

Advanced Material Models and Dynamic Rupture in SeisSol

SeismoChat, Scripps Institute of Oceanography

Sebastian Wolf Technichal University of Munich

May 26, 2023

Earthquake modeling

Wave propagation: Solve the elastic wave equation

- $\partial_t q + A \partial_x q + B \partial_y q + C \partial_z q = 0$
- q contains stresses and velocities, A, B and C contain material information.

Source Dynamics: Prestressed fault and frictional failure criterion

(Ulrich et al., 2019): "Dynamic viability of the 2016 Mw 7.8 Kaikōura earthquake cascade on weak crustal faults"

Anisotropic materials

- Directional dependent material behaviour, e.g. cracked or layered media
- Jacobian A, B, C are more densely populated, but can reuse the numerical scheme from the elastic wave equation (Wolf et al., 2020)

Left: isotropic material, Right: anisotropic material

Isotropic:

$$\sigma = \lambda \operatorname{tr}(\epsilon) I + 2\mu \epsilon$$

Anisotropic:

$$\sigma_{ij} = \sum_{k,l=1}^{3} c_{ijkl} \epsilon_{kl}$$

Poroelastic wave equation

- Elastic waves (velocity-stress formulation)
- Fluid phase (pressure and relative fluid velocities)
- Possible applications: Geothermal energy production, fault zone effects
- Challenge: Stiff source term

 Constitutive relation relates stress, strain, pore pressure and fluid variation

$\int \sigma_{x}$	Δ		$(\lambda_M + 2\mu_M + M\alpha^2)$	$\lambda + M\alpha^2$	$\lambda + M\alpha^2$	0	0	0	$M\alpha$	$\left(\epsilon_{xx}^{M}\right)$
σ_y			$\lambda + M\alpha^2$	$\lambda_M + 2\mu_M + M\alpha^2$	$\lambda + M\alpha^2$	0	0	0	Mα	$\epsilon_{\chi\chi}^M$
σ_z			$\lambda + M\alpha^2$	$\lambda + M\alpha^2$	$\lambda_M + 2\mu_M + M\alpha^2$	0	0	0	Mα	ϵ_{zz}^{M}
σ_y	: -	-	0	0	0	μ	0	0	0	ϵ_{yz}^M
σ_{χ}			0	0	0	0	μ	0	0	ϵ_{xz}^M
σ_{x}			0	0	0	0	0	μ	0	ϵ_{xy}^M
/-1	/		Μα	Μα	Mα	0	0	0	м)	(-ζ)

• Algebraic source term couples fluid and solid movement

$$\partial_t q + A \partial_x q + B \partial_y q + C \partial_z q = Eq$$

HPC aspects

- Global time stepping (GTS)
 - Every element has the same time step
 - regular update scheme
- Local time stepping (LTS)
 - Every element can have its own time step
 - complicated scheduling, but less computational work
- \Rightarrow LTS reduces time-to-solution, but parallel efficiency decreases

Parallel efficiency of a poroelastic setup with 7.3 million elements for global (GTS) and local (LTS) time-stepping on SuperMUC-NG.

Challenge: rapidly changing pressure at material interfaces

Layer over halfspace with double-couple point source

Pressure field in the x - z plane

Pressure time history at x = 0.

Dynamic Ruputure

Internal boundary condition as earthquake source:

- Compute normal stress σ_n and traction τ at the fault.
- Evaluate fault strength $\mu \sigma_n$.
- If $\tau > \mu \sigma$: evaluate slip rate.
- Impose discontinuous velocity field at the interface

Kaikoura earthquake (Ulrich et al., 2019)

Poroelastic Dynamic Rupture

- Internal boundary condition: slip rate based normal stress and tangential traction.
- Pore pressure weakens fault: $\hat{P}_n = \sigma_n - P_f.$
- Pressure pertubation as initial condition.

Project at Scripps

- Convergence analysis
- Parameter study: How does the biot coefficient/porosity change the rupture
- Branched faults

S. Wolf | SeisSol | SeismoChat, Scripps Institute of Oceanography | May 26, 2023

Pressure during rupture

Convergence analysis

- Homogeneous halfspace, vertical fault (4 km wide)
- Rupture nucleation by fluid stress pertubation (5 MPa, $r \approx 600$ m)
- Record wave field for 5 s
- Fault: almost perfect results, wave field: could be better

How do poroelastic effects influence branching?

Geometry

- vertical fault (28 km \times 15 km)
- branch at 16 km from the *left* end, at 15°
- nucleation at 8 km from the *left* end, at 10 km depth
- prestress: right lateral rupture:

$$\sigma = \begin{pmatrix} -29.5 & 10.0 & 0.0 \\ 10.0 & -25.5 & 0.0 \\ 0.0 & 0.0 & -25.5 \end{pmatrix} \mathsf{MPa}$$

TPV24 geometry with 30° branch angle

What happens?

Use a material with Biot's coefficient $\alpha = 1 - \frac{K_M}{K_e} = 0.95$.

Friction coefficient and wave field after 2.3 s

Friction coefficient and wave field after 4.5 s

How's the elastic case?

Use the Gassmann equivalent elastic material

Friction coefficient and wave field after 2.3 s

Friction coefficient and wave field after 4.5 s

Parameter study

Large poroelastic effect $\alpha = 0.95$

Elastic equivalent

Small poroelastic effect $\alpha = 0.1$

Elastic equivalent

Why?

- Branch in the extensive quadrant of the main fault
- $\Delta P < 0 \Rightarrow$ increases \widehat{P}_n
- On the other side ($\phi = -15^{\circ}$), prestress on branch is stronger
- ⇒ no rupture on pressure weakening side.

Poroelastic material ($\alpha = 0.95$) with with pore pressure.

Is there a pressure weakening configuration?

Yes! Make
$$-15^{\circ}$$
 branch weaker: $\sigma = \begin{pmatrix} -32.8 & 8.7 & 0.0 \\ 8.7 & -22.2 & 0.0 \\ 0.0 & 0.0 & -25.5 \end{pmatrix}$ MPa

Pressure weakening breaks fault

Elastic equivalent doesn't break

Does this change with α ?

Yes!, consider $\alpha = 0.1$: the branch never breaks

Pressure weakening doen't break

Elastic equivalent doesn't break

Poroelastic effects can inhibit or facilitate fault branching!

Take home message

- HPC enables seismological research, but it is hard.
- Domain scientists and computer scientiests have to work closely together.
- SeisSol supports complicated material models, where analytic possibilities end.
- Dynamic rupture in poroelastic materials is possible in 3D!
- Pore pressure variation can inhibit or facilitate fault branching

Try SeisSol: https://github.com/SeisSol/Training

Ask me: wolf.sebastian@cit.tum.de or in the barnyard until June 2.