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Abstract

In this paper, we study error diffusion techniques for digital halftoning
from the perspective of 1-bit Σ∆ quantization. We introduce a method
to generate Σ∆ schemes for two-dimensional signals as a weighted com-
bination of its one-dimensional counterparts and show that various er-
ror diffusion schemes proposed in the literature can be represented in
this framework via Σ∆ schemes of first order. Under the model of two-
dimensional bandlimited signals, which is motivated by a mathematical
model of human visual perception, we derive quantitative error bounds
for such weighted Σ∆ schemes. We see these bounds as a step towards a
mathematical understanding of the good empirical performance of error
diffusion, even though they are formulated in the supremum norm, which
is known to not fully capture the visual similarity of images.

Motivated by the correspondence between existing error diffusion al-
gorithms and first-order Σ∆ schemes, we study the performance of the
analogous weighted combinations of second-order Σ∆ schemes and show
that they exhibit a superior performance in terms of guaranteed error
decay for two-dimensional bandlimited signals. In extensive numerical
simulations for real world images, we demonstrate that with some modi-
fications to enhance stability this superior performance also translates to
the problem of digital halftoning. More concretely, we find that certain
second-order weighted Σ∆ schemes exhibit competitive performance for
digital halftoning of real world images in terms of the Feature Similarity
Index (FSIM), a state-of-the-art measure for image quality assessment.

Key words: digital halftoning, error diffusion, 1-bit quantization, Sigma-Delta

1 Introduction

1.1 State of The Art

Halftoning is an image reproduction technique that simulates continuous-tone
imagery through the use of dots. Usually, one differentiates between halftoning
or analog halftoning and digital halftoning. Analog halftoning is a process that

1

ar
X

iv
:2

20
2.

04
98

6v
2 

 [
m

at
h.

N
A

] 
 1

5 
Fe

b 
20

22



Weighted Σ∆ quantization F.Krahmer, A.Veselovska

simulates shades of gray or colors by arranging tiny black, resp. multicolor,
dots of varying size in a regular pattern. The long history of this technique goes
back to 1869 when it was first used in the publishing industry. On the contrary,
digital halftoning is a rather modern variant originating in the 1970s for use in
digital image processing where the dots are of equal size and constrained to the
pixel grid. An example is given in Figure 1: the picture on the left is a gray-
scale image while its counterpart on the right is composed of black and white
pixels arranged to visually resemble the former as a gray-scale image. The key
observation that makes it possible is the fact that the human eye acts as a low-
pass filter when perceiving visual information from a sufficient distance, blending
fine details and recording the overall intensity. Applications of digital halftoning
include not only printing but also sampling problems occurring in rendering
[20], re-lighting [14] or object placement and artistic non-photorealistic image
visualization [13, 23].

(a) (b)

Figure 1: Illustration of digital halftoning: (a) the original gray-scale image, (b)
the same image represented by black and white pixels using the Floyd–Steinberg
algorithm.

In the last decades, methods for digital halftoning developed substantially
from basic thresholding and ordered dithering methods to more sophisticated
approaches such as structure-aware halftoning [21], which uses optimization
techniques to maximize similarity indices, and error diffusion methods, which
compute the discrete representation via a recurrence relation. Among these
state-of-the-art methods, error diffusion techniques are often preferred as they
are simpler to implement yet competitive in terms of performance; they will also
be the method of choice in this paper.

There is a significant body of applied literature devoted to the design and
analysis of error diffusion techniques. The most popular error diffusion algo-
rithms are the Floyd-Steinberg algorithm [4] and its extensions [7, 5, 10] in
which the halftoned image is computed via recurrence relation with fixed coef-
ficients that are not varying spatially or as a function of the gray value. More
recently, it was discovered in [11] that the Floyd-Steinberg algorithm can give
rise to disturbing patterns at certain gray values. As a solution, the paper pro-
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poses a modified error diffusion algorithm with distribution masks dynamically
chosen as a function of the gray value.

In contrast to analog halftoning whose rigorous mathematical analysis has
been pursued in a number of recent works [24, 29], the mathematical under-
standing of digital halftoning in general and error diffusion, in particular, is
only in its beginning. The goal of this paper is to work towards filling this gap
and providing a rigorous mathematical analysis of error diffusion techniques.

The starting point of our analysis is the connection between error diffusion
and Σ∆ quantization that has been hinted at in [8] and further explored in [9].
Σ∆ quantization was originally introduced as an analog-to-digital conversion
scheme for univariate bandlimited signals [2, 3]. By now, Σ∆ quantization is
well-explored in the engineering literature [6, 18], and initiated by the seminal
work of Daubechies and DeVore [15], its theoretical underpinnings have became
an active field in applied mathematics. Some results of relevance to this work
will review in Section 3 below.

Despite the analogies between Σ∆ and halftoning made in [8, 9], the error
bounds derived in these works do not directly apply to digital halftoning. The
reason is that each pixel of the two-dimensional image needs to be represented by
just one bit – black or white –, while reconstruction guarantees for 1-bit Σ∆ are
only available in one dimension. At the same time, it should be noted that these
guarantees are typically formulated in terms of the supremum norm or the mean
square error of the underlying bandlimited function, which in our case is the
low-pass filtered signal modeling the visual perception. It is not expected that
this provides an ideal measure for capturing perceived image similarity. For this
reason, we will complement our theoretical analysis in terms of the supremum
norm by an in-depth empirical evaluation in terms of state-of-the-art similarity
indices.

1.2 Our Contribution

In this work, we analyze a class of two-dimensional quantization schemes that
arise from weighting and averaging classical 1-bit Σ∆ quantization applied in
different directions and show their relevance as error diffusion algorithms for
digital halftoning. On the one hand, we show that a number of error diffusion
schemes proposed in the literature can be cast in this framework. On the other
hand, we use this approach to design novel algorithms with improved perfor-
mance.

To quantify the performance of our algorithms based on weighted Σ∆
schemes and to compare them with other approaches in the literature we follow
two different paradigms.

Firstly, we analyze the algorithms’ performance as Σ∆ quantization schemes
acting on two-dimensional bandlimited signals. This approach measures the
performance by comparing the the low-pass filtered images as acquired by the
human visual system in terms of the supremum norm. While this error metric
does not fully align with the visual similarity, it has the advantage of allowing
for a rigorous mathematical analysis, giving rise to a quantitative performance
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measure. This measure can then be used as guidance for the choice of the
diffusion coefficients.

Secondly, we compare the visual quality of the resulting images in terms of
the Feature Similarity Index (FSIM) [26], a state-of-the-art measure for visual
similarity of images. We find that error diffusion algorithms constructed via
our method from second-order Σ∆ schemes, an approach designed for best per-
formance on bandlimited signals, also outperform a number of popular error
diffusion schemes in terms of FSIM.

A key challenge when implementing and analyzing our method is that Σ∆
schemes are known to provide accurate reconstructions only if they are stable,
that is, if the accumulated error remains bounded. Stability, however, is guar-
anteed for second-order schemes only when the signal amplitude is bounded and
indeed, we find that additional stabilizing modifications are required to avoid
rare large errors caused by instabilities. Concretely, we observe that a mini-
mal rescaling has hardly any visual effect on the image, while at the same time
preventing the rare instabilities due to the underlying second-order Σ∆ schemes.

The paper is organized as follows. We begin with discussing the mathemat-
ical framework in Section 2 and fix notation for the rest of the paper.

Section 3 reviews Σ∆ quantization in 1D and points out the obstacles in the
way of its generalization to the two-dimensional case. In Section 4, we intro-
duce and analyze 1st-order weighted Σ∆ quantization schemes; in particular,
we establish stability, examine error bounds, and discuss the optimal choice
of weights for the supremum norm error metric. Weighted Σ∆ quantization
schemes of higher order are defined and analyzed in Section 4. In Section 5,
we confirm the validity of our approach by numerical experiments and explore
rescaling as a measure to enhance stability. Our conclusions and proposals for
future work are discussed in the final section.

2 Notation and Problem Setting

The goal of this paper is to mathematically analyze and enhance error diffusion
schemes for digital halftoning. In this section, we discuss the underlying math-
ematical image models, the digital halftoning problem and the corresponding
quantization problem, and different metrics to quantify the representation qual-
ity. At the end of this section, we will also discuss some technical tools necessary
for introducing weighted Σ∆ schemes.

2.1 Image Models, Quantization and Digital Halftoning

The starting point of our theoretical investigations is the aforementioned ob-
servation that human visual perception involves a smoothing step which can be
modeled as a low-pass filter. This property of the human perceptual system
together with the fact the scenes observed are not discrete makes the class of
bandlimited functions of two variables a suitable model for visually perceived
images.

4



Weighted Σ∆ quantization F.Krahmer, A.Veselovska

More precisely, one defines for a bounded region R ⊂ R2 the class BR of
R-bandlimited functions to be the set of real-valued continuous functions in
L∞(R2) whose Fourier transforms (as distributions) exist and vanish outside of
the region R. Here, the Fourier transform of a function f is normalized as

Ff(ξ) =

∫
R2

f(x)e−2πiξ·xdx

for each f ∈ L1(R2), and extended to the space of tempered distribution in the
usual way.

Our model is that any visually perceived image can be (at least approxi-
mately) represented by some function from the class BSΩ for Ω > 0 large enough,
where SΩ is the square [−Ω

2 ,
Ω
2 ]× [−Ω

2 ,
Ω
2 ] ⊂ R2 in the frequency domain. For

simplicity of presentation we will normalize Ω = 1 for remainder of this paper.
To produce digital images, continuous scenes observed by the human eye

need to be discretized which mathematically can be understood as a sampling
process of the considered model functions. Via a well-known generalization of
the Shannon sampling theorem [1], a bandlimited function function f ∈BS1 can
be reconstructed from its samples on the lattice 1

λ Z2 with an oversampling rate
λ > 1, and the sampling formula reads as

f(x) =
1

λ2

∑
n∈Z2

f
(n
λ

)
Φ
(
x− n

λ

)
, (2.1)

where the kernel Φ is a Schwartz function with the low-pass property

FΦ(ξ) =

{
1, ξ ∈ Sλ,
0, ξ /∈ Sλ.

(2.2)

To quantize a signal, we need that it is not only bandlimited but also
bounded, which motivated the definition

Bµ := {f ∈ BS1
: ‖f‖∞ ≤ µ} . (2.3)

Given some function f ∈ Bµ, we aim to approximately represent it via qn
from some quantization alphabet as

fq(x) =
1

λ2

∑
n∈N2

qnΦ
(
x− n

λ

)
, x ∈ R2

+. (2.4)

In this paper, we are particularly interested in the case of 1-bit quantization,
where the alphabet has only two elements. This is due to the fact that in digi-
tal halftoning (of a gray-valued image) only the two colors black and white are
admissible for each pixel. In the mathematical representation, we renormal-
ize and assume that the elements qn are chosen from the discrete two-element
set A = {−1, 1}.

If fq approximates the original function f , we call the function fq a 1-bit
representative of f , and the array q = {qn}n∈N2 is referred to as a 1-bit sample
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sequence. The main goal of quantization is to construct a sequence {qn}n∈N2 in
such that, in a suitable sense,

fq → f, λ→∞. (2.5)

In our mathematical analysis, we focus on the error metric ‖e‖L∞(R2
+), where e

is the error signal (or error function) given by e(x) := f(x)− fq(x), x ∈ R2
+.

In analogy to the one-dimensional case, see [16] for details, the error signal
can be decomposed into two terms

ef (x) := f(x)− fλ(x), eq(x) := fλ(x)− fq(x), (2.6)

such that e = ef + eq and the function fλ is defined as

fλ(x) =
1

λ2

∑
n∈N2

f
(n
λ

)
Φ
(
x− n

λ

)
, x ∈ R2

+, (2.7)

It is easy to see that the first term ef does not depend on the quantization
approach, but only on f and the oversampling rate λ, whereas the second term
eq depends on both f and the quantization algorithm. As the kernel Φ is a
Schwartz function, the error ef will decrease quickly away from zero, which is a
direct generalization of an estimate in [16]. Motivated by these considerations,
our analysis will focus on eq, which we will refer to as quantization error.

At the same time, it is well-known that the supremum error norm does
not fully capture the perceived visual quality of the image representation. As
alternatives to error metrics based on such function spaces, a variety of so-
called image quality assessment indices have been introduced and demonstrated
to better capture visual quality.

To assess the quality of digital halftoning, such a measure has first been used
by Pang et al. [21]. More precisely, the authors consider the Structural Similar-
ity Measure (SSIM) by Wang et al. [17] and propose to employ structure-aware
halftoning via an iterative optimization method that seeks for a combination of
white and black pixels maximizing the SSIM between the original images and
its halftone version. Such methods have shown very competitive performance.
However, because of the discrete optimization step, their main limitation is a
fairly long execution time for large images. Independent of this drawback, the
work has made a case for using similarity indices to assess the performance of
digital halftoning. Inspired by this idea, we will also use image quality assess-
ment indices for measuring the performance of our methods. That said, the
drastically different patterns pose a particular challenge to such indices and
some of them do not capture the similarities, seeing the reference image and
the halftoned image as two entirely different pictures. In line with the study
of Pang et al. [21], we find that one of the successors of the SSIM, the Feature
Similarity Index for image quality assessment (FSIM) [26], currently one of the
most successful and influential full-reference image quality metrics, is particu-
larly successful in capturing the quality of halftoned images, which is why we
use this measure in our numerical study. The FSIM combines two feature maps
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derived from the phase congruency measure and the local gradients of the ref-
erence and the distorted image to assess local similarities between two images,
the reference image, and its distorted counterpart.

2.2 Directional Differences and Convolutions

In this section, we recall some important notions and properties related to the
finite difference operator and the convolution in two-dimensions. The concepts
discussed in this section will play a key role in defining weighted Σ∆ schemes.

We begin with introducing the finite-difference operator in the bivariate
case. Recall that the (backward) finite difference ∆ operator maps a sequence
v = {vn}n∈Z to the sequence ∆v = {(∆v)n}n∈Z with (∆v)n = vn − vn−1.
Consequently, the rth order finite difference operator ∆r is defined via

(∆rv)n =

r∑
j=0

(−1)j
(
r

j

)
un−j (2.8)

When v arises by sampling a smooth function f with step size h, ∆rv is known
to approximate hr ·f (r), where f (r) denotes the rth derivative of f . Similarly,
in two dimensions, rth order finite differences in horizontal and vertical direc-
tions approximate the (scaled) partial derivatives. Analogously, finite difference
operators can also be defined in arbitrary directions.

Definition 2.1. Let L ∈ R2 be a lattice, for a direction d = (d1, d2) ∈ L and
a two-index sequence v = {vn}n∈L, the sequence ∆r

dv = {(∆r
dv)n}n∈Z2 of its

directional finite (backward) difference of order r is defined as

(∆r
dv)n =

r∑
j=0

(−1)j
(
r

j

)
vn−jd. (2.9)

Another interpretation of the action of finite differences is through convolu-
tion, which can also be defined for general directions.

Definition 2.2. Given a one-dimensional filter h = {hj}j∈Z supported on the
first L elements and a two-index sequence v = {vn}n∈Z2 , we denote by h ∗d v
the convolution of v and h in the direction d and define it as

(h ∗d v)n =

L∑
j=1

hjvn−jd (2.10)

With this notion, the directional finite difference can be expressed as
(∆r

dv) = ∆r ∗d v where ∆ denotes the sequence given by ∆0 = 1, ∆1 = −1,
∆k = 0, for all k ∈ Z \ {0, 1}, and ∆r := ∆ ∗ . . . ∗∆.

7



Weighted Σ∆ quantization F.Krahmer, A.Veselovska

3 Background on Σ∆ Quantization

3.1 Σ∆ Quantization in 1D

The problem of quantizing bandlimited functions on the real line has been stud-
ied in a number of works over the last decades. In this section, we briefly
review previous works on Σ∆ quantization and introduce a slightly different
perspective on the quantization error analysis, which will form the basis for our
generalization to the 2D-case in the next section.

Consider a univariate bounded and bandlimited function f ∈ Bµ and its
sample sequence y as yn := f(nλ ) for every n ∈ N with the oversampling rate
λ > 1. We consider the following generalized form of a Σ∆ quantizer as it has
been introduced and studied in [16].

Definition 3.1. For the sequence y = {yn}n∈N, a 1-bit Σ∆ quantizer takes
values of y as input and outputs a sequence q = {qn}n∈N with qn ∈ {−1, 1}
while constructing the solution to the difference equation

vn = (h ∗ v)n + yn − qn (3.1)

qn = sign
(
(h ∗ v)n + yn

)
, (3.2)

where the feedback filter h ∈ `1 satisfies hn = 0 if n ≤ 0, the state variable vn
is set to zero for n < 0, and the sign function is given as

sign(x) :=

{
1, x > 0,
−1, x ≤ 0.

(3.3)

Let δa denote the Kronecker delta sequence situated at the integer a. For a
positive integer r and a sequence g ∈ `1 with gn = 0 for n < 0, the Σ∆ quantizer
(3.1)-(3.2) is called of order r as soon as the filter h satisfies the identity

δ0 − h = ∆rg. (3.4)

As shown in [16], (3.1) can then be expressed in the more classical form

un = (∆ru)n + yn − qn (3.5)

via the change of variables u = g ∗ v.
In this paper, we focus on feedback filters that are finitely supported, that

is, there exists L ∈ N such that hn = 0 for all n > L. The relation (3.4) holds
if and only if δ0 − h has r vanishing moments, see [16, 22], that is

L∑
s=0

(δ0
s − hs)sk = 0, k = 0, . . . , r − 1. (3.6)

The first rigorous mathematical error analysis for higher-order quantization
schemes (i.e., r > 1) described by the recurrence relation (3.5), was provided in
[15]. This paper is not based on a quantization rule along the lines of (3.1), but
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rather constructs the quantizer via a nested sequence of sign operations. For
such quantizers the authors derived that reconstruction error of an rth-order
scheme decays with the oversampling rate λ at a rate of O(λ−r), and optimizing
over the parameter r one can even achieve a rate of O(λ−c log λ). By considering
schemes of the form (3.1)-(3.2), Güntürk achieved an improved error decay rate
of the form O(e−c λ) for some small constant 0 < c < 1, that correlates to the
maximum admissible signal amplitude. This type of error decay is optimal: it
was shown in [12] the corresponding rate with c = 1 cannot be achieved; in fact,
the maximum feasible c has been shown to decrease to zero when the maximum
admissible amplitude increases to one [27].

To derive error bounds in this paper we will use an approach based on Tay-
lor expansions, which is closely related yet somewhat different from the proof
strategies of the aforementioned papers, as we feel that it is better suited to
describe our approaches to the two-dimensional scenario. Namely, the proof
strategy in [15] and [16] is based on summation by parts driven by the finite dif-
ference operation in (3.5). In higher dimensions, this would require a sequential
application of finite difference operators, while we propose an average.

To illustrate our alternative approach, we will now rederive some key esti-
mates of one-dimensional Σ∆.

Fix a Schwartz function Φ satisfying

FΦ(ξ) =

{
1, ξ ∈ [−λ, λ],
0, ξ /∈ [−λ, λ],

(3.7)

which can be seen as a univariate version of the condition (2.2). Then the
quantization error eq as introduced above, can be expressed as

eq(x) = fλ(x)− fq(x) =
1

λ

∞∑
n=0

(fn − qn) Φ
(
x− n

λ

)
,

With (3.1) and reindexing, this yields

eq(x) =
1

λ

∞∑
n=0

vn

(
Φ
(
x− n

λ

)
−

L∑
j=1

hjΦ
(
x− n+j

λ

))
. (3.8)

Applying the rth order Taylor expansion at an = x− n
λ , one obtains that

Φ (an)−
L∑
j=1

hjΦ
(
an − j

λ

)
= Φ (an)−

L∑
j=1

hj

( r∑
p=0

Φ(p)(an)

p!

(−j
λ

)p
+Ran,r

(−j
λ

) )

=

L∑
j=1

hj

r∑
p=1

(−1)p+1 Φ(p)(an)

p!

(
j
λ

)p − L∑
j=1

hjRan,r
(−j
λ

)
,

= (−1)r+1 Φ(r)(an)

r!λr

L∑
j=1

hj · jr −
L∑
j=1

hjRan,r
(−j
λ

)
,
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where Ran,r(t) = O(tr+1) denotes the remainder term, and in the last step we
used the vanishing moment conditions for δ0 − h. Thus (3.8) yields

eq(x) =
1

λ

∞∑
n=0

vn

(
(−1)r+1 Φ(r)(an)

r!λr

L∑
j=1

hj · jr −
L∑
j=1

hjRan,r
(−j
λ

) )
. (3.9)

The first part of the sum can be estimated as follows

1

λ

∣∣∣ ∞∑
n=0

vn (−1)r+1 Φ(r)(an)

r!λr

L∑
j=1

hj · jr
∣∣∣ ≤ 1

λr

∣∣Ch∣∣
r!

∣∣∣ ∞∑
n=0

vn
λ

Φ(r)(an)
∣∣∣

≤ 1

λr

∣∣Ch∣∣
r!
‖v‖∞ ‖Φ

(r)‖1

where for the rth-order filter h the filter constant is defined by

Ch :=

L∑
j=1

hss
r. (3.10)

The second part of sum behaves like O
(
λ−(r+1)

)
, see Appendix B for details.

Combining these bounds, we obtain in the following proposition.

Proposition 3.1. For a function f ∈ Bµ sampled at rate λ > 1, define the
sequence q ∈ {−1, 1}N thought the recurrence (3.1)-(3.2). Then the error of the
rth order quantization scheme (3.1)-(3.2) with a feedback filter h ∈ `1(Z) can be
characterized as

‖fλ − fq‖∞ ≤
1

λr
‖v‖∞

(∣∣Ch∣∣
r!
‖Φ(r)‖1 +O

(
λ−1

))
, (3.11)

where Φ is a Schwartz function satisfying the low-pass condition (3.7), and Ch
is the filter constant.

Note that in the classical case when the sequence δ − h coincides with the
rth order finite difference ∆r one has C∆r = r!, and the error bound (3.11)
corresponds (up to the term O(λ−(r+1))) to the error estimates obtained in
[15, 22, 25] by means of repeated integration by parts.

The error bound estimate (3.11) is meaningful only if ‖v‖∞ is bounded,
which motivates the notion of stability. We call the rth-order Σ∆ quantization
scheme (3.1)-(3.2) stable if there exists a number η > 0 such that

‖v‖∞ ≤ γ(r), for all ‖y‖∞ ≤ η. (3.12)

A sufficient condition for stability is given by the following proposition, which
will also be the criterion of choice in the analysis of this paper.

Proposition 3.2. [16] If the filter h satisfies ‖h‖1 ≤ 2, then the system (3.1)-
(3.2) is stable. In particular, for each input sequence y with

‖h‖1 + ‖y‖∞ ≤ 2 (3.13)

the state variable v satisfies the bound ‖v‖∞ ≤ 1.
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3.2 Towards Stable 2D Σ∆ Quantization – Challenges and First Re-
sults

Generalizing the results on 1-bit quantization discussed in the previous sub-
section to two dimensions is somewhat challenging mainly because stability is
harder to achieve. To see this, we note that a natural two-dimensional analogy
to (3.5) is the recurrence relation ∆r1

1 ∆r2
2 v = f − q, for integers r1, r2 ≥ 0, and

∆1 and ∆2 denoting finite difference operators acting in the vertical and hori-
zontal direction, respectively. However, for any choice of r1, r2 ≥ 1 this leads to
filter coefficients with too large of an l1-norm. For example, for r1 = r2 = 1, we
obtain a filter δ0 − h for

h =

(
0 1
1 −1

)
with ‖h‖1 = 3. Also introducing an auxiliary sequence g in analogy to the
one-dimensional case does not help to overcome this obstacle. Hence, the only
chance to achieve the ‖h‖1 ≤ 2 is to choose either r1 = 0 or r2 = 0, which
corresponds to performing a one-dimensional Σ∆ scheme either row-by-row or
column-by-column. While this approach inherits the recovery guarantees from
the one-dimensional case, it is considered by the engineering community as sub-
optimal for digital image halftoning as it leads to strong artifacts in the direction
orthogonal to the direction of quantization [8].

As demonstrated in [19] this stability obstacle is specific for 1-bit quantiza-
tion and can be overcome by using 2-bit Σ∆ quantization schemes. Recently,
it was shown by Wang and Lyu [30] that 2-bit Σ∆ can also be used for effi-
cient image encoding: in contrast to our work, however, these encodings are
not proposed as halftoned images, but rather an additional decoding step is
required.

In the current work, we introduce an alternative way of generalizing Σ∆
quantization schemes to two dimensions in a stable manner, which in contrast
to these works allows for 1-bit representations and nevertheless produces high
quality halftoned images.

4 Weighted Σ∆ quantization for Bivariate Signals

In this section, we present the class of quantization procedures that are key to
this paper, the class of weighted 1-bit Σ∆ schemes. In contrast to the ideas
sketched in the previous section, such schemes combine one-dimensional Σ∆
schemes in different directions in an additive rather than a multiplicative way.
As we will show this approach is better compatible with stability, while at the
same time it is adapted to the 2D signal structure, which is important for the
use in digital halftoning.

4.1 1st-Order Weighted Σ∆ Schemes

The main source of inspiration for defining weighted Σ∆ quantization schemes
is the celebrated Floyd–Steinberg halftoning algorithm.
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Figure 2: The elements of v used (in red) at current quantization step (m,n) (in blue)
to define vm,n for Floyd–Steinberg Σ∆ halftoning scheme. Dark green points denote
already half-toned elements and the next step is marked by the green disk with blue
bounds.

To describe the algorithm, we consider a gray-scale image as a bivari-
ate sequence y={ym,n}Nm,n=0 of pixel values, which we rescale to the interval
[−1, 1] for better comparability with the remainder of this paper. The (anal-
ogously rescaled) Floyd–Steinberg algorithm then produces a halftoned image
q∈{−1, 1}N×N by running the iterative scheme

vm,n = 5
16vm−1,n+ 7

16vm,n−1+ 1
16vm−1,n−1+ 3

16vm−1,n+1+ym,n − qm,n (4.1)

qm,n = sign
(

5
16vm−1,n+ 7

16vm,n−1+ 1
16vm−1,n−1+ 3

16vm−1,n+1+ym,n

)
. (4.2)

see also Figure 2. Comparing this recurrence relation to the one-dimensional Σ∆
quantizer defined in the previous section, we note that can be interpreted as a
weighted average of the relation (3.5) applied in the four directions d1,0 =(1, 0),
d1,1 = (1, 1), d0,1 = (0, 1),d−1,1 =(−1, 1). In terms of the directional finite
differences introduced in the Section 2.2, the Floyd–Steinberg scheme can hence
be represented as

7
16 (∆d0,1

v)m,n+ 1
16 (∆d1,1

v)m,n+ 5
16 (∆d1,0

v)m,n+ 3
16 (∆d−1,1

v)m,n = ym,n−qm,n

qm,n = sign
(
vm,n− 7

16 (∆d0,1
v)m,n− 1

16 (∆d1,1
v)m,n− 5

16 (∆d1,0
v)m,n

− 3
16 (∆d1,−1

v)m,n+yn,m

)
Note that the weights defining the Floyd–Steinberg scheme add up to one

and all directions either point to the previous row or a pixel further left in the
same row. As we will see these two conditions we be enough to insure stability
and also allow for computing the halftoned image via a recurrence relation.

The first of these two conditions corresponds to combining only Σ∆ schemes
in directions di,j = (i, j) ∈ Z2 for which either i > 0 and j arbitrary or i = 0 and

12
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Figure 3: Weighted elements of v (in red) used at current quantization step n to
define vn (in blue) for the weighted Σ∆ quantization scheme with W ∈ R4×2.
Dark green points denote already quantized elements and the next step is marked
by the green disk with blue bounds.

j > 0. We restrict our attention to combinations of such directions and hence
assume that di,j with i ∈ {0, . . . , p} and j ∈ {−s, . . . , `} for some `, s, p ∈ N.
For these `, s, p ∈ N, we average Σ∆ schemes along different directions with the
weight matrix W ∈ R(`+s+1)×(p+1) given by

W =


0 · · · 0 w0,1 · · · w0,`

w1,−s · · · w1,0 w1,1 · · · w1,`

...
. . .

...
...

. . .
...

wp,−s · · · wp,0 wp,1 · · · wp,`

 , with
p∑
i=0

∑̀
j=−s

wi,j = 1. (4.3)

This gives rise to the following definition.

Definition 4.1. For a given sample sequence {yn}n∈N2 , the 1st-order weighted
Σ∆ quantizer with weight matrix W is defined as the iterative scheme

p∑
i=0

∑̀
j=−s

wi,j
(
∆di,jv

)
n

= fn − qn (4.4)

qn = sign
(
vn −

p∑
i=0

∑̀
j=−s

wi,j
(
∆di,jv

)
n

+ yn

)
. (4.5)

As was mentioned above, the key idea of the 1st-order weighted Σ∆ quanti-
zation schemes is to consider a weighted average of Σ∆ quantization schemes of
1st order one applied in different directions. As we will see later, when multiple
directions are represented by non-zero weights, it helps to smooth out digital
halftoning artifacts, on the one hand, and reduce the supremum error for prop-
erly chosen weights, on the other hand. An intriguing fact about the first-order
weighted Σ∆ schemes is that they comprise and explain many error diffusion
schemes as illustrated in the examples below.

13



Weighted Σ∆ quantization F.Krahmer, A.Veselovska

Example 4.1. In the following list examples we denote the element w0,0 on
the weight matrix by zero in bold, to indicate how many negative directions are
included.

(a) Applying the one-dimensional 1st-order Σ∆ scheme to the bivariate sam-
ples row-by-row corresponds the weight matrix

WRbR =

(
0 1
0 0

)
.

(b) Simple averaging over two perpendicular directions can be represented by
the weight matrix

W1/2 =

(
0 1

2
1
2 0

)
.

We will see that despite its simple structure this scheme exhibits remark-
ably good performance for digital halftoning.

(c) The Floyd–Steinberg scheme has the the weight matrix

WF -S =

(
0 0 7

16
3
16

5
16

1
16

)
.

(d) One of the Shiau-Fan schemes [10], which were introduced as improve-
ments of the Floyd–Steinberg algorithm corresponds to the weight matrix

WSh-Fan =

(
0 0 0 0 8

16
1
16

1
16

2
16

4
16 0

)
.

(e) The 12-element Jarvis-Judice-Ninke scheme well-known as an edge en-
hancement technique [5] can be represented by the weight matrix

WJJN =

 0 0 0 7
48

5
48

3
48

5
48

7
48

5
48

3
48

1
48

3
48

5
48

3
48

1
48

 .

The following theorem provides an estimate for the quantization error of
1st-order weighted Σ∆ schemes in terms of the oversampling rate.

Theorem 4.1. Consider a bandlimited function f ∈ Bµ sampled on the lattice
1
λ N2 with oversampling rate λ > 1. Then the 1-bit sequence q∈{−1, 1}N2

con-
structed by the 1st-order weighted Σ∆ quantization scheme (4.4)–(4.5) defines
a quantized representative fq such that

‖fλ − fq‖∞ ≤
1

λ
‖v‖∞

(
CW · C · ‖∇Φ‖1,2 +O

(
λ−1

))
(4.6)

where C > 0 is a constant independent of W, Φ is a Schwartz function of the
low-pass type (2.2), and the absolute constant CW is determined by

(CW)
2

:=
( p∑
i=1

∑̀
j=−s

iwij

)2

+
( p∑
i=0

∑̀
j=−s

jwij

)2

.

14
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For the proof of Theorem 4.1 see Section 4.3.
In the estimate (4.6), the leading error term depends on the weight constant

CW, and consequently weighted Σ∆ schemes corresponding to W with small
CW are expected to yield small quantization error. Indeed, the weight constants
substantially differ for different weight matrices. For instance, the Shiau-Fan ap-
proach provides CWS-Fan≈0.5, while the row-by-row Σ∆ scheme in Example 4.1
results in CWRbR

= 1, see Table 1 for details, and we expect a corresponding
gain in the reconstruction error. As our numerical simulations show, these im-
proved constants actually translate to improved reconstruction accuracy. This
motivated us to minimize the weight via the following optimization problem.

Optimization Problem 4.1. For fixed `, s, p ∈ N find

min
W∈R(`+s+1)×(p+1)

>0

( p∑
i=0

∑̀
j=−s

jwi,j

)2

+
( p∑
i=1

∑̀
j=−s

iwi,j

)2

subject to
p∑
i=0

∑̀
j=−s

wi,j = 1,

wi,j ≥ 0,

w0,−j = 0, j = 0, . . . , s.

The solution to this problem can be explicitly computed, namely its minimal
value

CWmin
=

1√
1 + (s+ 1)2

is attained when the non-zero weights are taken as

wmin
1,−s =

s+ 1

1 + (s+ 1)2
and wmin

0,1 = 1− s+ 1

1 + (s+ 1)2
,

and all other weight coefficients are set to zero, see Figure 4 for illustration.
While this very sparse design may seem counter-intuitive, we find in our

numerical experiments that for the scenario it is meant to optimize, namely, for
two-dimensional bandlimited functions, it indeed outperforms other approaches
in terms of the supremum norm. That said, this improvement is not reflected in
an improved visual quality of the halftoned image as quantified by the similarity
index FSIM. In that sense, this example illustrates the discrepancy between sam-
pling theory and halftoning practice; the supremum norm is not an ideal measure
for visual quality. Even though the optimal choices of the weight matrices for
the supremum norm and the visual halftoning quality do not agree, however, we
find that a number of weighted 1st-order Σ∆ schemes with near-optimal weight
constants exhibit very good performance also for digital half-toning. We see this
as evidence that the sampling theory perspective yields an error analysis that at
least approximately captures the performance of error diffusion, and can hence
provide a general idea of why these methods work for digital halftoning. These
insights are then of crucial importance for designing weighted Σ∆ schemes of
higher order.
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Figure 4: Choice of optimal weights for W ∈ R4×2.

4.2 Weighted Σ∆ Schemes of Higher Order

As discussed above the error diffusion schemes such as Floyd–Steinberg, Shiau-
Fan, or Jarvis-Judice-Ninke, can be interpreted as weighted 1st-order quantiza-
tion schemes.

Given the superior performance of higher-order Σ∆ scheme in one dimension,
it is a natural question whether also weighted Σ∆ schemes of higher order can
be used for digital halftoning. To the best of our knowledge, however, no error
diffusion schemes studied in the literature can be interpreted as a weighted
higher-order Σ∆ scheme.

An explanation why none of the ad-hoc error diffusion schemes admit such an
interpretation may be the aforementioned observation that to guarantee stability
for higher order schemes one typically needs an amplitude less than one, which
can in general not be assumed for gray-scale images.

In this paper, we nevertheless propose weighted Σ∆ schemes of second order
for digital halftoning. The reason is that by choosing appropriate filters one
obtains very mild amplitude constraints, which can be addressed by a minimal
rescaling with hardly any visual effect. Thus, in addition to a weight matrix
W ∈ R(`+s+1)×(p+1) as given in 4.3, we also need to carefully choose the feedback
filters h of the underlying higher-order Σ∆ schemes in 1D (cf. Definition 3.1).

We obtain the following definition.

Definition 4.2. For a given sample sequence y = {yn}n∈N2 , the weighted Σ∆-
quantizer with the weight matrix W and is given by

vn −
∑
i j

wi,j
(
hi,j ∗di,j v

)
n

= yn − qn (4.7)

qn = sign
(∑

i j

wi,j
(
hi,j ∗di,j v

)
n

+ yn

)
, (4.8)

where the single-index filters hi,j =
{
hi,jn
}
n∈Z ∈ `

1(Z). If all filters hi,j fulfill
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Figure 5: Visualization of a weighted Σ∆ scheme of second order with weight
matrix W ∈ R3×2 and a (2-sparse) filter h ∈ R4. The red dots indicate elements
of v used in the current quantization step to define the vn indicated by a blue
dot. Dark green dots denote already quantized elements, light green dots those
not yet quantized. The subsequent element to be quantized is indicated by a blue
circle.

the condition
δ0 − hi,j = ∆rgi,j

for sequences gi,j ∈ `1(Z) with gi,jn = 0 for n < 0, we speak of a quantizer of
order r.

The linear dependence on v in the equations (4.7)-(4.8) can be described by
a single extended weight matrix incorporating the effects of both h and W. We
illustrate this in the following example.

Example 4.2. In all of the following examples, we consider the filters
h2 := [0, 3/2, 0, −1/2] and h3 = [0, 4/3, 0, 0, −1/3] which are particular ex-
amples of a larger class of sparse second-order filters defined in [16, 22, 25] that
will also be employed in our numerical experiments in Section 5.2.

(a) Simple average schemes of second order use the weight matrix

W1/2 =

(
0 1

2
1
2 0

)
,

combined with second-order filters hi,j . For h0,1 =h2 and h1,0 =h3 or for
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h0,1 =h1,0 =h3, respectively, we obtain the extended weight matrices

W2nd
A23 =


1 − 3

4 0 1
4

− 4
6 0 0 0

0 0 0 0
0 0 0 0
1
6 0 0 0

 , W2nd
A33 =


1 − 4

6 0 0 1
6

− 4
6 0 0 0 0

0 0 0 0 0
0 0 0 0 0
1
6 0 0 0 0

 ,

and as it is easy to see, the matrix W2nd-A22 describes the Σ∆ scheme
with all filters equal to h2, W2nd-A33 corresponds to the case with all h3-
filters, and W2nd-A23 emerges from the combination of h2 and h3 in the
appropriate directions.

(b) The Floyd–Steinberg schemes of second order have the weight matrix

WF -S =

(
0 0 7

16
3
16

5
16

1
16

)
,

so when all four feedback filters hi,j are chosen to be h3 we obtain the
extended weight matrix

W2nd
F -S-33 =


0 0 0 0 1 − 28

48 0 0 7
48

0 0 0 − 12
48 − 20

48 − 4
48 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
3
48 0 0 0 5

48 0 0 0 1
48

 .

In the similar fashion, one can also design the second-order Shiau-Fan and
Jarvis-Judice-Ninke schemes.

The next result establishes error bounds for weighted Σ∆ scheme of higher
order; its proof is discussed in Section 4.3.

Theorem 4.2. Consider a bandlimited function f ∈ Bµ sampled on the lattice
1
λ N2 with the oversampling rate λ > 1. If a weighted Σ∆ scheme (4.7)-(4.8)
used for construction of f ’s 1-bit samples q ∈ {−1, 1}N2

is of order r, then the
corresponding quantized representative fq satisfies

‖fλ − fq‖∞ ≤
1

λr
‖v‖∞

(
CW · C · ‖∇rΦ‖1,2 +O(λ−1)

)
, (4.9)

where C > 0 is a constant independent of W, Φ is a Schwartz function of the
low-pass type (2.2), the weight constant of order r is defined as

(CW)2 :=

r∑
m=0

( p∑
i=0

∑̀
j=−s

wi,j · Chi,j · ir−mjm
)2

, (4.10)

with filter constants Chi,j as in (3.10), and ‖∇rΦ‖1,2 :=
√∑

|α|=r
1
α! ‖∂αΦ‖21.
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Similarly to the 1st-order schemes, one can consider an optimization problem
to minimize the weight constant CW.

Optimization Problem 4.2. For fixed `, s, p ∈ N find

min
W∈R(`+s+1)×(p+1)

r∑
m=0

( p∑
i=0

∑̀
j=−s

Chi,jwi,j i
r−mjm

)2

subject to
p∑
i=0

∑̀
j=−s

wi,j = 1,

wi,j ≥ 0,
w0,−j = 0, j = 0, . . . , s.

Here the optimal weights depend on the filter constants, and can be numeri-
cally computed for each weighted Σ∆ scheme individually. For instance, for the
weighted Σ∆ of 2nd order with all filters hi,j set to h = [0, 4/3, 0, 0, −1/3], the
weight constant CW reaches it minimal value of 5

3
√

2
for w0,1 =w1,0 = 1/2 and

all other weights equal to zero. At the same time, for the row-by-row scheme
with the same filter, one obtains CW = 5

3 , see Table 2 for more details.

4.3 Stability and Error Estimation for Weighted Σ∆ Schemes

As in the one-dimensional case, also the error bounds for weighted Σ∆ schemes
in two dimensions are meaningful only if the state variable is bounded. Hence,
a key step towards making these results applicable is to establish stability.

The following proposition generalizes the rigorous stability analysis in [16]
to the two dimensional case providing a sufficient condition for the stability of
weighted 1-bit Σ∆ quantization schemes.

Proposition 4.1. For any filter hi,j satisfying ‖hi,j‖1 < 2 for all i = 1, . . . , p
and j = −s, . . . , `, and initialization |vn| ≤ 1 for n ∈ N2, the two-index se-
quence v = {vn}n∈N2 defined by the recursion (4.7)-(4.8) is uniformly bounded.
Namely, for each sample sequence y with∑

i j

wi,j
∥∥hi,j∥∥

1
+ ‖y‖∞ ≤ 2 (4.11)

the state variable v satisfies the bound ‖v‖∞ ≤ 1.

Proof. We will argue by induction. Suppose that starting with zero the weighted
Σ∆ scheme (4.7)-(4.8) is applied `− 1 times. Assume |vnk | ≤ 1 for all 0 ≤ k ≤
`− 1. Then the next iteration step provides∣∣∣∑

i j

wi,j
(
hi,j ∗di,j v

)
n`

+ yn`

∣∣∣ ≤∑
i j

wi,j ·
∥∥hi,j∥∥

1
· sup
s<`−1

|vns |+ ‖y‖∞ (4.12)

≤
∑
i j

wi,j
∥∥hi,j∥∥

1
+ ‖y‖∞ ≤ 2,
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where the second inequality follows from the induction hypothesis. Since for
any number |a| ≤ 2, the expression a − sign(a) lies in the interval [−1, 1], the
estimation (4.12) shows that |vn` | ≤ 1 which finishes the proof by induction.

Remark 4.1. The stability of the 1st-order weighted Σ∆ schemes (4.4)-(4.5)
follows from Proposition 4.1 and the fact that for all 1st-order feedback filters
have the form hi,j=[0, 1].

We now prove Theorem 4.1 and Theorem 4.2. The proof of these results
requires the following auxiliary concept and its particular properties.

For a given direction d, the generalized directional convolution h©∗ d Ψ be-
tween a feedback filter h and a function Ψ is defined as

h©∗ d Ψ(a) =

L∑
s=1

hsΨ
(
a− sd

)
, for a ∈ R2. (4.13)

The next lemma suggests that the generalized convolution h©∗ d Ψ can be well
approximated by the function derivatives of higher orders once the filter fulfills
the moment conditions (3.6).

Lemma 4.1. Let a feedback filter h be such that hn=0 for all n < 0 and n > L,
L ∈ N, and the moment conditions (3.6) are fulfilled. Then for any bivariate
r-times differentiable function Ψ and points a,d ∈ R2, one has

h©∗ d Ψ(a) = Ψ(a) + (−1)rCh
∑
|α|=r

dα

α! ∂
αΨ(a) +

L∑
j=1

hjRa,r
(
−jd

)
,

where Ch is the filter constant and Ra,r is the remainder term in the rth order
Taylor expansion of Ψ.

Proof. Taylor’s formula applied to Ψ around a with increment −jd yields

Ψ(a− jd) =

r∑
`=0

∑
|α|=`

(−j·d)α

α! ∂αΨ(a) +Ra,r
(
−jd

)
,

and, combined with the definition of the generalized directional convolu-
tion (4.13),

h©∗ d Ψ(a) =

r∑
`=0

∑
|α|=`

(−1)`dα

α! ∂αΨ(a)

L∑
j=1

hj · j` +

L∑
j=1

hjRa,r
(
−jd

)
.

Since δ0−h satisfies the moment conditions (3.6), the first sum equals Ψ(a) for
` = 0 and vanishes for 0 < ` < r. Rewriting the summand for ` = r in terms of
the filter constant Ch, we obtain the desired result.
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Proof of Theorem 4.2. We need to bound the supremum norm of the error signal
fλ − fq, which due to the definition of the quantization scheme (4.7)-(4.8) can
represented as

fλ(x)− fq(x) =
1

λ2

∑
n∈N2

(yn − qn) Φ
(
x− n

λ

)
(4.14)

=
1

λ2

∑
n∈N2

vn

(
Φ
(
x− n

λ

)
−
∑
i j

wi,j

L∑
s=1

hi,js Φ
(
x− n+ sdi,j

λ

))
. (4.15)

For each sum
∑L
s=1 h

i,j
s Φ

(
x− n

λ −
sdi,j
λ

)
, which is the generalized convolution

hi,j ©∗ di,j/λΦ at an = x− n
λ , Lemma 4.1 provides

hi,j ©∗ di,j
λ

Φ(an)=Φ(an)+ Chi,j
∑
|α|=r

(−di,j)α
α!λr ∂αΦ(an)+

L∑
s=1

hi,js Ran,r

(
− s
λdi,j

)
.

Using this along with the fact that weight matrix elements add up to one, we
can represent the quantization error as follows

fλ(x)− fq(x) =
1

λ2

∑
n∈N2

vn

(∑
i j

wi,j(−1)r+1
∑
|α|=r

Chi,j (di,j)
α

α!λr ∂αΦ(an)

+
∑
i j

wi,j

L∑
s=1

hi,js Ran,r

(
− s
λdi,j

))
=

1

λr

∑
|α|=r

∑
n∈N2

vn
α!λ2

∂αΦ(an) ·
∑
i j

wi,jChi,jd
α
i,j (4.16)

+
1

λ2

∑
n∈N2

vn
∑
i j

wi,j

L∑
s=1

hi,js Ran,r

(
− s
λdi,j

)
. (4.17)

To estimate the product (4.16), we need to bound the corresponding factors.
For the first factor, we obtain that for an appropriate constant C > 0

∑
|α|=r

( ∑
n∈N2

vn
α!λ2

∂αΦ (an)

)2

≤ ‖v‖2∞
∑
|α|=r

1

α!

( ∑
n∈N2

|∂αΦ (an) |
λ2

)2

≤ C ‖v‖2∞
(
‖∇rΦ‖1,2

)2
where the last inequality follows from the observation that the inner sums under
consideration are exactly Riemann sums approximating the integrals that define
‖∇rΦ‖1,2. The second factor can be written in terms of di,j components,

∑
|α|=r

(∑
i,j

Chi,jwi,j (di,j)
α
)2

=

r∑
m=0

(∑
i,j

Chi,j · wi,j · ir−mjm
)2

= (CW)2.
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Exploiting these estimates with Cauchy–Schwartz argument yields

|fλ(x)− fq(x)| ≤ 1

λr
‖v‖∞

(
CW · C · ‖∇rΦ‖1,2 +O(λ−1)

)
,

where the term O(λ−1) arises from the integral form of the remainder in Taylor’s
formula, see Appendix B for details. This completes the proof as this upper
bound is independent of x.

Remark 4.2. Theorem 4.1 is a direct corollary of Theorem 4.2 if we set r= 1
and h = [0, 1], as for this filter one has Ch = 1.

5 Numerical Experiments

The goal of this section it to empirically study the performance of the 2D quanti-
zation and error diffusion algorithms motivated by the theoretical investigations
in the previous sections. We first explore the scenario of quantizing bandlim-
ited signals, directly corresponding to our theoretical results, before exploring
the performance for digital halftoning the main motivating application of this
paper.

5.1 Quantization of Bandlimited Functions in 2D

For quantization of bivariate bandlimited functions we summarize our method
in Algorithm 1. In our numerical implementations, we use the sinc-function
as a kernel even though we are aware that technically it does not satisfy the
assumption on Schwartz function class. The reason is that it is simpler to
implement and can be closely approximated by Schwartz functions, so we expect
comparable behaviour on signals represented by finitely many samples.

As a test case, we consider the bandlimited function

f(x1, x2) =
3

10
· Re

[
e−i(3x1+2x2) cos

(x2

3

)]
, (5.1)

with frequency support in the square S 10
3π
. The reconstruction kernel is scaled

as follows

Φ(x1, x2) = sinc2d(x1, x2) := 25 · sinc (5x1) · sinc (5x2) .

f is sampled on the non-negative numerical lattice

Lλ :=
{(n1

λ
,
n2

λ

)
∈ R2

+ : n1, n2 = 0, . . . , 10λ
}

(5.2)

with oversampling λ rate varying in the set {75 + 25n, n = 0, ..., 8}. The sample
sequence is denoted by y = {yn1,n2

}10λ,10λ
n1,n2=0 with yn1,n2

: =f
(
n1

λ ,
n2

λ

)
.
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Algorithm 1: Weighted Σ∆ Quantization Schemes for 2D Functions
Data:

• samples y = {yn1,n2}
N1,N2
n1,n2=0 with yn1,n2 := f(n1

λ
, n2
λ

)

• bounded region D ⊂ R2
+

Quantization setup:

• weight matrix W ∈ R(`+s+1)×(p+1)

• feedback filters hi,j ∈ `1(Z)

• kernel Φ ∈ C∞(R2) with FΦ(ξ) =

{
1, ξ ∈ Sλ,
0, ξ /∈ Sλ.

begin
for n1 = 0 . . . N1,

n1 = 1, ..., N2

vn1,n2 −
∑
i j

wi,j
(
hi,j ∗di,j v

)
n1,n2

= yn1,n2 − qn1,n2

qn1,n2 = sign
(∑

i j

wi,j
(
hi,j ∗di,j v

)
n1,n2

+ yn1,n2

)
Result:

• 1-bit samples q = {qn1,n2}
N1,N2
n1,n2=0

• quantized rep. fq(x)

• quantization error err := max
x∈Ddics

|fλ(x)− fq(x)|

Quantization scheme Weight matrix W Constant CW Abbrv.

Row-by-row
(
0 1
0 0

)
1 1st-RbR

Floyd–Steinberg
(

0 0 7
16

3
16

5
16

1
16

) √
106
16 ≈ 0.65 F -S

Shiau-Fan
(

0 0 0 0 8
16

1
16

1
16

2
16

4
16 0

) √
65

16 ≈ 0.5 S-Fan

Averaged
(
0 1

2
1
2 0

)
1√
2
≈ 0.71 1st-A

Optimal-2
(

0 0 7
10

3
10 0 0

)
1√
5
≈ 0.45 Opt-2

Optimal-4
(

0 0 0 0 0 21
26

5
26 0 0 0 0 0

)
1√
26
≈ 0.19 Opt-4

Table 1: First-order weighted Σ∆ quantization schemes. The element w0,0 is
denoted by zero in bold.
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QS,
Abbrv. W Filters hi,j Ext. weigh.matrix CW

≈

Row-by-row
2nd-RbR

(
0 1
0 0

)
h0,1=[0, 4/3, 0, 0,−1/3]

(
1 − 4

3 0 0 1
3

0 0 0 0 0

)
1, 68

Averaged-33

2nd-A33

(
0 1

2
1
2 0

)
h1,0=h0,1

h0,1=[0, 4/3, 0, 0,−1/3]


1 − 4

6 0 0 1
6

− 4
6 0 0 0 0

0 0 0 0 0
0 0 0 0 0
1
6 0 0 0 0

 1, 17

Averaged-34

2nd-A34

(
0 1

2
1
2 0

) h0,1=[0, 4/3, 0, 0,−1/3]
h1,0=

[0, 5/4, 0, 0, 0,−1/4]


1 − 4

6 0 0 1
6

− 5
8 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1
8 0 0 0 0

 1, 27

Table 2: Second-order weighted Σ∆ quantization schemes. The element w0,0 is
denoted in bold.

To measure the resulting quantization error, we compare, for values (x1, x2)
in the square [2, 8]× [2, 8], the values of the approximant

fλ(x1, x2) :=
1

λ2

10λ∑
n1=0

10λ∑
n2=0

yn1,n2
· sinc2d

(
x1 −

n1

λ
, x2 −

n2

λ

)
, (5.3)

and the quantized representative fq, which is computed by substituting in (5.3)
yn1,n2

by the corresponding 1-bit sample qn1,n2
, for all n1, n2 ∈ {0, . . . , 10λ}.

In our numerical experiments, the 1-bit samples q={qn1,n2}
10λ,10λ
n1,n2=1 of f are

constructed using weighted Σ∆ schemes compiled in Table 1 (first order) and
Table 2 (second order). The Optimal-2 and Optimal-4 schemes in Table 1 are
the weighted Σ∆ scheme resulting from the solution of Optimization Problem
4.1 with size parameter s=2 or s=4, respectively.

Figure 6 illustrates the performance of Algorithm 1 with a first order feed-
back filter for three different weight matrices and oversampling rate of λ= 150
applied to f as given in (5.1). Setting λ = 150 produces the approximant fλ
representing f with maximal error of order 10−3, see Figure 6a. We observe
that applying one-dimensional schemes row-by-row gives rise to difficulties in
the area with actively varying function values, which illustrates the advantage
of weighting different directions. At the same time, we observe an additional
advantage for the weight minimizing the constant CW.

We explore this observation in more detail in a line of experiments summa-
rized in Figure 7 comparing the performance of 1st- and 2nd-order Σ∆ schemes
with different weight matrices for various values of the oversampling rate λ.
While our findings confirm that the constant CW identified in our analysis
appropriately captures the performance differences between 1st-order schemes
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(a) f and its approximant fλ;
approx. error 4, 848 · 10−3.

(b) Error signal for 1st-RbR scheme;
maximal amplitude 2, 251 · 10−2.

(c) Error signal for 1st-A scheme; maxi-
mal amplitude 1.293 · 10−2.

(d) Error signal for Opt-4 scheme; maxi-
mal amplitude 4, 663 · 10−3.

Figure 6: Performance of 1st-order weighted Σ∆ quantization schemes with
oversampling rate λ = 150 for a bandlimited signals. The experiment demon-
strates the benefits of optimizing the weights in this context.

(a) First-order schemes (b) Second-order schemes.

Figure 7: Maximal quantization error in domain [2, 8]× [2, 8] for weighted Σ∆
quantization schemes with oversampling rate λ ∈ {75 + 25n, n = 0, ..., 8}.
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with different weight matrices, we also find that all first-order schemes are out-
performed by any second-order scheme under consideration.

5.2 Digital Halftoning of Images and Similarity Indices

As explained above, our observation that many error diffusion schemes can be
interpreted as weighted 1st-order Σ∆ schemes, motivated us to mathematically
analyze such schemes and systematically explore their use for digital halftoning.
In particular, driven by their superior performance for bandlimited signals, we
aim to adapt weighted second-order schemes for this purpose. The Σ∆ perspec-
tive then motivates to aim for achieving stability in the sense discussed in the
previous section, as otherwise, one expects the error to accumulate.

In this subsection, we confirm these heuristics using numerical experiments
for a wide variety of images, demonstrating that indeed “stabilized” weighted
second-order Σ∆ schemes outperform a number of state-of-the-art error diffusion
schemes in terms of the visual similarity between the halftoned image and the
original.

In our experiments, we consider both color and gray-scale images. We now
explain our setup for color images, gray-scale images are treated analogously.

We represent color images as RGB matrices, IRGB :=
{
IRGBn1,n2

}N1,N2

n1,n2=0
, con-

sisting of three color channels, each given as a sample array. In order to construct
a halftoned counterpart of IRGB , we propose to use Algorithm 2, as introduced
below.

In particular, we start by converting the image IRGB to double
Idbl∈ [0, 1]N1×N2×3, rescaling it to the range [−1.15, 0.85] using the sharpen-
ing map

I := sharp
(
2 Idbl − 1.15

)
, with sharp(x) =

{
−1, x ≤ −1,
1, x ≥ 1.

This sharpening step is introduced to improve the color fidelity of the halftoned
image. Then, for each color channel one constructs a 1-bit array using a weighted
Σ∆ scheme.

In our experiments, we compare weighted Σ∆ schemes of first order (includ-
ing some of the error diffusion schemes proposed in the literature), of second
order, and of mixed order, that is, schemes applying Σ∆ quantizers of different
orders in different directions.

While weighted Σ∆ schemes of first order are intrinsically stable, schemes
of second order or mixed order are typically not stable unless carefully chosen
feedback filters are employed.
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Algorithm 2: Weighted Σ∆ Schemes for Digital Halftoning of Images
Data:

• RGB image IRGB :=
{
IRGBn1,n2

}N1,N2

n1,n2=0

• conversion Idbl := im2double(IRBG) ∈ [0, 1]N1×N2×3

• sharping I = C · sharp(2 Idbl − 1.15) ∈ [−1, 1]N1×N2×3

Quantization setup:

• weight matrix W ∈ R(`+s+1)×(p+1)

• feedback filters hi,j ∈ `1(Z)

• stability constant C =

{
0.999, for 2nd-SD,

1, for other schemes.
begin

for c = R,G,B
n1 = 1, ..., N1

n2 = 1, ..., N2

vcn1,n2
−
∑
i j

wi,j
(
hi,j ∗di,j v

c
)
n1,n2

= Icn1,n2
− qcn1,n2

qcn1,n2
= sign

(∑
i j

wi,j
(
hi,j ∗di,j v

c
)
n1,n2

+ Icn1,n2

)
Result:

• 1-bit image q =
{
qcn1,n2

}N1,N2

n1,n2=1
∈ {−1, 1}N1×N2×3

• bmp-image Iq ∈ {0, 255}N1×N2×3

• halftoning error errim = FSIM(I, Iq)

In this paper we will work with the family of second-order filters with mini-
mal support given by

hκ = (0, hκ1 , 0, . . . , 0, h
κ
κ), for hκ1 =

κ+ 1

κ
, hκκ = − 1

κ
(5.4)

with ‖hκ‖1 = 1 + 2
κ , as introduced in [16]. For the choice of the parameter κ,

there is a trade-off. On the one hand, choosing κ large will increase the range
of applicability of the stability guarantee in Proposition 4.1, on the other hand,
very large filters increase boundary effects.

To resolve this issue, we propose to combine Σ∆ schemes built out of both
hκ with large and small κ, properly weighted so that stability for an input am-
plitude close to one can reached. Two examples of such weighted Σ∆ schemes
are described in Table 3. For instance, the 2nd-order scheme 2nd-SD com-
bines the filters h550 and h3. Here, the choice of the filter h550 is the result
of numerically comparing hκ with κ ∈ {100 + 50k : k = 0, . . . 16}. While for
the resulting combined filter, Proposition 4.1 guarantees stability for signals of
maximal amplitude 0.96, we numerically observe stability for amplitudes up to
0.999. We accomodate for this limitation by rescaling the images with the factor
0.999; this has basically no effect on the perceived image, yet ensures stability.
Also for the initial value for the state variable we explored various options and
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observed best performance for a uniform distribution on [−0.9.0.9]. The ran-
domness helps avoid the occurrence of many zero state variable values in the
first quantization steps.

The weighted Σ∆ scheme S-Fan-12 is a combination of 1st and 2nd-order
schemes and designed as a reinforcement of the 1st-order Shiau-Fan scheme by
adding the filter h3 in several directions. Again, stability can be guaranteed for
input signals of amplitude at most 0.96, but in our numerical experiments we
do not encounter any instabilities and hence do not propose a rescaling.

Quant.
Scheme

Weight matrix W (i, j)-Index sets Filters hi,j

2nd-SD

 0 0 88
199

5.5
199

12
199

87
199

1
199 0

0 5.5
199 0 0

 (0, 1), (1, j), j∈{−1, 0, 1}

(2, 0), (0, 2)

hi,j = h550

hi,j = h3

S-Fan-12

 0 0 0 0 21
50

3
100

2
50

2
50

5
50

17
50 0 0

0 0.5
100

0.5
100

2
100 0 0

 (0, 1), (1, -j), j∈{0, 1, 2, 3}

(0, 2), (2, -j), j∈{0, 1, 2}

hi,j = [0, 1]

hi,j = h3

Table 3: Quantization schemes for digital halftoning. The element w0,0 is de-
noted in bold.

For our performance analysis of weighted Σ∆ techniques for digital halfton-
ing, we use 50 distinct color images of the size 1920× 1280 and their gray-scale
counterparts. To measure the quality of the resulting halftoned images, we
compute for each image and its halftoned version the Feature Similarity Index
(FSIM) [26]. The values of FSIM range between 0 and 1, where 1 indicates
two identical images, and the more dissimilar two images are, the smaller is the
corresponding FSIM.

Figure 8 shows the average FSIM over 50 images for different Σ∆-based
halftoning techniques applied to color and gray-scale images. As one can see,
there is almost no difference in the results obtained for gray-scale and color
images. Among the 1st-order techniques, the simple average 1st-A performs the
best in terms of FSIM, closely followed by the Shiau-Fan halftoning technique.
Images with the smallest similarities are produced by the row-by-row scheme
and although, the 1st-order Opt-4 scheme shows exceptionally good performance
in terms of the supremum norm for quantizing bandlimited signals, for digital
image halftoning it is outperformed by simple averaging.

Despite minimally rescaling the image amplitude, we encounter the best per-
formance among all weighted Σ∆ scheme for the 2nd-order scheme 2nd-SD. The
second best result is produced by the reinforced Shiau-Fan scheme S-Fan-12 of
mixed order. In this case, we see similar behavior of weighted Σ∆ schemes both
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(a) FSIM for gray-scale images. (b) FSIM for RGB images.

Figure 8: Averaged FSIM over 50 images and their halftoned counterparts generated
by state-of-the-art error diffusion schemes as well as the novel schemes proposed in
this paper. Here, JJN is the Jarvis-Judice-Ninke scheme [5], Dyn-Fs is the scheme
with dynamic filters, [11], and the weighted Σ∆ schemes can be found in Table 1 and
Table 3. We observe that the best performance in this quality measure is achieved by
weighted Σ∆ schemes with second order building blocks as proposed above.

Figure 9: Original image of size 1920×1280 and its corresponding parts zoomed.

for quantization of bivariate bandlimited functions and digital halftoning of im-
ages, namely, higher-order schemes perform better then the ones of first order.

Finally, we depict one of the 50 images to illustrate the visual quality of
halftoned images arising from first and second order weighted Σ∆ schemes.
Figure 9 show the original color image and Figures 10, 11 depicts its halftoned
counterparts. As one can observe, for the second order scheme, the halftoned
image patterns are more refined and the cat’s whisker is completely reproduced,
in contrast to the first order scheme. This is in line with our earlier observation
that second order schemes yield higher FSIM.
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Figure 10: Halftoned counterpart of image from Figure 6 produced using 1st-A
scheme.The value of the similarity index is FSIM=0.9427.

Figure 11: Halftoned counterpart of image from Figure 6 produced using 2nd-
SD scheme. The value of the similarity index is FSIM=0.9511.

6 Discussion and Future Work

In this paper, we proposed error diffusion algorithms for digital halftoning based
on 1-bit weighted Σ∆ quantization schemes. Even though these schemes are
designed for best error decay in the supremum norm, we observe excellent image
quality also in terms of the commonly used Feature Similarity Index. Building
on our findings, we see a number of interesting follow-up questions that we
find worth investigating. First, while the benefits of good reconstruction in
the supremum norm seem to carry over to enhanced visual similarity to some
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extent, optimizing the weight matrices to minimize the former measure does
not have the corresponding effect on the visual quality. This motivates the
question of whether the weight matrices can be chosen directly to optimize
structural similarity. Second, in our numerical experiments, sparse filters of
second order have been used, which have some performance limitations near the
image boundary. In such situation, feedback filters chosen dynamically or based
on the location may work better.

Lastly, the weighted Σ∆ quantization techniques developed in our current
work are especially designed for the two-dimensional image acquisition sce-
nario. Motivated by the growing importance of signal analysis on more sophis-
ticated domains, an important open question is how to generalize the concept
of weighted Σ∆ schemes to higher dimensions as well as general manifold and
graph geometries.
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Appendices

A Taylor expansion

For α = (α1, α2), α1, α2 ∈ N, we call |α| = α1 + α2 · · · + αd the order of α.
We consider the factorial α! := α1!α2!, and write monomials as xα = xα1

1 xα2
2

for x = (x1, x2) ∈ R2. The partial derivative with respect to α of a function
f :R2 → R is denoted by

∂αf = ∂α1
1 ∂α2

2 f =
∂|α|f

∂xα1
1 ∂xα2

2

Denote by Ck(R2) the class of bivariate functions f for which all deriva-
tives ∂αf of order |α| ≤ k are continuous. Then we have the following Taylor
approximation result.

Theorem A.1. [28] Let D ⊂ R2 be open, f : D → R be in Ck+1(R2). Then
for a,h ∈ D, such that a+ h ∈ D, f can be represented as

f(a+ h) =

k∑
j=0

∑
|α|=j

∂αf(a)
hα

α!
+Ra,k(h),

where the remainder Ra,k is given in the integral form
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Ra,k(h) := (k + 1)
∑ hα

α!

1∫
0

(1− t)k∂αf(a+ th)dt. (A.1)

B Estimation of Error Terms With Taylor Remainder

As we have seen, a Taylor expansion of the quantization error for one-
dimensional Σ∆ with a feedback filter h satisfying the moment conditions (3.6)
and a kernel Φ ∈ Cr+1(R) gives rise to a combined remainder term of

R1 :=
1

λ

∑
n∈N

vn

L∑
j=1

hjRan,r

(
− j

λ

)
where an = x− n

λ and the individual remainder terms Ran,r are of the integral
form

Ran,r
(
− j
λ

)
=
(−j
λ

)r+1 1

r!

1∫
0

(1− t)rΦ(r+1)
(
an −

tj

λ

)
dt.

Then, an estimation of absolute value of R1 leads to

|R1| =
1

λr+1r!

∣∣∣ L∑
j=1

hj · jr+1

∫ 1

0

(1− t)r
∑
n∈N

Φ(r+1)
(
x− n

λ
− tj

λ

)
· vn
λ

dt
∣∣∣

≤
‖v‖∞
λr+1

L∑
j=1

|hj · jr+1|
∫ 1

0

|1− t|r
∑
n∈N

∣∣∣∣Φ(r+1)
(
x− n

λ
− tj

λ

)∣∣∣∣ · 1

λ
dt.

Denoting the constant C̃h :=
L∑
j=1

|hj | · jr+1 and using that
∫ 1

0
(1− t)rdt = 1

r+1 ,

the range of R1 can be upper-bounded as

|R1| ≤
‖v‖∞
λr+1

· C̃h
(r + 1)!

· C ·
∥∥∥Φ(r+1)

∥∥∥
1

for each value x, which shows that |R1| = O(λ−(r+1)).
Analogously, for bivariate weighted Σ∆ schemes built from filters hi,j of the

form discussed in Section 4.2 and a kernel Φ ∈ Cr+1(Rn), the quantization error
gives rise to a bivariate Taylor remainder which can be represented as

R2 :=
1

λ2

∑
n∈N2

vn
∑
i j

wi,j

L∑
s=1

hi,js Ran,r

(
− s
λdi,j

)
=
∑
i j

wi,j

L∑
s=1

hi,js
(−s)r+1

(r+1)−1

∑
|α|=r+1

dαij
α!λr+1×

×
∫ 1

0

(1−t)r+1
∑
n∈N2

∂αΦ(an− ts
λ di,j)

vn
λ2

dt.
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Observing that the sum inside of the integral can be bounded by a Riemann
sum of |∂αΦ(· − ts

λ di,j)| and that
∫ 1

0
(1− t)rdt = 1

r+1 , we obtain

|R2| ≤ ‖v‖∞ · C ·MΦ · C̃h ·
∑
i j

wi,j
∑
|α|=r+1

|dij |α
α!λr+1 , (B.1)

whereMΦ := max
|α|=r+1

∂α ‖Φ‖1, C̃h :=max
i j

∑L
s=1 |hi,js |sr+1, and C > 0 is a constant

capturing the Riemann sum approximation error. By the definition di,j = (i, j),
thus the two sums in (B.1) are equal to∑

i j

wi,j
∑
|α|=r+1

|dij |α

α!λr+1
=

1

λr+1
· C̃W (B.2)

with C̃W :=
∑
i j

wi,j
r+1∑
m=0

ir+1−mjm

(r+1−m)!m! and one obtains that

|R2| ≤
1

λr+1
· ‖v‖∞ · C̃W · C · C̃h ·MΦ. (B.3)
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