood vessels have proved to be associated with the development of benign and
malignant laryngeal lesions. Several approaches have been proposed to describe and classify these
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vascular changes. Among the complex classification systems proposed by [3] and [4], the European
Laryngological Society (ELS) introduced a simplified classification that divides vascular changes into
longitudinal and perpendicular classes [5,6]. Longitudinal Vascular Changes (LVC) spread along
the length and width of the vocal fold and can be observed in all kinds of benign or malignant
lesions. On the contrary, Perpendicular Vascular Changes (PVC) develop perpendicularly towards
the mucosa, as a result of neoangiogenesis in laryngeal Papillomatosis, pre-malignant and malignant
histopathologies.

The endoscopic detection and evaluation of vascular changes can provide complementary
diagnostic information for clinicians to detect and differentiate between benign and malignant
laryngeal lesions [7]. As a minimally-invasive endoscopic technique, Contact Endoscopy (CE) can
provide real-time visualization of cellular and vascular structures of the laryngeal mucosa [8,9].
For the purpose of detecting and evaluating superficial vascular changes, several enhanced endoscopic
techniques such as Narrow Band Imaging (NBI) have been combined with CE to ease the detection of
vascular changes [10]. The use of enhanced CE showed promising results in the assessment of vascular
patterns followed by indicative of various laryngeal pathologies [4,11,12].

Clinicians can receive useful information about the type and suspected histopathology of laryngeal
lesions by evaluating LVC and PVC in enhanced CE images; however, it is a challenging task for
them. There are similarities between vascular patterns of benign and malignant laryngeal lesions.
The PVC with wide-angled turning points, as observed in laryngeal Papillomatosis can be difficult
to distinguish from PVC with narrow-angled turning points, as observed in pre-malignant and
malignant histopathologies [5,12–14]. Hence, the interpretation of vascular patterns in enhanced
CE images requires an extensive learning curve from the clinicians to reduce the risk of subjective
evaluation that can cause potential problems in differentiation between benign and malignant laryngeal
lesions [4,10,12,15,16].

In this study, we first aimed to present the results of manual versus automatic classification of
benign and malignant laryngeal lesions based on the vascular patterns in CE-NBI images. We then
evaluated the issues of manual classification and subsequently showed how a computer-based
approach can assist the clinicians to overcome these problems. A manual and an automatic
classification approach were defined to conduct this evaluation. In the manual approach,
six experienced and less experienced otolaryngologists individually evaluated PVC and LVC in
CE-NBI images of patients and classified them into benign and malignant groups. An updated version
of the algorithm proposed in [17,18] with 24 features and four supervised classifiers has been used to
classify CE-NBI images into benign and malignant groups. The results of the two approaches were
compared in terms of classification sensitivity and specificity. The potential of an automatic approach
to assist the clinicians is presented through two evaluation strategies.

2. Material and Methods

2.1. Data Acquisition

CE-NBI images were extracted from video scenes of adult patients who received a
microlaryngoscopy for benign, pre-malignant or malignant lesions of the vocal folds. Video scenes were
captured using an Evis Exera III Video System with integrated NBI-filter (Olympus Medical Systems,
Hamburg, Germany) and a rigid 30-degree contact endoscope (Karl Storz, Tuttlingen, Germany) with a
fixed magnification of 60 to have a fixed camera–tissue distance. For each video scene, we selected the
time intervals where the video quality was good enough to visualize the vessels. Then, one in every
ten frames was extracted from the selected intervals in JPEG format images (1008 × 1280 pixels) to
have unique and non-redundant CE-NBI images.
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2.2. Dataset Generation

The CE-NBI dataset included 1632 extracted images of 68 patients. The patients’ data were
pseudonymized. Based on the WHO classification [19], histological diagnoses were used to label
images as belonging to a benign or a malignant class. Table 1 shows the histopathologies with the
number of patients and images used for the generation of the dataset.

Two image subsets were created from the CE-NBI dataset. The Subset I included a series of
two to five randomly selected CE-NBI images of each patient—total of 336 images, ≈ 20% of the
dataset. The Subset II included the rest of the CE-NBI images—a total of 1296 images, ≈ 80% of the
dataset, and was used as the training set of the automatic approach. The Subset I was evaluated by the
otolaryngologists in the manual approach and then used as the testing set for the automatic approach.
Figure 1 presents some examples of CE-NBI images with LVC and PVC belonging to the generated
dataset.

Table 1. Histopathologies used for the generation of the dataset.

Type of Lesion Histopathology Number of Patients Number of Images

Benign

Cyst 3 90
Polyp 5 71

Reinke’s edema 12 329
Hyperkeratosis 4 82

Squamous Hyperplasia 3 75
Papillomatosis 11 286
Amyloidosis 2 32

Nodule 1 26
Granuloma 1 28

Fibroma 1 2

(Pre)Malignant

Mild Dysplasia 3 77
Moderate Dysplasia 2 49

Severe Dysplasia 3 68
Carcinoma In Situ 9 249

SCC 8 168

Total 68 1632

a b c

d e f

Figure 1. Examples of Longitudinal Vascular Changes (LVC) and Perpendicular Vascular Changes
(PVC) in Contact Endoscopy (CE)-Narrow Band Imaging (NBI) images with different histopathologies:
(a) Reinke’s edema, LVC; (b) polyp, LVC; (c) amyloidosis, LVC; (d) severe dysplasia, PVC, (e) carcinoma
in situ, PVC; (f) Squamous Cell Carcinomas (SCC), PVC.
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2.3. Manual Approach

Three specialist and three resident otolaryngologists evaluated the images and classified the
patients into benign and malignant groups. The residents had less than two years of experience
in operating with CE-NBI images and the specialists worked for more than five years with such
images. The otolaryngologists were blinded to the histologic diagnosis. They used the ELS guideline
to independently visually evaluate the CE-NBI images of Subset I based on PVC appearance in the
CE-NBI images, as explained in [12].

2.4. Automatic Approach

We used the algorithm presented in [17,18] to perform the automatic approach. The algorithm
consists of a pre-processing step involving vessel enhancement and segmentation [20]. A feature
extraction step was then applied to extract 24 geometrical features based on the consistency of gradient
direction and the curvature level. Supervised classification step was conducted using the features and
four classifiers to classify CE-NBI images into benign and malignant groups.

In this study, we made two main changes to the algorithm proposed in [17,18]. First, the Jerman
filter [21] was used as pre-processing for the vessel enhancement step instead of the Frangi filter to
overcome the problems related to the established enhancement function, not well adapted to natural
variations of the vascular morphology. Second, the values of the tuning parameters of four classifiers
including Support Vector Machine (SVM) with Polykernel and Radial Basis Function (RBF) [22],
k-Nearest Neighbor (kNN) [23] and Random Forest Classifier (RFC) [24] were updated to have the
optimum classification results with the current dataset.

In order to cover all the possible vascular structures, the vesselness parameter σ of the Jerman
filter was set in the range of 0.5 mm to 2.5 mm with a step size of 0.5 mm. The parameter τ controlling
the response uniformity was empirically set as 1.

The hyperparameter tuning process of all classifiers was updated using a grid search combined
with 10-fold cross validation.

The performance of SVM is maily affected by the regulation parameter (C) and kernel parameter
(γ). The regulation parameter together with Polykernel and RBF controls the trade-off between
achieving a low error in training data. γ determines how quickly class boundaries dissipate when
they get far from the support vectors in SVM with RBF. The range of C and γ values were set within
the range of 0.001 to 1000 with a ten-fold increment. The SVM with RBF completed the high overall
performance with C = 1 and γ = 0.01 and SVM with Polykernel indicated the best results with C = 1.

Euclidean Distance was applied to calculate the distance of a sample in the case of kNN. To select
the optimum k, a range from 1 to 20 with the step size equal to one were used. kNN confirmed the
best performance at k = 5.

The optimization for RFC was done by adjusting the depth of trees and the number of estimators.
The range of depth of the trees was set from 1 to 20 with step size equal to one. For the number of
estimators, values from 10 to 100 with an increase of five was defined. The classifier gave the best
performance at a depth of 8 with 55 trees.

In all classification scenarios, Subset I and Subset II were used as the testing and training sets,
respectively. CE-NBI images were labeled as 0 for benign and as 1 for malignant groups. Each classifier
was trained using the images’ labels and feature vectors that were computed form the CE-NBI images
of the training set. For the testing, the features vectors computed from the CE-NBI images of the testing
set were fed into the predictive model of each classifier and then the expected labels were collected.



Sensors 2020, 20, 4018 5 of 12

3. Evaluation Strategy

3.1. Classification Performances of Manual and Automatic Approaches

The global performances of the manual and automatic classification were evaluated using two
classification measurements: sensitivity and specificity.

In the manual classification, the otolaryngologists assessed the set of CE-NBI images in the Subset
I and classified each patient’s image set as benign or malignant. Following [12], the PVC-positive
patients with the malignant histological diagnosis were considered as true positive cases. With this
assumption, a confusion matrix was created and the average value of sensitivity and specificity of all
otolaryngologists, specialists and residents, was calculated using the following parameters:

• True Positive: PVC-positive patients with malignant lesions.
• True Negative: PVC-negative patients with benign lesions.
• False Negative: PVC-negative patients with malignant lesions.
• False Positive: PVC-positive patients with benign lesions.

In the automatic classification, the classifiers classified each CE-NBI image of Subset I as benign or
malignant. A confusion matrix was calculated for each classifier using the predicted and actual labels
of the images. Then, sensitivity and specificity were calculated using the following parameters:

• True Positive: actual image label is malignant, predicted image label is malignant.
• True Negative: actual image label is benign, predicted image label is benign.
• False Negative: actual image label is malignant, predicted image label is benign.
• False Positive: actual image label is benign, predicted image label is malignant.

Based on the descriptions above, the sensitivity and specificity values can show the performances
of classifiers/otolaryngologists to correctly classify malignant and benign images/patients.

3.2. Comparison Procedure Between Manual and Automatic Classification

In a routine clinical procedure, the otolaryngologist evaluates a set of CE-NBI images of a patient
and then identifies a patient’s lesion as benign or malignant. For the manual classification in this
work, the clinicians performed a similar routine, making a decision based on a set of images belonging
to a patient. Since the automatic classification does not classify a patient but an image, in order to
compare automatic to manual classification we made the following assumption: if a given classifier
correctly classifies more than half of the images of a patient, then the patient is considered as a correct
classification performed by this classifier. Following the assumption, two procedures for comparing
between manual and automatic classification were proposed.

The first comparison procedure consists of comparing both approaches based on the level of
agreement/disagreement between clinicians for classifying a patient as benign or malignant. In this
aim, patients were divided into three categories:

• Category I includes 29 patients. All otolaryngologists correctly classified these patients.
• Category II includes 26 patients. One to five otolaryngologists correctly classified these patients.
• Category III includes 13 patients. All otolaryngologists misclassified these patients.

The second comparison procedure aims to compare manual and automatic classifications in terms
of their misclassification levels depending on the histopathologies. This evaluation was performed to
analyze the histopathologies in benign and malignant groups that caused significant difficulties for
otolaryngologists and then to see how the automatic approach behaves with these cases.

We divided the patients into the 15 groups presented in Table 1. For each histopathology,
a misclassification percentage was computed per patient for the automatic and manual classification
as follows:
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• Misclassification percentage of all otolaryngologists per patient in each histopathology group:(
Number of doctor(s) who misclassified the patients
Total number of doctors × Total number of patients

)
× 100 (1)

where the total number of patients was the number of patients for the corresponding
histopathology.

• Misclassification percentage of every classifier per patient in each histopathology group:(
Number of misclassified patient(s)

Total number of patients

)
× 100 (2)

• Misclassification percentage of all classifiers per patient in each histopathology group:(
Number of misclassified patient(s) by all classifiers

Total number of classifiers × Total number of patients

)
× 100 (3)

4. Results and Discussion

Table 2 shows the global performances of the manual and automatic classification. In the manual
approach, otolaryngology specialists showed a better performance than the otolaryngology residents.
These results prove that the interpretation of CE-NBI images based on vascular patterns is subjective
and highly depends on otolaryngologists’ experience.

For the automatic approach, RFC with a sensitivity of 0.846 and SVM with RBF kernel with a
specificity of 0.981 showed better results in comparison to the other classifiers.

The overall specificity values of otolaryngologists are low. This means that both groups had
difficulties in distinguishing patients with benign histopathologies from malignant ones visually.
This fact can be explained by the similarity between vascular patterns of benign and malignant
histopathologies that can not be distinguished easily. For instance, Papillomatosis is a benign
histopathology with similar vascular patterns than malignant histopathologies. This similarity leads to
visually misclassify Papillomatosis as malignant. However, all four classifiers showed higher specificity
than otolaryngologists proving the ability of automatic approach to overcome such a problem.

Table 2. General performance of manual and automatic approaches

Classification Measurements Sensitivity Specificity

Manual Classification (per patient) Otolaryngology specialists 0.955 0.727
Otolaryngology residents 0.630 0.609

All otolaryngologists 0.818 0.630

Automatic Classification (per image)

SVM with polykernel 0.830 0.882
SVM with RBF 0.806 0.981

kNN 0.814 0.863
RFC 0.846 0.895

Figure 2 shows the detailed results of the first comparison procedure consisting of comparing both
approaches based on the level of agreement/disagreement between clinicians for classifying a patient
as benign or malignant. A first visual inspection shows that the classifiers individually misclassified 1
to 2 images in some patients at the Category I, where all otolaryngologists correctly classified these
patients. Nevertheless, based on the assumption made in Section 3.2, the automatic approach did not
misclassify any patient of this category.

For the patients belonging to Category II, both manual and automatic increased their
misclassification levels compared to Category I. In the automatic approach, it is possible to observe
that several images belonging to a patient can be misclassified. However, if we consider the automatic
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classification per patient, only for one patient, two classifiers (SVM with polykernel and RFC) perform
a misclassification. On the other hand, otolaryngologists showed a significant misclassification in
some cases. For example, in the case of patients p26, p34 and p 72, five clinicians misclassified
the patients, while the classifiers classified the patients correctly. These patients were diagnosed as
Papillomatosis and Hyperkeratosis cases and belong to benign histopathologies. Figure 3a–c, displays
the PVC vascular patterns in the CE-NBI images of these patients. As pointed out in the introduction,
the difference between PVC in benign and in malignant histopathologies is not visually evident
for the otolaryngologist. This causes a significant difficulty for the clinicians to distinguish benign
from malignant cases based on the vascular patterns. Based on the results, the automatic approach
showed the ability to identify this difference and then classify the patients correctly because it is
capable of quantifying and differentiating these tiny differences. SVM with RBF did not show any
misclassification per patient in this category.

For the Category III, where all otolaryngologists misclassified the patients, SVM with RBF
misclassified fewer images compared to the other three classifiers. Concerning the classification
per patient performed by the classifiers, it is possible to see that misclassifications were made for only
two patients. Particularly, for patient p10 three classifiers failed in their classification. According to
the histopathology, it corresponds to a patient presenting Hyperkeratosis. A set of CE-NBI images
of this case is presented in Figure 3d. The type of vascular patterns of Hyperkeratosis can notably
vary from one patient to another one. The CE-NBI dataset included 4 patients for this histopathology,
presenting LVC and PVC vascular patterns. Due to this variation, the classifier’s learning process
using the proposed features [17,18] can be complicated. SVM with RBF showed no misclassification
per patient in this Category.

These results show that the complexity of a manual analysis of a laryngeal lesion can be related
to the type of histopathology and therefore we decided to perform a separated analysis based on the
histopathology of the lesion. Table 3 presents the results of this second comparison procedure.

For the benign histopathologies, otolaryngologists showed high misclassification percentage of
83%, 77%, 46%, 33% and 27% for Fibroma, Papillomatosis, Hyperkeratosis, Squamous Hyperplasia
and Polyp, respectively. Except for Fibroma, the misclassification level of each classifier is lower than
the manual classification. Notably, in the case of Papillomatosis, the misclassification is significantly
reduced in each classifier. If all classifiers are considered, the misclassification decreases from 77% to
7% in this histopathology. Papillomatosis causes classification difficulties to the otolaryngologists due
to their vascular patterns that has similar characteristics to the malignant histopathologies. SVM with
RBF and kNN seems to have the ability to solve this issue with 0% misclassification.

In the case of Fibroma, the misclassification percentage varied significantly among the four
classifiers. This can be explained by the reduced number of images that the dataset contains for this
type of histopathology (only one patient and two images).

In the malignant group, the otolaryngologists had the highest misclassification percentage of 61%
for mild dysplasia. This histopathology can have PVC as well as LVC vascular patterns that usually
appear in benign histopathologies. Hence, it is challenging for the otolaryngologists to classify patients
with this condition as malignant visually. For this histopathology, the four classifiers performed well
by classifying every patient correctly.

In general, SVM with RBF showed no patient misclassification for all histopathologies.
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Figure 2. An overall view of the manual and automatic classification of every patient of the dataset;
Green color: correct classification; Red color: misclassification. C1 to C4 represents the four classifiers;
C1: Support Vector Machine (SVM) with polykernel, C2: SVM with Radial Basis Function (RBF), C3:
k-Nearest Neighbor (kNN) and C4: Random Forest Classifier (RFC). I1 to I5 represent five testing
images for each patient. D1 to D6 represent the six otolaryngologists.
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(a)

(b)

(c)

(d)

Figure 3. CE-NBI images of four patients from Category II and Category III: (a) p26, (b) p34, (c) p72
and (d) p10.

Table 3. Misclassification percentage of every histopathology category based on patient. C1 to C4
represent the four classifiers; C1: SVM with polykernel, C2: SVM with RBF, C3: kNN and C4: RFC.

Type of Lesions Histopathology Man. and Auto. Classification (per Patient)

Doctors C1 C2 C3 C4 All Classifiers

Benign

Cyst 0% 0% 0% 0% 0% 0%
Polyp 27% 0% 0% 0% 0% 0%

Reinke’s edema 7% 0% 0% 0% 0% 0%
Hyperkeratosis 46% 25% 0% 25% 25% 19%

Squamous Hyperplasia 33% 0% 0% 0% 0% 0%
Papillomatosis 77% 9% 0% 0% 18% 7%

Nodule 0% 0% 0% 0% 0% 0%
Granuloma 0% 0% 0% 0% 0% 0%

Amyloidosis 8% 0% 0% 0% 0% 0%
Fibroma 83% 0% 0% 100% 100% 50%

(Pre)Malignant

Mild Dysplasia 61% 0% 0% 0% 0% 0%
Moderate Dysplasia 17% 0% 0% 0% 0% 0%

Severe Dysplasia 17% 0% 0% 0% 0% 0%
Carcinoma In Situ 9% 0% 0% 0% 0% 0%

SCC 25% 0% 0% 13% 0% 3%
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5. Conclusions

Assessment of vascular patterns in CE-NBI images of vocal folds can provide valuable information
for the clinicians to make the correct diagnostic decision before treatment. In this study, we showed
how the evaluation of vascular patterns can be challenging for the otolaryngologists and how a
computer-based approach can help clinicians ease this process.

In general, the otolaryngology specialists showed better classification performance than the
residents in the manual approach. This proves that the interpretation of vascular patterns is subjective
and depends on the clinicians’ experience, as pointed out by several publications [4,10,12,15,16].
Both groups of otolaryngologists showed relatively low specificity on classifying a case as benign
or malignant. This explains the difficulties in the visual classification of benign histopathologies.
In the case of the benign group, otolaryngologists had the highest misclassification percentage for
Papillomatosis and Hyperkeratosis. In the automatic approach, all four classifiers showed a higher
specificity than both groups of otolaryngologists and showed significantly less misclassification
percentage for Papillomatosis and Hyperkeratosis. The otolaryngology specialists showed significantly
higher sensitivity than the residents. This means that specialists with more experience can easily detect
PVC in CE-NBI images, while it is more challenging for the residents. In the malignant group, most of
the misclassifications of otolaryngologists happened in the case of Mild Dysplasia and SCC. Although
all classifiers showed lower sensitivity than otolaryngology specialists, they significantly reduced the
misclassification percentage for Mild Dysplasia and SCC, compared to the otolaryngologists.

Two facts can explain the lower sensitivity and higher misclassification percentage that the
classifiers show in the malignant group than the benign group. First, the CE-NBI dataset included
more images in the benign group than in the malignant group (less training images were available
for the malignant group). A significant part of CE-NBI images of the benign group belonged to the
Papillomatosis with PVC patterns similar to those of malignant histopathologies. Second, the 24
features take only into account geometrical characteristics of the vascular patterns and no other
characteristics that can also be important for the classification procedure. Due to these two points, it is
possible that the algorithm shows some errors and classifies the CE-NBI images of malignant cases as
benign. Hence, it is important to balance the number of CE-NBI images in the dataset for future works
and develop new methods to improve the differentiation between wide and narrow angled points
of PVCs.

The automatic approach showed its capacity to perform as an assistant system when there are
disagreements among otolaryngologists or when they all misclassified the patients. SVM with RBF
had the best performance and did not show any misclassification per patient in all the categories. This
means that the combination of the proposed 24 features and SVM with RBF classifier, can provide
valuable feedback for the clinicians to make decisions regarding the treatment planning. In general,
the automatic approach has the potential to overcome the current issues in the field of enhanced CE
and can operate as an assisting system to provide a more confident way for clinicians to learn as well
as to make intraoperative decisions about the method and extent of surgical resection in patients with
laryngeal cancer or benign vocal fold lesions in the routine surgical procedures.
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2.4.1 Summary 

In this paper, we designed and implemented a set of handcrafted features – CyEfF 

– to evaluate the textural characteristics of CE-NBI images. We aimed to see the 

significance of CyEfF in representing the textural characteristics of these forms of 

endoscopic images and how these two features and their combination with GF can 

be correlated to the type of laryngeal lesion. The main implementation block of 

this approach included selecting proper image pre-processing techniques, defining 

the CyEfF formulation, adjusting manual parameters for computing CyEfF, 

performing statistical ranking tests, and conducting supervised image classification 

scenarios according to the type of laryngeal lesion. 

The main idea of CyEfF is to represent the CE-NBI image as a hilly surface, where 

different intensity profiles can be identified between defined starting and ending 

points. Each of these profiles can be considered a Tour de France stage trajectory 

where a cyclist needs to perform a specific effort to arrive at the finish line. When 

many cyclists travel through different trajectories, an average effort of all cyclists 

can be obtained to represent important textural characteristics of the image. Energy 

and power as two CyEfF were extracted based on this concept. The image pre-

processed step using a Median filter was followed by features extraction, where 

some parameters were defined and set manually. The performance of this feature 

set was first studied using two statistical ranking tests. Then, two CE-NBI image 

classification scenarios were conducted where the standalone CyEfF and their 

combination with GF and conventional textural features were used to train four 

supervised ML classifiers and later were tested on CE-NBI image classification 

based on laryngeal lesions. The performance of CyEfF in this study showed that 

this feature set could describe the textural characterization of CE-NBI images with 

only two features, and their combination with GF could be part of a CAD system. 

2.4.2 Contribution 

The author of this thesis performed the design and implementation of CyEfF 

formulation and computation. Moreover, the reimplementation of the image pre-

processing techniques, performing experiments for defining manual parameters, 

evaluation of features’ performance based on features ranking techniques, as well 

as supervised ML-based image classification scenarios have been conducted by the 

author of this thesis. Furthermore, co-authors assisted in the conceptualization of 

the methodology and helped in data collection and preparation, results’ assessment 

as well as revising the paper.  
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Abstract: Background: Feature extraction is an essential part of a Computer-Aided Diagnosis (CAD)
system. It is usually preceded by a pre-processing step and followed by image classification. Usually,
a large number of features is needed to end up with the desired classification results. In this
work, we propose a novel approach for texture feature extraction. This method was tested on larynx
Contact Endoscopy (CE)—Narrow Band Imaging (NBI) image classification to provide more objective
information for otolaryngologists regarding the stage of the laryngeal cancer. Methods: The main
idea of the proposed methods is to represent an image as a hilly surface, where different paths can be
identified between a starting and an ending point. Each of these paths can be thought of as a Tour
de France stage profile where a cyclist needs to perform a specific effort to arrive at the finish line.
Several paths can be generated in an image where different cyclists produce an average cyclist effort
representing important textural characteristics of the image. Energy and power as two Cyclist Effort
Features (CyEfF) were extracted using this concept. The performance of the proposed features was
evaluated for the classification of 2701 CE-NBI images into benign and malignant lesions using four
supervised classifiers and subsequently compared with the performance of 24 Geometrical Features
(GF) and 13 Entropy Features (EF). Results: The CyEfF features showed maximum classification
accuracy of 0.882 and improved the GF classification accuracy by 3 to 12 percent. Moreover, CyEfF
features were ranked as the top 10 features along with some features from GF set in two feature
ranking methods. Conclusion: The results prove that CyEfF with only two features can describe the
textural characterization of CE-NBI images and can be part of the CAD system in combination with
GF for laryngeal cancer diagnosis.

Keywords: texture feature extraction; classification; contact endoscopy; narrow band imaging; larynx

1. Introduction

Medical images contain crucial information that is analyzed by clinicians to find ab-
normalities and diagnose diseases. The level of tortuosity of anatomical structures such as
blood vessels is one type of information that can be useful for clinicians. Vascular networks
in tumors are irregular in size, shape, and branching pattern, lack the normal hierarchy,
and do not display the recognizable features of arterioles, capillaries, or venules [1]. For ex-
ample, in ophthalmology, retinal vascular tortuosity can be a potential indicator of diseases
such as hypertension, diabetes, or atherosclerosis [2]. The changes in the organization and
structure of the larynx vocal fold’s blood vessels are directly related to the development of
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benign and subsequent malignant laryngeal lesions. The manual assessment of vascular
structures can, however, result in significant inter-observer variability and with that in
subjective diagnosis [3,4].

Nowadays, Computer-Aided Diagnosis (CAD) systems use different feature extraction
methods in combination with classification algorithms to assist clinicians in solving such
problems. Features extraction is the process of generating features such as color, shape, and
texture to describe the content of an image [5]. The significance of these features for describ-
ing image characteristics are of great importance and essential for the good performance
of the CAD. There are several deep learning-based and hand-crafted feature extraction
methods for medical image analysis. The deep learning-based approaches include the
automatic features extraction and classification that mostly result in a high performance,
but the majority of these approaches are computationally expensive to train, need lots
of data and are known as the black art [6,7]. In the biomedical field, texture features
are often used for characterizing an image using several hand-crafted feature extraction
methods [8–14]. Although these methods have shown good performances for computing
features, they have some drawbacks. Usually, a large number of features is needed for
the classification, resulting in computationally expensive solutions. Moreover, most of the
proposed features in the literature have limited or no meaning for the clinicians [5,15].

In this work, we propose a novel approach for image texture characterization. The
main principle of the proposed approach is to consider an image as an irregular relief
surface where different paths can be traced between a starting and an ending point. Each
path can be thought of as a Tour de France course profile, where a cyclist needs to perform
a specific effort to arrive at the finish line. The effort performed by a large number of
cyclists following different paths in the hilly relief image can be representative of the image
texture. Using this concept, we have extracted two features that we dubbed the Cyclist
Effort Features (CyEfF).

The usability of the proposed approach was tested to classify larynx Contact En-
doscopy (CE)—Narrow Band Imaging (NBI) images into benign and malignant classes.
CE-NBI is an enhanced endoscopic imaging technique that allows a detailed examination
of laryngeal mucosa and provides more precise information about the structure of the
superficial capillary network and sub-mucosal vessels in comparison to other endoscopic
techniques. The visual evaluation of endoscopic images such as CE-NBI, is a subjective
process causing difficulty for clinicians to recognize malignant lesions [3,16,17]. Several
computer-based diagnosis approaches were applied to laryngeal endoscopic images to
overcome this issue and present complementary information about the state of the larynx
for clinicians [18]. Recent studies included a Deep Convolutional Neural Network (DCNN)
using laryngoscopic images for larynx cancer detection [19], a set of texture-based features
and Deep Learning-based descriptors extracted from endoscopic NBI images for laryn-
geal Squamous Cell Carcinoma (SCC) detection [20], a set of texture-based and first-order
statistical features [21] plus an ensemble of Convolution Neural Networks (CNN) with
texture and frequency domain based features [22] for larynx cancerous tissue classification
using endoscopic NBI images, a set of features combined with supervised Machine Learn-
ing techniques for vascular patterns’ assessment in CE-NBI images and laryngeal cancer
diagnosis [23–25].

With the primary goal of this work to show the significance of the CyEfF for classifica-
tion purposes, we have compared the proposed features with two other sets, including 24
Geometrical Features (GF) [24] and 13 Entropy Features (EF) [21] that have been proposed
in the literature for the larynx endoscopic image classification. The results showed that
the classification performance of the two proposed CyEfF is similar to the performance of
other feature sets that includes a greater number of features and indicated the significance
of the CyEfF set on improving the classification performance of GF.
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2. Method
2.1. Cyclist Effort Features Formulation

Figure 1 depicts the main idea behind the proposed feature extraction method. We
show in Figure 1a two CE-NBI images of vessels. A 2-Dimensional (2D) grayscale image
can be viewed as a 3-Dimensional (3D) surface by representing the intensity values of each
pixel (being located in the x-y plane) along the z-axis. With that, we can consider each
image as a hilly relief surface where a path can be traced between a starting and an ending
point (see Figure 1b). We can imagine each of these paths as a Tour de France bicycle
race stage. When a cyclist starts racing within an image, one trajectory of cyclist creates a
sort of Tour de France stage profile (see Figure 1c). The cyclist needs to make an effort to
accomplish each stage. This effort can be assessed by the energy that the cyclist spends
and the associated cyclist’s power. We can see in Figure 1c how these two trajectories can
involve profiles that require a different degree of effort of a cyclist.

When a large number of cyclists, randomly distributed over the whole image, are
performing different trajectories, an average effort of all cyclists can be obtained by com-
puting average energy and power. This average effort can be representative of the image
texture. As in the Tour de France, a stage can be classified as flat, mountainy or hilly.
Our main idea using this new concept (cyclist energy and power features) is to classify
texture in images since the average effort of cyclists in an image can vary according to its
characteristic patterns.

RGB Image 1

(a)

RGB Image 2

(b)

Define one 
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Figure 1. (a): RGB 2D image. (b): 3D representation of image. (c) Stage profile of similar trajectory on two images.

There are three primary forces that a cyclist must overcome in order to move forward
[26]:

• Gravity Force (FG): is one of the critical factors in cycling because a cyclist needs
to fight against it cycling uphill. It can be calculated in metric units as FG = g ·
sin(arctan(S)) · m, where S is the percentage grade to measure the steepness of a hill.
g is the gravitational force constant and m is the combined weight of cyclist and bike.

• Rolling Resistance Force (FR): is the friction between the tires and the road surface and is
calculated in metric units as FR = g · cos(arctan(S)) · m · Cr, where Cr is a dimensionless
parameter that captures the bumpiness of the road and the quality of tires.

• Air Resistance Force (FA), which for the purposes of this work can be assumed to be a
constant.
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The total force resisting the cyclist is, therefore, FT = FG + FR + FA and is the key
parameter to calculate the cycling power and energy as:

P = FT · v and E = FT · v · t (1)

where v is the cycling velocity and t is the time duration of the cyclist’s effort. These two
parameters are used to compute the textural features proposed in this work.

2.2. Cyclist Effort Features Computation

The block diagram in Figure 2 shows the feature extraction process. Since the computa-
tion of cyclist power and energy requires the estimation of slopes in an image are known to
be sensitive to high-frequency noise, the image is first pre-processed using a Median filter.
For this filter, the kernel size was set empirically to 5 × 5 after visually evaluating the effect
of three different kernel sizes on some randomly selected CE-NBI images. Then, different
straight-line trajectories are generated inside the image between randomly selected starting
and ending coordinate points. The trajectories need to include sufficient data from the
image; hence each trajectory had at least 50-pixels length, equivalent to around 1% of the
image’s size. The pixel intensity values under each trajectory line are stored as vector
arrays that correspond to race profiles.

Let TPk(i) be the pixel value of the trajectory profile vector k (with k = 1, ..., Nk and Nk
corresponding to the total number of trajectories generated in an image) at the pixel index i
(i = 1, ..., Ni with Ni > 50 being the length of the vector TPk). For computing the cycling
power and the cycling energy features of a full image, the power and energy of these
individual TPk trajectories should be first calculated. For that, each trajectory vector TPk is
first divided into Ns non-overlapped sections of length L. Then the power and energy of
each one of these sections are computed using Equation (1). Figure 2 shows an example of
the calculation process for the section Ns = 15. The section’s slope percentage Sn and time
interval tn have to be estimated for each generated section n (n = 1, ..., Ns). A trajectory
can be seen as a curve in the 2-D plane, where the x-axis correspond to the pixel elements i
and the y-axis correspond to the value of the vector TPk(i). Following this representation,
let An = (Anx, Any) and Bn = (Bnx, Bny) being the starting and ending coordinate points,
respectively, of the trajectory in section n. Then, the time interval can be computed as a
simple ratio between a distance and the velocity as:

tn =
d(An, Bn)

v
(2)

where d(An, Bn) corresponds to the Euclidean distance between An and Bn and v to the
cyclist velocity. The section’s slope percentage Sn can be calculated as the ratio between
the y-axis jump between An and Bn and the length of the section n:

Sn =
Bny − Any

L
(3)

Using the estimated Sn and tn it is possible to compute the power Pn and energy En
of section n using the Equation (1). Then the power and energy of a trajectory TPk are
computed as:

Pk =
Ns

∑
n=1

Pn and Ek =
Ns

∑
n=1

En (4)

FP and FE of the full image are computed as the average values of Pk and Ek, respectively.
The approach was implemented in MATLAB R2019a and executed on a PC with a CPU

operating at 1.60 GHz resulting in an average execution time of 0.71 seconds per image.
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3. Experiments
3.1. Data Acquisition and Dataset Generation

The usability of the proposed method was evaluated in CE-NBI image classification.
An updated version of the Dataset IV in [24] including 48 patients and 2701 CE-NBI images
was used. Patients’ data were anonymized and the biopsy results were used to label images
into benign and malignant lesions according to the WHO classification [27]. The benign
group involved images of patients with Cyst, Polyp, Reinke’s edema, Papillomatosis and
Mild Dysplasia. The malignant group included patients diagnosed with Severe Dysplasia,
Carcinoma in situ and SCC.

For further parameter settings and feature evaluation procedure, 80% and 20% of CE-
NBI images of the whole dataset were assigned to the training and testing sets, respectively.
The images of patients were exclusively tied to separate sets in order to limit the chance of
possible over-fitting. Training set was used for hyperparameter optimization as well as
training process and testing set was used to evaluate the performance of the features.

3.2. Parameter Settings

Following the Equations (1) to (4) and their computation, six parameters needed to
be defined. CE-NBI images in the training set were used to find the optimum number
of trajectories Nk and the length of each section L. The values from 50 to 800 with step
size of 50 were set to find the Nk. As the CyEfF values of the selected images did not
change significantly for Nk > 500, the number of trajectories Nk was set to 500. L was
defined within the range of 1 to 10 pixels, with the step size was equal to one. The optimum
CyEfF values of the selected images were achieved at L = 2 pixels. To transform the
pixel to the meter unit, we assumed that the longest path in the image is equal to the
approximately longest path in Tour de France (200, 000 m). The gravitational force g, the
cyclist-bike weight m, and Cr related with tires and road characteristics are constant values
(g ≈ 9.8 (m/s2), m = 80 (Kg) [26], Cr = 0.005 [26]). For this work, the cyclist velocity v can
also be taken as a constant, and we have set this value to 11 (m/s), which corresponds to
the average velocity in the Tour de France.

3.3. Feature Evaluation Procedure

The performance of the proposed features was compared with two other feature sets
presented in the literature for classifying larynx endoscopic images: Geometrical Features
(GF) and Entropy Features (EF).

• The GF set describes the level of disorder of vascular patterns in CE-NBI images [23,24].
This set of features intended to take into account geometrical characteristics of vessels
including the consistency of gradient direction and the vessels’ curvature and showed
high performances on CE-NBI classification in different datasets [24,25].

• The EF set was used in combination with other types of features for classifying
laryngeal tissue in NBI images. We converted each image into a grey-scale level
and then divided it into seven different patch sizes of 50 × 50, 100 × 100, 150 × 150,
200 × 200, 250 × 250, 300 × 300 pixels and the whole image. In each patch, the entropy
was computed following [21] and stored in a matrix. The mean and variance were
computed as features for each image.

GF includes 24 features (F1 to F24), EF 13 Features (F25 to F37) and CyEfF two features
(F38 and F39). In order to reduce the very-low frequency trends in the image that can affect
the features computation, a homogenization filter was first applied to the image before the
features’ computation [24,28].

Two classification scenarios were conducted to evaluate the performance of the feature
sets for the classification of CE-NBI images into benign and malignant classes. For that, four
supervised classifiers including Support Vector Machine (SVM) with Polykernel and Radial
Basis Function (RBF) [29], k-Nearest Neighbours (kNN) [30], and Random Forests (RF) [31]
were used. First, each feature set was individually exposed to the classifiers to compare
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their ability in classifying CE+NBI images. Second, the combinations of feature sets were
created by adding EF and CyEfF to the GF. This scenario was performed to see how the
proposed features (CyEfF) and the already used features for texture characterization in
endoscopy images (EF) can improve the classification performance of the GF.

A 10-fold Cross-Validation with grid search method was used on training data and
all feature sets for hyperparameter optimization. Then, the optimized parameters were
applied to create the predictive model of classifiers for every feature sets. The features
calculated from the CE-NBI images in the testing set with 10-fold Cross-Validation was
used to evaluate these predictive models. A confusion matrix was computed in each testing
scenario and the accuracy, sensitivity and specificity were obtained from it.

The optimization was conducted to find the value of the regulation parameter (C) and
kernel parameter(γ) for the SVM classifier. The values within the range of 0.001 to 1000
with a ten-fold increment were assigned for both parameters. The SVM with Polykernel
demonstrated the highest performance with C = 1 and the SVM with RBF indicated the
best results with C = 1 and γ = 0.01.

For optimizing the kNN performance, the Euclidean distance was used as distance
metric. Also, values within the range of 1 to 1000 with step size equal to one were used
to select the optimum k. The optimum performance of the kNN classifier was obtained at
k = 10.

The values of depth of trees and the number of estimators were adjusted to reach the
optimized performance of RF. The number of estimators were defined within the range
of 1 to 1000, with an increase of five. For the depth of the trees, values from 1 to 50 with
step size equal to one were set. The classifier showed the highest overall performance at a
depth of 7 with 60 trees.

Two feature ranking methods, including t-test [32] and Wilcoxon signed-rank test [33],
were used to find the top-ranked features that have more influence on the classification
results. The t-test investigates how significant the differences between groups are. It
provides p-values as well. A p-value is the probability that the results from sample data
occurred by chance. In most cases, p-value of 0.05 is accepted to mean the data is valid.
Wilcoxon signed-rank test can be used to identify if samples from two independent yet
related distributions are significantly different.

4. Results and Discussion

Figure 3 shows a qualitative example of one trajectory on four different CE-NBI images
associated to benign and malignant lesions. Based on the Ek and Pk values in Figure 3c, the
energy and power of the trajectory is significantly different between benign and malignant
images. Furthermore, the FE and FP values as the two CyEfF show the variation between
two groups of images.

Table 1 shows the classification results of the first scenario described in the previous
section. The SVM classification results with Polykernel and RBF had the highest accuracy
of 0.882 and 0.875 using CyEfF. With the kNN and RF, GF showed the highest performance
with the accuracy of 0.885 and 0.920, respectively. According to the performed result, CyEfF,
with only two features, achieved comparable results than GF and EF, which used 24 and
13 features, respectively.

In studies [24,25], a subset of current CE-NBI image dataset were used for classification
of CE-NBI images into benign and malignant classes. In comparison to the results in [24],
the CyEfF set with Polykernel and RBF SVM showed a better classification accuracy. Fur-
thermore, CyEfF with Polykernel SVM and kNN showed higher sensitivity and specificity
than the results presented in [25].

Table 2 presents the results of the second classification scenario in which the combi-
nation of GF and CyEfF showed better performance than the combination of GF and EF.
The classification accuracy of four classifiers increased from 3 to 12 percent by adding the
two proposed features to the 24 GF, in which the highest accuracy of 0.966 was achieved
with the kNN classifier. The combination of GF and CyEfF with four classifiers showed
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higher accuracy, sensitivity and specificity in comparison to the results in [24,25] to classify
CE-NBI images into benign and malignant classes. Moreover, in comparison to the other
texture-based feature extraction methods such as local binary patterns (LBP) and gray-level
co-occurrence matrix (GLCM) that were applied to the laryngeal tissue classification in NBI
laryngoscopy [21], the combination of CyEfF and GE feature sets with Polykernel SVM
showed the higher performance. These results prove the significant effect of the CyEfF on
improving the classification of CE-NBI images with the already used GF set.
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Figure 3. (a): Original CE-NBI image, (b): Pre-processed image with one random trajectory, (c): The stage profile of the random
trajectory plus the cyclist’s energy and power values of the random trajectory and the 500 trajectories (whole image).

Table 1. Classification results of four classifiers using three features sets.

Classifiers Accuracy Sensitivity Specificity
GF EF CyEfF GF EF CyEfF GF EF CyEfF

SVM with Polykernel 0.820 0.739 0.882 0.818 0.792 0.845 0.822 0.596 0.924

SVM with RBF 0.806 0.761 0.875 0.817 0.802 0.826 0.821 0.515 0.920

kNN 0.885 0.781 0.874 0.911 0.812 0.834 0.836 0.531 0.911

RF 0.920 0.788 0.859 0.935 0.801 0.831 0.892 0.538 0.886

Table 2. Classification results of four classifiers using combination of feature sets.

Classifier Accuracy Sensitivity Specificity
GF+EF GF+CyEfF GF+EF GF+CyEfF GF+EF GF+CyEfF

SVM with Polykernel 0.782 0.944 0.816 0.942 0.738 0.947

SVM with RBF 0.773 0.897 0.813 0.981 0.702 0.818

kNN 0.795 0.966 0.837 0.959 0.718 0.973

RF 0.808 0.956 0.831 0.952 0.724 0.961
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In order to confirm the significance of the proposed CyEfF, Table 3 shows 10 top-
ranked features for each ranking method. Energy (F38) and power (F39) features are
ranked as the top 10 features along with some features from GF set in both ranking
methods. Figure 4a shows the box plot of energy and power features with the p-values
equal to 4.5654 × 10−35 and 1.4419 × 10−32, computed from the t-test, respectively. Based
on these values, the proposed features showed a statistically significant difference between
benign and malignant classes. Also, Figure 4a shows, that the range of energy and power
features for benign and malignant classes are distinguishable. Figure 1b presents that the
combination of energy and power features has a separation among benign and malignant
classes. These results prove the influence and significance of the proposed CyEfF on the
classification results.
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Benign Malignant Benign Malignant

P-value = 4.5654 × 10−35 P-value =1.4419 × 10−32(a) (b)

Figure 4. (a): Box plot of energy and power features. (b): Projected data points of benign and malignant classes using CyEfF.

Table 3. Feature ranking results: F01-F24: GF, F25-F37: EF and F38, F39: CyEfF.

Method Ranking
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

t-test F38 F21 F39 F14 F24 F22 F09 F20 F17 F15

Wilcoxon signed-rank F14 F38 F39 F21 F24 F08 F09 F22 F15 F07

The very-low frequency trending characteristics of the image background are usually
highly problematic for extracting features since significant pixel values involve progressive
changes in the image plane that may affect the extraction of important texture information.
In order to study how this type of noise can affect the proposed features, we have computed
the method performances by removing the homogenization pre-processing stage. Results
show that the classification performance does not significantly vary with or without
the pre-processing stage. The accuracy of 0.868, 0.867, 0.850 and 0.872 using SVM with
Polykernel and RBF, kNN and RFC were achieved without the pre-processing, respectively.
In comparison to the results in Table 1, the accuracy varied only 1 to 2 percent.

5. Conclusions

CyEfF approach is an understandable and intuitive method that showed promising
results with less amount of data for training in comparison to other deep learning-based
feature extraction methods. According to the presented results, CyEfF can describe the
textural characterization of CE-NBI images with only two features, which is one of the main
advantages of this approach over other hand-crafted feature extraction methods. Moreover,
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removing the pre-processing stage related to attenuation of very low-frequency trending
characteristics of the image did not significantly affect the classification performance of
proposed features. However, further evaluation should be conducted for this matter in
future work.

As the focus of this paper is on the CE-NBI images, we compared only the perfor-
mance of the proposed features with other research works in the field of CE-NBI endo-
scopic imaging modality [23–25]. For this reason, comparative experiments to already
existing texture-based feature extraction methods on this dataset would be suggested for
further development.

Based on the recent advances and improvements in the field of CNN-based approaches,
there is a high probability that the application of these methods can result in better in
better performance in CE-NBI classification and can overcome the critical limitations of
the hand-crafted feature extraction methods. However, it will take a great amount of time
to collect and label the data to develop such a method in the medical field for real clinical
use. According to our knowledge, there is no CNN-based method for the classification
of CE-NBI images in the literature. Hence, the comparison between deep learning-based
and hand-crafted feature extraction methods for CE-NBI classification is necessary for
future developments.

In spite of the technological advancements, differentiation between malignant and
benign lesions in the larynx is difficult in reality, irrespective of the clinicians’ level of
experience. In addition, the subjectivity in laryngeal cancer diagnosis has been reported
several times, resulting in invasive surgical biopsy and subsequent histological examination.
CyEfF in combination with GF as part of a CAD system can potentially solve these problems
in CE-NBI image classification and help the clinicians to make final decisions about the
stage of laryngeal cancer in the routine and surgical procedures.

With the primary objective of this work to present the significance of the CyEfF for CE-
NBI image classification, testing the proposed set of features in other imaging modalities is
something that should be accomplished for future work. Based on the presented results,
the proposed approach can be used as a new texture-feature extraction method in medical
image analysis. For example, it can be applied to the fundus images, as the level of
tortuosity of vessels in these images is also crucial for clinicians.
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2.5.1 Summary 

In this paper, we developed a fully automatic CNN approach based on transfer 

learning combined with a cut-off layer technique for CE-NBI image classification. 

The study's main objective was to evaluate the performance of a DL-based method 

on laryngeal lesion assessment as well as the capability of such a strategy to deal 

with the complexity of vascularization networks in CE-NBI images. 

The main implementation block of this approach included selecting a pre-trained 

DL architecture, defining the fine-tuning strategy, implementing the cut-off layer 

technique, performing data augmentation, and conducting training, validation, and 

testing experiments to arrive at the optimum model. 

The pre-trained ResNet50 model on the ImageNet database was adopted as the 

backbone of the DL-based approach. The fine-tuning technique wherein all the 

layers were fine-tuned was applied to this selected architecture. Moreover, the cut-

off-layer technique to discard part of the network was integrated into the last layer 

in the feature extraction part of the network, where the classifier part begins. Three 

experiments were conducted to determine the ResNet50 model for CE-NBI 

classification based on laryngeal lesions. The main difference between these 

experiments was related to the strategy of data separation. Apart from this, a few 

experiments also considered different network hyperparameters and changes in the 

number of data using data augmentation techniques. In the training phase, binary 

cross entropy was used as a loss function along with SGD as the optimizer and 

early stoppage was set with a patience of 5 epochs to avoid possible overfitting. 

The fine-tuned model with a size equal to 1% of the complete ResNet50 

architecture trained on the data set, including data augmentation, showed faster 

training with less prone to result in overfitting. Therefore, this model showed 

effective performance as part of the CAD system on laryngeal lesion assessment 

using CE-NBI images. 

2.5.2 Contribution 

The author of this thesis initiated the main idea and conducted the pre-trained DL 

architecture selection and fine-tuning of hyperparameters. Moreover, the author of 

this thesis designed the training and testing experiments, implemented the cut-off 

layer technique, and evaluated the performance of the trained models in different 

experiments on CE-NBI image classification. Finally, co-authors contributed to the 

data collection and preparation, conducting the training and testing experiments, 

results assessment, and manuscript revision.
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Abstract: (1) Background: Contact Endoscopy (CE) and Narrow Band Imaging (NBI) are optical
imaging modalities that can provide enhanced and magnified visualization of the superficial vas-
cular networks in the laryngeal mucosa. The similarity of vascular structures between benign and
malignant lesions causes a challenge in the visual assessment of CE-NBI images. The main objective
of this study is to use Deep Convolutional Neural Networks (DCNN) for the automatic classification
of CE-NBI images into benign and malignant groups with minimal human intervention. (2) Meth-
ods: A pretrained Res-Net50 model combined with the cut-off-layer technique was selected as the
DCNN architecture. A dataset of 8181 CE-NBI images was used during the fine-tuning process in
three experiments where several models were generated and validated. The accuracy, sensitivity,
and specificity were calculated as the performance metrics in each validation and testing scenario.
(3) Results: Out of a total of 72 trained and tested models in all experiments, Model 5 showed high
performance. This model is considerably smaller than the full ResNet50 architecture and achieved
the testing accuracy of 0.835 on the unseen data during the last experiment. (4) Conclusion: The
proposed fine-tuned ResNet50 model showed a high performance to classify CE-NBI images into the
benign and malignant groups and has the potential to be part of an assisted system for automatic
laryngeal cancer detection.

Keywords: Deep Convolution Neural Network; contact endoscopy; narrow band imaging; classifica-
tion; larynx; cancer

1. Introduction

Laryngeal cancer is one of the most common malignancies in the head and neck area,
with a growing incidence rate every year [1]. The treatment options and prognosis depend
on the cancer stage at the time of diagnosis. Precancer or early-stage laryngeal cancer is
associated with high rates of laryngeal preservation, a local control rate of 87–89%, and a
favorable prognosis [2]. On the other hand, advanced-stage cancer requires multi-modal
treatment strategies resulting in significant toxicities and a poorer quality of life. Despite
optimized treatment schemes, studies report high recurrence rates and a 5 year overall
survival of 33–61% [3,4].
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Nowadays, the endoscopic imaging modalities have become the standard procedure
for screening and early diagnosis of laryngeal cancerous and precancerous lesions in clinical
settings. These methods are widely applicable before performing a surgical biopsy for
histological tissue examination in the context of the so-called optical biopsy [5,6]. As one of
these techniques, the combination of Contact Endoscopy (CE) with Narrow Band Imaging
(NBI) can represent an enhanced and magnified visualization of changes in the morphology
and three-dimensional orientation of vocal fold’s subepithelial blood vessels [7,8]. The
visual evaluation of these vascular structures in CE-NBI images can provide complementary
information for the diagnosis of laryngeal cancerous or precancerous lesions. However, the
use of CE-NBI for diagnosis highly relies on the experience of the otolaryngologists and
requires several years of training. This can result in a subjective decision process followed
by an overtreatment or undertreatment planning [7,9,10].

The advanced development of feature engineering, Machine Learning (ML), and
Deep Learning (DL) methods in the area of medical applications provides several paths
to assist the clinicians and overcome such challenges in the clinical environments. In this
regard, several computer-based approaches were used on the larynx endoscopic images.
These methods can assist otolaryngologists by providing complementary information
regarding the stage of the cancer and characteristics of the vascular trees and larynx
epithelial tissue [11]. In the area of laryngoscopic and NBI image analysis, an ensemble
of Convolutional Neural Networks (CNN) with texture and frequency-domain-based
features [12] and a set of hand-crafted texture and first-order statistical features [13] were
proposed for larynx cancerous tissue classification. A Deep Convolutional Neural Network
(DCNN) achieved the overall accuracy of 86% to detect cancer, precancerous lesions, and
normal tissues in larynx [14]. A image classification system based on CNN outperformed
the manual assessment of trainees in discriminating cysts, granulomas, nodules, normal
cases, palsies, papillomas, and polyps [15]. The combination of hand-crafted and DL-based
features showed a median classification recall of 98% for the diagnosis of early stage
Squamous Cell Carcinoma (SCC) in larynx [16]. Moreover, another CNN-based approach
achieved an equivalent performance to otolaryngologists’ predictions for the diagnosis of
laryngeal SCC [17].

Given that there is a need for more magnified and enhanced endoscopic techniques
such as CE-NBI images, two sets of hand-crafted features combined with ML techniques
were proposed for the automatic assessment of these type of images. These methods have
the potential to provide an evaluation of vascular characteristics [18,19], assist otolaryngol-
ogists when there are disagreements regarding the final diagnosis [20,21], and present a
computer-based classification of benign and malignant laryngeal lesions [22]. However,
these works exhibited certain drawback in terms of the multiple image preprocessing stages
that resulted in the loss of information from the images as well as manual feature extraction
processes. Additionally, these studies focused only on some specific characteristics of
the CE-NBI images, such as vascular geometry and textural characteristics and not the
structures as a whole.

The main objective of this study is to use a fully automatic CE-NBI endoscopic image-
based DCNN approach for the classification of laryngeal lesions and provide an objective
assessment for otolaryngologists during the treatment process. This is performed to circum-
vent the disadvantages posed by ML-based approaches and rather have an approach that
is more streamlined and automatic with minimal human intervention in the classification
of lesions. To our knowledge, this is the first study that applies a DCNN-based approach
for larynx CE-NBI image classification. The proposed approach uses the transfer learning
concept which includes a pretrained ResNet50 model instead of developing a network
from the scratch. Moreover, the pretrained ResNet50 model was tuned and combined with
cut-off-layer technique to achieve the optimum architecture for this classification task. The
performance of the proposed approach was evaluated in three different experiments. Then,
it was compared to the performance of the state-of-the-art methods in the area of CE-NBI
image classification.
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2. Materials and Methods

In this section, we highlight the aspects of data preparation, discuss the model archi-
tecture, and detail the steps carried out during the experiments and training of the DCNN.

2.1. Data Preparation

CE-NBI video scenes of 146 patients who went through a microlaryngoscopy proce-
dure were captured using an Evis Exera III Video System with integrated NBI-filter (Olym-
pus Medical Systems, Hamburg, Germany). This setup included a rigid 30-degree contact
endoscope (Karl Storz, Tuttlingen, Germany) with a fixed magnification of 60×. Then,
8181 CE-NBI images were extracted from the videos as explained in Esmaeili et al. [7,18].
We went through each video scene and manually selected the time intervals where the
video quality was good enough to visualize the blood vessels. Then, one in every ten
frames was automatically extracted from the selected intervals in JPEG format images
(1008 × 1280 pixels) to have unique and nonredundant vascular pattern in CE-NBI images.
All patients’ data were pseudonymized, and only biopsy results were taken to label images
into benign and malignant lesions according to the WHO classification [23]. The benign
class has 5313 images of patients with histopathologies such as Cyst, Polyp, Reinke’s edema,
Papillomatosis, Hyperplasia, Hyperkeratosis, and Mild Dysplasia. The malignant group
includes 2868 images of patients diagnosed with Moderate Dysplasia, Severe Dysplasia,
and Carcinoma in situ and SCC. The data were preprocessed and prepped in terms of size
before being used as an input for the DCNN.

2.2. Model Architecture

The DCNN architecture used in this study is discussed here. DCNNs have gained
recognition due to their adaptability for image recognition problem statements. These
networks also yield higher accuracies as compared to other ML methods, due to their
ability to solve problems from end-to-end rather than breaking them down as in the case
of ML.

Transfer learning concept has become an important part of the growth of DL-based
approaches in the field of medical image classification. It provides the chance of reusing
a pretrained model as a starting point for a new classification task with comparatively
few data. The pretrained network is a network that has already been introduced to a
specific dataset and learned to extract valuable features from it. The dataset used for
the pretraining is not always the same as the actual dataset for the second classification
task, but the extracted features are similar in nature. This network can then be used as a
starting point to learn a new classification task. In this study, a pretrained ResNet50 on
ImageNet [24] database was considered for CE-NBI image classification task. Residual
Networks (ResNets) are considered as examples of very deep classic structures in the
computer vision literature [25]. ResNet50 is 50 layers deep, and the deepness level is
related to the network’s capability to capture high (or higher) patterns. ResNets optimize
toward zero, which in turn accelerates the convergence to the optimal point in the solution
space, instead of a real number. Batch normalization is another interesting feature that is
embedded in ResNet’s structure. It speeds up the convergence and in doing so reduces
the training epochs required. It also has a regularization effect during the training phase.
Figure 1 shows the overall view of the proposed architecture.

The pretrained ResNet50 was combined with the fine-tuning strategy as well as cut-
off-layer technique to obtain the optimum performance for CE-NBI image classification.
Fine-tuning a pretrained DCNN is beneficial as it enables the user to speed up training
and overcome smaller dataset sizes. The fine-tuning technique wherein all the layers were
fine-tuned was adopted for this work. In order to account for the issue of overfitting of
ResNet50, we proposed setting the cut-off-layer to discard part of the network. The cut-off
layer is the last layer in feature extraction part of the network, where the classifier part
begins. This layer tends to be where the activation occurs. While training the network, it
was noted that overfitting occurred due to the large size of the original ResNet architecture.
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Hence, the cut-off layer was set empirically. This resulted in several models with different
layer counts and therefore feature counts depending on where the cut-off layer was set.
The final cut-off layer was selected based on the overall performance of the network.
Then, different variations of the model were implemented for having sufficient number of
features in a trade off between the training stage success and generalization ability of the
model on unseen images.

Input 
Layer

Conv 1 Set
Max Pooling

Conv 2 Set
Global Max 

pooling

224×224×3

112×112×32 56×56×32

56×56×256
256×1

1×1

Figure 1. The overall architecture of the proposed approach.

2.3. Experiments

The experiments for this work were divided into three parts as shown in Table 1.
A total of three experiments were conducted to determine the model most suitable for
our problem statement. In the conducted experiments, a total of 72 models were trained
and tested using the data collected. The main difference between these experiments was
related to the strategy of data separation. Apart from this, a few experiments also took into
consideration different network hyperparameters and changes in the volume of data. In
Experiment 1, the separation into training and testing sets was performed randomly to form
a 80–20 train-test split. Additionally, different cut-off-layer strategies and classifiers were
tested in this experiment. In Experiment 2, we employed a manual method for splitting the
training and testing data. This was performed so as to ensure that none of the test data
were part of the training data as well as the images of patients exclusively tied to separate
sets. Then, the best-performed model from Experiment 1 was tested in this experiment.
In Experiment 3, data augmentation (vertical and horizontal flipping) was applied, and
testing data selection criteria were kept the same as Experiment 2. The best-performed
model from Experiment 1 was also tested under the specified condition of Experiment 3.

Table 1. The summary of three experiments classified according to the different conditions.

Experiment Data
Augmentation Cut-Off Layer Classifier Dataset

Separation

Experiment 1 No

conv2_block3_out
(230 K parameters)

Global Max
Pooling

Randomconv2_block3_out
(230 K parameters)

Global Max
Pooling + Dropout

No cut-off
(23.5 M parameters)

Global Max
Pooling

Experiment 2 No conv2_block3_out
(230 K parameters)

Global Max
Pooling Manual

Experiment 3 Yes conv2_block3_out
(230 K parameters)

Global Max
Pooling Manual
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2.4. Training Details

The ResNet50 model was adopted as the backbone for this work. Input images were
resized to 224 × 224 pixels in the preprocessing stage. Data augmentation on the images
was performed by employing the horizontal and vertical flipping methods. Binary cross
entropy was used as a loss function along with Stochastic Gradient Descent (SGD) as the
optimizer. The parameters were tuned as follows: batch_size = 32, learning_rate = 0.001,
decay = 1 × 10−6, momentum = 0.9, Nesterov momentum = True. The cut-off layer was set
at “conv2_block3_out” in an iterative process. Early stoppage was also set with a patience
of 5 epochs. The network was trained for a total of 35 epochs and programmed using
Python version 3.8.8. The study was carried out on a deep learning workstation with and
Nvidia Quadro P6000 GPU. The 5-fold crossvalidation technique was used for validating
the models.

2.5. Performance Metrics

The study used accuracy, sensitivity, and specificity as performance metrics. These are
given below along with their formulas:

Accuracy =
TruePositives + TrueNegatives

TotalNumbero f Images
(1)

Sensitivity =
TruePositives

TruePositives + FalseNegatives
(2)

Speci f icity =
TrueNegatives

TrueNegatives + FalsePositives
(3)

3. Results

The performance of the selected models from the three experiments are listed in
Table 2. On average, 69.9 min was taken to execute the training and validation phase
during different experiments, followed by a testing phase that took on average 52.3 s.

Table 2. Results of the selected models in each experiment. Metrics of the validation and testing
phases are averages over five folds.

Experiment Model
Validation Testing

Accuracy Sensitivity Specificity Loss Accuracy

Experiment 1

Model 5 0.979 0.967 0.986 0.06 0.991

Model 6 0.943 0.914 0.959 0.15 0.958

Model 7 0.967 0.960 0.974 0.11 0.984

Experiment 2 Model 5 0.976 0.958 0.985 0.07 0.929

Experiment 3 Model 5 0.925 0.888 0.960 0.20 0.835

Of the all models trained and tested, Models 5–7 showed the most promising results
during Experiment 1. Model 5 achieved an accuracy, sensitivity, and specificity of 0.979,
0.967, and 0.986, respectively. When compared to the metrics produced by Model 6 and
Model 7, these scores were higher in both the validation and testing phases. Figure 2 shows
the comparison between the accuracy curves between Models 5 and 7 over 35 epochs for
Experiment 1. It can be seen from the figure that the curves for Model 5 are more consistent
as opposed to the curves seen in Model 7 in the this experiment. On the other hand, by
visual evaluation of the graph, we can see that the accuracy achieved by Model 5 at epoch 5
is equal to 0.927, while Model 7 had a lower rate equal to 0.853% at the same epoch. Based
on these evaluations, we decided to move forward with Model 5 and Global Max Pooling
classifier for the following two experiments.
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Figure 2. Comparison of the accuracy track between Model 5 and Model 7 in Experiment 1. Orange
and blue lines represent the training and validation phase, respectively.

In Experiment 2, Model 5 exhibited marginally lower scores in terms of validation
accuracy, sensitivity, and specificity where the testing data were manually selected so as to
ensure they were not part of the training set. In this experiment, the deviation in accuracy
value occurs between validation and testing scenarios because there is the possibility that
the validation set is not representative to the testing dataset. This can lead to biased fine-
tuned model to the validation set and possible overfitting in this scenario. Therefore, we
moved on to Experiment 3 with Model 5 and Global Max Pooling classifier together with
data augmentation techniques.

Model 5 in Experiment 3 exhibited an accuracy, sensitivity, and specificity of 0.925,
0.888, and 0.960, respectively, during the validation phase and an accuracy score of 0.835 in
the testing scenario. Figure 3 depicts the examples of the classification given by Model 5.
The top row of the Figure 3 corresponds to accurately classified images and the bottom
row to inaccurately image classifications. The Perpendicular Vascular Changes (PVC) in
laryngeal Papillomatosis can be difficult to visually distinguish from PVC in premalignant
and malignant histopathologies [26]. Among the accurate classifications represented in
Figure 3, it is significant to note that Model 5 was able to accurately differentiate such im-
ages where there were similar vascular structures but different histopathologies (malignant
Carcinoma in situ vs. benign Papilloma). On the other hand, classification inaccuracies can
arise due to the complexity of the vessel arrangements in the CE-NBI images. This issue
was predicted in Experiment 3 as the testing data included a set of unseen and augmented
images. Moreover, the dataset has a comprehensive selection of several histopathologies
from different patients that can increase the chance of complexity during classification
scenarios of the unseen and augmented data.

Figure 4 depicts the graphs of the accuracy and loss for Model 5 in Experiment 3. Both
graphs follow a smooth ascend (accuracy) and descend (loss). From this, we can infer that
the model followed a relatively stable training cycles through each of the epochs. The
accuracy (training vs. validation) graph show a good fit overall for the model during the
experiment. Although they meet in the end, the loss (training vs. validation) graph shows
a much more erratic behavior during the epochs.

Figure 5 exhibits the confusion matrix of Model 5 in testing scenario of Experiment 3.
The images in the benign and malignant groups were labeled as 0 and 1, respectively. With
this explanation, it can be seen from this matrix that the number of misclassified images in
the malignant group is more than the benign class.
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Figure 3. The example of correct and incorrect classification of CE-NBI images in Experiment 3.
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Figure 4. The accuracy and loss graphs of model Model 5 in Experiment 3. Orange and blue lines
represent the training and validation phase, respectively.
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Figure 5. Confusion matrix testing scenario of Experiment 3.

4. Discussion

In this study, a fully automatic DCNN-based approach using a pretrained and fine-
tuned ResNet50 architecture was adopted and evaluated on CE-NBI images for the benign
and malignant laryngeal lesion classification. To the best of our knowledge, no previous
study has applied DCNN-based models on larynx CE-NBI images for any classification or
segmentation purposes. Considering the presented results, the DCCN-based approach has
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the potential to differentiate malignant lesions from several benign ones in CE-NBI images
with high performance and can provide a more consistent interpretation and an objective
decision-making process for clinicians.

The application of DCNN-based methods has brought effective solutions in the area of
image analysis for a better understanding of image content. Together with the development
of these techniques, the concept of transfer learning has introduced a new perception to
deal with the problem of a limited number of images for training these models. It allows
reusing the pretrained models for a similar task, such as image classification. Among DC-
NNs that achieved significant outcomes, AlexNet [27], VGGNets [28], InceptionNets [29],
and ResNets [25] are some well-known pretrained models for medical image classifica-
tion. These architectures were developed for certain purposes and have shown their own
strengths and limitations. Depending on the area of application as well as the type of
imaging modality, each of these networks has shown the ability to provide a better un-
derstanding of the patients’ status for the clinicians [30–32]. Among them, the ResNet
convolutional networks are the most popular as they can offer very deep architectures
with shortcut connections to solve the vanishing gradient problem. Moreover, the batch
normalization features in these networks can speed up the convergence and reduce the re-
quired training epochs [25]. In the area of medical image analysis, ResNet34 was evaluated
to determine the class of laryngeal Stimulated Raman Scattering (SRS) images based on
normal or neoplastic classes. This architecture showed the rapid and automated recognition
on the validation set with an accuracy of 0.959 [33]. In another study, a fine-tuned ResNet50
network was used for classifying multimodal images of breast tissues into normal, fat,
and cancerous. Using leave-one-patient-out crossvalidation, the model achieved the mean
sensitivity of 0.862 on the validation images [34]. In addition, fine-tuned ResNet50, In-
ceptionV2, and SqueezeNet models were selected to multiclassify laryngoscopy frames
into four classes and were achieved the macroaverage AUC (Area Under the Curve) of
0.998, 0.989, and 0.999, respectively [35]. In a recent evaluation, ResNet50 and ResNet101
architectures were part of an ensemble model that was applied for cancer tissue classifi-
cation in larynx NBI images. The combination of this ensemble model with a series of
hand-crafted features achieved the classification accuracy of 0.954 [12]. Considering the
proven performance of ResNet convolutional networks in medical image classification
tasks as well as the advantages of these architectures over other networks, the pretrained
ResNet50 was used for our evaluation. This network utilized images in the pretraining
step that displayed a pattern similar to that of the blood vessels as used in this study.

After the evaluation, the outcomes of three different experiments, the fine-tuned
ResNet50 model from the Experiment 3 was proposed as the final architecture from 72 total
models. This model achieved the mean accuracy, sensitivity, and specificity of 0.925, 0.888,
and 0.960 in the validation phase and the mean accuracy of 0.835 from the testing scenario.
Although this model showed lower performance than the tested models in Experiments 1
and 2, it was evaluated in a more realistic scenario. One of the major benefits of this model
over the latest DCNN-based methods is the size of the fine-tuned ResNet50 model. The
application of the cut-of-layer technique resulted in a smaller model that only has the size
equal to ≈1% of the full ResNet50 architecture (1.96 Megabytes versus 180.65 Megabytes).
In addition, the smaller architecture showed faster training with less prone to result in
overfitting. Earlier, it was mentioned that the chance of overfitting increases while using
the ResNet50 architecture. Hence, apart from cut-off-layer technique, other strategies such
as including a larger number of images, performing data augmentation, and early stopping
were also employed to avoid the overfitting of ResNet50 in this study.

In comparison to the other works in the area of laryngeal cancer detection and classifi-
cation, we used the CE-NBI images as the imaging modality. NBI imaging enables a highly
contrasted visualization of vascular structures. The essential advantage of CE-NBI over the
normal white light laryngoscopy is the highly magnified visualization of vascular patterns
that results in a more precise evaluation of laryngeal lesions [7].
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In this study, there is a slight data imbalance between the number of benign and
malignant images in the CE-NBI image dataset (≈60% benign vs. ≈40% malignant). This
issue could be solved by using a two-fold data augmentation approach where the data
augmentation is first performed to balance the data and then the second augmentation is
applied to the entire dataset as a whole. However, this can increase the risk of redundancies
especially in the case of CE-NBI images as vascular patterns are already very similar. For
this reason, we chose not to tamper with the imbalance issue because it is not significantly
greater than it would affect the performance of the network. Moreover, the data, as they
are, are representative of the true clinical scenario where there is often an imbalance in
the data collected. This dataset includes around 8000 CE-NBI images from a wide range
of various histopathologies in both benign and malignant groups, which is a compara-
ble number of data in comparison to other studies where the endoscopy-based imaging
techniques were used for similar classification tasks in the larynx. The number of images
on these evaluations ranges from a minimum of 330 to a maximum of 14,000 [12–16,35].
This maximum number exists because multiple clinical centers were in the data collection
process simultaneously [14]. On the other hand, the subsets of this CE-NBI image dataset
were used to develop and test multiple hand-crafted feature extraction and ML methods
for laryngeal cancer classification [18,20,22]. In this respect, the recent work reported the
classification accuracy of 0.966 using two feature sets combined with k-Nearest Neighbors
(kNN) classifier [22]. Even though this method outperformed the proposed model, it in-
cluded three different image preprocessing stages, needed the manual parameter selections,
and was tested on a smaller dataset.

As was mentioned before, the benign lesions show similar vascular patterns to the
malignant ones in CE-NBI image analysis. The visual evaluation of this cases can cause one
of the serious problems in the clinical environment which is the differentiation between
benign and malignant lesions [20]. In the present study, the achieved specificity was higher
than the sensitivity values in all experiments. This outcome can emphasize the ability of
the proposed model to overcome this issue and assist otolaryngologists to also evaluate
benign cases more confidently.

5. Conclusions

In summary, a CE-NBI endoscopic image-based DCNN model was developed and
tested through a fine-tuned ResNet50 architecture. The proposed model had a high perfor-
mance for the automatic classification of laryngeal cancerous lesions and showed compara-
ble performance to the studies in the area of larynx CE-NBI image classification, as was
explained in the previous section. The proposed structure is significantly smaller than the
full ResNet50 architecture as a result of the cut-off-layer technique. Moreover, no over- and
under-fitting were observed in the final architecture. The proposed model has the potential
to be a solution for the subjective assessment of the benign and malignant laryngeal lesions
in clinical settings and reduce the chance of performing an invasive surgical biopsy. This
effective solution can be part of the Compute-Aided-Diagnosis (CAD) system that assists
otolaryngologists during the decision-making process and improves the optical diagnosis
rate of larynx cancer.

To improve the performance of the proposed model, more investigations are planned
for multidomain feature extraction methods (DCNN combined with hand-crafted features)
as well as the development of ensemble DCNN models for the future work. Moreover, it is
essential to continue further development on a multiclassification scenarios to differentiate
between different laryngeal histopathologies and improve the application of optical biopsy
in the clinical settings.
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Chapter 3 – Conclusion and future work 

 

In this thesis, two novel pipelines of a CAD system for laryngeal lesion assessment 

based on CE-NBI images have been developed. Chapter 1 started with an 

introduction to the general clinical procedure for laryngeal lesion assessment and 

larynx cancer diagnosis. Then, the endoscopic imaging techniques – as the main 

component in this procedure – were described, and their roles and importance were 

demonstrated. In between, the main pains and obstacles in the current procedure of 

laryngeal lesion assessment were highlighted. Next, the general concept and 

structure of the CAD system and its application on laryngeal cancer diagnosis using 

standard WL and NBI endoscopic images were described. Conventional and DL-

based CAD systems – as the two prominent architectures– were investigated in 

detail, and their primary deficiency in dealing with the current clinical pains in 

laryngeal lesion assessment was presented. Lastly, the concept of CE combined 

with enhanced endoscopy imaging was introduced. Moreover, the value of this 

modality with a focus on the vascularization network was presented, and its main 

limitations to improve the procedure of laryngeal lesion assessment were 

highlighted. 

Many malignant laryngeal cases originate from precursor lesions, ranking LC in a 

group of cancers qualified for early detection. Early diagnosis of laryngeal lesions 

can result in favorable treatment outcomes and improve patients' quality of life. 

However, it requires a precise clinical and histopathological examination of the 

lesion and surrounding tissues. Nowadays, WL and NBI endoscopic images are the 

standard imaging tools for pre-/ intra-/ post-operative clinical examination of 

laryngeal lesions. They can visualize the examined region as an image or video, 

providing valuable information about mucosal and vascular changes of laryngeal 

tumors. On the other hand, surgical biopsy is the standard approach for 

histopathological examination of the laryngeal lesions that define the final 

diagnosis decision. Optical Biopsy was introduced to meet the clinical needs in the 

current workflow of laryngeal lesion assessment to move toward a less invasive 

diagnosis approach. This concept aims to provide a reliable, fast, and real-time 

endoscopy-based assessment of pathological conditions in the larynx to provide 

early diagnosis and reduce the number of unnecessary surgical biopsies. However, 

Optical Biopsy is not integrated into the standard examination workflow of 

laryngeal lesions. The limitation of WL and NBI endoscopic imaging modalities 

could explain the main reason behind this matter. These techniques cannot provide 

detailed and magnified visualization of mucosal and vascular transitions of the 

epithelial layer. Several guidelines and instruction tools were proposed to assist 

Otolaryngologists in interpreting the information related to the mucosal and 

vascular changes in WL and NBI endoscopic images. Nevertheless, they raised the 
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issues of a long learning process, subjective assessment, and increased false 

positive diagnoses. Multiple research studies were conducted on developing CAD 

systems based on classification or segmentation tasks on WL and NBI endoscopic 

images for a more objective assessment of laryngeal lesions and LC diagnosis. 

However, they could not provide the platform for integrating Optical Biopsy into 

the standard examination workflow because they were developed for research 

intentions. In addition, they dismissed the factors such as usability engineering 

practice to meet the users' needs for implementing a computer-based solution as a 

medical product in standard clinical procedures. 

In recent years, CE-NBI modality has gained prominence in dealing with issues 

related to the WL and NBI endoscopic imaging modalities along with focusing on 

examining sub-epithelial vascularization networks in Optical Biopsy. CE-NBI 

provides magnified and enhanced visualization of these vascular networks, 

enabling a more detailed examination of lesions. However, visual interpretation of 

CE-NBI images poses a challenge due to the similarity and complexity between 

the vascular patterns of benign and malignant pathologies. This issue leads to a 

subjective diagnosis that requires significant expertise from Otolaryngologists. 

Therefore, CE-NBI remains primarily a research tool for laryngeal lesion 

assessment. To overcome the limitations of this imaging modality and harness its 

clinical and technical potentials, this thesis endeavors to introduce two pipelines of 

a CAD system for automatic assessment of laryngeal lesions in image classification 

tasks focusing on the vascular characteristics represented in CE-NBI images. 

The first task of the thesis was dedicated to collecting and preparing the data 

required for any technical exploration of CE-NBI images. The second task is then 

devoted to designing and developing two pipelines for the CAD system: 

• Pipeline 1 is based on feature engineering techniques combined with ML 

classifiers. 

• Pipeline 2 is based on pre-trained DL-based architectures.  

In pipeline 1, we introduced two novel sets of handcrafted features that described 

the geometrical characteristics and textural attributes of vascularization networks 

in CE-NBI images. The GF and CyEfF were combined with four distinct 

supervised ML classifiers to classify benign-malignant laryngeal lesions. Despite 

the limited available data, both standalone and combined use of these feature sets 

demonstrated high performance in CE-NBI image classification. Furthermore, the 

performance confirmed the correlation between the changes in the morphology of 

sub-epithelial blood vessels of the vocal fold and the type of laryngeal lesion. The 

main image misclassifications in these methods occurred when benign and 

malignant cases exhibited similar PVC in vascularization networks. 
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In pipeline 2, the strategy was changed to DL-based approaches to address the 

increasing similarity of vascular patterns in the CE-NBI data set. The first approach 

in this pipeline included a pre-trained and fine-tuned ResNet50 architecture 

combined with a cut-off layer technique to reduce the network size while 

optimizing the performance that adopts sufficiently for real-time clinical 

applications. The second approach, Method 4, was developed based on the concept 

of ensemble modeling to combine the power of different networks for CE-NBI 

image classification. The transfer learning concept was again applied to this 

development phase, where seven pre-trained DL-based architectures were selected 

and subjected to preliminary training and validation. Based on the results of this 

evaluation, EfficientNetB0V2 and DenseNet121 were chosen as the first two 

networks, and ResNet50V2 was added as the third model. Finally, the 

implementation step, including the training, validation, and fine-tuning of every 

network along with building the ensemble model, was conducted on the final CE-

NBI data set. One of the challenges of this implementation was related to the 

imbalanced data in benign and malignant classes. Therefore, data augmentation 

techniques were combined in the development and were applied to the training set. 

In general, the main image misclassification in pipeline 2 was raised for these 

methods due to the complexity and variety of the vascular networks’ arrangements 

in the CE-NBI image data set. 

The main difference between the approaches used in pipeline 1 and 2 development 

can be described as follows. 

• According to the development strategy: 

o In pipeline 1, we focused on the specific sources of information – 

as feature engineering techniques – in CE-NBI image classification. 

The first method was designed based on geometrical attributes of 

vascularization networks, and the second method was focused on 

the textural characteristics in CE-NBI images. On the other hand, 

the DL-based architectures developed and validated in pipeline 2 

considered the entire image as the primary source of information 

and showed well generalization to new data. 

o For a reason explained in the previous point, implementing the 

methods in pipeline 1 required the application of two- to three-stage 

image pre-processing to enhance the sources of information that we 

were aiming to use for the features extraction step, such as blood 

vessels. Although Method 2 in pipeline 1 (CyEfF) showed high 

performance with only one-stage wavelet-based image pre-

processing, the strategies implemented and validated in pipeline 2 

did not require any image pre-processing techniques. 

o The methods in pipeline 1 were focused on feature engineering 

techniques. Although such methods provide complete control for 

data transformation and feature computation based on the visible 
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characteristics in CE-NBI images, they usually require hard coding 

for manual parameter selections. On the other hand, the techniques 

in pipeline 2 included an automatic and fast-forwarded feature 

extraction and classification process. Considering this option, the 

DL-based methods had better capability to explore the data where 

the underlying patterns or characteristics of the image were 

complex or difficult to capture. 

• According to the CE-NBI data: 

o In pipeline 1, a limited number of images was used to develop and 

validate two sets of handcrafted features. The training, validation 

and testing process of ML classifiers using these sets of features 

included a maximum of 3000 CE-NBI images. On the other hand, 

developing the first DL-based technique started with around 8000 

images and was expanded to about 11000 data for the development 

of DL-based ensemble model.  

o Due to fewer malignant histopathologies than benign ones, the 

number of CE-NBI images in the malignant group was always less 

than those in the benign class. The development of methods in 

pipeline 1 was affected by this issue in some specific classification 

scenarios. Nevertheless, this problem became more evident during 

the implementation of DL-based strategies in pipeline 2. Therefore, 

image data augmentation techniques were implemented on training 

data to tackle this issue. 

All the methods implemented in pipelines 1 and 2 showed accuracy, sensitivity, 

and specificity higher than 80% in all CE-NBI image classification scenarios. 

Focusing on the benign-malignant laryngeal lesion assessment, each of the 

proposed methods or their fusion could play the role of a CAD system to assist and 

guide Otolaryngologists in evaluating CE-NBI images. With the valuable source 

of information provided in magnified and enhanced endoscopic images as CE-NBI, 

the application of a CAD system has the potential to deal with the issue of 

subjective assessment of laryngeal lesions, which could result in a less invasive, 

fast, and accurate Optical Biopsy diagnosis leading to earlier detection of laryngeal 

cancer. 

In pipeline 1, the combination of GF and CyEfF feature sets with the kNN ML 

classifier resulted in an accuracy of 96%. On the other hand, the pre-trained and 

fine-tuned ResNet50 in pipeline 2 showed an accuracy of 83%. Moreover, the 

ensemble model generated out of ResNet50V2, EfficientNetB0V2, and 

DenseNet121 architectures in this pipeline demonstrated an accuracy of 92%.  

Each method has advantages and drawbacks in CE-NBI image classification based 

on benign-malignant laryngeal lesions. In pipeline 1, we arrived at the best CE-
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NBI image classification performance with the combination of 24 GF and 2 CyEfF 

fed into a classical and standard kNN classifier. The implementation was executed 

on around 3000 CE-NBI images on a PC with a CPU operating at 2.30 GHz 

resulting in an average feature computation time of 2.36 seconds per image and 12 

minutes of training and validation. In pipeline 2, we first fine-tuned every pre-

trained architecture on the entire CE-NBI data set with about 11000 images. Then, 

the implementation was carried out on a DL workstation with Nvidia Quadro 

P6000 GPU, where on average, 30 to 69 minutes were taken to execute the training 

and validation phase for different architectures.  

Apart from the sources of information considered for CE-NBI image classification 

in each pipeline, increasing the complexity and similarity among vascularization 

networks affected the performance of feature engineering techniques combined 

with ML classifier as the final trained model did not generalize well to the new 

data. The data used to develop DL-based models included images from more 

patients with several cases per histopathology. Although the data set had a different 

variety of histopathology and vascularization networks, the DL-based architectures 

were generalized well during the training step. Moreover, we managed the problem 

of overfitting during the development of DL-based methods by performing 

standard approaches such as data augmentation, defining early stopping and 

avoiding overlap between training and testing data sets. 

This project highlighted the value of the CE-NBI images as a minimally invasive, 

magnified, and enhanced endoscopy imaging technique for providing diagnostic 

information on performing Optical Biopsy. The value of this kind of medical data 

collected over several years was shared with the scientific community as a publicly 

available CE-NBI data set. Moreover, our collaborative effort with the clinical 

team illustrated the subjective evaluation of CE-NBI images during the current 

clinical examination of laryngeal lesions. This investigation highlighted the 

existing challenges and needs in clinical practice and guided us to focus on easy-

to-understand development strategies with real-time functionality. For that, we 

focused on handcrafted features in pipeline 1 that capture the discernible 

characteristics of the images as perceived by the Otolaryngologist. Additionally, 

several strategies, such as cut-off layer technique, were applied in pipeline 2 to 

optimize the training and testing phases of DL architectures. Finally, the project 

presented the effectiveness of using multiple ML-based solutions to address 

clinical issues by providing more objective and reliable assistance in interpreting 

the data presented in CE-NBI images. 

The long-term goal of this project is to peruse a clinical trial study to: 

• Determine the effect of the CAD system in facilitating the clinical 

examination of laryngeal lesions via Optical Biopsy. 
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• Evaluate the impact of the CAD system on improving the comfortability 

and confidence of Otolaryngologists – especially the less-experienced 

groups – in the decision-making procedure.  

• Study the role of the CE-NBI images combined with the CAD system in 

promptly diagnosing early-stage laryngeal cancer. 

For this purpose, we need to finalize the architecture of the CAD system. 

According to the performance of each method, two main options are proposed for 

the final architecture of the CAD system, including the fusion of techniques 

introduced in pipeline 1 and 2 or selecting the final ensemble DL-based methods 

of pipeline 2. Therefore, further improvements are needed to be made in future 

studies. 

One of this project's main learning points was understanding that the standalone 

application of CE-NBI imaging modality could not visualize the information 

provided by normal WLE and NBI imaging techniques. CE-NBI imaging could 

only represent magnified and enhanced visualization of a small region in the target 

lesion. At the same time, standard WLE and NBI modalities can provide an overall 

representation of the target tissue that highlights different critical characteristics of 

the lesion, such as shape, color, and size. Therefore, the value of the normal WLE 

and NBI in the clinical examination of laryngeal lesions could not be ignored, and 

the application of magnified and enhanced endoscopy techniques such as CE-NBI 

as well as the developed computer-based solutions in this project are added values 

to such procedures.  

Another learning point of this project was achieved via close collaboration with 

our clinical team. Initially, we focused on developing computer-based methods to 

address a critical clinical need. Moreover, we learned to emphasize ways that are 

easy to understand by the clinical community and, more importantly, are feasible 

to be used and integrated into the current workflow of the clinical examination of 

laryngeal lesions. 

And the last learning point refers to the concept of "sharing." Presenting and 

discussing our development results with the clinical and technical communities 

helped us to find the optimum development path during this project. It also 

encouraged us to share the CE-NBI data set we generated during the last years in 

a public repository. 

The outcome of this thesis contributes to the research area of CAD systems that 

aim to improve the minimally invasive larynx lesion assessment procedure. This 

thesis proposes a series of steps to facilitate the integration of CE-NBI imaging 

into the routine clinical examination of laryngeal lesions. In the future vision, the 

application of magnified and enhanced endoscopic imaging to perform Optical 

Biopsy should be achieved not only with CE-NBI but also with other imaging 
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modalities, such as microscopic imaging that can provide more stable and high-

resolution visualization of the target examined area in the larynx. Moreover, 

applying magnified and enhanced endoscopic images in a CAD system for Optical 

Biopsy should not be limited to clinical settings with a fully equipped operating 

room. Instead, the solutions should be feasible to implement in every clinical 

examination setup to support clinicians in making more informed decisions 

regarding patient care and improving clinical outcomes. 
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Appendix A – Abstract of publications not discussed 

in the dissertation 

 

Training of a  Novel Artificial Intelligence Algorithm on the First Online 

Database of Laryngeal Vessels of the Vocal Folds using Contact Endoscopy 

and Narrow Band Imaging 

Nikolaos Davaris, Nazila Esmaeili, Alfredo Illanes, Axel Boese, Michael Friebe, Christoph Arens 

Abstract 

Introduction: Intraoperative images of vocal fold vessels using contact endoscopy 

and narrow band imaging (CE-NBI) have already been successfully used for 

endoscopic differentiation between benign and malignant vocal fold lesions and 

for training artificial intelligence (AI) algorithms. The first online database of such 

CE-NBI images was published in 2022 to promote cooperation between 

laryngological centers and the further development of AI-based approaches. 

Material and methods: The online database contains 11,144 CE-NBI images from 

210 patients with histologically proven benign and (pre)malignant vocal fold 

lesions. In the present study, 80% of these images were used for training and 20% 

for testing a novel AI-based (Convolutional Neural Network-CNN) approach to 

differentiate between benign and malignant laryngeal lesions. Finally, the 

sensitivity, specificity and accuracy of the method in the automated classification 

of the test images were calculated. 

Results: The developed algorithm was trained with the CNN-based AI approach 

using 8,915 CE-NBI images from the online database. Applied to the 2,229 test 

images, a sensitivity of 82.2%, a specificity of 90.2% and an accuracy of 87.8% 

could be reached. 

Conclusion: The results of the presented AI-based approach regarding the 

diagnostic quality of the method are comparable to previously published studies on 

the manual or automated evaluation of CE-NBI images. The online database is a 

valuable tool for the further development of AI algorithms in the diagnosis of vocal 

fold lesions. 

 

 

 

 

 



 

126 

 

Use of Artificial Intelligence (AI) for the Intraoperative Evaluation of Vocal 

Fold Leukoplakia 

Nikolaos Davaris, Nazila Esmaeili, Alfredo Illanes, Axel Boese, Michael Friebe, Christoph Arens 

Abstract 

Introduction: Assessing vocal fold leukoplakia can be challenging despite modern 

endoscopic methods. The characterization of the morphology of adjacent vocal 

fold vessels is of great importance but depends heavily on the clinical experience 

of the observer. Intraoperative contact endoscopy with Narrow Band Imaging 

(NBI-CE) enables optimized visualization of vascular changes while the data 

generated can well be used for an automated evaluation using Artificial 

Intelligence (AI) methods. 

Methods: In the present study, the adjacent vessels of 40 vocal cord leukoplakias 

were recorded intraoperatively using NBI-CE. The generated data was evaluated 

using machine learning methods with the classification scenarios Support Vector 

Machine with Polynomial Kernel (SVM) and k-Nearest Neighbor (kNN). After the 

histology was obtained, the sensitivity, specificity and accuracy of both classifiers 

were calculated in the classification between benign and malignant findings. 

Results: In total, 1998 contact endoscopy images were evaluated in 16 benign and 

24 malignant leukoplakias. The vascular changes could be mathematically 

characterized by the algorithms as an increase in the disorder of the gradient vector 

and the level of curvature. The sensitivity, specificity and accuracy of the 

automated classification were 100 %, 77.2 %  and 90.6 %  for the SVM and 100 % , 

79.8 %  and 91.7 %  for the kNN. 

Conclusion: The use of methods of AI and machine learning allows an automated 

evaluation of the vascular changes in vocal cord leukoplakia. The algorithms used 

can support doctors in the clinical characterization of leukoplakia as potentially 

benign or malignant. 
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Testing of a Novel Approach for an Automated Classification of Compact 

Endoscopic Vascular Patterns in Laryngeal Lesions 

Nikolaos Davaris, Nazila Esmaeili, Alfredo Illanes, Axel Boese, Michael Friebe, Christoph Arens 

Abstract 

Introduction: The combination of contact endoscopy and narrow band imaging 

(compact endoscopy) is suitable for the examination of laryngeal vascular patterns 

and provides information on the dignity of the lesions. However, the evaluation of 

the shape of the vessel is partly subjective and dependent on experience. On the 

other hand, vascular changes can be characterized mathematically as an increase 

in the disorder of the gradient vector and the curvature of the blood vessels. 

Methods: We have tested a novel approach to the automated classification of 

compact endoscopic vessel patterns using image and signal processing techniques. 

Videoendoscopic data from 22 patients were evaluated. First, the automated 

classification of the studied samples was tested in three groups: ordered patterns, 

disordered patterns, and patterns with a high degree of disorder. Furthermore, the 

allocation into four classification scenarios was tested on the basis of histological 

diagnoses. 

Results: A total of 907 compact endoscopic images were evaluated. Of these, 40% 

were for training and 60% for testing. Sensitivity was 94%, specificity 97% and 

accuracy 94% for the automated classification of vascular patterns in one of the 

three groups. The classification according to histological diagnoses was achieved 

with a sensitivity of 85%, a specificity of 94% and an accuracy of 84%. 

Conclusions: It was shown that the automated classification of compact endoscopic 

vascular patterns is feasible. The algorithm can assist physicians in clinical 

decisions and can be used in diagnostics and tumor follow-up of laryngeal 

dysplasia and carcinoma. 
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Vibro-Acoustic Sensing of Instrument Interactions as a Potential Source of 

Texture-related Information in Robotic Palpation 

Thomas Sühn, Nazila Esmaeili, Sandeep Y Mattepu, Moritz Spiller, Axel Boese, Robin Urrutia, 

Victor Poblete, Christian Hansen, Christoph H Lohmann, Alfredo Illanes, Michael Friebe 

Abstract 

The direct tactile assessment of surface textures during palpation is an essential 

component of open surgery that is impeded in minimally invasive and robot-

assisted surgery. When indirectly palpating with a surgical instrument, the 

structural vibrations from this interaction contain tactile information that can be 

extracted and analyzed. This study investigates the influence of the parameters 

contact angle α and velocity �⃗� on the vibro-acoustic signals from this indirect 

palpation. A 7-DOF robotic arm, a standard surgical instrument, and a vibration 

measurement system were used to palpate three different materials with varying α 

and �⃗�. The signals were processed based on continuous wavelet transformation. 

They showed material-specific signatures in the time–frequency domain that 

retained their general characteristic for varying α and �⃗�. Energy-related and 

statistical features were extracted, and supervised classification was performed, 

where the testing data comprised only signals acquired with different palpation 

parameters than for training data. The classifiers support vector machine and k-

Nearest Neighbors provided 99.67% and 96.00% accuracy for the differentiation 

of the materials. The results indicate the robustness of the features against 

variations in the palpation parameters. This is a prerequisite for an application in 

minimally invasive surgery but needs to be confirmed in realistic experiments with 

biological tissues. 

 

 

 

 

 

 

 

 

 

 

 



 

129 

 

Surgeons' Requirements for a Surgical Support System to Improve 

Laparoscopic Access 

Moritz Spiller, Marcus Bruennel, Victoria Grosse, Thomas Sühn, Nazila Esmaeili, Jessica 

Stockheim, Salmai Turial, Roland Croner, Axel Boese, Michael Friebe, Alfredo Illanes 

Abstract 

Creating surgical access is a critical step in laparoscopic surgery. Surgeons have to 

insert a sharp instrument such as the Veress needle or a trocar into the patient’s 

abdomen until the peritoneal cavity is reached. They solely rely on their experience 

and distorted tactile feedback in that process, leading to a complication rate as high 

as 14% of all cases. Recent studies have shown the feasibility of surgical support 

systems that provide intraoperative feedback regarding the insertion process to 

improve laparoscopic access outcomes. However, to date, the surgeons’ 

requirements for such support systems remain unclear. This research article 

presents the results of an explorative study that aimed to acquire data about the 

information that helps surgeons improve laparoscopic access outcomes. The results 

indicate that feedback regarding the reaching of the peritoneal cavity is of 

significant importance and should be presented visually or acoustically. Finally, a 

solution should be straightforward and intuitive to use, should support or even 

improve the clinical workflow, but also cheap enough to facilitate its usage rate. 

While this study was tailored to laparoscopic access, its results also apply to other 

minimally invasive procedures. 
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Towards an Intraoperative Feedback System for Laparoscopic Access with 

the Veress Needle 

Moritz Spiller, Nazila Esmaeili, Thomas Sühn, Axel Boese, Salmai Turial, Michael Friebe, 

Alfredo Illanes 

Abstract 

About 50 % of complications during laparoscopy occur when surgical access is 

created. The Veress needle and proposed technical alternatives do not provide 

reliable information to support the surgeons in guiding the needle, or the feedback 

is not clearly perceivable. Based on acoustic emissions, Surgical Audio Guidance 

(SURAG) proposes a non-invasive and efficient way to enhance the perception of 

guidance information through acoustic and visual feedback displayed in real-time. 

This article demonstrates that the developed feedback matches the information 

about tissue layer crossings provided by force measurements. This indicates that 

SURAG can provide an effective means to make laparoscopic access more precise 

and safe, especially in pediatric surgery, where space for placing the needle is 

minimal. 
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Surgical Audio Guidance SurAG: Extracting Non-invasively Meaningful 

Guidance Information during Minimally Invasive Procedures 

Alfredo Illanes, Thomas Sühn, Nazila Esmaeili, Iván Maldonado, Anna Schaufler, Chien-Hsi 

Chen, Axel Boese, Michael Friebe 

Abstract 

In this work we summarize applications of a novel approach for providing 

complementary information for guiding medical interventional devices (MID) and 

that have been recently published by our research team. This approach consist of 

using an audio sensor located in the proximal end of the MID in order to extract 

meaningful information concerning the interaction between the tip of the 

instrument and the tissue. The approach was successfully evaluated with different 

setups and MIDs. 
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Thyroid Ultrasound Texture Classification using Autoregressive Features in 

Conjunction with Machine Learning Approaches 

Prabal Poudel, Alfredo Illanes, Elmer JG Ataide, Nazila Esmaeili, Sathish Balakrishnan, Michael 

Friebe 

Abstract 

The thyroid is one of the largest endocrine glands in the human body, which is 

involved in several body mechanisms like controlling protein synthesis, use of 

energy sources, and controlling the body's sensitivity to other hormones. Thyroid 

segmentation and volume reconstruction are hence essential to diagnose thyroid 

related diseases as most of these diseases involve a change in the shape and size of 

the thyroid over time. Classification of thyroid texture is the first step toward the 

segmentation of the thyroid. The classification of texture in thyroid Ultrasound 

(US) images is not an easy task as it suffers from low image contrast, presence of 

speckle noise, and non-homogeneous texture distribution inside the thyroid region. 

Hence, a robust algorithmic approach is required to accurately classify thyroid 

texture. In this paper, we propose three machine learning based approaches: 

Support Vector Machine; Artificial Neural Network; and Random Forest Classifier 

to classify thyroid texture. The computation of features for training these classifiers 

is based on a novel approach recently proposed by our team, where autoregressive 

modeling was applied on a signal version of the 2D thyroid US images to compute 

30 spectral energy-based features for classifying the thyroid and non-thyroid 

textures. Our approach differs from the methods proposed in the literature as they 

use image-based features to characterize thyroid tissues. We obtained an accuracy 

of around 90% with all the three methods. 
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Parametrical Modelling for Texture Characterization—A Novel Approach 

Applied to Ultrasound Thyroid Segmentation 

Alfredo Illanes, Nazila Esmaeili, Prabal Poudel, Sathish Balakrishnan, Michael Friebe 

Abstract 

Texture analysis is an important topic in Ultrasound (US) image analysis for 

structure segmentation and tissue classification. In this work a novel approach for 

US image texture feature extraction is presented. It is mainly based on parametrical 

modelling of a signal version of the US image in order to process it as data resulting 

from a dynamical process. Because of the predictive characteristics of such a model 

representation, good estimations of texture features can be obtained with less data 

than generally used methods require, allowing higher robustness to low Signal-to-

Noise ratio and a more localized US image analysis. The usability of the proposed 

approach was demonstrated by extracting texture features for segmenting the 

thyroid in US images. The obtained results showed that features corresponding to 

energy ratios between different modelled texture frequency bands allowed to 

clearly distinguish between thyroid and non-thyroid texture. A simple k-means 

clustering algorithm has been used for separating US image patches as belonging 

to thyroid or not. Segmentation of thyroid was performed in two different datasets 

obtaining Dice coefficients over 85%. 
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Electrochemotherapy: A Review of Current Status, Alternative IGP 

Approaches, and Future Perspectives 

Nazila Esmaeili, Michael Friebe 

Abstract 

The efficiency of electroporation (EP) has made it a widely used therapeutic 

procedure to transfer cell killing substances effectively to the target site. A lot of 

researches are being done on EP-based cancer treatment techniques. 

Electrochemotherapy (ECT) is the first EP-based application in the field of drug 

administration. ECT is a local and nonthermal treatment of cancer that combines 

the use of a medical device with pharmaceutical agents to obtain local tumor 

control in solid cancers. It involves the application of eight, 100µs, pulses at 1 or 

5000 Hz frequency and specified electric field (V/cm) with a median duration of 

25 minutes. The efficacy of chemotherapeutic drugs increases by applying short 

and intense electrical pulses. Several clinical studies proposed ECT as a safe and 

complementary curative or palliative treatment option (curative intent of 50% to 

63% in the treatment of Basal Cell Carcinoma (BCC)) to treat a number of solid 

tumors and skin malignancies, which are not suitable for conventional treatments. 

It is used currently for treatment of cutaneous and subcutaneous lesions, without 

consideration of their histology. On the contrary, it is also becoming a practical 

method for treatment of internal, deep-seated tumors and tissues. A review of this 

method, needed instruments, alternative image-guided procedures (IGP) 

approaches, and future perspectives and recommendations are discussed in this 

paper. 
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Appendix B – Comparison of related works 

 

Table B.1. Comparison of related works in the context of laryngeal endoscopic image classification. 

Study Type of data 
Number of  

data 
Approach Classification Tasks Accuracy Sensitivity Specificity Recall AUC 

[59] 

NBI 

(Extracted from 

video) 

60 patients 

120 images 

Handcrafted 

features +  

ML classifier 

Lesion detection  

(Healthy vs. 

malignant cases) 

84.30% --- --- --- --- 

[60] 

WL 

(Extracted from 

video) 

70 patients 

124 images 

Handcrafted 

features +  

ML classifiers 

Disorder detection  

(Healthy vs. non-

healthy cases) 

--- 0.81 --- --- --- 

[61] 

NBI 

(Extracted from 

video) 

33 patients 

330 images 

Handcrafted 

features +  

ML classifiers 

Cancer diagnosis  

(SCC cases with four 

tissue classes) 

--- --- --- 93% --- 

[71] 

WL  

(Still & extracted 

from video) 

19353 images 

DL model,  

Pre-trained 

VGG16 

Benign cases with 

five classes 
80.80% --- --- --- --- 

[71] 

WL  

(Still & extracted 

from video) 

19353 images 

DL model, 

Pre-trained 

VGG16 

Benign vs. malignant 

cases 
93% --- --- --- --- 

[64] 
WL 

(Still image) 

1816 patients 

13721 images 

DL model, 

Pre-trained 

Inception V3 

Benign & normal vs. 

precancerous & 

malignant cases 

0.867 0.731 0.922 --- --- 

[64] 
WL 

(Still image) 

1816 patients 

13721 images 

DL model, 

Pre-trained 

Inception V3 

Benign, normal, 

precancerous,  

and malignant cases 

0.745 --- --- --- --- 
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[69] 
NBI 

(Still image) 

4591 patients 

4591 images 

DL model, 

Pre-trained 

InceptionV3 

SCC diagnosis  

(Benign vs. SCC 

cases) 

--- --- --- --- 0.873 

[65] 
NBI 

(Still image) 

374 patients 

2400 images 

DL model, 

Pre-trained 

ResNet50 

SCC diagnosis  

(Normal vs. SCC 

cases) 

97.25% 95.50% 98.38% --- --- 

[67] 
WL 

(Still image) 

9231 patients 

24667 images 

DL model, 

Pre-trained 

ResNet101 

Laryngeal neoplasms  

(Benign, 

precancerous lesions, 

and cancer cases) 

96.24% --- --- --- --- 

[73] 
WL 

(Still images) 

1950 patients 

3057 images 

DL model, 

Pre-trained 

ResNet18 and 

ResNet34 

Laryngeal disease  

(Seven pathological 

plus healthy caces) 

75.27% --- --- --- 0.91 

[68] 

WL 

(Extracted from 

video) 

4106 patients 

4106 images 

DL model, 

Pre-trained 

EfficientNetB0 

Laryngeal disease 

(Eight pathological 

plus healthy caces) 

0.88 --- --- --- --- 

[62] 

NBI 

(Extracted from 

video) 

33 patients 

330 images 

Handcrafted & 

learned 

 features + ML 

classifier 

Cancer diagnosis  

(SCC cases with four 

tissue classes) 

98% --- --- --- --- 

[66] 

NBI 

(Extracted from 

video) 

33 patients 

330 images 

Handcrafted & 

learned 

 features + ML 

classifier 

Cancer diagnosis  

(SCC cases with four 

tissue classes) 

95.45% --- --- --- --- 

Pipeline 1 

Method 1 
CE-NBI 

32 patients 

1485 images 

GF + ML 

classifier 

Lesion assessment 

(Vascular patterns) 
0.973 0.980 0.983 0.977 --- 

Pipeline 1 

Method 1 
CE-NBI 

20 patients 

890 images 

GF + ML 

classifier 

Lesion assessment 

(Benign cases) 
0.906 0.900 0.965 0.981 --- 
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Pipeline 1 

Method 1 
CE-NBI 

11 patients 

465 images 

GF + ML 

classifier 

Lesion assessment 

(Malignant cases) 
0.884 0.879 0.943 0.973 --- 

Pipeline 1 

Method 1 
CE-NBI 

31 patients 

1355 images 

GF + ML 

classifier 

Lesion assessment 

(Bening vs. 

malignant cases) 

0.912 0.871 0.933 0.953 --- 

Pipeline 1 

Method 1 
CE-NBI 

68 patients 

1632 images 

GF + ML 

classifier 

Lesion assessment 

(Bening vs. 

malignant cases) 

--- 0.846 0.895 --- --- 

Pipeline 1 

Method 2 
CE-NBI 

48 patients 

2701 images 

CyEfF + ML 

Classifier 

Lesion assessment 

(Bening vs. 

malignant cases) 

0.875 0.826 0.920 --- --- 

Pipeline 1 

Method 1 + 

Method 2 

CE-NBI 
48 patients 

2701 images 

CyEfF & GF +  

ML Classifier 

Lesion assessment 

(Bening vs. 

malignant cases) 

0.966 0.959 0.973 --- --- 

Pipeline 2 

Method 3 
CE-NBI 

146 patients 

8181 images 

DL model, 

Pre-trained 

ResNet50 

Lesion assessment 

(Bening vs. 

malignant cases) 

0.835 --- --- --- --- 

Pipeline 2 

Method 4 
CE-NBI 

210 patients 

11144 images 

DL model, 

Pre-trained 

DenseNet121 

Lesion assessment 

(Bening vs. 

malignant cases) 

0.876 0.820 0.901 --- --- 

Pipeline 2 

Method 4 
CE-NBI 

210 patients 

11144 images 

DL model, 

Pre-trained 

EfficientNetB0V2 

Lesion assessment 

(Bening vs. 

malignant cases) 

0.878 0.822 0.902 --- --- 

Pipeline 2 

Method 4  
CE-NBI 

210 patients 

11144 images 

DL model, 

Pre-trained 

ResNet50V2 

Lesion assessment 

(Bening vs. 

malignant cases) 

0.907 0.846 0.934 --- --- 
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Pipeline 2 

Method 4 
CE-NBI 

210 patients 

11144 images 

Ensemble model, 

Pre-trained 

DenseNet121,  

EfficientNetB0V2, 

and ResNet50V2 

Lesion assessment 

(Bening vs. 

malignant cases) 

0.928 0.877 0.951 --- --- 
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Figure B.1. Training and validation results of Method 4 on final CE-NBI image data set 

with 11144 images - accuracy graph of final models. (a): DenseNet121, (b): ResNet50V2, and 

(c): EfficientNetB0V2. 
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Figure B.2. Testing results of Method 4 on final CE-NBI image data set with 11144 images - 

confusion matrix. (a): DenseNet121, (b): EfficientNetB0V2, (c): ResNet50V2, and (d): 

Ensemble model. 
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