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Abstract— Recent state-of-the-art artificial agents lack the
ability to adapt rapidly to new tasks, as they are trained
exclusively for specific objectives and require massive amounts
of interaction to learn new skills. Meta-reinforcement learning
(meta-RL) addresses this challenge by leveraging knowledge
learned from training tasks to perform well in previously unseen
tasks. However, current meta-RL approaches limit themselves
to narrow parametric and stationary task distributions, ignor-
ing qualitative differences and nonstationary changes between
tasks that occur in the real world. In this article, we intro-
duce a Task-Inference-based meta-RL algorithm using explicitly
parameterized Gaussian variational autoencoders (VAEs) and
gated Recurrent units (TIGR), designed for nonparametric and
nonstationary environments. We employ a generative model
involving a VAE to capture the multimodality of the tasks.
We decouple the policy training from the task-inference learning
and efficiently train the inference mechanism on the basis of
an unsupervised reconstruction objective. We establish a zero-
shot adaptation procedure to enable the agent to adapt to
nonstationary task changes. We provide a benchmark with
qualitatively distinct tasks based on the half-cheetah environment
and demonstrate the superior performance of TIGR compared
with state-of-the-art meta-RL approaches in terms of sample
efficiency (three to ten times faster), asymptotic performance,
and applicability in nonparametric and nonstationary envi-
ronments with zero-shot adaptation. Videos can be viewed at
https://videoviewsite.wixsite.com/tigr.

Index Terms— Gaussian variational autoencoder (VAE), meta-
reinforcement learning (meta-RL), robotic control, task adapta-
tion, task inference.
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I. INTRODUCTION

HUMANS have the ability to learn new skills by trans-
ferring previously acquired knowledge, which enables

them to quickly and easily adapt to new challenges. Rein-
forcement learning (RL) methods have successfully used self-
learning algorithms to create agents that exhibit superhuman
performance in board or computer games [1], [2], enable
a robot to walk [3], or to manipulate objects, such as a
Rubik’s Cube [4]. However, state-of-the-art artificial agents
lack the ability to adapt to differing tasks or to reuse existing
experiences, since they are commonly trained from scratch on
specific tasks only. This renders the application of RL to real-
world problems difficult, since the algorithms require massive
amounts of interaction experience with the environment for
every task, resulting in severe wear and tear of the joints and
gears of the used machines. For instance, to imbue a robotic
hand with the dexterity to solve a Rubik’s Cube, OpenAI
reported a cumulative experience of 13 000 years [4]. In con-
trast, adult humans are able to manipulate the cube almost
instantaneously, as they possess prior knowledge regarding
generic object manipulation.

As a promising approach, meta-RL reinterprets this open
challenge of adapting to new and yet related tasks as a
learning-to-learn problem [5]. Specifically, meta-RL aims to
learn new skills by first learning a prior from a set of similar
tasks and then reusing this policy to succeed after few or
zero trials in the new target environment. This bridges the gap
between simulation and the real world by allowing the transfer
of skills that are not tailored to a specific application, enabling
the agent to succeed under new circumstances [3], [4]. Recent
studies in meta-RL can be divided into three main categories.
Gradient-based meta-RL approaches, such as model-agnostic
meta-learning (MAML) [6], aim to learn a set of highly
sensitive model parameters, so that the agent can quickly
adapt to new tasks with only few gradient descent steps.
Recurrence-based methods aim to learn how to implicitly store
task information in the hidden states during meta-training
and utilize the resulting mechanism during meta-testing [7].
While these two concepts can adapt to new tasks in only a
few trials, they adopt on-policy RL algorithms during meta-
training, which require massive amounts of data and lead
to sample inefficiency. To address this issue, probabilistic
embeddings for actor-critic RL (PEARL) [8], a model-free
and off-policy method, achieves state-of-the-art results and
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significantly outperforms prior studies in terms of sample
efficiency and asymptotic performance, by representing the
task with a single Gaussian distribution through an encoder,
which outputs the probabilistic task embeddings.

However, most previous approaches, including PEARL, are
severely limited to narrow task distributions, as they have
only been applied to parametric environments [6], [8], [9],
[10], [11], in which only certain parameters of the tasks are
varied. This ignores the fact that humans are usually faced with
qualitatively different tasks in their daily lives, which happen
to share some common structure. For example, grasping a cup
and turning a handle both require the dexterity of a hand.
However, the nonparametric variability introduced by the two
different objects makes it much more difficult to solve the tasks
when compared with the sole use of parametric variations,
such as turning a handle to different angles. In addition,
algorithms, such as PEARL [8] and MAML [6], are designed
to adapt to the task in few trials, which excludes them from
being applicable to nonstationary environments, where task
changes can occur at any time during the interaction. For
a meta-RL approach to be applicable in common real-world
applications, the challenge of nonparametric and nonstationary
environments must be overcome, since any real-world task,
such as refilling a cup with tap water, consists of many quali-
tatively different (i.e., nonparametric) subtasks (e.g., grasping
the cup, putting the cup under the tap, turning the handle
of the tap, and so on), and the overall goal can only be
achieved by correctly solving and switching between the
subtasks (i.e., the environment is nonstationary). Despite this
importance, there is currently no study that explicitly focuses
on both nonparametric and nonstationary environments while
providing the benefits of model-free and off-policy algorithms,
such as the superior data efficiency and good asymptotic
performance.

In this article, we establish an approach that addresses the
challenge of learning how to behave in nonparametric and
broad task distributions with nonstationary task changes. We
argue that only with these requirements can an algorithm be
truly applied to real-world scenarios, as mentioned above.
We leverage insights from PEARL [8] and introduce a Task-
Inference-based meta-RL algorithm using explicitly parame-
terized Gaussian variational autoencoders (VAEs) and gated
Recurrent units (TIGR), which is sample-efficient, adapts in a
zero-shot manner to nonstationary task changes, and achieves
good asymptotic performance in nonparametric tasks. We pro-
pose a novel algorithm composed of four concepts. First,
we use a generative model, leveraging a combination of Gaus-
sians to cluster the information on each qualitatively different
base task. Second, we decouple the task-inference training
from the RL algorithm by reconstructing the tasks’ Markov
decision processes (MDPs) in an unsupervised setup. Third,
we propose a zero-shot adaptation mechanism by extracting
features from recent transition history and infer task infor-
mation at each timestep to enable the agent to adapt to task
changes at any time. Finally, we provide a novel benchmark
with nonparametric tasks based on the commonly used half-
cheetah environment. While the aforementioned techniques
have been utilized to address RL challenges several times

before [8], [9], [12], [13], we show that through modifications
and thoroughly investigated interaction, we can use them in a
novel way that allows us to tackle previously unsolved meta-
RL problems. Experiment results demonstrate that the TIGR
significantly outperforms state-of-the-art methods with three
to ten times faster sample efficiency, substantially increased
asymptotic performance, and unmatched task-inference capa-
bilities under zero-shot adaptation in nonparametric and non-
stationary environments for the first time. To the best of the
authors’ knowledge, TIGR is the first model-free meta-RL
algorithm to solve nonparametric and nonstationary environ-
ments with zero-shot adaptation.

II. BACKGROUND

A. Meta-Reinforcement Learning

The learning problem of meta-RL is extended to an agent
that has to solve different tasks from a distribution p(T ) [14].
Each task T is defined as an individual MDP specifying its
properties. A meta-RL agent is not given any task information
other than the experience it gathers while interacting with the
environment. A standard meta-RL setup consists of two task
sets: a meta-training task set Dtrain

T used to train the agent and a
meta-test task set Dtest

T used to evaluate the agent. Both sets are
drawn from the same distribution p(T ), but Dtest

T may differ
from Dtrain

T . The objective is to train a policy πθ on Dtrain
T that

maximizes rewards on Dtest
T , which is defined as follows:

θ∗
= arg max

θ

ET ∼Dtest
T

[
Eτ∼p(τ |πθ )

[∑
t

γ trt

]]
. (1)

B. Meta-Training and Meta-Testing

Meta-RL consists of two stages: meta-training and meta-
testing. During meta-training, each training epoch consists of
a data collection and optimization phase. In the data collection
phase, interaction experiences for each task are collected and
stored in the replay buffer. In the optimization phase, the
losses for the policy are computed, and the gradient of the
averaged losses is used to update the parameters of the policy.
During meta-testing, the policy is adapted to new tasks with
either few trials, meaning that the agent can experience the
presented environment and adapt before the final evaluation,
or in zero-shot manner, which means that the agent must solve
the environment at first sight.

C. Stationary and Nonstationary Environments

The meta-RL setting can involve stationary or nonstationary
environments. In stationary environments, each episode con-
sists of one task; i.e., the underlying MDP of the environment
is fixed during an episode. In such cases, an algorithm can use
a few-shot (episode-wise) mechanism to adapt to the task by
collecting experiences for a few episodes and adjusting before
the final evaluation in the last trial. In nonstationary environ-
ments, on the other hand, the underlying MDP can change at
any timestep. Here, episode-wise adaptation fails, and a zero-
shot procedure with online (or continuous) adaptation at the
transition level is required. The environments are regulated in
a way that between switching two goals, there are at least
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Fig. 1. Visualization of eight base environment tasks (yellow arrows show the movement direction). These eight tasks share similar dynamic models, but
are qualitatively distinct. Each task contains parametric variations, e.g., different goal velocities in the run forward/backward task. (a) Run forward. (b) Run
backward. (c) Reach front goal. (d) Reach back goal. (e) Front stand. (f) Back stand. (g) Jump. (h) Front flip.

some number of timesteps (e.g., 50 timesteps), so the agent
can use the information from recent transitions to figure out
the current objective [15] (i.e., tasks must not be switched too
rapidly). Thus, we can describe nonstationary environments as
a set of several stationary subtasks that the agent must adapt to.
This is a particularly common scenario in the real world, for
example, when a motor malfunction occurs in a robot’s joint
that changes its dynamics and, therefore, impacts the MDP
underlying the task. Due to the importance of this challenge for
real world application of meta-RL, we also tackle this problem
in this study.

D. Parametric and Nonparametric Variability in Meta-RL

Two key properties define the underlying structure of task
distributions in meta-RL [14]: parametric and nonparametric
variability. Parametric variability describes tasks that quali-
tatively share the same properties (i.e., their semantic task
descriptions are similar), but the parameterization of the tasks
varies. Parametric task distributions tend to be more homo-
geneous and narrower, which limits the generalization ability
of the trained agent to new tasks. Nonparametric variability,
however, describes tasks that are qualitatively distinct but
share a common structure, so a single meta-RL agent can
succeed (see Fig. 1 for a visual example of nonparametric
tasks). Nonparametric task distributions are considerably more
challenging, since each distinct task may contain parametric
variations [14].

E. Continual Learning

In continual learning settings, as described in [16], the
tasks that an agent has to solve change during the training
process. The agent can use information learned from previous,
simpler tasks to succeed in new, more complex environments.
Retaining learned abilities from earlier time steps is a critical
skill for the agent in a continual learning process. Lack of this

skill can lead to forgetting of older abilities on the one hand,
but can also benefit overfitting on earlier tasks on the other.
We consider a continual learning setting in which access to
different nonparametric tasks changes over time, but the agent
is given the total number of nonparametric tasks at the start
of training. We explore two different possibilities to regulate
access to the nonparametric tasks: 1) the agent starts with
access to only one nonparametric task, and the number of
accessible tasks increases during the training process (“linear”
setting) and 2) the agent starts with access to only one
nonparametric task, and with each new task, access to the
previous task is removed, but the gained experience can still
be used (“cut” setting).

F. Probabilistic Embeddings for Actor-Critic RL

In task-inference-based meta-RL, the task information that
the agent lacks to enable it to behave optimally given a
problem T ∼ p(T ) is modeled explicitly [10]. PEARL [8]
learns a probabilistic latent variable z that encodes the salient
task information given by a fixed-length context variable cT1:N
containing N recently collected experiences of a task T , which
is fed into the policy πθ (a|s, z) trained via soft actor-critic
(SAC) [17] to solve the presented task. To encode the task
information, an inference network qφ(z|cT1:N ) is learned with
the variational lower bound objective

ET ∼p(T )

[
Ez∼qφ(z|cT1:N)

[
R(T , z)+ βDKL

(
qφ

(
z|cT1:N

)∥∥p(z)
)]]

(2)

where p(z) is a Gaussian prior used as a bottleneck constraint
on the information of z, given context cT1:N using the Kullback-
Leibler (KL)-divergence DKL. R(T , z) is an objective used to
train the encoder via the Bellman critics loss. β is a hyper-
parameter for weighting the KL-divergence. The probabilistic
encoder qφ in PEARL is modeled as a product of independent
Gaussian factors assuming permutation invariance for the N
transitions in the context with qφ(z|cT1:N ) ∝

∏
n 9φ(z|c

T
n ),
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where 9φ(z|cTn ) ∼ N ( f µφ (cTn ), f σ
2

φ (cTn )) and fφ is repre-
sented as a neural network with parameters φ that outputs
the mean µ and variance σ 2 of the Gaussian conditioned
on the context cTn . The parameters of the network fφ are
optimized during meta-training. Here, in each data collection
phase, previous experiences are iteratively added to the context
cTn to predict the new latent task representation z used in the
policy for the next action. Then, during the optimization phase,
the Bellman critics loss is used to jointly update the parameters
of the encoder and actor-critic model using contexts sampled
from the replay buffer as inputs. During meta-testing, PEARL
performs a few-shot adaptation by first collecting experiences
and then computing a posterior for the latent representation
z obtained through the encoder. This latent representation
remains unchanged during the entire rollout. The few-shot
mechanism and the assumption of permutation invariance
of the collected transitions during a rollout renders PEARL
inapplicable to nonstationary task change.

III. RELATED WORK

The recent work in the domain of meta-RL can be divided
into three groups according to the approach taken: gradient-
based, recurrence-based, and task-inference-based.

A. Gradient-Based

Gradient-based meta-RL approaches, such as MAML [6]
and follow-up methods [11], [15], [18], are based on finding a
set of model parameters during meta-training that can rapidly
adapt to achieve large improvements on tasks sampled from
a distribution p(T ). During the meta-test phase, the initial
learned parameters are adjusted to succeed in the task with
few gradient steps [6]. Gradient-based approaches can be
applied to nonstationary environments only if the parameter
adaption is performed after every timestep as in [11]. Inspired
by MAML [6], some works utilized the trained policy from
meta-training as an initializer and performed gradient descent
to achieve fast and continuous adaption in nonstationary envi-
ronments [18], [19]. Gradient-based methods do not involve
reasoning about the task properties, which distinguishes them
from our method.

B. Recurrence-Based

The key element in recurrence-based methods, as in [4], [5],
[7], and [20], is the implementation of a recurrent model that
uses previous interactions to implicitly store information that
the policy can exploit to perform well on a task distribution.
By resetting the model at the beginning of each rollout and
recurrently feeding states, actions, and rewards back to the
model, the agent can track the interaction history over the
entire path in its hidden state and learn how to memorize
relevant task information [7]. In meta-training, the model is
trained via backpropagation through time. In meta-testing, the
parameters are fixed, but the agent’s internal state adapts to
the new task in zero-shot manner [7]. Examples, such as
fast reinforcement learning via slow reinforcement learning
(RL2) [5] and variational Bayes-adaptive deep RL via meta-
learning (VariBAD) [21], are also implemented in nonpara-
metric tasks, but tasks are only sampled from a narrow task
distribution (only one base task).

C. Task-Inference-Based

In task-inference-based meta-RL, as in PEARL [8], the
information that the agent lacks to enable it to behave opti-
mally is modeled explicitly [10]. Model agnostic exploration
with structured noise (MAESN) [22], for example, learns a
task-dependent latent space that is used to introduce structured
noise into the observations to guide the policy’s exploration.
While we also feed a latent description of the task to the
policy to learn task-dependent behavior, we do not keep the
task embedding stationary during policy execution as we want
to enable our agent to adapt to the task online. Lan et al. [12]
build on this idea and improve on MAESN by modeling
the task explicitly using an encoder consisting of a gated
recurrent unit (GRU) to extract information from a history
of transitions, which is given to the policy in addition to
the observations. Hu et al. [23] extended PEARL by adding
a dynamic task-adaptiveness distillation module to describe
how the meta-learners adjust the exploration strategy in the
meta-training process. The distillation module can measure
the meta-learner’s awareness of how it has adapted among
the distribution of tasks, which can encourage self-oriented
exploration in new tasks. Empirical results show improved
performance compared with PEARL in terms of averaged
return. Jiang et al. [24] also extended PEARL by adding
two exploration terms in action and task embedding space.
Moreover, meta-RL algorithms have also been implemented to
solve the control tasks, such as tracking control of autonomous
vehicles [25] and path planning tasks [26]. In contrast to their
approach, we do not directly feed the aggregated task infor-
mation of the recurrent network to the policy, but instead learn
a Gaussian distribution over the latent task information from
which we can sample embedded task descriptors. The benefits
of using Gaussian distributions to describe the latent task infor-
mation have also been shown in [8] and [9] (see Section II-F).
In [9], the feature extraction is improved by leveraging a graph
neural network that aggregates task information over time and
outputs a Gaussian distribution over the latent representation.
We build on the idea of using Gaussian distributions and show
that single Gaussian distributions, although valid for narrow
task distributions, fail to capture the variance between tasks in
nonparametric environments. Thus, similar to Ren et al. [13],
who further use a combination of a Dirichlet and a Gaussian
distribution to model different base tasks with style factors, we
also adapt the Gaussian model for nonparametric tasks, but in
contrast we use a generative model of explicitly parameterized
Gaussian VAEs. Moreover, our method reduces the complexity
of the latent space, while [13] was only examined in toy goal-
reaching environments.

IV. PROBLEM STATEMENT

This work aims to solve nonparametric meta-RL tasks,
in which an agent is trained to maximize the expected dis-
counted return across multiple test tasks from a nonparametric
task distribution in a nonstationary setting. Specifically, we aim
to achieve the following goals: first, our algorithm should
be applicable to nonparametric and broad task distributions
in a meta-RL setting. Second, the developed algorithm must
be able to perform zero-shot adaptation to nonstationary
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Fig. 2. Meta-training and meta-testing procedure. The encoder learns a task encoding z from the recent context with gradients from the decoder and provides
z for the task-conditioned policy trained via SAC during meta-training. In meta-testing, the latent task description z is fed into the task-conditioned policy to
perform the actions. Orange arrows outline the gradient flow.

task changes. Finally, the method should provide the sample
efficiency and asymptotic performance of model-free and
off-policy algorithms. To the best of our knowledge, there
is no approach that provides the advantages of model-free
and off-policy algorithms and is applicable to nonparametric
environments in a zero-shot manner. Currently, the only bench-
mark that satisfies the environment requirements is Meta-
world [14]. Metaworld does not offer well-defined rewards
that are normalized across all environments, which can lead
to strong bias toward dominant tasks. Clear evidence can be
found in the first version of Metaworld [14], in which very
poor performance of state-of-the-art metal RL algorithms [5],
[6], [8] is discussed. Thus, we provide our own benchmark
half-cheetah-eight to evaluate different meta-RL approaches.
The detailed description of how the agent interacts with the
environment is described in Appendix A and Table I. Note
that different from model pretraining algorithms that aim to
have an initializer to perform gradient steps during testing,
our method aims to learn a task-dependent latent space that is
used to identify the MDP of the task. During meta-test phase,
the latent space is once again used to update the agent’s belief
about the task and solve it accordingly.

V. METHODOLOGY

In this section, we first give an overview of our TIGR
algorithm. We then explain the strategy for making TIGR
applicable in nonparametric and nonstationary environments,
derive the generative model, and explain how we implement
the encoder and decoder. Finally, we summarize TIGR with
its pseudocode.

A. Overview

In this article, we leverage the notion of meta-RL as task
inference. Similar to PEARL, we also extract information
from the transition history and use an encoder to generate
task embeddings, which are provided to a task-conditioned
policy learned via SAC. We design a generative model for
the task inference to succeed in nonparametric environments.
Unlike PEARL, however, we first decouple the training of
the probabilistic encoder from the training of the policy by
introducing a decoder that reconstructs the underlying MDP
of the environment. Second, we modify the training and testing

procedure to encode task information from the recent transition
history on a per-time-step basis, enabling zero-shot adaptation
to nonstationary task changes. The structure of our method
is shown in Fig. 2. Our algorithm is briefly explained as
follows.

1) During meta-training, we first gather interaction expe-
riences from the training tasks and store them in the
replay buffer. At each interaction, we infer a task rep-
resentation, such that the policy can behave according
to the objective in (1). We feed the recent transition
history into a GRU [Section V-B1.b], which merges
the extracted information and forward the features to
the VAE [Section V-B1.a] to generate the overall task
representation z. The task representation is given to
the policy with the current observation to predict the
corresponding action.

2) Second, we optimize the task-inference and policy net-
works, in two sequential stages.

a) We first train the GRU-VAE encoder networks
for task inference by reconstructing the under-
lying MDP. For this, we use two additional
neural networks that predict the dynamics and
reward for each transition [see orange gradient
1 in Fig. 2 and Section V-B2.a]. This gives the
encoder the information required to generate an
informative task representation. To improve the
performance of the task inference, we employ two
additional losses, namely, Lclassification and LEuclid
[see Section V-B2.c]. We do not use any gradients
from SAC (see orange gradient 2 ), which enables
us to train the encoder independently of the task-
conditioned policy.

b) In policy training, we compute the task repre-
sentation for the sampled transitions online using
our GRU-VAE encoder. We feed this informa-
tion to the task-conditioned policy and train
it via SAC independently of the task-inference
mechanism.

3) During meta-testing, our method infers the task repre-
sentation at each timestep, selects actions with the task-
conditioned policy, and adapts to the task in zero-shot
manner.
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Fig. 3. Overview of the VAE network. The statistics for each Gaussian, including mean µ(c, k), variance σ 2(c, k), and activation ρ(c, k), are computed in
parallel. The values are processed, and the task representation z is calculated as the weighted sum denoted by the + as described in Section V-B1.a. Orange
arrows outline the gradient flow.

B. Task Inference

The nonparametric environments that we consider describe
a broad task distribution, with different clusters represent-
ing the nonparametric base tasks, and the intra-cluster vari-
ance describing the parametric variability for each objective.
We improve the generative model of PEARL and propose an
expressive generative model that captures the multimodality of
the environments and produces reasonable task representations
that account for both nonparametric and parametric variability.

1) Generative Model: Given the sequence of the recent
transition history in the last T timesteps as the context c =

(st−T , at−T , rt−T , st−T +1, . . . , st−1, at−1, rt−1, st ), we aim to
extract features and find a latent representation z that explains
c ∼ p(c|z) in a generative model, such that p(c, z) =

p(c|z)p(z). Using the last T timesteps to infer the current
task representation z at each interaction allows the model to
adapt to task changes online and in zero-shot manner. We rein-
terpret the joint structure of the meta-RL task distribution
as a combination of different features in a latent space that
represent the properties of a particular objective. Following
this idea, we model z as a combination of Gaussians that
can express both nonparametric variability with the different
Gaussian modes and parametric variability using the variance
of a particular Gaussian k with its statistics µ(c, k) and
σ 2(c, k). We introduce an activation ρ(c, k) that determines
the impact of each Gaussian k on z subject to

∑
k ρ(c, k) = 1.

We sample representatives

ζk ∼ N
(
µ(c, k), σ 2(c, k)

)
(3)

from each Gaussian, which are then fused to represent the
latent task encoding. We obtain a linear combination of
random variables ζk representing different latent task features,
which describes a distribution with

p(z|c) =

∑
k

ρ(c, k) · ζk . (4)

Given a shared structure between tasks, the weights ρ(c, k),
thus, represent the activation for the latent features that explain
the tasks’ properties. The final distribution corresponds to a
VAE with a single Gaussian distribution, but we show that
the explicit parameterization with multiple Gaussian modes
is advantageous for representing nonparametric task distribu-
tions. First, linear combination using the activations ρ(c, k)
allows us to permanently assign a Gaussian to each task,

which is beneficial in continual learning settings, because
the separate parameters for each Gaussian prevent forgetting
of older skills. Second, the explicit parameterization allows
us to use prior information about the nonparametric task
distribution, since we can train the algorithm to discriminate
between nonparametric tasks using a categorical regularizer
similar to [16] for the activations ρ(c, k). We argue that the
use of this prior during training does not violate the principle
of meta-RL, because it is not given directly to the agent.
We compute µ(c, k), σ 2(c, k), and ρ(c, k) as described in
Section V-B1.a.

a) VAE architecture: Using the variational inference
approach, we approximate the intractable posterior p(z|c)
using a variational posterior qθ (z|c), parameterized by neural
networks with parameters θ . The neural network that imple-
ments the VAE is designed as a multilayer perceptron (MLP)
that predicts the statistics for each Gaussian component,
including the mean µ(c, k), variance σ 2(c, k), and activation
ρ(c, k) as a function of the input features derived from the
context c (see Fig. 3). The standard model is given as a two-
layer network and an output layer size of K × (dim(z) × 2+

1), where dim(z) is the latent dimensionality required for mean
µ(c, k) and variance σ 2(c, k), and the Gaussian activation
value is ρ(c, k). K is the number of Gaussian components,
which we set equal to the number of nonparametric tasks. This
gives the algorithm prior information about the task distribu-
tion, which could be circumvented in future work by deter-
mining K online as described in [16]. Finally, we represent
the VAE components as multivariate Gaussian distributions
with mean µ(c, k) and covariance 6k = I ⊙ σ 2(c, k), where
the diagonal of 6k consists of the entries of σ 2(c, k), while
every other value is 0. This assumes that there are no statistical
effects between the tasks. We apply a softplus operation to
enforce that the network output σ 2(c, k) contains only positive
values. We sample from the multivariate Gaussian distributions
and obtain representatives ζk for each Gaussian component.
We enforce

∑
k ρ(c, k) = 1 by computing the softmax over

the VAE’s output for the ρ(c, k) values. Using the computed
activations ρ(c, k) and the representatives, we obtain the final
latent task representation as in (4).

b) Feature extraction: In this article, we consider RL
environments that are described as high-dimensional MDPs.
To enable our VAE to produce an informative task representa-
tion from the high-dimensional input data, we first employ a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 25,2023 at 07:00:26 UTC from IEEE Xplore.  Restrictions apply. 



BING et al.: META-RL IN NONSTATIONARY AND NONPARAMETRIC ENVIRONMENTS 7

Fig. 4. Overview of GRU feature extraction. Transitions from the context
c are fed in recurrently, and the last hidden state is extracted. Orange arrows
outline the gradient flow.

feature-extraction mechanism to find the relevant information
contained in the context. We employ a GRU to process the
sequential input data (see Fig. 4). We recurrently feed in
the transitions of the context c and, thereby, combine the
features internally in the GRU’s hidden state. We extract
this hidden state after the last transition is processed and
forward it into the VAE. We implement two more feature-
extraction architectures for comparison. First, a shared MLP
architecture similar to PEARL [8] that processes each tran-
sition of the context in parallel. The extracted features are
passed into the VAE, where we combine the Gaussians for
each timestep using the standard Gaussian multiplication with
µ = (µ1σ

2
2 + µ2σ

2
1 /σ

2
2 + σ 2

1 ) and σ 2
= (σ 2

1 σ
2
2 /σ

2
1 + σ 2

2 ).
Second, a Transformer architecture [27] that creates a key-
value embedding for each transition in the context. We extract
features from the embedding with a linear layer and forward
them to the VAE, where we combine the Gaussians for
each timestep using the standard Gaussian multiplication (see
MLP). We provide an ablation study of the feature-extraction
configurations in Section VII.

2) Encoder–Decoder Strategy: Our generative model fol-
lows the idea of a VAE. The setup employs an encoder,
to describe the latent task information given a history of transi-
tions from an MDP as qθ (z|c), and a decoder to reconstruct the
MDP from the latent task information given by the encoder as
pφ(c|z). The encoder is modeled as a VAE, which involves the
prior use of a shared feature-extraction method, as described in
Section V-B1. The decoder implements the generating function
pφ(c|z), parameterized as neural networks with parameters
φ. Following the variational approach in [28], we derive the
evidence lower bound objective (ELBO) for the encoder and
decoder and obtain:

log pφ(c) ≥ L(θ, φ; c)
= Eqθ (z|c)

[
log pφ(c, z)− log qθ (z|c)

]
= Eqθ (z|c)

[
log pφ(c|z)

]
− DKL

(
qθ (z|c)

∥∥pφ(z)
)
. (5)

We use the reparameterization trick and combine the k Gaus-
sian components to arrive at

z̃ =

∑
k

ρqθ (c, k)
(
µqθ (c, k)+ ϵ · σ 2

qθ (c, k)
)

(6)

with ϵ ∼ N (0, 1) and apply Monte Carlo sampling to arrive
at the objective

L(θ, φ; c) ≈
[
log pφ

(
c| z̃

)
− DKL

(
qθ

(
z̃|c

)∥∥pφ
(
z̃
))]

(7)

where log pφ(c| z̃) is a reconstruction objective of the input
data c. DKL

(
qθ ( z̃|c)

∥∥pφ( z̃)
)

introduces a regularization con-
ditioned on the prior pφ( z̃). Since the lower bound objective

Fig. 5. Overview of dynamics and reward prediction networks. The latent
task representation z in addition to the state s and action a is used as the
input to both networks. Orange arrows outline the gradient flow.

requires maximization, we denote the optimization objective
as minimizing −L(θ, φ; c), which results in a negative log-
likelihood objective for the reconstruction term.

a) Reconstruction objective: The reconstruction objec-
tive provides the information necessary for the encoder and
VAE to extract and compress relevant task information from
the context. It can take many forms, as suggested in [8], such
as reducing the Bellman critic’s loss, maximizing the actor’s
returns, and reconstructing states and rewards. We follow
the third proposal and extend the negative log-likelihood
objective of reconstructing states and rewards to predicting
the environment dynamics and the reward function for the
underlying MDP (see Fig. 5). We split the decoder into two
parts pφdynamics and pφrewards modeled as MLPs (see Fig. 5), which
predict the next state s′ and reward r given s, a, and z, and
train them with the following loss:

log pφ
(
c| z̃

)
= log pφ

(
s′, r |s, a, z̃

)
= log pφdynamics

(
s′
|s, a, z̃

)
+ log pφrewards

(
r |s, a, z̃

)
.

(8)

We model both parts as regression networks, in which the data
are modeled as a normal distribution. Thus, the loss function is
defined as the sum of Ldynamics(φ) and Lrewards(φ) as follows:

Lprediction(φ) =
1

dim(s)
||s′

− pφdynamics

(
s′
|s, a, z̃

)
||

2

+
1

dim(r)
||r − pφrewards

(
r |s, a, z̃

)
||

2 (9)

where both components are normalized by the number of their
dimensions.

b) Information bottleneck: The regularization introduced
by the KL-divergence in (7) serves as an information bottle-
neck that helps the VAE compress the input to a compact for-
mat. Due to the potential over-regularization of this term [29],
we control its impact on the ELBO as follows:

−L(θ, φ; c) ≈ LNLL(θ, φ)+ α · LKL-divergence(θ) (10)

with a factor α < 1 to allow expressive latent representations.
c) Clustering losses: To improve the task inference per-

formance for nonparametric environments, we employ two
additional losses that represent the following ideas.
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Algorithm 1 TIGR Meta-Training
Require: Encoder qθ , decoder pφ , policy πψ , Q-network Qω,

task distribution p(T ), replay buffer D
1: for each epoch do
2: Perform roll-out for each task T ∼ p(T ), store in D
3: for each task-inference training step do
4: Sample context c ∼ D
5: Compute z = qθ (c) ▷ (See Section V-B1.a)
6: Calculate losses LKL-divergence, LEuclid, Lclassification ▷

(See Section V-B2.d)
7: Compute (s′, r) = pφ(s, a, z) ▷ (See

Section V-B2.a)
8: Calculate loss Lprediction
9: Derive gradients for losses with respect to qθ , pφ

and perform optimization step
10: for each policy training step do
11: Sample RL batch d ∼ D and corresponding

context c, infer z = qθ (c)
12: Perform SAC algorithm for πψ , Qω

return qθ , πψ

1) Assign each component of the VAE to one base task
only. This objective is related to component-constraint
learning as in [16]. The idea is to enforce each Gaussian
to represent one base task, containing only task-specific
features. We can feed prior information about a true base
task y to the algorithm and use a supervised classifica-
tion learning approach for the activations ρ(c, k) with
the standard cross-entropy formulation as follows:

Lclassification(θ) = − log
(

exp(ρ(c, k = y))∑
k exp(ρ(c, k))

)
. (11)

Cross-entropy enforces that task activations correspond
to the base task distribution, such that ρk −→ 1 for k 1

=

yk . By introducing this secondary objective, we have
the possibility to constrain the components to represent
task-specific features instead of shared features among
tasks.

2) Push the components of the VAE away from each
other to achieve a clear distinction between base tasks.
To be able to further distinguish the features and prevent
overlap, we confine them to separate clusters. This can
be realized by an objective that seeks to maximize the
Euclidean distance between the means µ(c, k) of the
K components scaled by the sum of variances σ 2(c, k)
with

LEuclid(θ) =

K∑
k1=1

K∑
k2=k1+1

σ 2(c, k1)+ σ 2(c, k2)

||µ(c, k1)− µ(c, k2)||2
. (12)

The Euclidean distance is replaced by the sum of
squares, which avoids the computationally unstable cal-
culation of the square root, but has the same effect.

We provide an evaluation of the impact of the clustering
losses in Section V-C.

d) Final objective: The final objective derived from the
reconstruction objective, information bottleneck, and cluster-
ing losses is used to jointly train the encoder–decoder setup
as described in Section V-B2. We combine the different
loss functions to enable the encoder to produce informative
embeddings, which are used in the task-conditioned policy.
The resulting overall loss is denoted as follows:

L(θ, φ) = LNLL (prediction)(θ, φ)+ α · LKL-divergence(θ)

+ β · LEuclid(θ)+ γ · Lclassification(θ) (13)

where α, β, and γ are hyperparameters that weigh the impor-
tance of each term.

C. Algorithm Overview

The TIGR algorithm is summarized in pseudocode (see
Algorithm 1). The task-inference mechanism is implemented
from lines 3–9. Lines 10 and 12 implement the standard
SAC [17]. A list of the most important hyperparameters of
the algorithm and their values is given in Appendix B.

VI. EXPERIMENTS

We evaluate the performance of our method on the non-
parametric half-cheetah-eight benchmark that we provide and
verify its wide applicability on a series of other environments.
The half-cheetah-eight environments are shown in Fig. 1,
and their detailed descriptions are introduced in Appendix A.
In each experiment, we iteratively gather training transitions
in the data collection phase, where the agent interacts with
the environments following the policy. These data are stored
inside a replay buffer (i.e., the meta-RL training dataset) from
which we sample transitions during the optimization phase
to train the encoder and decoder, as well as the actor and
critic, according to their respective objectives. The experiment
finishes after enough training iterations were completed, and
the exact training parameters can be seen in the Appendix. The
evaluation metric is the average reward during the meta testing
phase. We first compare the sample efficiency and asymp-
totic performance against state-of-the-art meta-RL algorithms,
including PEARL. Second, we visualize the latent space
encoding of the VAE. Third, we evaluate the task-inference
capabilities of our algorithm in the zero-shot setup. Fourth,
we evaluate the applicability of the algorithm to nonstationary
task changes in the half-cheetah-eight benchmark. Finally,
we provide videos displaying the distinct learned behaviors
in the Supplementary Material, along with our code.

A. Asymptotic Performance and Sample Efficiency

We first demonstrate the performance of PEARL and our
method in standard parametric environments, namely, half-
cheetah-vel and half-cheetah-dir tasks [8], to verify both
approaches. It should be noted that PEARL achieves reported
performances in few-shot manner, while our method is tested
at first sight in zero-shot fashion. Fig. 6 shows that both
methods achieve similar performance and can solve the tasks.
However, TIGR significantly outperforms PEARL in terms of
sample efficiency across both tasks, even in zero-shot manner.
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Fig. 6. Meta-testing performance over environment interactions evaluated periodically during the meta-training phase. As PEARL [8] outperforms ProMP [30],
RL2 [5], and MAML [6] in half-cheetah-vel and half-cheetah-dir, we only compare TIGR with PEARL in these two environments. The blue line shows the
performance of our method. We show the mean performance over three independent runs, evaluated in the half-cheetah-velocity, half-cheetah-direction, and
ant-three environments. Note that the x-axis is in log scale.

Fig. 7. (a) Meta-testing performance over environment interactions evaluated periodically during the meta-training phase. We show the mean performance
from three independent runs. (b) Final encoding of the eight tasks visualized using t-SNE [31] in two dimensions. Note that the x-axis is in log scale.

We then progress to a slightly broader task distribution
and evaluate the performance of PEARL, other state-of-
the-art algorithms, and our method, on a modification of
the ant environment (a detailed description is introduced in
Appendix A). We use three different tasks, namely, goal tasks,
velocity tasks, and a jumping task. The goal and velocity
tasks are each split into left, right, up, and down and include
different parametrizations. We take the original code and
parameters provided from PEARL [8]. For a fair comparison,
we adjust the dimensionality of the latent variable to be the
same. For the other meta-RL algorithms, we use the code
provided by Rothfuss et al. [30] of proximal metapolicy search
(ProMP).1 Fig. 6 (right) shows the performances of these five
methods. We see that although PEARL and RL2 can solve
the different tasks, our method greatly outperforms the others
in sample efficiency and has a slight advantage in asymptotic
performance.

Finally, we evaluate the approaches on the half-cheetah-
eight benchmark. The average reward during meta-testing
is shown in Fig. 7(a). We can see that TIGR outperforms
prior methods in terms of sample efficiency and demonstrates
superior asymptotic performance. Looking at the behaviors
showcased in the video provided with the Supplementary
Material, we find that with a final average return of −150, the
PEARL agent is not able to distinguish the tasks. We observe
a goal-directed behavior of the agent for the goal tasks but no
generalization of the forward/backward movement to velocity

1Repository available at https://github.com/jonasrothfuss/ProMP/tree/
full_code

tasks. It learns how to stand in the front but fails in stand
back, jump, and front flip. For TIGR, we can see that every
base task except the front flip is learned correctly. It should be
noted that for the customized flip task, we expect the agent to
flip at different angular velocities, which is much harder than
the standard flip task, in which the rotation speed is simply
maximized.

B. Clustering Losses

We evaluate the impact of the clustering losses on the
meta-testing performance of TIGR on the half-cheetah-eight
benchmark in Fig. 8. We see that, when leaving out any
one of the losses, the performance is weaker and less stable
when one of the losses is omitted. Nevertheless, the algorithm
significantly outperforms the prior meta-RL methods in both
cases. Thus, each loss has a beneficial impact on the meta-
RL objective, but the additional prior information about the
true base tasks during meta-training is not mandatory for the
algorithm to succeed in the nonparametric environment.

C. Latent Space Encoding

We evaluate the latent task representation by sampling
transition histories from the replay buffer that belong to
individual rollouts. We extract features from the context using
the GRU encoder and obtain the compressed representation
from the VAE. The latent task encoding is visualized in
Fig. 7(b). We use t-distributed stochastic neighbor embedding
(t-SNE) [31] to visualize the 8-D encoding in two dimensions.
The representations are centered around 0, which demonstrates
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Fig. 8. Evaluation of the impact of the proposed clustering losses on
the meta-testing performance of the algorithm on the half-cheetah-eight
benchmark. We remove each of the losses in turn and compare with the setup
with all losses involved.

the information bottleneck imposed by the KL-divergence.
We can see that qualitatively different tasks are clustered into
different regions (e.g., run forward), verifying that the VAE
is able to separate different base tasks from each other. Some
base tasks show clear directions along which the represen-
tations are spread (e.g., run backward), suggesting how the
parametric variations in each base task are encoded.

D. Task Inference

We evaluate whether the algorithm infers the correct task
by examining the evolution of the velocity, distance, or angle
during an episode. A task is correctly inferred when the
current value approaches the target specification. We can
see in Fig. 9 that the target specification is reached within
different time spans for the distinct tasks. This is because
goal-based tasks take longer to perform. Nevertheless, we can
see that the task inference is successful, as the current value
approaches the target specification in the displayed settings. In
Fig. 9, the dashed line with a different color represents the goal
of the task, and the solid line with the same color represents
the performance of the agent. Taking the run forward task as
an example, the goal velocities are 1–4 m/s, respectively.

For jump, the vertical velocity oscillates due to gravity and
cannot be kept steady at the target. But, we can see that
the peak of each color is close to the corresponding desired
goal velocity. For the run forward and run backward task,
the velocity slightly oscillates about the target with increasing
strength for larger velocities. We suggest that this is because
during running, the cheetah periodically accelerates when its
feet touch the ground and shortly after decelerates due to air
resistance. Since its feet need to be moved back to the starting
position before the next acceleration, the velocity cannot be
kept steady at its target but is prone to oscillate due to the
physical aspects of the simulation. For the goal in front, goal
in back, front stand, and back stand tasks, the agent is able to
stop at the desired goal location. Due to the complexity of the
dynamics, there are some tracking errors, but the order of the
colors shows that the tasks are correctly inferred according
to the specification of the goal. The front flip task remains
unsolved. We have fully tested the front flip task and find out
it is too difficult to be solved in a single task setting using
SAC. Therefore, it is reasonable that it cannot be solved in a
nonparametric task setting. However, as shown in Fig. 7(b),
the front flip task can still be inferred as one base task.

E. Applicability to Nonstationary Environments

The zero-shot adaptation mechanism of the TIGR algorithm
allows us to evaluate its performance for nonstationary task
changes in the half-cheetah-eight benchmark, which is not pos-
sible for few-shot methods as PEARL [8]. First, we evaluate
the adaptation to parametric task changes for the eight base
tasks in the half-cheetah-eight benchmark. We use three con-
secutive parameterizations each, without resetting the state of
the environment or agent in-between. We evaluate whether the
algorithm infers the correct tasks by examining the evolution
of the velocity, goal distance, or angle during the episode. The
nonstationary adaptation to the tasks is successful when the
current value repeatedly approaches the target specification.
The results are shown in Fig. 10. Each subfigure depicts
a different base task. We find that nonstationary adaptation
to the different parameterizations is successful for each base
task, as the inspected value repeatedly approaches the target
specification the displayed settings, exhibiting similar task-
inference patterns as described in Section VI-D. The vertical
velocity for the jump task oscillates due to gravity, but the
peak of each color shows a correct inference of the task. The
front flip task remains unsolved, and the potential reason is
given as above.

Second, we evaluate the adaptation to nonparametric task
changes in the half-cheetah-eight benchmark. We set a fixed
order for the base tasks, as visualized in Fig. 11, and iterate
through them online after executing 80 steps for each envi-
ronment, without resetting its state in-between. We evaluate
whether the algorithm infers the correct tasks by examining
the evolution of the velocity, goal distance, or angle during
the entire episode. The nonstationary adaptation to the tasks
is successful when the current value repeatedly approaches
the target specification. The results are shown in Fig. 11.
Each subfigure describes the evolution of the values for the
given base task and its specified target parameterization with
successive timesteps across all environments. We find that
nonstationary adaptation to the tasks is successful, as the
inspected value repeatedly approaches the target specification
in all of the displayed settings.

F. Applicability to Continual Learning

We evaluate the applicability of the TIGR algorithm to two
different continual learning settings derived from the half-
cheetah-eight benchmark: 1) the agent starts with access to
only one nonparametric task, and the number of accessible
tasks increases during the training process (“linear” setting)
and 2) the agent starts with access to only one nonparametric
task, and with each new task, access to the previous task
is removed, but the experience gained with the previous
tasks can still be used (“cut” setting). The total amount of
environment interactions gathered in training is the same for
all the displayed settings. We set the number of Gaussians
in the VAE equal to the total number of nonparametric tasks
presented during the learning process. We use the following
order of tasks: run forward, run backward, reach front goal,
reach back goal, front stand, back stand, jump, and front flip.
The results are shown in Fig. 12. Each subfigure represents
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Fig. 9. Task-inference response during one episode for the half-cheetah-eight benchmark after 2000 training epochs. Each task is evaluated under different
parametric variations, which are each represented using the different colors. The target for each task variation is marked with the dashed line. The task is
inferred correctly when the solid line approaches the target. The vertical velocity for the jump task oscillates due to gravity. For the run forward and run
backward task, the velocity slightly oscillates about the target with increasing strength for larger velocities due to the physical aspects of the simulation. The
front flip task remains unsolved. In each plot, different colors represent tasks with different targets. The targets are depicted with dashed lines. Taking the run
forward as an example, the goal velocities are 1–4 m/s, respectively.

Fig. 10. Evaluation of the performance of the TIGR algorithm for parametric nonstationary task changes for each base task in the half-cheetah-eight
benchmark. The targets (specifications) for each of the environments in the subfigures are marked as the dashed line. The nonstationary adaptation to the tasks
is successful when the solid line for the current value repeatedly approaches the targets. The vertical velocity for the jump task oscillates due to gravity. The
front flip task remains unsolved. In each plot, different colors represent tasks with different targets. The targets are depicted with dashed lines.

Fig. 11. Evaluation of the performance of the TIGR algorithm for nonstationary and nonparametric task changes in the half-cheetah-eight benchmark. The
target (specification) for each of the environments in the subfigures is marked as the dashed line. The nonstationary adaptation to the tasks is successful when
the solid line for the current value repeatedly approaches the target. In each plot, different colors represent tasks with different targets. The targets are depicted
with dashed lines.

a different base task. After each 12.5% of training progress,
a new base task is provided in the given order. We note that
the agent does not perform as well in the continual learning
setting as in the noncontinual setting, because the reduced
training time for difficult tasks that are not accessed until
the later stages of training, such as the back stand or jump
tasks, does not give the algorithm enough time to fully learn
the desired behavior. Nevertheless, the algorithm does not
exhibit forgetting or overfitting on old tasks, thus fulfilling
these critical abilities necessary for continual learning.

VII. DISCUSSION AND ABLATION STUDY
We perform an ablation study of different configurations

of our method on the environments that we provide. We first
compare the sample efficiency and asymptotic performance
for the different clustering losses. Second, we evaluate the
performances of the three implemented feature-extraction
configurations. Third, we provide an ablation study of
TIGR on solving out-of-distribution (OOD) tasks. Finally,
we discuss the performance and limitations of the TIGR
algorithm.
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Fig. 12. Evaluation of the performance of the TIGR algorithm for the two continual learning settings in the half-cheetah-eight benchmark. The noncontinual
learning curve for TIGR is shown for comparison in blue. The continual learning is successful when the curve for the “linear” (green) or “cut” (red) setting
approaches the TIGR curve.

Fig. 13. Evaluation of meta-testing performance on the half-cheetah-six envi-
ronment of different feature-extraction configurations in addition to different
context lengths in the brackets used to infer the task.

A. Feature-Extraction Ablation

To study the effect of different VAE architectures, we have
performed the following ablation study. We evaluate the three
feature-extraction architectures GRU, MLP, and Transformer
on the half-cheetah-six environment, i.e., omitting the jump
and front flip tasks. We compare the three methods using
32 and 64 timesteps in the context. The results are shown
in Fig. 13. We can see that all methods show improved
performance when using more timesteps in the context. As the
GRU outperforms the other methods when 64 timesteps are
used, we use this architecture in our study.

OOD Tasks: We also examine TIGR’s capability on solving
OOD tasks. For the half-cheetah-vel task, the goal velocities
are set as 0–2 during meta-training, but is challenged with
3–4 during meta-testing, which is out of the distribution of
the training dataset. We visualize the latent space structure of
run forward task in Fig. 14 to demonstrate our assumption;
here, we reduce the dimension of latent representations to
1-D using the t-SNE visualization to intuitively illustrate the
relationship between representations and the ground-truth goal
value. We can observe that the latent variable shows a linear
relationship against the target velocity. Blue points indicate the
training velocities, and the orange points indicate the testing

Fig. 14. Out-of distribution experiment with velocities between 0 and
2 during meta-training, and velocities greater than 3 and up to 4 during
meta-testing.

velocities. Our algorithm is able to accurately adapt to the
goal velocities between 2 and 3 and roughly follow the same
trend for velocities between 3 and 4. The characteristics of
the OOD test tasks are well reflected in the latent space even
though the task inference module is not trained with a goal
velocity between 2 and 4. The result supports our claim that
our task inference module can generalize to unseen test tasks
without additional training and, thus, benefits the downstream
policy training.

B. Limitations

The results of our experiments demonstrate that TIGR is
applicable to broad and nonparametric environments with
zero-shot adaptation to nonstationary task changes, where prior
methods even fail with few-shot adaptation. However, our
method is not applicable to sparse reward settings, since it
assumes that the environment gives a feedback to the agent
following a dense reward function. In general, this drawback
can presumably lead to weaker performance for problems that
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TABLE I
NONPARAMETRIC VARIABILITY PROPOSED FOR THE Half-Cheetah-Eight ENVIRONMENT

TABLE II
NONPARAMETRIC VARIABILITY PROPOSED FOR THE Ant ENVIRONMENT

TABLE III
GENERAL HYPERPARAMETERS

do not follow well-shaped reward functions, and we suppose
that the front flip task might also not be solved due to ill-
defined rewards.

VIII. CONCLUSION

In this article, we presented TIGR, an efficient meta-RL
algorithm for solving nonparametric and nonstationary task
distributions. Using our task representation learning strategy,
TIGR is able to learn behaviors in nonparametric environments
using zero-shot adaptation to nonstationary task changes. Our
encoder is based on a generative model represented as a VAE
and trained by unsupervised MDP reconstruction. This makes
it possible to capture the multimodality of the nonparametric
task distributions. We report three to ten times better sam-
ple efficiency and superior performance compared with prior
methods on a series of environments, including the novel
nonparametric half-cheetah-eight benchmark.

APPENDIX A
EXPERIMENT ENVIRONMENTS

The OpenAI Gym toolkit [32] provides many environments
for RL setups that can be easily modified to meet our desired
properties.

A. Half-Cheetah-Eight

An environment that is often used in meta-RL is the half-
cheetah [6], [11], [20], [33], and therefore, we have chosen
it to demonstrate the performance of our proposed approach.
We provide a new benchmark consisting of eight nonparamet-
ric tasks requiring qualitatively distinct behavior, as defined in
Table I and visualized in Fig. 1. Each environment contains
internal parametric variability, in which the desired velocity
or goal is sampled from a range of possible values. Each task
was verified individually to show that the correct behavior is
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TABLE IV
Half-Cheetah-Eight HYPERPARAMETERS

learned when a high return is achieved by the algorithm. The
environments are pseudo-normalized, such that the maximum
possible reward is 0 (i.e., when there is no deviation from the
desired velocity/position), and the agent starts with a reward of
−1 on each episode. We suggest that this is a very important
feature of the environments, since the agent cannot distinguish
tasks based on the magnitude of the reward alone. We assume
that this increases the difficulty of the challenge, as some kind
of exploratory movement is required at the beginning of each
episode to deduce what behavior is needed.

B. Ant-Three

The second environment that is often used in meta-RL to
demonstrate the generalization ability to multiple agents is the
ant [8]. We modify the standard ant environment and introduce
three base tasks, such as run, reach goal, and jump. Run and
reach goal are divided into the four directions, such as up,
down, left, and right, but are considered as a single base task
due to the ant’s symmetricity. Task specifications are defined
in Table II.

APPENDIX B
EVALUATION DETAILS

We carried out the experiments on a 32-core machine
with 252 GB of RAM and Eight Tesla V100 GPUs. We imple-
mented TIGR in PyTorch (version 1.7.0) and ran it on Ubuntu
18.04 with Python 3.7.7. The implementation of TIGR is based
on the PEARL implementation given by Rakelly et al. [8].

1) All curves in this work are plotted from three runs with
random task initializations and seeds.

2) Shaded regions indicate one standard deviation around
the mean.

We give an overview of important hyperparameters of the
method and the values we used during our experiments in
Table III. The settings for the half-cheetah-eight environment
can be seen in Table IV. Detailed code can be found in the
Supplementary Materials.
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