
Alea 7, 477–501 (2010)

Trap models with vanishing drift:

Scaling limits and ageing regimes

Nina Gantert, Peter Mörters and Vitali Wachtel

Institut für Mathematische Statistik, Universität Münster,
Einsteinstr. 62, D-48149 Münster, Germany
E-mail address: gantert@uni-muenster.de

URL: http://wwwmath.uni-muenster.de/statistik/gantert/gruppe/

Department of Mathematical Sciences, University of Bath,
Claverton Down, Bath BA2 7AY, United Kingdom
E-mail address: maspm@bath.ac.uk

URL: http://people.bath.ac.uk/maspm/

Mathematisches Institut der Universität München, Theresienstr. 39,
D-80333 München, Germany
E-mail address: Vitali.Wachtel@mathematik.uni-muenchen.de

URL: http://www.mathematik.uni-muenchen.de/~wachtel/

Abstract. We discuss the long term behaviour of trap models on the integers with
asymptotically vanishing drift, providing scaling limit theorems and ageing results.
Depending on the tail behaviour of the traps and the strength of the drift, we
identify three different regimes, one of which features a previously unobserved limit
process.

1. Introduction

Trap models are a particularly simple class of stochastic processes in random
environment, which have recently attracted a lot of attention. To describe the
setup of most trap models, suppose a graph with finite degree is given. To each
of the vertices v of the graph we associate an independent random variable τv
chosen according to a suitable class of heavy-tailed distributions. Given this random
environment, the trap model is a continuous-time nearest neighbour random walk
on the graph such that the exponential holding time at a vertex v has a mean
proportional to τv. Therefore vertices v with large values τv act as traps in which
the random walk spends a larger amount of time than in vertices with small values
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of v. Different trap models arise by varying the underlying graph and the drift of
the random walk.

The main purpose of trap models is to serve as a phenomenological model describ-
ing how a physical system out of equilibrium moves in an energy landscape. Here
vertices with large trap values represent energetically favourable states in which the
system tends to remain for longer. Most results on trap models are about the phe-
nomenon of ageing, which means that in such a system the time spans during which
the system does not change its state are increasing as the system gets older. Trap
models offer a simple explanation for ageing: Roughly speaking, the older the sys-
tem, the more space it has explored, and therefore the deeper the trap it is stuck
in. Let us also mention here some interesting papers exhibiting the ageing phe-
nomenon in some other models, for example for spherical spin glasses (Ben Arous
et al., 2001), the random energy model with Glauber dynamics (Ben Arous et al.,
2003) and the parabolic Anderson model with heavy tailed potential (Mörters et al.,
2009).

Trap models were introduced into the physics literature by Bouchaud (1992)
and interest in the mathematical community was created through the pioneering
work of Fontes et al. (2002) and Ben Arous et al. (2006). An excellent survey
over the mathematical literature on trap models is provided in the lecture notes
of Ben Arous and Černý (2006).

Understanding the ageing phenomenon is closely linked to scaling limit theorems
for the trap models. For driftless trap models on the lattice Zd it was shown that,
on suitable path spaces,

• if d = 1 the rescaled trap model converges to a singular diffusion without
drift, which is often called the Fontes-Isopi-Newman diffusion, see Fontes
et al. (2002);

• if d ≥ 2 the rescaled trap model converges to the fractional-kinetics process,
which is a self-similar non-Markovian process, obtained as the time change
of a d-dimensional Brownian motion by the inverse of an independent stable
subordinator, see Ben Arous and Černý (2007).

More recently, Barlow and Černý (2010) identified the fractional-kinetics process as
the scaling limit for a class of random walks with unbounded conductances and for
the so-called non-symmetric trap models on Z

d, d ≥ 3, which have a drift depending
locally on the trap environment.

In the present paper we focus on trap models on Z with a drift, which does not
depend on the trap environment, addressing a question posed in Ben Arous and
Černý (2006). In our first main result, Theorem 2.1, we look at the scaling limits
of trap models with an asymptotically vanishing drift, and identify three regimes:

• In a regime where the drift vanishes slowly, the rescaled trap model con-
verges to the inverse of a stable subordinator. Zindy (2009), using a dif-
ferent method of proof, identified the same process as the scaling limit for
trap models with constant drift.

• In a regime where the drift vanishes quickly the rescaled trap model con-
verges to a Fontes-Isopi-Newman diffusion, the same process as in the drift-
less case.
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• In a critical intermediate regime the rescaled trap model converges to a
singular diffusion with drift, which we call the Fontes-Isopi-Newman diffu-
sion with drift. This process has not been identified as limit process in any
other case before.

Our second main result, stated as Theorems 2.2 and 2.4, refer to the ageing
behaviour in trap models on Z with vanishing drift. To this end we study the
asymptotics of the depth of the trap in which the particle is at any given time, or,
in other words, the environment from the point of view of the particle. This allows
us to identify an ageing exponent 0 < γ ≤ 1 such that the probability

P
{
Xt = Xt+s for all 0 ≤ s ≤ tγ

}
as t ↑ ∞,

(averaged over the trap environment) converges to a value strictly between zero and
one. Again there is a qualitatively different behaviour between the case of slowly
vanishing drift on the one hand, and rapidly vanishing and critical drift on the other.
Only in the case of constant drift do we have an ageing exponent γ = 1, all regimes
with vanishing drift (as t ↑ ∞) lead to sublinear ageing, i.e. exponents γ < 1. This
is in marked contrast to the behaviour of the two-point function P{Xt = Xt+tγ} for
which we expect a nontrivial limit when γ = 1 in all cases, a fact which is rigorously
established in the driftless case in Fontes et al. (2002) and in the case of fixed drift
in Zindy (2009).

In the following section we give the precise formulation of our main results. We
then proceed to prove our scaling limit theorems in the three regimes in Sections 3,
4 and 5, and the two regimes of ageing results in Section 6 and 7.

2. Statement of the main results

Fix 0 < α < 1 and let (τz : z ∈ Z) be an independent family of random variables
with

lim
x↑∞

xα P{τz > x} = 1 . (2.1)

Given this trap environment and jump probabilities p, q ∈ [0, 1], q = 1−p, we define
the Markov chain on Z with transition rates

qi,i+1 = p τ−1
i , qi,i−1 = q τ−1

i .

This is called the (symmetric) trap model with drift. We are mostly concerned
with limit theorems for these processes in the case of vanishing drift. We therefore
suppose that µ ≥ 0, β ≥ 0 and X (N) = (X (N)

t : t ≥ 0) is defined by X (N)

t = XNt,
where X = (Xt : t ≥ 0) is a trap model with jump probabilities

p(N) =
1

2

(
1 +

µ

Nβ

)
, q(N) = 1− p(N) =

1

2

(
1−

µ

Nβ

)
.

(We take µ ≤ 1 if β = 0.). We define the following limiting processes:

• Inverse stable subordinator.
For 0 < α < 1 the stable subordinator is the increasing Lévy process
(Subt : t ≥ 0) with

E
[
e−λSubt

]
= exp

{
− tΓ(1− α)λα

}
.

Its right-continuous inverse (Sub−1
s : s ≥ 0) defined by

Sub
−1
s = inf{t > 0: Subt > s}
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is the inverse stable subordinator with index α.
• Fontes Isopi Newman diffusion with drift µ.
Suppose (B(t) : t ≥ 0) is a Brownian motion with drift µ and (ℓ(t, x) : t ≥
0, x ∈ R) its local times. Let ρ be an independent stable measure with index
0 < α < 1, defined as the random measure whose cumulative distribution
function is a two-sided stable subordinator with the same index. Define an
increasing function

φ(t) =

∫
ℓ(t, x) ρ(dx),

and its inverse

ψ(s) = inf{t > 0: φ(t) > s}.

Then (Finµs : s ≥ 0) given by

Fin
µ
s = B(ψ(s))

is a Fontes Isopi Newman diffusion with drift µ.

We always denote by “=⇒” convergence in distribution, averaging over the trap
environment.

Theorem 2.1 (Scaling limits). We have the following limit laws, where “=⇒” de-
notes convergence in distribution on the Skorokhod space D[0, 1] of right-continuous
functions with left-hand limits.

(a) If 0 ≤ β < α
α+1 and µ > 0 then

X (N)

Nα(1−β)
=⇒

µα

Γ(1 + α)
Sub

−1 .

(b) If β = α
α+1 and µ > 0 then

X (N)

Nβ
=⇒ Fin

µ .

(c) If β > α
α+1 or µ = 0 then

X (N)

N
α

α+1
=⇒ Fin

0 .

The scaling limit in regime (c) has been identified by Fontes et al. (2002) in the
case of the trap model without drift (µ = 0); the inverse stable subordinator has
been observed, using methods different from ours, as a scaling limit in trap models
with constant drift (β = 0) by Zindy (2009). Monthus (2004) has some interesting
results for the asymptotics α ↓ 0. The diffusion with drift, which we observe in the
critical regime, represents a previously unobserved scaling behaviour.

Theorem 2.2 (Ageing in the presence of slowly vanishing drift). If 0 ≤ β < α
α+1

and µ > 0, then there exist nonnegative nondegenerate random variables ξt such
that

τ
X

(N)
t

N1−β
=⇒ ξt .

Define a function c(t) ∈ (0, 1) by c(t) = E[exp{− 1
ξt
}]. Then we have

lim
N↑∞

P
{
X (N)

t = X (N)

t+s for all 0 ≤ s ≤ N−β
}
= c(t) .
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Remark 2.3. Note that the ageing exponent defined in the introduction equals
γ = 1 − β in this case. The limit variable ξt describes the traps from the point of
view of the particle. We define two independent series of nonnegative i.i.d. random
variables U1, U2, . . . and S1, S2, . . . such that

• Si is the product of two independent random variables, a Pareto variable
with index α and an exponential variable with mean 1/µ;

• Ui is a random variable with (for some constant c depending only on α)

P{Ui > x} ∼ c
µα

xα
as x ↑ ∞,

and the law of ξt can be described as

P
{
ξt > v

}
=

∞∑

j=1

P
{ j−1∑

i=1

(Ui + Si) + Uj <
t

v
≤

j∑

i=1

(Ui + Si)
}
, for v > 0.

Here, loosely speaking, the variables Si represent periods in which the walker is in
deep traps, while the Ui represent the travel times between these traps.

We also have results in the rapidly vanishing and critical drift regimes.

Theorem 2.4 (Ageing in the presence of rapidly vanishing drift). If β ≥ α
α+1 , then

there exist nonnegative nondegenerate random variables ζt such that

τ
X

(N)
t

N
1

α+1

=⇒ ζt .

Define a function k(t) ∈ (0, 1) by k(t) = E[exp{− 1
ζt
}]. Then we have

lim
N↑∞

P
{
X (N)

t = X (N)

t+s for all 0 ≤ s ≤ N− α
α+1

}
= k(t) .

Remark 2.5. In this regime the ageing exponents equals γ = 1
α+1 . We observe a

joint convergence of the rescaled process and the rescaled trap environment inter-
preted as a random measure,

(
N− α

α+1X (N), N− 1
α+1

∑

z∈Z

τz δN− α
α+1 z

)
=⇒ (Finθ, ρ) ,

where θ = µ if β = α
α+1 , and θ = 0 otherwise. The limiting random variable ζt is

then given as

ζt = ρ(Finθt ).

Remark 2.6. In both of our ageing results, unless β = 0, the time typically spent
by the process in the current state is a sublinear function of time. This kind of
phenomenon is sometimes called sub-ageing and is exhibited by an ageing expo-
nent γ < 1.

3. Proof of Theorem 2.1(a)

The basic idea of the proof is to show that the process X (N) is mostly increasing
and therefore essentially invertible. The convergence of one-dimensional marginals
will then be proved for the inverse process using Laplace transforms. This will be
extended to finite-dimensional marginals using asymptotic independence properties,
and finally to Skorokhod space by verification of a continuity criterion.
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The first lemma ensures that X (N) is mostly increasing. We denote by Tx the
first time where the process X hits level x > 0. We can write

Tx =

∞∑

n=0

ηn τSn1
{
max
j≤n

Sj < x
}
,

where (Sn : n ≥ 0) is the random walk embedded in the process X and (ηn : n ≥ 0)
an independent family of independent standard exponential random variables.

Lemma 3.1. There exists a constant C such that, for x large enough,

P

{
sup
v≤t

(
sup
u≤v

X (N)

u −X (N)

v

)
≥ x

}
≤ C tαNα exp

{
− µ

x

Nβ

}
,

for all t > 0.

Proof : It is clear that
{
sup
v≤t

(
sup
u≤v

X (N)

u −X (N)

v

)
≥ x

}

⊆

∞⋃

j=0

{
Tj < Nt; Xv ≤ j − x for some v > Tj

}
.

Furthermore,
{
Tj < Nt; Xv ≤ j − x for some v > Tj

}
⊆

{
Tj < Nt; min

k≥1
S(j)

k ≤ −x
}
,

where (S(j)

k : k = 1, 2, . . .) is the random walk embedded in (Xv − j : v ≥ Tj), which
is independent of (Xv : v ≤ Tj). Consequently,

P

{
sup
v≤t

(
sup
u≤v

X (N)

u −X (N)

v

)
≥ x

}
≤ P

{
min
k≥1

Sk ≤ −x
} ∞∑

j=0

P

{
Tj < Nt

}
.

For the first term,

P

{
min
k≥1

Sk ≤ −x
}
=

(q(N)

p(N)

)x

=
(1− µN−β

1 + µN−β

)x

≤ exp
{
− µ

x

Nβ

}
. (3.1)

We next note that

∞∑

j=0

P
{
Tj < Nt

}
≤

∞∑

j=0

P

{ j−1∑

k=0

τkηk < Nt
}
.

Noting that the tail of τ0η0 is regularly varying with index α and using the renewal
theorem for this class of random variables, see e.g. Erickson (1970), we see that
the sum on the right is bounded by C(Nt)α. This completes the proof of the
lemma. �

A direct consequence of Lemma 3.1 is the following limit in probability.

Lemma 3.2. If 0 ≤ β < α
α+1 then

P

{∣∣∣∣N
−α(1−β)

(
sup
v≤t

X (N)

v −X (N)

t

)∣∣∣∣ ≥ ε

}
→ 0 .
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The lemma implies that

P

{ X (N)

t

Nα(1−β)
≥ a

}
∼ P

{
TaNα(1−β) ≤ Nt

}
. (3.2)

For integers z < x, we denote

ℓ(x)(z) =

∞∑

n=0

1
{
Sn = z, max

j≤n
Sj < x

}
and ℓ(∞)(z) =

∞∑

n=0

1
{
Sn = z

}
. (3.3)

Rearranging the family (ηn : n ≥ 0), according to the position of the random walks,
as (ηn(z) : n = 1, . . . , ℓ(x)(z); z < x) we obtain

Tx =
∑

z<x

τz

ℓ(x)(z)∑

n=1

ηn(z) .

In the following lemmas the expectations E are with respect to the full probability
space, while the expectation E refers to the traps (τz : z < x), and the expectation
E to the exponentials (ηn : n ≥ 0).

Lemma 3.3. For any δ ∈ (0, α), any y = y(N) and

x = x(N) ≤ min{Nα−δ, y(N)}

we have, for all λ > 0,

E

[
exp

{
−

∑

z<x

τz
λ

N

ℓ(y)(z)∑

n=1

ηn(z)
}]

= E exp
{
− Γ(1− α)

λα

Nα
(1 + o(1))

∑

z<x

(
ℓ(y)(z)

)α}
+ o(1) as N ↑ ∞.

Proof : Taking first expectation with respect to all ηi(z), we have

E

[
exp

{
−

∑

z<x

τz
λ

N

ℓ(y)(z)∑

n=1

ηn(z)
}]

=
[ ∏

z<x

(
1 +

λτz
N

)−ℓ(y)(z)
]

= exp
{
−

∑

z<x

ℓ(y)(z) log
(
1 +

λτz
N

)}
.

It follows from (3.1) that P{ℓ(y)(−Nβ+ε) > 0} = o(1) for any ε > 0. Furthermore,
we can choose ε > 0 such that

P
{

max
z∈[−Nβ+ε,x]

τz > N1−ε
}
≤ (x+Nβ+ε)P

{
τ0 > N1−ε

}
= o(1).

Therefore,

E

[
exp

{
−

∑

z<x

τz
λ

N

ℓ(y)(z)∑

n=1

ηn(z)
}]

= E

[
exp

{
−

∑

z<x

ℓ(y)(z) log
(
1 +

λτz
N

)}
;A

]
+ o(1),

where

A =
{

max
z∈[−Nβ+ε,x]

τz ≤ N1−ε
}
∩
{
ℓ(y)(−Nβ+ε) = 0

}
.
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Next we note that log
(
1 + λτz

N

)
= λτz

N (1 + O(N−ε)) on the event {τz ≤ N1−ε}.
Hence

E

[
exp

{
−

∑

z<x

τz
λ

N

ℓ(y)(z)∑

n=1

ηn(z)
}]

= E

[
exp

{
−
λ

N
(1 +O(N−ε))

∑

z<x

τzℓ
(y)(z)

}
;A

]
+ o(1).

By the Markov property, for k ≥ 1,

P{ℓ(∞)(0) = k} = (2p(N) − 1)(2− 2p(N))k−1 =
µ

Nβ

(
1−

µ

Nβ

)k−1

. (3.4)

Using this one can easily obtain the bound

P
{
ℓ(∞)(z) > N1−ε

}
≤ exp

{
− µN1−β−ε

}
.

This implies that

P

{
max

z∈[−Nβ+ε,x]
ℓ(y)(z) > N1−ε

}
≤ (x+Nβ+ε)P

{
ℓ(∞)(z) > N1−ε

}
= o(1).

Recall from (2.1) in conjunction with XIII (5.22) of Feller (1971) that

Ee−λτz = e−Γ(1−α)λα

(1 + o(λα)) = exp {−Γ(1− α)λα(1 + o(1))} , λ ↓ 0.

Hence, on the event {ℓ(y)(z) ≤ N1−ε},

E exp
{
−
λ

N
τzℓ

(y)(z)
}
= exp

{
− Γ(1 − α)

λα
(
ℓ(y)(z)

)α

Nα
(1 + o(1))

}
.

Consequently,

E

[
exp

{
−

∑

z<x

τz
λ

N

ℓ(y)(z)∑

n=1

ηn(z)
}
; B

]

= exp
{
− Γ(1− α)

λα

Nα
(1 + o(1))

∑

z<x

(
ℓ(y)(z)

)α}
+ o(1),

where B = A ∩ {maxz∈[−Nβ+ε,x] ℓ
(y)(z) ≤ N1−ε}. This completes the proof. �

Lemma 3.4. Let 0 ≤ β < α
α+1 and suppose ψ : [0,∞) → [0,∞) is increasing and

satisfies ∫ ∞

0

ψ4(y)e−µy dy <∞.

Then we have the following limit in distribution (averaged over the trap environ-
ment):

lim
N→∞

x/Nβ→∞

1

x

x−1∑

z=−∞

ψ
( ℓ(x)(z))

Nβ

)
=

{ ∫∞

0 ψ(y)µe−µy dy, if β > 0,
∑∞

k=1 µ(1 − µ)k−1ψ(k), if β = 0.

Proof : We give the proof for the case β > 0 only, as the case β = 0 differs only in
one minor point. For every z < 0 we have the inequalities

Eψ
( ℓ(x)(z)

Nβ

)
≤ Eψ

( ℓ(∞)(z)
Nβ

)
≤ P{min

k≥1
Sk ≤ z}Eψ

( ℓ(∞)(0)
Nβ

)
.

Applying (3.1), we obtain, for z > 0,

Eψ
( ℓ(x)(z)

Nβ

)
≤ exp

{
µ z

Nβ

}
Eψ

( ℓ(∞)(0)
Nβ

)
.
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Therefore,

E

−1∑

z=−∞

ψ
( ℓ(x)(z)

Nβ

)
≤ CNβ

Eψ
( ℓ(∞)(0)

Nβ

)
. (3.5)

From (3.4) we conclude, using here that β > 0, that

lim
N→∞

Eψr
( ℓ(∞)(0)

Nβ

)
=

∫ ∞

0

ψr(x)µe−µx dx, (3.6)

for 0 < r ≤ 4. Furthermore, by (3.4), the random variable ℓ(∞)(0) has a geometric
distribution and

sup
N≥1

Eψr
( ℓ(∞)(0)

Nβ

)
<∞. (3.7)

Combining (3.5) and (3.7), we conclude that (with a constant C not depending
on x)

E

−1∑

z=−∞

ψ
( ℓ(x)(z)

Nβ

)
≤ CNβ . (3.8)

It follows from this bound and the condition xN−β → ∞ that

1

x

−1∑

z=−∞

ψ
( ℓ(x)(z)

Nβ

)
=⇒ 0. (3.9)

For every z > 0 we define

σz := min{k ≥ 1 : Sk = z} and Az := {Sk > 0 for all k > σz}. (3.10)

Then

E
[
ψ
( ℓ(x)(0)

Nβ

)
ψ
( ℓ(x)(z)

Nβ

)]

= E
[
ψ
( ℓ(x)(0)

Nβ

)
ψ
( ℓ(x)(z)

Nβ

)
;Az

]
+ E

[
ψ
( ℓ(x)(0)

Nβ

)
ψ
( ℓ(x)(z)

Nβ

)
;Ac

z

]

=: E1 + E2.

Using the Cauchy-Schwarz inequality, we obtain

E2 ≤ P
1/2(Ac

z)E
1/2

[
ψ2

( ℓ(x)(0)
Nβ

)
ψ2

( ℓ(x)(z)
Nβ

)]

≤ P
1/2(Ac

z)E
1/4

[
ψ4

( ℓ(x)(0)
Nβ

)]
E
1/4

[
ψ4

( ℓ(x)(z)
Nβ

)]

≤ P
1/2(Ac

z)E
1/2

[
ψ4

( ℓ(x)(0)
Nβ

)]
.

Noting that P(Ac
z) = P{mink≥1 Sk ≤ −z} and applying (3.1), we get

E2 ≤ exp
{
− µ z

2Nβ

}
E
1/2[ψ4

( ℓ(x)(0)
Nβ

)
]. (3.11)

Since ℓ(x)(0) = ℓ(z)(0) on the event Az, using the Markov property,

E1 = E
[
ψ
( ℓ(z)(0)

Nβ

)
ψ
( ℓ(x)(z)

Nβ

)
;Az

]

= E
[
ψ
( ℓ(z)(0)

Nβ

)]
E
[
ψ
( ℓ(x−z)(0)

Nβ

)
; min
k≥1

Sk > −z
]

≤ E
[
ψ
( ℓ(z)(0)

Nβ

)]
E
[
ψ
( ℓ(x−z)(0)

Nβ

)]

≤ E
[
ψ
( ℓ(z)(0)

Nβ

)]
E
[
ψ
( ℓ(x)(0)

Nβ

)]
. (3.12)

Combining (3.11) and (3.12) gives

Cov
(
ψ
( ℓ(x)(0)

Nβ

)
, ψ

( ℓ(x)(z)
Nβ

))
≤ exp

{
− µ z

2Nβ

}
E
1/2

[
ψ4

( ℓ(x)(0)
Nβ

)]
.
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Therefore,

Var
[x−1∑

z=0

ψ
( ℓ(x)(z)

Nβ

)]
=

x−1∑

z=0

Var
[
ψ
( ℓ(x)(z)

Nβ

)]
+

2

x−1∑

z=0

x−1∑

y=z+1

Cov
(
ψ
( ℓ(x)(y)

Nβ

)
, ψ

( ℓ(x)(z)
Nβ

))

≤ xE
[
ψ2

( ℓ(∞)(0)
Nβ

)]
+

2

x−1∑

z=0

x−1∑

y=z+1

exp
{
− µ y−z

2Nβ

}
E
1/2

[
ψ4

( ℓ(x)(0)
Nβ

)]

≤ xE1/2
[
ψ4

( ℓ(∞)(0)
Nβ

)]
+

xE1/2
[
ψ4

( ℓ(x)(0)
Nβ

)] ∞∑

z=0

exp
{
− µ z

2Nβ

}

≤ CxNβ
E
1/2

[
ψ4

( ℓ(∞)(0)
Nβ

)]
.

From this bound and Chebyshev’s inequality we get

P

{∣∣∣
x−1∑

z=0

ψ
( ℓ(x)(z)

Nβ

)
− E

x−1∑

z=0

ψ
( ℓ(x)(z)

Nβ

)∣∣∣ > εx
}
≤
CxNβE1/2[ψ4( ℓ

(∞)(0)
Nβ )]

ε2x2
.

Applying (3.6) and (3.7), we have

P

{∣∣∣
x−1∑

z=0

ψ
( ℓ(x)(z)

Nβ

)
− E

x−1∑

z=0

ψ
( ℓ(x)(z)

Nβ

)∣∣∣ > εx
}
≤
CNβ

ε2x
. (3.13)

We now estimate the expectation E
∑x−1

z=0 ψ(ℓ
(x)(z)/Nβ). On the one hand,

Eψ
( ℓ(x)(z)

Nβ

)
≤ Eψ

( ℓ(∞)(z)
Nβ

)
= Eψ

( ℓ(∞)(0)
Nβ

)
.

On the other hand,

Eψ
( ℓ(x)(z)

Nβ

)
= Eψ

( ℓ(x−z)(0)
Nβ

)
≥ E

[
ψ
( ℓ(∞)(0)

Nβ

)
;Ax−z

]

= Eψ
( ℓ(∞)(0)

Nβ

)
− E

[
ψ
( ℓ(∞)(0)

Nβ

)
;Ac

x−z

]

≥ Eψ
( ℓ(∞)(0)

Nβ

)
− P

1/2(Ac
x−z)E

1/2
[
ψ2

( ℓ(∞)(0)
Nβ

)]
.

Consequently,

∣∣∣E
x−1∑

z=0

ψ
( ℓ(x)(z)

Nβ

)
− xE

[
ψ
( ℓ(∞)(0)

Nβ

)]∣∣∣ ≤ E
1/2

[
ψ2

( ℓ(∞)(0)
Nβ

)] ∞∑

z=0

P
1/2

(
Ac

z

)
.

Applying (3.1) and (3.7), we conclude that

lim sup
N→∞

x/Nβ→∞

E
1/2

[
ψ2

( ℓ(∞)(0)
Nβ

)]
×

1

x

∞∑

z=0

P
1/2(Ac

z)

≤ sup
N≥1

E
1/2

[
ψ2

( ℓ(∞)(0)
Nβ

)]
× lim sup

x/Nβ→∞

1

x

∞∑

z=0

exp{−µ z
2Nβ } = 0.
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Using also (3.6), we infer that

lim
N→∞

x/Nβ→∞

1

x
E

x−1∑

z=0

ψ
( ℓ(x)(z)

Nβ

)
= lim

N→∞
E
[
ψ
( ℓ(∞)(0)

Nβ

)]
=

∫ ∞

0

ψ(y)µe−µy dy. (3.14)

Combining (3.9), (3.13) and (3.14) finishes the proof of the lemma. �

We now start with the proof of Theorem 2.1 (a), first considering one-dimensional
marginals. Using Lemma 3.3 for x = y = aNα(1−β) we have

E exp
{
− λ

N TaNα(1−β)

}
= E exp

{
− Γ(1− α) λα

Nα(1−β) (1 + o(1))
∑

z<x

( ℓ(x)(z)
Nβ

)α}
.

We therefore conclude from Lemma 3.4, taking ψ(x) = xα,

lim
N↑∞

E exp
{
− λ

N TaNα(1−β)

}
= exp

{
− a λα Γ(1− α)

∫ ∞

0

uα µe−µu du
}
.

Finally, note that ∫ ∞

0

uα µe−µu du = Γ(1 + α)µ−α .

Hence,

lim
N↑∞

E exp
{
− λ

N TaµαNα(1−β)/Γ(1+α)

}
= exp

{
− a λα Γ(1− α)

}
(3.15)

as required, in the light of (3.2), to complete the convergence of one-dimensional
marginals.

Next, we show convergence of finite-dimensional distributions. It is easy to see
that, for all 0 ≤ x < y,

Ty − Tx =

y−1∑

z=x

τz

ℓ(y)(z)∑

j=1

ηj(z) +
∑

z<x

τz

ℓ(y)(z)∑

j=ℓ(x)(z)+1

ηj(z).

Using Lemma 3.3 and inequality (3.8) we see that

E exp
{
−
λ

N

∑

z<x

τz

ℓ(y)(z)∑

j=ℓ(x)(z)+1

ηj(z)
}
= E exp

{
−
λ

N

∑

z<0

τz

ℓ(y−x)(z)∑

j=1

ηj(z)
}

= E exp
{
−
λαΓ(1− α)(1 + o(1))

Nα(1−β)

∑

z<0

(ℓ(y−x)(z)

Nβ

)α}

−→ 1, as N ↑ ∞,

for every λ > 0 (recall β < α/(α+ 1)). Therefore,

lim
N→∞

1

N

∑

z<x

τz

ℓ(y)(z)∑

j=ℓ(x)(z)+1

ηj(z) = 0 in probability.

Since Tx and
∑y−1

z=x τz
∑ℓ(y)(z)

j=1 ηj(z) are independent, we therefore conclude that

Tx/N and (Ty − Tx)/N are asymptotically independent.
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Now fix 0 ≤ t1 < · · · < tk and 0 < a1 < · · · < ak. By the argument above one
can easily show that Ta1/N, (Ta2 −Ta1)/N, . . . , (Tak

−Tak−1
)/N are asymptotically

independent. Noting also that, for any 0 < a < b,

1

N
(TbNα(1−β) − TaNα(1−β)) → Subb − Suba

we obtain the convergence of the finite-dimensional distributions,
( 1

N
Ta1Nα(1−β) , . . . ,

1

N
TakNα(1−β)

)
−→

(
Suba1 , . . . , Subak

)
.

Finally, to prove the tightness of X (N) in the Skorokhod space D[0, 1], we first
note that the convergence of one-dimensional distributions and Lemma 3.1 imply
that, for any δ > 0 and ε > 0, for some constant c = c(α, µ),

lim
N→∞

P

{
sup
t≤δ

∣∣X (N)

t −X (N)

0

∣∣ ≥ ε
}
= P

{
Subε ≤ cδ

}
.

Then, since the increments of X (N) are homogeneous in time,

lim sup
N→∞

P

{
max

0≤i≤δ−1
sup
t≤δ

|X (N)

iδ+t −X (N)

iδ | ≥ ε
}
≤ (1 + δ−1)P

{
Subε ≤ cδ

}
.

Let

ω′(f, δ) = inf
0=t0<t1<···<tv=1

ti−ti−1>δ

sup
1≤i≤v

ti−1≤s,t<ti

∣∣f(s)− f(t)
∣∣

denote the standard continuity modulus in the Skorokhod space D[0, 1]. It is easy
to see that

ω′(f, δ) ≤ 2 max
0≤i≤δ−1

sup
t≤δ

|f(iδ + t)− f(iδ)| .

Therefore,

lim sup
N→∞

P

{
ω′(X(N), δ) ≥ ε

}
≤ (1 + δ−1)P

{
Subε/2 ≤ cδ

}
.

Noting that all negative moments of Sub are finite, we conclude that

lim
δ→0

lim sup
N→∞

P

{
ω′(X(N), δ) ≥ ε

}
= 0.

This, according to Theorem 13.2 in Billingsley (1999), ensures the convergence in
the path space D[0, 1].

4. Proof of Theorem 2.1(b)

The idea is to represent the processes X (N) as time and scale change of a Brow-
nian motion (B(t) : t ≥ 0) with drift µ. A result of Stone (1963) allows us to infer
convergence of X (N) from convergence of the parameters in this representation.

We now recall the results of Stone (1963) showing how to represent random walks
as time and scale-changed Brownian motions. Let

ν =
∑

i∈Z

wiδyi

be an atomic measure called the speed measure with atoms {yi : i ∈ Z} indexed in
increasing order. Let S be a strictly increasing function on this set of atoms, which
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is called the scale function. Let (ℓ(t, x) : x ∈ R, t ≥ 0) be the local time field of the
Brownian motion. Define

φ[ν, S](t) := φ(t) :=

∫
ℓ(t, S(x)) ν(dx)

and

ψ[ν, S](t) := ψ(t) := inf{s > 0: φ(s) > t}.

We define the process (Y [ν, S](t) : t ≥ 0) by

Y [ν, S](t) := Y (t) := S−1
(
B(ψ(t)

)
.

Lemma 4.1. Define u : R → R as

u(x) =

{
1−e−2µx

2µ if µ > 0,

x if µ = 0.

Then (Y (t) : t ≥ 0) is a nearest-neighbour random walk on {yi : i ∈ Z}. The waiting
time in the state yi is exponentially distributed with mean

2wi
(u(S(yi+1))− u(S(yi)))(u(S(yi))− u(S(yi−1)))

u(S(yi+1))− u(S(yi−1))

and after leaving state yi the process jumps to state yi−1 and yi+1 with respective
probabilities

u(S(yi+1))− u(S(yi))

u(S(yi+1))− u(S(yi−1))
and

u(S(yi))− u(S(yi−1))

u(S(yi+1))− u(S(yi−1))
.

Proof : For the case of a driftless Brownian motion this construction is carried out
in Section 3 of Stone (1963), see also Proposition 3.6 in Ben Arous and Černý
(2006). In order to extend this to the case of a Brownian motion with drift, one
has to compute the exit probabilities, see Formula 3.0.4, Page 309 in Borodin and
Salminen (1996), and the expected local time at the origin, see Formula 3.3.1 on
Page 310 in Borodin and Salminen (1996), of a Brownian motion with drift µ, which
is started at the origin and killed upon leaving the interval (−a, b), for a, b > 0. �

Let

h(N) =
1

2µ
log

(
1 + µN−β

1− µN−β

)
,

and define the speed measure

ν(N) =
1

N
1

α+1

∑

i∈Z

τi δih(N)

and the identity as scale function. By Lemma 4.1 the corresponding process
(Y (N)(t) : t ≥ 0) is a nearest-neighbour random walk on h(N)Z which moves to
the left with probability

1− e−2µh(N)

e2µh(N) − e−2µh(N)
= q(N).

Furthermore, the waiting time in ih(N) is exponentially distributed with mean

2τi
1

N
1

α+1

1

2µ

(e2µh
(N)

− 1)(1− e−2µh(N)

)

e2µh(N) − e−2µh(N)
= τiN

−1
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(recalling β = α/(α+1)). Hence, we have shown that the distributions of h(N)X (N)

t

and Y (N)(t) are equal. Noting that

h(N) ∼ N−β as N → ∞,

one can easily verify that ν(N) → ρ vaguely in distribution. At this point, one
can not yet apply Stone’s Theorem since it refers to deterministic speed measures.
However, the above convergence can be made almost sure on a suitably defined
probability space, see Section 3.2.3 in Ben Arous and Černý (2006). By Theorem 1
in Stone (1963), we then obtain

N−βX (N) ∼ h(N)X (N) d
= Y [ν(N), id] =⇒ X ,

where X is a diffusion with speed measure ρ. This is a Fontes-Isopi-Newman
diffusion with drift µ, completing the proof of the part (b).

5. Proof of Theorem 2.1(c)

Here we represent X (N) as a time-scale change of the driftless Brownian mo-
tion. The proof repeats mainly the corresponding proof in Fontes et al. (2002) and
Ben Arous and Černý (2006). We explain the needed changes only. Define

S(N)(x) = N− α
α+1

1− e−µ(N)N
α

α+1 x

µ(N)
,

where

µ(N) = log

(
1 + µN−β

1− µN−β

)
.

Furthermore, define the speed measure

ν(N) =
c(N)

N
1

α+1

∑

i∈Z

τi δyi ,

where yi = N− α
α+1 i and

c(N) =
µ(N)

2µN−β
→ 1.

By Lemma 4.1 the process Y [ν(N), S(N)] is a random walk on N− α
α+1Z with transi-

tion probabilities

S(N)(yi+1)− S(N)(yi)

S(N)(yi+1)− S(N)(yi−1)
= q(N) and

S(N)(yi)− S(N)(yi−1)

S(N)(yi+1)− S(N)(yi−1)
= p(N)

and the waiting time at yi is exponentially distributed with mean

2
τic

(N)

N
1

α+1

(S(N)(yi+1)− S(N)(yi))(S
(N)(yi)− S(N)(yi−1))

S(N)(yi+1)− S(N)(yi−1)
=
τi
N
.

Consequently, N− α
α+1X (N) d

= Y [ν(N), S(N)]. Since β > α
α+1 and µ(N) ∼ N−β, we

have S(N)(x) → x uniformly on compact subsets of R. Moreover, ν(N) → ρ vaguely
in distribution, so that the result follows from Theorem 1 in Stone (1963).
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6. Proof of Theorem 2.2

The main task here is to study limits of

P
{
τ
X

(N)
t

> vN1−β
}

for v > 0.

Our strategy is to look at the deep traps z ∈ Z defined by τz > vN1−β and at the
‘travelling intervals’ defined as the times which the processX spends travelling from
one deep trap to the next one to its right. We show that during the intermediate
intervals, which separate the travelling intervals, the process spends most of its
time in a deep trap. The length of travelling intervals and intermediate intervals
are both of order N and we determine the asymptotic distribution of their lengths,
which enables us to find the limit above. The further statements in Theorem 2.2
follow easily from this.

Define the sequence of deep traps (with x0 = 0), as

xj = min{z > xj−1 : τz > vN1−β} for j ≥ 1.

The following lemma reveals the typical distance of two successive traps.

Lemma 6.1. For any u > 0 and j ≥ 0, we have

lim
N→∞

P
{
xj+1 − xj ≥ uNα(1−β)

}
= e−u/vα

.

Proof : Using the tail behaviour of the random variables τz given by (2.1), we have
for any r > 0,

P{xj+1 − xj ≥ r} =
(
1−

(1 + o(1)

vN1−β

)α)r

,

from which the result follows by Euler’s formula. �

Next, we investigate the time spent in a deep trap before the next deep trap is
hit for the first time.

Lemma 6.2. For all j ≥ 0,

ℓ(xj+1)(xj)

Nβ
=⇒ ξ,

where ξ is exponentially distributed with mean 1/µ if β > 0, and geometrically
distributed with mean 1/µ if β = 0.

Proof : Recall (3.10) and let

Ax,y =
{
Sk > x for all k ≥ σy

}
for x < y.

Keeping x1, x2, . . . fixed by conditioning on the trap environment, we have

ℓ(∞)(xj)

Nβ
≥
ℓ(xj+1)(xj)

Nβ
≥
ℓ(∞)(xj)

Nβ
1Axj,xj+1

.

Observe that ℓ(∞)(xj) is geometrically distributed with success parameter µ/Nβ.
Therefore

ℓ(∞)(xj)

Nβ
=⇒ ξ,

where ξ is exponentially distributed with parameter µ. It therefore suffices to show
that

ℓ(∞)(xj)

Nβ
1Ac

xj,xj+1
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converges weakly to zero. As the first factor converges, it further suffices to show
that P(Ac

xj ,xj+1
) converges to zero. By (3.1) we have

P
(
Ac

xj ,xj+1

)
≤ E exp

{
−

µ(xj+1−xj)
Nβ

}
.

Averaging over the trap environment and using Lemma 6.1 together with the fact
that α(1 − β) > β, we see that the right hand side converges to zero. �

Lemma 6.3. For τ as in (2.1), we have as y ↑ ∞ and λ/y ↓ 0,

E
[
e−

λ
y τ | τ ≤ y

]
= 1+ y−α

(
1−Γ(1−α)λα −

∫ ∞

1

e−λz α
zα+1 dz

)
+ o

(
(λ+1)αy−α

)
.

Proof : We have P{τ ≤ y} = 1− y−α + o(y−α), and hence

1

P{τ ≤ y}
= 1 + y−α + o(y−α).

Moreover, using integration by parts,

E
[
e−

λ
y τ ; τ > y

]
=

∫ ∞

y

e−
λ
y x P{τ ∈ dx}

= e−λP{τ > y} − λ
y

∫ ∞

y

P{τ > x}e−
λ
y x dx

= e−λP{τ > y} − λ

∫ ∞

1

P{τ > yz}e−λz dz.

As, for all z > 1,
P{τ > yz}

P{τ > y}
−→ z−α,

we obtain, by dominated convergence,
∫∞

1 P{τ > yz}e−λz dz

P{τ > y}
−→

∫ ∞

1

e−λzz−α dz.

Therefore

E
[
e−

λ
y τ ; τ > y

]
= P{τ > y}

[
e−λ − λ

∫ ∞

1

e−λzz−α dz
]
(1 + o(1))

= y−α (1 + o(1))

∫ ∞

1

e−λz α
zα+1 dz.

Recalling that Ee−
λ
y τ = 1− Γ(1− α)(λy )

α + o(λαy−α) and summarising,

E
[
e−

λ
y τ | τ ≤ y

]

=
1

P{τ ≤ y}

(
Ee−

λ
y τ − E

[
e−

λ
y τ ; τ > y

])

= 1 + y−α
(
1− Γ(1− α)λα −

∫ ∞

1

e−λz α
zα+1 dz

)
+ o

(
(λ+ 1)αy−α

)
.

This completes the proof. �

We now define quantities, which will be shown to converge in distribution to
the families U1, U2, . . . and S1, S2, . . . described in Remark 2.3. Fix j ≥ 1 and let
S(j) = (S(j)

n : n = 0, . . . , ζ(j)) be the embedded random walk started from the first
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hitting of xj−1 and stopped upon hitting xj , such that S(j)

0 = xj−1 and S(j)

ζ(j) = xj .

Let ℓj(x) be the local time in x of the embedded random walk and let

0 = n1 < n2 < · · · < nm < ζ(j)

with m = ℓj(xj−1) be the complete list of visits to xj−1 by S(j). Define

U (N)

j =

ζ(j)−1∑

i=nm+1

τ
S

(j)
i

ηi
(
S
(j)
i

)

and

S(N)

j−1 = τxj−1

ℓj(xj−1)∑

i=1

ηni(xj−1),

where (ηi(x) : i ∈ N, x ∈ Z) is a family of independent standard exponential vari-
ables, independent of everything else. Observe that, roughly speaking, U (N)

j /N is

the time the process X (N) requires to travel from xj−1 to xj and S(N)

j−1/N the time
spent in the trap xj−1 before the first hit of xj .

It is important to note that U (N)

j is independent of U (N)

1 , . . . , U (N)

j−1 and of S(N)

1 , . . . ,

S(N)

j , and also S(N)

j is independent of S(N)

1 , . . . , S(N)

j−1.

For 1 ≤ l ≤ ℓj(xj−1)− 1 we define

Q(N)

j,l =

nl+1−1∑

n=nl+1

τ
S

(j)
n
ηn

(
S(j)
n

)
,

such that Q(N)

j,l /N is the time spent by X (N) in the l-th excursion from xj−1 to xj−1

before reaching xj . Further define the set

R(N)

j =

ℓj(xj−1)−1⋃

i=1

(
τxj−1

i∑

l=1

ηnl
(xj−1) +

i−1∑

l=1

Q(N)

j,l , τxj−1

i∑

l=1

ηnl
(xj−1) +

i∑

l=1

Q(N)

j,l

)
.

The set 1
N R(N)

j is the (random) set of times which X (N) spends in excursions from

xj−1 (either to the left or to the right) which return to xj−1. We first show that
the time spent in these excursions is negligible.

Lemma 6.4. Let R(N)

j = |R(N)

j |. Then

(a)
R(N)

j

N
⇒ 0 as N ↑ ∞;

(b) for every t > 0, we have lim
N↑∞

P
{
Nt ∈ R(N)

j

}
= 0.

Proof : If (b) holds, then ER(N)

j =
∫ N

0 P
{
t ∈ R(N)

j

}
dt = o(N), hence (a) is an

immediate consequence of (b).
It remains to show (b). By Lemma 6.1 the distance between xj−2 and xj−1 is

of order Nα(1−β). Then, using (3.1), we conclude that the probability that X hits
xj−2 after hitting xj−1 converges to zero as N → ∞. Consequently,

P
{
t ∈ R(N)

j

}
= P

(
{t ∈ R(N)

j } ∩ Aj

)
+ o(1),
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where Aj = {X (N)

t > xj−2 for all t > Uxj−1}. It follows from the definition of Q(N)

j,l ,

that, conditioned on (τz : z ∈ Zd),

P
(
{t ∈ R(N)

j } ∩ Aj

)
=

E

ℓj(xj−1)−1∑

k=0

P

({ k∑

i=1

Ui + τxj−1ηk+1(xj−1) < Nt <

k+1∑

i=1

Di

}
∩ Aj

)
,

where

Di = τxj−1ηi(xj−1) +Q(N)

j,i .

Let B(N)

j,i denote the event that the corresponding excursion does not hit neither
xj−2 nor xj . Furthermore, denote

Q̃(N)

j,i = Q(N)

j,i 1B(N)
j,i

and Vi = τxj−1ηi(xj−1) + Q̃(N)

j,i .

Then (dropping the subindex k − 1 when it is convenient)

P
(
{t ∈ R(N)

j } ∩ Aj

)
≤

∞∑

k=0

P

{ k∑

i=1

Vi + τxj−1ηk+1(xj−1) < Nt <

k+1∑

i=1

Vi

}

=
∞∑

k=0

P

{ k∑

i=1

Vi ∈
(
Nt− τxj−1ηk+1(xj−1)− Q̃(N)

j,k+1, Nt− τxj−1ηk+1(xj−1)
)}

= E

[
H
(
Nt− τxj−1η(xj−1)

)
−H

(
Nt− τxj−1η(xj−1)− Q̃(N)

j

)]

+ P

{
Nt− τxj−1η(xj−1)− Q̃(N)

j < 0 < Nt− τxj−1η(xj−1)
}
,

where H(x) denotes the renewal function corresponding to the sequence (Vi : i =
0, 1, . . .). This renewal function satisfies the inequality

H(x+ y)−H(x) ≤ min

{
1,

y

τxj−1

}(
1 +

y

τxj−1

)
≤ 2

y

τxj−1

, x, y > 0. (6.1)

(We postpone the derivation of this inequality to the end of the proof.) Using this
bound we get

P
(
{t ∈ R(N)

j } ∩ Aj

)
≤ 2E

[ Q̃
(N)
j

τxj−1

]
+ P

{
η(xj−1) ∈

( z−Q̃
(N)
j

τxj−1
, z
τxj−1

)}
.

Noting that

P

{
η(xj−1) ∈

( z−Q̃
(N)
j

τxj−1
, z
τxj−1

)}
≤ E

[ Q̃
(N)
j

τxj−1

]
,

we have

P
(
{t ∈ R(N)

j } ∩ Aj

)
≤ 3E

[ Q̃
(N)
j

τxj−1

]
.

Recalling also that τxj−1 ≥ vN1−β , we arrive finally at the bound

P
(
{t ∈ R(N)

j } ∩ Aj

)
≤

3

vN1−β
EQ̃(N)

j .

Going back to the unconditioned probability, we have, uniformly in t,

P
{
t ∈ R(N)

j

}
≤

3

vN1−β
EQ̃(N)

j + o(1).



Trap models with vanishing drift: Scaling limits and ageing regimes 495

It follows from (2.1) that E[τz| τz ≤ vN1−β ] ≤ CN (1−α)(1−β). Then,

EQ̃(N)

j ≤ CN (1−α)(1−β)
E[L− 1;L <∞],

where L is the length of an excursion of the embedded random walk.
As P{L = k} = 0, if k is odd, and, with p = p(N), (see e.g. III.9 in Feller, 1968)

P{L = k} =
2

j

(
2j − 2

j − 1

)
pj(1− p)j ,

if k = 2j is even, we obtain

∞∑

k=1

(k − 1)P{L = k} = 2

∞∑

j=1

2j − 1

j

(
2j − 2

j − 1

)
pj(1− p)j

≤

∞∑

j=0

(
2j

j

)(
p(1− p)

)j
= E[ℓ(∞)(0)] =

1

2p− 1
.

Note that 2p− 1 = µ
Nβ . Thus, E[L − 1;L <∞] ≤ CNβ . Hence, we have

EQ̃(N)

j ≤ CNβ+(1−α)(1−β) = o(N1−β).

Therefore, it remains to prove (6.1).
Let θx denote the first time when the random walk

∑n
i=1 Vi leaves the interval

(−∞, x), that is,

θx := min{n ≥ 1 :

n∑

i=1

Vi ≥ x}.

Then, for every y > 0,

P

{ θx∑

i=1

Vi ≤ x+ y
}
=

∫ x

0

P

{ θx−1∑

i=1

Vi ∈ du
}
P
{
V1 ∈ (x−u, x+ y− u)

}
≤ y sup

z>0
f(z),

where f is the density of V1. This function is the convolution of densities of τxj−1η

and Q(N)

j . Then supz>0 f(z) does not exceed the maximal value of the density of

τxj−1η, which is equal to 1/τxj−1 . Consequently,

P

{ θx∑

i=1

Vi ≤ x+ y
}
≤ min

{
1,

y

τxj−1

}
. (6.2)

Using the Markov property, we obtain

H(x+ y)−H(x) = E

[
1

{ θx∑

i=1

Vi ≤ x+ y
}

(
1 +

∞∑

k=1

1

{ θx+k∑

i=θx+1

Vi ≤ x+ y −

θx∑

i=1

Vi

})]

= E

[
1

{ θx∑

i=1

Vi ≤ x+ y
}
H
(
x+ y −

θx∑

i=1

Vi

)]

≤ H(y)P
{ θx∑

i=1

Vi ≤ x+ y
}
.
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We now note that from the definition of V1 follows the inequality

H(y) ≤ 1 +

∞∑

k=1

P

{ k∑

i=1

ηi ≤ yτxj−1

}
≤ 1 +

y

τxj−1

.

Combining this with (6.2), we arrive at (6.1). This completes the proof of the
lemma. �

Lemma 6.5. For N ↑ ∞,

S(N)

j

vN
=⇒ Sj ,

where Sj is the product of two independent random variables, a Pareto variable with
index α, and an exponential variable with mean 1/µ.

Proof : First note that, for y ≥ v and x ∈ Z,

lim
N↑∞

P
{
τx > yN1−β

∣∣ τx > vN1−β
}
=

(v
y

)α

.

Therefore we have, for all j ∈ N,

lim
N↑∞

P
{
τxj > yN1−β

}
=

(v
y

)α

1{y ≥ v}. (6.3)

We write

S(N)

j

vN
=

( τxj

vN1−β

)( ℓj+1(xj)

Nβ

)( 1

ℓj+1(xj)

ℓj+1(xj)∑

i=1

ηi(xj)
)

and observe convergence of all three factors on the right hand side.
Indeed, the first factor converges in distribution to a Pareto law, by (6.3), and

the second factor to an exponential law with mean 1/µ, by Lemma 6.2. Moreover,
the second factor is independent of the first. To understand the third factor, re-
call from the discussion of the second factor that ℓj+1(xj) converges to infinity in
probability. Thus, by the weak law of large numbers, the third factor converges
to one in probability. Hence, the product S(N)

j /vN converges to the product of an
independent Pareto and exponential law. �

Lemma 6.6. For N ↑ ∞,

U (N)

j

vN
=⇒ Uj,

where Uj is a random variable with

P{Uj > x} ∼ c
µα

xα
as x ↑ ∞,

for some c > 0 depending only on α.

Proof : Recall that

U (N)

j =

ζ(j)−1∑

i=nk+1

τ
S

(j)
i

ηi
(
S
(j)
i

)
.

Conditional on xj−1, xj the random variables τx, x = xj−1 +1, . . . , xj − 1, are still
independent with τx conditioned to satisfy τx ≤ vN1−β .
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We first consider the case β > 0. Writing Laplace transforms

E exp
{
− λ

U
(N)
j

vN

}

∼ EE
[ xj−1∏

x=xj−1+1

E exp
{
− λ

vN τx

ℓj(x)∑

i=1

ηi(x)
}]

= E

[ xj−1∏

x=xj−1+1

E
[(
1 + λτx

vN

)−ℓj(x)
| τx ≤ vN1−β

]]

= E

xj−1∏

x=xj−1+1

E
[
exp

{
− λ

vN τxℓj(x)
(
1 +O(N−β)

)} ∣∣∣ τx ≤ vN1−β
]
,

where in the last step we have used that, on the event {τx ≤ vN1−β},

(
1 + λτx

vN

)−ℓj(x)
= exp

{
− ℓj(x) log

(
1 + λτx

vN

)}

= exp
{
− λ

vN τxℓj(x)
(
1 +O(N−β)

)}
.

By Lemma 6.3, we have

E
[
exp

{
− λ

vN τxℓj(x)
(
1 +O(N−β)

)} ∣∣ τx ≤ vN1−β
]

= 1 +
1 + o(1)

Nα(1−β)vα
ψλ

( ℓj(x)
Nβ

)
,

for

ψλ(y) = (1− Γ(1− α))λαyα −

∫ ∞

1

e−λyz α
zα+1 dz.

By Lemma 3.4 and (3.9) we have

1
xj−xj−1

xj−1∑

x=xj−1

ψλ

( ℓj(x)
Nβ

)
⇒

∫
ψλ(y)µe

−µy dy.

Altogether,

lim
N↑∞

E exp
{
− λ

U
(N)
j

vN

}

= lim
N↑∞

E exp
{

xj−xj−1

vαNα(1−β)

∫ ∞

0

ψλ(y)µe
−µy dy (1 + o(1))

}

=

∫ ∞

0

e−u exp
{
u

∫ ∞

0

ψλ(y)µe
−µy dy

}
du

=
(∫ ∞

0

Γ(1 − α)λαyα µe−µy dy +

∫ ∞

0

∫ ∞

1

e−λyz α
zα+1 dz µe

−µy dy
)−1

=
(

απ
sinαπ

(
λ
µ

)α
+ α

∫ ∞

1

dz
zα+1(1+z λ

µ )

)−1

.

The limit is continuous at λ = 0 and hence, by Bochner’s theorem, see e.g. The-
orem 5.22 in Kallenberg (2002), it is the Laplace transform of some random vari-
able Uj . Theorem 4 in XIII.5 of Feller (1971) implies the statement about the tail
behaviour.
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Assume now that β = 0. Set θj(x) =
∑ℓj(x)

i=1 ηi(x). Then

E exp
{
− λ

U
(N)
j

vN

}

∼ EEE
[ xj−1∏

x=xj−1+1

exp
{
− λ

vN τx θj(x)
}]

= EE

[ xj−1∏

x=xj−1+1

E
[
exp

{
− λ

vN τx θj(x)
}
| τx ≤ vN

]]
.

Using Lemma 6.3 once again, we get

E
[
exp

{
− λ

vN τx θj(x)
}
| τx ≤ vN

]]
= 1 +

1 + o(1)

Nαvα
ψλ

(
θj(x)

)
.

Repeating the arguments of Lemma 3.4, one can easily see that

1
xj−xj−1

xj−1∑

x=xj−1

ψλ

(
θj(x)

)
⇒ Eψλ(θ),

where θ =
∑ℓ(∞)(0)

i=1 ηi(0). Since ℓ(∞)(0) is geometrically distributed, θ is exponen-
tially distributed with mean 1/µ. Thus,

Eψλ(θ) =

∫
ψλ(y)µe

−µy dy.

This means that the remaining part of the proof coincides with that for the case
β > 0. �

Recall that R(N)

j = |R(N)

j |. Then

1

N

( j−1∑

i=1

(U (N)

i + S(N)

i +R(N)

i ) + U (N)

j

)

is the total time X (N) takes to hit xj . For the lower bound in Theorem 2.2 we use
Lemmas 6.4, 6.5, and 6.6, and get, for any M > 0,

P

{
τ
X

(N)
t /N1−β > v

}

≥

M∑

j=1

(
P

{ j−1∑

i=1

(U (N)

i + S(N)

i +R(N)

i ) + U (N)

j

< Nt ≤

j∑

i=1

(U (N)

i + S(N)

i +R(N)

i )
}
− P

{
Nt ∈ R(N)

j

})

−→

M∑

j=1

P

{ j−1∑

i=1

(Ui + Si) + Uj <
t

v
≤

j∑

i=1

(Ui + Si)
}
, as N ↑ ∞,

and we get the required lower bound by letting M ↑ ∞.
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For the upper bound, we have, for any M > 0,

P

{
τ
X

(N)
t /N1−β > v

}

≤

M∑

j=1

P

{ j−1∑

i=1

(U (N)

i + S(N)

i +R(N)

i ) + U (N)

j < Nt ≤

j∑

i=1

(U (N)

i + S(N)

i +R(N)

i )
}

+ P

{ M∑

i=1

(U (N)

i + S(N)

i +R(N)

i ) + U (N)

M+1 < Nt
}

−→

M∑

j=1

P

{ j−1∑

i=1

(Ui + Si) + Uj <
t

v
≤

j∑

i=1

(Ui + Si)
}

+ P

{ M∑

i=1

(Ui + Si) + UM+1 <
t

v

}
, as N ↑ ∞,

and, as M ↑ ∞ the additional term on the right converges to zero, because Ui + Si

are independent, nonnegative random variables. This completes the proof of the
first statement in Theorem 2.2.

For the second statement we evaluate the probability of the process X (N) staying
put conditional on the environment as

P
{
X (N)

t+s = X (N)

t for all 0 ≤ s ≤ N−β | (τz , z ∈ Z
d), X (N)

t

}
= exp

{
−
N1−β

τ
X

(N)
t

}
.

As the right hand side is a continuous and bounded function of τ
X

(N)
t
/N1−β, we

obtain from the first statement that

lim
N→∞

E exp
{
−
N1−β

τ
X

(N)
t

}
= E exp{−1/ξt},

which is the second statement of Theorem 2.2.

7. Proof of Theorem 2.4

We follow the framework of Fontes et al. (2002) and start with a discussion of
the notion of convergence of atomic measures in the point process sense, which is
crucial for this argument. Let

ν(N) =
∑

i∈Z

w(N)

i δ
y
(N)
i

, ν =
∑

i∈Z

wiδyi

be atomic measures. If, for every open setG ⊂ R×(0,∞) whose closure in R×(0,∞)
is compact with ρ(∂G) = 0, we have, for all sufficiently large N ,

#
{
(y(N)

i , w(N)

i ) ∈ G
}
= #

{
(yi, wi) ∈ G

}

we say that ν(n) → ν in the point process sense.

Lemma 7.1. Suppose that ν(N) → ν in the point process sense and the scale func-
tions S(N) converge uniformly on compact intervals to the identity then, for any
t > 0,

ν(N)({Y [ν(N), S(N)](t)}) =⇒ ν({Y [ν, id](t)}) forN → ∞.
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Proof : By Theorem 2.1 in Fontes et al. (2002), the law of Y [ν(N), S(N)](t) converges
to the law of Y [ν, id](t) weakly as well as in the point process sense. Given an open
set G ⊂ R×(0,∞) as above, let x1, . . . , xl be the positions of the atoms in G. Then,
by Condition 1 in Fontes et al. (2002), there exists N0 such that for all N ≥ N0 the
values x(N)

1 , . . . , x(N)

l are the positions of the atoms of ν(N) in G, and

lim
N→∞

x(N)

i = xi and lim
N→∞

ν(N)({x(N)

i }) = ν({xi}) for all i ∈ {1, . . . , l}.

Using the convergence of the distributions we further have

lim
N→∞

P
{
Y [ν(N), S(N)](t) = x(N)

i

}
= P

{
Y [ν, id](t) = xi

}
for all i ∈ {1, . . . , l}.

Observe now that, because Y [ν(N), S(N)](t) converges in law, the sequence is uni-
formly tight, more precisely for each ε > 0 there exists an open ball B ⊂ R with

sup
N≥1

P
{
Y [ν(N), S(N)](t) 6∈ B

}
< ε .

Now given 0 < u < v we let G = B× (u, v) and assume that u, v are not weights of
atoms of ν. With the notation from above we have

lim
N→∞

P
{
ν(N)({Y [ν(N), S(N)](t)}) ∈ (u, v), Y [ν(N), S(N)](t) ∈ B

}

= lim
N→∞

l∑

i=1

P{Y [ν(N), S(N)](t) = x(N)

i } =

l∑

i=1

P{Y [ν, id](t) = xi}

= P
{
ν({Y [ν, id](t)}) ∈ (u, v), Y [ν, id](t) ∈ B

}
,

which completes the proof as ε > 0 was arbitrary. �

By a classical stable limit theorem, see Proposition 3.1 in Fontes et al. (2002),
there exists a coupling of the measures ν(N) in the proof of Theorem 2.1 (b) and (c)
such that, almost surely, ν(N) converges to ρ in the point process sense. Obviously,
S(N) converges to the identity uniformly on compact sets, and hence Lemma 7.1
shows that

lim
N→∞

τ
X

(N)
t

N
1

α+1

= lim
N→∞

ν(N)({Y [ν(N), S(N)](t)}) = ρ(Y [ρ, id])(t) = ρ(Finθt ) in law.

The ageing result follows by the same argument as in Theorem 2.2.
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