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ing support and kindness, and my sisters, Sara and Julija, for always cheering me up.
I am extremely grateful to my wife, Nan Liu, for always being there for me, also dur-
ing sometimes stressful and challenging times, and making many sacrifices on the way.

iii



Overall, huge thanks to my family, for all those peaceful moments we spent together
and quick distractions, which always put me in a good mood, and helped me focus on a
bigger picture, often resulting in the most creative research ideas.

iv Acknowledgement



Abstract

Reconstruction of 3D environments from a single moving sensor is an important prob-
lem in computer vision, enabling augmented and virtual reality applications, robust
autonomous robot navigation in novel environments, and is a basis for 3D scene under-
standing. While static 3D reconstruction has progressed significantly in recent years, our
everyday environments are inherently dynamic, resulting in a significantly more challeng-
ing non-rigid reconstruction problem, additionally requiring to track the non-rigid shape
deformations through time. In our work we investigated data-driven priors for non-rigid
3D reconstruction and found them to be crucial for robust reconstruction performance
in the highly underconstrained non-rigid setting.

First, we introduced DeepDeform that considerably improved non-rigid reconstruc-
tion from a single RGB-D camera by learning non-rigid correspondences for general
deformable objects. Due to the lack of real recordings of diverse non-rigid objects, an
important step was a collection of a large-scale dataset of non-rigid RGB-D videos. Dense
correspondences between different frames were acquired in a semi-supervised fashion, re-
quiring only sparse manual annotations, resulting in an efficient aggregation of ground
truth data. Using these ground truth matches a heatmap-based network was trained
to predict non-rigid correspondences, which were added as a data term to traditional
non-rigid tracking, significantly outperforming state-of-the-art non-rigid reconstruction
approaches.
Furthermore, we explored data-driven priors for other aspects of non-rigid reconstruc-

tion as well, such as correspondence outlier rejection, where no dense supervision is
available. To that end we made the complete non-rigid tracking optimization end-to-
end differentiable, and learned importance weights for all correspondences in a self-
supervised fashion. The approach, called Neural Non-rigid Tracking, predicts robustly
weighted correspondences best suited for the task of non-rigid tracking, which further
improves non-rigid tracking performance and also considerably increases the execution
speed. We additionally introduce a novel deformation graph and shape representation,
where both are represented implicitly by a neural network, resulting in an end-to-end
differentiable non-rigid reconstruction. The proposed Neural Deformation Graphs do not
require any direct supervision for globally-consistent graph construction and shape re-
construction, and significantly improve the tracking robustness while using four RGB-D
capture sensors.
Finally, instead of using RGB-D sensors, we also investigated reconstruction from a

single RGB sensor, where no depth input is available. Since this setting is significantly
more challenging, we restricted our algorithm to reconstruction of static environments.
We proposed TransformerFusion, a transformer-based 3D scene reconstruction approach.
Given an RGB video as input, the method learns to attend to the most important input
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observations for each location in the scene, resulting in state-of-the-art reconstruction
quality at interactive frame rates.
Overall, we thoroughly evaluate the contributions of aforementioned approaches and

also list limitations that are left to be explored as future work.
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Zusammenfassung

Die Rekonstruktion von 3D-Umgebungen aus einem sich bewegenden Sensor ist ein
wichtiges Problem in der Computervision, das Augmented- und Virtual-Reality Anwen-
dungen und robuste autonome Roboternavigation in neuartigen Umgebungen ermöglicht
und als Grundlage für das Szenenverständnis dient. Obwohl es in den letzten Jahren
größe Fortschritte bei der statischen 3D-Rekonstruktion gegeben hat, sind unsere Umge-
bungen dynamisch, was zu einem viel anspruchsvolleren Problem der nicht-rigiden Rekon-
struktion führt, das zusätzlich die Registrierung von Verformungen in Videos erfordert.
In unserer Arbeit haben wir datengesteuerte Ansätze zur nicht-rigiden 3D-Rekonstruktion
untersucht und festgestellt, dass sie für eine robuste Rekonstruktionsleistung von entschei-
dender Bedeutung sind.

Zuerst haben wir DeepDeform vorgestellt, das die nicht-rigide Rekonstruktion von
einer einzelnen RGB-D-Kamera erheblich verbesserte, indem es nicht-rigide Korrespon-
denzen für verformbare Objekte lernte. Aufgrund des Mangels an realen Aufnahmen
verschiedener deformierbarer Objekte war ein wichtiger Schritt die Sammlung eines
großen Datensatzes nicht-rigider RGB-D-Videos. Korrespondenzen zwischen verschiede-
nen Frames wurden auf halbüberwachte Weise erfasst, was nur spärliche manuelle Anno-
tation erforderte und zu einer effizienten Aggregation von Ground-Truth-Daten führte.
Unter Verwendung dieser Ground-Truth-Korrespondenzen wurde ein Heatmap-basiertes
Netzwerk trainiert, um Korrespondenzen auszugeben, wodurch die nicht-rigide Reg-
istrierung im Vergleich zu bestehenden Ansätzen erheblich verbessert wurde.
Wir haben Deep Learning auch für andere Aspekte der nicht-rigide Rekonstruktion

untersucht, beispielsweise für die Ablehnung von Korrespondenzausreißern, bei denen
keine Ground-Truth-Daten verfügbar sind. Zu diesem Zweck haben wir die komplette
nicht-rigide Registrierung differenzierbar gemacht und selbstüberwachtes Lernen ver-
wendet, um Konfidenzwerte für alle Korrespondenzen zu erhalten. Der als Neural Non-
Rigid Tracking bezeichnete Ansatz gibt robust gewichtete Korrespondenzen aus, was
die Leistung der nicht-rigiden Registrierung weiter verbessert und auch die Laufzeit-
geschwindigkeit erheblich erhöht. Wir stellten zusätzlich eine neuartige Deformations-
und Geometrierepräsentation vor, bei der beide implizit durch ein neuronales Netzwerk
repräsentiert werden, was zu einer komplett differenzierbaren nicht-rigide Rekonstruk-
tion führt. Die vorgeschlagenen Neural Deformation Graphs benutzen selbstüberwachtes
Lernen für eine global konsistente Graphoptimierung und Geometrierekonstruktion, und
verbessern die Registrierungsrobustheit bei Verwendung von vier RGB-D-Sensoren er-
heblich.
Anstatt RGB-D-Sensoren zu verwenden, untersuchten wir schließlich auch die Rekon-

struktion von einem einzelnen RGB-Sensor, bei dem keine Tiefeneingabe verfügbar ist.
Da dies deutlich anspruchsvoller ist, haben wir unseren Ansatz auf die Rekonstruk-
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tion statischer Umgebungen beschränkt. Wir haben TransformerFusion vorgeschlagen,
einen auf Transformer-Netzwerk basierenden Ansatz zur 3D-Rekonstruktion. Bei einem
RGB-Video als Eingabe lernt der Ansatz, wichtige Eingabebeobachtungen für jede 3D-
Position in der Umgebung zu berücksichtigen, was zu einer hochmodernen Rekonstruk-
tionsqualität bei interaktiven Bildraten führt.
Insgesamt bewerten wir die Beiträge der oben genannten Ansätze gründlich und listen

auch Einschränkungen auf, die als zukünftige Arbeit noch untersucht werden müssen.
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1 Introduction

One of the most important problems in computer vision is 3D reconstruction. When
our everyday environment is recorded by a camera, only a 2D projection of the world is
observed, in a format of an image or a video. Reconstructing a physically accurate 3D
model of the environment that generated these 2D observations is a crucial task that
serves as a basis for autonomous agent localization and navigation in novel environments,
digitalization of real-world scenes for augmented and virtual reality applications, and 3D
semantic understanding.

In recent years, there has been a tremendous progress in 3D reconstruction of static
environments. When recording a scene with a moving camera, the task is to estimate
camera poses, i.e. a camera rotation and translation for every frame, while at the same
time reconstructing the scene geometry. Structure-from-Motion (SfM) approaches [1]
extract sparse features from images, and simultaneously optimize the camera poses and
3D positions of feature keypoints, resulting in a sparse map of the scene. With the
introduction of affordable depth sensors, such as Microsoft Kinect, the sparse point
clouds were extended into a complete dense 3D reconstruction via depth map fusion, as
presented in a seminal work of KinectFusion [2].

However, our natural environments are inherently dynamic. Humans and animals are
almost always in motion, and also influence their surroundings, e.g. by opening doors,
moving a chair when sitting down, wearing a coat, etc. Furthermore, the motion can be
caused by external factors as well, such as a car engine, gravity, or just wind. To accu-
rately capture everyday environments for use in augmented and virtual reality, it’s very

Figure 1.1: Applications of non-rigid reconstruction. Possible use cases range from telep-
resence in VR/AR (left, from [3]) to safe human-robot interactions (right).

3



Part I. Introduction

important to account for dynamics in the scene. In robotics and autonomous driving,
dynamic objects have to be properly taken care for to achieve robust localization and ob-
stacle avoidance of autonomous agents. For accurate robot manipulation of deformable
objects, a 3D model of the object needs to be reconstructed and the deformations have
to be tracked. As soon as the objects move non-rigidly, i.e. not only related by a rotation
and translation, but instead including more complex non-rigid deformations, we make
use of non-rigid reconstruction to track and reconstruct the objects.

Given a video recording of a deformable object in motion, the task of non-rigid re-
construction is to track the dense deformations, and at the same time reconstruct the
shape of the object. A seminal work is DynamicFusion [4], an approach for real-time
non-rigid reconstruction from a single RGB-D sensor. A core building block is the incre-
mental reconstruction of a canonical shape, i.e. the object’s shape in the initial frame of
the video. Initialized with a partial shape from the first depth map, a canonical shape
is non-rigidly tracked frame-by-frame, and every newly observed depth map is used to
update the canonical shape, making it more complete (as visualized in Fig. 1.2). The
method doesn’t make any strong assumptions about the object or deformation type, and
achieves impressive tracking and reconstruction results for various deformable objects.
Its tracking can however fail in cases where motion is too fast, or the object undergoes
severe (self-)occlusions, which in turn corrupts the shape reconstruction as well. We pro-
pose several ways to make non-rigid reconstruction significantly more robust by using
data-driven priors.

A very common example of non-rigid objects are humans. A wide range of approaches
were developed that focus on tracking and reconstruction of humans, or more specifically,
of human faces and bodies. Large-scale datasets of human body shapes [5] and poses [6]
were collected, and a principal-component analysis (PCA) was used to model the changes
in body shape across different identities. To model the body motion, the body shape
is deformed by a sparse human skeleton [6]. Similarly for faces, sparse facial keypoints
are used to guide the face deformations [7]. These approaches are data-driven, i.e. they
rely on priors from collected data, which enables them to feature robust tracking and
reconstruction performance even in the underconstrained settings with limited sensors,
e.g. using only an RGB video [7]. However, they are very object-specific (e.g. relying
on human skeletons or facial keypoints), and cannot be easily extended to other non-
rigid objects. To be able to also robustly track and reconstruct deforming clothes, bags,
pillows, blankets, toys, etc., we need a more general approach for data-driven non-rigid
reconstruction without object-specific assumptions.

For body and face tracking, reliable data-driven skeleton and face keypoint trackers [8]
have a significant impact on robust tracking and reconstruction. We extend the notion
of object-specific keypoints to any non-rigid object by exploring general non-rigid corre-
spondences. The idea is to not limit the tracker to detect only a specific set of predefined
keypoints, but instead to learn to predict a corresponding pixel in the target image for
any chosen pixel from the source image. Adding the predicted correspondences as addi-
tional constraints at non-rigid tracking enables considerably more robust frame-to-frame
alignment compared to DynamicFusion, especially in the case of fast motion. Since we
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Part I. Introduction

Figure 1.2: Non-rigid reconstruction pipeline. A seminal work of DynamicFusion [4] incre-
mentally reconstructs a canonical shape and at the same time tracks deformations
over input RGB-D frames.

use a single camera, a large part of the object is always occluded. When the occluded
parts of the object become visible again, the relative deformation can be extremely large.
To correctly re-detect the occluded surface, and compensate for large deformation that
happened under occlusion, global correspondences are crucially important. Since the
local geometry and appearance change under extreme deformation, but the semantic
meaning usually persists (e.g. we can identify corresponding points on the shirt’s sleeve
even under a large deformation), this motivates exploring data-driven priors for non-rigid
correspondences.

To learn non-rigid correspondences, we require a dataset with ground truth matches on
non-rigid objects undergoing strong deformation. There exist some datasets with corre-
spondence ground truth, but they are either of smaller scale and synthetic [9], or focus on
a very specific scenario, such as autonomous driving [10] or human bodies [11]. Therefore,
we introduce a novel dataset with 400 RGB-D recordings of general deformable objects,
featuring loosely-clothed humans, cloth pieces, pillows, blankets, animals, bags, back-
packs, etc. In every sequence, sparse correspondences between frame pairs were manu-
ally annotated and extended to dense ground truth motion using correspondence-guided
non-rigid alignment. A convolutional neural network (CNN) is trained for non-rigid
correspondence matching, taking as input an image patch centered around any point of
interest in source frame, and predicting the corresponding pixel location in the target
frame in form of a probability heatmap. These predicted non-rigid correspondences are
added to the non-rigid tracking objective, which significantly improves the tracking and
reconstruction performance in comparison to existing state-of-the-art approaches.

While learned correspondences considerably improve the robustness and quality of
the non-rigid reconstruction, they come at a cost – predicting a match for each pixel
requires a network evaluation, and more than a hundred correspondences are estimated
at each frame, sacrificing the real-time performance. To improve the runtime, we re-
placed the sequential match prediction with a CNN that, given an entire source image,
directly predicts dense correspondences for all pixels with a single network evaluation.
Furthermore, when using predicted correspondences for non-rigid tracking, some pre-
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diction error is inevitable. To minimize the error, we additionally detect outliers with
another CNN that predicts the confidence of correspondences. To keep only correspon-
dences that are best suited for non-rigid alignment, we make the complete non-rigid
solver differentiable, and learn the correspondence weighting that causes the solver to
converge to the correct deformations. Not only we significantly speed-up the runtime,
but also improve the tracking robustness and reconstruction quality, thanks to learning
the outlier rejection in a self-supervised manner.

Incremental frame-to-frame tracking and reconstruction enables real-time performance,
and with introduction of data-driven priors it results in a high-quality reconstruction.
However, any errors that arise at any frame get propagated to all next frames. In cer-
tain cases, e.g. for ground truth data collection or non-rigid template optimization for
re-animation, a slower runtime is completely acceptable, if it delivers higher quality
tracking and reconstruction results. We introduce a global optimization strategy, opti-
mizing object’s shape and deformations in an end-to-end manner, over all input frames
at the same time. The main challenges are to make the entire non-rigid reconstruction
pipeline differentiable and to come up with an efficient optimization algorithm, since
considering all frames at the same time is computationally very expensive. To this end,
we propose to use specifically designed neural networks to represent both the object’s
shape as well as the deformations, which naturally results in end-to-end differentiable
model. We use the ADAM solver [12] that stochastically evaluates the loss at random
batch samples and is well-suited for neural network training, offering efficient and scal-
able batch-wise optimization. Focusing on non-rigid capture with a sparse set of RGB-D
sensors, the proposed approach is able to recover accurate object reconstruction when
undergoing very complex deformations, even topology changes.

Finally, there is an even stronger need for priors if we make the problem more chal-
lenging and decide to use only an RGB camera, without any depth sensor. That makes
the approach widely applicable, but dense reconstruction from an RGB video is highly
underconstrained even when capturing static scenes, so we decided to assume a static
environment and focus on rigid 3D reconstruction. We explored learning the fusion of
2D RGB observations directly into a 3D feature representation, which is decoded by a
multi-layer perceptron (MLP) into occupancy field with values of 1 inside the surface
in 0 in free space. We found the transformer architecture especially effective for feature
fusion – it’s able to aggregate important 2D information between frames that can be
very far apart in time, while existing fusion methods proceed in temporal domain and
can easily forget previous observations. By processing scenes chunk-wise, the approach
can handle larger scenes, only fusing observations in the current view frustum. Atten-
tion weights from transformer architecture enable efficient observation selection, which
makes it possible to execute reconstruction incrementally and at interactive speeds. The
approach achieves state-of-the-art reconstruction performance, and the learned fusion
could be extended to non-rigid domain in the future.

Overall, we explored a wide variety of data-driven priors for (non-)rigid tracking and
reconstruction in this thesis, ranging from learning correspondences and outlier rejec-
tion for robust deformation tracking, optimizing both shape and deformation model in
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an end-to-end manner, and learning fusion of 2D observations into 3D features for shape
reconstruction, even when no depth input is available. We show that there is a clear
benefit of using data-driven priors to add better constraints to the highly undercon-
strained problem of non-rigid reconstruction from a single sensor. Data-driven non-rigid
reconstruction is a very exciting direction, and we hope this thesis is a good introduction
and basis for all future works in the non-rigid reconstruction field.

1.1 Dissertation Overview

The thesis consists of 8 chapters that are grouped into three parts:

• Part I: Introduction (Chapters 1-2)

– Chapter 1 (Introduction) motivates the importance of non-rigid reconstruc-
tion and highlights key challenges of existing works.

– Chapter 2 (Background) explains non-rigid tracking and reconstruction ap-
proaches that build upon core shape representations and efficient nonlinear
optimization.

• Part II: Non-rigid Reconstruction using Data-driven Priors (Chapters 3-6)

– Chapter 3 (Learning Non-rigid Reconstruction) introduces a novel dataset and
a robust reconstruction approach using learned non-rigid correspondences.

– Chapter 4 (Neural Non-rigid Tracking) presents a differentiable non-rigid
tracking solver enabling fast correspondence prediction with self-supervised
outlier rejection.

– Chapter 5 (Neural Deformation Graphs) introduces a globally-consistent de-
formation graph and shape optimization, both represented by networks.

– Chapter 6 (Learning RGB Reconstruction) proposes a learned transformer-
based RGB video fusion for interactive 3D scene reconstruction.

• Part III: Conclusion & Outlook (Chapters 7-8)

– Chapter 7 (Conclusion) concludes the thesis and summarizes the key contri-
butions.

– Chapter 8 (Limitations and Future Work) lists limitations of proposed works
and presents promising directions left for future work.

1.2 Contributions

This thesis explores the use of data-driven priors for non-rigid 3D reconstruction of
deformable objects. To enable learning of a variety of priors, a large-scale dataset of
400 non-rigid RGB-D recordings was collected, including object masks and dense cor-
respondences. We designed a novel non-rigid correspondence network trained on these
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correspondences that became a core building block of DeepDeform [13], a non-rigid
reconstruction approach that significantly improved reconstruction and tracking perfor-
mance over existing methods that don’t use any learned priors. The non-rigid reconstruc-
tion robustness and accuracy was further enhanced in Neural Non-rigid Tracking [14],
where we proposed an end-to-end differentiable non-rigid tracker that learns dense cor-
respondence best-suited for the task of non-rigid tracking, and at the same time detects
outliers in a self-supervised manner. With Neural Deformation Graphs [15] we went
beyond priors for non-rigid tracking and introduced a novel globally-consistent deforma-
tion graph and shape optimization, where both are represented implicitly by a neural
network, resulting in a fully differentiable non-rigid reconstruction framework that con-
siderably surpasses the state of the art. Finally, to enable reconstruction in an even
more underconstrained setting, with only a monocular RGB video given as input, we
proposed TransformerFusion [16], where the fusion of 2D color observations is learned
using an efficient transformer-based architecture, achieving accurate reconstructions of
3D scenes at interactive frame-rates. In the following we summarize the contributions
of each publication in more detail:

• To address the lack of data for learning priors for non-rigid reconstruction, we in-
troduce a large-scale dataset of 400 non-rigid sequences with over 390, 000 frames
and 5, 533 densely aligned frame pairs, with correspondences computed in a semi-
supervised fashion, using manually annotated sparse matches to guide the dense
non-rigid alignment. Data capturing and processing pipeline was built up with
the help of Angela Dai, since we followed the capture infrastructure used for the
ScanNet dataset [17]. We propose a novel non-rigid correspondence matching strat-
egy that outperforms previously used hand-crafted descriptors. When integrated
into a non-rigid reconstruction framework, it is able to handle more complex and
faster deformable motions, resulting in a significantly improved non-rigid tracking
and reconstruction performance. Discussions with the co-authors led to the final
paper [13].

• We propose a novel, end-to-end differentiable, non-rigid tracker that achieves state-
of-the-art non-rigid reconstruction performance by learning a robust optimization.
The differentiable Gauss-Newton solver provides valuable gradients for learning the
dense non-rigid correspondences, and enables the prediction of importance weights
for outlier rejection in a purely self-supervised manner. Additionally, the prediction
of robust dense correspondences is 85× faster compared to previously used deep-
learned sparse matching. This is a shared publication with Pablo Palafox, who
explored optical flow network architectures in depth, and after the initial setup of
the differentiable solver, he extensively experimented to end up with an optimal
model for predicting non-rigid correspondences and outlier rejection. Discussions
with the co-authors led to the final paper [14].

• We introduce a novel network-based deformation graph and shape representa-
tion that enables globally-consistent non-rigid tracking and reconstruction of de-
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formable objects. The deformation graph is implicitly represented by a neural net-
work and globally-optimized using the proposed per-frame viewpoint consistency
and inter-frame surface consistency losses, resulting in robust tracking of fast de-
formations. The shape is reconstructed using a multi-MLP architecture anchored
at the deformation nodes, featuring accurate and deformation-dependent surface
geometry. We conducted extensive experiments on both synthetic and real record-
ings, surpassing the state of the art by more than 60%. Pablo Palafox accurately
calibrated the RGB-D sensors and set up the recording pipeline for capturing all
real sequences. Discussions with the co-authors led to the final paper [15].

• To enable 3D reconstruction using only a monocular RGB video, without a depth
sensor, we propose a transformer-based learned fusion of color observations from
different video frames. For each 3D location in the scene, the transformer net-
work attends to only the most informative features in the image views, and ef-
ficiently aggregates the information in the temporal domain. We fuse features
in a coarse-to-fine fashion, storing fine-level features only where needed, enabling
online reconstruction running at interactive frame-rates. The proposed approach
achieves accurate 3D scene reconstructions, outperforming existing state-of-the-art
multi-view stereo depth estimation approaches, fully-convolutional 3D reconstruc-
tion methods, and LSTM- or GRU-based recurrent networks for RGB video fusion.
Discussions with the co-authors led to the final paper [16].

1.3 List of Publications

A. Božič, M. Zollhöfer, C. Theobalt, and M. Nießner, “Deepdeform: Learning non-
rigid rgb-d reconstruction with semi-supervised data,” in Proceedings of Conference
on Computer Vision and Pattern Recognition (CVPR), 2020

A. Božič*, P. Palafox*, M. Zollhöfer, A. Dai, J. Thies, and M. Nießner, “Neu-
ral non-rigid tracking,” in Proceedings of Neural Information Processing Systems
(NeurIPS), 2020

A. Božič, P. Palafox, M. Zollhöfer, J. Thies, A. Dai, and M. Nießner, “Neural
deformation graphs for globally-consistent non-rigid reconstruction,” in Proceedings
of Conference on Computer Vision and Pattern Recognition (CVPR), 2021

A. Božič, P. Palafox, J. Thies, A. Dai, and M. Nießner, “Transformerfusion:
Monocular rgb scene reconstruction using transformers,” in Proceedings of Neural
Information Processing Systems (NeurIPS), 2021
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2 Background

2.1 Shape Representations

When modeling 3D objects and scenes, we make use of a variety of surface represen-
tations that encode the geometry of the 3D structures. The best-fitting representation
can depend on the given task, and it’s common to convert from one representation to
another when solving a complex 3D computer vision problem. In the following we intro-
duce commonly used shape representations in state-of-the-art (non-)rigid tracking and
reconstruction approaches, and we visualize (some of) them in Fig. 2.1.

2.1.1 Mesh

A very common surface representation is a mesh, a collection of vertices and faces.
The vertices are a fixed number of 3D points that can beside positions include also
other properties, such as a vertex color, a texture (u, v) coordinate, or a normal vector.
To extend the surface continuously beyond the discrete set of vertices, faces connect
different vertices into triangles, quadrilaterals, etc., defining a continuous 2D surface.
At any point on these 2D shapes the vertex properties are linearly interpolated.

Meshes are a very efficient surface representation, storing only a sparse set of surface
elements, while still being able to represent the geometry to any desired level of detail
(by introducing a finer discretization). That is why they are often considered as a
default representation for rendering in graphics, and very efficient hardware-optimized
routines exist in the graphics pipeline for executing rendering-related tasks using meshes.
For real-time non-rigid tracking we make heavy use of these routines to accelerate the
algorithm’s performance.

2.1.2 Point Cloud

In certain cases it’s hard to define the connectivity between mesh vertices. For example,
if we are dealing with a recorded frame from an RGB-D sensor, then for each pixel we
read the pixel color and depth values, but there is no information about how different
pixels are related to each other. A simpler representation is more suitable in this case,
where we only store 3D points with their attributes, such as color, normal, etc., resulting
in a point cloud. This representation is not directly usable for surface rendering, since
sparse points do not densely cover all pixels in a rendered view (unless extended into
a volumetric representation, e.g. via spheres). However, it still contains a lot of useful
information about the surface geometry and has less strict design requirements compared
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Figure 2.1: Shape representations. We can model the surface of a 3D object as a mesh
(left), a point cloud (middle) or a signed distance field (right).

to meshes, which makes it very suitable for representating data captured by an RGB-D
or LiDAR scanner.

2.1.3 Signed Distance Field

The above described representations define the surface explicitly, i.e. by directly specify-
ing the surface points (or faces). In certain scenarios it is beneficial to instead represent
the surface implicitly, e.g. by storing a distance value to the surface. Often a dense
3D voxel grid is used to discretize the 3D space and for each voxel center a distance to
the nearest surface geometry is computed, resulting in a distance field. We can further
differentiate the voxels inside and outside the shape surface by adding a sign to the
distance values, considering positive distance for voxels outside the shape and negative
distances in the shape interior, defining the signed distance field (SDF).

Grid-based SDF is a volumetric representation, its memory requirements grow cubicly
with the grid resolution. But it’s a well-suited representation for many reconstruction
algorithms, since with a fixed grid resolution it can represent shapes with varying number
of vertices, connectivity and topology, making geometry optimization over very different
shapes possible. Using an algorithm called Marching cubes [18] a triangular mesh can
be efficiently constructed from an SDF grid, extracting mesh vertices and triangles at
the zero level set of the SDF.

Beside using a discrete 3D voxel grid, the SDF can also be represented by a multi-
layer perceptron (MLP) that takes as input a 3D position and outputs its signed distance
value. This can significantly lower the memory requirements and at the same time it
enables the continuous modeling of SDF, avoiding the loss of geometry detail that is
inevitable when using a fixed grid resolution. The downside is the slower evaluation of
the SDF value at any point, since instead of directly querying the voxel grid values a
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network evaluation is required. When slower evaluation is acceptable, MLP-based SDF
representation is a good alternative to voxel grids.

2.1.4 Occupancy Field

Instead of modeling the surface as a continuous signed distance field, we can define a
discrete occupancy field with a value of 1 inside the shape and value 0 outside. It shares
many advantages of SDF, e.g. the field resolution doesn’t limit the object topology. At
the same time, it can be constructed with less information about the surface, since the
distance values are not needed, only the sign (i.e. inside or outside) is important. There-
fore, occupancy field offers an alternative representation useful in cases when distances
to the surface are hard or expensive to compute.

2.2 Efficient Nonlinear Optimization

A majority of problems in computer vision involve fitting a problem-specific model to a
given set of observations, and a core component is solving the optimization problem. In a
Structure-from-Motion problem, the model consists of camera poses (one for each frame)
and sparse 3D points (corresponding to discriminative keypoints in the scene), and the
observations are the 2D keypoint detections in each frame – the goal is to find the optimal
camera poses and 3D feature positions that minimize the 2D reprojection error over all
frames. When we train a neural network for a specific task, the model is the network
architecture, and the observations are the ground truth labels, e.g. object detections –
we are again solving an optimization problem by minimizing the task-specific training
loss. Similarly, as will be presented in the following sections, we encounter optimization
problems in non-rigid tracking and reconstruction algorithms.

While certain optimization problems are linear, we are mostly interested in solving
nonlinear optimization problems, i.e. where the transformation of model parameters dur-
ing the computation of the optimization energy or loss function involves nonlinear op-
erations. For example, a multi-layer perceptron (MLP) consists of nonlinear activation
functions, such as a rectified linear unit (ReLU), making any optimization problem in-
volving MLPs nonlinear. Furthermore, the optimization loss is often nonlinear, such as
the 2D reprojection error that involves nonlinear projection of 3D feature positions to
the image plane. Non-rigid tracking and reconstruction also include highly nonlinear
optimization energies. Therefore, the optimization algorithms presented in this chapter
are applied to nonlinear optimization problems.

When it comes to many applications in VR/AR or robotics, we are interested in solving
the optimization problems in real-time, i.e. at the frequency of the measurement device
(e.g. an RGB-D sensor) or the display (e.g. VR glasses). We will focus on exploring
efficient nonlinear optimization algorithms, both in terms of convergence speed and
efficient execution. To achieve fast convergence, i.e. to solve an optimization problem in
as few iterations as possible, we decided to use a second-order nonlinear optimization
algorithm. At the same, to minimize the execution time of each iteration, we use an
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approximate second-order Gauss-Newton solver. In each iteration of the Gauss-Newton
algorithm a linear system needs to be solved, and we make use of a highly parallelizable
conjugate gradient descent that iteratively solves the linear system. Both algorithms are
described in more detail in the following sections, and we also explain how to make the
algorithms’ modules differentiable, for the use in differentiable optimization.

2.2.1 Nonlinear Least Squares Problem

In a nonlinear optimization problem we can denote the N -dimensional problem variables
as x ∈ RN and the objective function as L : RN → R. The goal is to find the optimal
values for x that minimize the objective function L:

x∗ = argmin
x∈RN

L(x)

While the objective function L can take any form in general, it turns out it’s often
beneficial to reformulate nonlinear optimization problems into a more specific type of
the objective function, denoted as nonlinear least squares. In that case, we introduce M
functions rm : RN → R, with m ∈ {1, . . . ,M}, converting objective function L into the
following form:

L(x) =
M∑

m=1

r2m(x)

Functions rm are also called residuals, since they often measure the fitting error, i.e. the
difference between the observed value and the estimated value, predicted by the model.

A common choice to minimize the nonlinear objective function L is a Newton’s
method. It is a second-order iterative optimization approach that offers fast conver-
gence, but it suffers from high memory and compute requirements at every iteration
of the algorithm. The nonlinear least squares formulation of the objective L makes
it possible to develop more computationally and memory efficient algorithms, such as
Gauss-Newton, enabling real-time performance of non-rigid tracking and reconstruction
approaches.

2.2.2 Gauss-Newton Algorithm

In order to derive the Gauss-Newton algorithm for efficient nonlinear optimization, we
start by describing the Newton’s method, a second-order nonlinear optimization ap-
proach. Given the variables x = (x1, . . . , xN )

T and a loss function L, we define the
gradient g ∈ RN of L wrt. variables x ∈ RN as a vector of partial derivatives:

gi(x) =
∂L(x)
∂xi
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Furthermore, we compute the second-order partial derivatives and define the Hessian
matrix H ∈ RN×N as:

Hij(x) =
∂2L(x)
∂xi∂xj

Given an initial value of parameters x0, the Newton’s method iteratively updates the
parameter values to minimize the loss function L using the following update step:

xn+1 = xn −H(xn)
−1g(xn)

The algorithm proceeds with iterative updates until the update steps are smaller than
some predefined value ϵ, i.e. ||xn+1 − xn||2 < ϵ – at that point the method converges
to a (local) minimum. A nice property of a second-order approach is the quadratic
convergence, i.e. the distance of the current estimate xn+1 to the root is proportional to
the square of the distance of the previous estimate xn to the root. However, it comes at
the cost of computing a Hessian matrix H of second-order partial derivatives.

If we apply Newton’s method to the nonlinear least squares problem, we can derive
more specific formulations for gradient vector g and Hessian matrix H:

gi(x) = 2

M∑

m=1

rm(x)
∂rm(x)

∂xi

Hij(x) = 2

M∑

m=1

(
∂rm(x)

∂xj

∂rm(x)

∂xi
+ rm(x)

∂2rm(x)

∂xi∂xj

)

Only the second term in the Hessian matrix computation involves expensive second-
order partial derivatives. The Gauss-Newton algorithm follows the Newton’s method,
but completely ignores the second term, which is a valid approximation as long as the
second term is considerably smaller compared to the first term:

∣∣∣∣rm(x)
∂2rm(x)

∂xi∂xj

∣∣∣∣≪
∣∣∣∣
∂rm(x)

∂xj

∂rm(x)

∂xi

∣∣∣∣

We can rewrite the residual functions rm into a vectorized version r = (r1, . . . , rM )T and
introduce a Jacobian matrix J ∈ RM×N :

Jmi =
∂rm(x)

∂xi

This simplifies the equations for gradient g and approximate Hessian H̃, without con-
sidering the second-order derivative term, into the following Gauss-Newton formulation:

g = 2JT r

H̃ = 2JTJ
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The update step in the Gauss-Newton algorithm then takes the following vectorized
form:

xn+1 = xn − (JT (xn)J(xn))
−1

JT (xn)r(xn)

One important difference with the Newton’s algorithm is that there is no need for
second-order partial derivatives, which results in significant computation savings. In
certain optimization problems, the Jacobian matrix J has a block-wise sparse structure,
with a low number of non-zero sub-matrix blocks. We further exploit that and develop
specialized sparse matrix-matrix and matrix-vector operations. Furthermore, instead of
computing an expensive inverse of the matrix (JTJ)−1, a linear system is solved at each
iteration to compute the parameter increment ∆xn = xn+1 − xn:

JT (xn)J(xn)∆xn = −JT (xn)r(xn)

Finally, you can observe that when the algorithm converges to the root, then the Jacobian
matrix value is J(xn) = 0, and the linear system above is ill-conditioned. To resolve the
numerical instability, a small positive factor λ > 0 is added to diagonal elements of JTJ,
and the following linear system is then solved in each Gauss-Newton iteration:

(JT (xn)J(xn) + λI)∆xn = −JT (xn)r(xn) (2.1)

While we usually keep the factor λ constant, it could also be beneficial to adapt it
iteratively, resulting in a Levenberg-Marquardt algorithm.

2.2.3 Conjugate Gradient Descent

As described in the previous section, a major step of the Gauss-Newton algorithm is
solving a linear system 2.1. More generally, for a matrix A ∈ RN×N and vector b ∈ RN ,
we would like solve for (increment) vector x ∈ RN that satisfies the linear system:

Ax = b

To execute the algorithm fast, we need a very efficient linear system solver. While there
exist many direct linear solvers, i.e. methods that provide an explicit solution for x, it is
hard to parallelize these solvers and run efficiently on a GPU. On the other hand, there
exist an iterative linear solver that is highly parallelizable, called conjugate gradient
descent.

Before going into more detail about the conjugate gradient descent, we have to mention
an additional condition that needs to hold in order to use this linear system solver –
the matrix A has to be symmetric and positive-definite, i.e. for all non-zero x ∈ RN it
follows:

xTAx > 0
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In our case, A = JTJ + λI with λ > 0, which is symmetric, i.e. AT = A, and it’s easy
to show that the above condition holds for non-zero x ∈ RN :

xTAx = xT (JTJ+ λI)x = (Jx)T (Jx) + λ(xTx) = ||Jx||2 + λ||x||2 > 0

Therefore, A is also positive-definite in each iteration of the Gauss-Newton algorithm.

The main idea behind conjugate gradient descent is to iteratively find conjugate direc-
tions – these are vectors pk ∈ RN that are orthogonal wrt. to matrix A, i.e. pTkApl = 0
for different pk,pl. The linear system solution x can then be expressed as a linear combi-
nation of these conjugate directions. While we could extract all N conjugate directions,
it turns out that it’s often enough to only consider smaller number K of most significant
vectors pk.

Algorithm 1 Conjugate Gradient Descent

1: d0 = b−Ax0

2: p0 = d0

3: for k = 0, . . . ,K − 1 do

4: αk =
dTk dk
pTkApk

5: xk+1 = xk + αkpk
6: dk+1 = dk − αkApk
7: if ||dk+1|| is small then return xk+1

8: βk =
dTk+1dk+1

dTk dk

9: pk+1 = dk+1 + βkpk

10: return xK

The algorithm is summarized in Alg. 1. We initialize the solution with x0 = 0, and set
the initial conjugate direction to p0 = b−Ax0, which represents the system residual d0

of the current solution x0. The solution is iteratively updated for at most K iterations.
In each iteration, we find an updated solution xk+1 and a new conjugate direction pk+1.
The detailed derivation of the algorithm can be found in [19]. If the system residual dk is
small enough at any iteration, we can stop the algorithm early. To improve algorithm’s
convergence, we can make use of preconditioning by multiplying the linear system with
a matrix C−1 and instead solve the following system:

C−1Ax = C−1b

The preconditioner C−1 should be symmetric and positive-definite, and the matrix
C−1A should have a smaller condition number compared to A. In the case of Gauss-
Newton algorithm we often use the inverse of the diagonal values ofA as a preconditioner,
i.e. C = diag(A).

As can be observed, the update steps consist of simple linear algebra operations,
requiring only vector operations and application of matrix A to different vectors. At
each iteration, only the latest values of vectors xk, dk and pk need to be stored. This
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allows for a very efficient and parallelizable algorithm implementation on the GPU. If
matrix A is sparse (or block-wise sparse), we can use an efficent sparse matrix-vector
multiplication. Often it is expensive to explicitly compute the matrix A = JTJ+ λI, it
is faster to instead apply two matrix-vector multiplications, first with J and second with
JT . For some optimization problems it can even be beneficial to not even compute the
transpose matrix JT , but instead re-generate JTJ elements on-the-fly for each matrix-
vector multiplication, as is described in [20].

2.2.4 Differentiable Optimization

In the previous sections we described algorithms for efficient solving of nonlinear least
squares optimization problems, and many problems in computer vision fit well to this
general formulation. However, the problem’s energy formulation and optimization solver
parameters can have a large impact on the algorithm’s performance. For example,
while Gauss-Newton offers fast convergence, often requiring only a few iterations, the
converged point can also be a local minimum, especially when dealing with a highly
non-convex energy. Improving the optimization energy landscape to be more convex-
like is a crucial step when developing the computer vision algorithms. Furthermore, the
convergence speed of an iterative conjugate gradient descent depends on the condition
number of the linear system, and getting a better problem-specific preconditioner can
make a big difference in terms of runtime.
While these problem-specific properties could be fine-tuned manually on a few prob-

lem examples, this can often lead to sub-optimal algorithms and overfitting. We can
instead use a larger training corpus with many examples of the inputs and solutions for
our problem, and optimize for optimal optimization problem and algorithm parameters
automatically in a data-driven manner. For example, we might want to figure out the
optimal conjugate gradient preconditioner for the problem of non-rigidly tracking the
motion between two RGB-D frames, to improve the algorithm’s convergence on this very
specific problem. As is proposed in [21], we can run a non-rigid alignment on a dataset
of RGB-D frame pairs to acquire problem-specific set of linear systems, and solve these
linear systems by running conjugate gradient for many iterations without preconditioner.
Afterwards we train a network predicting an optimal preconditioner that solves the linear
problem in much fewer iterations.
However, to make the data-driven optimization of certain energy or algorithm proper-

ties possible, the algorithm has to be differentiable. There exist many general frameworks
that support a variety of linear algebra operations and offer automatic differentiation,
such as PyTorch [22]. That makes it much easier to develop differentiable modules.
Our optimization algorithms consist of a gradient vector g and a Jacobian matrix J
construction, followed by relatively simple linear algebra operations. To make them dif-
ferentiable, we can just port all required operations to a differentiable framework. This
offers the flexibility of adapting any parts of the algorithm, if necessary.
Sometimes there could be benefits of doing the analytic derivative manually, with-

out relying on the automatic differentiation. In cases where the algorithm properties
don’t change during the iterations, e.g. the conjugate gradient descent doesn’t have any
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iteration-dependent parameters, computing the analytic derivative of the linear solve op-
eration can result in considerably faster computation and also a more numerically stable
solution. More concretely, we solve the following linear system as part of our algorithm:

Ax = b

After using the system’s solution x in a computation of a certain loss L, we would like to
compute the partial derivatives of L with respect to matrix A and vector b. Following
the analytic derivative formulation in [23] (and described in more detail in App. D.2),
the derivatives can be computed as:

∂L
∂b

= A−1∂L
∂x

∂L
∂A

=

(
A−1∂L

∂x

)
xT = −∂L

∂b
xT

This partial derivative formulation is not dependent on the number of iterations. Given
a solution x from the forward linear solve and its partial derivative ∂L

∂x wrt. the loss
function L, only a single additional linear system needs to be solved to directly compute
the partial derivatives analytically, without requiring to backpropagate the gradients
through conjugate gradient iterations.

2.3 Non-rigid Tracking

Assuming we know the shape of a deformable object, the task of non-rigid tracking is to
track the deformations of the object through time, i.e. estimate the dense motion of the
object. The observations come in a form of a video recording the moving object. While
we could work with only an RGB video as input, most algorithms in this thesis rely on
additional depth video input as well, making the tracking problem better constrained.
Since affordable RGB-D sensors, such as Microsoft Kinect, are widely available, and
already present on many smartphones, requiring a depth sensor doesn’t really limit the
applications too much. We are mostly interested in the setting with a single sensor,
however, the algorithms presented in this section can easily be applied to the multi-view
capture setting, as we also showcase in some of our works.

2.3.1 Deformation Graph

The object shape is usually given in a form of a mesh. There are many ways to represent
deformations of the object, ranging from very coarse representations to fine and detailed
motion modeling. One extreme are skeletons, a sparse set of manually-designed joints
and connecting bones for specific object classes, such as humans. They allow only a few
degrees of freedom, also called articulations, and define dense motion as interpolation
of joints’ motion. On the other end is dense motion estimation, known as scene flow,
where motion of each mesh vertex is represented with a different flow vector, supporting a
large variety of deformations. We decided to follow a generalized concept of deformation
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Figure 2.2: Deformation graph construction. Given a shape geometry, we define the de-
formation graph nodes and edges either by using uniform sampling and connecting
nearest-neighbors (left), or by optimizing over a spatially-varying node positions,
influence and connectivity, optimal for the entire video sequence (right).

graphs, where the motion representation can approach both extremes, depending on the
density of the graph.

A deformation graph is a collection of nodes and edges, visualized in Fig. 2.2. Graph
nodes define the degrees of freedom for the motion representation, and we estimate
a rotation Ri ∈ R3×3 and translation ti ∈ R3 for each node vi ∈ V. This results
in a set of transformations T = {(Ri, ti), i = 1, . . . , N} that are optimized for every
video frame, modeling the deformations of the object. We additionally note down the
node’s canonical position, i.e. position in the mesh template, as vi ∈ R3. Graph edges
E = {ek = (vi, vj)} denote the connectivity between different nodes, and can enforce
additional regularization, encouraging motion of neighboring nodes to be similar.

Graph construction. The deformation graph can be constructed by a uniform sampling
of nodes over the template mesh, ensuring that every mesh vertex has at least one node
in its ϵ-neighborhood (left in Fig. 2.2). A simple greedy algorithm is employed that
incrementally samples new graph nodes until the entire mesh is covered. The graph
edges can be defined as connections between node vi with its nearestM spatial neighbors
(commonly setting M = 8), and are directional – node vi can be connected to node vj ,
while node vj doesn’t need to be connected to node vi. We could use Euclidean distance
for computing nearest neighbors, however more accurate connectivity is given by geodesic
distance, considering the nearest paths between nodes on the surface. Instead of using a
fixed ϵ-neighborhood, we can optimize for optimal influence radius ri ∈ R for each node,
depending on the motion observed in the video sequence (right in Fig. 2.2). Similarly, the
connectivity between nodes the nodes can also be optimized, instead of defined purely on
the distance in canonical template space. We will provide more details about optimizing
a spatially-varying graph in the Chapter 5 about neural deformation graphs.
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2.3.2 Motion Interpolation

There does not need to be a deformation node for every vertex in the mesh. Instead, we
interpolate the motion of each vertex x using the deformation estimates of its nearest
K nodes, denoted as neighborhood Nx of vertex x (we usually use K = 4). For motion
interpolation we follow the Embedded Deformation [24] formulation:

Q(x) =
1

W

∑

vi∈Nx

wi(x)(Ri(x− vi) + vi + ti)

The interpolation weights wi(x) are also called skinning weights, they model the in-
fluence of node vi on the point x. The factor W is defined as the sum over all skinning
weights, i.e. W =

∑
vi∈Nx

wi(x), ensuring that the interpolation weights sum up to
1. The skinning weights could be defined in different ways, we use an exponential ker-
nel that decays the node’s influence depending on the distance of point x to the node
position vi:

wi(x) = exp

(
−||x− vi||22

r2i

)
(2.2)

Here the radius ri denotes the node-specific influence in the spatially-varying graph, and
is set to a constant value ri = ϵ if we use a uniformly-sampled graph.

2.3.3 Motion Regularization

The goal of non-rigid tracking is fitting to the video observations, which translates
to estimating the node deformations that optimally align the template mesh to every
RGB-D frame. However, there is often noise present in the input depth maps, and
global correspondences extracted from RGB-D frames can also be inaccurate. To be
able to fit to the RGB-D frames and at the same time be robust to noise present in
observations, additional motion regularization is introduced. A common assumption
introduced in [25] is that the non-rigid motion is locally as-rigid-as-possible (ARAP),
which can be formulated as:

Ereg(T ) =
∑

(vi,vj)∈E

wij ||Ri(vj − vi) + vi + ti − (vj + tj)||22

The edge weights wij can simply be set 1, i.e. wij = 1, or they can, similarly to the
skinning weights, reflect the influence of node vi to the node vj :

wij = exp

(
−||vj − vi||22

r2i

)

In the ARAP formulation we model the local motion relative to each node vi with a
rotation Ri, which is often represented with 3-dimensional axis-angle parameters ωi ∈
R3 [26]. An alternative embedded deformation (ED) formulation [24] allows for additional
affine scaling as well, and instead uses affine matrices Ai ∈ R3×3 to model the nodes’
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Figure 2.3: Iterative closest points. The template mesh (red) is iteratively aligned to the
current point cloud (blue) by finding (new) closest point matches at each iteration.

deformation. However, to limit the degrees of freedom, an additional energy term is
added that encourages the affine matrices Ai ∈ R3×3 to be close to rotation matrices.
If we decompose each affine matrix into its columns, i.e. Ai = [a1,a2,a3], then different
columns are supposed to be orthogonal to each other and the length of each column
should be equal to 1:

Erot(T ) =
∑

vi∈V
((a1 ·a2)2+(a1 ·a3)2+(a2 ·a3)2+(a1 ·a1−1)2+(a2 ·a2−1)2+(a3 ·a3−1)2)

In this case, the complete motion regularization energy is reformulated into the following:

Ereg(T ) =
∑

(vi,vj)∈E

wij ||Ai(vj − vi) + vi + ti − (vj + tj)||22 + Erot(T )

2.3.4 Iterative Closest Points

A core part of the non-rigid tracking algorithms are the data terms, i.e. energy terms
that measure the quality of fitting the template mesh to the input observations. When
we have a depth map as input, a very important data term are iterative closest points
(ICP) [27]. Let’s assume we have successfully aligned the template mesh to the previous
frame. To non-rigidly track the current frame, we backproject the depth map at the
current frame into 3D, resulting in a 3D point cloud. The template mesh is matched to
the current point cloud by finding nearest point-to-point correspondences between the
mesh and the point cloud. We denote the set of correspondences as C = {(p, c)}, with
p as the point on the template mesh and c its nearest Euclidean neighbor in the current
point cloud. The goal is to minimize the point-to-point distance between the matches:

Epoint2point(T ) =
∑

(p,c)∈C

||Q(p)− c||22

The point-to-point matches are visualized in Fig. 2.3. It can be observed that the ini-
tial point-to-point correspondences are not matching the corresponding surface points
exactly. That is why the nearest point-to-point matches are iteratively refined at each
optimization iteration, resulting in better matches after initial non-rigid alignment. Fur-
thermore, we also take special care to filter outlier correspondences. The point-to-point
matches are kept only if they don’t exceed the predefined maximum point-to-point dis-
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tance, maximum angle difference between the current point cloud normals and template
mesh normals, and the maximum difference between the current view direction and the
mesh normals (the latter removes unstable correspondences at the boundaries).

There is another data term that is usually used in combination with point-to-point
energy. We additionally compute the template mesh normal np ∈ R3 at every correspon-
dence point p (using the latest surface deformations), and minimize the point-to-point
distance projected along the surface normal. The resulting term is called point-to-plane
energy, and it experiences a more robust alignment performance also in the case of less
accurate matches:

Epoint2plane(T ) =
∑

(p,c)∈C

(nTp(Q(p)− c))2

The total ICP energy consists of both point-to-point and point-to-plane data terms,
and we balance the contributions of both terms (by setting the λpoint2point = 0.1 and
λpoint2plane = 1.0):

Eicp(T ) = λpoint2pointEpoint2point(T ) + λpoint2planeEpoint2plane(T )

Efficient projective ICP. Since we compute new ICP correspondences at each opti-
mization iteration, we need a very efficient ICP matching implementation for real-time
tracking performance. While there exist acceleration structures for computing nearest
point matches, such as a k-d tree, their performance is not fast enough. Instead, we ap-
proximate the ICP matches using projective correspondences, i.e. we project each mesh
point to the depth map and assign the queried depth pixel as the match. This can be
done very efficiently using the graphics rendering pipeline, and the projective matches
are further refined by checking all depth pixels in a local 2D pixel window around the
projection.

2.3.5 Global Correspondences

While ICP correspondences are often very effective, they can only recover non-rigid
deformations accurately if frame-to-frame motion is not too large. In the case of fast
motion, or if certain object parts are occluded for a while, and then observed again later,
the frame-to-frame deformation change can become arbitrarily large. For robust non-
rigid tracking we therefore additionally require more global non-rigid correspondences.
Assuming we can extract global matches between the template mesh and the current
frame, resulting in a set of global correspondences C̃ = {(p̃, c̃)}, then the data term is
actually formulated very similar to the ICP data term:

Egc(T ) =
∑

(p̃,c̃)∈C̃

w2
c̃||Q(p̃)− c̃||22

Beside the point-to-point distance, we use an additional confidence weight wc̃ that can
decrease the influence of global matches with lower confidence.

Chapter 2. Background 23



Part I. Introduction

Figure 2.4: Global correspondences. We can either estimate sparse correspondences for
selected pixels via heatmap prediction (left), or densely predict correspondences
for all pixels using an optical flow network (right).

There exist many approaches for finding global non-rigid correspondences, and in
this thesis we propose a few novel approaches as well. In Fig. 2.4 we illustrate two
common choices: we can predict a match independently for each selected pixel, resulting
in sparse correspondences [28]–[32], or we directly predict dense pixel correspondences
using an optical flow network [33], [34]. The matching methods can operate on 3D
point clouds [30], [32], RGB-D frames [28], or only 2D RGB images [29], [31], [33], [34],
however we can always formulate the point-to-point distance by lifting the matches into
3D using depth maps, if necessary. If the method additionally provides the confidence
measures for different matches, we use these values as confidence weights, otherwise we
use the default constant value of wc̃ = 1.

2.3.6 Optimization Energy

To non-rigidly align the template mesh to each input frame of the video, we jointly
optimize both the data and regularization terms, described in the previous sections.
Importantly, we only optimize the graph nodes’ transformations T , we keep the mesh
shape fixed. The total non-rigid tracking energy takes the following form:

E(T ) = λregEreg(T ) + λicpEicp(T ) + λgcEgc(T )

If you carefully examine all energy terms, you can notice that each term follows the non-
linear least squares formulation. That means that we can apply the previously described
Gauss-Newton algorithm to minimize the optimization energy. This enables fast con-
vergence and highly efficient implementation of solver iterations, resulting in real-time
non-rigid tracking performance.
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Figure 2.5: Incremental non-rigid reconstruction. At each frame we extract the latest
mesh from the grid-based SDF representation, compute correspondences with RGB-
D frame and optimize the deformations, and finally integrate the newly observed
RGB-D data to complete the SDF representation (figure is from [35]).

2.4 Non-rigid Reconstruction

Non-rigid tracking plays a core part in modeling deformable objects. However, it assumes
a shape geometry is already estimated, and tracks the deformations given the template
mesh. In many applications, it’s hard to obtain object shape prior to capturing the video
of its motion, and we need to reconstruct the object’s shape at the same time as track its
motion. This task is known as non-rigid reconstruction. In this section we will describe
existing non-rigid reconstruction approaches, starting with non-rigid volumetric fusion,
which can be applied to any deformable object and supports real-time performance. It
doesn’t make use of any data-driven priors though, which could help with more robust
reconstruction performance in underconstrained settings. Therefore, we also look into
neural shape representations, which provide differentiable modules that can efficiently
learn reconstruction priors from 3D shape datasets. We are especially interested in shape
reconstruction from a video, that is why we go into more detail about learning shape
fusion from video observations.

2.4.1 Non-rigid Volumetric Fusion

Instead of assuming a complete shape reconstruction is given, we can use a partial shape
reconstruction for non-rigid tracking, and incrementally update the shape as new RGB-
D observations are available. This idea was introduced in DynamicFusion [4], a real-time
non-rigid reconstruction approach, consisting of several important modules illustrated in
Fig. 2.5. Since we have no shape template at the start of the recording, the initial shape
is generated directly from the initial depth map, resulting in a partial mesh. Finding
correspondences between the partial shape mesh and the observed RGB-D map, and
optimizing the deformations, are core modules of non-rigid tracking, described in detail
in the previous section. Finally, integrating the newly observed RGB-D data using the
non-rigid volumetric fusion is what makes it possible to gradually complete the shape
reconstruction. These steps are repeated for every frame in the video sequence, and
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Figure 2.6: Volumetric fusion. We project a dense grid of voxels to the depth map, and
compute projective depth distances, positive in front of the surface and negative
behind it (figure is from [36]).

at the end of the video we have as complete shape reconstruction as possible, with its
estimated deformations throughout the sequence.

Volumetric fusion. We start with a static volumetric fusion of depth frames, as pro-
posed in [37] and further extended in [2], since it’s an important building block of
non-rigid volumetric fusion. The shape surface is represented by a signed distance field
(SDF), with values stored in a dense voxel grid. Beside SDF values we also store a weight
value for each voxel that keeps track of all already fused observations, and is initialized
with zero. For each input frame i, every voxel is projected to the depth camera view,
and the voxel’s depth value dv in current view is compared with the queried depth value
dm from the depth map. The distance between the values, δi = dm−dv, is known as the
projective distance. Given the voxel’s existing SDF Di−1 and weight Wi−1 values from
the grid, the new observation is fused as:

Di =
Di−1Wi−1 + δiwi

Wi−1 + wi

Wi =Wi−1 + wi

The observation weight wi could be set in a way to reflect the quality of the observation,
e.g. depending on the view direction, but we usually just keep it constant as wi = 1.
An example of fused SDF is visualized in Fig. 2.6. In the region behind the surface, we
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only fuse depth observations in a smaller region, up to a predefined truncation distance,
since otherwise we could corrupt a different surface occluded in the current view. Fur-
thermore, we also cap the maximum positive distance values δi = min(dm − dv, δmax),
since projective distances are only an approximation of the true signed distances with
larger errors further away from the surface.

Non-rigid shape warping. Extending the volumetric fusion to non-rigid setting is ac-
tually quite straight-forward. The dense SDF grid is fused in the canonical frame, i.e.
the initial frame of the video. After tracking a newly observed RGB-D frame using a
partial shape, we similarly want to integrate new observations into the canonical grid.
Instead of directly projecting the voxel position v ∈ R3 to the current camera view, we
apply the estimated warping from canonical to current frame and project the deformed
voxel position Q(v). We can only warp voxels that are close to the surface, since that
is where the graph nodes are defined, up to one-ring neighborhood around the surface
(usually set to 2ϵ, with ϵ being the coverage radius used for graph construction). Beside
this additional voxel filtering and warping, the fusion process proceeds in the same way
as in the static setting. After every non-rigid fusion step, we extract a more complete
mesh via Marching cubes [18], which is then non-rigidly aligned to the next frame.

Dealing with topology changes. The shape is reconstructed in a canonical space, i.e.
the first frame of the sequence. During video capture, a topology change can occur
between the first frame and later frames, e.g. two shape parts tightly in contact in
canonical space become disconnected, or more concretely, a person takes off his coat.
To properly reconstruct the shape and model the motion, we would need to extract
independent surfaces for the coat and the underlying human body. However, due to
the limited SDF grid resolution, this is often very hard. One simple change to the
incremental fusion can make it possible to overwrite problematic surface regions, where
topology changes occur and tracking fails, with the latest geometry updates – we can
update the fusion weights in a windowed manner, i.e. Wi = min(Wi−1+wi,Wmax). This
resets the canonical shape to keep up with the latest state, but unfortunately cannot
recover deformation tracking throughout the whole video anymore. In Chapter 5 we will
present an alternative shape representation that doesn’t assume a fixed canonical space
in a (specific) video frame, and can model topology changes better.

Extending deformation graph. After updating the shape geometry, we also need to
update the corresponding deformation graph. Similarly to the initial graph construction,
where we proceed in a greedy fashion and sample new graph nodes until the entire mesh is
covered, we can add new nodes after the mesh gets more complete. If geodesic distances,
i.e. distances on the mesh, are used to determine the graph connectivity, then graph
edges also need to be updated in surface regions that were updated in the latest iteration.
Lastly, in case of topology changes when we over-write the older version of the surface,
the outdated graph nodes, i.e. nodes too far away from the latest mesh surface, need to
be removed.
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Figure 2.7: MLP-based reconstructions. Some examples of SIREN [39] reconstructions,
where an MLP stores the SDF value for any continuously queried point.

2.4.2 Neural Shape Representations

The non-rigid volumetric fusion of RGB-D frames is a general non-rigid reconstruction
method that can be applied to any deformable shape, but it doesn’t rely on any priors for
reconstruction. In case the object is not completely captured, e.g. certain object parts are
never observed, the resulting reconstruction will always be partial. On the other hand,
there exist reconstruction approaches that learn shape priors from datasets of 3D shapes,
which enables them to predict complete reconstruction also in underconstrained settings,
even from a single image. Having a more complete shape reconstruction also makes non-
rigid tracking more robust, which is another reason for exploring data-driven priors for
shape reconstruction. Finally, if we want to develop a non-rigid reconstruction approach
that takes only an RGB video as input, without any depth information, then shape
reconstruction priors are a necessity for reliable non-rigid reconstruction performance in
that extremely underconstrained scenario [38].

Implicit MLP-based representation. When trying to learn data-driven priors, neural
networks offer a very effective way to represent a large training corpus for a variety
of tasks, including shape reconstruction. It turns out that a multi-layer perceptron
(MLP), a sequence of linear layers and nonlinear activations, is very suitable for surface
modeling [40]–[43]. Taking as input a 3D position, the MLP directly outputs an SDF
or occupancy value at that location. This continuous representation doesn’t suffer from
grid discretization, and is very good at compressing the geometry information, requiring
only a few MB for a detailed scene. In Fig. 2.7 we visualize some reconstruction results
using SIREN [39] architecture, where sine activations are used.

Part-based multi-MLP representation. While an MLP requires much less memory
compared to dense grids, each SDF evaluation requires a forward pass through the
network. For larger scenes or more detailed reconstructions, the MLP has to become
quite large to retain all the geometry details, resulting in slow SDF queries. Alternatively,
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Figure 2.8: Multi-MLP object representation. Each MLP stores a corresponding trans-
formation, which maps from local MLP-specific space to the global world space. A
point is transformed to every local space, evaluated by a small MLP, and the MLP
contributions are aggregated via a (weighted) sum.

we can use a set of smaller MLPs, with each MLP specialized to model a certain part of
the object or scene. We can represent parts of static objects, but it can also be used to
model dynamic objects, such as humans [44], [45], or even general deformable objects, as
we will describe in more detail in Chapter 5. When it comes to deformable objects, each
MLP has a corresponding transformation that maps from a local MLP-specific space to
the global world space. That effectively eliminates the need for a global canonical space,
each part can be reconstructed in its own local space, which offers more robustness in
handling topology changes.

Shape generalization. MLP-based shape representations have its benefits in terms of
reconstruction fidelity and surface compression. However, they are still optimized from
scratch for every single object, and don’t generalize at all across different objects. Our
motivation for using neural networks was to find a differentiable representation that can
be used for learning shape reconstruction priors. It turns out that it’s relatively easy
to extend the MLP representations to generalize across shapes. A simple example is
DeepSDF [40], where an additional shape code is added as input to the MLP, beside
the 3D position. A shared MLP is then trained on a large-scale dataset of objects
(e.g. [46], [47]), and only the shape code is changing between different objects. When
reconstructing a novel object at test-time, we can directly optimize the shape code,
while keeping the MLP parameters frozen, preserving all shape priors learned during
training. A code is often replaced by a coarse grid of features, which improves the
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Figure 2.9: Feature-based MLP reconstruction. Shape is reconstructed using an (object-
specific) feature grid and a (shared) MLP decoder. Additional networks such as a
3D CNN are often employed to improve generalization.

Figure 2.10: Overview of 3D-R2N2 [49]. A multi-view reconstruction approach that en-
codes RGB frames into global codes that are fused across frames via an LSTM
network, without considering input camera poses.

representation power and makes it possible to model shape with very different geometry.
A common architecture is illustrated in Fig. 2.9, where an (object-specific) feature grid
is additionally refined by a (shared) 3D CNN before applying a (shared) MLP decoder
for surface prediction. Another option, beside using code- or feature-conditioned MLPs,
is to use a specialized network, called a hyper-network, to generate object-specific MLP
parameters [48]. While it’s an interesting alternative, it often requires longer training
times for the same reconstruction quality.

2.4.3 Learning Shape Fusion

The neural shape representations presented in the previous section are well-suited for
learning reconstruction priors, and they can be used for shape prediction from a variety
of different inputs. For example, there exist quite some approaches that predict object
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Figure 2.11: Overview of NeuralRecon [55]. A 3D reconstruction approach that encodes
multi-view RGB frames into coarse-to-fine feature grids, aligned using camera
poses, and fused across time using GRU units.

geometry from a single image, either using only an RGB image [50], [51], a depth im-
age [41], [52], [53], or an RGB-D image [54]. However, single image shape prediction is
a challenging task, and therefore requires extensive amounts of training data to build
strong reconstruction priors. This is why existing approaches mostly showcase results
on humans or limited object classes. In our case, we always get a video as input, and
we want to use all the available information from input frames for shape reconstruction.
We are interested in exploring RGB videos as inputs, without any depth sensor, since
this is the scenario where non-rigid reconstruction without shape priors is extremely
challenging.

Beside a generalizable MLP architecture for shape reconstruction, there is usually
another component that is used to generate codes or feature grids for a specific input
– an encoder network. This is often a convolutional network, and in the case of RGB
images, it takes each image as input and predict either a single global feature, or pixel-
aligned features using a 2D U-net architecture [56]. The main difference with single-
view prediction approaches is that we want to fuse these features across video frames.
There are different ways how to formulate fusion with a network. Recurrent neural
networks (RNNs), such as long-short-term memory units (LSTMs) or gated recurrent
units (GRUs), can be used to fuse sequence data. One of the early approaches for object
reconstruction from images, 3D-R2N2 [49], uses a convolutional LSTM to fuse the global
frame codes into a shared representation. The fused feature grid is then decoded using
a 3D CNN to produce a coarse shape reconstruction, as visualized in Fig. 2.10.

The 3D-R2N2 [49] method doesn’t take any additional motion information as input,
such as a camera viewpoint or object deformations. This has an advantage that the ap-
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proach can perform shape reconstruction independently from object tracking. However,
it also means that the network has to resolve the camera motion implicitly, which is a
hard task and might require a lot of training samples for high-quality reconstructions.
Similarly to how we incrementally reconstruct and track the deformable objects in the
RGB-D setting, we could explore ways to develop a similar iterative strategy when given
only an RGB video. Therefore, we could assume that motion tracking is given as an
additional input for shape reconstruction from an RGB video. There have been a vari-
ety of object and scene reconstruction approaches that take advantage of camera poses
being given as input [55], [57]–[61]. They take the encoded pixel-aligned features and
unproject them along the pixel rays into 3D feature grids, using the camera transfor-
mations to warp the rays into a shared world coordinate system. In Fig. 2.11 we show
an overview of one of the methods, NeuralRecon [55], which uses GRU units to further
fuse these already aligned features across time. Since the pixel rays are correctly aligned
in 3D, a smaller fusion network can be used, resulting in real-time 3D reconstruction
performance. Additionally, having aligned features as input makes it an easier task for
the surface decoder, which showcases impressive reconstruction results on large-scale
scenes.
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3 Learning Non-rigid Reconstruction

Abstract of paper. Applying data-driven approaches to non-rigid 3D reconstruction
has been difficult, which we believe can be attributed to the lack of a large-scale training
corpus. Unfortunately, existing methods fail for important cases such as highly non-
rigid deformations. We first address this problem of lack of data by introducing a novel
semi-supervised strategy to obtain dense inter-frame correspondences from a sparse set
of annotations. This way, we obtain a large dataset of 400 scenes, over 390,000 RGB-
D frames, and 5,533 densely aligned frame pairs; in addition, we provide a test set
along with several metrics for evaluation. Based on this corpus, we introduce a data-
driven non-rigid feature matching approach, which we integrate into an optimization-
based reconstruction pipeline. Here, we propose a new neural network that operates on
RGB-D frames, while maintaining robustness under large non-rigid deformations and
producing accurate predictions. Our approach significantly outperforms existing non-
rigid reconstruction methods that do not use learned data terms, as well as learning-based
approaches that only use self-supervision.

3.1 Introduction

Non-rigid 3D reconstruction, i.e., the dense, space-time coherent capture of non-rigidly
deforming surfaces in full temporal correspondence, is key towards obtaining 3D abstrac-
tions of the moving real world. The wide availability of commodity RGB-D sensors, such
as the Microsoft Kinect or Intel Realsense, has led to tremendous progress on static scene
reconstruction methods. However, robust and high-quality reconstruction of non-rigidly
moving scenes with one depth camera is still challenging. Applications for real-time
non-rigid reconstruction range from augmented (AR) and virtual reality (VR) up to
building realistic 3D holograms for fully immersive teleconferencing systems. The semi-
nal DynamicFusion [4] approach was the first to show dynamic non-rigid reconstruction
in real-time. Extensions primarily differ in the used energy formulation. Some meth-
ods use hand-crafted data terms based on dense geometry [4], [62], [63], dense color
and geometry [64], [65], and sparse feature constraints [35]. Other approaches leverage
multi-camera RGB-D setups [66], [67] for higher robustness. However, there are very few
reconstruction methods that use learning-based data terms for general real-world scenes
rather than specific scenarios [68], and that are trained to be robust under real-world
appearance variation and difficult motions. One reason for this is the lack of a large-scale
training corpus. One recent approach [69] proposes self-supervision for ground truth gen-
eration, i.e., they employ DynamicFusion [4] for reconstruction and train a non-rigid cor-
respondence descriptor on the computed inter-frame correspondences. However, we show
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Figure 3.1: Approach overview. We propose a semi-supervised strategy combining self-
supervision with sparse annotations to build a large-scale RGB-D dataset of non-
rigidly deforming scenes (400 scenes, 390,000 frames, 5,533 densely aligned frame
pairs). With this data, we propose a new method for non-rigid matching, which we
integrate into a non-rigid reconstruction approach.

that existing non-rigid reconstruction methods are not robust enough to handle realistic
non-rigid sequences; therefore this tracking-based approach does not scale to training
data generation for real world scenes. Unfortunately, this means that self-supervision
exactly fails for many challenging scenarios such as highly non-rigid deformations and
fast scene motion. By design, this approach trained with self-supervision cannot be bet-
ter than the employed tracker. We propose to employ semi-supervised training data by
combining self-supervision with sparse user annotations to obtain dense inter-frame cor-
respondences. The annotated sparse point correspondences guide non-rigid reconstruc-
tion; this allows us to handle even challenging motions. The result is a large dataset of
400 scenes, over 390,000 RGB-D frames, and 5,533 densely aligned frame pairs. Based
on this novel training corpus, we develop a new non-rigid correspondence matching ap-
proach (see Sec. 3.3) that finds accurate matches between RGB-D frames and is robust
to difficult real world deformations. We further propose a re-weighting scheme that
gives more weight to corner cases and challenging deformations during training. Given
a keypoint in a source frame, our approach predicts a probability heatmap of the corre-
sponding location in the target frame. Finally, we integrate our learned data term into a
non-rigid reconstruction pipeline that combines learned heatmap matches with a dense
RGB-D reconstruction objective. In addition, we introduce a new benchmark and metric
for evaluating RGB-D based non-rigid 3D correspondence matching and reconstruction.
We extensively compare our new data-driven approach to existing hand-crafted features.
We also integrate the learned features into a non-rigid reconstruction framework, leading
to significant improvement over state of the art. In sum, our contributions are:

• A semi-supervised labeling approach for dense non-rigid correspondence learning,
resulting in a dataset featuring 400 annotated dynamic RGB-D sequences and
5,533 densely aligned frame pairs.
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Figure 3.2: Example frames of the collected dataset. Our large-scale dataset contains a
large variety of dynamic sequences with segmentation masks and point correspon-
dences between different RGB-D frames.

• A novel data-driven non-rigid correspondence matching strategy that leads to more
robust correspondence estimation compared to the state-of-the-art hand-crafted
and learned descriptors, especially in the case of extreme deformations.

• A non-rigid reconstruction approach for general scenes that combines learned and
geometric data-terms and handles significantly faster and more complex motions
than the state-of-the-art.

3.2 Related Work

Our approach is related to several research areas, such as volumetric 3D scene recon-
struction, non-rigid object tracking, and learned correspondence matching. We focus
our discussion on the most related RGB-D based techniques. For a detailed discussion,
we refer to the recent survey [70].
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Volumetric Scene Reconstruction. Reconstructing static environments with a single
RGB-D sensor has had a long history in vision and graphics, including KinectFusion [2],
which employs a uniform voxel grid to represent the scene as a truncated signed distance
function (TSDF) [37], as well as many extensions to large-scale scenes [71]–[74]. These
techniques track the 6-DoF camera motion by solving a geometric model-to-frame align-
ment problem using a fast data-parallel variant of the point-to-plane Iterative Closest
Point (ICP) algorithm [27]. Globally consistent reconstruction based on Bundle Adjust-
ment [75], [76] was for a long time only possible offline; data-parallel solvers now enable
real-time frame rates [77]. An alternative to TSDFs are point-based scene representa-
tions [78]–[80]. Recent techniques also employ non-rigid registration to robustly handle
loop closures [81], [82].

Non-Rigid Reconstruction. The reconstruction of general non-rigidly deforming ob-
jects based on real-time scan data has a long tradition [83]. One class of methods uses
pre-defined templates, e.g., human templates, to capture pose and time-varying shape
of clothed humans from RGB-D [84] or stereo camera data [85]. First template-less
approaches had slow offline runtimes and only worked for slow and simple motions.
The approach of [86] solves a global optimization problem to reconstruct the canonical
shape of a non-rigidly deforming object given an RGB-D video sequence as input, but
does not recover the time-dependent non-rigid motion across the entire sequence. The
first approach to demonstrate truly dynamic reconstruction of non-rigid deformation
and rest shape in real-time was DynamicFusion [4]. Since this seminal work, many ex-
tensions have been proposed. VolumeDeform [35] improves tracking quality based on
sparse feature alignment. In addition, they parameterize the deformation field based
on a dense volumetric grid instead of a sparse deformation graph. The KillingFusion
[62] and SobolevFusion [63] approaches allow for topology changes, but do not recover
dense space-time correspondence along the complete input sequence. Other approaches
jointly optimize for geometry, albedo, and motion [64] to obtain higher robustness and
better quality. The approach of Wang et al. [65] employs global optimization to mini-
mize surface tracking errors. In contrast to these methods using a single RGB-D camera,
other techniques use multiple color [87], [88] or depth cameras [66], [67], [89], [90], which
enables high-quality reconstruction at the cost of more complex hardware. We pro-
pose a new learning-based correspondence matching and reconstruction approach that
outperforms existing techniques.

Learning Rigid Correspondence Matching. Historically, correspondence matching for
the task of rigid registration has been based on hand-crafted geometry descriptors [30],
[91]–[94]. If color information is available in addition to depth, SIFT [29] or SURF
[31] can be used to establish a sparse set of feature matches between RGB-D frames.
More recently, 2D descriptors for feature matching in static scenes have been learned
directly from large-scale training corpora [95]–[99]. The Matchnet [97] approach employs
end-to-end training of a CNN to extract and match patch-based features in 2D image
data. Descriptors for the rigid registration of static scenes can be learned and matched
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directly in 3D space with the 3DMatch [32] architecture. Visual descriptors for dense
correspondence estimation can be learned in a self-supervised manner by employing a
dense reconstruction approach to automatically label correspondences in RGB-D record-
ings [69]. Descriptor learning and matching for static scenes has been well-studied, but
is lacking in the challenging non-rigid scenario. While class-specific dense matching of
non-rigid scenes has been learned for specific object classes [68], [100], none of these tech-
niques can handle arbitrary deforming non-rigid objects. We believe one reason for this
is the lack of a large-scale training corpus. In this work, we propose such a corpus and
demonstrate how non-rigid matching between depth images can be learned end-to-end.

RGB-D Datasets. While we have seen a plethora of RGB-D datasets for static scenes,
such as NYU [101], SUN RGB-D [102], and ScanNet [17], the largest of which have thou-
sands of scans, non-rigid RGB-D datasets remain in their infancy. While these datasets
can be used to pretrain networks for the task of non-rigid correspondence matching,
they do not capture the invariants that are useful for the much harder non-rigid setting,
and thus lead to sub-par accuracy. Current non-rigid reconstruction datasets are far
too small and often limited to specific scene types [87], [89], which is not sufficient to
provide the required training data for supervised learning. The datasets that provide
real-world depth recordings [35], [103] do not come with ground truth reconstructions,
which makes objectively benchmarking different approaches challenging. Other datasets
that are commonly used for evaluation do not provide real-world depth data, e.g., [87],
[88]. In this work, we introduce the first large-scale dataset for non-rigid matching based
on semi-supervised labeling and provide a benchmark enabling objective comparison of
different approaches.

3.3 Data-driven Non-Rigid Matching

Our goal is to find matches between a source and a target RGB-D frame. To this end,
we propose a network architecture for RGB-D matching based on a Siamese network
[104] with two towers. Input to the network are two local patches of size 224×224 pixels
each (with 3 color channels and 3-dimensional points in camera coordinate space). We
assume that the source patch is centered at a feature point.

Heatmap. The goal is to predict a probability heatmapH in the target frame that gives
the likelihood of the location of the source point. First, we compute a sigmoid-heatmap:

Hsg = σsg
(
H(Dout)

)

It is computed based on a sigmoid activation σsg to map responses to [0, 1]. Here, Dout

is the output feature map of the last layer of the decoder and H is a convolutional layer
converting feature space into heatmap values. This is equivalent to independent binary

Chapter 3. Learning Non-rigid Reconstruction 39



Part II. Non-rigid Reconstruction using Data-driven Priors

Figure 3.3: Network architecture. We devise an end-to-end architecture for RGB-D match-
ing based on a Siamese network to find matches between a source and a target
frame. Our network is based on two towers that share the encoder and have a
decoder that predicts two probability heatmaps in the target frame that encode the
likelihood of the location of the source point. Our network also predicts a depth
value for the matched point and a visibility score that measures if the source point
is visible in target frame.

classification problems per pixel. Second, we also compute a softmax-heatmap:

Hsm = σsm
(
H(Dout)

)

Here we use a softmax activation σsm to make the complete heatmap a probability
distribution, i.e., it sums to one. As ground truth for the heatmap prediction we could
take an image with zero values everywhere except at the ground truth pixel position that
we set to one. To prevent the trained network from predicting only zero values, we apply
a Gaussian kernel Gxgt around the ground truth pixel. It sets the ground truth pixel’s
value to one and decays the neighboring pixel values to zero with standard deviation of
7 pixels, resulting in the ground truth heatmap Hgt. We also add larger weight to pixels
close to the ground truth pixel, defining the pixel weight as wH(x) = 1 + 10 · Gxgt(x).
The heatmap loss is then computed as:

LH =
∑

i

Φbce(wH(Hsg −Hgt)) + λnll
∑

i

Φnll(wH(Hsm −Hgt))

Here, Φbce(•) denotes the binary cross entropy loss and Φnll(•) the negative log-likelihood
loss, and we empirically determined a weight λnll = 10. From these two probability
heatmaps, a single one is computed as H = Hsg ⊗ Hsm, where ⊗ is the Hadamard
product.

Depth. In addition to heatmap prediction, our network also predicts the matched
point’s depth value in the target camera’s coordinate system. Inspired by [105], we
predict the depth densely, predicting the same depth value for every pixel in the output
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image:
D = exp

(
D(Dout)

)

Here, D is a convolutional layer converting feature space into depth values, and the
exponential is applied to guarantee positive depth predictions. Ground truth for depth
prediction Dgt is the depth of the ground truth match, repeated for the whole image.
Since we want to encourage depth prediction to focus on the matched pixel, we again
use pixel weighting, this time in the form of wD(x) = Gxgt(x), setting the center pixel’s
weight to 1 and decaying the weights to 0. Using the weighted version of mean squared
error Φmse(•) we employ the following loss for depth prediction:

LD = λd
∑

i

Φmse(wD(D −Dgt))

Visibility. Furthermore, we also predict a visibility score ∈ [0, 1] that measures whether
the source point is visible (high value) or occluded (low value) in the target frame:

V = σsg
(
V(Bout)

)

Here, Bout is the output feature map of the bottleneck layer, V is a convolutional layer,
and σsg a sigmoid activation. The visibility loss takes the following form:

LV =
∑

i

Φbce(V − Vgt)

In the end, we train the network using a weighted combination of all presented loss
functions:

L = LH + λDLD + λVLV
In all experiments we use the constant and empirically determined weights λD = 100
and λV = 1. An overview of the network architecture is given in Fig. 3.3. We imple-
mented our non-rigid matching approach in PyTorch [22] and we train it using stochastic
gradient descent with batch size of 32, momentum of 0.9 and learning rate of 0.01. For
regularization, we use a weight decay of 0.0005. The learning rate is divided by 10 ev-
ery 30k iteration steps. We first train the network for heatmap and depth prediction
for 100k iterations. Afterwards, we train only the visibility detection layers for another
100k iterations, keeping the weights in the encoder and bottleneck layers fixed. Differ-
ent on-the-fly data augmentation techniques are applied, such as random 2D rotation,
translation, and horizontal flip.

3.4 Non-Rigid Reconstruction Pipeline

We integrate the learned non-rigid matching algorithm into a non-rigid RGB-D recon-
struction framework that efficiently tracks dense, space-time coherent, non-rigid defor-
mations on the GPU and also provides an efficient volumetric fusion backend. A canon-
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ical model of the scene is reconstructed from data, in parallel to tracking the non-rigid
deformations, and stored based on a truncated signed distance field (TSDF) represented
by a uniform voxel grid. New observations are fused into the grid based on an expo-
nentially moving average. The non-rigid scene motion is tracked based on the following
tracking energy:

Etotal(T ) = Edata(T ) + λlearnedElearned(T ) + λregEreg(T )

The weights λlearned = 1 and λreg = 1 are empirically determined and balance the
different terms.

3.4.1 Deformation Model

To parameterize scene motion, similar to [24], we employ a coarse deformation graph G
with K deformation nodes vi ∈ R3. The graph models the deformation of space based
on the convex combination of local per-node transformations that are parameterized by
rotation parameters ωi ∈ R3 in Lie algebra space and a translation vector ti ∈ R3. In
total, this leads to about 2k free variables to describe scene motion that we jointly refer
to as T . This enables us to decouple the number of free variables from the complexity
of the reconstructed scene. The deformation nodes are connected based on proximity,
for details we refer to the original embedded deformation paper [24].

3.4.2 Optimization Terms

For data term Edata(T ), similar to [4], [35], we employ dense point-to-point and point-to-
plane alignment constraints between the input depth map and the current reconstruction.
For regularizer Ereg, we employ the as-rigid-as-possible (ARAP) constraint [25] to enforce
locally rigid motion. In addition, we integrate a sparse feature alignment term based on
our learned correspondences (see Sec. 3.3). For each node vi of the current deformation
graph, we predict a probability heatmap Hi that gives the likelihood of its 2D uv-
position in the current input depth map, using the initial depth map as the reference
frame. Furthermore, we also back-project the pixel with the maximum heatmap response
into a 3D point pi ∈ R3, using its depth. We aim to align the graph nodes with the
maximum in the corresponding heatmap using the following alignment constraint:

Elearned(T ) =
∑

vi∈G

(
1−Hi(π(vi + ti))

)2
+ λpoint

∑

vi∈G

(
vi + ti − pi

)2

Here, π : R3 → R2 is the projection from 3D camera space to 2D screen space. The
heatmap Hi is normalized to a maximum of 1. We empirically set λpoint = 10. In
order to handle outliers, especially in the case of occluded correspondences, we make use
of the predicted visibility score and the predicted depth value of the match. We filter
out all heatmap correspondences with visibility score < 0.5. We compare the predicted
depth with the queried depth from the target frame’s depth map at the pixel with the
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maximum heatmap response and invalidate any correspondence with a depth difference
> 0.15 meters.

3.4.3 Energy Optimization

We efficiently tackle the underlying optimization problem using a data-parallel Gauss-
Newton solver to find the deformation graph G∗ that best explains the data:

G∗ = argminEtotal(G) .

In the Gauss-Newton solver, we solve the underlying sequence of linear problems using
data-parallel preconditioned conjugate gradient (PCG).

3.5 Semi-supervised Data Acquisition

In the following, we provide the details of our semi-supervised non-rigid data collection
process that is used for training the non-rigid matching and for the evaluation of non-
rigid reconstruction algorithms. The high-level overview of the data acquisition pipeline
is shown in Fig. 3.1.

3.5.1 Data Acquisition

In order to obtain RGB-D scans of non-rigidly moving objects, we use a Structure Sensor
mounted on an iPad. The depth stream is recorded at a resolution of 640× 480 and 30
frames per second; the RGB stream is captured with the iPad camera at a resolution
of 1296 × 968 pixels that is calibrated with respect to the range sensor. Regarding the
scanning instructions, we follow the ScanNet [17] pipeline. However, in our case, we
focus on scenes with one up to several non-rigidly moving objects in addition to a static
background. In total, we recorded 400 scenes with over 390,000 RGB-D frames.

3.5.2 Data Annotation

We crowd sourced sparse ground truth correspondence annotations and segmentation
masks for our novel data set. To this end, we employed a web-based annotation tool. The
annotation was divided into two tasks. Firstly, we select up to 10 frames per sequence.
All dynamic objects that are found in these frames are given unique instance ids (the
same instance in the whole sequence) and their masks are annotated in each frame. To
accelerate mask segmentation, we use a hierarchy of superpixels as candidate brush sizes.
Secondly, among the annotated frames up to 10 frame pairs are selected, and the sparse
correspondences between all dynamic objects are annotated. Expert annotators were
instructed to annotate correspondences uniformly over the complete object, labeling
about 20 point matches per frame pair. Furthermore, in parts of the source image that
are occluded in the target image occlusion points were uniformly selected to collect data
samples for visibility detection. The dynamic object segmentation task takes on average
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Figure 3.4: Dense alignment constraints. We qualitatively show the effect of different op-
timization constraints on the dense alignment of the given RGB-D frame pair.

about 1 min per frame, while the correspondence labeling task takes on average about
2 min per frame. In total, our dataset contains 4, 479 object masks, 149, 228 sparse
matches and 63, 512 point occlusions.

3.5.3 Dense Data Alignment

Using the annotated object masks and the sparse matches, dense non-rigid alignment of
the frame pairs is performed. We follow a similar approach as for non-rigid reconstruction
(see Sec. 3.4), based on the sparse deformation graph of [24]. The deformation graph
is defined on the source frame’s depth map, covering only the dynamic object by using
the source object mask. The final energy function that is optimized to align the source
RGB-D frame to the target RGB-D frame is:

Etotal(T ) = Edata(T ) + λphotoEphoto(T ) + λsilhEsilh(T ) + λsparseEsparse(T ) + λregEreg(T )

Here, Ephoto(T ) encourages the color gradient values from the source frame to match
the target frame, Esilh penalizes deformation of the object outside of the target frame’s
object mask, and Esparse enforces annotated sparse matches to be satisfied. The weights
λphoto = 0.001, λsilh = 0.0001, λsparse = 100.0 and λreg = 10.0 have been empirically
determined. Details about the different optimization terms and a qualitative comparison
of their effects can be found Fig. 3.4. In order to cope with simple apparent topology
changes that are very common while capturing natural non-rigid motion, such as the
hand touching the body in one frame and moving away in another frame, we execute
non-rigid alignment in both directions and compute the final non-rigid alignment using
forward-backward motion interpolation, similar to [106]. At the end, a quick manual
review step is performed, in which, if necessary, any incorrectly aligned mesh parts
are removed. The review step takes about 30 seconds per frame. Examples of dense
alignment results and the employed review interface can be found in the accompanying
video. Overall, our dataset includes 5, 533 densely aligned frame pairs.
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Method 2D-err 3D-err 2D-acc 3D-acc

SIFT [29] 138.40 0.552 16.20 14.08
SURF [31] 125.72 0.476 22.13 19.82
SHOT [93] 105.34 0.342 13.43 11.51
FPFH [30] 109.49 0.393 10.85 9.43
3Dmatch [32] 68.98 0.273 30.50 25.33
GPC [107] 65.04 0.231 31.93 28.16
FlowNet-2.0 [108] 27.32 0.118 68.68 63.67

Ours-12.5% 78.82 0.268 27.17 23.28
Ours-25.0% 58.28 0.197 40.32 35.81
Ours-50.0% 45.43 0.156 50.70 46.57

Ours-Rigid 57.87 0.270 40.93 35.64
Ours-SelfSupervised 33.34 0.121 60.87 55.70
Ours-Sparse 31.42 0.106 58.53 52.24

Ours-NoWeighting 23.72 0.083 73.13 68.46

Ours 19.56 0.073 77.60 72.48

Table 3.1: Quantitative matching comparison. We outperform baseline matching methods
by a considerable margin. 2D/3D errors are average pixel/point errors, and 2D/3D
accuracy is the percentage of pixels/points with distance of at most 20 px/0.05 m.

3.6 Experiments

We provide a train-val-test split with 340 sequences in the training set, 30 in the test
set, and 30 in the validation set. We made sure that there is no overlap of captured
environments between training and validation/test scenes.

3.6.1 Non-Rigid Matching Evaluation

For a given set of pixels (and corresponding 3D points) in the source image, the task is to
find the corresponding pixel (and 3D point) in the target image, as visualized in Fig. 3.5.
We evaluate the average 2D pixel and 3D point error (in meters), and compute the
matching accuracy (ratio of matches closer than 20 pixels or 0.05 meters from the ground
truth correspondences). We compare our non-rigid matching approach to several hand-
crafted feature matching strategies, that are based on depth or color based descriptors,
and to the learned 3Dmatch [32] descriptor, see Tab. 3.1. Specifically, we compare to
the hand-crafted geometry descriptors, such as Unique Signatures of Histograms (SHOT)
[93] and the Fast Point Feature Histograms (FPFH) [30]. We also compare to color-based
descriptors, e.g., SIFT [29] and SURF [31], that can be used to establish a sparse set of
matches been RGB-D frames. Finally, we train a learned descriptor from [32], patch-
based random forest matcher from [107] and optical flow prediction network from [108]
on our training sequences. Our method consistently outperforms all the baselines.
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Figure 3.5: Qualitative heatmap prediction results. Our matching approach works well
even for highly non-rigid motions.
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Method Def. error (cm) Geo. error (cm)

DynamicFusion re-impl. [4] 6.31 1.08
VolumeDeform [35] 21.27 7.78
DynamicFusion [4] + 3Dmatch [32] 6.64 1.59

Ours-Rigid 12.21 2.30
Ours-Sparse 8.24 0.77
Ours-SelfSupervised 5.47 0.54

Ours-Base 3.94 0.43
Ours-Occlusion 3.70 0.42
Ours-Occlusion+Depth 3.28 0.41

Table 3.2: Quantitative reconstruction comparison. Our learned correspondences signif-
icantly improve both tracking and reconstruction quality compared to the state-
of-the-art approaches. We also provide ablation studies on training data type and
different network parts.

3.6.2 Non-Rigid Reconstruction Results

We integrated our learned matching strategy into a non-rigid reconstruction pipeline.
Our learned data term significantly improves reconstruction quality, both qualitatively
and quantitatively. To be able to perform a quantitative comparison on our test se-
quences, we used our re-implementation of [4], and the code or results provided from
the authors of [35], [62]–[64]. We also replaced our data-driven correspondence matching
module with the descriptor learning network from [32], trained on our data, and used
it in combination with 3D Harris keypoints. The quantitative evaluation is shown in
Tab. 3.2. The evaluation metrics measure deformation error (a 3D distance between
the annotated and computed correspondence positions) and geometry error (comparing
depth values inside the object mask to the reconstructed geometry). Deformation error
is the more important metric, since it also measures tangential drift within the surface.
To be able to know which dynamic object to reconstruct if multiple are present, we
always provide the initial ground truth segmentation mask of the selected object. All
approaches in Tab. 3.2 were evaluated on all 30 test sequences to provide a comparison
on different kinds of objects and deformable motions. [64] provided results on two chal-
lenging test sequences, their average deformation and geometry error are 21.05 cm and
14.87 cm respectively, while our approach achieves average errors of 3.63 cm and 0.48
cm. Our approach outperforms the state of the art by a large margin. The methods
[62] and [63] do not compute explicit point correspondences from the canonical frame to
other frames, so we could not evaluate these approaches quantitatively; we provide qual-
itative comparison on our sequences in Fig. 3.8. We also show qualitative comparisons
with our re-implementation of DynamicFusion [4] in Fig. 3.6 and with the state-of-the-
art approach of [64] in Fig. 3.7. Our learned correspondences enable us to handle faster
object motion as well as challenging planar motion, where even photometric cues fail, for
instance due to uniform object color, resulting in high-quality reconstructions in Fig. 3.9.
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Figure 3.6: Qualitative comparison to DynamicFusion [4]. We use our re-implementation
of the framework.
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Figure 3.7: Qualitative comparison to MonoFVV [64]. Reconstruction results were kindly
provided by the authors.
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Figure 3.8: Qualitative comparison to KillingFusion [62]. Reconstruction results were
kindly provided by the authors.
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Figure 3.9: Reconstruction visualizations. Our approach obtains high-quality warped
model (in the current frame) and canonical shape (in the initial frame).
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Figure 3.10: Visibility detection. The visibility score is in the range [0, 1], it is high for visible
correspondences and low for occluded parts. We filter out all correspondences with
visibility score less than 0.50.

Figure 3.11: Ablation on data generation. Comparison of correspondence prediction
for reference frame (left) using self-supervised training data (middle) and semi-
supervised dense data (right).

3.6.3 Ablation Study

We evaluated different components of our network and their effect on the reconstruction
quality, see Tab. 3.2. Since some sequences include motions in which large parts of the
reconstructed object are occluded, as can be observed in Fig. 3.10, using visibility de-
tection for correspondence pruning makes our method more robust. Furthermore, since
depth measurements and heatmap predictions can sometimes both be noisy, adding cor-
respondence filtering with depth prediction further improves the reconstruction results.

3.6.4 Data Generation Evaluation

To show the importance of our semi-supervised strategy for constructing the training
corpus, we evaluate how different training corpora influence the performance of data-
driven reconstruction methods. Aside from our training data, which has been generated
using dense semi-supervised frame alignment, we used a publicly available rigid dataset
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of indoor scenes (from [17]), self-supervised alignment of our sequences (as in [69]),
and only manually annotated sparse samples from our dataset. We provide comparison
on both non-rigid matching in Tab. 3.1 and non-rigid reconstruction in Tab. 3.2. Using
only rigid data does not generalize to non-rigid sequences. While sparse matches already
improve network performance, there is not enough data for reliable correspondence pre-
diction on every part of the observed object. In addition, annotated sparse matches are
usually matches on image parts that are easy for humans to match, and there are much
less accurate correspondences in areas with uniform color. In the self-supervised set-
ting, the network gets dense correspondence information, which improves the method’s
reconstruction performance compared to using only sparse features. However, without
semi-supervised densely aligned frame pairs, we can only generate matches for the sim-
ple deformations, where the DynamicFusion approach can successfully track the motion.
Therefore, the performance of the network trained only on self-supervised data degrades
considerably on more extreme deformations, as can be seen in Fig. 3.11. Dense alignment
of too far away frames is needed for accurate network prediction in the case of extreme
deformations. Since the majority of the densely aligned matches are still moving rigidly,
it turned out to be beneficial to sample more deformable samples during training. In
order to estimate which parts of the scene are more deformable, we employed sparsely
annotated matches and ran RANSAC in combination with a Procrustes algorithm to
estimate the average rigid pose. The more the motion of each sampled match differs
from the average rigid motion, the more often we sample it during network training
using a multinomial distribution of the non-rigid displacement weights. This strategy
improved the network performance, as is shown in Tab. 3.1, compared to training on
non-weighted samples. Finally, we demonstrate how much data is needed to achieve
robust correspondence prediction performance; using less training data considerably de-
grades matching accuracy, as summarized in Tab. 3.1, where we trained networks using
only 12.5%, 25.0%, and 50.0% of the training data.

3.6.5 Limitations

While learned correspondences make tracking of fast motion more robust, there is still
room for improvement when reconstructing dynamic objects. One pressing issue is that
background clutter might be accidentally fused with the object when the object is close
to the background. In this case, the reconstructed shape would slowly grow and we
might also start reconstructing the background. This can cause wrong deformation
graph connectivity and lead to tracking failures. A potential future avenue is to subtract
and ignore the background; e.g., we could use our annotated object masks to develop a
data-driven method.

3.7 Conclusion

We have proposed a neural network architecture for matching correspondences in non-
rigid sequences that operates on RGB-D frames and demonstrated that our learned
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Figure 3.12: Limitations. Integration of background can cause wrong deformation graph
connectivity, which can lead to non-rigid tracking failure.

descriptors outperform existing hand-crafted ones. In addition, we introduced the first
large-scale dataset that is composed of 400 scenes, over 390,000 RGB-D frames, and
5,533 densely aligned frame pairs. The dataset is obtained with a semi-supervised strat-
egy by combining self-supervision with sparse annotations to obtain dense inter-frame
correspondences. We also provide a test set along with several metrics for evaluating
non-rigid matching and non-rigid reconstruction. We believe that our dataset is a first
step towards enabling learning-based non-rigid matching and our benchmark will help
to quantitatively and objectively compare different approaches.
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4 Neural Non-rigid Tracking

Abstract of paper. We introduce a novel, end-to-end learnable, differentiable non-rigid
tracker that enables state-of-the-art non-rigid reconstruction by a learned robust opti-
mization. Given two input RGB-D frames of a non-rigidly moving object, we employ
a convolutional neural network to predict dense correspondences and their confidences.
These correspondences are used as constraints in an as-rigid-as-possible (ARAP) opti-
mization problem. By enabling gradient back-propagation through the weighted non-
linear least squares solver, we are able to learn correspondences and confidences in an
end-to-end manner such that they are optimal for the task of non-rigid tracking. Un-
der this formulation, correspondence confidences can be learned via self-supervision,
informing a learned robust optimization, where outliers and wrong correspondences are
automatically down-weighted to enable effective tracking. Compared to state-of-the-art
approaches, our algorithm shows improved reconstruction performance, while simulta-
neously achieving 85× faster correspondence prediction than comparable deep-learning
based methods.

4.1 Introduction

The capture and reconstruction of real-world environments is a core problem in com-
puter vision, enabling numerous VR/AR applications. While there has been significant
progress in reconstructing static scenes, tracking and reconstruction of dynamic objects
remains a challenge. Non-rigid reconstruction focuses on dynamic objects, without as-
suming any explicit shape priors, such as human or face parametric models. Commodity
RGB-D sensors, such as Microsoft’s Kinect or Intel’s Realsense, provide a cost-effective
way to acquire both color and depth video of dynamic motion. Using a large number of
RGB-D sensors can lead to an accurate non-rigid reconstruction, as shown by [66]. Our
work focuses on non-rigid reconstruction from a single RGB-D camera, thus eliminating
the need for specialized multi-camera setups.

The seminal DynamicFusion by [4] introduced a non-rigid tracking and mapping
pipeline that uses depth input for real-time non-rigid reconstruction from a single RGB-D
camera. Various approaches have expanded upon this framework by incorporating sparse
color correspondences [35] or dense photometric optimization [64]. DeepDeform [13] pre-
sented a learned correspondence prediction, enabling significantly more robust tracking
of fast motion and re-localization. Unfortunately, the computational cost of the corre-
spondence prediction network (∼ 2 seconds per frame for a relatively small number of
non-rigid correspondences) inhibits real-time performance.
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Figure 4.1: Neural Non-Rigid Tracking. Based on RGB-D input data of a source and a
target frame, our learned non-rigid tracker estimates the non-rigid deformations to
align the source to the target frame. We propose an end-to-end approach, enabling
correspondences and their importance weights to be informed by the non-rigid
solver. Similar to robust optimization, this provides robust tracking, and the re-
sulting deformation field can then be used to integrate the depth observations in
a canonical volumetric 3D grid that implicitly represents the surface of the object
(final reconstruction).

Simultaneously, work on learned optical flow has shown dense correspondence predic-
tion at real-time rates [34]. However, directly replacing the non-rigid correspondence pre-
dictions from [13] with these optical flow predictions does not produce accurate enough
correspondences for comparable non-rigid reconstruction performance. In our work, we
propose a neural non-rigid tracker, i.e., an end-to-end differentiable non-rigid tracking
pipeline which combines the advantages of classical deformation-graph-based reconstruc-
tion pipelines [4], [35] with novel learned components. Our end-to-end approach enables
learning outlier rejection in a self-supervised manner, which guides a robust optimization
to mitigate the effect of inaccurate correspondences or major occlusions present in single
RGB-D camera scenarios.

Specifically, we cast the non-rigid tracking problem as an as-rigid-as-possible (ARAP)
optimization problem, defined on correspondences between points in a source and a tar-
get frame. A differentiable Gauss-Newton solver allows us to obtain gradients that enable
training a neural network to predict an importance weight for every correspondence in
a completely self-supervised manner, similar to robust optimization. The end-to-end
training significantly improves non-rigid tracking performance. Using our neural tracker
in a non-rigid reconstruction framework results in 85× faster correspondence prediction
and improved reconstruction performance compared to the state of the art.

In summary, we propose a novel neural non-rigid tracking approach with two key
contributions:

• an end-to-end differentiable Gauss-Newton solver, which provides gradients to bet-
ter inform a correspondence prediction network used for non-rigid tracking of two
frames;
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• a self-supervised approach for learned correspondence weighting, which is informed
by our differentiable solver and enables efficient, robust outlier rejection, thus,
improving non-rigid reconstruction performance compared to the state of the art.

4.2 Related Work

Non-rigid Reconstruction. Reconstruction of deformable objects using a single RGB-D
camera is an important research area in computer vision. State-of-the-art methods rely
on deformation graphs [24], [109] that enable robust and temporally consistent 3D motion
estimation. While earlier approaches required an object template, such graph-based
tracking has been extended to simultaneous tracking and reconstruction approaches [4],
[86]. These works used depth fitting optimization objectives in the form of iterative
closest points, or continuous depth fitting in [62], [63]. Rather than relying solely on
depth information, recent works have incorporated SIFT features [35], dense photometric
fitting [64], and sparse learned correspondence [13].

Correspondence Prediction for Non-rigid Tracking. In non-rigid tracking, correspon-
dences must be established between the two frames we want to align. While methods
such as DynamicFusion [4] rely on projective correspondences, recent methods leverage
learned correspondences [13]. DeepDeform [13] relies on sparse predicted correspon-
dences, trained on an annotated dataset of deforming objects. Since prediction is done
independently for each correspondence, this results in a high compute cost, compared
to dense predictions of state-of-the-art optical flow networks. Optical flow [33], [34],
[108], [110] and scene flow [111]–[114] methods achieve promising results in predicting
dense correspondences between two frames, with some approaches not even requiring
direct supervision [115]–[117]. In our proposed neural non-rigid tracking approach, we
build upon PWC-Net [34] for dense correspondence prediction to inform our non-rigid
deformation energy formulation. Since our approach allows for end-to-end training, our
2D correspondence prediction finds correspondences better suited for non-rigid tracking.

Differentiable Optimization. Differentiable optimizers have been explored for various
tasks, including image alignment [118], rigid pose estimation [119], [120], multi-frame
direct bundle-adjustment [121], and rigid scan-to-CAD alignment [122]. In addition
to achieving higher accuracy, an end-to-end differentiable optimization approach also
offers the possibility to optimize run-time, as demonstrated by learning efficient pre-
conditioning methods in [21], [123], [124]. Unlike Li et al. [21], which employs an
image-based tracker (with descriptors defined on nodes in a pixel-aligned graph), our
approach works on general graphs and learns to robustify correspondence prediction for
non-rigid tracking by learning self-supervised correspondence confidences.
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Figure 4.2: Deformation graph construction. Given an object in the source RGB-D frame,
we define a deformation graph G over the former. Nodes V (red spheres) are uni-
formly subsampled over the source RGB-D frame. Edges E (green lines) are com-
puted between nodes based on geodesic connectivity among the latter.

4.3 Non-Rigid Reconstruction Notation

Non-rigid alignment is a crucial part of non-rigid reconstruction pipelines. In the sin-
gle RGB-D camera setup, we are given a pair of source and target RGB-D frames
{(Is,Ps), (It,Pt)}, where I∗ ∈ RH×W×3 is an RGB image and P∗ ∈ RH×W×3 a 3D
point image. The goal is to estimate a warp field Q : R3 7→ R3 that transforms Ps
into the target frame. Note that we define the 3D point image Ps as the result of back-
projecting every pixel u ∈ Πs ⊂ R2 into the camera coordinate system with given camera
intrinsic parameters. To this end, we define the inverse of the perspective projection to
back-project a pixel u given the pixel’s depth du and the intrinsic camera parameters c:

π−1
c : R2 × R→ R3, (u, du) 7→ π−1

c (u, du) = p (4.1)

To maintain robustness against noise in the depth maps, state-of-the-art approaches
define an embedded deformation graph G = {V, E} over the source RGB-D frame, where
V is the set of graph nodes defined by their 3D coordinates vi ∈ R3 and E the set of edges
between nodes, as described in [24] and illustrated in Fig. 4.2. Thus, for every node in G, a
global translation vector tvi ∈ R3 and a rotation matrix Rvi ∈ R3×3, must be estimated
in the alignment process. We parameterize rotations with a 3-dimensional axis-angle
vector ω ∈ R3. We use the exponential map exp : so(3) → SO(3), ω̂ 7→ eω̂ = R to
convert from axis-angle to matrix rotation form, where the ·̂-operator creates a 3 × 3
skew-symmetric matrix from a 3-dimensional vector. The resulting graph motion is
denoted by T = (ωv1 , tv1 , . . . ,ωvN , tvN ) ∈ RN×6 for a graph with N nodes.

Dense motion can then be computed by interpolating the nodes’ motion T by means
of a warping function Q. When applied to a 3D point p ∈ R3, it produces the point’s
deformed position

Q(p, T ) =
∑

vi∈V
αvi(e

ω̂vi (p− vi) + vi + tvi) (4.2)
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The weights αvi ∈ R, also known as skinning weights, measure the influence of each
node on the current point p and are computed as defined in Eq. 2.2.

Axis-angle optimization. The axis-angle rotation representation has singularities for
larger angles, i.e., two different vectors ω and ω′ can represent the same rotation (for
example keeping the same axis and increasing the angle by 2π results in identical ro-
tation). To avoid singularities, we decompose the rotation matrix into eω̂vi = eϵ̂viRvi

with ϵvi = 0, therefore optimizing only delta rotations that have rather small rotation
angles.

4.4 Neural Non-rigid Tracking

Given a pair of source and target RGB-D frames (Zs,Zt), where Z∗ = (I∗|P∗) ∈ RH×W×6

is the concatenation of an RGB and a 3D point image as defined in Section 4.3, we aim
to find a function Θ that estimates the motion T of a deformation graph G with N nodes
(given by their 3D coordinates V) defined over the source RGB-D frame. This implicitly
defines source-to-target dense 3D motion (see Figure 4.3). Formally, we have:

Θ : RH×W×6 × RH×W×6 × RN×3 → RN×6, (Zs,Zt,V) 7→ Θ (Zs,Zt,V) = T (4.3)

To estimate T , we first establish dense 2D correspondences between the source and tar-
get frame using a deep neural network Φ. These correspondences, denoted as C, are used
to construct the data term in our non-rigid alignment optimization. Since the presence
of outlier correspondence predictions has a strong negative impact on the performance
of non-rigid tracking, we introduce a weighting function Ψ , inspired by robust optimiza-
tion, to down-weight inaccurate predictions. Function Ψ outputs importance weights W
and is learned in a self-supervised manner. Finally, both correspondence predictions C
and importance weights W are input to a differentiable, non-rigid alignment optimiza-
tion module Ω. By optimizing the non-rigid alignment energy (see Section 4.4.3), the
differentiable optimizer Ω estimates the deformation graph parameters T that define the
motion from source to target frame:

T = Θ (Zs,Zt,V) = Ω (Φ(·), Ψ(·),V) = Ω (C,W,V) (4.4)

In the following, we define the dense correspondence predictor Φ, the importance weight-
ing Ψ and the optimizer Ω, and describe a fully differentiable approach for optimizing Φ
and Ψ such that we can estimate dense correspondences with importance weights best
suited for non-rigid tracking.

4.4.1 Dense Correspondence Prediction

The dense correspondence prediction function Φ takes as input a pair of source and
target RGB images (Is, It), and for each source pixel location u ∈ Πs ⊂ R2 it outputs a
corresponding pixel location in the target image It, which we denote by cu ∈ Πt ⊂ R2.
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Figure 4.3: Overview of neural non-rigid tracker. Given a pair of source and target images,
Is and It, a dense correspondence map C between the frames is estimated via a
convolutional neural network Φ. Importance weights W for these correspondences
are computed through a function Ψ . Together with a graph G defined over the
source RGB-D frame Ps, both C and W are input to a differentiable solver Ω. The
solver outputs the graph motion T , i.e., the non-rigid alignment between source
and target frames. Our approach is optimized end-to-end, with losses on the final
alignment using Lgraph and Lwarp, and an intermediate loss on the correspondence
map Lcorr.

Formally, Φ is defined as

Φ : RH×W×3 × RH×W×3 → RH×W×2, (Is, It) 7→ Φ (Is, It) = C (4.5)

where C is the resulting dense correspondence map. The function Φ is represented by
a deep neural network that leverages the architecture of a state-of-the-art optical flow
estimator [34].

Coarse-to-fine optimization. The design of our correspondence prediction function Φ
follows the PWC-Net [34] architecture that predicts the correspondences in a coarse-to-
fine manner. Initially the correspondences are predicted at a coarse resolution of 10× 7
px, and then refined to a resolution of 20×14 px, etc. In total, there are L = 5 levels in the
correspondence hierarchy, and the finest level predictions are used in the differentiable
non-rigid optimization. At every level l, we bilinearly downsample the groundtruth
correspondences to a coarser resolution, resulting in C̃l. Similarly, the ground-truth
mask is downsampled to a coarser version M̃Cl , to avoid propagating gradients through
invalid pixels. For each training sample (Is, It) and every level l, we therefore compute

ground-truth correspondences C̃l and the ground-truth mask M̃Cl .

4.4.2 Correspondence Importance Weights

For each source pixel u ∈ Πs ⊂ R2 and its correspondence cu ∈ Πt ⊂ R2, we additionally
predict an importance weight wu ∈ (0, 1) by means of the weighting function Ψ . The
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latter takes as input the source RGB-D image Zs, the corresponding sampled target
frame values Z ′

t, and intermediate features from the correspondence network Φ, and
outputs weights for the correspondences between source and target. Note that Z ′

t is the
result of bilinearly sampling [125] the target image Zt at the predicted correspondence
locations C. The last layer of featuresH of the correspondence network Φ, with dimension
D = 565, are used to inform Ψ . The weighting function is thus defined as

Ψ : RH×W×6 × RH×W×6 × RH×W×D → RH×W×1,
(
Zs,Z ′

t,H
)
7→ Ψ

(
Zs,Z ′

t,H
)
=W
(4.6)

4.4.3 Differentiable Optimizer

We introduce a differentiable optimizer Ω to estimate the deformation graph parameters
T , given the correspondence map C, importance weights W, and N graph nodes V:

Ω : RH×W×2 × RH×W×1 × RN×3 → RN×6, (C,W,V) 7→ Ω (C,W,V) = T (4.7)

with C and W estimated by functions Φ (Eq. 4.5) and Ψ (Eq. 4.6), respectively. Using
the predicted dense correspondence map C, we establish the data term for the non-
rigid tracking optimization. Specifically, we use a 2D data term that operates in image
space and a depth data term that leverages the depth information of the input frames.
In addition to the data terms, we employ an As-Rigid-As-Possible regularizer [25] to
encourage node deformations to be locally rigid, enabling robust deformation estimates
even in the presence of noisy input cues. Note that the resulting optimizer module Ω
is fully differentiable, but contains no learnable parameters. In summary, we formulate
non-rigid tracking as the following nonlinear optimization problem:

argmin
T

(
λ2DE2D(T ) + λdepthEdepth(T ) + λregEreg(T )

)
(4.8)

2D reprojection term. Given the outputs of the dense correspondence predictor and
weighting function, Φ (Is, It) and Ψ (Zs,Z ′

t,H), respectively, we query for every pixel u
in the source frame its correspondence cu and weight wu to build the following energy
term:

E2D(T ) =
∑

u∈Πs

w2
u ∥πc(Q(pu, T ))− cu∥22 (4.9)

where πc : R3 → R2, p 7→ πc(p) is a perspective projection with intrinsic parameters c
and pu = π−1

c (u, du) as defined in Eq. 4.1. Each pixel is back-projected to 3D, deformed
using the current graph motion estimate as described in Eq. 4.2 and projected onto
the target image plane. The projected deformed location is compared to the predicted
correspondence cu.

Depth term. The depth term leverages the depth cues of the source and target images.
Specifically, it compares the z components of a warped source point, i.e., [Q(pu, T )]z,
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and a target point sampled at the corresponding location cu using bilinear interpolation:

Edepth(T ) =
∑

u∈Πs

w2
u

(
[Q(pu, T )]z − [Pt(cu)]z

)2
(4.10)

Regularization term. We encourage the deformation of neighboring nodes in the defor-
mation graph to be locally rigid. Each node vi ∈ V has at most K = 8 neighbors in the
set of edges E , computed as nearest nodes using geodesic distances. The regularization
term follows [25]:

Ereg(T ) =
∑

(vi,vj)∈E

∥∥∥eω̂vi (vj − vi) + vi + tvi − (vj + tvj )
∥∥∥
2

2
(4.11)

Equation 4.8 is minimized using the Gauss-Newton algorithm, as described in Al-
gorithm 2. In the following, we denote the number of correspondences by |C| and
the number of graph edges by |E|. Moreover, we transform all energy terms into a
residual vector r ∈ R3|C|+3|E|. For every graph node, we compute partial derivatives
with respect to translation and rotation parameters, constructing a Jacobian matrix
J ∈ R(3|C|+3|E|)×6N , where N is the number of nodes in the set of vertices V. Analytic
formulas for partial derivatives are described in App. D.

Initially, the deformation parameters are initialized to T0 = 0, corresponding to zero
translation and identity rotations. In each iteration n, the residual vector rn and the
Jacobian matrix Jn are computed using the current estimate Tn, and the following linear
system is solved (using LU decomposition) to compute an increment ∆T :

JTnJn∆T = −JTnrn (4.12)

At the end of every iteration, the motion estimate T is updated as Tn+1 = Tn + ∆T .
Most operations are matrix-matrix or matrix-vector multiplications, which are trivially
differentiable. Derivatives of the linear system solve operation are computed analyti-
cally, as described in [23] and detailed in App. D. We use max iter = 3 Gauss-Newton
iterations, which encourages the correspondence prediction and weight functions, Φ and
Ψ , respectively, to make predictions such that convergence in 3 iterations is possible. In
our experiments we use (λ2D, λdepth, λreg) = (0.001, 1, 1).

4.4.4 End-to-end Optimization

Given a dataset of samples Xs,t = {[Is|Ps], [It|Pt],V}, our goal is to find the parameters
ϕ and ψ of Φϕ and Ψψ, respectively, so as to estimate the motion T of a deformation
graph G defined over the source RGB-D frame. This can be formulated as a differentiable
optimization problem (allowing for back-propagation) with the following objective:

argmin
ϕ,ψ

∑

Xs,t

λcorrLcorr(ϕ) + λgraphLgraph(ϕ, ψ) + λwarpLwarp(ϕ, ψ) (4.13)
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Algorithm 2 Gauss-Newton Optimization

1: C ← Φ (Is, It) ▷ Estimate correspondences
2: W ← Ψ (Zs,Z ′

t,H) ▷ Estimate importance weights
3: function Solver(C,W,V)
4: T ← 0
5: for n← 0 to max iter do
6: J, r← ComputeJacobianAndResidual(V, T ,Zs,Z ′

t, C,W)
7: ∆T ← LUDecomposition(JTJ∆T = −JT r) ▷ Solve linear system
8: T ← T +∆T ▷ Apply increment

9: return T

Correspondence loss. We use a robust q-norm as in [34] to enforce closeness of cor-
respondence predictions to ground-truth. At every hierarchy level l the correspondence
loss has the following form:

Llcorr(ϕ) = M̃Cl( |Φlϕ (Is, It)− C̃l|+ ϵ)q (4.14)

Operator | · | denotes the ℓ1 norm, q < 1 (we set it to q = 0.4) and ϵ is a small
constant. Ground-truth correspondences at specific level l are denoted by C̃l. Since
valid ground truth for all pixels is not available, we employ a ground-truth mask M̃Cl

to avoid propagating gradients through invalid pixels.

Graph loss. We impose an l2-loss on node translations t (ground-truth rotations are
not available):

Lgraph(ϕ, ψ) = M̃V
∥∥∥
[
Ω
(
Φϕ (Is, It) , Ψψ

(
Zs,Z ′

t,H
)
,V
)

︸ ︷︷ ︸
T

]
t
− t̃
∥∥∥
2

2
(4.15)

where [ · ]t : RN×6 → RN×3, T 7→ [T ]t = t extracts the translation part from the graph
motion T . Node translation ground-truth is denoted by t̃ and M̃V masks out invalid
nodes. Mask M̃V is needed for numerically stable optimization, as described in more
detail below.

Warp loss. We have found that it is beneficial to use the estimated graph deformation
T to deform the dense source point cloud Ps and enforce the result to be close to the
source point cloud when deformed with the ground-truth scene flow S̃:

Lwarp(ϕ, ψ) = M̃S
∥∥∥Q
(
Ps, Ω

(
Φϕ (Is, It) , Ψψ

(
Zs,Z ′

t,H
)
,V
)

︸ ︷︷ ︸
T

)
− (Ps + S̃)

∥∥∥
2

2
(4.16)

Here, we extend the warping operation Q (Eq. 4.2) to operate on the dense point cloud Ps
element-wise, and define M̃S to mask out invalid points. Note that since we sample graph
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Figure 4.4: Appearance reconstruction. We compute shape textures by aggregating color
images over 100 frames of motion into a voxel grid.

nodes on depth maps, the graph loss is in practice a subset of the warp loss. However,
we found it to be a more general notation to disentangle them (e.g., for scenarios where
graph nodes are not sampled on the RGB-D frame).

Numerically stable optimization. The non-rigid tracking optimization objective in-
cludes data (correspondence and depth) terms and a regularization (ARAP) term. If
we only use regularization term, the optimization problem becomes ill-posed, since any
rigid transformation of all graph nodes has no effect on the regularization term. The
edge set E of the deformation graph G = (V, E) is computed by connecting each graph
node with K = 8 nearest nodes, using geodesic distances on the depth map mesh as a
metric. This can lead to multiple disconnected graph components, i.e., different node
clusters. To ensure the optimization problem is well-defined, we ensure that we have a
minimum number of correspondences in each node cluster. In order to satisfy memory
limits, we do not use all pixel correspondences C at training time, but instead randomly
sample 10k correspondences. In our experiments we filter out all node clusters with less
than 2000 correspondences. This filtering has to be reflected in the loss computation.
Thus, we define the mask matrix M̃V to have zeros for nodes from filtered clusters, which
prevents gradient back-propagation through invalidated graph nodes.
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4.4.5 Neural Non-rigid Tracking for 3D Reconstruction

We introduce our differentiable tracking module into the non-rigid reconstruction frame-
work of [4]. In addition to the dense depth ICP correspondences employed in the original
method, which help towards local deformation refinement, we employ a keyframe-based
tracking objective. Without loss of generality, every 50th frame of the sequence is cho-
sen as a keyframe, to which we establish dense correspondences including the respective
weights. We apply a conservative filtering of the predicted correspondences based on
the predicted correspondence weights using a fixed threshold δ = 0.35 and re-weight
the correspondences based on cycle consistency, as detailed below. Using the corre-
spondence predictions and correspondence weights of valid keyframes (> 50% valid cor-
respondences), the non-rigid tracking optimization problem is solved. The resulting
deformation field is used to integrate the depth frame into the canonical volume of the
object. We refer to the original reconstruction paper [4] for details regarding the fusion
process. On top of geometry, we can also recover shape appearance, as visualized in
Fig. 4.4.

Cycle-consistency filtering. We apply correspondence reweighting based on cycle con-
sistencies. Specifically, we enforce bi-directional consistency and multi-keyframe consis-
tency. Bi-directional consistency enables us to detect self-occlusions between a keyframe
and current frame. Correspondences are predicted in both directions keyframe-to-frame
and frame-to-keyframe. If following the correspondence in forward keyframe-to-frame
and afterwards in backward frame-to-keyframe direction results in a 3D error larger
than 0.20m, we reject the correspondence. For multi-keyframe consistency, multiple
keyframe-to-frame predictions are estimated that correspond to the same 3D point in
the canonical volume and the mean prediction value is computed. If any of the predic-
tions is more than 0.15m away from the mean value, we reject all correspondences for a
given 3D canonical point.

4.5 Experiments

In the following, we evaluate our method quantitatively and qualitatively on both
non-rigid tracking and non-rigid reconstruction. To this end, we use the DeepDeform
dataset [13] for training, with the given 340-30-30 train-val-test split of RGB-D se-
quences. Both non-rigid tracking and reconstruction are evaluated on the hidden test
set of the DeepDeform benchmark.

4.5.1 Training Scheme

The non-rigid tracking module has been implemented using the PyTorch library [22] and
trained using stochastic gradient descent with momentum 0.9 and learning rate 10−5.
We use an Intel Xeon 6240 Processor and an Nvidia RTX 2080Ti GPU. The parameters
of the dense correspondence prediction network ϕ are initialized with a PWC-Net model
pre-trained on FlyingChairs [33] and FlyingThings3D [126]. We use a 10-factor learning
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Model EPE 3D (mm) Graph Error 3D (mm)

Φc 44.05 67.25
Φc+g 39.12 57.34
Φc+g+w 36.96 54.24

Φc + Ψsupervised 28.95 36.77
Φc+g+w + Ψsupervised 27.42 34.68
Φc+g+w + Ψself-supervised 26.29 31.00

Table 4.1: Quantitative non-rigid tracking evaluation. We evaluate non-rigid tracking on
the DeepDeform dataset [13], showing the benefit of end-to-end differentiable op-
timizer losses and self-supervised correspondence weighting. We denote correspon-
dence prediction as Φc, Φc+g and Φc+g+w, depending on which losses Lcorr, Lgraph,
Lwarp are used, and correspondence weighting as Ψsupervised and Ψself-supervised, either
using an additional supervised loss or not.

rate decay every 10k iterations, requiring about 30k iterations in total for convergence,
with a batch size of 4. For optimal performance, we first optimize the correspondence
predictor Φϕ with (λcorr, λgraph, λwarp) = (5, 5, 5), without the weighting function Ψψ.
Afterwards, we optimize the weighting function parameters ψ with (λcorr, λgraph, λwarp) =
(0, 1000, 1000), while keeping ϕ fixed. Finally, we fine-tune both ϕ and ψ together, with
(λcorr, λgraph, λwarp) = (5, 5, 5).

Supervised Weight Network Baseline. As a baseline, we introduce a model where we
supervise the optimization of the weighting function Ψψ. The ground-truth correspon-
dence weighting W̃ ∈ RH×W×1 for this supervision is generated by comparing current
correspondence predictions C against the ground-truth correspondences C̃. We compare
3D distances between correspondences, using the target depth map Dt to query corre-
sponding depth values. A pixel in the ground-truth weighting W̃ is assigned a 1 or 0
depending on the correspondence error. Optimal performance was achieved by assigning
1 to correspondences that are at most 0.1m away from groundtruth, and 0 to correspon-
dences that are at least 0.3m away from groundtruth, without propagating any gradient
through remaining correspondence weights. Binary cross-entropy loss is used to optimize
Ψ in this supervised setting.

4.5.2 Non-rigid Tracking Evaluation

For any frame pair Xs,t in the DeepDeform dataset [13], we define a deformation graph
G by uniformly sampling graph nodes V over the source object in the RGB-D frame,
given a segmentation mask of the former. Graph node connectivity E is computed using
geodesic distances on a triangular mesh defined over the source depth map. As a pre-
processing step, we filter out any frame pairs where more than 30% of the source object is
occluded in the target frame. In Table 4.1 non-rigid tracking performance is evaluated by
the mean translation error over node translations t (Graph Error 3D), where the latter
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Figure 4.5: Qualitative comparison with DynamicFusion [4] and DeepDeform [13].
We compare reconstruction results on test sequences from [13]. The rows show
different time steps of the sequence.

are compared to ground-truth with an l2 metric. In addition, we evaluate the dense
end-point-error (EPE 3D) between the source point cloud deformed with the estimated
graph motion, Q(Ps, T ), and the source point cloud deformed with the ground-truth
scene flow, Ps + S̃. To support reproducibility, we report the mean error metrics of
multiple experiments, running every setting 3 times.

We show that using graph and warp losses, Lgraph and Lwarp, and differentiating
through the non-rigid optimizer considerably improves both EPE 3D and Graph Error
3D compared to only using the correspondence loss Lcorr. Adding self-supervised corre-
spondence weighting further decreases the errors by a large margin. Supervised outlier
rejection with binary cross-entropy loss does bring an improvement compared to mod-
els that do not optimize for the weighting function Ψψ. However, optimizing Ψψ in a
self-supervised manner clearly outperforms the former supervised setup. This is due to
the fact that, in the self-supervised scenario, gradients that flow from Lgraph and Lwarp
through the differentiable solver Ω can better inform the optimization of Ψψ by mini-
mizing the end-to-end alignment losses. We further experimented with different design
choices for our solver.

ARAP edge re-weighting. In non-rigid tracking, it is possible to weight ARAP terms
for every graph edge differently, depending on the distance between the nodes. In our
method, we sample nodes uniformly on the surface, thus, all edges have similar length
(7.13±1.38 cm). Hence, edge re-weighting changes EPE 3D only marginally: 0.8% lower
EPE 3D and 1.7% lower Graph Error 3D.

Nearest-neighbor vs. bilinear depth sampling. When querying depth after predicting
2D correspondences, we found bilinear sampling to perform better, with 5.8% lower EPE
3D and 6.29% lower Graph Error 3D compared to nearest-neighbor sampling.
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Method Deformation error (mm) Geometry error (mm)

DynamicFusion [4] 61.79 10.78
VolumeDeform [35] 208.41 74.85
DeepDeform [13] 31.52 4.16

Ours (Φc) 54.85 5.92
Ours (Φc+g+w) 53.27 5.84
Ours (Φc + Ψsupervised) 40.21 5.39
Ours (Φc+g+w + Ψself-supervised) 28.72 4.03

Table 4.2: Quantitative non-rigid reconstruction evaluation. Our method achieves
state-of-the-art non-rigid reconstruction results on the DeepDeform benchmark [13].
Both our end-to-end differentiable optimizer and the self-supervised correspondence
weighting are necessary for optimal performance. Not only does our approach achieve
lower deformation and geometry error compared to state of the art, our correspon-
dence prediction is about 85× faster.

Influence of graph density. We sample graph nodes with 5 cm node coverage, which
fits well with our setup of 11GiB for training. Using coarser graphs, with 10 cm and
15 cm node coverage resulted in poorer performance: 5.49% and 8.33% higher EPE
3D, as well as 7.34% and 28.46% higher Graph Error 3D, respectively. In turn, the
memory footprint on the GPU during training (with batch size 4) decreases with node
coverage: 10 513MiB, 6153MiB and 5931MiB for 5 cm, 10 cm and 15 cm node coverage,
respectively.

Number of optimization steps. We empirically found 3 solver iterations to be the best
compromise between performance and computational cost. Unrolling 3 solver iterations
instead of 1 / 2, results in 24.9% / 0.16% lower EPE 3D and 22.7% / 0.23% lower Graph
Error 3D. Using 4 iterations only improves slightly with respect to 3 (0.04% lower EPE
3D, 0.03% lower Graph Error 3D). More than 4 does not change performance notably.

4.5.3 Non-rigid Reconstruction Evaluation

We evaluate the performance of our non-rigid reconstruction approach on the Deep-
Deform benchmark [13] (see Table 4.2). The evaluation metrics measure deformation
error, a 3D end-point-error between tracked and annotated correspondences, and geom-
etry error, which compares reconstructed shapes with ground truth depth maps inside
annotated foreground object masks. Our approach performs about 8.9% better than
the state-of-the-art non-rigid reconstruction approach of [13] on the deformation met-
ric. While our approach consistently shows better performance on both metrics, we
also significantly lower the per-frame runtime to 27ms per keyframe, in contrast to [13],
which requires 2299ms. Thus, our approach can also be used with multiple keyframes
at interactive frames rates, e.g., 90ms for 5 keyframes and 199ms for 10 keyframes.
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To show the influence of the different learned components of our method, we perform
an ablation study by disabling either of our two main components: the end-to-end differ-
entiable optimizer or the self-supervised correspondence weighting. As can be seen, our
end-to-end trained method with self-supervised correspondence weighting demonstrates
the best performance. Qualitatively, we show this in Fig. 4.5. In contrast to Dynam-
icFusion [4] and DeepDeform [13], our method is notably more robust in fast motion
scenarios. Fig. 4.6 shows a comparison to [64]. As can be seen, our method better han-
dles non-rigid movements with fast motions (t-shirt) and occlusions (arm). In Fig. 4.7,
we compare our approach to the reconstruction results of [62]. The reconstruction of our
method leads to more complete and smooth meshes. Additionaly, we show qualitative
reconstruction results of our method on VolumeDeform [35] sequences in Fig. 4.8. Our
method can robustly reconstruct these RGB-D sequences, despite the fact that a Kinect
sensor was used to record them, whereas our training data was obtained using a Struc-
ture IO sensor. This shows that our network predictions can generalize to a different
structured-light sensor input.

4.6 Conclusion

We propose Neural Non-Rigid Tracking, a differentiable non-rigid tracking approach
that allows learning the correspondence prediction and weighting of traditional tracking
pipelines in an end-to-end manner. The differentiable formulation of the entire track-
ing pipeline enables back-propagation to the learnable components, guided by a loss on
the tracking performance. This not only achieves notably improved tracking error in
comparison to state-of-the-art tracking approaches, but also leads to better reconstruc-
tions, when integrated into a reconstruction framework like DynamicFusion [4]. We hope
that this work inspires further research in the direction of neural non-rigid tracking and
believe that it is a stepping stone towards fully differentiable non-rigid reconstruction.
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Figure 4.6: Qualitative comparison with MonoFVV [64]. The results on test sequences
from [13] were kindly provided by the authors.
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Figure 4.7: Qualitative comparison with KillingFusion [62]. The results on test se-
quences from [13] were kindly provided by the authors.

Chapter 4. Neural Non-rigid Tracking 71



Part II. Non-rigid Reconstruction using Data-driven Priors

O
u
rs

In
p
u
t

In
p
u
t

t0 t1 t2 t3
O
u
rs

In
p
u
t

O
u
rs

In
p
u
t

O
u
rs

Figure 4.8: Generalization to a different sensor. We show qualitative reconstruction re-
sults on VolumeDeform [35] sequences, captured by a Microsoft Kinect sensor.
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5 Neural Deformation Graphs

Abstract of paper. We introduce Neural Deformation Graphs for globally-consistent
deformation tracking and 3D reconstruction of non-rigid objects. Specifically, we im-
plicitly model a deformation graph via a deep neural network. This neural deformation
graph does not rely on any object-specific structure and, thus, can be applied to general
non-rigid deformation tracking. Our method globally optimizes this neural graph on
a given sequence of depth camera observations of a non-rigidly moving object. Based
on explicit viewpoint consistency as well as inter-frame graph and surface consistency
constraints, the underlying network is trained in a self-supervised fashion. We addi-
tionally optimize for the geometry of the object with an implicit deformable multi-MLP
shape representation. Our approach does not assume sequential input data, thus en-
abling robust tracking of fast motions or even temporally disconnected recordings. Our
experiments demonstrate that our Neural Deformation Graphs outperform state-of-the-
art non-rigid reconstruction approaches both qualitatively and quantitatively, with 64%
improved reconstruction and 54% improved deformation tracking performance.

5.1 Introduction

Capturing non-rigidly deforming surfaces is essential towards reconstructing and under-
standing real-world environments, which are often highly dynamic. While impressive
advances have been made in reconstructing static 3D scenes [37], [127], dynamic track-
ing and reconstruction remains very challenging. A plethora of domain-specific dynamic
tracking methods has been developed (e.g., human bodies, faces, hands), leveraging
strong domain shape and motion priors for robust tracking [6]–[8], [128]. However, real-
world environments encompass a vast diversity of deformable objects – including people
with clothing or animals – making domain specific shape priors often intractable for
general deformable reconstruction; in this work, we thus focus on general non-rigid 3D
reconstruction without shape or motion priors for general object tracking and recon-
struction.

A seminal work in non-rigid 3D reconstruction is DynamicFusion [4], which was the
first approach to demonstrate real-time dense reconstruction of dynamic scenes using
just a single RGB-D sensor. DynamicFusion showed promising results towards dynamic
reconstruction, but still struggles in many real-world scenarios, which typically include
strong deformations and fast frame-to-frame motion, due to its low-level, local corre-
spondence association step. In particular, the incremental construction of a deformation
graph is prone to error aggregation and can lead to tracking failures. Recently, data-
driven methods based on deep learning have been introduced [13], [14], [21] that learn
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Figure 5.1: Neural Deformation Graphs. Given range input data, represented as a signed
distance field, our method predicts globally-consistent deformation graph that is
used to reconstruct the non-rigidly deforming surface of an object. The surface of
the object is represented as a set of implicit functions centered around the defor-
mation graph nodes. Our global optimization provides consistent surface and de-
formation prediction, enabling robust tracking of an observed input sequence and
even multiple disjoint captures of the same object (as we do not assume sequential
input data).

priors of non-rigidly deforming objects from dense flow annotations. These approaches
leverage a similar incremental deformation graph construction as DynamicFusion, but
learn to establish more robust tracking via more sophisticated correspondence optimiza-
tion based on data-driven priors. However, despite more robust correspondences, these
methods still operate on a frame-by-frame basis, thus, aggregate tracking errors and
are unable to recover if tracking fails. In order to address these shortcomings without
assuming data-driven priors, we propose a globally-consistent neural deformation graph
which allows for non-rigid reconstruction from commodity sensor observations, repre-
sented as signed distance fields (see Fig. 5.1). The neural deformation graph gives access
to the per frame deformation graph nodes and stores the global graph connectivity. To
robustly optimize for consistent deformations over fast motions, we introduce viewpoint
consistency (independently for every frame) as well as graph and surface consistency
constraints (between pairs of frames). Our viewpoint consistency loss measures the con-
sistency of graph node position predictions w.r.t. rotation augmentation. The graph
and surface consistency losses encourage deformations to be modeled in our Neural De-
formation Graph such that local graph edge distances are preserved between frames and
the deformed surface geometry of a source frame aligns well with the geometry of the
target frame. Additionally, our approach does not assume temporally close frames, thus
making it easily applicable to low FPS settings or the combination of independently
captured depth recordings.

Since there exists no general canonical pose (like a T-pose of a human [6]) that fits all
deformable objects, we avoid modeling it explicitly. Instead, we propose to employ a set
of implicit functions that are centered around the deformation graph nodes. Specifically,
we model local signed distance functions (SDFs) using multi-layer perceptrons (MLPs)
that can be deformed to fit any frame, without requiring an explicit canonical pose. The
global shape is evaluated by the integration of these local MLP predictions.
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To summarize, our technical contributions are:

• a globally-optimized deformation graph that is able to handle deformations present
in all frames of an unstructured dataset or a sequence of an object;

• a combination of per-frame viewpoint consistency and frame-to-frame graph and
surface consistency for robust tracking of fast deformations;

• an implicit deformable multi-MLP shape representation anchored on the scene-
specific deformation graph.

5.2 Related Work

Our approach is leveraging a low dimensional deformation graph to model the non-rigid
deformations of an object, while the actual surface is represented by an implicit function
by means of a multi-layer perceptron (MLP). We will discuss the most related approaches
in these two fields.

Non-rigid Reconstruction. Non-rigid reconstruction is a highly active research field,
in particular using commodity RGB-D sensors such as the Kinect. The seminal work
DynamicFusion of Newcombe et al. [4] tracks deformable motion and reconstructs the
object’s shape in an incremental fashion, i.e., frame-by-frame. While this approach relies
on local depth correspondences, follow-up methods additionally use sparse SIFT features
[35], dense color tracking [64] or dense SDF alignment [62], [63]. These methods show
impressive results, but often struggle with fast frame-to-frame motion given their use
of hand-crafted correspondences. Bozic et al. [13] introduced an annotated dataset of
non-rigid motions that allows to train data-driven non-rigid reconstruction methods with
learned correspondences [13], [14], [21]. While learned correspondences improve tracking
performance, the approaches are still inherently limited by the employed frame-to-frame
tracking paradigm, i.e., tracking errors accumulate over time, and if tracking is lost it
is unable to recover. Tracking robustness can also be improved without any learned
priors by using multi-view input data [129], [130] (setups with more than 50 cameras)
and high-speed cameras [67] (8 cameras at 200 frames per second (FPS)). In contrast
to these frame-to-frame tracking approaches, there are methods that focus on global
non-rigid optimization [65], [86], [131], [132]; however, these methods either assume
ground-truth optical flow [132], or they share the same drawbacks of the aforementioned
frame-to-frame tracking approaches [65], [86], [131], and thus have difficulties handling
fast deformable motion.

Deformation Graphs. State-of-the-art non-rigid reconstruction methods often model
deformations with a sparse deformation graph, following the Embedded Deformation [24]
formulation. Deformation graphs offer a robust alternative to dense motion estimation
with optical flow or scene flow methods, since they can estimate plausible motion even
in partially occluded shape parts, when combined with motion regularization such as

Chapter 5. Neural Deformation Graphs 75



Part II. Non-rigid Reconstruction using Data-driven Priors

ARAP [25]. Existing non-rigid reconstruction approaches build the deformation graph
incrementally, i.e., frame-by-frame, which can lead to unstable graph configurations in
the case of tracking errors. In our approach, we predict a globally consistent deformation
graph that can represent motion in all frames of the sequence, while being robust w.r.t.
tracking errors present in challenging frames.

Sparse motion representations are common for human deformation modeling as well:
the human skeletons used in [6], [8] are also instances of deformation graphs. Some
works have tried to extend human skeletons to more general objects, but with limited
success. In [133], a fixed generic skeleton is fitted to different object meshes, resulting in
human-like re-animation of characters, but not general enough to be able to represent
all degrees of freedom of general shapes. Fixed hierarchical deformation graphs are
used for differentiable non-rigid tracking in [134], but a pre-computed graph template is
required, with fixed connectivity on different coarseness levels. Thus, it is only applicable
to specific object types (e.g., used for hand tracking). Data-driven skeleton prediction
has been introduced in [135], but it requires a dataset of manually designed skeletons as
supervision, which is hard to obtain for general objects. Our method, instead, estimates
both deformation graph nodes and connectivity of general deformable objects in a self-
supervised manner.

Implicit Surface Representation. Representing surface geometry implicitly with a signed
distance field (SDF) has been extensively used in the non-rigid reconstruction commu-
nity. An efficient algorithm for SDF grid construction from range images has been
presented in [37] and extended to support non-rigid deformations in [4]. These methods
rely on a discretized 3D grid to store the SDF, which can cause loss of detail, since grid
resolution is limited by available memory. A promising direction is to not use discretized
grids at all, but instead represent the SDF function continuously using a multi-layer per-
ceptron (MLP), as introduced in [40], [41], [48]. An implicit surface representation is
used in [136] for accurate human reconstruction, where the SDF is estimated in a canoni-
cal T-pose space. Since there exist no methods for estimation of canonical T-pose spaces
for general non-rigid shapes, we instead base our method on the approach of Deng et
al. [44]. Assuming ground-truth dense body and skeleton tracking, they represent the
human body with multiple MLPs, one for each bone and in its own canonical space,
centered around the bone, therefore eliminating the need for a T-pose space. In our
general reconstruction approach, we estimate a deformation graph via self-supervision,
and append an MLP to each deformation node to represent the surface of the observed
object.

While most implicit reconstruction approaches do not produce consistent tracking,
methods such as [52], [53], [137] reconstruct objects in a patch-based manner and em-
pirically observe consistency of patches across different deformations. We compare our
method, which leverages explicit consistency constraints, to these approaches to evaluate
such implicit patch consistency.
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Figure 5.2: Method overview. A Neural Deformation Graph encodes a 643 SDF grid to
a graph embedding with graph node positions V, rotations R and importance
weights W. To compute an SDF value for a sample point (X,Y, Z) ∈ R3, the
point is transformed to local coordinates around each node, and passed through
locally embedded implicit functions that are represented as MLPs; the global SDF
value is computed by interpolating the local MLP predictions using the node radii
r and importance weights W. For graph regularization, a set of affinity matrices
Ai ∈ RN×N and a node-to-node distance matrixD ∈ RN×N are globally optimized.

5.3 Method

Given a sequence of signed distance fields observing a non-rigidly deforming surface, our
method estimates the dense deformable motion in the sequence as well as reconstructs
the geometry of the observed shape. Specifically, we apply self-supervised learning on
the sequence that we want to reconstruct. A convolutional neural network that takes
a signed distance field (SDF) as input is trained to predict a consistent deformation
graph. We call this neural network Neural Deformation Graph, as it implicitly stores
the deformation graphs of each frame. Using the predicted graph node positions and
orientations, we learn implicit functions to represent the shape of each graph node and,
thus, the entire shape of the object. The implicit functions are represented as a multi-
layer perceptron (MLP). These MLPs take a 3D point centered around the node position
as input and predict its signed distance value, defining the local geometry around the
node. Warping all node MLPs to every time step and interpolating their local part
reconstructions results in an accurate implicit deformable shape reconstruction without
the need for an explicit canonical pose. In addition to the sample point locations, the
MLPs are conditioned on the predicted graph positions, which enables reconstruction
of pose-dependent geometry detail. Using Marching Cubes [18], the geometry can be
extracted as a mesh at every time step, with dense correspondences estimated throughout
the entire sequence.
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5.3.1 Neural Deformation Graphs

A deformation graph consists of graph nodes and graph edges. We represent the graph
nodes V of each frame of the sequence implicitly by a neural network (Neural Deformation
Graph). The graph connectivity is explicitly stored for the entire sequence as an affinity
matrix E ∈ RN×N (N = |V|). A node v ∈ V is characterized by its 3D position v ∈ R3,
rotation R ∈ R3×3, importance weight w ∈ R (describing importance of the node,
explained below), radius r ∈ R (describing the spatial influence of the node), and a
local implicit shape function f . We denote the set of node positions V = {v}, rotations
R = {R}, importance weights W = {w}, radii r = {r}, and shape functions f = {f},
with V = (V,R,W, r, f).

To generate the signed distance fields needed for our method, we assume four cali-
brated cameras. The depth maps at each time step k are back-projected into a common
coordinate system and converted into a signed distance field Sk of dimension 643 using
static volumetric reconstruction [138]. Note that due to occlusions this representation is
partial, thus only an approximate signed distance field is used for our deformation graph
prediction. Based on this input, we estimate (Vk,Rk,Wk) using a Neural Deformation
Graph (NDG) which is based on a 3D convolutional neural network:

(Vk,Rk,Wk) = NDG(Sk)

The radii r of the graph nodes as well as the graph node affinities E are jointly optimized
over the entire input sequence. In addition to the affinity matrix, we also store the aver-
age edge lengths (node-to-node distances) D ∈ RN×N , which are used for regularization.
For every graph node, we also optimize for a local MLP which is used to represent the
surface of the object (see Sec. 5.3.3).

We define a fixed number of graph nodes (N = 100) in our experiments; note that this
is an upper bound on the effective number of nodes, since the importance weights allow
eliminating the effect of redundant nodes, making our method applicable to shapes of
different size and structure complexity. To achieve a consistent graph node prediction
via self-supervised training, we employ the following constraints for each time-step k.

Graph coverage loss. A deformation graph should cover the entire object to ensure
that every deformable part can be represented while simultaneously enforcing that free
space is not covered. To this end, we employ a loss that encourages the coverage of the
shape by the node centers (w.r.t. their radii). We define the influence of a node (with
position v, radius r > 0, and importance weight w > 0) on a point x ∈ R3 using a
weighted Gaussian function:

G(x,v, r, w) = w · exp
(
−||x− v||22

r2

)

The coverage of a point x ∈ R3 is computed by summing the corresponding contributions
of all nodes, and applying a sigmoid to encourage a fast transition from covered (where
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coverage value is 1) to free space (where coverage value should be 0), enabling more
accurate surface coverage:

C(x,Vk, r,Wk) = σ

(
s

((∑

v,r,w

G(x,v, r, w)
)
− d
))

We empirically set d = 0.07 and s = 100.0. To compute the coverage loss, we sample
points Pun uniformly in the shape’s bounding box and points Pns near the surface region.
Points are assigned coverage value of c = 0 if they are visible in at least one of the
cameras, otherwise they are assigned c = 1. The coverage loss then compares predicted
coverage of these point samples with the pre-computed coverage using an ℓ2 loss:

Lcoverage = λun
∑

(x,c)∈Pun

||C(x,Vk, r,Wk)− c||22 + λns
∑

(x,c)∈Pns

||C(x,Vk, r,Wk)− c||22

Node interior loss. In addition to the graph coverage loss, we require the node positions
to be predicted inside the shape. If any node’s position v is predicted outside the
observed surface Sk, i.e., in the SDF region with positive signed distance value, we
penalize it to encourage the node’s position to be inside the surface:

Linterior =
∑

v∈Vk

max (interp(Sk,v), 0)

Here interp(Sk,v) is the trilinear interpolation of Sk at v.

Affinity consistency loss. We also optimize for a global affinity matrix E = {eij | i ∈
[1, N ], j ∈ [1, N ]} representing node-to-node affinities across the entire input sequence.
We compute node-to-node Euclidean distances ||vki − vkj ||2 at each frame k, and weight
them by connectivity weights eij ; this should remain consistent over the whole sequence
(relative loss, preserving edge length) and relatively small (absolute loss, preferring close-
by connections). To ensure global distance consistency, we additionally optimize over
average node-to-node distances dij , resulting in the affinity loss:

Laffinity = λrel
∑

i ̸=j
eij

∣∣∣d2ij − ||vki − vkj ||22
∣∣∣
1
+ λabs

∑

i ̸=j
eij ||vki − vkj ||22

Neighbor diversity loss. We enforce a sparse connectivity of the graph. Specifically,
each node can have up to K neighbors (K = 2 in our setting); we use a (soft) loss to
encourage these neighbors to be different. To achieve this, we optimize over a set of
matrices A1, . . . ,AK ∈ RN×N , and construct E ∈ RN×N as:

E =
1

K

K∑

i=1

softmax(Ai)
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We use softmax over the rows of matrix Ai to guarantee all affinity elements of a node
to be positive and add up to 1. To enforce unique graph neighbors, a neighbor diversity
loss is employed, encouraging different matrices Ai to produce different neighbors:

Lsparsity =
∑

l ̸=m
||softmax(Al)⊙ softmax(Am)||2F

We use ⊙ to denote the element-wise product.

5.3.2 Global Deformation Optimization

We compute deformation between any pair of frames by interpolating the nodes’ relative
motions (translations and rotations), weighted by their influences G. For a source frame
s and target frame t, the warping of point x ∈ R3 from frame s to frame t is defined as:

Qs→t(x) =
N∑

i=1

G(x,vsi , ri, wsi )(Rt
i(R

s
i )

T(x− vsi ) + vti)

We denoted parameters at the source frame with (·)s and at the target frame with (·)t.
We use the Embedded Deformation formulation [24] to parameterize frame-to-frame
deformation, but instead of fixed-radius skinning we employ node influence G as the
skinning weight, which enables different skinning effects for every node as well as frame-
adaptive skinning, i.e., skinning can change depending on the deformation. To ensure
globally consistent deformation, we employ a per-frame viewpoint consistency loss and
a surface consistency loss.

Viewpoint consistency loss. Since input observations may see very different views, we
enforce a viewpoint consistency loss for consistent graph node predictions across varying
views. To this end, for each frame k, the rotated 3D input Sk should produce consistent
graph node positions Vk, rotations Rk and importance weights Wk. In our experiments,
we only consider view rotations around the y-axis, since the camera setup is arranged in
the x-z plane. In each batch, we sample two random angles α and β for every sample,
and compute rotated inputs πα(Sk) and πβ(Sk) by trilinear re-sampling of input SDF
grid Sk using rotated grid indices. Viewpoint consistency is then measured by:

Lvc = ||π−1
α NDG(πα(Sk))− π−1

β NDG(πβ(Sk))||22

where the function π−1
ϕ corrects for the input rotation of angle ϕ: π−1

ϕ (Vk,Rk,Wk) =

(RT
ϕVk, R

T
ϕRk,Wk).

Surface consistency loss. Surface points from a source frame s should, after deforma-
tion to a target frame t, align well with the target frame’s SDF grid St. We sample
surface points Ps in the source frame and warp them to the target frame using the
predicted deformation, to trilinearly interpolate the target grid St, encouraging surface
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points to be warped to near zero (surface) SDF values:

Lsc =
∑

x∈Ps

(interp(St,Qs→t(x)))
2

This consistency loss is computed between pairs of samples in the batch, with uniformly
sampled batch samples.

5.3.3 Implicit Surface Reconstruction

We represent the surface of the object as an implicit function. Specifically, each graph
node i defines local geometry over the influence of that node, with an implicit function
fi, represented by an MLP. This MLP takes a location in the local space as input and
outputs an SDF value. Any point x ∈ R3 in the current frame k can be transformed to
the local coordinate system of node i as Q−1

k,i (x) = Penc((R
k
i )

T(x−vki )). Penc : R3 → RF
denotes positional encoding that transforms 3D local coordinates to a high-dimensional
frequency domain (in our case F = 30), as presented in [139]. Inspired by Deng et
al. [44], we condition each fi on the predicted input frame’s graph parameters, such
that they can encode pose-specific geometry details. We train a linear layer Πi(·) to
select a sparse pose code (of dimension D = 32) for every fi from the graph predictions
NDG(Sk). Given this input of dimension D + F , we use 8 linear layers with feature
dimension of 32, a leaky ReLU (with negative slope of 0.01) as activation function, and
skip connections between the input and the 6th linear layer.

We compute the full surface reconstruction Sk as an SDF created from interpolat-
ing the SDF output values of each local MLP fi, using the aforementioned skinning
weights and transformations to the current frame by the estimated nodes’ rotations and
translations:

Sk(x) =
N∑

i=1

G(x,vki , ri, wki )fi(Q−1
k,i (x), Πi(NDG(Sk)))

This operation is efficiently implement using group convolutions. During training, we use
the same point samples Pun and Pns as for the graph coverage loss, sampled uniformly
and near the surface, but instead of the 0/1 coverage values we use their approximate
SDF values. We then optimize for {fi} using the SDF reconstruction loss:

Lrecon =
∑

(x,sdf)∈Pun∪Pns

|Sk(x)− sdf|1

5.3.4 Training Details

We use the Adam solver [12] with momentum of 0.9 to optimize the complete loss:

L = Lcoverage + λinteriorLinterior + Laffinity+

λsparsityLsparsity + λvcLvc + λscLsc + λreconLrecon
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Figure 5.3: Point sample visualization. We visualize the uniform samples Pun (green), near-
surface samples Pns (red) and the surface samples Ps (blue) for a slice of samples
with z ∈ [−0.01, 0.01] at one frame of the character sequence shown in the Fig. 5.1.

Our method is trained in two stages. We initially train the CNN encoder with all losses
except the reconstruction loss, and afterwards train the multi-MLP network using only
the reconstruction loss, with the CNN encoder frozen.

CNN encoder optimization. The CNN encoder is trained for 500k iterations with a
learning rate of 5e−5 and a batch size of 16; we balance the losses with λun = 1.0,
λns = 0.1, λinterior = 1.0, λrel = 0.1, λabs = 0.1, λsparsity = 1e−8, λvc = (10.0, 1.0, 1e−4)
(for graph node’s position, weight and rotation, respectively) and λsc = 1e−6. Every
50k iterations we increase the loss weights λrel, λabs, λsparsity, λsc by a factor of 10, up
to maximum weights λmax

rel = 10000.0, λmax
abs = 1.0, λmax

sparsity = 1e−3 and λmax
sc = 1000.0.

Note, when interpolating the SDF grid for the node interior loss, in the case that a
graph node’s position is predicted outside the grid, we define the out-of-grid loss by an
ℓ2-distance to the nearest bounding box corner. This encourages graph node positions
to be always predicted inside the shape’s bounding box.

Multi-MLP network optimization. The multi-MLP network is trained for 500k itera-
tions with a learning rate of 5e−4 and a batch size of 4, only based on the reconstruction
loss with λrecon = 1.0. We use a truncation of 0.1 (in normalized units of the object in
the unit cube) for the signed distance field used for the reconstruction loss.
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Figure 5.4: Qualitative comparison on synthetic sequences. We qualitatively compare
our method to the baseline methods on synthetic data. Each point is given a
color value w.r.t. its location in the bounding box of the first frame. With perfect
tracking and reconstruction, a specific point on the surface will have the same
color throughout the entire sequence, while errors in tracking result in changing
surface colors. Our approach outperforms state of the art in both reconstruction
and deformation tracking quality.

Point sampling. We visualize an example of point samples in Fig. 5.3. When training
the neural deformation graph, we use |Pun| = 3000 uniform point samples, |Pns| = 3000
near surface point samples and |Ps| = 3000 surface point samples, sampled randomly
for each batch from 100k pre-processed point samples. For the graph coverage loss, we
apply an additional weight of 10.0 for interior point samples (determined by the SDF
sign). To train our multi-MLP network that implicitly represents the surface, we use
|Pun| = 1500 uniform point samples and |Pns| = 1500 near surface point samples. Note
that this reduced set of samples is applied to satisfy memory limits of our used GPU
(Nvidia Geforce 2080Ti).

5.4 Results

To evaluate our proposed approach, we conducted a series of experiments on real and
synthetic recordings where ground truth data is available.

Evaluation on synthetic data. In order to quantitatively and qualitatively evaluate
our method, we make use of synthetic human-like and character sequences from the
DeformingThings4D dataset [141]. To mimic our real data capture setup, we render
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Method Chamfer EPE3D

SIF [52] 1.12 8.56
LDIF [53] 2.41 10.40
OccupancyFlow [140] 53.83 16.29
Multiview DynamicFusion [4] 2.19 3.06
MV DF [4] + FlowNet3D [113] 1.93 2.55
Robust L0 Non-rigid Tracking [103] 2.31 2.50

Ours: GRAPH 0.50 8.93
Ours: GRAPH + AO 0.46 8.03
Ours: GRAPH + AO + VC 0.44 4.12

Ours: GRAPH + AO + VC + SC 0.40 1.16

Table 5.1: Quantitative comparison. We show quantitative comparisons with state-of-the-
art approaches, evaluating geometry using chamfer distance (×10−4), and deforma-
tion using EPE3D (×10−2). We also include an ablation study of different com-
ponents of our method: GRAPH = coverage and interior losses, AO = affinity
optimization with affinity consistency and sparsity, VC = viewpoint consistency,
SC = surface consistency.

4 fixed depth views for every frame of synthetic animation, and generate SDF grids
from these 4 views. Quantitative evaluation is executed on three sequences, including
human, character and bear motion, as shown in Fig. 5.4. The geometry reconstruction
is evaluated using L2 Chamfer distance, which computes average squared bi-directional
point-to-point distance between reconstructed and ground truth geometry for every time
step, thus evaluating accuracy and completeness of geometry. For deformation evalua-
tion, we uniformly sample 10 keyframes per sequence, and compute dense deformation
from each of these keyframes to any other frame, measuring average L2 End-Point-
Error (EPE3D) between estimated and ground truth motion. The depth data of every
sequence is normalized such that the largest bounding box side length is equal to 1.0.
All numbers are listed w.r.t. this unit cube, thus, being independent to the scale of the
objects.

In Tab. 5.1 we quantitatively compare our approach to the state-of-the-art network-
based reconstruction methods SIF [52], LDIF [53] and OccupancyFlow [140], as well as
to the non-rigid reconstruction approach DynamicFusion [4], which we extend to the
multi-view domain, and the Robust L0 Non-rigid Tracking method [103]. Among the
baselines the best reconstruction performance (lower Chamfer distance) is achieved by
SIF [52], while the Robust L0 Non-rigid Tracking method [103] obtains better deforma-
tion tracking performance (lower EPE3D). Our approach outperforms all methods on
both reconstruction and deformation tracking metrics, achieving 64% better reconstruc-
tion and 54% better deformation tracking results. The improvement is also clearly visible
in the qualitative comparisons shown in Fig. 5.4. The methods SIF [52] and LDIF [53]
produce less accurate geometry reconstruction with tracking failures under larger defor-
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Figure 5.5: Qualitative comparison on real sequences. We show qualitative comparisons
of our method with multi-view DynamicFusion [65] on real sequences captured by
four Kinect Azure sensors. Colors represent corresponding locations in the first
frame of the sequence to visualize the tracking quality and consistency.

mations (e.g., flipped legs in the human sequence). We trained Occupancy Flow [140]
on our sequences, which are noticeably longer (about 500 frames) than the sequences
the authors used (up to 50 frames), resulting in worse performance. The multi-view
DynamicFusion [4] baseline is a specialized framework for both non-rigid tracking and
reconstruction, with coarse-to-fine multi-frame alignment using depth iterative closest
point (ICP) correspondences and non-rigid volumetric fusion. We use data-driven corre-
spondences from the off-the-shelf flow estimator FlowNet3D [113] to further improve the
method. However, it suffers from incomplete geometry because of the incremental graph
construction and surface integration, and can also not recover from tracking failures. In
contrast, our method is robust in the case of large deformation and produces complete
and accurate geometry reconstruction.

Evaluation on real data. Our real data capture setup consists of 4 Kinect Azure sen-
sors, as shown in Fig. 5.6. All four sensors are connected to the same computer via
USB-C cables and are hardware-synced using a daisy-chain configuration (connecting
the trigger of the master camera with the other 3 cameras in a chain). To avoid interfer-
ence between depth sensors, we set a delay of 160 microseconds between different depth
camera captures. The cameras are calibrated with a checkerboard using OpenCV [142]

Chapter 5. Neural Deformation Graphs 85



Part II. Non-rigid Reconstruction using Data-driven Priors

and an additional refinement procedure based on ICP [143]. Before recording an actual
sequence, we record the background to compute the floor plane using PCA. During cap-
ture, we filter out floor points and background points, i.e., all points outside of a cylinder
with diameter 1.8 m and height 2.5 m. We use the wide-field-of-view depth capture set-
ting with a resolution of 1024 × 1024 pixels, at the highest available frame-rate of 15
FPS for this resolution. In Fig. 5.5, we show a comparison between the multi-view Dy-
namicFusion approach [4] and ours. Our approach achieves considerably more accurate
deformation tracking (color is retrieved from the first frame) while also producing more
complete and accurate geometry reconstruction. More qualitative results are shown in
the accompanying video. We also visualize some examples of optimized neural deforma-
tion graphs in Fig. 5.8.

Ablation study of network components. To evaluate specific parts of our method,
we employ an ablation study. Specifically, we analyzed the performance of our method
by performing optimization without using certain losses: without affinity related losses
(affinity consistency and sparsity losses), viewpoint consistency loss and surface con-
sistency loss. As shown in Tab. 5.1, using these additional losses vastly improves the
method’s performance. Especially, it results in a much lower EPE3D error, and, thus, in
globally consistent tracking performance. Our approach uses a pose-conditioned multi-
MLP formulation for the prediction of an implicit surface at every frame, which helps to
refine local geometry details that are not captured properly by the graph deformation
– Chamfer metric increases from 0.40 to 0.46 without pose conditioning. The benefits
of pose conditioning over not using any pose codes can be observed also qualitatively in
Fig. 5.7.

Runtime analysis. Our approach is trained independently (from scratch) for every
character sequence, optimizing our neural deformation graph to best fit the observed
sequence. For our unoptimized implementation, the optimization takes about 2 days
with a single Nvidia GeForce 2080Ti. The dense deformation field between any two
frames in the sequence is computed for (near) surface points by estimating skinning
weights w.r.t. all nodes and interpolating the frame-to-frame motion of the nodes, which
takes 0.02s for about 30k points. The mesh is extracted for every frame by sampling
1283 grid sample points, predicting their SDF values and executing Marching Cubes on
the resulting SDF grid, which takes about 3.70s per-frame.

Limitations and future work. Using our globally consistent Neural Deformation Graph,
we show state-of-the-art tracking and reconstruction quality. Currently, our quality is
limited by the input, i.e., a 643 SDF grid. Sparse 3D convolutions [144] could be applied
to cope with higher resolutions. Our approach focuses on the tracking and reconstruction
of the geometry, and not the texture. A texture on top of the tracked geometry could be
estimated (similar to the color scheme that we show in the results figures) and additional
losses based on this texture could be employed. In an over-crowded setting, with many
occlusions (e.g. some parts are never observed), or in a single-view setting, the self-
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Figure 5.6: Capture setup. We capture non-rigid motion using 4 Kinect Azure sensors, which
are pre-calibrated and hardware-synced to guarantee spatial and temporal coher-
ence of depth captures. We capture depth images at resolution of 1024 × 1024,
using the highest available frame-rate of 15 FPS.
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Figure 5.7: Influence of pose conditioning. We compare our implicit reconstruction with
pose conditioning (middle) to without pose conditioning (left). Pose conditioning
clearly improves reconstruction performance in regions of very strong deformation.

Figure 5.8: Neural deformation graph examples. We visualize a few examples of neural
deformation graphs, optimized on real sequences (top) and synthetic data (bottom)
using self-supervision.
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supervised formulation might be under-constrained. A data-driven geometry prior could
further improve the robustness of our approach. We believe that there is a potential for
several high-impact follow-up works.

5.5 Conclusion

We introduced Neural Deformation Graph which allows to reconstruct and track non-
rigidly deforming objects in a globally consistent fashion. It is enabled by a neural
network that implicitly stores the deformation graph of the object. The network is
trained with losses on global consistency, resulting in tracking and reconstruction quality
that surpasses the state of the art by more than 60% w.r.t. the respective metrics. We
believe that our global optimization of non-rigid motion will be a stepping stone to learn
data-driven priors in the future.
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6 Learning RGB Reconstruction

Abstract of paper. We introduce TransformerFusion, a transformer-based 3D scene
reconstruction approach. From an input monocular RGB video, the video frames are
processed by a transformer network that fuses the observations into a volumetric feature
grid representing the scene; this feature grid is then decoded into an implicit 3D scene
representation. Key to our approach is the transformer architecture that enables the
network to learn to attend to the most relevant image frames for each 3D location in the
scene, supervised only by the scene reconstruction task. Features are fused in a coarse-
to-fine fashion, storing fine-level features only where needed, requiring lower memory
storage and enabling fusion at interactive rates. The feature grid is then decoded to a
higher-resolution scene reconstruction, using an MLP-based surface occupancy predic-
tion from interpolated coarse-to-fine 3D features. Our approach results in an accurate
surface reconstruction, outperforming state-of-the-art multi-view stereo depth estima-
tion methods, fully-convolutional 3D reconstruction approaches, and approaches using
LSTM- or GRU-based recurrent networks for video sequence fusion.

6.1 Introduction

Monocular 3D reconstruction is a core task in 3D computer vision, aiming to recon-
struct a complete and accurate 3D geometry of an object or an environment from only
2D observations captured by an RGB camera. A geometric understanding is key to
applications such as robotic or autonomous vehicle navigation or interaction, as well as
model creation and scene editing for augmented and virtual reality. In addition, geomet-
ric scene reconstructions form the basis for 3D scene understanding, supporting tasks
such as 3D object detection, semantic, and instance segmentation [145]–[152].

While state-of-the-art SLAM systems [153], [154] achieve robust and scale-accurate
camera tracking leveraging both visual and inertial measurements, dense and complete
3D reconstruction of large-scale environments from monocular video remains a very chal-
lenging problem – particularly for interactive settings. Simultaneously, notable progress
has been made on multi-view depth estimation, estimating depth from pairs of images
by averaging features extracted from the images in a feature cost volume [57]–[59], [61],
[155]. Unfortunately, averaging features across a full video sequence can lead to equal-
weight treatment of each individual frame, despite some frames possibly containing less
information in various regions (e.g., from motion blur, rolling shutter artifacts, very
glancing or partial views of objects), making high-fidelity scene reconstruction challeng-
ing.
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Figure 6.1: TransformerFusion. We present an online scene reconstruction method that
takes a monocular RGB video as input. The features extracted from each observed
image are fused incrementally with a transformer architecture. This fusion ap-
proach learns to attend to the most relevant image frames for each 3D location (see
view attention color maps of the most relevant frame) achieving state-of-the-art
reconstruction results.

Inspired by the recent advances in natural language processing (NLP) that leverage
transformer-based models for sequence to sequence modelling [156]–[158], we propose a
transformer-based method that fuses a sequence of RGB input frames into a 3D repre-
sentation of a scene at interactive rates. Key to our approach is a learned feature fusion
of the video frames using a transformer-based architecture, which learns to attend to
the most informative image features to reconstruct a local 3D region of the scene. A
new observed RGB frame is encoded into a 2D feature map, and unprojected into a 3D
volume, where our transformer learns a fused 3D feature for each location in the 3D
volume from the image view features. This enables extraction of the most informative
view features for each location in the 3D scene. The 3D features are fused in coarse-to-
fine fashion, providing both improved reconstruction performance as well as interactive
runtime. These features are then decoded into high-resolution scene geometry with an
MLP-based surface occupancy prediction.

In summary, our main contributions to achieve robust and accurate scene reconstruc-
tions are:

• Learned multi-view feature fusion in the temporal domain using a transformer
network that attends to only the most informative features of the image views for
reconstructing each location in a scene.

• A coarse-to-fine hierarchy of our transformer-based feature fusion that enables an
online reconstruction approach running at interactive frame-rates.
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6.2 Related Work

Multi-view depth estimation. Estimating depth from multi-view image observations
has been long-studied in computer vision. COLMAP [1] introduced a patch matching
based approach which achieves impressive accuracy and remains established as one of
the most popular methods for multi-view stereo. While COLMAP offers robust depth
estimation for distinctive features in images, the patch matching struggles to densely
reconstruct areas without many distinctive color features, such as floor and walls. Re-
cently, learning-based approaches that build data-driven priors from large-scale datasets
have improved depth estimation in these challenging scenarios. Some proposed methods
rely only on a 2D network with multiple images concatenated as input [57]. Several
recent approaches instead build a shared 3D feature cost volume in reference camera
space using feature averaging [58]–[61], [159]. These approaches estimate the reference
frame’s depth within a local window of frames, but some also propagate information
from previously estimated depth maps by using probabilistic filtering [159], a Gaussian
process [58], or an LSTM bottleneck layer [61]. Such multi-view depth estimation ap-
proaches predict single-view depth maps, which must be fused together to construct a
geometric 3D representation of the observed scene.

3D reconstruction from monocular RGB input. Multi-view depth estimation ap-
proaches can be combined with depth fusion approaches, such as volumetric fusion [37],
to obtain a volumetric reconstruction of the observed scene. MonoFusion [160] is one of
the first methods using depth estimate from a real-time variant of PatchMatch stereo [161].
However, fusing noisy depth estimates causes artifacts in the 3D reconstruction, which
lead to the development of recent approaches that directly predict the 3D surface recon-
struction instead of per-frame depth estimates. One of the first approaches to predict
3D surface occupancy from two input RGB images is SurfaceNet [162], which converts
volumetrically averaged colors into 3D surface occupancies using a 3D convolutional net-
work. Atlas [163] extends this approach to a multi-view setting, while also leveraging
learned features instead of colors. Recently, NeuralRecon [55] proposed a real-time 3D
reconstruction framework, adding GRU units distributed in 3D to fuse reconstructions
from different local windows of frames. Our approach also fuses together learned features
from RGB frame input in an online fashion, but our transformer-based multi-view feature
fusion enables relying only on the most informative features from the observed frames
for a particular spatial location in the reconstructed scene, producing more accurate 3D
reconstructions.

Transformers in computer vision. The transformer architecture [156] has achieved
profound impact in many computer vision tasks in addition to its natural language
processing origins. For a detailed survey, we refer the reader to [164]. In computer vision,
transformers have been leveraged successfully for tasks such as object detection [165],
video classification [166], image classification [167], image generation [168], and human
reconstruction [169]. In this work, we propose transformer-based feature fusion for 3D
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scene reconstruction from a monocular video. Given a sequence of observed RGB frames,
our approach learns to attend to the most informative features from each image to predict
a dense occupancy field.

6.3 End-to-end 3D Reconstruction using Transformers

Given a set of N RGB images Ii ∈ RW×H×3 of a scene with corresponding camera
intrinsic parameters Ki ∈ R3×3 and extrinsic poses Pi ∈ R4×4, our method reconstructs
the scene geometry by predicting occupancy values o ∈ [0, 1] for every 3D point in the
scene. Fig. 6.2 shows an overview of our approach. Each input image Ii is processed
by a 2D convolutional encoder Θ, extracting coarse and fine image features (Φci and Φ

f
i ,

respectively):

Θ : Ii ∈ RW×H×3 7→ (Φci , Φ
f
i )

From these 2D image features, we construct a 3D feature grid in world space. To this
end, we regularly sample grid points in 3D at a coarse resolution of every vc = 30 cm
and a fine resolution of vf = 10 cm. For these coarse and fine sample points, we query
corresponding 2D features in all N images and predict fused coarse ψc and fine 3D
features ψf using transformer networks [156]:

Tc : (Φc1, . . . , ΦcN ) 7→ (ψc, wc)

Tf : (Φf1 , . . . , Φ
f
N ) 7→ (ψf , wf )

Note that we also store the intermediate attention weights wc and wf of the first trans-
former layers for efficient view selection, which is explained in Sec. 6.3.4.

To further improve the features in the 3D spatial domain, we apply 3D convolutional
networks Cc and Cf , at the coarse and fine level, respectively:

Cc : {ψc}C×C×C 7→ {ψ̃c}C×C×C

Cf : {(ψ̃c, ψf )}F×F×F 7→ {ψ̃f}F×F×F

Finally, to predict the scene geometry occupancy for a point p ∈ R3, the coarse ψ̃c
and fine features ψ̃f are trilinearly interpolated and a multi-layer perceptron S maps
these features to occupancies:

S : (ψ̃c, ψ̃f ) 7→ o ∈ [0, 1]

This extraction of surface occupancies is inspired by convolutional occupancy networks
[170] and IFNets [41]. From this occupancy field we extract a surface mesh with Marching
cubes [18]. Note that in addition to surface occupancy, we also predict occupancy masks
for near-surface locations at the coarse and fine levels. These masks are used for coarse-
to-fine surface filtering (see Sec. 6.3.2), which improves reconstruction performance with
a focus on the surface geometry prediction and enables interactive runtime.
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Figure 6.2: Method overview. Given multiple input images, we compute coarse and fine level
features. Using a transformer architecture, we separately fuse these coarse and fine
features in a voxel grid. To improve the spatial features, we use a refinement
network for both the coarse and the fine features. From these feature grids, we
extract an occupancy field using a lightweight MLP.

We train our approach in end-to-end fashion by supervising the surface occupancy
predictions using the following loss:

L = Lc + Lf + Lo,

where Lc and Lf denote binary cross-entropy (BCE) losses on occupancy mask predic-
tions for near-surface locations at the coarse and fine levels, respectively (see Sec. 6.3.2),
and Lo denotes a BCE loss for surface occupancy prediction (see Sec. 6.3.3).

6.3.1 Learning Temporal Feature Fusion via Transformers

For a spatial location p ∈ R3 in the scene reconstruction, we learn to fuse coarse ψc

and fine level features ψf from the N coarse and fine feature images (Φci and Φ
f
i , respec-

tively), which are extracted by the 2D encoder Θ. Specifically, we train two instances
of a transformer model, one for fusing coarse-level features ψc and one for fusing fine-
level features ψf . Both transformers Tc and Tf share the same architecture. Thus, for
simplicity, we omit the coarse and fine notation in the following.

Our transformer model T is independently applied to each sample point in world
space. For a point p, the transformer network takes a series of 2D features ϕi as input
that are bilinearly sampled from the feature maps Φi at the corresponding projective
image location. The projective image location is computed via a full-perspective pro-
jection Πi(p) = π(Ki(Rip + ti)), assuming known camera intrinsics Ki and extrinsics
Pi = (Ri, ti). To inform the transformer about invalid features (i.e., a sample point is
projected outside an image), we also provide the pixel validity vi ∈ {0, 1} as input. In
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addition to these 2D features ϕi, we concatenate the projected depth di = (Rip+ ti)z,
and the viewing ray ri = (p− ci)/||p− ci||2 to the input (ci ∈ R3 denoting the camera
center of view i). These input features are converted to an embedding vector θi ∈ RD us-
ing a linear layer θi = FCN(ϕi, di, vi, ri), before feeding it into the transformer network
that then predicts a fused feature ψ ∈ RD:

T : (θ1, . . . , θN ) 7→ (ψ,w)

As described above, w denotes the attention values of the initial attention layer, which
are used for view selection to speed-up fusion (see Sec. 6.3.4).

Transformer architecture. We followed [167] when designing the transformer architec-
ture T . It consists of 8 modules of feed-forward and attention layers, using multi-head
attention with 4 attention heads and embedding dimension D = 256. Feed-forward
layers process the temporal inputs independently, and contain ReLU activation, linear
layers with residual connection, and layer norm. The model returns both fused feature
ψ ∈ RD and attention weights w ∈ RN over all temporal inputs from the initial attention
layer that are later used for selecting which views to maintain over longer sequences of
input image views.

6.3.2 Spatial Feature Refinement

While the transformer network fuses 2D observations in the temporal domain, we addi-
tionally imbue explicit spatial reasoning by applying a 3D CNN to spatially refine the
fused features {ψc}C×C×C and {ψf}F×F×F that are computed by the transformers Tc
and Tf on the coarse and fine grid, respectively. The coarse features {ψc}C×C×C are
refined by a 3D CNN Cc consisting of 3 residual blocks that maintain the same spatial
resolution and produce refined features {ψ̃c}C×C×C . These features are upsampled to
a fine grid resolution using nearest-neighbor upsampling, and concatenated with fused
features at fine level {ψf}F×F×F . A fine-level 3D CNN Cf is then applied to the con-
catenated features, resulting in refined fine features {ψ̃f}F×F×F . Both, coarse ψ̃c and
fine features ψ̃f are used for surface occupancy prediction.

Coarse-to-fine surface filtering. The refined features are also used to predict occu-
pancy masks for near-surface locations at both coarse and fine levels, thus, filtering out
free-space regions and sparsifying the volume, such that the higher-resolution and com-
putationally expensive fine-scale surface extraction is performed only in regions close to
the surface. To achieve this, additional 3D CNN layersMc andMf are applied to the
refined features, outputting a near-surface mask mc,mf ∈ [0, 1] for every grid point:

Mc : {ψ̃c}C×C×C 7→ {mc}C×C×C

Mf : {ψ̃f}F×F×F 7→ {mf}F×F×F
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Only spatial regions where both mc and mf are larger than 0.5, i.e., close to the surface,
are processed further to compute the final surface reconstruction; other regions are
determined to be free space. This improves the overall reconstruction performance by
focusing the capacity of the surface prediction network to close-to-the-surface regions
and enables a significant runtime speed-up.
Intermediate supervision of near-surface masks mc and mf is employed using masks

mc
gt and mf

gt generated from the ground truth scene reconstruction, denoting the grid
point as near-surface if there exists ground truth surface in the radius of vc or vf from

the point. Binary cross entropy losses Lc = BCE(mc,mc
gt) and Lf = BCE(mf ,mf

gt) are
applied.

6.3.3 Surface Occupancy Prediction

The final surface reconstruction is predicted by decoding the coarse and fine feature
grids to occupancy values o ∈ [0, 1], with values o ≥ 0.5 representing occupied points
and values o < 0.5 representing free-space points. For a point p ∈ R3, we compute its
feature representation by trilinearly interpolating coarse and fine grid features:

ψcp = Trilinear(p, {ψ̃c}C×C×C)

ψfp = Trilinear(p, {ψ̃f}F×F×F )

We concatenate the interpolated features and predict the point’s occupancy as o =
S(ψcp, ψfp), where S is a multi-layer perceptron (MLP) with 3 modules of feed-forward
layers, containing ReLU activation, linear layer with residual connection, and layer norm.

Surface occupancy supervision. We train on 1.5 × 1.5 × 1.5 m volumetric chunks of
scenes for training efficiency. To supervise the surface occupancy loss, 1k points are
sampled inside the chunk, with 80% of samples drawn from a truncation region at most
10 cm from the surface, and 20% sampled uniformly inside the chunk. Ground truth
occupancy values ogt are computed using the ScanNet RGB-D reconstructions [17]. For
uniform samples it is straightforward to generate unoccupied point samples by sampling
points in free space in front of the visible surface, but it is unknown whether a point
sample is occupied when it lies behind seen surfaces. In order to prevent artifacts behind
walls, we follow the data processing applied in [163] and additionally label point samples
as occupied, if they are sampled in areas where an entire vertical column of voxels is
occluded in the scene. A binary cross entropy loss Lo = BCE(o, ogt) is then applied to
the occupancy predictions o.

6.3.4 View Selection for Online Scene Reconstruction

We aim to consider all N frames as input to our transformer for each 3D location in
a scene; however, this becomes extremely computationally expensive with long videos
or large-scale scenes, which prohibits online scene reconstruction. Instead, we proceed
with the reconstruction incrementally, processing every video frame one-by-one, while
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Figure 6.3: View attention visualization. Visualization of selected camera views with self-
supervised attention weights (lower weights are visualized as blue and higher as
red) for specific 3D locations (highlighted as green) in the scene.
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keeping only a small number K = 16 of measurements for every 3D point. We visualize
this online approach in Fig. 6.1. In Fig. 6.3, we show a 3D reconstruction of a scene from
the test set of the ScanNet dataset [17], and render the camera views that are selected
for a specific 3D location (green point) with corresponding attention weights (color
temperature corresponding to the weight). On the right, we show the corresponding
input images. There are different colors (and, thus, attention weights) for similar views.
We observed that the attention head in the transformer architecture tends to sparsify
the views, assigning a high weight to a single view, and low weights for the rest, as other
similar views tend to provide only redundant information. Such behavior is well-suited
for the task of reconstruction, where multiple different observations are more useful,
especially ones observed under different viewpoints and camera translations. This is
achieved by using multiple attention heads (in our architecture we use 8 heads), each
specializing for a certain view type, and each picking only a single view representative.
This leads to elimination of very similar views that are redundant, and at the same
time encourages high weights for different views that are more useful – additionally, this
enables the attention weights to be very effective for online view selection. It is also a
notable difference to existing works [55], [163], where all views are treated the same (by
averaging over view features).
During training, for efficiency, we use onlyKt random images for each training volume.

At test time, we leverage the attention weights wc and wf of the initial transformer layers
to determine which views to keep in the set of K measurements. Specifically, for a new
RGB frame, we extract its 2D features, and run feature fusion for every coarse and
fine grid point inside the camera frustum. This returns the fused feature and also the
attention weights over all currently accumulated input measurements. Whenever the
maximum number of K measurements is reached, a selection is made by dropping out
a measurement with lowest attention weight before adding new measurements in the
latest frame. This guarantees a low number of input measurements, speeding up fusion
processing times considerably. Furthermore, by using coarse-to-fine filtering, described
in Sec. 6.3.2, we can further accelerate fusion by only considering higher resolution points
in the area near the estimated surface. Together with incremental processing that results
in high performance benefits, our approach performs per-frame feature fusion at about
7 FPS despite an unoptimized implementation.

6.3.5 Training Scheme

Our approach has been implemented using the PyTorch library [22]. To train our model
we use ScanNet dataset [17], an RGB-D dataset of indoor apartments. We follow the
established train-val-test split. For training, we randomly sample 1.5×1.5×1.5 m volume
chunks of the train scenes, sampling less chunks in free space and more samples in areas
with non-structural objects, i.e. not only consisting of floor or walls. This results in
≈ 165k training chunks. For each chunk, we randomly sample Kt = 8 RGB images
among all frames that include the chunk in their camera frustums.
The 2D convolutional encoder Θ for image feature extraction is implemented as a

ResNet-18 [171] network, pre-trained on ImageNet [172]. During training, a batch size
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of 4 chunks is used with an Adam [12] optimizer with β1 = 0.9, β2 = 0.999, ϵ = 10−8

and weight regularization of 10−4. We use a learning rate of 10−4 with 5k warm-up steps
at initialization, and square root learning rate decay afterwards. When computing the
losses of coarse and fine surface filtering predictions, a higher weight of 2.0 is applied
to near-surface voxels, to increase recall and improve overall robustness. Training takes
about 30 hours using an Intel Xeon 6242R Processor and an Nvidia RTX 3090 GPU.

6.4 Experiments

Metrics. To evaluate our monocular scene reconstruction, we use several measures
of reconstruction performance. We evaluate geometric accuracy and completion, with
accuracy measuring the average point-to-point error from predicted to ground truth
vertices, completion measuring the error in the opposite direction, and Chamfer as the
average of accuracy and completion (in cm). To account for possibly different mesh
resolutions among methods, we uniformly sample 200k points over mesh faces of every
reconstructed mesh. Additionally, we threshold these point-to-point errors and compute
precision and recall by computing the ratio of point-to-point matches within distance
≤ 5 cm. Since it is easy to maximize either precision (by predicting only a few but
accurate points) or recall (by over-completing reconstructions with noisy surface), we
found the most reliable metric to be F-score, determined by both precision and recall.

Our ground truth reconstructions are obtained by automated 3D reconstruction [77]
from RGB-D videos of real-world environments and, thus, they are often incomplete
due to unobserved and occluded regions in the scene. To avoid penalizing methods for
reconstructing a more complete scene w.r.t. the available ground truth, we apply an
additional occlusion mask at evaluation.

As most state of the art, particularly for depth estimation, rely on a pre-sampled set of
keyframes (based on sufficient translation or rotation difference between camera poses),
we evaluate all approaches based on sequences of sampled keyframes, using the keyframe
selection of [61].

6.4.1 Comparison with State of the Art

In Tab. 6.1, we compare our approach with state-of-the-art methods. All methods are
trained on the ScanNet dataset [17], using the official train/val/test split. We use the
pre-trained models provided by the authors for MVDepthNet [57], GPMVS [58] and
DPSNet [59] which are fine-tuned on ScanNet. For baselines that predict depth in a
reference camera frame instead of directly reconstructing 3D surface, a volumetric fusion
method [37] is used to fuse different depth maps into a 3D truncated signed distance
field. The single-view depth prediction method RevisitingSI [173] suffers from the more
challenging task formulation without the use of multiple views, leading to noisier depth
predictions and inconsistencies between frames. Multi-view depth estimation methods
leverage the additional view information for improved performance, with the LSTM-
based approach of DeepVideoMVS [61] achieving the best performance among these
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Method Acc ↓ Comp ↓ Cham ↓ Prec ↑ Rec ↑ F-sc ↑
RevisitingSI [173] 14.29 16.19 15.24 0.346 0.293 0.314
MVDepthNet [57] 12.94 8.34 10.64 0.443 0.487 0.460
GPMVS [58] 12.90 8.02 10.46 0.453 0.510 0.477
ESTDepth [60] 12.71 7.54 10.12 0.456 0.542 0.491
DPSNet [59] 11.94 7.58 9.77 0.474 0.519 0.492
DELTAS [155] 11.95 7.46 9.71 0.478 0.533 0.501
DeepVideoMVS [61] 10.68 6.90 8.79 0.541 0.592 0.563
COLMAP [1] 10.22 11.88 11.05 0.509 0.474 0.489
NeuralRecon [55] 5.09 9.13 7.11 0.630 0.612 0.619
Atlas [163] 7.16 7.61 7.38 0.675 0.605 0.636

Ours: w/o TRSF, avg 7.23 9.74 8.48 0.635 0.501 0.557
Ours: w/o TRSF, weight 6.11 11.12 8.61 0.686 0.512 0.583
Ours: w/o TRSF, conv 6.56 9.84 8.20 0.661 0.524 0.582
Ours: w/o spatial ref. 10.46 16.91 13.68 0.479 0.295 0.361
Ours: w/o C2F filter 6.57 7.69 7.13 0.678 0.592 0.631

Ours: w/o proj. depth 8.06 10.02 9.04 0.594 0.475 0.525
Ours: w/o viewing ray 5.71 8.59 7.15 0.706 0.559 0.621

Ours: 30 cm voxel size 7.92 17.33 12.63 0.491 0.258 0.335
Ours: 15 cm voxel size 5.79 9.62 7.71 0.686 0.520 0.589

Ours: 4 images, RND 8.01 10.28 9.15 0.587 0.445 0.502
Ours: 4 images 6.80 8.40 7.60 0.661 0.524 0.581
Ours: 8 images, RND 6.74 8.55 7.64 0.665 0.544 0.596
Ours: 8 images 6.17 7.69 6.93 0.704 0.584 0.636
Ours: 16 images, RND 5.80 8.56 7.18 0.711 0.584 0.638

Ours 5.52 8.27 6.89 0.728 0.600 0.655

Table 6.1: Quantitative comparison. We compare with state-of-the-art methods and per-
form ablations on test set of Scannet dataset [17].
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Figure 6.4: Qualitative comparison to state of the art. We compare scene reconstructions
on test set of ScanNet dataset [17]; note that only RGB input is used by each method
while the ground truth is reconstructed using the input depth.
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Figure 6.5: Qualitative comparison of ablations of our approach. We perform ablations
on test set of ScanNet dataset [17]; note that only RGB input is used by each
method while the ground truth is reconstructed using the input depth.
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approaches. Reconstruction quality further improves with methods that directly predict
the 3D surface geometry, such as NeuralRecon [55] and Atlas [163]. Our transformer-
based feature fusion approach enables more robust reconstruction and outperforms all
existing methods in both Chamfer distance and F-score. The performance improvement
can also be clearly seen in the qualitative comparisons in Fig. 6.4. We provide some
additional qualitative reconstruction results of our approach in Fig. 6.7.

6.4.2 Ablations

To demonstrate the effectiveness of our design choices, we conducted a quantitative
ablation study which is shown in Tab. 6.1 and discussed in the following. We additionally
provide qualitative ablations in Fig. 6.5.

What is the impact of learning to fuse features from different views with trans-
formers? We evaluate the effect of our learned feature fusion by replacing the trans-
former blocks with a multi-layer perceptron (MLP) that processes input image obser-
vations independently. The per-view outputs of this MLP are fused using an average
(w/o TRSF, avg) or using a weighted average with weights predicted by the MLP (w/o
TRSF, weight). Additionally, we implemented convolutional feature fusion, using a 1-
dimensional CNN that processes features in temporal domain and predicts fused features
(w/o TRSF, conv). We find that our transformer-based view fusion effectively learns
to attend to the most informative views for a specific location, resulting in significantly
improved performance over these feature fusion alternatives.

Does spatial feature refinement help reconstruction performance? Spatial feature
refinement is indeed very important for reconstruction quality. It enables the model to
aggregate feature information in spatial domain and produce more spatially consistent
and complete reconstructions, without it (w/o spatial ref.) the geometry completion
(and recall metric) are considerably worse.

How important is coarse-to-fine filtering? Predicting the coarse and fine near-surface
masks provides an additional performance improvement compared to the model without
it (w/o C2F filter), as it allows more focus on surface geometry. Furthermore, this
enables a speed-up of the fusion runtime by a factor of approximately 3.5, resulting in
processing times of 7 FPS (instead of 2 FPS).

Are additional inputs to the transformer networks needed? Existing reconstruction
approaches [55], [163] aggregate 2D features using a simple average operation. In com-
parison, our approach uses a transformer to learn the feature fusion. That makes it
possible to use additional inputs that don’t support a straight-forward average opera-
tion, but could be very informative for the task of multi-view surface reconstruction,
such as projected depth and viewing ray. In Tab. 6.1 we conducted an additional quan-
titative ablation study w.r.t. the input to the transformer networks. Both the projected
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Figure 6.6: Qualitative comparison of ablations on feature voxel size. We replaced the
original voxel size of 10 cm at the fine grid level with 30 cm and 15 cm.

depth as well as the view ray help the transformer to better fuse the features for the
task of 3D reconstruction.

How does voxel size of feature grids influence reconstruction performance? We
compared the reconstruction performance when using different voxel sizes for the feature
grid. We only varied fine feature grid resolution, voxel size of coarse grid was always
30 cm. More specifically, we replaced the voxel size of 10 cm at the fine grid level with
30 cm and 15 cm. In both cases, the performance decreased considerably; i.e., the higher
the resolution, the better the results. That is reflected also in qualitative comparison in
Fig. 6.6.

How many views should be used for feature fusion? In our experiments, we use a
limited number of K = 16 frame observations to inform the feature for every 3D grid
location. We find that these views all contribute, with performance degrading somewhat
with sparser sets of observations (K = 8 or K = 4). The number of frames is limited
because of execution time and memory consumption for bigger scenes.

How effective is frame selection using attention weights? The K frames for each
3D grid feature are selected based on the computed attention weights and are updated
during scanning. To evaluate this frame selection, we compare against a frame selection
scheme that randomly selects frames that observe the 3D location (RND), which results
in a noticeable drop in performance for both Chamfer and F-score. The performance
difference is even larger when using less views for fusion (K = 8 or K = 4), where view
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Task Duration

Image loading / feature extraction 21.50ms
Coarse feature fusion 11.81ms
Near-surface mask prediction 24.18ms
Fine feature fusion 73.03ms

Total 130.52ms

Table 6.2: Feature fusion runtime. We
analyse runtime of the per-frame
feature fusion.

Task Duration

Coarse feature refinement 28.56ms
Fine feature refinement 140.79ms
MLP (occupancy prediction) 25.21ms
Marching cubes [18] 48.74ms

Total 243.29ms

Table 6.3: Mesh extraction runtime. We
analyse runtime of the per-chunk
mesh extraction.

selection becomes even more important. In Fig. 6.1, we visualize the most important
view for locations in the scene, selected by the highest attention weight. Relatively
smooth transitions between selected views among neighboring 3D locations suggest that
view selection is spatially consistent. To illustrate the frame selection, we also visualize
all selected frames with corresponding attention weights for specific 3D locations in
Fig. 6.3.

6.4.3 Runtime Analysis

In this section we provide further details about the runtime of our approach. We bench-
marked our approach using an Intel Xeon 6242R Processor and an Nvidia RTX 3090
GPU. For every new frame coarse-to-fine image features need to be extracted, and fused
into global coarse and fine feature volumes. In Tab. 6.2, we report execution times of the
different feature fusion steps. Coarse features are fused into the entire camera frustum,
containing all coarse voxels that fall into valid depth range [0.3m, 5m]. Fine feature
on the other hand are fused only in near-surface areas, as predicted by coarse filtering.
The execution times are averaged over a representative video sequence of the ScanNet
dataset.
The surface reconstruction doesn’t need to be extracted for every frame. It can either

be done at the end, when all image features are already fused into the feature volume,
or incrementally every couple of frames, on a per-chunk basis, if interactive feedback is
desired. In Tab. 6.3, we report execution times for a chunk of size 1.5×1.5×1.5 m. Both,
coarse and fine features are spatially refined using a 3D CNN and surface occupancy is
computed using the occupancy MLP at a voxel resolution of 2 cm, but only for near-
surface voxels, as predicted by coarse and fine near-surface masks. Finally, the mesh is
extracted using Marching cubes [18].
Note that our implementation uses high-level PyTorch routines, as well as CPU code

(e.g., for Marching Cubes) and, thus, the implementation is not optimized for runtime.
A more optimized implementation can be achieved via customized CUDA code. An-
other interesting avenue towards higher frame rates is the use of sparse 3D convolutions
instead of dense 3D convolutions. Feature fusion timings are reported for our default
reconstruction setting, when we store K = 16 views for every feature grid voxel. The
feature fusion execution can be further accelerated by using less views. The frames per
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Figure 6.7: Qualitative reconstruction results. We visualize reconstructions of represen-
tative scenes from the test-set of the ScanNet dataset [17].
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Figure 6.8: Limitations. Our approach can lack detail at partially observed and occluded
objects, and result in inaccurate reconstruction of transparent surfaces, such as
glass windows.

second (FPS) increase from 7.66 FPS for 16 views to 10.17 FPS for 8 and to 12.28 FPS
for 4 views.

6.4.4 Limitations

Under severe occlusions and partial observation of the scene, our method can struggle
to reconstruct details of certain objects, such as chair legs, monitor stands, or books on
the shelves. Furthermore, transparent objects, such as glass windows without frames,
are often inaccurately reconstructed as empty space. We show qualitative examples
of these failure cases in Fig. 6.8. These challenging scenarios are often not properly
reconstructed even when using ground truth RGB-D data, and we believe that using self-
supervised losses [174] for monocular scene reconstruction could be an interesting future
research direction. Additionally, higher resolution geometric fidelity could potentially
be achieved by sparse operations in 3D or learning local geometric priors on detailed
synthetic data [175].

6.5 Conclusion

We introduced TransformerFusion for monocular 3D scene reconstruction, leveraging a
new transformer-based approach for online feature fusion from RGB input views. A
coarse-to-fine formulation of our transformer-based feature fusion improves the effective
reconstruction performance as well as the runtime. Our feature fusion learns to ex-
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ploit the most informative image view features for geometric reconstruction, achieving
state-of-the-art reconstruction performance. We believe that our interactive scanning
approach provides exciting avenues for future research, and enables new possibilities in
learning multi-view perception and 3D scene understanding.
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7 Conclusion

Non-rigid 3D reconstruction is one of the core problems in computer vision, focusing on
reconstruction and motion tracking of deformable objects from videos. It has many excit-
ing applications in VR/AR, autonomous driving, robotics, etc., but the problem is very
underconstrained and existing algorithms often lack robustness in everyday situations.
This dissertation explores data-driven non-rigid reconstruction, using learned priors to
make non-rigid tracking and reconstruction more accurate and robust. We significantly
improved various aspects of the existing approaches using data-driven components, and
we summarize the main contributions in the following.

Learning Non-rigid Reconstruction. In Chapter 3 we introduced a large-scale dataset
of 400 non-rigid RGB-D videos, with over 390,000 frames and dense correspondences
between frame pairs annotated in a semi-supervised manner. Additionally, we proposed
a heatmap-based neural network for non-rigid correspondence prediction, trained on our
captured data and incorporated into a non-rigid reconstruction framework. Our data-
driven method significantly outperforms existing non-rigid reconstruction approaches
that use hand-crafted descriptors, both qualitatively and quantitatively, evaluated on
the first non-rigid reconstruction benchmark that we established to objectively compare
different approaches.

Neural Non-rigid Tracking. In Chapter 4 we proposed an end-to-end differentiable
non-rigid tracking approach, which learns dense non-rigid correspondences best-suited
for the task of non-rigid tracking. The differentiable optimization formulation enabled
us to learn importance weights for outlier rejection in a purely self-supervised manner.
When added to the non-rigid reconstruction pipeline, the learned non-rigid tracker not
only improves the tracking performance, but also leads to better shape reconstructions.
Furthermore, the dense correspondence prediction in a single forward pass is signifi-
cantly faster compared to the independently predicted sparse correspondences from our
previous approach.

Neural Deformation Graphs. In Chapter 5 we proposed to represent the deformation
graph and shape implicitly with a neural network, and introduced a novel network-based
optimization that tracks and reconstructs non-rigid objects in a globally-consistent fash-
ion. Novel losses encouraging per-frame viewpoint consistency and inter-frame graph
and surface consistency result in high-quality reconstruction and tracking that quanti-
tatively surpass the state of the art for more than 60%. The shape is modeled by a
deformable multi-MLP representation anchored on the neural deformation graph, with
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different shape parts reconstructed independently, eliminating the need for a fixed canon-
ical space that cannot handle topology changes.

Learning RGB Reconstruction. In Chapter 6 we introduced TransformerFusion, a
transformer-based 3D scene reconstruction approach that takes an RGB video as input
and outputs 3D geometry. Assuming camera motion is estimated, the method learns the
fusion of per-frame extracted 2D pixel features in the temporal domain using a trans-
former network. For each location in the scene, the transformer attends to only the most
informative views, enabling efficient and self-supervised view selection. Combined with
a coarse-to-fine feature hierarchy, this not only provides accurate reconstructions in a
very underconstrained RGB setting, surpassing state of the art, but also enables online
reconstruction running at interactive frame-rates.
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8 Limitations and Future Work

When describing the approaches proposed in this dissertation, we already listed the
methods’ limitations, visualized failure cases and noted down opportunities for improve-
ment. However, there are many interesting areas in data-driven non-rigid reconstruction
that we haven’t explored yet, and would make great future research directions. After all,
when it comes to learning priors for general deformable objects, not just human bodies
or faces, we believe it’s just a start of a very promising research field. We showcased that
using data-driven priors for different aspects of non-rigid reconstruction is indeed very
valuable and significantly improves both the non-rigid tracking and shape reconstruc-
tion, and we hope to encourage many other researchers to explore data-driven non-rigid
reconstruction in the future.

Appearance reconstruction. One aspect that we haven’t explored in this dissertation
is appearance modeling of deformable shapes. A previous work [64] optimizes a simpli-
fied appearance model, based on lightning represented with spherical harmonics [176].
Recently published neural radiance fields (NeRF) [139] introduced a novel volumet-
ric rendering approach that is very effective at optimizing a photorealistic appearance
representation from RGB views. Follow-up works proposed ways to optimize this rep-
resentation considerably faster [42], [177], [178], even in a few seconds [42], and render
it in real-time [179], [180]. There have been a few works extending it to dynamic ob-
jects [181]–[184], and it would be interesting to explore learned priors for interactive
deformable appearance reconstruction.

Motion reanimation. This dissertation focused on reconstructing the observed object’s
motion, for an autonomous robot to react to it in real-time, or for people to replay it from
different views in VR/AR. Once recorded, an interesting question is how to interact with
this deformable object in novel ways in VR/AR, and animate it using given controls.
There has been quite some progress on reenactment of human faces [7], [185], [186] and
bodies [187], [188], where manually-designed body skeletons or facial keypoints can be
used as driving signals. For general deformable objects we don’t have a skeleton that
fits all shapes, but our neural deformation graphs could be extended to a generalizable
formulation optimized to represent a wide variety of deformable shapes, automatically
constructing a generalized skeleton.

Differentiable simulation. A core building block of our neural non-rigid tracker is
differentiable optimization. While we could learn the entire optimization process and
directly predict 3D motion using a scene flow network, it’s very useful to restrict the
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learning to more specific tasks that require priors, since then we need less data to gener-
alize robustly to novel objects and deformations, and convert components that naturally
generalize, such as a Gauss-Newton solver, to differentiable network modules. In the
future we could also integrate known physical laws in our tracker by incorporating dif-
ferentiable modules from differentiable simulation [189]–[192], where physically-based
simulators, developed for different object types, are made differentiable, in order to
estimate the physical object model that fits best to the given observations.

Self-supervised learning. To learn useful priors for non-rigid reconstruction, an im-
portant requirement is having a diverse dataset. We introduced a large-scale dataset of
non-rigidly deforming objects, and it’s a great starting point for learning data-driven pri-
ors. However, you can always benefit from collecting more data, covering a wider range
of deformable objects. Expanding our dataset can be done very efficiently, since beside
recording new RGB-D videos we only require sparse annotations that can be acquired
quickly. On the other hand, there is a large number of diverse object images and videos
available online, but without any annotations. Following the success of self-supervised
works in natural language processing [156], [157] and image generation [193], [194], we
could adapt our approaches to be trained with limited supervision.
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A Open-source Code & Videos

A.1 DeepDeform

• Dataset and Evaluation Code: https://github.com/AljazBozic/DeepDeform

• Benchmark: https://kaldir.vc.in.tum.de/deepdeform_benchmark

• Project: http://niessnerlab.org/projects/bozic2020deepdeform.html

• Video: https://www.youtube.com/watch?v=OrHLacCDZVQ

A.2 Neural Non-Rigid Tracking

• Source Code: https://github.com/DeformableFriends/NeuralTracking

• Project: http://niessnerlab.org/projects/bozic2020nnrt.html

• Video: https://www.youtube.com/watch?v=nqYaxM6Rj8I

A.3 Neural Deformation Graphs

• Source Code: https://github.com/AljazBozic/NeuralGraph

• Project: https://aljazbozic.github.io/neural_deformation_graphs

• Video: https://www.youtube.com/watch?v=vyq36eFkdWo

A.4 TransformerFusion

• Evaluation Code: https://github.com/AljazBozic/TransformerFusion

• Project: https://aljazbozic.github.io/transformerfusion

• Video: https://www.youtube.com/watch?v=LIpTKYfKSqw
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C Original Publications

In this chapter we include the original versions of peer-reviewed publications [13]–[16].
These publications form the core of this cumulative thesis, and are summarized in Chap-
ters 3, 4, 5, 6 (with minor content and format adapti). We additionally provide a copy-
right notice and a short summary for each publication, and evaluate author’s individual
contributions.
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C.1 DeepDeform: Learning Non-rigid RGB-D Reconstruction
with Semi-supervised Data

Copyright

©2020 IEEE. Reprinted, with permission, from
Aljaž Božič, Michael Zollhöfer, Christian Theobalt, and Matthias Nießner
DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-
supervised Data
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2020
DOI: 10.1109/CVPR42600.2020.00703

Summary

Applying data-driven approaches to non-rigid 3D reconstruction has been
difficult, which we believe can be attributed to the lack of a large-scale train-
ing corpus. Unfortunately, existing methods fail for important cases such as
highly non-rigid deformations. We first address this problem of lack of data
by introducing a novel semi-supervised strategy to obtain dense inter-frame
correspondences from a sparse set of annotations. This way, we obtain a
large dataset of 400 scenes, over 390,000 RGB-D frames, and 5,533 densely
aligned frame pairs; in addition, we provide a test set along with several met-
rics for evaluation. Based on this corpus, we introduce a data-driven non-
rigid feature matching approach, which we integrate into an optimization-
based reconstruction pipeline. Here, we propose a new neural network that
operates on RGB-D frames, while maintaining robustness under large non-
rigid deformations and producing accurate predictions. Our approach signif-
icantly outperforms existing non-rigid reconstruction methods that do not
use learned data terms, as well as learning-based approaches that only use
self-supervision.

Individual contributions

Leading role in realizing the scientific project.

Problem definition significantly contributed
Literature survey significantly contributed
Implementation significantly contributed
Experimental evaluation significantly contributed
Preparation of the manuscript significantly contributed

In accordance with the IEEE Thesis / Dissertation Reuse Permissions, we include the accepted
version of the original publication [13] in the following.
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DeepDeform: Learning Non-rigid RGB-D Reconstruction
with Semi-supervised Data

Aljaž Božič1 Michael Zollhöfer2 Christian Theobalt3 Matthias Nießner1

1Technical University of Munich 2Stanford University 3Max Planck Institute for Informatics

Figure 1: We propose a semi-supervised strategy combining self-supervision with sparse annotations to build a large-scale
RGB-D dataset of non-rigidly deforming scenes (400 scenes, 390,000 frames, 5,533 densely aligned frame pairs). With this
data, we propose a new method for non-rigid matching, which we integrate into a non-rigid reconstruction approach.

Abstract

Applying data-driven approaches to non-rigid 3D recon-
struction has been difficult, which we believe can be at-
tributed to the lack of a large-scale training corpus. Un-
fortunately, this method fails for important cases such as
highly non-rigid deformations. We first address this prob-
lem of lack of data by introducing a novel semi-supervised
strategy to obtain dense inter-frame correspondences from
a sparse set of annotations. This way, we obtain a large
dataset of 400 scenes, over 390,000 RGB-D frames, and
5,533 densely aligned frame pairs; in addition, we pro-
vide a test set along with several metrics for evaluation.
Based on this corpus, we introduce a data-driven non-
rigid feature matching approach, which we integrate into an
optimization-based reconstruction pipeline. Here, we pro-
pose a new neural network that operates on RGB-D frames,
while maintaining robustness under large non-rigid defor-
mations and producing accurate predictions. Our approach
significantly outperforms existing non-rigid reconstruction
methods that do not use learned data terms, as well as
learning-based approaches that only use self-supervision.

Data / Benchmark: https://github.com/AljazBozic/DeepDeform

1. Introduction

Non-rigid 3D reconstruction, i.e., the dense, space-time
coherent capture of non-rigidly deforming surfaces in full
temporal correspondence, is key towards obtaining 3D ab-
stractions of the moving real world. The wide availability of
commodity RGB-D sensors, such as the Microsoft Kinect
or Intel Realsense, has led to tremendous progress on static
scene reconstruction methods. However, robust and high-
quality reconstruction of non-rigidly moving scenes with
one depth camera is still challenging. Applications for real-
time non-rigid reconstruction range from augmented (AR)
and virtual reality (VR) up to building realistic 3D holo-
grams for fully immersive teleconferencing systems. The
seminal DynamicFusion [28] approach was the first to show
dynamic non-rigid reconstruction in real-time. Extensions
primarily differ in the used energy formulation. Some meth-
ods use hand-crafted data terms based on dense geome-
try [28, 36, 37], dense color and geometry [14, 47], and
sparse feature constraints [17]. Other approaches leverage
multi-camera RGB-D setups [9, 8] for higher robustness.
However, there are very few reconstruction methods that
use learning-based data terms for general real-world scenes
rather than specific scenarios [48], and that are trained to
be robust under real-world appearance variation and diffi-
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cult motions. One reason for this is the lack of a large-
scale training corpus. One recent approach [33] proposes
self-supervision for ground truth generation, i.e., they em-
ploy DynamicFusion [28] for reconstruction and train a
non-rigid correspondence descriptor on the computed inter-
frame correspondences. However, we show that existing
non-rigid reconstruction methods are not robust enough to
handle realistic non-rigid sequences; therefore this tracking-
based approach does not scale to training data generation
for real world scenes. Unfortunately, this means that self-
supervision exactly fails for many challenging scenarios
such as highly non-rigid deformations and fast scene mo-
tion. By design, this approach trained with self-supervision
cannot be better than the employed tracker. We propose to
employ semi-supervised training data by combining self-
supervision with sparse user annotations to obtain dense
inter-frame correspondences. The annotated sparse point
correspondences guide non-rigid reconstruction; this allows
us to handle even challenging motions. The result is a large
dataset of 400 scenes, over 390,000 RGB-D frames, and
5,533 densely aligned frame pairs. Based on this novel
training corpus, we develop a new non-rigid correspon-
dence matching approach (see Sec. 3) that finds accurate
matches between RGB-D frames and is robust to difficult
real world deformations. We further propose a re-weighting
scheme that gives more weight to corner cases and chal-
lenging deformations during training. Given a keypoint in a
source frame, our approach predicts a probability heatmap
of the corresponding location in the target frame. Finally,
we integrate our learned data term into a non-rigid recon-
struction pipeline that combines learned heatmap matches
with a dense RGB-D reconstruction objective. In addi-
tion, we introduce a new benchmark and metric for evalu-
ating RGB-D based non-rigid 3D correspondence matching
and reconstruction. We extensively compare our new data-
driven approach to existing hand-crafted features. We also
integrate the learned features into a non-rigid reconstruction
framework, leading to significant improvement over state of
the art. In sum, our contributions are:

• A semi-supervised labeling approach for dense non-
rigid correspondence learning, resulting in a dataset
featuring 400 annotated dynamic RGB-D sequences
and 5,533 densely aligned frame pairs.

• A novel data-driven non-rigid correspondence match-
ing strategy that leads to more robust correspondence
estimation compared to the state-of-the-art hand-
crafted and learned descriptors, especially in the case
of extreme deformations.

• A non-rigid reconstruction approach for general scenes
that combines learned and geometric data-terms and
handles significantly faster and more complex motions
than the state-of-the-art.

Figure 2: Our large-scale dataset contains a large variety
of dynamic sequences with segmentation masks and point
correspondences between different RGB-D frames.

2. Related Work
Our approach is related to several research areas, such as

volumetric 3D scene reconstruction, non-rigid object track-
ing, and learned correspondence matching. We focus our
discussion on the most related RGB-D based techniques.
For a detailed discussion, we refer to the recent survey [59].

Volumetric Scene Reconstruction Reconstructing static
environments with a single RGB-D sensor has had a long
history in vision and graphics, including KinectFusion
[27, 18], which employs a uniform voxel grid to represent
the scene as a truncated signed distance function (TSDF)
[4], as well as many extensions to large-scale scenes [49, 2,
40, 29]. These techniques track the 6-DoF camera motion
by solving a geometric model-to-frame alignment problem
using a fast data-parallel variant of the point-to-plane Itera-
tive Closest Point (ICP) algorithm [30]. Globally consistent
reconstruction based on Bundle Adjustment [57, 3] was for
a long time only possible offline; data-parallel solvers now
enable real-time frame rates [6]. An alternative to TSDFs
are point-based scene representations [20, 23, 22]. Recent
techniques also employ non-rigid registration to robustly
handle loop closures [50, 58].

Non-Rigid Reconstruction The reconstruction of gen-
eral non-rigidly deforming objects based on real-time scan
data has a long tradition [44]. One class of methods uses
pre-defined templates, e.g., human templates, to capture
pose and time-varying shape of clothed humans from RGB-
D [54] or stereo camera data [51]. First template-less ap-
proaches had slow offline runtimes and only worked for
slow and simple motions. The approach of [10] solves a
global optimization problem to reconstruct the canonical
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shape of a non-rigidly deforming object given an RGB-D
video sequence as input, but does not recover the time-
dependent non-rigid motion across the entire sequence. The
first approach to demonstrate truly dynamic reconstruction
of non-rigid deformation and rest shape in real-time was
DynamicFusion [28]. Since this seminal work, many exten-
sions have been proposed. VolumeDeform [17] improves
tracking quality based on sparse feature alignment. In ad-
dition, they parameterize the deformation field based on
a dense volumetric grid instead of a sparse deformation
graph. The KillingFusion [36] and SobolevFusion [37] ap-
proaches allow for topology changes, but do not recover
dense space-time correspondence along the complete input
sequence. Other approaches jointly optimize for geome-
try, albedo, and motion [14] to obtain higher robustness and
better quality. The approach of Wang et al. [47] employs
global optimization to minimize surface tracking errors. In
contrast to these methods using a single RGB-D camera,
other techniques use multiple color [7, 43] or depth cam-
eras [52, 45, 9, 8], which enables high-quality reconstruc-
tion at the cost of more complex hardware. We propose
a new learning-based correspondence matching and recon-
struction approach that outperforms existing techniques.

Learning Rigid Correspondence Matching Histori-
cally, correspondence matching for the task of rigid regis-
tration has been based on hand-crafted geometry descrip-
tors [19, 11, 42, 32, 31]. If color information is available
in addition to depth, SIFT [24] or SURF [1] can be used to
establish a sparse set of feature matches between RGB-D
frames. More recently, 2D descriptors for feature matching
in static scenes have been learned directly from large-scale
training corpora [34, 35, 15, 53, 60]. The Matchnet [15] ap-
proach employs end-to-end training of a CNN to extract and
match patch-based features in 2D image data. Descriptors
for the rigid registration of static scenes can be learned and
matched directly in 3D space with the 3DMatch [56] archi-
tecture. Visual descriptors for dense correspondence esti-
mation can be learned in a self-supervised manner by em-
ploying a dense reconstruction approach to automatically
label correspondences in RGB-D recordings [33]. Descrip-
tor learning and matching for static scenes has been well-
studied, but is lacking in the challenging non-rigid scenario.
While class-specific dense matching of non-rigid scenes has
been learned for specific object classes [48, 12], none of
these techniques can handle arbitrary deforming non-rigid
objects. We believe one reason for this is the lack of a
large-scale training corpus. In this work, we propose such
a corpus and demonstrate how non-rigid matching between
depth images can be learned end-to-end.

RGB-D Datasets While we have seen a plethora of RGB-
D datasets for static scenes, such as NYU [26], SUN RGB-

D [38], and ScanNet [5], the largest of which have thou-
sands of scans, non-rigid RGB-D datasets remain in their in-
fancy. While these datasets can be used to pretrain networks
for the task of non-rigid correspondence matching, they do
not capture the invariants that are useful for the much harder
non-rigid setting, and thus lead to sub-par accuracy. Cur-
rent non-rigid reconstruction datasets are far too small and
often limited to specific scene types [7, 52], which is not
sufficient to provide the required training data for super-
vised learning. The datasets that provide real-world depth
recordings [13, 17] do not come with ground truth recon-
structions, which makes objectively benchmarking different
approaches challenging. Other datasets that are commonly
used for evaluation do not provide real-world depth data,
e.g., [7, 43]. In this work, we introduce the first large-scale
dataset for non-rigid matching based on semi-supervised la-
beling and provide a benchmark enabling objective compar-
ison of different approaches.

3. Data-driven Non-Rigid Matching
Our goal is to find matches between a source and a target

RGB-D frame. To this end, we propose a network architec-
ture for RGB-D matching based on a Siamese network [21]
with two towers. Input to the network are two local patches
of size 224 × 224 pixels each (with 3 color channels and
3-dimensional points in camera coordinate space). We as-
sume that the source patch is centered at a feature point.

Heatmap The goal is to predict a probability heatmap H
in the target frame that gives the likelihood of the location
of the source point. First, we compute a sigmoid-heatmap:

Hsg = σsg
(
H(Dout)

)
.

It is computed based on a sigmoid activation σsg to map
responses to [0, 1]. Here, Dout is the output feature map
of the last layer of the decoder and H is a convolutional
layer converting feature space into heatmap values. This
is equivalent to independent binary classification problems
per pixel. Second, we also compute a softmax-heatmap:

Hsm = σsm
(
H(Dout)

)
.

Here we use a softmax activation σsm to make the complete
heatmap a probability distribution, i.e., it sums to one. As
ground truth for the heatmap prediction we could take an
image with zero values everywhere except at the ground
truth pixel position that we set to one. To prevent the trained
network from predicting only zero values, we apply a Gaus-
sian kernel Gxgt around the ground truth pixel. It sets the
ground truth pixel’s value to one and decays the neighboring
pixel values to zero with standard deviation of 7 pixels, re-
sulting in the ground truth heatmap Hgt. We also add larger
weight to pixels close to the ground truth pixel, defining the
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Figure 3: We devise an end-to-end architecture for RGB-D matching based on a Siamese network to find matches between
a source and a target frame. Our network is based on two towers that share the encoder and have a decoder that predicts
two probability heatmaps in the target frame that encode the likelihood of the location of the source point. Our network also
predicts a depth value for the matched point and a visibility score that measures if the source point is visible in target frame.

pixel weight as wH(x) = 1 + 10 · Gxgt(x). The heatmap
loss is then computed as:

LH =
∑

i

Φbce(wH(Hsg −Hgt))+

λnll

∑

i

Φnll(wH(Hsm −Hgt)) .

Here, Φbce(•) denotes the binary cross entropy loss and
Φnll(•) the negative log-likelihood loss, and we empirically
determined a weight λnll = 10. From these two probability
heatmaps, a single one is computed as H = Hsg ⊗ Hsm,
where ⊗ is the Hadamard product.

Depth In addition to heatmap prediction, our network
also predicts the matched point’s depth value in the target
camera’s coordinate system. Inspired by [25], we predict
the depth densely, predicting the same depth value for every
pixel in the output image:

D = exp
(
D(Dout)

)
.

Here, D is a convolutional layer converting feature space
into depth values, and the exponential is applied to guaran-
tee positive depth predictions. Ground truth for depth pre-
diction Dgt is the depth of the ground truth match, repeated
for the whole image. Since we want to encourage depth
prediction to focus on the matched pixel, we again use pixel
weighting, this time in the form of wD(x) = Gxgt(x), set-
ting the center pixel’s weight to 1 and decaying the weights
to 0. Using the weighted version of mean squared error
Φmse(•) we employ the following loss for depth prediction:

LD = λd

∑

i

Φmse(wD(D −Dgt)) .

Visibility Furthermore, we also predict a visibility score
∈ [0, 1] that measures whether the source point is visible
(high value) or occluded (low value) in the target frame:

V = σsg
(
V(Bout)

)
.

Here, Bout is the output feature map of the bottleneck layer,
V is a convolutional layer, and σsg a sigmoid activation.
The visibility loss takes the following form:

LV =
∑

i

Φbce(V − Vgt) .

In the end, we train the network using a weighted com-
bination of all presented loss functions:

L = LH + λDLD + λVLV .

In all experiments we use the constant and empirically de-
termined weights λD = 100 and λV = 1. An overview of
the network architecture is given in Fig. 3. More network
and training details can be found in the supplemental.

4. Non-Rigid Reconstruction Pipeline
We integrate the learned non-rigid matching algorithm

into a non-rigid RGB-D reconstruction framework that ef-
ficiently tracks dense, space-time coherent, non-rigid de-
formations on the GPU and also provides an efficient vol-
umetric fusion backend. A canonical model of the scene
is reconstructed from data, in parallel to tracking the non-
rigid deformations, and stored based on a truncated signed
distance field (TSDF) represented by a uniform voxel grid.
New observations are fused into the grid based on an ex-
ponentially moving average. The non-rigid scene motion is
tracked based on the following tracking energy:

Etotal(T ) = Edata(T ) + λlearnedElearned(T ) + λregEreg(T ) .
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The weights λlearned = 1 and λreg = 1 are empirically deter-
mined and balance the different terms.

4.1. Deformation Model

To parameterize scene motion, similar to [41], we em-
ploy a coarse deformation graph G with K deformation
nodes gi ∈ R3. The graph models the deformation of
space based on the convex combination of local per-node
transformations that are parameterized by rotation parame-
ters θi ∈ R3 in Lie algebra space and a translation vector
ti ∈ R3. In total, this leads to 2k free variables to describe
scene motion that we jointly refer to as T . This enables
us to decouple the number of free variables from the com-
plexity of the reconstructed scene. The deformation nodes
are connected based on proximity, for details we refer to the
original embedded deformation paper [41].

4.2. Optimization Terms

For data term Edata(T ), similar to [28, 17], we em-
ploy dense point-to-point and point-to-plane alignment con-
straints between the input depth map and the current re-
construction. For regularizer Ereg, we employ the as-rigid-
as-possible (ARAP) constraint [39] to enforce locally rigid
motion. In addition, we integrate a sparse feature alignment
term based on our learned correspondences (see Sec. 3). For
each node gi of the current deformation graph, we predict
a probability heatmap Hi that gives the likelihood of its 2D
uv-position in the current input depth map, using the initial
depth map as the reference frame. Furthermore, we also
back-project the pixel with the maximum heatmap response
into a 3D point pi ∈ R3, using its depth. We aim to align
the graph nodes with the maximum in the corresponding
heatmap using the following alignment constraint:

Elearned(T ) =
∑

gi∈G

(
1−Hi(π(gi + ti))

)2
+

λpoint

∑

gi∈G

(
gi + ti − pi

)2
.

Here, π : R3 → R2 is the projection from 3D camera space
to 2D screen space. The heatmap Hi is normalized to a
maximum of 1. We empirically set λpoint = 10. In order
to handle outliers, especially in the case of occluded corre-
spondences, we make use of the predicted visibility score
and the predicted depth value of the match. We filter out all
heatmap correspondences with visibility score < 0.5. We
compare the predicted depth with the queried depth from
the target frame’s depth map at the pixel with the maximum
heatmap response and invalidate any correspondences with
a depth difference > 0.15 meters.

4.3. Energy Optimization

We efficiently tackle the underlying optimization prob-
lem using a data-parallel Gauss-Newton solver to find the

deformation graph G∗ that best explains the data:

G∗ = argminEtotal(G) .

In the Gauss-Newton solver, we solve the underlying se-
quence of linear problems using data-parallel precondi-
tioned conjugate gradient (PCG). For implementation de-
tails, we refer to the supplemental document.

5. Semi-supervised Data Acquisition
In the following, we provide the details of our semi-

supervised non-rigid data collection process that is used
for training the non-rigid matching and for the evalua-
tion of non-rigid reconstruction algorithms. The high-level
overview of the data acquisition pipeline is shown in Fig. 1.

5.1. Data Acquisition

In order to obtain RGB-D scans of non-rigidly moving
objects, we use a Structure Sensor mounted on an iPad. The
depth stream is recorded at a resolution of 640 × 480 and
30 frames per second; the RGB stream is captured with the
iPad camera at a resolution of 1296 × 968 pixels that is
calibrated with respect to the range sensor. Regarding the
scanning instructions, we follow the ScanNet [5] pipeline.
However, in our case, we focus on scenes with one up to
several non-rigidly moving objects in addition to a static
background. In total, we recorded 400 scenes with over
390,000 RGB-D frames.

5.2. Data Annotation

We crowd sourced sparse ground truth correspondence
annotations and segmentation masks for our novel data set.
To this end, we employed a web-based annotation tool. The
annotation was divided into two tasks. Firstly, we select up
to 10 frames per sequence. All dynamic objects that are
found in these frames are given unique instance ids (the
same instance in the whole sequence) and their masks are
annotated in each frame. To accelerate mask segmenta-
tion, we use a hierarchy of superpixels as candidate brush
sizes. Secondly, among the annotated frames up to 10 frame
pairs are selected, and the sparse correspondences between
all dynamic objects are annotated. Expert annotators were
instructed to annotate correspondences uniformly over the
complete object, labeling about 20 point matches per frame
pair. Furthermore, in parts of the source image that are oc-
cluded in the target image occlusion points were uniformly
selected to collect data samples for visibility detection. The
dynamic object segmentation task takes on average about 1
min per frame, while the correspondence labeling task takes
on average about 2 min per frame.

5.3. Dense Data Alignment

Using the annotated object masks and the sparse
matches, dense non-rigid alignment of the frame pairs is
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performed. We follow a similar approach as for non-rigid
reconstruction (see Sec. 4), based on the sparse deforma-
tion graph of [41]. The deformation graph is defined on
the source frame’s depth map, covering only the dynamic
object by using the source object mask. The final energy
function that is optimized to align the source RGB-D frame
to the target RGB-D frame is:

Etotal(T ) =Edata(T ) + λphotoEphoto(T ) + λsilhEsilh(T )+

λsparseEsparse(T ) + λregEreg(T ) .

Here, Ephoto(T ) encourages the color gradient values from
the source frame to match the target frame, Esilh penalizes
deformation of the object outside of the target frame’s ob-
ject mask, and Esparse enforces annotated sparse matches to
be satisfied. The weights λphoto = 0.001, λsilh = 0.0001,
λsparse = 100.0 and λreg = 10.0 have been empirically de-
termined. Details about the different optimization terms and
a qualitative comparison of their effects can be found in the
supplemental document. In order to cope with simple ap-
parent topology changes that are very common while cap-
turing natural non-rigid motion, such as the hand touching
the body in one frame and moving away in another frame,
we execute non-rigid alignment in both directions and com-
pute the final non-rigid alignment using forward-backward
motion interpolation, similar to [55]. At the end, a quick
manual review step is performed, in which, if necessary,
any incorrectly aligned mesh parts are removed. The re-
view step takes about 30 seconds per frame. Examples of
dense alignment results and the employed review interface
can be found in the accompanying video.

6. Experiments
We provide a train-val-test split with 340 sequences in

the training set, 30 in the test set, and 30 in the validation
set. We made sure that there is no overlap between captured
environments between training and validation/test scenes.

6.1. Non-Rigid Matching Evaluation

For a given set of pixels (and corresponding 3D points) in
the source image, the task is to find the corresponding pixel
(and 3D point) in the target image. We evaluate the average
2D pixel and 3D point error (in meters), and compute the
matching accuracy (ratio of matches closer than 20 pixels
or 0.05 meters from the ground truth correspondences). We
compare our non-rigid matching approach to several hand-
crafted feature matching strategies, that are based on depth
or color based descriptors, and to the learned 3Dmatch [56]
descriptor, see Tab. 1. Specifically, we compare to the hand-
crafted geometry descriptors, such as Unique Signatures of
Histograms (SHOT) [42] and the Fast Point Feature His-
tograms (FPFH) [31]. We also compare to color-based de-
scriptors, e.g., SIFT [24] and SURF [1], that can be used to

Method 2D-err 3D-err 2D-acc 3D-acc
SIFT [24] 138.40 0.552 16.20 14.08
SURF [1] 125.72 0.476 22.13 19.82
SHOT [42] 105.34 0.342 13.43 11.51
FPFH [31] 109.49 0.393 10.85 9.43
3Dmatch [56] 68.98 0.273 30.50 25.33
GPC [46] 65.04 0.231 31.93 28.16
FlowNet-2.0 [16] 27.32 0.118 68.68 63.67
Ours-12.5% 78.82 0.268 27.17 23.28
Ours-25.0% 58.28 0.197 40.32 35.81
Ours-50.0% 45.43 0.156 50.70 46.57
Ours-Rigid 57.87 0.270 40.93 35.64
Ours-SelfSupervised 33.34 0.121 60.87 55.70
Ours-Sparse 31.42 0.106 58.53 52.24
Ours-NoWeighting 23.72 0.083 73.13 68.46
Ours 19.56 0.073 77.60 72.48

Table 1: We outperform all baseline matching meth-
ods by a considerable margin. 2D/3D errors are average
pixel/point errors, and 2D/3D accuracy is the percentage of
pixels/points with distance of at most 20 pixels/0.05 meters.

establish a sparse set of matches been RGB-D frames. Fi-
nally, we train a learned descriptor from [56], patch-based
random forest matcher from [46] and optical flow prediction
network from [16] on our training sequences. Our method
consistently outperforms all the baselines.

6.2. Non-Rigid Reconstruction Results

We integrated our learned matching strategy into a non-
rigid reconstruction pipeline. Our learned data term sig-
nificantly improves reconstruction quality, both qualita-
tively and quantitatively. To be able to perform a quanti-
tative comparison on our test sequences, we used our re-
implementation of [28], and the code or results provided
from the authors of [17, 36, 37, 14]. We also replaced our
data-driven correspondence matching module with the de-
scriptor learning network from [56], trained on our data,
and used it in combination with 3D Harris keypoints. The
quantitative evaluation is shown in Tab. 2. The evaluation
metrics measure deformation error (a 3D distance between
the annotated and computed correspondence positions) and
geometry error (comparing depth values inside the object
mask to the reconstructed geometry). Deformation error is
the more important metric, since it also measures tangential
drift within the surface. To be able to know which dynamic
object to reconstruct if multiple are present, we always pro-
vide the initial ground truth segmentation mask of the se-
lected object. All approaches in Tab. 2 were evaluated on
all 30 test sequences to provide a comparison on different
kinds of objects and deformable motions. [14] provided re-
sults on two challenging test sequences, their average de-
formation and geometry error are 21.05 cm and 14.87 cm
respectively, while our approach achieves average errors of
3.63 cm and 0.48 cm. Our approach outperforms the state of
the art by a large margin. The methods [36] and [37] do not
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Method Def. error (cm) Geo. error (cm)
DynamicFusion re-impl. [28] 6.31 1.08
VolumeDeform [17] 21.27 7.78
DynamicFusion + 3Dmatch 6.64 1.59
Ours-Rigid 12.21 2.30
Ours-Sparse 8.24 0.77
Ours-SelfSupervised 5.47 0.54
Ours-Base 3.94 0.43
Ours-Occlusion 3.70 0.42
Ours-Occlusion+Depth 3.28 0.41

Table 2: Comparison with state-of-the-art approaches. Our
learned correspondences significantly improve both track-
ing and reconstruction quality. We also provide ablation
studies on training data type and different network parts.

compute explicit point correspondences from the canonical
frame to other frames, so we could not evaluate these ap-
proaches quantitatively; we provide qualitative comparison
on our sequences in the supplemental document. We also
show qualitative comparisons with our re-implementation
of DynamicFusion [28] in Fig. 4 and with the state-of-the-
art approach of [14] in Fig. 5. Our learned correspondences
enable us to handle faster object motion as well as chal-
lenging planar motion, where even photometric cues fail,
for instance due to uniform object color.

6.3. Ablation Study

We evaluated different components of our network and
their effect on the reconstruction quality, see Tab. 2. Since
some sequences include motions in which large parts of the
reconstructed object are occluded, as can be observed in
Fig. 6, using visibility detection for correspondence pruning
makes our method more robust. Furthermore, since depth
measurements and heatmap predictions can both be some-
times noisy, adding correspondence filtering with depth pre-
diction further improves the reconstruction results.

6.4. Data Generation Evaluation

To show the importance of our semi-supervised strat-
egy for constructing the training corpus, we evaluate how
different training corpora influence the performance of
data-driven reconstruction methods. Aside from our train-
ing data, which has been generated using dense semi-
supervised frame alignment, we used a publicly available
rigid dataset of indoor scenes (from [5]), self-supervised
alignment of our sequences (as in [33]), and only manu-
ally annotated sparse samples from our dataset. We provide
comparison on both non-rigid matching in Tab. 1 and non-
rigid reconstruction in Tab. 2. Using only rigid data does not
generalize to non-rigid sequences. While sparse matches
already improve network performance, there is not enough
data for reliable correspondence prediction on every part of
the observed object. In addition, annotated sparse matches
are usually matches on image parts that are easy for hu-

Figure 4: Qualitative comparison to DynamicFusion (reim-
plementation).

mans to match, and there are much less accurate correspon-
dences in areas with uniform color. In the self-supervised
setting, the network gets dense correspondence information,
which improves the method’s reconstruction performance
compared to using only sparse features. However, without
semi-supervised densely aligned frame pairs, we can only
generate matches for the simple deformations, where the
DynamicFusion approach can successfully track the mo-
tion. Therefore, the performance of the network trained
only on self-supervised data degrades considerably on more
extreme deformations, as can be seen in Fig. 7. Dense
alignment of too far away frames is needed for accurate
network prediction also in the case of extreme deforma-
tions. Since the majority of the dense aligned matches is
still moving rigidly, it turned out to be beneficial to sam-
ple more deformable samples during training. In order to
estimate which parts of the scene are more deformable, we
employed sparsely annotated matches and ran RANSAC in
combination with a Procrustes algorithm to estimate the av-
erage rigid pose. The more the motion of each sampled
match differs from the average rigid motion, the more often
we sample it during network training using a multinomial
distribution of the non-rigid displacement weights. This
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Figure 5: Qualitative comparison of reconstruction results
of our method and MonoFVV [14]. Reconstruction results
were kindly provided by the authors.

Figure 6: Visibility detection enables filtering of network
correspondences that are occluded. The visibility score is
in the range [0, 1], it is high for visible correspondences and
low for occluded parts. We filter out all correspondences
with visibility score less than 0.50.

strategy improved the network performance, as is shown in
Tab. 1, compared to training on non-weighted samples. Fi-
nally, we demonstrate how much data is needed to achieve
robust correspondence prediction performance; i.e., using
less training data considerably degrades matching accuracy,
as summarized in Tab. 1, where we trained networks using
only 12.5%, 25.0%, and 50.0% of the training data.

Figure 7: Comparison of correspondence prediction for ref-
erence frame (left) using self-supervised training data (mid-
dle) and semi-supervised dense data (right).

6.5. Limitations

While learned correspondences make tracking of fast
motion more robust, there is still room for improvement
when reconstructing dynamic objects. One pressing issue
is that background clutter might be accidentally fused with
the object when the object is close to the background. In
this case, the reconstructed shape would slowly grow and
we might also start reconstructing the background. This
can cause wrong deformation graph connectivity and lead
to tracking failures. A potential future avenue is to subtract
and ignore the background; e.g., we could use our annotated
object masks to develop a data-driven method.

7. Conclusion

We have proposed a neural network architecture for
matching correspondences in non-rigid sequences that op-
erates on RGB-D frames and demonstrated that our learned
descriptors outperform existing hand-crafted ones. In ad-
dition, we introduced the first large-scale dataset that is
composed of 400 scenes, over 390,000 RGB-D frames,
and 5,533 densely aligned frame pairs. The dataset is ob-
tained with a semi-supervised strategy by combining self-
supervision with sparse annotations to obtain dense inter-
frame correspondences. We also provide a test set along
with several metrics for evaluating non-rigid matching and
non-rigid reconstruction. We believe that our dataset is a
first step towards enabling learning-based non-rigid match-
ing and our benchmark will help to quantitatively and ob-
jectively compare different approaches.
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Appendix

Figure C.1: Copyright authorization. Authorization for reuse of paper DeepDeform: Learn-
ing Non-rigid RGB-D Reconstruction With Semi-Supervised Data in this disserta-
tion.
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C.2 Neural Non-Rigid Tracking
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Neural Non-Rigid Tracking
Conference on Neural Information Processing Systems (NeurIPS) 2020
Details: NeurIPS website

Summary

We introduce a novel, end-to-end learnable, differentiable non-rigid tracker
that enables state-of-the-art non-rigid reconstruction by a learned robust op-
timization. Given two input RGB-D frames of a non-rigidly moving object,
we employ a convolutional neural network to predict dense correspondences
and their confidences. These correspondences are used as constraints in an as-
rigid-as-possible (ARAP) optimization problem. By enabling gradient back-
propagation through the weighted non-linear least squares solver, we are able
to learn correspondences and confidences in an end-to-end manner such that
they are optimal for the task of non-rigid tracking. Under this formulation,
correspondence confidences can be learned via self-supervision, informing
a learned robust optimization, where outliers and wrong correspondences
are automatically down-weighted to enable effective tracking. Compared
to state-of-the-art approaches, our algorithm shows improved reconstruction
performance, while simultaneously achieving 85× faster correspondence pre-
diction than comparable deep-learning based methods.

Individual contributions

Sharing the leading role in realizing the scientific project.

Problem definition significantly contributed
Literature survey significantly contributed
Implementation contributed
Experimental evaluation contributed
Preparation of the manuscript significantly contributed

We include the accepted version of the original publication [14] in the following. Authors do not
transfer the copyright of their papers to NeurIPS.
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Neural Non-Rigid Tracking
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Abstract

We introduce a novel, end-to-end learnable, differentiable non-rigid tracker that
enables state-of-the-art non-rigid reconstruction by a learned robust optimization.
Given two input RGB-D frames of a non-rigidly moving object, we employ a
convolutional neural network to predict dense correspondences and their confi-
dences. These correspondences are used as constraints in an as-rigid-as-possible
(ARAP) optimization problem. By enabling gradient back-propagation through the
weighted non-linear least squares solver, we are able to learn correspondences and
confidences in an end-to-end manner such that they are optimal for the task of non-
rigid tracking. Under this formulation, correspondence confidences can be learned
via self-supervision, informing a learned robust optimization, where outliers and
wrong correspondences are automatically down-weighted to enable effective track-
ing. Compared to state-of-the-art approaches, our algorithm shows improved
reconstruction performance, while simultaneously achieving 85× faster correspon-
dence prediction than comparable deep-learning based methods. We make our code
available at https://github.com/DeformableFriends/NeuralTracking.

1 Introduction

The capture and reconstruction of real-world environments is a core problem in computer vision,
enabling numerous VR/AR applications. While there has been significant progress in reconstructing
static scenes, tracking and reconstruction of dynamic objects remains a challenge. Non-rigid recon-
struction focuses on dynamic objects, without assuming any explicit shape priors, such as human or
face parametric models. Commodity RGB-D sensors, such as Microsoft’s Kinect or Intel’s Realsense,
provide a cost-effective way to acquire both color and depth video of dynamic motion. Using a large
number of RGB-D sensors can lead to an accurate non-rigid reconstruction, as shown by Dou et al.
[8]. Our work focuses on non-rigid reconstruction from a single RGB-D camera, thus eliminating the
need for specialized multi-camera setups.

The seminal DynamicFusion by Newcombe et al. [23] introduced a non-rigid tracking and mapping
pipeline that uses depth input for real-time non-rigid reconstruction from a single RGB-D camera.
Various approaches have expanded upon this framework by incorporating sparse color correspon-
dences [13] or dense photometric optimization [10]. DeepDeform [4] presented a learned corre-
spondence prediction, enabling significantly more robust tracking of fast motion and re-localization.
Unfortunately, the computational cost of the correspondence prediction network (∼ 2 seconds per
frame for a relatively small number of non-rigid correspondences) inhibits real-time performance.

∗Denotes equal contribution.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.
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Figure 1: Neural Non-Rigid Tracking: based on RGB-D input data of a source and a target frame,
our learned non-rigid tracker estimates the non-rigid deformations to align the source to the target
frame. We propose an end-to-end approach, enabling correspondences and their importance weights
to be informed by the non-rigid solver. Similar to robust optimization, this provides robust tracking,
and the resulting deformation field can then be used to integrate the depth observations in a canonical
volumetric 3D grid that implicitly represents the surface of the object (final reconstruction).

Simultaneously, work on learned optical flow has shown dense correspondence prediction at real-time
rates [30]. However, directly replacing the non-rigid correspondence predictions from Božič et al. [4]
with these optical flow predictions does not produce accurate enough correspondences for comparable
non-rigid reconstruction performance. In our work, we propose a neural non-rigid tracker, i.e., an
end-to-end differentiable non-rigid tracking pipeline which combines the advantages of classical
deformation-graph-based reconstruction pipelines [23, 13] with novel learned components. Our
end-to-end approach enables learning outlier rejection in a self-supervised manner, which guides a
robust optimization to mitigate the effect of inaccurate correspondences or major occlusions present
in single RGB-D camera scenarios.

Specifically, we cast the non-rigid tracking problem as an as-rigid-as-possible (ARAP) optimization
problem, defined on correspondences between points in a source and a target frame. A differentiable
Gauss-Newton solver allows us to obtain gradients that enable training a neural network to predict an
importance weight for every correspondence in a completely self-supervised manner, similar to robust
optimization. The end-to-end training significantly improves non-rigid tracking performance. Using
our neural tracker in a non-rigid reconstruction framework results in 85× faster correspondence
prediction and improved reconstruction performance compared to the state of the art.

In summary, we propose a novel neural non-rigid tracking approach with two key contributions:

• an end-to-end differentiable Gauss-Newton solver, which provides gradients to better inform
a correspondence prediction network used for non-rigid tracking of two frames;

• a self-supervised approach for learned correspondence weighting, which is informed by our
differentiable solver and enables efficient, robust outlier rejection, thus, improving non-rigid
reconstruction performance compared to the state of the art.

2 Related Work

Non-rigid Reconstruction. Reconstruction of deformable objects using a single RGB-D camera is
an important research area in computer vision. State-of-the-art methods rely on deformation graphs
[29, 35] that enable robust and temporally consistent 3D motion estimation. While earlier approaches
required an object template, such graph-based tracking has been extended to simultaneous tracking
and reconstruction approaches [7, 23]. These works used depth fitting optimization objectives in the
form of iterative closest points, or continuous depth fitting in [26, 27]. Rather than relying solely on
depth information, recent works have incorporated SIFT features [13], dense photometric fitting [10],
and sparse learned correspondence [4].
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Correspondence Prediction for Non-rigid Tracking. In non-rigid tracking, correspondences
must be established between the two frames we want to align. While methods such as DynamicFu-
sion [23] rely on projective correspondences, recent methods leverage learned correspondences [4].
DeepDeform [4] relies on sparse predicted correspondences, trained on an annotated dataset of
deforming objects. Since prediction is done independently for each correspondence, this results
in a high compute cost, compared to dense predictions of state-of-the-art optical flow networks.
Optical flow [6, 12, 30, 18] and scene flow [21, 3, 19, 33] methods achieve promising results in
predicting dense correspondences between two frames, with some approaches not even requiring
direct supervision [32, 16, 15]. In our proposed neural non-rigid tracking approach, we build upon
PWC-Net [30] for dense correspondence prediction to inform our non-rigid deformation energy
formulation. Since our approach allows for end-to-end training, our 2D correspondence prediction
finds correspondences better suited for non-rigid tracking.

Differentiable Optimization. Differentiable optimizers have been explored for various tasks,
including image alignment [5], rigid pose estimation [11, 20], multi-frame direct bundle-
adjustment [31], and rigid scan-to-CAD alignment [1]. In addition to achieving higher accuracy, an
end-to-end differentiable optimization approach also offers the possibility to optimize run-time, as
demonstrated by learning efficient pre-conditioning methods in [9, 25, 17]. Unlike Li et al. [17],
which employs an image-based tracker (with descriptors defined on nodes in a pixel-aligned graph),
our approach works on general graphs and learns to robustify correspondence prediction for non-rigid
tracking by learning self-supervised correspondence confidences.

3 Non-Rigid Reconstruction Notation

Non-rigid alignment is a crucial part of non-rigid reconstruction pipelines. In the single RGB-D
camera setup, we are given a pair of source and target RGB-D frames {(Is,Ps), (It,Pt)}, where
I∗ ∈ RH×W×3 is an RGB image and P∗ ∈ RH×W×3 a 3D point image. The goal is to estimate
a warp field Q : R3 7→ R3 that transforms Ps into the target frame. Note that we define the 3D
point image Ps as the result of back-projecting every pixel u ∈ Πs ⊂ R2 into the camera coordinate
system with given camera intrinsic parameters. To this end, we define the inverse of the perspective
projection to back-project a pixel u given the pixel’s depth du and the intrinsic camera parameters c:

π−1
c : R2 × R→ R3, (u, du) 7→ π−1

c (u, du) = p. (1)
To maintain robustness against noise in the depth maps, state-of-the-art approaches define an em-
bedded deformation graph G = {V, E} over the source RGB-D frame, where V is the set of graph
nodes defined by their 3D coordinates vi ∈ R3 and E the set of edges between nodes, as de-
scribed in [29] and illustrated in Fig. 1. Thus, for every node in G, a global translation vector
tvi
∈ R3 and a rotation matrix Rvi

∈ R3×3, must be estimated in the alignment process. We
parameterize rotations with a 3-dimensional axis-angle vector ω ∈ R3. We use the exponential map
exp : so(3) → SO(3), ω̂ 7→ eω̂ = R to convert from axis-angle to matrix rotation form, where
the ·̂-operator creates a 3× 3 skew-symmetric matrix from a 3-dimensional vector. The resulting
graph motion is denoted by T = (ωv1 , tv1 , . . . ,ωvN

, tvN
) ∈ RN×6 for a graph with N nodes.

Dense motion can then be computed by interpolating the nodes’ motion T by means of a warping
function Q. When applied to a 3D point p ∈ R3, it produces the point’s deformed position

Q(p, T ) =
∑

vi∈V
αvi

(eω̂vi (p− vi) + vi + tvi
). (2)

The weights αvi
∈ R, also known as skinning weights, measure the influence of each node on the

current point p and are computed as in [34]. Please see the supplemental material for further detail.

4 Neural Non-rigid Tracking

Given a pair of source and target RGB-D frames (Zs,Zt), where Z∗ = (I∗|P∗) ∈ RH×W×6 is the
concatenation of an RGB and a 3D point image as defined in Section 3, we aim to find a function Θ
that estimates the motion T of a deformation graph G with N nodes (given by their 3D coordinates V)
defined over the source RGB-D frame. This implicitly defines source-to-target dense 3D motion (see
Figure 2). Formally, we have:

Θ : RH×W×6 × RH×W×6 × RN×3 → RN×6, (Zs,Zt,V) 7→ Θ (Zs,Zt,V) = T . (3)
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Figure 2: Overview of our neural non-rigid tracker. Given a pair of source and target images,
Is and It, a dense correspondence map C between the frames is estimated via a convolutional neural
network Φ. Importance weightsW for these correspondences are computed through a function Ψ.
Together with a graph G defined over the source RGB-D frame Ps, both C and W are input to a
differentiable solver Ω. The solver outputs the graph motion T , i.e., the non-rigid alignment between
source and target frames. Our approach is optimized end-to-end, with losses on the final alignment
using Lgraph and Lwarp, and an intermediate loss on the correspondence map Lcorr.

To estimate T , we first establish dense 2D correspondences between the source and target frame
using a deep neural network Φ. These correspondences, denoted as C, are used to construct the
data term in our non-rigid alignment optimization. Since the presence of outlier correspondence
predictions has a strong negative impact on the performance of non-rigid tracking, we introduce
a weighting function Ψ, inspired by robust optimization, to down-weight inaccurate predictions.
Function Ψ outputs importance weightsW and is learned in a self-supervised manner. Finally, both
correspondence predictions C and importance weights W are input to a differentiable, non-rigid
alignment optimization module Ω. By optimizing the non-rigid alignment energy (see Section 4.3),
the differentiable optimizer Ω estimates the deformation graph parameters T that define the motion
from source to target frame:

T = Θ (Zs,Zt,V) = Ω (Φ(·),Ψ(·),V) = Ω (C,W,V) . (4)

In the following, we define the dense correspondence predictor Φ, the importance weighting Ψ and
the optimizer Ω, and describe a fully differentiable approach for optimizing Φ and Ψ such that we
can estimate dense correspondences with importance weights best suited for non-rigid tracking.

4.1 Dense Correspondence Prediction

The dense correspondence prediction function Φ takes as input a pair of source and target RGB
images (Is, It), and for each source pixel location u ∈ Πs ⊂ R2 it outputs a corresponding pixel
location in the target image It, which we denote by cu ∈ Πt ⊂ R2. Formally, Φ is defined as

Φ : RH×W×3 × RH×W×3 → RH×W×2, (Is, It) 7→ Φ (Is, It) = C, (5)

where C is the resulting dense correspondence map. The function Φ is represented by a deep neural
network that leverages the architecture of a state-of-the-art optical flow estimator [30].

4.2 Correspondence Importance Weights

For each source pixel u ∈ Πs ⊂ R2 and its correspondence cu ∈ Πt ⊂ R2, we additionally predict
an importance weight wu ∈ (0, 1) by means of the weighting function Ψ. The latter takes as input
the source RGB-D image Zs, the corresponding sampled target frame values Z ′t, and intermediate
features from the correspondence network Φ, and outputs weights for the correspondences between
source and target. Note that Z ′t is the result of bilinearly sampling [14] the target image Zt at the
predicted correspondence locations C. The last layer of featuresH of the correspondence network Φ,
with dimension D = 565, are used to inform Ψ. The weighting function is thus defined as

Ψ : RH×W×6×RH×W×6×RH×W×D → RH×W×1, (Zs,Z ′t,H) 7→ Ψ (Zs,Z ′t,H) =W. (6)
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4.3 Differentiable Optimizer

We introduce a differentiable optimizer Ω to estimate the deformation graph parameters T , given the
correspondence map C, importance weightsW , and N graph nodes V:

Ω : RH×W×2 × RH×W×1 × RN×3 → RN×6, (C,W,V) 7→ Ω (C,W,V) = T , (7)

with C andW estimated by functions Φ (Eq. 5) and Ψ (Eq. 6), respectively. Using the predicted dense
correspondence map C, we establish the data term for the non-rigid tracking optimization. Specifically,
we use a 2D data term that operates in image space and a depth data term that leverages the depth
information of the input frames. In addition to the data terms, we employ an As-Rigid-As-Possible
regularizer [28] to encourage node deformations to be locally rigid, enabling robust deformation
estimates even in the presence of noisy input cues. Note that the resulting optimizer module Ω is fully
differentiable, but contains no learnable parameters. In summary, we formulate non-rigid tracking as
the following nonlinear optimization problem:

arg min
T

(
λ2DE2D(T ) + λdepthEdepth(T ) + λregEreg(T )

)
. (8)

2D reprojection term. Given the outputs of the dense correspondence predictor and weighting
function, Φ (Is, It) and Ψ (Zs,Z ′t,H), respectively, we query for every pixel u in the source frame
its correspondence cu and weight wu to build the following energy term:

E2D(T ) =
∑

u∈Πs

w2
u ‖πc(Q(pu, T ))− cu‖22 , (9)

where πc : R3 → R2, p 7→ πc(p) is a perspective projection with intrinsic parameters c and
pu = π−1

c (u, du) as defined in Eq. 1. Each pixel is back-projected to 3D, deformed using the current
graph motion estimate as described in Eq. 2 and projected onto the target image plane. The projected
deformed location is compared to the predicted correspondence cu.

Depth term. The depth term leverages the depth cues of the source and target images. Specifically,
it compares the z components of a warped source point, i.e., [Q(pu, T )]z , and a target point sampled
at the corresponding location cu using bilinear interpolation:

Edepth(T ) =
∑

u∈Πs

w2
u

(
[Q(pu, T )]z − [Pt(cu)]z

)2
. (10)

Regularization term. We encourage the deformation of neighboring nodes in the deformation
graph to be locally rigid. Each node vi ∈ V has at most K = 8 neighbors in the set of edges E ,
computed as nearest nodes using geodesic distances. The regularization term follows [28]:

Ereg(T ) =
∑

(vi,vj)∈E

∥∥∥eω̂vi (vj − vi) + vi + tvi
− (vj + tvj

)
∥∥∥

2

2
. (11)

Equation 8 is minimized using the Gauss-Newton algorithm, as described in Algorithm 1. In the
following, we denote the number of correspondences by |C| and the number of graph edges by |E|.
Moreover, we transform all energy terms into a residual vector r ∈ R3|C|+3|E|. For every graph node,
we compute partial derivatives with respect to translation and rotation parameters, constructing a
Jacobian matrix J ∈ R(3|C|+3|E|)×6N , where N is the number of nodes in the set of vertices V .
Analytic formulas for partial derivatives are described in the supplemental material.

Initially, the deformation parameters are initialized to T0 = 0, corresponding to zero translation and
identity rotations. In each iteration n, the residual vector rn and the Jacobian matrix Jn are computed
using the current estimate Tn, and the following linear system is solved (using LU decomposition) to
compute an increment ∆T :

JTnJn∆T = −JTnrn. (12)
At the end of every iteration, the motion estimate T is updated as Tn+1 = Tn+ ∆T . Most operations
are matrix-matrix or matrix-vector multiplications, which are trivially differentiable. Derivatives of
the linear system solve operation are computed analytically, as described in [2] and detailed in the
supplement. We use max_iter = 3 Gauss-Newton iterations, which encourages the correspondence
prediction and weight functions, Φ and Ψ, respectively, to make predictions such that convergence
in 3 iterations is possible. In our experiments we use (λ2D, λdepth, λreg) = (0.001, 1, 1).
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Algorithm 1 Gauss-Newton Optimization
1: C ← Φ (Is, It) . Estimate correspondences
2: W ← Ψ (Zs,Z ′t,H) . Estimate importance weights
3: function SOLVER(C,W,V)
4: T ← 0
5: for n← 0 to max_iter do
6: J, r← ComputeJacobianAndResidual(V, T ,Zs,Z ′t, C,W)
7: ∆T ← LUDecomposition(JTJ∆T = −JT r) . Solve linear system
8: T ← T + ∆T . Apply increment
9: return T

4.4 End-to-end Optimization

Given a dataset of samples Xs,t = {[Is|Ps], [It|Pt],V}, our goal is to find the parameters φ and ψ
of Φφ and Ψψ, respectively, so as to estimate the motion T of a deformation graph G defined over
the source RGB-D frame. This can be formulated as a differentiable optimization problem (allowing
for back-propagation) with the following objective:

arg min
φ,ψ

∑

Xs,t

λcorrLcorr(φ) + λgraphLgraph(φ, ψ) + λwarpLwarp(φ, ψ) (13)

Correspondence loss. We use a robust q-norm as in [30] to enforce closeness of correspondence
predictions to ground-truth:

Lcorr(φ) = M̃C( |Φφ (Is, It)− C̃|+ ε)q. (14)

Operator | · | denotes the `1 norm, q < 1 (we set it to q = 0.4) and ε is a small constant. Ground-truth
correspondences are denoted by C̃. Since valid ground truth for all pixels is not available, we employ
a ground-truth mask M̃C to avoid propagating gradients through invalid pixels.

Graph loss. We impose an l2-loss on node translations t (ground-truth rotations are not available):

Lgraph(φ, ψ) = M̃V
∥∥∥
[

Ω
(
Φφ (Is, It) ,Ψψ (Zs,Z ′t,H) ,V

)
︸ ︷︷ ︸

T

]
t
− t̃
∥∥∥

2

2
, (15)

where [ · ]t : RN×6 → RN×3, T 7→ [T ]t = t extracts the translation part from the graph motion T .
Node translation ground-truth is denoted by t̃ and M̃V masks out invalid nodes. Please see the
supplement for further details on how M̃V is computed.

Warp loss. We have found that it is beneficial to use the estimated graph deformation T to deform
the dense source point cloud Ps and enforce the result to be close to the source point cloud when
deformed with the ground-truth scene flow S̃:

Lwarp(φ, ψ) = M̃S
∥∥∥Q
(
Ps,Ω

(
Φφ (Is, It) ,Ψψ (Zs,Z ′t,H) ,V

)
︸ ︷︷ ︸

T

)
− (Ps + S̃)

∥∥∥
2

2
. (16)

Here, we extend the warping operation Q (Eq. 2) to operate on the dense point cloud Ps element-wise,
and define M̃S to mask out invalid points.

Note that We found it to be a more general notation to disentangle them (e.g., for scenarios where
graph nodes are not sampled on the RGB-D frame).

4.5 Neural Non-rigid Tracking for 3D Reconstruction

We introduce our differentiable tracking module into the non-rigid reconstruction framework of
Newcombe et al. [23]. In addition to the dense depth ICP correspondences employed in the original
method, which help towards local deformation refinement, we employ a keyframe-based tracking
objective. Without loss of generality, every 50th frame of the sequence is chosen as a keyframe, to
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Figure 3: Qualitative comparison of our method with DynamicFusion [23] and DeepDeform [4] on
test sequences from [4]. The rows show different time steps of the sequence.

which we establish dense correspondences including the respective weights. We apply a conservative
filtering of the predicted correspondences based on the predicted correspondence weights using a
fixed threshold δ = 0.35 and re-weight the correspondences based on bi-directional consistency, i.e.,
keyframe-to-frame and frame-to-keyframe. Using the correspondence predictions and correspondence
weights of valid keyframes (> 50% valid correspondences), the non-rigid tracking optimization
problem is solved. The resulting deformation field is used to integrate the depth frame into the
canonical volume of the object. We refer to the original reconstruction paper [23] for details regarding
the fusion process.

5 Experiments

In the following, we evaluate our method quantitatively and qualitatively on both non-rigid tracking
and non-rigid reconstruction. To this end, we use the DeepDeform dataset [4] for training, with the
given 340-30-30 train-val-test split of RGB-D sequences. Both non-rigid tracking and reconstruction
are evaluated on the hidden test set of the DeepDeform benchmark.

5.1 Training Scheme

The non-rigid tracking module has been implemented using the PyTorch library [24] and trained
using stochastic gradient descent with momentum 0.9 and learning rate 10−5. We use an Intel
Xeon 6240 Processor and an Nvidia RTX 2080Ti GPU. The parameters of the dense correspon-
dence prediction network φ are initialized with a PWC-Net model pre-trained on FlyingChairs [6]
and FlyingThings3D [22]. We use a 10-factor learning rate decay every 10k iterations, requiring

Table 1: We evaluate non-rigid tracking on the DeepDeform dataset [4], showing the benefit of
end-to-end differentiable optimizer losses and self-supervised correspondence weighting. We denote
correspondence prediction as Φc, Φc+g and Φc+g+w, depending on which losses Lcorr, Lgraph, Lwarp

are used, and correspondence weighting as Ψsupervised and Ψself-supervised, either using an additional
supervised loss or not.

Model EPE 3D (mm) Graph Error 3D (mm)

Φc 44.05 67.25
Φc+g 39.12 57.34
Φc+g+w 36.96 54.24

Φc + Ψsupervised 28.95 36.77
Φc+g+w + Ψsupervised 27.42 34.68
Φc+g+w + Ψself-supervised 26.29 31.00
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about 30k iterations in total for convergence, with a batch size of 4. For optimal performance,
we first optimize the correspondence predictor Φφ with (λcorr, λgraph, λwarp) = (5, 5, 5), without
the weighting function Ψψ. Afterwards, we optimize the weighting function parameters ψ with
(λcorr, λgraph, λwarp) = (0, 1000, 1000), while keeping φ fixed. Finally, we fine-tune both φ and ψ
together, with (λcorr, λgraph, λwarp) = (5, 5, 5).

5.2 Non-rigid Tracking Evaluation

For any frame pair Xs,t in the DeepDeform data [4], we define a deformation graph G by uniformly
sampling graph nodes V over the source object in the RGB-D frame, given a segmentation mask of
the former. Graph node connectivity E is computed using geodesic distances on a triangular mesh
defined over the source depth map. As a pre-processing step, we filter out any frame pairs where
more than 30% of the source object is occluded in the target frame. In Table 1 non-rigid tracking
performance is evaluated by the mean translation error over node translations t (Graph Error 3D),
where the latter are compared to ground-truth with an l2 metric. In addition, we evaluate the dense
end-point-error (EPE 3D) between the source point cloud deformed with the estimated graph motion,
Q(Ps, T ), and the source point cloud deformed with the ground-truth scene flow, Ps + S̃. To
support reproducibility, we report the mean error metrics of multiple experiments, running every
setting 3 times. We visualize the standard deviation with an error plot in the supplement.

We show that using graph and warp losses, Lgraph and Lwarp, and differentiating through the non-
rigid optimizer considerably improves both EPE 3D and Graph Error 3D compared to only using the
correspondence loss Lcorr. Adding self-supervised correspondence weighting further decreases the
errors by a large margin. Supervised outlier rejection with binary cross-entropy loss does bring an
improvement compared to models that do not optimize for the weighting function Ψψ (please see
supplemental material for details on this supervised training of Ψψ). However, optimizing Ψψ in a
self-supervised manner clearly outperforms the former supervised setup. This is due to the fact that,
in the self-supervised scenario, gradients that flow from Lgraph and Lwarp through the differentiable
solver Ω can better inform the optimization of Ψψ by minimizing the end-to-end alignment losses.

5.3 Non-rigid Reconstruction Evaluation

We evaluate the performance of our non-rigid reconstruction approach on the DeepDeform benchmark
[4] (see Table 2). The evaluation metrics measure deformation error, a 3D end-point-error between
tracked and annotated correspondences, and geometry error, which compares reconstructed shapes
with annotated foreground object masks. Our approach performs about 8.9% better than the state-
of-the-art non-rigid reconstruction approach of Božič et al. [4] on the deformation metric. While
our approach consistently shows better performance on both metrics, we also significantly lower
the per-frame runtime to 27 ms per keyframe, in contrast to [4], which requires 2299 ms. Thus,
our approach can also be used with multiple keyframes at interactive frames rates, e.g., 90 ms for
5 keyframes and 199 ms for 10 keyframes.

Table 2: Our method achieves state-of-the-art non-rigid reconstruction results on the DeepDeform
benchmark [4]. Both our end-to-end differentiable optimizer and the self-supervised correspondence
weighting are necessary for optimal performance. Not only does our approach achieve lower
deformation and geometry error compared to state of the art, our correspondence prediction is about
85× faster.

Method Deformation error (mm) Geometry error (mm)

DynamicFusion [23] 61.79 10.78
VolumeDeform [13] 208.41 74.85
DeepDeform [4] 31.52 4.16

Ours (Φc) 54.85 5.92
Ours (Φc+g+w) 53.27 5.84
Ours (Φc + Ψsupervised) 40.21 5.39
Ours (Φc+g+w + Ψself-supervised) 28.72 4.03
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To show the influence of the different learned components of our method, we perform an ablation
study by disabling either of our two main components: the end-to-end differentiable optimizer or
the self-supervised correspondence weighting. As can be seen, our end-to-end trained method with
self-supervised correspondence weighting demonstrates the best performance. Qualitatively, we show
this in Figure 3. In contrast to DynamicFusion [23] and DeepDeform [4], our method is notably more
robust in fast motion scenarios. Additional qualitative results and comparisons to the methods of Guo
et al. [10] and Slavcheva et al. [26] are shown in the supplemental material.

6 Conclusion

We propose Neural Non-Rigid Tracking, a differentiable non-rigid tracking approach that allows
learning the correspondence prediction and weighting of traditional tracking pipelines in an end-to-
end manner. The differentiable formulation of the entire tracking pipeline enables back-propagation
to the learnable components, guided by a loss on the tracking performance. This not only achieves
notably improved tracking error in comparison to state-of-the-art tracking approaches, but also leads
to better reconstructions, when integrated into a reconstruction framework like DynamicFusion [23].
We hope that this work inspires further research in the direction of neural non-rigid tracking and
believe that it is a stepping stone towards fully differentiable non-rigid reconstruction.

Broader Impact

Our paper presents learned non-rigid tracking. It is establishing the basis for the important research
field of non-rigid tracking and reconstruction, which is needed for a variety of applications where
man-machine and machine-environment interaction is required. These applications range from the
field of augmented and virtual reality to autonomous driving and robot control. In the former, a precise
understanding of dynamic and deformable objects is of major importance in order to provide an
immersive experience to the user. Applications such as holographic calls would greatly benefit from
research like ours. This, in turn, could provide society with the next generation of 3D communication
tools. On the other hand, as a low-level building block, our work has no direct negative outcome,
other than what could arise from the aforementioned applications.
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Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction

Aljaž Božič1 Pablo Palafox1 Michael Zollhöfer2 Justus Thies1 Angela Dai1 Matthias Nießner1

1Technical University of Munich 2Facebook Reality Labs Research

Figure 1: Neural Deformation Graphs: given range input data, represented as a signed distance field, our method predicts
globally-consistent deformation graph that is used to reconstruct the non-rigidly deforming surface of an object. The surface
of the object is represented as a set of implicit functions centered around the deformation graph nodes. Our global optimiza-
tion provides consistent surface and deformation prediction, enabling robust tracking of an observed input sequence and even
multiple disjoint captures of the same object (as we do not assume sequential input data).

Abstract

We introduce Neural Deformation Graphs for globally-
consistent deformation tracking and 3D reconstruction of
non-rigid objects. Specifically, we implicitly model a defor-
mation graph via a deep neural network. This neural de-
formation graph does not rely on any object-specific struc-
ture and, thus, can be applied to general non-rigid defor-
mation tracking. Our method globally optimizes this neural
graph on a given sequence of depth camera observations
of a non-rigidly moving object. Based on explicit viewpoint
consistency as well as inter-frame graph and surface con-
sistency constraints, the underlying network is trained in
a self-supervised fashion. We additionally optimize for the
geometry of the object with an implicit deformable multi-
MLP shape representation. Our approach does not as-
sume sequential input data, thus enabling robust tracking
of fast motions or even temporally disconnected recordings.
Our experiments demonstrate that our Neural Deformation
Graphs outperform state-of-the-art non-rigid reconstruc-
tion approaches both qualitatively and quantitatively, with
64% improved reconstruction and 54% improved deforma-
tion tracking performance. Code is publicly available.1

1aljazbozic.github.io/neural deformation graphs

1. Introduction

Capturing non-rigidly deforming surfaces is essential to-
wards reconstructing and understanding real-world environ-
ments, which are often highly dynamic. While impres-
sive advances have been made in reconstructing static 3D
scenes [8, 21], dynamic tracking and reconstruction re-
mains very challenging. A plethora of domain-specific dy-
namic tracking methods has been developed (e.g., human
bodies, faces, hands), leveraging strong domain shape and
motion priors for robust tracking [4, 28, 31, 41]. How-
ever, real-world environments encompass a vast diversity
of deformable objects – including people with clothing
or animals – making domain specific shape priors often
intractable for general deformable reconstruction; in this
work, we thus focus on general non-rigid 3D reconstruction
without shape or motion priors for general object tracking
and reconstruction.

A seminal work in non-rigid 3D reconstruction is Dy-
namicFusion [32], which was the first approach to demon-
strate real-time dense reconstruction of dynamic scenes us-
ing just a single RGB-D sensor. DynamicFusion showed
promising results towards dynamic reconstruction, but still
struggles in many real-world scenarios, which typically in-
clude strong deformations and fast frame-to-frame motion,
due to its low-level, local correspondence association step.
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In particular, the incremental construction of a deformation
graph is prone to error aggregation and can lead to track-
ing failures. Recently, data-driven methods based on deep
learning have been introduced [3, 25, 2] that learn priors
of non-rigidly deforming objects from dense flow annota-
tions. These approaches leverage a similar incremental de-
formation graph construction as DynamicFusion, but learn
to establish more robust tracking via more sophisticated
correspondence optimization based on data-driven priors.
However, despite more robust correspondences, these meth-
ods still operate on a frame-by-frame basis, thus, aggregate
tracking errors and are unable to recover if tracking fails. In
order to address these shortcomings without assuming data-
driven priors, we propose a globally-consistent neural de-
formation graph which allows for non-rigid reconstruction
from commodity sensor observations, represented as signed
distance fields (see Fig. 1). The neural deformation graph
gives access to the per frame deformation graph nodes and
stores the global graph connectivity. To robustly optimize
for consistent deformations over fast motions, we introduce
viewpoint consistency (independently for every frame) as
well as graph and surface consistency constraints (between
pairs of frames). Our viewpoint consistency loss measures
the consistency of graph node position predictions w.r.t. ro-
tation augmentation. The graph and surface consistency
losses encourage deformations to be modeled in our Neural
Deformation Graph such that local graph edge distances are
preserved between frames and the deformed surface geom-
etry of a source frame aligns well with the geometry of the
target frame. Additionally, our approach does not assume
temporally close frames, thus making it easily applicable to
low FPS settings or the combination of independently cap-
tured depth recordings.

Since there exists no general canonical pose (like a T-
pose of a human [28]) that fits all deformable objects, we
avoid modeling it explicitly. Instead, we propose to em-
ploy a set of implicit functions that are centered around
the deformation graph nodes. Specifically, we model local
signed distance functions (SDFs) using multi-layer percep-
trons (MLPs) that can be deformed to fit any frame, without
requiring an explicit canonical pose. The global shape is
evaluated by the integration of these local MLP predictions.

To summarize, our technical contributions are:

• a globally-optimized deformation graph that is able to
handle deformations present in all frames of an un-
structured dataset or a sequence of an object;

• a combination of per-frame viewpoint consistency and
frame-to-frame graph and surface consistency for ro-
bust tracking of fast deformations;

• an implicit deformable multi-MLP shape representa-
tion anchored on the scene-specific deformation graph.

2. Related Work

Our approach is leveraging a low dimensional deforma-
tion graph to model the non-rigid deformations of an object,
while the actual surface is represented by an implicit func-
tion by means of a multi-layer perceptron (MLP). We will
discuss the most related approaches in these two fields.

Non-rigid Reconstruction Non-rigid reconstruction is a
highly active research field, in particular using commodity
RGB-D sensors such as the Kinect. The seminal work Dy-
namicFusion of Newcombe et al. [32] tracks deformable
motion and reconstructs the object’s shape in an incremen-
tal fashion, i.e., frame-by-frame. While this approach relies
on local depth correspondences, follow-up methods addi-
tionally use sparse SIFT features [20], dense color track-
ing [17] or dense SDF alignment [37, 38]. These meth-
ods show impressive results, but often struggle with fast
frame-to-frame motion given their use of hand-crafted cor-
respondences. Bozic et al. [3] introduced an annotated
dataset of non-rigid motions that allows to train data-driven
non-rigid reconstruction methods with learned correspon-
dences [3, 25, 2]. While learned correspondences improve
tracking performance, the approaches are still inherently
limited by the employed frame-to-frame tracking paradigm,
i.e., tracking errors accumulate over time, and if tracking is
lost it is unable to recover. Tracking robustness can also be
improved without any learned priors by using multi-view
input data [7, 15] (setups with more than 50 cameras) and
high-speed cameras [10] (8 cameras at 200 frames per sec-
ond (FPS)). In contrast to these frame-to-frame tracking ap-
proaches, there are methods that focus on global non-rigid
optimization [11, 44, 19, 35]; however, these methods ei-
ther assume ground-truth optical flow [35], or they share
the same drawbacks of the aforementioned frame-to-frame
tracking approaches [11, 44, 19], and thus have difficulties
handling fast deformable motion.

Deformation Graphs State-of-the-art non-rigid recon-
struction methods often model deformations with a sparse
deformation graph, following the Embedded Deformation
[40] formulation. Deformation graphs offer a robust al-
ternative to dense motion estimation with optical flow or
scene flow methods, since they can estimate plausible mo-
tion even in partially occluded shape parts, when combined
with motion regularization such as ARAP [39]. Existing
non-rigid reconstruction approaches build the deformation
graph incrementally, i.e., frame-by-frame, which can lead to
unstable graph configurations in the case of tracking errors.
In our approach, we predict a globally consistent deforma-
tion graph that can represent motion in all frames of the
sequence, while being robust w.r.t. tracking errors present
in challenging frames.
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Figure 2: A Neural Deformation Graph encodes a 643 SDF grid to a graph embedding with graph node positions V, rotations
R and importance weights W. To compute an SDF value for a sample point (X,Y, Z) ∈ R3, the point is transformed to
local coordinates around each node, and passed through locally embedded implicit functions that are represented as MLPs;
the global SDF value is computed by interpolating the local MLP predictions using the node radii r and importance weights
W. For graph regularization, a set of affinity matrices Ai ∈ RN×N and a node-to-node distance matrix D ∈ RN×N are
globally optimized.

Sparse motion representations are common for human
deformation modeling as well: the human skeletons used
in [28, 4] are also instances of deformation graphs. Some
works have tried to extend human skeletons to more gen-
eral objects, but with limited success. In [1], a fixed
generic skeleton is fitted to different object meshes, result-
ing in human-like re-animation of characters, but not gen-
eral enough to be able to represent all degrees of freedom of
general shapes. Fixed hierarchical deformation graphs are
used for differentiable non-rigid tracking in [43], but a pre-
computed graph template is required, with fixed connectiv-
ity on different coarseness levels. Thus, it is only applicable
to specific object types (e.g., used for hand tracking). Data-
driven skeleton prediction has been introduced in [45], but
it requires a dataset of manually designed skeletons as su-
pervision, which is hard to obtain for general objects. Our
method, instead, estimates both deformation graph nodes
and connectivity of general deformable objects in a self-
supervised manner.

Implicit Surface Representation Representing surface
geometry implicitly with a signed distance field (SDF) has
been extensively used in the non-rigid reconstruction com-
munity. An efficient algorithm for SDF grid construction
from range images has been presented in [8] and extended to
support non-rigid deformations in [32]. These methods rely
on a discretized 3D grid to store the SDF, which can cause
loss of detail, since grid resolution is limited by available
memory. A promising direction is to not use discretized
grids at all, but instead represent the SDF function continu-

ously using a multi-layer perceptron (MLP), as introduced
in [34, 36, 6]. An implicit surface representation is used
in [18] for accurate human reconstruction, where the SDF
is estimated in a canonical T-pose space. Since there ex-
ist no methods for estimation of canonical T-pose spaces
for general non-rigid shapes, we instead base our method
on the approach of Deng et al. [9]. Assuming ground-truth
dense body and skeleton tracking, they represent the hu-
man body with multiple MLPs, one for each bone and in its
own canonical space, centered around the bone, therefore
eliminating the need for a T-pose space. In our general re-
construction approach, we estimate a deformation graph via
self-supervision, and append an MLP to each deformation
node to represent the surface of the observed object.

While most implicit reconstruction approaches do not
produce consistent tracking, methods such as [13, 12, 42]
reconstruct objects in a patch-based manner and empiri-
cally observe consistency of patches across different de-
formations. We compare our method, which leverages ex-
plicit consistency constraints, to these approaches to evalu-
ate such implicit patch consistency.

3. Method

Given a sequence of signed distance fields observing a
non-rigidly deforming surface, our method estimates the
dense deformable motion in the sequence as well as recon-
structs the geometry of the observed shape. Specifically, we
apply self-supervised learning on the sequence that we want
to reconstruct. A convolutional neural network that takes a
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signed distance field (SDF) as input is trained to predict a
consistent deformation graph. We call this neural network
Neural Deformation Graph, as it implicitly stores the de-
formation graphs of each frame. Using the predicted graph
node positions and orientations, we learn implicit functions
to represent the shape of each graph node and, thus, the
entire shape of the object. The implicit functions are rep-
resented as a multi-layer perceptron (MLP). These MLPs
take a 3D point centered around the node position as in-
put and predict its signed distance value, defining the local
geometry around the node. Warping all node MLPs to ev-
ery time step and interpolating their local part reconstruc-
tion results in an accurate implicit deformable shape recon-
struction without the need for an explicit canonical pose. In
addition to the sample point locations, the MLPs are con-
ditioned on the predicted graph positions, which enables
reconstruction of pose-dependent geometry detail. Using
Marching Cubes [29], the geometry can be extracted as a
mesh at every time step, with dense correspondences esti-
mated throughout the entire sequence.

3.1. Neural Deformation Graphs

A deformation graph consists of graph nodes and graph
edges. We represent the graph nodes V of each frame of
the sequence implicitly by a neural network (Neural Defor-
mation Graph). The graph connectivity is explicitly stored
for the entire sequence as an affinity matrix E ∈ RN×N

(N = |V|). A node v ∈ V is characterized by its 3D posi-
tion v ∈ R3, rotation R ∈ R3×3, importance weight w ∈ R
(describing importance of the node, explained below), ra-
dius r ∈ R (describing the spatial influence of the node),
and a local implicit shape function f . We denote the set of
node positions V = {v}, rotations R = {R}, importance
weights W = {w}, radii r = {r}, and shape functions
f = {f}, with V = (V,R,W, r, f).

To generate the signed distance fields needed for our
method, we assume four calibrated cameras. The depth
maps at each time step k are back-projected into a common
coordinate system and converted into a signed distance field
Sk of dimension 643 using static volumetric reconstruction
[22]. Note that due to occlusions this representation is par-
tial, thus only an approximate signed distance field is used
for our deformation graph prediction. Based on this in-
put, we estimate (Vk,Rk,Wk) using a Neural Deforma-
tion Graph (NDG) which is based on a 3D convolutional
neural network (see supplemental material for architecture
details):

(Vk,Rk,Wk) = NDG(Sk).

The radii r of the graph nodes as well as the graph node
affinities E are jointly optimized over the entire input se-
quence. In addition to the affinity matrix, we also store the
average edge lengths (node-to-node distances) D ∈ RN×N ,
which are used for regularization. For every graph node, we

also optimize for a local MLP which is used to represent the
surface of the object (see Sec 3.3).

We define a fixed number of graph nodes (N = 100)
in our experiments; note that this is an upper bound on the
effective number of nodes, since the importance weights al-
low eliminating the effect of redundant nodes, making our
method applicable to shapes of different size and structure
complexity. To achieve a consistent graph node prediction
via self-supervised training, we employ the following con-
straints for each time-step k.

Graph coverage loss. A deformation graph should cover
the entire object to ensure that every deformable part can be
represented while simultaneously enforcing that free space
is not covered. To this end, we employ a loss that encour-
ages the coverage of the shape by the node centers (w.r.t.
their radii). We define the influence of a node (with posi-
tion v, radius r > 0, and importance weight w > 0) on a
point x ∈ R3 using a weighted Gaussian function:

G(x,v, r, w) = w · exp
( ||x− v||22

r2

)

The coverage of a point x ∈ R3 is computed by summing
the corresponding contributions of all nodes, and applying a
sigmoid to encourage a fast transition from covered (where
coverage value is 1) to free space (where coverage value
should be 0), enabling more accurate surface coverage:

C(x,Vk, r,Wk) = σ

(
s

((∑

v,r,w

G(x,v, r, w)
)

− d

))

We empirically set d = 0.07 and s = 100.0. To compute
the coverage loss, we sample points Pun uniformly in the
shape’s bounding box and points Pns near the surface re-
gion. Points are assigned coverage value of c = 0 if they
are visible in at least one of the cameras, otherwise they are
assigned c = 1. The coverage loss then compares predicted
coverage of these point samples with the pre-computed cov-
erage using an ℓ2 loss:

Lcoverage =λun

∑

(x,c)∈Pun

||C(x,Vk, r,Wk)− c||22 +

λns

∑

(x,c)∈Pns

||C(x,Vk, r,Wk)− c||22

Node interior loss. In addition to the graph coverage loss,
we require the node positions to be predicted inside the
shape. If any node’s position v is predicted outside the
observed surface Sk, i.e., in the SDF region with posi-
tive signed distance value, we penalize it to encourage the
node’s position to be inside the surface:

Linterior =
∑

v∈Vk

max (interp(Sk,v), 0)
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Here interp(Sk,v) is the trilinear interpolation of Sk at v.

Affinity consistency loss. We also optimize for a global
affinity matrix E = {eij | i ∈ [1, N ], j ∈ [1, N ]} represent-
ing node-to-node affinities across the entire input sequence.
We compute node-to-node Euclidean distances ||vk

i −vk
j ||2

at each frame k, and weight them by connectivity weights
eij ; this should remain consistent over the whole sequence
(relative loss, preserving edge length) and relatively small
(absolute loss, preferring close-by connections). To ensure
global distance consistency, we additionally optimize over
average node-to-node distances dij , resulting in the affinity
loss:

Laffinity =λrel

∑

i 6=j

eij

∣∣∣d2ij − ||vk
i − vk

j ||22
∣∣∣
1
+

λabs

∑

i 6=j

eij ||vk
i − vk

j ||22

Neighbor diversity loss. We enforce a sparse connectiv-
ity of the graph. Specifically, each node can have up to K
neighbors (K = 2 in our setting); we use a (soft) loss to
encourage these neighbors to be different. To achieve this,
we optimize over a set of matrices A1, . . . ,AK ∈ RN×N ,
and construct E ∈ RN×N as:

E =
1

K

K∑

i=1

softmax(Ai)

We use softmax over the rows of matrix Ai to guarantee all
affinity elements of a node to be positive and add up to 1. To
enforce unique graph neighbors, a neighbor diversity loss
is employed, encouraging different matrices Ai to produce
different neighbors:

Lsparsity =
∑

l 6=m

||softmax(Al)⊙ softmax(Am)||2F

We use ⊙ to denote the element-wise product.

3.2. Global Deformation Optimization

We compute deformation between any pair of frames by
interpolating the nodes’ relative motions (translations and
rotations), weighted by their influences G. For a source
frame s and target frame t, the warping of point x ∈ R3

from frame s to frame t is defined as:

Ws→t(x) =
N∑

i=1

G(x,vs
i , ri, w

s
i )(R

t
i(R

s
i )

T(x− vs
i ) + vt

i)

We denoted parameters at the source frame with (·)s and
at the target frame with (·)t. We use the Embedded De-
formation formulation [40] to parameterize frame-to-frame

deformation, but instead of fixed-radius skinning we em-
ploy node influence G as the skinning weight, which en-
ables different skinning effects for every node as well as
frame-adaptive skinning, i.e., skinning can change depend-
ing on the deformation. To ensure globally consistent defor-
mation, we employ a per-frame viewpoint consistency loss
and a surface consistency loss.

Viewpoint consistency loss. Since input observations
may see very different views, we enforce a viewpoint con-
sistency loss for consistent graph node predictions across
varying views. To this end, for each frame k, the rotated
3D input Sk should produce consistent graph node posi-
tions Vk, rotations Rk and importance weights Wk. In our
experiments, we only consider view rotations around the y-
axis, since the camera setup is arranged in the x-z plane. In
each batch, we sample two random angles α and β for ev-
ery sample, and compute rotated inputs πα(Sk) and πβ(Sk)
by trilinear re-sampling of input SDF grid Sk using rotated
grid indices. Viewpoint consistency is then measured by:

Lvc = ||π−1
α NDG(πα(Sk))− π−1

β NDG(πβ(Sk))||22

where the function π−1
φ corrects for the input rotation of

angle φ: π−1
φ (Vk,Rk,Wk) = (RT

φVk, R
T
φRk,Wk).

Surface consistency loss. Surface points from a source
frame s should, after deformation to a target frame t, align
well with the target frame’s SDF grid St. We sample sur-
face points Ps in the source frame and warp them to the
target frame using the predicted deformation, to trilinearly
interpolate the target grid St, encouraging surface points to
be warped to near zero (surface) SDF values:

Lsc =
∑

x∈Ps

(interp(St,Ws→t(x)))
2

This consistency loss is computed between pairs of samples
in the batch, with uniformly sampled batch samples.

3.3. Implicit Surface Reconstruction

We represent the surface of the object as an implicit
function. Specifically, each graph node i defines local ge-
ometry over the influence of that node, with an implicit
function fi, represented by an MLP. This MLP takes a
location in the local space as input and outputs an SDF
value. Any point x ∈ R3 in the current frame k can be
transformed to the local coordinate system of node i as
W−1

k,i (x) = Penc((R
k
i )

T(x − vk
i )). Penc : R3 → RF

denotes positional encoding that transforms 3D local co-
ordinates to a high-dimensional frequency domain (in our
case F = 30), as presented in [30]. Inspired by Deng et
al. [9], we condition each fi on the predicted input frame’s
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graph parameters, such that they can encode pose-specific
geometry details. We train a linear layer Πi(·) to select a
sparse pose code (of dimension D = 32) for every fi from
the graph predictions NDG(Sk). Given this input of dimen-
sion D + F , we use 8 linear layers with feature dimension
of 32, a leaky ReLU (with negative slope of 0.01) as activa-
tion function, and skip connections between the input and
the 6th linear layer.

We compute the full surface reconstruction Sk as an SDF
created from interpolating the SDF output values of each
local MLP fi, using the aforementioned skinning weights
and transformations to the current frame by the estimated
nodes’ rotations and translations:

Sk(x) =
N∑

i=1

G(x,vk
i , ri, w

k
i )fi(W−1

k,i (x),Πi(NDG(Sk)))

This operation is efficiently implement using group convo-
lutions. During training, we use the same point samples Pun

and Pns as for the graph coverage loss, sampled uniformly
and near the surface, but instead of the 0/1 coverage values
we use their approximate SDF values. We then optimize for
{fi} using the SDF reconstruction loss:

Lrecon =
∑

(x,sdf)∈Pun∪Pns

|Sk(x)− sdf|1

3.4. Training Details

We use the Adam solver [23] with momentum of 0.9 to
optimize the complete loss:

L = Lcoverage + λinteriorLinterior + Laffinity+

λsparsityLsparsity + λvcLvc + λscLsc + λreconLrecon

Our method is trained in two stages. We initially train the
CNN encoder with all losses except the reconstruction loss,
and afterwards train the multi-MLP network using only the
reconstruction loss, with the CNN encoder frozen.

The CNN encoder is trained for 500k iterations with a
learning rate of 5e−5 and a batch size of 16; we balance the
losses with λun = 1.0, λns = 0.1, λinterior = 1.0, λrel =
0.1, λabs = 0.1, λsparsity = 1e−8, λvc = (10.0, 1.0, 1e−4)
(for graph node’s position, weight and rotation, respec-
tively) and λsc = 1e−6. Every 50k iterations we increase
the loss weights λrel, λabs, λsparsity, λsc by a factor of 10,
up to maximum weights λmax

rel = 10000.0, λmax
abs = 1.0,

λmax
sparsity = 1e−3 and λmax

sc = 1000.0.
The multi-MLP network is trained for 500k iterations

with a learning rate of 5e−4 and a batch size of 4, only based
on the reconstruction loss with λrecon = 1.0.

4. Results
To evaluate our proposed approach, we conducted a se-

ries of experiments on real and synthetic recordings where
ground truth data is available.

Method Chamfer EPE3D

SIF [13] 1.12 8.56
LDIF [12] 2.41 10.40
OccupancyFlow [33] 53.83 16.29
Multiview DynamicFusion [32] 2.19 3.06
MV DF [32] + FlowNet3D [27] 1.93 2.55
Robust L0 Non-rigid Tracking [16] 2.31 2.50

Ours: GRAPH 0.50 8.93
Ours: GRAPH + AO 0.46 8.03
Ours: GRAPH + AO + VC 0.44 4.12

Ours: GRAPH + AO + VC + SC 0.40 1.16

Table 1: We show quantitative comparisons with state-
of-the-art approaches, evaluating geometry using chamfer
distance (×10−4), and deformation using EPE3D (×10−2).
We also include an ablation study of different components
of our method: GRAPH = coverage and interior losses,
AO = affinity optimization with affinity consistency and
sparsity, VC = viewpoint consistency, SC = surface con-
sistency.

Evaluation on Synthetic Data In order to quantitatively
and qualitatively evaluate our method, we make use of syn-
thetic human-like and character sequences from the De-
formingThings4D dataset [26]. To mimic our real data cap-
ture setup, we render 4 fixed depth views for every frame
of synthetic animation, and generate SDF grids from these
4 views. Quantitative evaluation is executed on three se-
quences, including human, character and bear motion, as
shown in Fig. 3. The geometry reconstruction is eval-
uated using L2 Chamfer distance, which computes aver-
age squared bi-directional point-to-point distance between
reconstructed and ground truth geometry for every time
step, thus evaluating accuracy and completeness of geom-
etry. For deformation evaluation, we uniformly sample 10
keyframes per sequence, and compute dense deformation
from each of these keyframes to any other frame, measuring
average L2 End-Point-Error (EPE3D) between estimated
and ground truth motion. The depth data of every sequence
is normalized such that the largest bounding box side length
is equal to 1.0. All numbers are listed w.r.t. this unit cube,
thus, being independent to the scale of the objects.

In Tab. 1 we quantitatively compare our approach to
the state-of-the-art network-based reconstruction methods
SIF [13], LDIF [12] and OccupancyFlow [33], as well as to
the non-rigid reconstruction approach DynamicFusion [32],
which we extend to the multi-view domain, and the Ro-
bust L0 Non-rigid Tracking method [16]. Among the base-
lines the best reconstruction performance (lower Chamfer
distance) is achieved by SIF [13], while the Robust L0
Non-rigid Tracking method [16] obtains better deformation
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Figure 3: We qualitatively compare our method to the baseline methods on synthetic data. Each point is given a color value
w.r.t. its location in the bounding box of the first frame. With perfect tracking and reconstruction, a specific point on the
surface will have the same color throughout the entire sequence, while errors in tracking result in changing surface colors.
Our approach outperforms state of the art in both reconstruction and deformation tracking quality.

tracking performance (lower EPE3D). Our approach out-
performs all methods on both reconstruction and deforma-
tion tracking metrics, achieving 64% better reconstruction
and 54% better deformation tracking results. The improve-
ment is also clearly visible in the qualitative comparisons
shown in Fig. 3. The methods SIF [13] and LDIF [12] pro-
duce less accurate geometry reconstruction with tracking
failures under larger deformations (e.g., flipped legs in the
human sequence). We trained Occupancy Flow [33] on our
sequences, which are noticeably longer (about 500 frames)
than the sequences the authors used (up to 50 frames), re-
sulting in worse performance. The multi-view Dynamic-
Fusion [32] baseline is a specialized framework for both
non-rigid tracking and reconstruction, with coarse-to-fine
multi-frame alignment using depth iterative closest point
(ICP) correspondences and non-rigid volumetric fusion. We
use data-driven correspondences from the off-the-shelf flow
estimator FlowNet3D [27] to further improve the method.
However, it suffers from incomplete geometry because of
the incremental graph construction and surface integration,
and can also not recover from tracking failures. In contrast,
our method is robust in the case of large deformation and
produces complete and accurate geometry reconstruction.

Evaluation on Real Data. Our real data capture setup
consists of 4 Kinect Azure sensors with hardware synchro-
nization. The cameras are calibrated with a checkerboard
using OpenCV [24] and an additional refinement procedure
based on ICP [5]. Before recording an actual sequence,
we record the background to compute the floor plane using
PCA. During capture, we filter out floor points and back-
ground points, i.e., all points outside of a cylinder with di-
ameter 1.8 m and height 2.5 m. We use the wide-field-of-
view depth capture setting with a resolution of 1024×1024
pixels, at the highest available frame-rate of 15 FPS for this
resolution. In Fig. 4, we show a comparison between the
multi-view DynamicFusion approach [32] and ours. Our
approach achieves considerably more accurate deformation
tracking (color is retrieved from the first frame) while also
producing more complete and accurate geometry recon-
struction. More qualitative results are shown in the accom-
panying video.

Ablation Study of Network Components. To evaluate
specific parts of our method, we employ an ablation study.
Specifically, we analyzed the performance of our method by
performing optimization without using certain losses: with-
out affinity related losses (affinity consistency and sparsity
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Figure 4: We show qualitative comparisons of our method with multi-view DynamicFusion [44] on real sequences captured
by four Kinect Azure sensors. Colors represent corresponding locations in the first frame of the sequence to visualize the
tracking quality and consistency.

losses), viewpoint consistency loss and surface consistency
loss. As shown in Tab. 1, using these additional losses vastly
improves the method’s performance. Especially, it results in
a much lower EPE3D error, and, thus, in globally consistent
tracking performance.

Limitations and Future Work. Using our globally con-
sistent Neural Deformation Graph, we show state-of-the-art
tracking and reconstruction quality. Currently, our quality
is limited by the input, i.e., a 643 SDF grid. Sparse 3D
convolutions [14] could be applied to cope with higher res-
olutions. Our approach focuses on the tracking and recon-
struction of the geometry, and not the texture. A texture on
top of the tracked geometry could be estimated (similar to
the color scheme that we show in the results figures) and ad-
ditional losses based on this texture could be employed. In
an over-crowded setting, with many occlusions (e.g. some
parts are never observed), or in a single-view setting, the
self-supervised formulation might be under-constrained. A
data-driven geometry prior could further improve the ro-
bustness of our approach. We believe that there is a po-
tential for several high-impact follow-up works.

5. Conclusion

We introduced Neural Deformation Graph which allows
to reconstruct and track non-rigidly deforming objects in a
globally consistent fashion. It is enabled by a neural net-
work that implicitly stores the deformation graph of the ob-
ject. The network is trained with losses on global consis-
tency, resulting in tracking and reconstruction quality that
surpasses the state of the art by more than 60% w.r.t. the
respective metrics. We believe that our global optimization
of non-rigid motion will be a stepping stone to learn data-
driven priors in the future.
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[3] Aljaž Božič, Michael Zollhöfer, Christian Theobalt, and
Matthias Nießner. Deepdeform: Learning non-rigid rgb-d
reconstruction with semi-supervised data. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 2

[4] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei,
and Yaser Sheikh. Openpose: realtime multi-person 2d
pose estimation using part affinity fields. arXiv preprint
arXiv:1812.08008, 2018. 1, 3

[5] Yang Chen and Gérard Medioni. Object modeling by reg-
istration of multiple range images. Image Vision Comput.,
10:145–155, 01 1992. 7

[6] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll.
Implicit functions in feature space for 3d shape reconstruc-
tion and completion. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
6970–6981, 2020. 3

[7] Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett, Den-
nis Evseev, David Calabrese, Hugues Hoppe, Adam Kirk,
and Steve Sullivan. High-quality streamable free-viewpoint
video. ACM Transactions on Graphics (ToG), 34(4):1–13,
2015. 2

[8] Brian Curless and Marc Levoy. A volumetric method for
building complex models from range images. In Proceedings
of the 23rd annual conference on Computer graphics and
interactive techniques, pages 303–312, 1996. 1, 3

[9] Boyang Deng, JP Lewis, Timothy Jeruzalski, Gerard Pons-
Moll, Geoffrey Hinton, Mohammad Norouzi, and Andrea
Tagliasacchi. Neural articulated shape approximation. In
The European Conference on Computer Vision (ECCV).
Springer, August 2020. 3, 5

[10] Mingsong Dou, Philip Davidson, Sean Ryan Fanello, Sameh
Khamis, Adarsh Kowdle, Christoph Rhemann, Vladimir
Tankovich, and Shahram Izadi. Motion2fusion: Real-time
volumetric performance capture. ACM Transactions on
Graphics (TOG), 36(6):1–16, 2017. 2

[11] Mingsong Dou, Jonathan Taylor, Henry Fuchs, Andrew
Fitzgibbon, and Shahram Izadi. 3d scanning deformable
objects with a single rgbd sensor. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 493–501, 2015. 2

[12] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna,
and Thomas Funkhouser. Local deep implicit functions for
3d shape. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4857–
4866, 2020. 3, 6, 7

[13] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,
William T. Freeman, and Thomas Funkhouser. Learn-
ing shape templates with structured implicit functions. In

Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2019. 3, 6, 7

[14] Benjamin Graham, Martin Engelcke, and Laurens van der
Maaten. 3d semantic segmentation with submanifold sparse
convolutional networks. CVPR, 2018. 8

[15] Kaiwen Guo, Peter Lincoln, Philip Davidson, Jay Busch,
Xueming Yu, Matt Whalen, Geoff Harvey, Sergio Orts-
Escolano, Rohit Pandey, Jason Dourgarian, et al. The re-
lightables: Volumetric performance capture of humans with
realistic relighting. ACM Transactions on Graphics (TOG),
38(6):1–19, 2019. 2

[16] Kaiwen Guo, Feng Xu, Yangang Wang, Yebin Liu, and
Qionghai Dai. Robust non-rigid motion tracking and sur-
face reconstruction using l0 regularization. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 3083–3091, 2015. 6

[17] Kaiwen Guo, Feng Xu, Tao Yu, Xiaoyang Liu, Qionghai Dai,
and Yebin Liu. Real-time geometry, albedo, and motion re-
construction using a single rgb-d camera. ACM Transactions
on Graphics (TOG), 36(3):32, 2017. 2

[18] Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, and
Tony Tung. Arch: Animatable reconstruction of clothed hu-
mans. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 3093–3102,
2020. 3

[19] Matthias Innmann, Kihwan Kim, Jinwei Gu, Matthias
Nießner, Charles Loop, Marc Stamminger, and Jan Kautz.
Nrmvs: Non-rigid multi-view stereo. In The IEEE Win-
ter Conference on Applications of Computer Vision, pages
2754–2763, 2020. 2

[20] Matthias Innmann, Michael Zollhöfer, Matthias Nießner,
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Appendix

Figure C.3: Copyright authorization. Authorization for reuse of paper Neural Deformation
Graphs for Globally-consistent Non-rigid Reconstruction in this dissertation.
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C.4 TransformerFusion: Monocular RGB Scene Reconstruction
using Transformers

Copyright

©2021 NeurIPS. Reprinted, with permission, from
Aljaž Božič, Pablo Palafox, Justus Thies, Angela Dai, and Matthias Nießner
TransformerFusion: Monocular RGB Scene Reconstruction using
Transformers
Conference on Neural Information Processing Systems (NeurIPS) 2021
Details: NeurIPS website

Summary

We introduce TransformerFusion, a transformer-based 3D scene reconstruc-
tion approach. From an input monocular RGB video, the video frames are
processed by a transformer network that fuses the observations into a volu-
metric feature grid representing the scene; this feature grid is then decoded
into an implicit 3D scene representation. Key to our approach is the trans-
former architecture that enables the network to learn to attend to the most
relevant image frames for each 3D location in the scene, supervised only by
the scene reconstruction task. Features are fused in a coarse-to-fine fashion,
storing fine-level features only where needed, requiring lower memory storage
and enabling fusion at interactive rates. The feature grid is then decoded to
a higher-resolution scene reconstruction, using an MLP-based surface occu-
pancy prediction from interpolated coarse-to-fine 3D features. Our approach
results in an accurate surface reconstruction, outperforming state-of-the-art
multi-view stereo depth estimation methods, fully-convolutional 3D recon-
struction approaches, and approaches using LSTM- or GRU-based recurrent
networks for video sequence fusion.

Individual contributions

Leading role in realizing the scientific project.

Problem definition significantly contributed
Literature survey significantly contributed
Implementation significantly contributed
Experimental evaluation significantly contributed
Preparation of the manuscript significantly contributed

We include the accepted version of the original publication [16] in the following. Authors do not
transfer the copyright of their papers to NeurIPS.
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Abstract

We introduce TransformerFusion, a transformer-based 3D scene reconstruction
approach. From an input monocular RGB video, the video frames are processed
by a transformer network that fuses the observations into a volumetric feature
grid representing the scene; this feature grid is then decoded into an implicit 3D
scene representation. Key to our approach is the transformer architecture that
enables the network to learn to attend to the most relevant image frames for each
3D location in the scene, supervised only by the scene reconstruction task. Features
are fused in a coarse-to-fine fashion, storing fine-level features only where needed,
requiring lower memory storage and enabling fusion at interactive rates. The
feature grid is then decoded to a higher-resolution scene reconstruction, using
an MLP-based surface occupancy prediction from interpolated coarse-to-fine 3D
features. Our approach results in an accurate surface reconstruction, outperforming
state-of-the-art multi-view stereo depth estimation methods, fully-convolutional 3D
reconstruction approaches, and approaches using LSTM- or GRU-based recurrent
networks for video sequence fusion.

1 Introduction

Monocular 3D reconstruction is a core task in 3D computer vision, aiming to reconstruct a complete
and accurate 3D geometry of an object or an environment from only 2D observations captured by an
RGB camera. A geometric understanding is key to applications such as robotic or autonomous vehicle
navigation or interaction, as well as model creation and scene editing for augmented and virtual reality.
In addition, geometric scene reconstructions form the basis for 3D scene understanding, supporting
tasks such as 3D object detection, semantic, and instance segmentation [34, 35, 36, 29, 7, 43, 15, 16].

While state-of-the-art SLAM systems [3, 41] achieve robust and scale-accurate camera tracking
leveraging both visual and inertial measurements, dense and complete 3D reconstruction of large-
scale environments from monocular video remains a very challenging problem – particularly for
interactive settings. Simultaneously, notable progress has been made on multi-view depth estimation,
estimating depth from pairs of images by averaging features extracted from the images in a feature
cost volume [42, 17, 19, 38, 13]. Unfortunately, averaging features across a full video sequence can
lead to equal-weight treatment of each individual frame, despite some frames possibly containing
less information in various regions (e.g., from motion blur, rolling shutter artifacts, very glancing or
partial views of objects), making high-fidelity scene reconstruction challenging.

Inspired by the recent advances in natural language processing (NLP) that leverage transformer-based
models for sequence to sequence modelling [40, 11, 2], we propose a transformer-based method that
fuses a sequence of RGB input frames into a 3D representation of a scene at interactive rates. Key to
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Figure 1: TransformerFusion is an online scene reconstruction method that takes a monocular RGB
video as input. The features extracted from each observed image are fused incrementally with a
transformer architecture. This fusion approach learns to attend to the most relevant image frames for
each 3D location (see view attention color maps of the most relevant frame) achieving state-of-the-art
reconstruction results.

our approach is a learned feature fusion of the video frames using a transformer-based architecture,
which learns to attend to the most informative image features to reconstruct a local 3D region of
the scene. A new observed RGB frame is encoded into a 2D feature map, and unprojected into a
3D volume, where our transformer learns a fused 3D feature for each location in the 3D volume
from the image view features. This enables extraction of the most informative view features for
each location in the 3D scene. The 3D features are fused in coarse-to-fine fashion, providing both
improved reconstruction performance as well as interactive runtime. These features are then decoded
into high-resolution scene geometry with an MLP-based surface occupancy prediction.

In summary, our main contributions to achieve robust and accurate scene reconstructions are:

• Learned multi-view feature fusion in the temporal domain using a transformer network that
attends to only the most informative features of the image views for reconstructing each
location in a scene.

• A coarse-to-fine hierarchy of our transformer-based feature fusion that enables an online
reconstruction approach running at interactive frame-rates.

2 Related Work

Multi-view depth estimation. Estimating depth from multi-view image observations has been
long-studied in computer vision. COLMAP [37] introduced a patch matching based approach which
achieves impressive accuracy and remains established as one of the most popular methods for multi-
view stereo. While COLMAP offers robust depth estimation for distinctive features in images,
the patch matching struggles to densely reconstruct areas without many distinctive color features,
such as floor and walls. Recently, learning-based approaches that build data-driven priors from
large-scale datasets have improved depth estimation in these challenging scenarios. Some proposed
methods rely only on a 2D network with multiple images concatenated as input [42]. Several recent
approaches instead build a shared 3D feature cost volume in reference camera space using feature
averaging [13, 17, 19, 25, 26]. These approaches estimate the reference frame’s depth within a
local window of frames, but some also propagate information from previously estimated depth maps
by using probabilistic filtering [25], a Gaussian process [17], or an LSTM bottleneck layer [13].
Such multi-view depth estimation approaches predict single-view depth maps, which must be fused
together to construct a geometric 3D representation of the observed scene.

3D reconstruction from monocular RGB input. Multi-view depth estimation approaches can
be combined with depth fusion approaches, such as volumetric fusion [6], to obtain a volumetric
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reconstruction of the observed scene. MonoFusion [33] is one of the first methods using depth
estimate from a real-time variant of PatchMatch stereo [1]. However, fusing noisy depth estimates
causes artifacts in the 3D reconstruction, which lead to the development of recent approaches that
directly predict the 3D surface reconstruction instead of per-frame depth estimates. One of the
first approaches to predict 3D surface occupancy from two input RGB images is SurfaceNet [20],
which converts volumetrically averaged colors into 3D surface occupancies using a 3D convolutional
network. Atlas [28] extends this approach to a multi-view setting, while also leveraging learned
features instead of colors. Recently, NeuralRecon [39] proposed a real-time 3D reconstruction
framework, adding GRU units distributed in 3D to fuse reconstructions from different local windows
of frames. Our approach also fuses together learned features from RGB frame input in an online
fashion, but our transformer-based multi-view feature fusion enables relying only on the most
informative features from the observed frames for a particular spatial location in the reconstructed
scene, producing more accurate 3D reconstructions.

Transformers in computer vision. The transformer architecture [40] has achieved profound im-
pact in many computer vision tasks in addition to its natural language processing origins. For a
detailed survey, we refer the reader to [22]. In computer vision, transformers have been leveraged
successfully for tasks such as object detection [4], video classification [44], image classification [12],
image generation [30], and human reconstruction [45]. In this work, we propose transformer-based
feature fusion for 3D scene reconstruction from a monocular video. Given a sequence of observed
RGB frames, our approach learns to attend to the most informative features from each image to
predict a dense occupancy field.

3 End-to-end 3D Reconstruction using Transformers

Given a set of N RGB images Ii ∈ RW×H×3 of a scene with corresponding camera intrinsic
parameters Ki ∈ R3×3 and extrinsic poses Pi ∈ R4×4, our method reconstructs the scene geometry
by predicting occupancy values o ∈ [0, 1] for every 3D point in the scene. Fig. 2 shows an overview
of our approach. Each input image Ii is processed by a 2D convolutional encoder Θ, extracting coarse
and fine image features (Φci and Φfi , respectively):

Θ : Ii ∈ RW×H×3 7→ (Φci ,Φ
f
i )

From these 2D image features, we construct a 3D feature grid in world space. To this end, we
regularly sample grid points in 3D at a coarse resolution of every vc = 30 cm and a fine resolution of
vf = 10 cm. For these coarse and fine sample points, we query corresponding 2D features in all N
images and predict fused coarse ψc and fine 3D features ψf using transformer networks [40]:

Tc : (Φc1, . . . ,Φ
c
N ) 7→ (ψc, wc)

Tf : (Φf1 , . . . ,Φ
f
N ) 7→ (ψf , wf )

Note that we also store the intermediate attention weights wc and wf of the first transformer layers
for efficient view selection, which is explained in Sec. 3.4.

To further improve the features in the 3D spatial domain, we apply 3D convolutional networks Cc and
Cf , at the coarse and fine level, respectively:

Cc : {ψc}C×C×C 7→ {ψ̃c}C×C×C

Cf : {(ψ̃c, ψf )}F×F×F 7→ {ψ̃f}F×F×F

Finally, to predict the scene geometry occupancy for a point p ∈ R3, the coarse ψ̃c and fine features
ψ̃f are trilinearly interpolated and a multi-layer perceptron S maps these features to occupancies:

S : (ψ̃c, ψ̃f ) 7→ o ∈ [0, 1]

This extraction of surface occupancies is inspired by convolutional occupancy networks [32] and
IFNets [5]. From this occupancy field we extract a surface mesh with Marching cubes [27]. Note that
in addition to surface occupancy, we also predict occupancy masks for near-surface locations at the
coarse and fine levels. These masks are used for coarse-to-fine surface filtering (see Sec. 3.2), which
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improves reconstruction performance with a focus on the surface geometry prediction and enables
interactive runtime.

We train our approach in end-to-end fashion by supervising the surface occupancy predictions using
the following loss:

L = Lc + Lf + Lo,
where Lc and Lf denote binary cross-entropy (BCE) losses on occupancy mask predictions for
near-surface locations at the coarse and fine levels, respectively (see Sec. 3.2), and Lo denotes a BCE
loss for surface occupancy prediction (see Sec. 3.3).

Figure 2: Method overview: given multiple input images, we compute coarse and fine level features.
Using a transformer architecture, we separately fuse these coarse and fine features in a voxel grid. To
improve the spatial features, we use a refinement network for both the coarse and the fine features.
From these feature grids, we extract an occupancy field using a lightweight MLP.

3.1 Learning Temporal Feature Fusion via Transformers

For a spatial location p ∈ R3 in the scene reconstruction, we learn to fuse coarse ψc and fine level
features ψf from the N coarse and fine feature images (Φci and Φfi , respectively), which are extracted
by the 2D encoder Θ. Specifically, we train two instances of a transformer model, one for fusing
coarse-level features ψc and one for fusing fine-level features ψf . Both transformers Tc and Tf share
the same architecture. Thus, for simplicity, we omit the coarse and fine notation in the following.

Our transformer model T is independently applied to each sample point in world space. For a point
p, the transformer network takes a series of 2D features φi as input that are bilinearly sampled from
the feature maps Φi at the corresponding projective image location. The projective image location
is computed via a full-perspective projection Πi(p) = π(Ki(Rip + ti)), assuming known camera
intrinsics Ki and extrinsics Pi = (Ri, ti). To inform the transformer about invalid features (i.e.,
a sample point is projected outside an image), we also provide the pixel validity vi ∈ {0, 1} as
input. In addition to these 2D features φi, we concatenate the projected depth di = (Rip + ti)z ,
and the viewing ray ri = (p− ci)/||p− ci||2 to the input (ci ∈ R3 denoting the camera center of
view i). These input features are converted to an embedding vector θi ∈ RD using a linear layer
θi = FCN(φi, di, vi, ri), before feeding it into the transformer network that then predicts a fused
feature ψ ∈ RD:

T : (θ1, . . . , θN ) 7→ (ψ,w)

As described above, w denotes the attention values of the initial attention layer, which are used for
view selection to speed-up fusion (see Sec. 3.4).

Transformer architecture. We followed [12] when designing the transformer architecture T .
It consists of 8 modules of feed-forward and attention layers, using multi-head attention with 4
attention heads and embedding dimension D = 256. Feed-forward layers process the temporal inputs
independently, and contain ReLU activation, linear layers with residual connection, and layer norm.
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The model returns both fused feature ψ ∈ RD and attention weights w ∈ RN over all temporal inputs
from the initial attention layer that are later used for selecting which views to maintain over longer
sequences of input image views.

3.2 Spatial Feature Refinement

While the transformer network fuses 2D observations in the temporal domain, we additionally imbue
explicit spatial reasoning by applying a 3D CNN to spatially refine the fused features {ψc}C×C×C
and {ψf}F×F×F that are computed by the transformers Tc and Tf on the coarse and fine grid,
respectively. The coarse features {ψc}C×C×C are refined by a 3D CNN Cc consisting of 3 residual
blocks that maintain the same spatial resolution and produce refined features {ψ̃c}C×C×C . These
features are upsampled to a fine grid resolution using nearest-neighbor upsampling, and concatenated
with fused features at fine level {ψf}F×F×F . A fine-level 3D CNN Cf is then applied to the
concatenated features, resulting in refined fine features {ψ̃f}F×F×F . Both, coarse ψ̃c and fine
features ψ̃f are used for surface occupancy prediction.

Coarse-to-fine surface filtering. The refined features are also used to predict occupancy masks
for near-surface locations at both coarse and fine levels, thus, filtering out free-space regions and
sparsifying the volume, such that the higher-resolution and computationally expensive fine-scale
surface extraction is performed only in regions close to the surface. To achieve this, additional
3D CNN layers Mc and Mf are applied to the refined features, outputting a near-surface mask
mc,mf ∈ [0, 1] for every grid point:

Mc : {ψ̃c}C×C×C 7→ {mc}C×C×C

Mf : {ψ̃f}F×F×F 7→ {mf}F×F×F

Only spatial regions where bothmc andmf are larger than 0.5, i.e., close to the surface, are processed
further to compute the final surface reconstruction; other regions are determined to be free space. This
improves the overall reconstruction performance by focusing the capacity of the surface prediction
network to close-to-the-surface regions and enables a significant runtime speed-up.

Intermediate supervision of near-surface masks mc and mf is employed using masks mc
gt and mf

gt
generated from the ground truth scene reconstruction, denoting the grid point as near-surface if there
exists ground truth surface in the radius of vc or vf from the point. Binary cross entropy losses
Lc = BCE(mc,mc

gt) and Lf = BCE(mf ,mf
gt) are applied.

3.3 Surface Occupancy Prediction

The final surface reconstruction is predicted by decoding the coarse and fine feature grids to occupancy
values o ∈ [0, 1], with values o ≥ 0.5 representing occupied points and values o < 0.5 represent-
ing free-space points. For a point p ∈ R3, we compute its feature representation by trilinearly
interpolating coarse and fine grid features:

ψcp = Trilinear(p, {ψ̃c}C×C×C)

ψfp = Trilinear(p, {ψ̃f}F×F×F )

We concatenate the interpolated features and predict the point’s occupancy as o = S(ψcp, ψ
f
p), where

S is a multi-layer perceptron (MLP) with 3 modules of feed-forward layers, containing ReLU
activation, linear layer with residual connection, and layer norm.

Surface occupancy supervision. We train on 1.5× 1.5× 1.5 m volumetric chunks of scenes for
training efficiency. To supervise the surface occupancy loss, 1k points are sampled inside the chunk,
with 80% of samples drawn from a truncation region at most 10 cm from the surface, and 20%
sampled uniformly inside the chunk. Ground truth occupancy values ogt are computed using the
ScanNet RGB-D reconstructions [8]. For uniform samples it is straightforward to generate unoccupied
point samples by sampling points in free space in front of the visible surface, but it is unknown
whether a point sample is occupied when it lies behind seen surfaces. In order to prevent artifacts
behind walls, we follow the data processing applied in [28] and additionally label point samples as
occupied, if they are sampled in areas where an entire vertical column of voxels is occluded in the
scene. A binary cross entropy loss Lo = BCE(o, ogt) is then applied to the occupancy predictions o.
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3.4 View Selection for Online Scene Reconstruction

We aim to consider all N frames as input to our transformer for each 3D location in a scene; however,
this becomes extremely computationally expensive with long videos or large-scale scenes, which
prohibits online scene reconstruction. Instead, we proceed with the reconstruction incrementally, pro-
cessing every video frame one-by-one, while keeping only a small number K = 16 of measurements
for every 3D point. We visualize this online approach in Fig. 1.

During training, for efficiency, we use only Kt random images for each training volume. At test
time, we leverage the attention weights wc and wf of the initial transformer layers to determine
which views to keep in the set of K measurements. Specifically, for a new RGB frame, we extract its
2D features, and run feature fusion for every coarse and fine grid point inside the camera frustum.
This returns the fused feature and also the attention weights over all currently accumulated input
measurements. Whenever the maximum number of K measurements is reached, a selection is made
by dropping out a measurement with lowest attention weight before adding new measurements in the
latest frame. This guarantees a low number of input measurements, speeding up fusion processing
times considerably. Furthermore, by using coarse-to-fine filtering, described in Sec. 3.2, we can
further accelerate fusion by only considering higher resolution points in the area near the estimated
surface. Together with incremental processing that results in high performance benefits, our approach
performs per-frame feature fusion at about 7 FPS despite an unoptimized implementation.

3.5 Training Scheme

Our approach has been implemented using the PyTorch library [31]. The architecture details of the
used networks are specified in the supplemental document. To train our approach we use ScanNet
dataset [8], an RGB-D dataset of indoor apartments. We follow the established train-val-test split.
For training, we randomly sample 1.5× 1.5× 1.5 m volume chunks of the train scenes, sampling less
chunks in free space and more samples in areas with non-structural objects, i.e. not only consisting of
floor or walls. This results in ≈ 165k training chunks. For each chunk, we randomly sample Kt = 8
RGB images among all frames that include the chunk in their camera frustums.

The 2D convolutional encoder Θ for image feature extraction is implemented as a ResNet-18 [14]
network, pre-trained on ImageNet [24]. During training, a batch size of 4 chunks is used with an
Adam [23] optimizer with β1 = 0.9, β2 = 0.999, ε = 10−8 and weight regularization of 10−4. We
use a learning rate of 10−4 with 5k warm-up steps at initialization, and square root learning rate
decay afterwards. When computing the losses of coarse and fine surface filtering predictions, a higher
weight of 2.0 is applied to near-surface voxels, to increase recall and improve overall robustness.
Training takes about 30 hours using an Intel Xeon 6242R Processor and an Nvidia RTX 3090 GPU.

4 Experiments

Metrics. To evaluate our monocular scene reconstruction, we use several measures of reconstruction
performance. We evaluate geometric accuracy and completion, with accuracy measuring the average
point-to-point error from predicted to ground truth vertices, completion measuring the error in the
opposite direction, and chamfer as the average of accuracy and completion (in cm). To account for
possibly different mesh resolutions among methods, we uniformly sample 200k points over mesh
faces of every reconstructed mesh. Additionally, we threshold these point-to-point errors and compute
precision and recall by computing the ratio of point-to-point matches within distance ≤ 5 cm. Since
it is easy to maximize either precision (by predicting only a few but accurate points) or recall (by
over-completing reconstructions with noisy surface), we found the most reliable metric to be F-score,
determined by both precision and recall.

Our ground truth reconstructions are obtained by automated 3D reconstruction [9] from RGB-D
videos of real-world environments and, thus, they are often incomplete due to unobserved and
occluded regions in the scene. To avoid penalizing methods for reconstructing a more complete scene
w.r.t. the available ground truth, we apply an additional occlusion mask at evaluation.

As most state of the art, particularly for depth estimation, rely on a pre-sampled set of keyframes
(based on sufficient translation or rotation difference between camera poses), we evaluate all ap-
proaches based on sequences of sampled keyframes, using the keyframe selection of [13].
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Table 1: Quantitative comparison with baselines and ablations on test set of Scannet dataset [8].

Method Acc ↓ Compl ↓ Chamfer ↓ Prec ↑ Recall ↑ F-score ↑
RevisitingSI [18] 14.29 16.19 15.24 0.346 0.293 0.314
MVDepthNet [42] 12.94 8.34 10.64 0.443 0.487 0.460
GPMVS [17] 12.90 8.02 10.46 0.453 0.510 0.477
ESTDepth [26] 12.71 7.54 10.12 0.456 0.542 0.491
DPSNet [19] 11.94 7.58 9.77 0.474 0.519 0.492
DELTAS [38] 11.95 7.46 9.71 0.478 0.533 0.501
DeepVideoMVS [13] 10.68 6.90 8.79 0.541 0.592 0.563
COLMAP [37] 10.22 11.88 11.05 0.509 0.474 0.489
NeuralRecon [39] 5.09 9.13 7.11 0.630 0.612 0.619
Atlas [28] 7.16 7.61 7.38 0.675 0.605 0.636

Ours: w/o TRSF, avg 7.23 9.74 8.48 0.635 0.501 0.557
Ours: w/o TRSF, weight 6.11 11.12 8.61 0.686 0.512 0.583
Ours: w/o TRSF, conv 6.56 9.84 8.20 0.661 0.524 0.582
Ours: w/o spatial ref. 10.46 16.91 13.68 0.479 0.295 0.361
Ours: w/o C2F filter 6.57 7.69 7.13 0.678 0.592 0.631

Ours: w/o proj. depth 8.06 10.02 9.04 0.594 0.475 0.525
Ours: w/o viewing ray 5.71 8.59 7.15 0.706 0.559 0.621

Ours: 30 cm voxel size 7.92 17.33 12.63 0.491 0.258 0.335
Ours: 15 cm voxel size 5.79 9.62 7.71 0.686 0.520 0.589

Ours: 4 images, RND 8.01 10.28 9.15 0.587 0.445 0.502
Ours: 4 images 6.80 8.40 7.60 0.661 0.524 0.581
Ours: 8 images, RND 6.74 8.55 7.64 0.665 0.544 0.596
Ours: 8 images 6.17 7.69 6.93 0.704 0.584 0.636
Ours: 16 images, RND 5.80 8.56 7.18 0.711 0.584 0.638

Ours 5.52 8.27 6.89 0.728 0.600 0.655

4.1 Comparison with State of the Art

In Tab. 1, we compare our approach with state-of-the-art methods. All methods are trained on the
ScanNet dataset [8], using the official train/val/test split. We use the pre-trained models provided by
the authors for MVDepthNet [42], GPMVS [17] and DPSNet [19] which are fine-tuned on ScanNet.
For baselines that predict depth in a reference camera frame instead of directly reconstructing 3D
surface, a volumetric fusion method [6] is used to fuse different depth maps into a 3D truncated signed
distance field. The single-view depth prediction method RevisitingSI [18] suffers from the more
challenging task formulation without the use of multiple views, leading to noisier depth predictions
and inconsistencies between frames. Multi-view depth estimation methods leverage the additional
view information for improved performance, with the LSTM-based approach of DeepVideoMVS [13]
achieving the best performance among these approaches. Reconstruction quality further improves
with methods that directly predict the 3D surface geometry, such as NeuralRecon [39] and Atlas [28].
Our transformer-based feature fusion approach enables more robust reconstruction and outperforms
all existing methods in both chamfer distance and F-score. The performance improvement can also
be clearly seen in the qualitative comparisons in Fig. 3.

4.2 Ablations

To demonstrate the effectiveness of our design choices, we conducted a quantitative ablation study
which is shown in Tab. 1 and discussed in the following.

What is the impact of learning to fuse features from different views with transformers? We
evaluate the effect of our learned feature fusion by replacing the transformer blocks with a multi-layer
perceptron (MLP) that processes input image observations independently. The per-view outputs of
this MLP are fused using an average (w/o TRSF, avg) or using a weighted average with weights
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Figure 3: Qualitative comparison of scene reconstructions on test set of ScanNet dataset [8]; note that
only RGB input is used by each method while the ground truth is reconstructed using the input depth.
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predicted by the MLP (w/o TRSF, weight). Additionally, we implemented convolutional feature
fusion, using a 1-dimensional CNN that processes features in temporal domain and predicts fused
features (w/o TRSF, conv). We find that our transformer-based view fusion effectively learns to attend
to the most informative views for a specific location, resulting in significantly improved performance
over these feature fusion alternatives.

Does spatial feature refinement help reconstruction performance? Spatial feature refinement is
indeed very important for reconstruction quality. It enables the model to aggregate feature information
in spatial domain and produce more spatially consistent and complete reconstructions, without it (w/o
spatial ref.) the geometry completion (and recall metric) are considerably worse.

How important is coarse-to-fine filtering? Predicting the coarse and fine near-surface masks
provides an additional performance improvement compared to the model without it (w/o C2F filter),
as it allows more focus on surface geometry. Furthermore, this enables a speed-up of the fusion
runtime by a factor of approximately 3.5, resulting in processing times of 7 FPS (instead of 2 FPS).

Are additional inputs to the transformer networks needed? Existing reconstruction approaches
[39, 28] aggregate 2D features using a simple average operation. In comparison, our approach uses
a transformer to learn the feature fusion. That makes it possible to use additional inputs that don’t
support a straight-forward average operation, but could be very informative for the task of multi-view
surface reconstruction, such as projected depth and viewing ray. In Tab. 1 we conducted an additional
quantitative ablation study w.r.t. the input to the transformer networks. Both the projected depth as
well as the view ray help the transformer to better fuse the features for the task of 3D reconstruction.

How does voxel size of feature grids influence reconstruction performance? We compared the
reconstruction performance when using different voxel sizes for the feature grid. We only varied fine
feature grid resolution, voxel size of coarse grid was always 30 cm. More specifically, we replaced
the voxel size of 10 cm at the fine grid level with 30 cm and 15 cm. In both cases, the performance
decreased considerably; i.e., the higher the resolution, the better the results. That is reflected also in
qualitative comparison in the supplemental document.

How many views should be used for feature fusion? In our experiments, we use a limited number
of K = 16 frame observations to inform the feature for every 3D grid location. We find that these
views all contribute, with performance degrading somewhat with sparser sets of observations (K = 8
or K = 4). The number of frames is limited because of execution time and memory consumption for
bigger scenes.

How effective is frame selection using attention weights? TheK frames for each 3D grid feature
are selected based on the computed attention weights and are updated during scanning. To evaluate
this frame selection, we compare against a frame selection scheme that randomly selects frames that
observe the 3D location (RND), which results in a noticeable drop in performance for both chamfer
and F-score. The performance difference is even larger when using less views for fusion (K = 8
or K = 4), where view selection becomes even more important. In Fig. 1, we visualize the most
important view for locations in the scene, selected by the highest attention weight. Relatively smooth
transitions between selected views among neighboring 3D locations suggest that view selection is
spatially consistent. To illustrate the frame selection, we also visualize all selected frames with
corresponding attention weights for specific 3D locations in the supplemental document.

4.3 Limitations

Under severe occlusions and partial observation of the scene, our method can struggle to reconstruct
details of certain objects, such as chair legs, monitor stands, or books on the shelves. Furthermore,
transparent objects, such as glass windows without frames, are often inaccurately reconstructed as
empty space. We show qualitative examples of these failure cases in Fig. 4. These challenging
scenarios are often not properly reconstructed even when using ground truth RGB-D data, and
we believe that using self-supervised losses [10] for monocular scene reconstruction could be
an interesting future research direction. Additionally, higher resolution geometric fidelity could
potentially be achieved by sparse operations in 3D or learning local geometric priors on detailed
synthetic data [21].
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Figure 4: Limitations of our approach are the lack of detail at partially observed and occluded objects,
and inaccurate reconstruction of transparent surfaces, such as glass windows.

5 Conclusion

We introduced TransformerFusion for monocular 3D scene reconstruction, leveraging a new
transformer-based approach for online feature fusion from RGB input views. A coarse-to-fine
formulation of our transformer-based feature fusion improves the effective reconstruction perfor-
mance as well as the runtime. Our feature fusion learns to exploit the most informative image view
features for geometric reconstruction, achieving state-of-the-art reconstruction performance. We
believe that our interactive scanning approach provides exciting avenues for future research, and
enables new possibilities in learning multi-view perception and 3D scene understanding.

Broader Impact

Our work proposes a novel monocular scene reconstruction approach that can be used for applications
in the field of augmented and virtual reality, and also serves as a basis for 3D scene understanding
from monocular RGB input, enabling navigation of autonomous agents in unknown environments.
Being a building block for these applications, we need to be aware of the potential negative societal
impacts of some applications, such as the improper use of autonomous robots in military, or labor
market disruptions as a consequence of job automation. Since our approach is data-driven, using
RGB-D data as supervision, we also need to be aware of related privacy concerns when capturing
new datasets for 3D reconstruction.
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Figure C.4: Copyright authorization. Authorization for reuse of paper TransformerFusion:
Monocular RGB Scene Reconstruction using Transformers in this dissertation.
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D Differentiable Non-rigid Optimization

In this chapter we provide more information about the differentiable components of our
Neural Non-rigid Tracker, or more specifically, we describe in more detail how to make the
non-rigid tracking formulation from Sec. 4.4.3 differentiable. Given a deformation graph
with an edge set E , and a set of predicted correspondences C, we want to estimate the
deformation parameters T . Our non-rigid optimization is based on the Gauss-Newton
algorithm and minimizes an energy formulation that is based on three types of residual
components: the 2D reprojection term, the depth term and the regularization term of
the non-rigid deformation.

For a pixel u ∈ Πs ⊂ R2 and graph edge (vi,vj) ∈ E , we define such terms as:

ru2D(T ) = wu

(
πc(Q(pu, T ))− cu

)

rudepth(T ) = wu

(
[Q(pu, T )]z − [Pt(cu)]z

)

r
vi,vj
reg (T ) = eω̂vi (vj − vi) + vi + tvi − (vj + tvj )

where cu ∈ R2 and wu ∈ R represent the predicted correspondence and the importance
weight, respectively; and pu = π−1

c (u, du) is a 3D point corresponding to the pixel u with
depth value du. The construct the residual vector r, we stack together 2D reprojection
and depth terms for each correspondence cu ∈ C, and regularization terms for every
graph edge (vi,vj) ∈ E .
The Gauss-Newton method is an iterative scheme. In every iteration n, we compute

the Jacobian matrix Jn and the residual vector rn, and get a solution increment ∆T by
solving the normal equations:

JTnJn∆T = −JTnrn
In Sec. D.1 we describe the construction of the Jacobian matrix J ∈ R(3|C|+3|E|)×6N ,

consisting of partial derivatives of the residual vector r3|C|+3|E| with respect to deforma-
tion parameters T = (ωv1 , tv1 , . . . ,ωvN , tvN ) ∈ R6N . The linear system is solved
using LU decomposition. To enable differentiation through the entire Gauss-Newton
solver, we have to ensure that the linear solve is differentiable. The differentiable linear
solve operation is detailed in Sec D.2.

D.1 Partial Derivatives

As described in Sec. 4.3, decompose the rotation matrix into eω̂vi = eϵ̂viRvi with ϵvi = 0,
and instead of ω̂vi we optimize the rotation increment ϵ̂vi . In the following, we derive
the partial derivatives of the residual vector r with respect to ϵvi and tvi of every node
vi, to construct the Jacobian matrix J.
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To simplify notation, we define the rotation operator that takes as input an angular
velocity vector ϵ ∈ R3, rotation matrix R ∈ R3×3 and point p ∈ R3 and outputs the
rotated point:

R(ϵ,R,p) = eϵ̂Rp

To compute the partial derivative with respect to ϵ, we follow the derivation from [26]:

∂R(ϵ,R,p)

∂ϵ

∣∣∣∣∣
ϵ=0

= −R̂p

Here, the ·̂-operator creates a 3×3 skew-symmetric matrix from a 3-dimensional vector.
For a vector a = (a1, a2, a3)

T , its skew symmetric matrix â is defined as:

â =




0 −a3 a2
a3 0 −a1
−a2 a1 0




The rotation operator R(ϵ,R,p) is a core part of the warping operator Q(p, T ). It
follows that partial derivatives of a warping operator Q(p, T ) with respect to ϵvi and
tvi for every node vi can be computed as

∂Q(p, T )
∂ϵvi

= −αp
viRvi

(p− vi)
∧

∂Q(p, T )
∂tvi

= αp
viI

Another building block of our optimization terms is the perspective projection πc with
intrinsic parameters c = (fx, fy, cx, cy):

πc : R3 → R2

πc





x
y
z




 =



fx
x

z
+ cx

fy
y

z
+ cy




whose partial derivatives with respect to the point p = (x, y, z)T are derived as:

∂πc(p)

∂p
=



fx

z
0 −fxx

z2

0
fy

z
−fyy
z2




By applying the chain rule, derivatives of all three optimization terms can be computed.
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Derivative of 2D reprojection term. For a pixel u ∈ Πs ⊂ R2 and its corresponding
3D point pu, we derive partial derivatives of ru2D(T ) as follows:

∂ru2D(T )
∂ϵvi

= −wuα
pu
vi




fx

pzu
0 − fxp

x
u

(pzu)
2

0
fy

pzu
− fyp

y
u

(pzu)
2


Rvi

(pu − vi)
∧

∂ru2D(T )
∂tvi

= wuα
pu
vi




fx

pzu
0 − fxp

x
u

(pzu)
2

0
fy

pzu
− fyp

y
u

(pzu)
2




Derivative of depth term. When computing the partial derivatives of the depth term
rudepth(T ), we need to additionally apply the projection to the z-component in the chain
rule:

∂rudepth(T )
∂ϵvi

= −wuα
pu
vi

[
0 0 1

]
Rvi

(pu − vi)
∧

∂rudepth(T )
∂tvi

= wuα
pu
vi

[
0 0 1

]

Derivative of regularization term. For a graph edge (vi,vj) ∈ E , the partial derivatives
of r

vi,vj
reg (T ) with respect to ϵvi , tvi , ϵvj , tvj are computed as:

∂r
vi,vj
reg (T )
∂ϵvi

= −Rvi
(vj − vi)
∧ ∂r

vi,vj
reg (T )
∂ϵvj

= 0

∂r
vi,vj
reg (T )
∂tvi

= I
∂r

vi,vj
reg (T )
∂tvj

= −I

D.2 Differentiable Linear Solve Operation

To simplify the notation, in the following we use A = JTnJn, b = −JTnrn and x = ∆T ,
which results in the linear system of the form:

Ax = b

For matrix A ∈ R6N×6N and vectors b ∈ R6N and x ∈ R6N we define the linear solve
operation as:

Λ : R6N×6N × R6N → R6N , (A,b) 7→ A−1b = x

In order to compute the derivative of the linear solve operation, we follow the analytic
derivative formulation of [23]. If we denote the partial derivative of the loss L with
respect to linear system solution x as ∂L

∂x , we can compute the partial derivatives with
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respect to matrix A and vector b as:

∂L
∂b

= A−1∂L
∂x

∂L
∂A

=

(
A−1∂L

∂x

)
xT = −∂L

∂b
xT

Thus, the computation of ∂L
∂b requires solving a linear system with matrix A. To solve

this system, we either run PCG solver again with different right-hand side, or if LU
solver is used, we can re-use the LU decomposition from the forward pass.
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Adam Adaptive Moment Estimation.
AR Augmented Reality.
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BCE Binary Cross Entropy.
BN Batch Normalization.

CE Cross Entropy.
CNN Convolutional Neural Network.
CPU Central Processing Unit.

ED Embedded Deformation.

FCN Fully Connected Network.
FN False Negative.
FP False Positive.

GN Gauss-Newton.
GPU Graphical Processing Unit.
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PCG Preconditioned Conjugate Gradient.

ReLU Rectified Linear Unit.
RNN Recurrent Neural Network.

SDF Signed Distance Field.
SfM Structure from Motion.
SGD Stochastic Gradient Descent.
SIFT Scale-Invariant Feature Transform.

TN True Negative.
TP True Positive.
TSDF Truncated Signed Distance Field.

VR Virtual Reality.
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