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A B S T R A C T

Inspection and maintenance (I&M) is essential to ensure the integrity of feeder pipes, which are parts of the
primary heat transport system in a nuclear power plant. The pipes are subject to flow accelerated corrosion
(FAC), which can compromise the integrity of the piping system and lead to high repair costs. We explore the
opportunity for improving I&M strategies while ensuring that the system still maintains an acceptable level of
reliability. To this aim, a reliability-based planning framework is proposed, in which every pipe in the system
meets the minimum thickness requirement at a specified annual probability. With this planning framework
we can a) evaluate the performance of any I&M strategy constrained to a fixed reliability criterion, without
requiring this strategy to be specifically designed for such a criterion; and b) find an I&M strategy optimized
for this reliability level using a heuristic description of the strategy space. We demonstrate the framework with
a case study, where the wall thinning due to FAC is modeled as a Gamma process with uncertain parameters.
We compare the expected life-cycle cost of multiple strategies for I&M of a feeder system with 480 pipes. The
proposed approach is compared with an I&M strategy currently used by the industry, which highlights the
efficiency of the proposed optimization method.
1. Introduction

Operation and maintenance of a nuclear power plant (NPP) requires
careful planning. Aside from the safety of the plant, which is ensured
by a multitude of redundant safety systems, the continued operation
of the plant is a major goal of the operator. Regular maintenance of
the reactor components is essential to prevent interruptions in energy
production and associated loss in revenue.

In a Canada Deuterium Uranium (CANDU) reactor, the feeder piping
system consists of inlet pipes that supply coolant to cool the nuclear
fuel and of outlet pipes that bring the hot fluid to the steam generators
(see Fig. 1). These hundreds of carbon steel pipes are susceptible
to flow accelerated corrosion (FAC), which is largely responsible for
wall thinning and leakage, particularly at the bends formed by the
outlet feeder pipes [1–3]. Wall thinning and leakage can have serious
consequences on the operability of the nuclear reactor. In the event
of a leakage, total interruption of plant activity is typically required,
at a very high cost. Inspection and maintenance (I&M) planning of
feeder pipes is part of the FAC management program. Such planning
is especially challenging due to the high number of pipe bends where
FAC can occur. Inspecting and/or replacing every single pipe is not
economically feasible.

∗ Corresponding author.
E-mail addresses: elizabeth.bismut@tum.de (E. Bismut), mdpandey@uwaterloo.ca (M.D. Pandey), straub@tum.de (D. Straub).

Following a major FAC-related incident at the Surry NPP in 1986
and to address the lack of a unified maintenance practice, guide-
lines and principles were drafted [1]. They are articulated around
the following points: (i) piping systems must be inspected regularly;
(ii) inspections must measure the wall thickness; (iii) the evolution of
the wall thickness must be predicted for every pipe and account for
the past inspection outcomes; (iv) pipes that do not comply with a
minimum wall thickness must be replaced; (v) pipes selected for the
next planned inspection should include pipes never inspected, as well
as pipes marked as near-critical during a past inspection [4].

Good I&M planning controls the risk of an unplanned outage due
to pipe failures, while keeping the I&M costs (pipe inspection and
replacement costs) low. In the current unified practice, the I&M strate-
gies adopted for FAC management in NPPs do not vary widely and
have been adapted from past practice. These strategies have not been
explicitly optimized to comply to a certain reliability level. Such a
level is also not quantified in the guidelines. Therefore, there is an
opportunity to optimize the I&M costs while maintaining a specified
level of reliability.

To improve current I&M practice and to quantify the potential
reduction in I&M costs, we propose a reliability-based planning frame-
work for evaluating and optimizing I&M strategies of a multi-component
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Fig. 1. Schematic of a CANDU reactor and its feeder piping system. Each fuel channel
is connected to inlet and outlet feeders (not all depicted for clarity purposes). The outlet
feeders transport the coolant from the fuel channel to the steam generators, where heat
is exchanged. The coolant is then transported back to the fuel channels through the inlet
feeders. Flow accelerated corrosion is responsible for pipe wall thinning, particularly
at the first bend of the outlet feeders. After Lister et al. [2].

piping system subject to FAC, under a reliability constraint applied at
the system level. The pipes correspond to the system components. The
system reliability accounts for the inspection information at component
level using Bayesian updating. This framework utilizes a deterioration
model, which accounts for the components’ interdependence and cor-
relation. The expected cost optimization uses a heuristic description
of I&M strategies, which enables the definition of I&M rules based on
the reliability of individual components and of the system. The opti-
mization is then performed on a few chosen heuristic parameters. The
adopted heuristic optimization method was developed and formalized
for risk-based I&M planning in [5,6] and notably allows for including
eventual operator constraints. The framework proposed in this paper is
designed to handle hidden system failures, which can only be detected
through component inspection. Furthermore, it can cope with a large
number of deteriorating components, as is typical of a nuclear piping
system.

Individual aspects of this reliability-based planning framework have
been proposed and implemented in past studies [7,8] but not in com-
bination. Few studies have considered multi-level decision making for
multi-unit systems [7,9]. Several studies have investigated the effect
of a reliability requirement on the planning of I&M actions at the
system level or at the individual component level (e.g., [10–14]), a
few of which include the cost optimization [14–17]. In the studies that
consider the interaction between the system and its components, the
dependence between the component deterioration processes are not
accounted for [18–21], and otherwise the methods are not adapted
to a large number of system components [9,22–24]. In several studies
that enable inspection decisions at the component level, preventive or
corrective maintenance actions are limited to a major intervention at
the system level [13,18,25], and failures (at the system or component
level) are typically assumed to be self-announcing [19].

The paper is organized as follows: Section 2 presents the type of
nuclear piping system as well as the cost and operational constraints for
which the reliability-based framework is developed. Section 3 details
the simulation-based evaluation of the expected cost of a given I&M
strategy under reliability constraint, which is formulated as a threshold
𝑝0 on the system failure rate (see Section 3.3). In Section 4, we present
the associated reliability-based strategy optimization problem, whose
solution via the heuristic approach is described in Section 4.2. The
probabilistic model for FAC at the pipe level is described in Section 5.
The computation and updating of the reliability of the system and
the pipes are detailed in Section 6. In Section 7, the framework is
demonstrated on a 480-feeder piping system subject to FAC. The I&M
2

constrained expected costs of a strategy representative of current I&M p
practice are evaluated and compared to the optimized heuristic strate-
gies for different values of 𝑝0. The effect of the prior deterioration
model parameters is also investigated.

2. Inspection and maintenance of a piping system

The presented methodology is applicable in general to I&M planning
of nuclear piping system. Nevertheless, to facilitate the description of
the reliability-based planning framework in Sections 3 and 4, we in-
troduce here the configuration and planning constraints of the specific
system investigated in Section 7.

2.1. Piping system

We consider a piping system of a CANDU power reactor. A CANDU
piping system typically consists of different pipe geometries (angle
of pipe bend, diameter of pipe, thickness of pipe) [26]. However, to
restrict the analysis, the piping system considered here consists of
𝑁 identical large-bore pipes of 2-inch diameter, with initial nominal
thickness 𝑊0 [27].

The pipes are indexed by 1 ≤ 𝑖 ≤ 𝑁 . The thickness of a pipe 𝑖 at
ime 𝑡 is denoted by 𝑊𝑖(𝑡), with 𝑊𝑖(0) = 𝑊0. The loss of wall thickness
esulting from FAC, 𝐷𝑖(𝑡), is

𝑖(𝑡) = 𝑊𝑖(0) −𝑊𝑖(𝑡). (1)

To ensure adequate safety and fitness-for-service, the operator must
nsure throughout the service life that the wall thickness loss in any
f the 𝑁 pipes does not exceed a certain threshold 𝑑𝑚𝑎𝑥. Piping design
tandards specify this threshold 𝑑𝑚𝑎𝑥 to be 40% of the initial thickness
0 [27,28]. Failure to comply with this criterion at time 𝑡 is indicated

y the event 𝐹 (𝑡) = {max𝑖 𝐷𝑖(𝑡) > 𝑑𝑚𝑎𝑥} and is here called system
ailure. The event 𝐹𝑖(𝑡) = {𝐷𝑖(𝑡) > 𝑑𝑚𝑎𝑥} is called failure of pipe 𝑖. It
s 𝐹 (𝑡) = ∪𝑖𝐹𝑖(𝑡).

The threshold 𝑑𝑚𝑎𝑥 is based on a regulatory constraint, which typ-
cally includes a safety factor. In this case, a non-compliant pipe does
ot entail a failure (e.g., a leak) as such. Therefore, pipe failure as
efined here is not self-announcing and can only be detected through
all-thickness inspection.

Time is measured in effective full-power year (EFPY). To simplify
he notation, we refer to 1 EFPY as 1 year (𝑦𝑟). The design service life
f the piping system is denoted by 𝑇 .

.2. I&M actions and cost model

To ensure compliance with the 𝑑𝑚𝑎𝑥 criterion, the plant operator
erforms inspections of the piping system throughout the service life,
y measuring the wall thicknesses at the bend of selected pipes with
ltrasonic probes. Based on the inspection results, the operator can
hoose to replace pipes bends by cutting out the old bend and welding
n a new pipe bend. In theory, the operator can decide to inspect
r repair the pipes at any point in time. In practice, inspection and
epair times are typically synchronized with planned maintenance out-
ges, during which the NPP undergoes different types of checks and
aintenance operations.

In a practical setting, the costs of pipe inspection and repair depend
n the manner they are scheduled. We outline the I&M scheduling con-
traints and resulting I&M life-cycle costs in Fig. 2. The I&M campaigns
ccur at times fixed in advance, typically at regular time intervals 𝛥𝑇 .
ipe inspections and maintenance actions are preferably planned one
&M campaign ahead. Certain pipes are labeled ‘of interest’ (for future
nspection). Others are labeled ‘critical’ (for eventual future mainte-
ance) and form the PM pool. Maintenance performed on pipes from the
M pool is called preventive maintenance. However, the inspections car-
ied out during an I&M campaign can reveal critical pipes among those
hat have not been scheduled for maintenance during the previous cam-

aign, which form the CM pool; critical pipes in the CM pool warrant
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Fig. 2. Overview on I&M planning. Inspection and maintenance actions occurring at time 𝑡 are indicated by lightly hatched boxes. Planning of I&M actions for the next I&M
campaign are indicated by unhatched boxes. The PM pool consists of the pipes pre-selected for preventive maintenance for the next campaign, the CM pool consists of all other
pipes. The plain arrows indicate a scheduling imperative. The dashed arrow indicates possible influences, but does not constrain the I&M strategies to follow them. For instance,
preventive maintenance or corrective maintenance can be performed on pipes that have not been inspected during the campaign, but might have been in the past. This means
that the pipes in the PM pool can be, but not necessarily are, inspected at the next campaign, as indicated by the arrow. 𝑛𝐶 (𝑡) records the times of I&M campaigns. During a I&M
campaign at time 𝑡, 𝑛𝐼 (𝑡), 𝑛𝑃𝑀 (𝑡) and 𝑛𝐶𝑀 (𝑡) are the total number of pipes inspected, and replaced for preventive and corrective maintenance, respectively.
corrective maintenance. This happens for example when an inspected
pipe is deemed to deteriorate too fast so that their replacement cannot
be postponed until the next outage. The corrective maintenance cost
per pipe is typically higher than the cost of preventive maintenance.
It is therefore advantageous to plan preventive maintenance well, so
that a minimal amount of corrective maintenance is required. However
labeling too many pipes as critical can result in an unnecessarily large
number of inspections.

Note that we do not consider the possibility that maintenance
actions occur outside of the predetermined campaign times, for instance
during unplanned outages to maintain other parts of the NPP. This
also means that what here is labeled as corrective pipe maintenance
does not include maintenance actions that occur outside of the planned
maintenance times, such as emergency repairs due to an unexpected
pipe failure or other incidents. As we discuss in Sections 3 and 4, system
failure is only considered through the system reliability.

The following costs are considered. The cost of launching an I&M
campaign is 𝑐𝐶 . It includes mobilization costs and other overheads. The
cost of inspecting one pipe is 𝑐𝐼 . It accounts for the time needed for
one inspection. A unit cost 𝑐𝑃𝑀 is incurred for each pipe repaired as
planned. The corrective maintenance cost per pipe is 𝑐𝐶𝑀 , which is
larger than 𝑐𝑃𝑀 .

3. Reliability-constrained I&M strategy

In this section, we present the framework to evaluate the perfor-
mance of any operator-defined I&M strategy when constrained by a
reliability criterion.

3.1. I&M strategies

A strategy S is the set of rules (policies) that governs at any time the
decision process based on the information available at that time. When
considering a deteriorating multi-component system, the rules take as
input all or part of the current knowledge on the state of the system,
and give the answer to the questions ‘Inspect?’ {yes, no}, ‘Where?’
{component 𝑖, 𝑗, . . . }, ‘What to look for?’ {corrosion, fatigue, . . . },
‘How?’ {visually, ultrasonic inspection, thickness measurements, . . . },
3

‘Repair?’ {yes, no, how}. The system knowledge includes the history of
inspection outcomes, monitoring data, repairs and eventual component
failures. A formal description of I&M strategies is given by Bismut and
Straub [6].

For the I&M planning problem considered in this paper, a strategy
defines at which time step the inspection outage takes place, how the
PM pool is composed, which pipes are of interest and which pipes are
preventively (or correctively) maintained.

A history 𝑴 contains all the information gathered during the life-
time of the structure, including inspection outcomes, pipe replacements
and eventual system failure. 𝑴0∶𝑡− is the I&M information collected up
to time 𝑡, and 𝑴 𝑖,0∶𝑡− is the information collected on pipe 𝑖.

3.2. Evaluating a strategy under a reliability criterion

The efficiency of a strategy can be assessed with different metrics.
One metric is the total life-cycle expected cost, adding the I&M action
expected costs (see Eq. (8)) to the lifetime risk of failure. This is the risk-
based assessment of a strategy. The risk of failure considers explicitly
the consequences of failure. These consequences include the cost of an
accident (or failure), which entails replacing ruptured feeders but also
loss of revenue due to unplanned outage, loss of life, and any other
type of financial penalty imposed by the regulator. As an example, the
loss incurred after the 1986 Surry NPP incident mentioned in Section 1
above amounted to tens of millions of dollars [4]. Correctly appraising
the consequences of failure is crucial for a meaningful result using the
risk-based approach. Due to the high uncertainty on the magnitude
of the consequences of failure, a risk-based assessment is not further
pursued here.

One could also simply assess the life-cycle I&M expected cost (see
Eq. (8) below), but this assessment presents an obvious flaw: if the
strategy considered prescribes no inspections and no repairs during the
entire service life, this cost is simply zero, hence this ‘do-nothing’ strat-
egy would always be the one with minimal cost, even if this strategy
is clearly undesirable. In real-life, it has been observed that the current
I&M practice implicitly leads to a certain level of reliability [10]. Most
I&M strategies in the nuclear industry are, however, defined in a rule-
based approach, without quantifying the system reliability (e.g., [4]),
and they do not explicitly guarantee a reliability level.
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Fig. 3. Simulation of an I&M history following a given strategy S constrained to reliability criterion 𝑝0 for the evaluation of a sample life-cycle cost (see Eqs. (4)–(9)). The
definition of 𝐻 is given in Section 3.3 and Eq. (3).
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Here, we propose a method to assess any given I&M strategy, such as
those described in guidelines, by assessing the life-cycle I&M expected
cost associated with this strategy while constraining the system to a
fixed reliability level. This method is illustrated by the diagram of
Fig. 3.

The I&M campaigns occur at times prescribed by the considered
strategy, for example at regular intervals 𝛥𝑇 . The rules for selecting
pipes for inspection, for planning the PM pool and for performing
preventive (and eventually corrective) maintenance are applied as
prescribed by the strategy.

Then, the reliability criterion is evaluated for the time period until
the next campaign and is compared against the required reliability
level. If the criterion is violated, maintenance actions are performed
such that the piping system is brought to a compliant state. Here,
additional pipes are replaced one by one until the failure rate of the
system falls under a certain value (see Section 3.3). The pipes selected
for corrective maintenance to satisfy the criterion are those with the
highest probability of pipe failure. Since these repairs occur after all
I&M actions prescribed by the strategy have taken place, they are
accounted for as corrective maintenance, with unit cost 𝑐𝐶𝑀 .

If system failure is detected, i.e., if an inspection reveals a non-
compliant pipe, a major intervention is required and the simulated I&M
history is interrupted. As explained above, we do not consider explicitly
any costs or further I&M action resulting from system failure. A major
intervention is also warranted in the unlikely eventuality that all pipes
are replaced and the system is still not compliant, which might occur
if the constant deterioration rate 𝜇 is too high (see Section 5).

3.3. Defining the reliability criterion

In this study, we express the reliability criterion as a threshold 𝑝0
4

on the system failure rate at time 𝑡 conditional on past I&M outcomes
and actions 𝑴0∶𝑡− , which in turn depend on the chosen I&M strategy
S. The failure rate evaluated at time 𝑡 must be such that

𝐻(𝑡,𝑴0∶𝑡− ) ≤ 𝑝0. (2)

The failure rate is approximated by

𝐻(𝑡,𝑴0∶𝑡− ) =
Pr

[

𝐹𝑐𝑢𝑚𝑢(𝑡 + 1)|𝑴0∶𝑡−
]

− Pr
[

𝐹𝑐𝑢𝑚𝑢(𝑡)|𝑴0∶𝑡−
]

1 − Pr
[

𝐹𝑐𝑢𝑚𝑢(𝑡)|𝑴0∶𝑡−
] 𝑦𝑟−1. (3)

𝑐𝑢𝑚𝑢(𝑡) =
⋃

𝜏≤𝑡 𝐹 (𝜏) is the accumulated system failure event at time
[29] and Pr

[

𝐹𝑐𝑢𝑚𝑢(𝑡)|𝑴0∶𝑡−
]

is the filtered cumulative probability
f system failure at time 𝑡. Pr

[

𝐹𝑐𝑢𝑚𝑢(𝑡 + 1)|𝑴0∶𝑡− )
]

is the predictive
umulative probability of system failure at time 𝑡 + 1.

𝑝0 can be prescribed explicitly by the regulator. However, in most
ituations, such a value is not given as such, but is implied by current
egulations and constraints. In these cases, a value of the reliability cri-
erion can be extracted from I&M plans that are considered acceptable
y the practitioners and the regulators.

.4. Life-cycle I&M cost

For an I&M history 𝑴 following a strategy S, the life-cycle cost is
alculated by recording the times and numbers of inspection and repair
ctions during the lifetime, and aggregating their cost. To account for
he time-value of money, an annual discount rate 𝑟 is considered, such
hat all costs incurred at time 𝑡 are discounted at time 0 by a factor
∕(1 + 𝑟)𝑡. The components of the life-cycle cost are

𝐼,𝑇 (𝑴) =
𝑇
∑

𝑡=1

[

𝑐𝐼𝑛𝐼 (𝑡) + 𝑐𝐶𝑛𝐶 (𝑡)
] 1
(1 + 𝑟)𝑡

(4)

𝐶𝑃𝑀,𝑇 (𝑴) =
𝑇
∑

𝑐𝑃𝑀𝑛𝑃𝑀 (𝑡) 1
𝑡 (5)
𝑡=1 (1 + 𝑟)
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𝐶𝐶𝑀,𝑇 (𝑴) =
𝑇
∑

𝑡=1
𝑐𝐶𝑀𝑛𝐶𝑀 (𝑡) 1

(1 + 𝑟)𝑡
, (6)

where 𝐶𝐼,𝑇 (𝑴), 𝐶𝑃𝑀,𝑇 (𝑴) and 𝐶𝐶𝑀,𝑇 (𝑴) are respectively the total
life-cycle inspection costs (including I&M campaign costs and pipe
inspection costs), the total preventive maintenance costs and the total
corrective maintenance costs. 𝑛𝐶 (𝑡) = 1 if an I&M campaign takes place
at time 𝑡, 0 otherwise. All unit costs 𝑐𝐶 , 𝑐𝐼 , 𝑐𝑃𝑀 and 𝑐𝐶𝑀 are constant
throughout the service life, their values for the numerical investigation
are given in Table 2.

The life-cycle I&M cost for history 𝑴 is therefore

𝐶𝑇 (𝑴) = 𝐶𝐼,𝑇 (𝑴) + 𝐶𝑃𝑀,𝑇 (𝑴) + 𝐶𝐶𝑀,𝑇 (𝑴). (7)

Before the execution of a strategy, the observation outcomes and
eventual maintenance actions are uncertain. Therefore one can com-
pute the expected life-cycle I&M cost associated with a strategy S as

𝐶(S) = 𝐶𝐼,𝑇 (S) + 𝐶𝑃𝑀,𝑇 (S) + 𝐶𝐶𝑀,𝑇 (S), (8)

where 𝐶𝐼,𝑇 (S), 𝐶𝑃𝑀,𝑇 (S) and 𝐶𝐶𝑀,𝑇 (S) are the expected life-cycle in-
spection, preventive and corrective maintenance costs, respectively.

3.5. Computing the expected cost of a strategy

In I&M planning, it is typically not possible to obtain an analytical
form of the distribution of the observation histories 𝑴 for a given
strategy S. This is because the vector of varying dimension 𝑴 is
generated sequentially with time from the strategy S. Luque and Straub
[5] propose to approximate the distribution of 𝑴 and evaluate the
expected life-cycle I&M cost in Eq. (8) by sample averaging the I&M
costs (Eq. (7)) associated with 1 ≤ 𝑘 ≤ 𝑛𝑀𝐶 Monte Carlo (MC) sample
observation histories 𝑴 (𝑘) following strategy S, as

𝐶(S) ≃
𝑛𝑀𝐶
∑

𝑘=1

[

𝐶𝐼,𝑇
(

𝑴 (𝑘)(S)
)

+ 𝐶𝑃𝑀,𝑇
(

𝑴 (𝑘)(S)
)

+ 𝐶𝐶𝑀,𝑇
(

𝑴 (𝑘)(S)
)]

. (9)

Furthermore, in the presented reliability-based framework each
I&M sample history is generated in two phases: first by following the
considered I&M strategy; then by checking if the reliability criterion is
complied with and replacing additional pipes if necessary (see Fig. 3).
This procedure requires many computations of the failure rate in Eq. (3)
(one at every time step), for which sampling-based reliability methods
are not appropriate. In this case, an efficient reliability computation
performed sequentially is needed to generate one sample history 𝑴 (𝑘).
Section 6 describes the procedure for evaluating the probabilities of
component and system failure conditional on past observations for
the deterioration, inspection and maintenance models presented in
Section 5.

4. Reliability-based heuristic planning

In this section we introduce the reliability-based optimization
framework to find an I&M strategy optimized for a fixed reliability
level.

4.1. Reliability-based optimization

Optimal I&M planning means finding the solution of a sequential
decision problem in the form of a strategy, which tells one what to do
(inspect, repair) and when and where to do it. In this context, the opti-
mal strategy is the one that minimizes an objective function, typically
an expected cost. We can distinguish three approaches to I&M planning:
rule-based, reliability-based and risk-based. All three approaches affect
the formulation of the optimization problem and the objective function.
The first approach is the one currently recommended by the regulator.
Effectively, it constrains the operator to follow certain principles (see
an example below in Section 7.2), and leaves little leeway in modifying
5

the prescribed strategy. Risk-based planning prescribes the risk-based
assessment of a strategy and, as stated in Section 3.2, is not suitable
for the considered application.

We therefore implement a reliability-based approach, which is re-
flected in the form of the considered objective function. In this ap-
proach, the optimal strategy minimizes the total I&M costs, while
ensuring that the system always complies with a reliability criterion.
The objective function thus excludes any costs associated with all con-
sequences of system failure, as the occurrence of failure is represented
through the reliability criterion. The desired I&M strategy S∗ is the
solution to this minimization problem:

S∗ =argmin
S

[

𝐶𝐼,𝑇 (S) + 𝐶𝑃𝑀,𝑇 (S) + 𝐶𝐶𝑀,𝑇 (S)
]

, (10)

such that ∀ I&M history 𝑴 ,∀𝑡, 𝐻(𝑡,𝑴0∶𝑡− , S) ≤ 𝑝0.

The planning problem expressed in Eq. (10) is difficult to solve,
in part because it is not feasible to explore the entire space of all
possible I&M strategies S. Several methodologies have been developed
to address the unconstrained, risk-based I&M planning problem [6,30–
39]. Optimal reliability-based planning of the form of Eq. (10) has been
investigated for multi-component systems, however, in this last case,
with simplifying assumptions such as non-correlated components or
small-sized systems (e.g., [9,20,21,23,24,40]). One particular challenge
of this optimization is the verification of the reliability constraint,
which requires to assess the evolution of the system reliability in
combination with an I&M strategy. In the section below, we explain
how we combine a heuristic formulation of the optimization with a
history sampling method to address this challenge.

4.2. Heuristic formulation

The heuristic optimization approach formalized by Bismut and
Straub [6] gives an approximate solution to Eq. (10). Its appeal resides
in the fact that one can explicitly include operational constraints in
the definition of a suitable plan. A heuristic is defined by a set of
rules associated to a set of parameters 𝝎 = {𝜔1,… , 𝜔𝑛} so that an
I&M strategy is fully defined by the heuristic and the values of its
parameters. An example rule is that I&M campaigns take place at fixed
time intervals and the associated heuristic parameter is the interval
𝛥𝑇 . Another possible rule is to replace a pipe if the inspected wall
thickness is lower than a threshold 𝑑𝐶 , with 𝑑𝐶 being the heuristic
parameter. A heuristic strategy is well defined when every decision
can be resolved, such that the questions when and where to inspect
and repair are clearly answered.

The optimization of Eq. (10) is restricted to a chosen heuristic and
is thus reduced to an optimization of the parameter values 𝜔𝑙.

min
𝝎

𝐶𝐼,𝑇 (𝝎) + 𝐶𝑃𝑀,𝑇 (𝝎) + 𝐶𝐶𝑀,𝑇 (𝝎), (11)

s. t. ∀ I&M history 𝑴 ,∀𝑡, 𝐻(𝑡,𝑴0∶𝑡− ,𝝎) ≤ 𝑝0.

The selected heuristic has an effect on how optimal the strategy re-
sulting from Eq. (11) is with respect to Eq. (10). Choosing the heuristic
is in itself an optimization problem. An important aspect is for instance
the rules for selecting pipes for inspection and for maintenance. This
selection can be random, or guided by a prioritization index of sorts
(e.g., [9,40,41]). In a previous study we observed that decision rules
that account for past observations and associated uncertainty perform
better than those which are formulated directly in terms of individual
measurements [42]. In the heuristic chosen for the numerical investiga-
tion (see Section 7.3), we base the pipe inspection prioritization on the
potential reduction in uncertainty, linked to the coefficient of variation
of the distribution of the pipe thickness at a given time. The selection of
the ‘critical’ pipes (PM pool) is based on the probability of pipe failure.

With the heuristic formulation, the reliability constraint can be
integrated directly into the maintenance rules, which results in the
modified history diagram of Fig. 4, where pipe replacements are carried
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Fig. 4. Simulation of an I&M history for the evaluation and optimization of heuristic strategies under reliability constraint 𝑝0.
Fig. 5. Evolution of the failure rate 𝐻(𝑡,𝑴0∶𝑡− ) for a sample history, following two I&M strategies with different inspection intervals (a) 𝛥𝑇 = 3 and (b) 𝛥𝑇 = 4. In both cases, the
strategy ensures that the system complies with the reliability constraint 𝑝0 = 1.0 ⋅ 10−2, but the second strategy does so in a more efficient manner (see Tables 3 and 4).
ut specifically to satisfy the reliability criterion. An example of the
ystem failure rate, where the I&M history is such that it follows
he strategy and the constraint, is shown in Fig. 5, for two different
trategies. The underlying computations are detailed in Section 6.

We note that the life-cycle I&M cost associated with a history, for
hich the system does not comply with the criterion (i.e., the branch

‘major intervention’’ is reached at some point during the service life),
s high. This ensures that strategies which lead to a high number of
on-compliant histories are avoided during the optimization process
xplained in Section 4.3 below, without requiring the actual cost of
major intervention to be defined.
6

4.3. Heuristic parameters optimization method

We implement the algorithm developed in [6] to optimize the
heuristic parameters, based on the cross-entropy (CE) method [43].
An initial sampling density over parameters 𝜔1,… , 𝜔𝑛 is chosen, for
instance a multivariate Gaussian distribution. At each iteration, 𝑛𝑆
sample sets of parameter values are generated from the CE sampling
density. For each sample set, the expected cost of the associated strat-
egy is evaluated with 𝑛𝑀𝐶 samples. The sample sets are ranked in
increasing order of expected cost. The parameters of the CE sampling

density for the next iteration are fitted to the top 𝑛𝐶𝐸 sample sets,
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Fig. 6. 2000 CE samples for the constrained optimization with 𝑝0 = 1.0 ⋅ 10−2, for two different initial sampling densities. Each point represents a specific I&M strategy, defined
y parameters 𝑛𝐼 and 𝑝𝑡ℎ. 𝛥𝑇 = 3 yr is fixed. The expected cost of each strategy is evaluated with 10 sample histories. Colored dots indicate samples belonging to selected CE
terations. (a) The optimal heuristic strategy obtained from the last iteration is 𝑛𝐼 = 195 and 𝑝𝑡ℎ = 5.6 ⋅ 10−7 with expected cost 379.1 (see Table 3). (b) The optimal heuristic

strategy obtained from the last iteration is 𝑛𝐼 = 246 and 𝑝𝑡ℎ = 2.5 ⋅ 10−10. The resulting expected cost for this strategy is 388.9, which is close to the cost for the strategy obtained
in (a).
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the elite samples. In the numerical investigation, we choose 𝑛𝑆 = 100
and 𝑛𝐶𝐸 = 20. Samples values for discrete heuristic parameters, such
as the number of inspected pipes 𝑛𝐼 , are sampled from a continu-
ous, truncated, Gaussian sampling density and rounded to the nearest
integers. We also implement smoothed-updating [43] to avoid too
fast convergence of the density. The CE optimization stops after 20
iterations, resulting in a total of 2000 sample strategies. This has proven
to allow satisfying convergence of the sampling density. The optimal
heuristic parameter values are given by the mean of the final sampling
density.

The value of the expected cost evaluated with Eq. (9) of a strategy
is subject to sampling noise. The accuracy depends on the number
of sample histories 𝑛𝑀𝐶 generated to compute the expected cost. The
computational cost of generating an I&M history depends on the failure
rate evaluation loop (see Fig. 4). The advantage of assigning a small
value to 𝑛𝑀𝐶 is that little computational effort is spent on non-suitable,
.e., expensive, strategies. Here, we find that 𝑛𝑀𝐶 = 10 provides suitable
ccuracy and results for the CE optimization method. This optimiza-
ion algorithm can be further optimized by running the computations
n parallel. Previous works have demonstrated the efficiency of this
omputational setup [6].

Finally, the expected cost associated with the identified optimal
euristic parameters is estimated with Eq. (9) with 2000 MC sample
istories.

The convergence of the CE method is illustrated in Fig. 6, where
he sampling progression is shown for two different initial sampling
istributions. There is a variation in the obtained optimal heuristic
arameter values, which reflects the higher or lower sensitivity of the
bjective function to the parameters (see Section 7.6 below).

. Models of pipe deterioration and inspection and repair models

The reliability-based planning framework requires a probabilistic
odel describing the evolution of the state of the system and its

omponents. Here, FAC in the pipes is modeled with a Gamma process
ith unknown parameters.

.1. Modeling FAC with a mixed-scale Gamma process

Mechanistic models of FAC have been developed (e.g., [44]), but
hey require the knowledge of numerous parameters characterizing the
perating condition of the operator, such as the chemical environment,
emperature and pH levels, which typically fluctuate over time. It is
7

herefore appropriate to model the evolution of FAC with a random
rocess. Here, we model the evolution of FAC in the 𝑁 pipe bends with
mixed-scale Gamma process [26,45,46].

The service life between time 0 and 𝑇 is discretized in time steps,
orresponding to 1 year. The loss of thickness in one pipe 𝑖 due to
orrosion is modeled by a Gamma process with stationary increments
𝐷𝜏 , with strictly positive shape and scale parameters [𝛼, 𝛽]⊺ [47]. We
enote by 𝜇 = 𝛼𝛽 the mean and by 𝜈 = 1

√

𝛼
the coefficient of variation

of these increments. 𝜇 and 𝜈 are population parameters, common to all
ipes.

The wall thinning 𝛥𝐷 in 𝛥𝑡 time steps is written as the sum of i.i.d
early increments 𝛥𝐷𝜏

𝐷 =
𝛥𝑡
∑

𝜏=1
𝛥𝐷𝜏 . (12)

𝐷 is Gamma distributed with shape and scale parameters [𝛼𝛥𝑡, 𝛽]⊺.
𝐹𝛥𝐷,𝛥𝑡(𝑑) and 𝑓𝛥𝐷,𝛥𝑡(𝑑) denote the associated cumulative distribution

unction (cdf) and probability density function (pdf) for a given 𝛥𝑡. It
s

𝛥𝐷,𝛥𝑡(𝑑) =
1

𝛤 (𝛼𝛥𝑡) 𝛽𝛼𝛥𝑡
𝑑𝛼𝛥𝑡−1 exp

(

−𝑑
𝛽

)

. (13)

In the mixed-scale Gamma process, 𝜈𝑖 = 𝜈 is a known constant and
he mean of the yearly increment 𝜇 is modeled as a random variable,
ith an inverse Gamma distribution, here denoted by 𝐼𝐺𝑎(𝑎, 𝑏), with
rior shape and scale parameters [𝑎, 𝑏]. The inverse Gamma pdf with
arameters [𝑎, 𝑏] is

(𝜇) = 𝑏𝑎

𝛤 (𝑎)

(

1
𝜇

)𝑎+1
exp

(

− 𝑏
𝜇

)

. (14)

The distribution of the increment mean 𝜇 is updated through measure-
ments of pipe thicknesses, following Section 6.3.

The choice of the prior distribution in a parameter learning context,
performed with Bayesian analysis, becomes less important as more
inspection data are gathered. In the context of pre-posterior analysis,
where we are interested in computing an expected cost, choosing an
appropriate prior has a significant effect on the outcome of the analysis.
For a plant-specific optimization, the calibration of the prior distribu-
tion of the population parameters can be done by using past inspection
data. When no specific information is available, expert knowledge can
be a good starting point. The prior parameters 𝑎 and 𝑏 of the model are
given in Section 7.1 for I&M planning of a new plant.
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5.2. Inspection model

During a I&M campaign, information is collected on the state of
deterioration of the pipes through in-situ inspections. The inspections
are carried out with an array of ultrasonic probes to measure the wall
thickness. In practice, one probe scan measures the thickness of one
quadrant of the pipe bend and four scans are required for full inspection
of one pipe bend. The minimum wall thickness from those scans is
recorded. The recorded wall thickness at time 𝑡 of pipe 𝑖 is 𝑀𝑖(𝑡). For
implicity, we consider the measurement to be perfect, hence

𝑖(𝑡) = 𝑊𝑖(𝑡). (15)

The presented approach can also be used when the observation
ikelihood includes measurement error. The associated computational
spects are discussed in Section 6.5.

.3. Repair model

Replacing a pipe at time 𝑡 sets the wall thinning back to 0, i.e.,
𝑖(𝑡) = 𝑊𝑖(0) and 𝐷𝑖(𝑡) = 0 immediately after repair at time 𝑡.

urthermore, 𝜇 is assumed to be remain constant even if the piping
ystem is fully replaced.

. Piping system reliability

In this section, we derive the expressions for the probability of sys-
em failure for the FAC model presented in Section 5 as well as the char-
cteristics of pipe damage distribution, conditional on past inspection
utcomes. These quantities are required for the reliability constraint
heck and for implementing selected heuristic I&M strategies.

.1. Cumulative probability of system failure

During the execution of the strategy, the reliability constraint must
e met. To verify the criterion, one must compute at each step 𝑡 the
ailure rate of the system as per Eq. (3). As per the definitions given in
ections 2.1 and 3.3, the accumulated system failure event at time 𝑡 is

𝑐𝑢𝑚𝑢(𝑡) =
⋃

𝜏≤𝑡
𝐹 (𝜏) =

⋃

𝜏≤𝑡

⋃

𝑖
𝐹𝑖(𝜏). (16)

The probability of this accumulated failure event must be computed
onditional on the inspection outcomes and repair actions up to time 𝑡.

We use the notation 𝐷𝑖(𝑡) = 𝐷𝑖,𝑡, and similarly for all time-variant
andom variables. At every time 𝑡 we evaluate the filtered cumulative
robability of system failure Pr

(

𝐹𝑐𝑢𝑚𝑢(𝑡)|𝑴0∶𝑡−
)

. 𝜣 denotes the model
arameters. Here 𝜣 = 𝜇.

Using Eq. (16), one finds

Pr
(

𝐹𝑐𝑢𝑚𝑢(𝑡)|𝑴0∶𝑡−
)

= 1 − Pr

(

⋂

𝜏≤𝑡

⋂

𝑖
{𝐷𝑖,𝜏 < 𝑑𝑚𝑎𝑥}|𝑴0∶𝑡−

)

. (17)

Conditionally on 𝛩, the deterioration processes and measurements
f pipes 𝑖 ≠ 𝑗 are independent. Conditioning on 𝛩, one obtains

r
(

𝐹𝑐𝑢𝑚𝑢(𝑡)|𝑴0∶𝑡−
)

= 1 − ∫𝛺𝜣

∏

𝑖
Pr

(

⋂

𝜏≤𝑡
{𝐷𝑖,𝜏 < 𝑑𝑚𝑎𝑥}|𝑴 𝑖,0∶𝑡− ,𝜽

)

× 𝑓𝜣|𝑴0∶𝑡−
(𝜽)d𝜽,

(18)

here 𝑓𝜣|𝑴0∶𝑡−
(𝜽) is the posterior pdf of 𝜣 conditional on the measure-

ments 𝑴0∶𝑡− .
The posterior distribution of 𝜣 is obtained with Bayes’ rule:

𝑓𝜣|𝑴0∶𝑡−
(𝜽) ∝ L(𝜽;𝑴0∶𝑡− )𝑓𝜣 (𝜽). (19)

L(𝜽;𝑴0∶𝑡− ) is the likelihood of 𝑴0∶𝑡− conditional on 𝜣. The normal-
izing constant is 𝑐 = ∫𝛺𝜣

𝑓𝜣 (𝜽)L(𝜽;𝑴0∶𝑡− )d𝜽. The measurements are
8

independent conditionally on 𝛩. This is actually an approximation, due
to the selection bias [48]. We will not correct this bias, as it does not
significantly affect our results.

Thus

L(𝜽;𝑴0∶𝑡− ) =
∏

𝑖
L(𝜽;𝑴 𝑖,0∶𝑡− ). (20)

L(𝜽;𝑴 𝑖,0∶𝑡− ) is the likelihood of 𝑴 𝑖,0∶𝑡− conditional on 𝜣.
As stated in Section 5.2, we consider that there is no uncertainty in

the measurement. Hence for 𝜏 < 𝑇 we have 𝑀𝑖,𝜏 = 𝑊𝑖,0 − 𝐷𝑖,𝜏 , where
the initial thickness 𝑊𝑖,0 is also known. The conditional probability of
pipe failure and the posterior distribution of parameter 𝜣 are derived
in the paragraphs below.

6.2. Conditional cumulative probability of pipe survival

For a fixed time 𝑡, we denote by I𝑖 = {𝑡𝐼,1 < ⋯ < 𝑡𝐼,𝑝} the inspection
times and by R𝑖 = {𝑡𝑅,1 < ⋯ < 𝑡𝑅,𝑞} the repair times of component 𝑖
up to and not including time 𝑡. If no inspection occurred, I𝑖 = ∅. If no
repair occurred prior to time 𝑡, 𝑞 = 1 and 𝑡𝑅,1 = 0.

For a given pipe, the deterioration process 𝐷𝑖,𝜏 is monotonously in-
creasing in the interval between two consecutive replacements. There-
fore, the intersection of pipe survival events in Eq. (18) is equivalent
to
⋂

𝜏≤𝑡
{𝐷𝑖,𝜏 < 𝑑𝑚𝑎𝑥} = {𝐷𝑖,𝑡 < 𝑑𝑚𝑎𝑥}

⋂

{∩1≤𝑗≤𝑞{𝐷𝑖,𝑡𝑅,𝑗 < 𝑑𝑚𝑎𝑥}}, (21)

where 𝐷𝑖,𝑡𝑅,𝑗 is the deterioration of pipe 𝑖 just before it is replaced at
time 𝑡𝑅,𝑗 . The state of pipe deterioration is furthermore independent
of all states and measurements previous to the last repair time. This
and the above simplification allow writing the conditional cumulative
probability of pipe survival as

Pr
(

⋂

𝜏≤𝑡
{𝐷𝑖,𝜏 < 𝑑𝑚𝑎𝑥}|𝑴 𝑖,0∶𝑡− ,𝜽

)

= Pr
(

𝐷𝑖,𝑡 < 𝑑𝑚𝑎𝑥|𝑴 𝑖,𝑡𝑅,𝑞∶𝑡− ,𝜽
)

×
∏

1≤𝑗≤𝑞
Pr

(

𝐷𝑖,𝑡𝑅,𝑗 < 𝑑𝑚𝑎𝑥|𝑴 𝑖,𝑡𝑅,𝑗−1∶𝑡𝑅,𝑗 ,𝜽
)

,

(22)

where 𝑡𝑅,0 = 0.
The distribution of state 𝐷𝑖,𝜏 conditional on measurement and repair

actions up to but not including time 𝜏 is fully determined either by
the time of the last repair before 𝜏 or by the last pipe thickness
measurement, whichever occurred last. Let 𝜏𝑖 be the larger of these
times of last repair and last measurement.

– If repair occurred at time 𝜏𝑖,

Pr(𝐷𝑖,𝜏 < 𝑑𝑚𝑎𝑥|𝑴 𝑖,0∶𝜏− ,𝜽) = 𝐹𝛥𝐷,𝜏−𝜏𝑖|𝜽(𝑑𝑚𝑎𝑥). (23)

– If a measurement 𝑀𝑖,𝜏𝑖 was obtained at time 𝜏𝑖,

Pr(𝐷𝑖,𝜏 < 𝑑𝑚𝑎𝑥|𝑴 𝑖,0∶𝜏− ,𝜽) = Pr(𝐷𝑖,𝜏 < 𝑑𝑚𝑎𝑥|𝑴 𝑖,𝜏𝑖 ,𝜽)

= 𝐹𝛥𝐷,𝜏−𝜏𝑖|𝜽(𝑑𝑚𝑎𝑥 − (𝑊𝑖,0 −𝑀𝑖,𝜏𝑖 )).
(24)

The distribution of state 𝐷𝑖,𝜏 after inspection at time 𝜏, 𝑀𝑖,𝜏 is simply
the Dirac density in 𝑀𝑖,𝜏 :

Pr(𝐷𝑖,𝜏 < 𝑑𝑚𝑎𝑥|𝑀𝑖,𝜏 ,𝜽) = 1𝑊𝑖,0−𝑀𝑖,𝜏≤𝑑𝑚𝑎𝑥 , (25)

where 1𝑊𝑖,0−𝑀𝑖,𝜏≤𝑑𝑚𝑎𝑥 takes the value 1 if 𝑊𝑖,0−𝑀𝑖,𝜏 ≤ 𝑑𝑚𝑎𝑥, 0 otherwise.

6.3. Likelihood and posterior distribution of deterioration parameters

Using the chain rule and the Markovian assumption, the likelihood
L(𝜽;𝑴 𝑖,0∶𝑡− ) can be computed sequentially. For each 𝑡𝑗 ∈ I𝑖, we
compute the time interval 𝛥𝑡𝑗 = 𝑚𝑖𝑛(𝑡𝑗 − 𝑡𝑘, 𝑠.𝑡. 𝑡𝑘 ∈ R𝑖 𝑎𝑛𝑑 𝑡𝑘 < 𝑡𝑗 )

between inspection time 𝑡𝑗 and the time of last repair (0 if the pipe has
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Fig. 7. (a) Filtered probability of pipe failure Pr(𝐷𝑖,𝑡 > 𝑑𝑚𝑎𝑥|𝑴0∶𝑡− ), for pipes number 1 and 2. Pipe inspection times are indicated. (b) Evolution of the predictive mean wall
hinning 𝐷𝑖 for pipes number 1 and 2. Wall thickness measurements are indicated for these two pipes. In the assumed deterioration model, the predicted mean deterioration rate
s the same for all pipes, hence the change of slope occurs also for non-inspected pipes. (c) Filtered cumulative probability of system failure Pr

(

𝐹𝑐𝑢𝑚𝑢(𝑡)|𝑴0∶𝑡−
)

obtained with
q. (17). (d) Failure rate computed with Eq. (3).
a

𝑐

ever been repaired). The likelihood describing measurements on pipe
is

(𝜽;𝑴 𝑖,0∶𝑡− ) =
∏

𝑗∈I𝑖

𝑓𝛥𝐷,𝛥𝑡𝑗 |𝜽(𝑊𝑖,0 −𝑀𝑖,𝑡𝑗 ). (26)

The rate parameter 1∕𝛽 = 1∕(𝜇𝜈2) of the Gamma process (see Sec-
tion 5.1) is also Gamma distributed. Making use of the self-conjugacy
of the Gamma distribution [49], the posterior (filtered) distribution
of 𝜣 = 𝜇 can be obtained by updating the parameters of the inverse
gamma distribution with the (perfect) measurements 𝑴0∶𝑡− , such that
𝜣|𝑴0∶𝑡− ∼ 𝐼𝐺𝑎(𝑎𝑝𝑜𝑠𝑡, 𝑏𝑝𝑜𝑠𝑡), with

𝑎𝑝𝑜𝑠𝑡 = 𝑎 +

∑𝑁
𝑖=1

∑

𝑗∈I𝑖 𝛥𝑡𝑗
𝜈2

, (27)

𝑝𝑜𝑠𝑡 = 𝑏 +

∑𝑁
𝑖=1

∑

𝑗∈I𝑖 (𝑊𝑖,0 −𝑀𝑖,𝑡𝑗 )

𝜈2
. (28)

6.4. Posterior distribution of pipe deterioration state

The scaled deterioration state at time 𝑡 conditional on past history
𝑴0∶𝑡− , (𝐷𝑖,𝑡 − 𝑑𝑀 )∕𝜉, with 𝜉 = 𝑏𝑝𝑜𝑠𝑡(𝑡−𝜏𝑖)

𝑎𝑝𝑜𝑠𝑡
, follows the Fisher–Snedecor

distribution with degrees of freedom 2(𝑡−𝜏𝑖)
𝜈2

and 2𝑎𝑝𝑜𝑠𝑡 [26,45,46]. The
cdf of this distribution is denoted by 𝐹 2(𝑡−𝜏𝑖 )

𝜈2
,2𝑎𝑝𝑜𝑠𝑡

(⋅). 𝜏𝑖 is defined as
in Section 6.2 above as the larger of the times of last repair and last
measurement before the considered time 𝑡 and 𝑑𝑀 = 0 if repair occurred
at 𝜏 , 𝑑 = 𝑊 −𝑀 otherwise.
9

𝑖 𝑀 0 𝑖,𝜏𝑖
The posterior distribution of 𝐷𝑖,𝑡 is characterized by its mean
𝑏𝑝𝑜𝑠𝑡(𝑡−𝜏𝑖)
𝑎𝑝𝑜𝑠𝑡−1

+ 𝑑𝑀 and its standard deviation 𝑏𝑝𝑜𝑠𝑡(𝑡−𝜏𝑖)
𝑎𝑝𝑜𝑠𝑡−1

√

(𝑡−𝜏𝑖 )
𝜈2

+𝑎𝑝𝑜𝑠𝑡−1
(𝑡−𝜏𝑖 )
𝜈2

(𝑎𝑝𝑜𝑠𝑡−2)
. The

ssociated coefficient of variation is

.𝑜.𝑣.(𝐷𝑖,𝑡|𝑴0∶𝑡− ) =
1

1 + 𝑑𝑀 (𝑎𝑝𝑜𝑠𝑡−1)
𝑏𝑝𝑜𝑠𝑡(𝑡−𝜏𝑖)

√

√

√

√

√

(𝑡−𝜏𝑖)
𝜈2

+ 𝑎𝑝𝑜𝑠𝑡 − 1
(𝑡−𝜏𝑖)
𝜈2

(𝑎𝑝𝑜𝑠𝑡 − 2)
. (29)

The probability of pipe failure is

Pr(𝐷𝑖,𝑡 > 𝑑𝑚𝑎𝑥|𝑴0∶𝑡− ) = 1 − 𝐹 2(𝑡−𝜏𝑖 )
𝜈2

,2𝑎𝑝𝑜𝑠𝑡

(

(𝑑𝑚𝑎𝑥 − 𝑑𝑀 )∕𝜉
)

. (30)

The evolution of probability of pipe failure and expected value of
pipe thickness and the resulting system probability of failure and failure
rate are depicted in Fig. 7 for sample histories.

6.5. Computation details

When the observation likelihood does not include measurement
error, the integrand of Eq. (18) has a closed form and a numerical
integration is appropriate to evaluate Pr

(

𝐹𝑐𝑢𝑚𝑢(𝑡)|𝑴0∶𝑡−
)

.
On the contrary, if a measurement error is included in Eq. (15),

the product of conditional probabilities of pipe survival in Eq. (18)
is a product of integrals which do not have a closed form. Eq. (18)
is an integral in high-dimensional space involving complex pdfs, for

which adapted integration methods must be considered; for instance a
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Table 1
Prior deterioration model parameters.

Parameter Type Value/Distribution Unit

𝜇 Random variable 𝐼𝐺𝑎(𝑎, 𝑏) mm
𝜈 Deterministic 2
𝑎 Deterministic 3
𝑏 Deterministic 0.06
𝑊0 Deterministic 5.5 mm
𝐷𝑖(0) Deterministic 0 mm
𝑑𝑚𝑎𝑥 Deterministic 2.2 mm

Table 2
Cost model.

Campaign 𝑐𝐶 1
Pipe inspection 𝑐𝐼 0.1
Preventive maintenance 𝑐𝑃𝑀 1
Corrective maintenance 𝑐𝐶𝑀 5
Discount rate 𝑟 0.05

dynamic Bayesian network (DBN) model where each random variable
is discretized is suitable for performing Bayesian inference in large
systems [6,50].

7. Numerical investigation: I&M planning at the beginning of
service life

We apply the framework to evaluate I&M strategies for the piping
system in a new NPP described in Section 2.1, at the beginning of its
service life, with 𝑁 = 480, 𝑊0 = 5.5 [mm], 𝑑𝑚𝑎𝑥 = 2.2 [mm] and 𝑇 = 25
r.

.1. Planning setup

The model used for simulating sample histories for evaluating strate-
ies is described in Section 5. Its prior parameters are summarized in
able 1. The costs are found in Table 2 below.

The prior distribution parameters of 𝜇 in Table 1 result in a prior
xpected value of 0.03 [mm/yr] and a c.o.v. of 100%. The choice of
his prior model is based on the analysis of historical events: Lister
t al. [2] states that wear rates at 0.02 [mm/yr] are ‘‘acceptable’’.
here is however a high variability in the wear rate. Indeed, wear rates
etween 0.07 [mm/yr] and 0.2 [mm/yr] have been recorded [2,27].
sually, the reported wear rates in the literature are obtained from

‘lead feeders’’, i.e., feeders which experience larger rate of degrada-
ion than an average feeder in the population, and are therefore not
epresentative of the average degradation rate. This high uncertainty
n the prior FAC wear rate is here reflected in the high c.o.v. This
ay be a pessimistic assumption about the state of knowledge about

he deterioration process in NPP piping systems. The probability that
he mean wear rate exceeds 0.08 [mm/yr] is 5%. The value of 𝜈 = 2
s such that the probability of pipe failure at the end of service life
s 4 ⋅ 10−2. The resulting system failure rate for the non-maintained
ystem is shown in Fig. 8. The maximum failure rate of 1.6 ⋅ 10−2 is

reached at the end of the service life. It is clear that for any constraint
𝑝0 larger than this value, the optimal strategy according to Eq. (10) is
to do nothing.

We investigate the following reliability criteria: 𝑝0 ∈ {0.1, 0.5,
.0, 1.5, 5.0} ⋅ 10−2.

.2. Constrained representative strategy S𝑅𝐸𝑃

To test the reliability-constrained strategy approach of Section 3, we
onstruct a strategy S representative of the current I&M practice.
10

𝑅𝐸𝑃
Fig. 8. Failure rate for the non-maintained, non-inspected system. The levels
{0.5, 1.0, 1.5, 1.6} ⋅ 10−2 are also indicated.

.2.1. Description of the strategy and associated FAC prediction model
EPR [4] and Walker [51] provide guidelines for implementing

&M programs specifically targeted to avoid FAC-related failures. The
urrent approach to I&M of piping system typically assumes determin-
stic prediction models for FAC. The inspection data is processed with
asic statistical tools. Uncertainty is addressed in a semi-probabilistic
anner, with safety factors applied to the predicted wear rate.

The inspection plan follows the logic of inspecting critical pipes,
hich have a small predicted remaining service life, as well as pipes

hat have not yet been inspected [4,51]. At each I&M campaign, 30%
f pipes are inspected, here 140 pipes. As previously stated, this I&M
trategy does not allow for I&M campaigns outside of the fixed times.
he maintenance interval is fixed at 3 years. Preventive and corrective
aintenance prescribed by the strategy are only carried out on pipes
hich have been inspected.

The strategy is summarized below.

Strategy S𝑅𝐸𝑃 - 140 pipes are inspected at each campaign
and 𝛥𝑇 = 3 yr is fixed.

– The interval between I&M campaigns is 𝛥𝑇 = 3 yr.
– Pipe inspections: Inspect pipes that have been labeled

‘of interest’ and those labeled as ‘critical’ for preventive
maintenance at the previous I&M campaign. The two
groups of pipes are not necessarily mutually exclusive.

– Preventive maintenance: pipes that have been previously
labeled critical and therefore have just been inspected
are considered. The pipes 𝑖 for which the predicted thick-
ness at the next I&M campaign 𝑊𝑖,𝑝𝑟𝑒𝑑 (𝑡 + 𝛥𝑇 ) < 𝑊𝑎𝑐𝑐𝑒𝑝𝑡
are repaired, at a unit cost 𝑐𝑃𝑀 .

– Corrective maintenance: the predicted wall thickness
𝑊𝑖,𝑝𝑟𝑒𝑑 (𝑡+𝛥𝑇 ) at the next I&M campaign at time 𝑡+𝛥𝑇 is
computed for each inspected pipe (which has not been
already repaired during preventive maintenance) 𝑖. All
pipes for which 𝑊𝑖,𝑝𝑟𝑒𝑑 (𝑡+𝛥𝑇 ) < 𝑊𝑎𝑐𝑐𝑒𝑝𝑡 are replaced now
(at time 𝑡).

Planning for the next campaign

– Plan predictive maintenance for campaign at time 𝑡+𝛥𝑇 :
Pipes for which 𝑊𝑖,𝑝𝑟𝑒𝑑 (𝑡+2𝛥𝑇 ) < 𝑊𝑎𝑐𝑐𝑒𝑝𝑡 < 𝑊𝑖,𝑝𝑟𝑒𝑑 (𝑡+𝛥𝑇 )
are labeled as ‘critical’ for the next I&M campaign.

– Plan inspections for next campaign: a total of 𝑛𝐼 = 140
pipes are selected for inspection. A proportion of 70%,
i.e., 98 pipes, are selected in decreasing order of time to
last inspection, and the remaining 30%, i.e., 42 pipes, are
selected according to their estimated remaining service
life (Eq. (A.3)).
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Fig. 9. (a) Failure rate 𝐻(𝑡,𝑴0∶𝑡− ), following unconstrained strategy S𝑅𝐸𝑃 for 100 sample I&M histories. (b) Failure rate for 100 sample I&M histories following the strategy S𝑅𝐸𝑃
constrained to 𝑝0 = 1.5 ⋅ 10−2. The histories are interrupted when the constraint on the failure rate cannot be met (i.e., a major intervention is required).
Table 3
Optimized heuristic parameters 𝑛𝐼 and 𝑝𝑡ℎ of Heuristic A (see Section 7.3) for fixed 𝛥𝑇 = 3 yr and associated expected life-cycle I&M cost for different values of 𝑝0. The expected
ost of the constrained strategy S𝑅𝐸𝑃 , for which the total number of inspected pipes per campaign is 140, is indicated for comparison. For 𝑝0 above 1.6 ⋅10−2, the best I&M strategy
s that which prescribes no inspections or replacements of pipes.
𝑝0 (×10−2) Optimal heuristic strategy (𝛥𝑇 = 3 yr) Constrained strategy S𝑅𝐸𝑃

Parameters Expected I&M cost Expected I&M cost

5.0 𝑛𝐼 = 0, 𝑝𝑡ℎ = 1 0 634.6
1.5 𝑛𝐼 = 152, 𝑝𝑡ℎ = 5.1 ⋅ 10−7 351.4 721.4
1.0 𝑛𝐼 = 195, 𝑝𝑡ℎ = 5.6 ⋅ 10−7 379.1 840.7
0.5 𝑛𝐼 = 167, 𝑝𝑡ℎ = 2.0 ⋅ 10−6 399.9 890.7
0.1 𝑛𝐼 = 147, 𝑝𝑡ℎ = 1.6 ⋅ 10−4 628.5 1137.6
Table 4
Optimized heuristic parameters 𝑛𝐼 , 𝑝𝑡ℎ and I&M campaign interval 𝛥𝑇 . For each value
of 𝑝0, the obtained optimal expected cost is lower than that calculated for fixed 𝛥𝑇 = 3
yr in Table 3.
𝑝0 (×10−2) Optimal heuristic strategy (varying 𝛥𝑇 )

Parameters Expected I&M cost

1.5 𝑛𝐼 = 349, 𝑝𝑡ℎ = 7.9 ⋅ 10−12, 𝛥𝑇 = 18 258.7
1.0 𝑛𝐼 = 119, 𝑝𝑡ℎ = 2.5 ⋅ 10−7, 𝛥𝑇 = 4 377.5
0.5 𝑛𝐼 = 117, 𝑝𝑡ℎ = 7.0 ⋅ 10−6, 𝛥𝑇 = 2 392.7
0.1 𝑛𝐼 = 144, 𝑝𝑡ℎ = 2.9 ⋅ 10−1, 𝛥𝑇 = 2 540.6

𝑊𝑖,𝑝𝑟𝑒𝑑 is computed using the FAC-predictive model (see Appendix)
nd 𝑊𝑎𝑐𝑐𝑒𝑝𝑡 = 𝑊0 − 𝑑𝑚𝑎𝑥.

.2.2. Unconstrained vs constrained strategy
Fig. 9(a) depicts samples of the evolution of the failure rate 𝐻

following the unconstrained strategy S𝑅𝐸𝑃 . It is clear that for a fixed
reliability level, say 𝑝0 = 1.5 ⋅ 10−2, many trajectories exceed the
threshold. On the other hand, for the trajectories that do comply
with the criterion, it is possible that some of the inspections or pipe
replacements prescribed by the strategy are not necessary to comply
with the reliability criterion. Fig. 9(b) shows samples of the evolution
of the failure rate following the constrained strategy. Only the histories
which would have exceeded the criterion are affected by the reliability
constraint.

7.3. Heuristic investigated

For the reliability-based heuristic planning, we investigate the fol-
lowing Heuristic A. The selection rule for pipe inspection is done by
ranking the pipes according to their coefficient of variation of the wall
thickness loss. This reflects the primary goal of an inspection, which is
to reduce the uncertainty about the state of the system. The PM pool
11
is composed of pipes for which the probability of pipe failure exceeds
a fixed threshold. PM and CM actions are furthermore carried out as
outlined in Fig. 4.

Heuristic A - Parameters 𝛥𝑇 , 𝑛𝐼 , 𝑝𝑡ℎ
– 𝛥𝑇 is the constant inspection interval. The only I&M

opportunities are at the planned inspection times.
– Pipe inspection at first campaign: 𝑛𝐼 pipes are randomly

selected and inspected.
– Pipe inspection at next campaigns: 𝑛𝐼 is the number of

pipes selected for inspection (labeled ‘of interest’) at each
campaign, according to the prioritization rule (see point
below). To these pipes are added those that have been
labeled as ‘critical’ for preventive maintenance [at the
previous I&M campaign]. An overlap between these two
groups is possible. Hence, there is a minimum of 𝑛𝐼 pipes
inspected at each campaign.

Planning for the next campaign

– Pipes are selected for preventive maintenance at time
𝑡+ 𝛥𝑇 (labeled as ‘critical’) based on their probability of
failure Pr(𝐷𝑖(𝑡 + 𝛥𝑇 ) > 𝑑𝑚𝑎𝑥|𝑴−

𝟎∶𝒕) exceeding a threshold
𝑝𝑡ℎ.

– The pipes are prioritized for inspection as the ones with
the highest coefficient of variation of 𝐷𝑖(𝑡 + 𝛥𝑇 ), given
by Eq. (29).

7.4. Computational cost

Each optimization was performed in parallel on a 2.2 GHz, 10 cores,
128 GB of RAM computer and took in the order of 3.5 h.
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Fig. 10. Average number of pipes preventively or correctively replaced, following the optimal heuristic strategy found for (a) 𝑝0 = 1.5 ⋅ 10−2 and (b) 𝑝0 = 1.0 ⋅ 10−2. The initial peak
of pipe maintenance is due to the early failure stage identified on Fig. 8.
7.5. Results

We evaluate the expected costs of strategy S𝑅𝐸𝑃 constrained to the
reliability thresholds 𝑝0 and we optimize the heuristic parameters.

First, we fix 𝛥𝑇 = 3[years] to match the I&M campaign interval
specified by strategy S𝑅𝐸𝑃 above (see Section 7.2). The optimal pa-
rameter values obtained for Heuristic A for different values of 𝑝0 are
summarized in Table 3. The expected costs of the optimal strategies and
of the constrained strategy S𝑅𝐸𝑃 are estimated with 𝑛𝑀𝐶 = 2000 MC
sample histories. The standard error on the estimation of the expected
cost is around 3 − 4%.

We find that the more stringent the criterion is, the higher the
expected cost of the optimized I&M plan from Eq. (11) and of the
constrained strategy S𝑅𝐸𝑃 . For 𝑝0 > 1.6 ⋅ 10−2, the non-maintained
system complies to the reliability level (see Fig. 8), thus the optimal
I&M costs is 0. For 𝑝0 < 1.6 ⋅ 10−2, we find that the preventive
maintenance planning parameter 𝑝𝑡ℎ increases with decreasing value
of 𝑝0.

Fig. 10 shows the average annual number of pipe replacements
during the service life for the optimized heuristic strategy for 𝑝0 =
1.0 ⋅ 10−2, as an example. The peak at time 𝑡 = 3 yr is due to corrective
replacement (and eventual non-compliance of the plant) associated
with a rate 𝜇 sampled from the tail of the distribution (see Section 7.1
above), which can lead to early system failure. This effect is also
reflected in the higher failure rate of the non-maintained system in the
first years of service, as depicted in Fig. 8. If the system does not fail
in the early years, the number of expected replacement is in the order
of magnitude with what is observed in the industry, i.e., that not more
than 15 to 20 pipe are replaced, and that the replacements typically
occur at the mid-life of the reactor. In addition, we see that the expected
number of preventive replacements is in general higher than that of
corrective replacements, which indicates that the optimized strategy is
efficient in planning preventive maintenance. The corresponding cost
breakdown is displayed in Fig. 11.

We can compare these costs and actions with the constrained repre-
sentative strategy S𝑅𝐸𝑃 , shown in Fig. 12. This shows that this strategy
does not efficiently plan for preventive maintenance. This can also be
due to the fact that the pipes inspected are not optimally selected to
reduce the uncertainty in the deterioration rate. The strategy S𝑅𝐸𝑃
performs much worse than the optimized heuristic strategies, but can
be improved by adapting the selection rules as per the heuristic.

Heuristic A also allows one to vary the campaign interval 𝛥𝑇 . The
resulting optimal heuristic parameters are given in Table 4. The added
freedom of varying parameter 𝛥𝑇 yields lower optimal expected costs
than those found in Table 3. We identify a clear trend on the optimal
12

interval 𝛥𝑇 , which decreases with decreasing 𝑝0. This is not surprising,
as a more stringent reliability criterion will warrant more frequent
inspections. The optimal value for 𝑝𝑡ℎ follows the trend identified above
for fixed 𝛥𝑇 . For 𝑝0 = 1.5 ⋅ 10−2, we note that the strategy recommends
to inspect in fact almost all pipes once during the service life.

7.6. Sensitivity of expected cost to the heuristic parameters

Here, we investigate the shape of the expected life-cycle I&M cost
function for Heuristic A over the domain of parameters 𝑛𝐼 and 𝑝𝑡ℎ,
with fixed 𝛥𝑇 = 3 yr, for 𝑝0 = 1.0 ⋅ 10−2. To do so, we estimate
the expected cost with Eq. (9) and 𝑛𝑀𝐶 = 1000 sample histories for
heuristic strategies defined by the pair (𝑛𝐼 , 𝑝𝑡ℎ) on a 408-point grid
over the domain 𝑝𝑡ℎ ∈ [10−16, 1] and 𝑛𝐼 ∈ [0, 480]. The estimation
of the cost thus obtained at each points is not exact with a standard
error of 4 − 7%, hence, we fit a Gaussian process to the 408 estimated
values to obtain a surrogate of the cost function. The resulting Gaussian
field provides the predicted expected cost at for each parameter value
set. Fig. 13(a) depicts the resulting Gaussian field and the predicted
expected life-cycle I&M cost for any pair (𝑛𝐼 , 𝑝𝑡ℎ).

The surrogate of the expected cost function thus obtained confirms
the location of the optimum point found with the CE method (Table 3).
It should be noted that finding the optimal heuristic parameter values
by fitting a Gaussian process to point estimates arranged in a grid here
has 20 times the computation cost of the CE optimization method. A
more efficient combination of the two methods is suggested in [6].

We observe that in the vicinity of the found optimum, the expected
cost is not highly sensitive to the number of pipes to be inspected at
each campaign, 𝑛𝐼 . This can reflect two things: first, the cost of pipe
inspection is low compared to the cost of maintenance, therefore a
variation of the order of 50 pipes inspected does not significantly affect
the expected cost; second, the optimal number of inspected pipes is
related to the amount of information that is provided by inspecting
an additional pipe, which is in turn related to the efficiency of the
inspection rule. This low sensitivity to the number of pipes inspected
is also observed in Table 3.

It is also possible to see the effect of the cost parameters on the
resulting expected cost function and optimal heuristic parameters. We
increase 5-fold the unit cost of inspection, such that 𝑐𝐼 = 0.5, and the
expected life-cycle costs are evaluated again by applying Eq. (9) with
the modified cost parameters. A Gaussian process is fitted again to the
408 grid points. The resulting Gaussian field is depicted in Fig. 13(b).
The effect of a higher inspection cost can be seen in the lower optimal
parameter value of 𝑛 , and an increased sensitivity to 𝑛 and 𝑝 .
𝐼 𝐼 𝑡ℎ
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Fig. 11. Undiscounted annual breakdown of the life-cycle I&M costs, for the optimal heuristic strategy found for (a) 𝑝0 = 1.5 ⋅ 10−2 and (b) 𝑝0 = 1.0 ⋅ 10−2.

Fig. 12. (a) Average number of pipes preventively or correctively replaced for constrained strategy S𝑅𝐸𝑃 for 𝑝0 = 1.0 ⋅ 10−2. (b) Undiscounted annual breakdown of the life-cycle
I&M costs, for the optimal heuristic strategy found for 𝑝0 = 1.0 ⋅ 10−2.

Fig. 13. Expected I&M life-cycle cost as a function of 𝑝𝑡ℎ and 𝑛𝐼 , parameters of Heuristic A, for 𝑝0 = 1.0 ⋅ 10−2. The cost function is estimated by fitting a Gaussian process to
values estimated with Eq. (9) and 𝑛𝑀𝐶 = 1000, at 408 grid points with coordinates 𝑝𝑡ℎ ∈ {10−16 , 10−15 ,… , 100} and 𝑛𝐼 ∈ {20, 40, 60,… , 480}. (a) for the cost model of Table 2; (b)
with increased unit inspection cost 𝑐𝐼 = 0.5.
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Table 5
Results for modified prior.
𝑝0 (×10−2) Optimal heuristic strategy Constrained strategy S𝑅𝐸𝑃

Parameters Expected I&M cost Expected I&M cost

5.0 𝑛𝐼 = 0, 𝑝𝑡ℎ = 1 0 315.7
1.0 𝑛𝐼 = 122, 𝑝𝑡ℎ = 1.1 ⋅ 10−2 190 744.4
0.1 𝑛𝐼 = 154, 𝑝𝑡ℎ = 1.4 ⋅ 10−6 214.9 1773.4
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Fig. 14. Failure rate for the non-maintained, non-inspected system, with a modified
rior where the c.o.v of 𝜇 is 20%. The levels {0.1, 1.0, 5.0} ⋅ 10−2 are also indicated.

.7. Effect of the prior

We investigate the sensitivity of the expected cost and optimal
euristic parameters to the choice of the prior. More specifically, we
odify the distribution of 𝜇 such that the c.o.v. is reduced to 20% from
00%. The failure rate for the non-maintained system is depicted in
ig. 14. We note that the curve does not possess a bathtub curve shape
s in Fig. 8.

We evaluate strategy S𝑅𝐸𝑃 and optimize the heuristic parameters
ith fixed 𝛥𝑇 = 3 yr (see Table 5). The expected number of pipe

eplacement and expected annual life-cycle I&M cost for the optimized
trategy and the constrained strategy S𝑅𝐸𝑃 are detailed in Fig. 15. For
0 = 1 ⋅ 10−2, we note that the optimal heuristic strategy does not plan
or preventive maintenance, and relies only on corrective maintenance
o maintain the reliability level. This balance is likely to change with a
ifferent cost model. It also shows that the heuristic chosen might not
e appropriate for this reliability level.

For lower 𝑝0 = 1.0 ⋅ 10−3, the heuristic strategy is efficient in
ollecting information about the system and planning preventive main-
enance. The constrained representative strategy S𝑅𝐸𝑃 performs notice-
bly worse. This can be attributed to the fact that it does not allow for
ore than 140 pipes to be inspected, regardless of the condition of the

ystem, and therefore fails to reduce the uncertainty about the state of
he system.

. Concluding remarks

In this paper, we propose a reliability-based planning framework
o improve standard I&M plans for nuclear feeder piping systems. This
ramework provides the means to assess the performance of any given
&M strategy under a specified reliability constraint. It does not require
he consequences of failure to be explicitly quantified, which makes it
uitable for applications in NPP maintenance. Additionally, a heuristic
escription of the I&M strategies can be chosen and optimized, which
pens the possibility to explore different decision rules and to integrate
egulatory constraints. The framework includes a probabilistic predic-
ive model for the deterioration process at the pipe level, with which
he piping system reliability can be evaluated over time, including all
he past inspection outcomes and maintenance actions.

The numerical application shows that integrating reliability com-
14

utations in the decision process leads to better decisions and lower
ife-cycle I&M expected cost, compared to a strategy based on a deter-
inistic prediction model.

This study shows that the choice of a cost model influences the
utcome of strategy assessment and optimization. Other aspects must
e considered by the analyst for the implementation of this reliability-
ased planning and optimizing framework in practice, such as the fact
hat the uncertainty in the model affects the outcome of the assessment
nd heuristic optimization. The values of the prior model parameters
an be calibrated based on expert knowledge and similar plant data.
his uncertainty in the model parameters can be also addressed through
daptive planning [6], whereby the heuristic I&M plan is modified as
ew information through inspections and monitoring becomes avail-
ble. The effect of information gain on the improved strategy will be
onsidered in future research.

The deterioration model can be altered to reflect various probabilis-
ic dependence structures. Here, the model for FAC assumes a constant
ean deterioration rate 𝜇 across all pipes and enables the evaluation

f the system reliability at a low computational cost. Plant data suggest
hat there are lead feeders in which the deterioration rate is higher than
or other pipes [27]. This is likely due to geometry aspects, which are
ot considered here. A future improvement of this framework will in-
lude the efficient modeling of pipe groups with correlated wear rates,
nd will integrate uncertainty on the measurement data. Increasing
he complexity of the deterioration and observation models comes at a
ost, since the generation of a sample I&M history requires the system
eliability to be evaluated at every time step. To ensure the efficient
nd fast computation of the system reliability, a discretized hierarchical
BN model, as proposed by Luque and Straub [50], can be utilized to
odel correlated deterioration rates 𝜇.

Finally, while the presented framework has been developed for a
specific type of system and a specific application, it can be extended
to systems with different configurations, dependence structures and
deterioration processes.
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Fig. 15. Top: Average number of pipes preventively or correctively replaced, following the optimal heuristic strategy found for (a) 𝑝0 = 1.0 ⋅ 10−2 and (b) 𝑝0 = 1.0 ⋅ 10−3. The initial
peak of pipe maintenance is due to the early failure stage identified on Fig. 8. Bottom: Undiscounted annual breakdown of the life-cycle I&M costs, for the optimal heuristic
strategy found for (c) 𝑝0 = 1.0 ⋅ 10−2 and (d) 𝑝0 = 1.0 ⋅ 10−3.
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Appendix. FAC-predictive model

For the representative strategy S𝑅𝐸𝑃 described in Section 7.2.1,
the pipe replacement criterion is based on a simplified FAC-predictive
model, in which the evolution of the wall thickness is described by a
linear model with a constant wear rate for each pipe, as recommended
by EPR [4].

The wear rate for pipe 𝑖 is estimated as �̂�𝑖, based on the thickness
measurements of this pipe. For simplicity, it is assumed that the re-
placement pipe retains the estimated wear rate of the pipe it replaces.
For each inspected pipe 𝑖, this wear rate at time 𝑡 is estimated by linear
egression with quadratic loss using all measurements on pipe 𝑖 until
ime 𝑡 [27]. With initial wall thickness 𝑊𝑖(0), the wear rate estimate
̂𝑖(𝑡) is

̂𝑖(𝑡) =
∑

𝑗∈I (𝑡𝑗 − 𝑡𝑅) ⋅ (𝑊𝑖(0) −𝑀𝑖(𝑡𝑗 ))
∑

𝑗∈I (𝑡𝑗 − 𝑡𝑅)2
. (A.1)

𝑡𝑗 are the inspection times of pipe 𝑖 up to and including time 𝑡, and 𝑡𝑅
is the time of last repair of pipe 𝑖 before time 𝑡𝑗 .

𝑊𝑖,𝑝𝑟𝑒𝑑 (𝑡 + 𝛥𝑡) is the predicted thickness at time 𝑡 + 𝛥𝑡 of pipe 𝑖, and
s calculated for all pipes inspected at time 𝑡:

𝑖,𝑝𝑟𝑒𝑑 (𝑡 + 𝛥𝑡) = 𝑊𝑖(𝜏𝑖) − 𝑆𝐹𝑖 ⋅ �̂�𝑖(𝑡) ⋅ (𝑡 + 𝛥𝑡 − 𝜏𝑖), (A.2)

𝜏𝑖 < 𝑡 being the time of last inspection or repair up to an including
time 𝑡, and 𝑊 (𝜏 ) = 𝑀 (𝜏 ) if the pipe is inspected but not repaired,
15

𝑖 𝑖 𝑖 𝑖
𝑊𝑖(𝜏𝑖) = 𝑊0 if it is repaired. As in Section 5.2, 𝑀𝑖(𝑡) is the measured
all thickness at time 𝑡.

A safety factor 𝑆𝐹𝑖 = 1.1 is applied to the prediction wear rates �̂�𝑖(𝑡)
ntil the next I&M campaign at time 𝑡+𝛥𝑇 . For the pipes for which the
easured wall thickness at time 𝑡 𝑀𝑖(𝑡) is lower than the predicted wall

hickness from the previous I&M campaign, 𝑊𝑝𝑟𝑒𝑑 (𝑡), we postulate that
he safety factor is increased to 𝑆𝐹𝑖 = 1.5. The choice of the safety
actors affects the planning of preventive maintenance and inspection.
ere we have not chosen the factors in a particular way that would
ptimize the strategy for the problem considered.

The remaining service life of the inspected pipes is calculated as

𝑖,𝑆𝐿 =
𝑀𝑖(𝑡) −𝑊𝑎𝑐𝑐𝑒𝑝𝑡

�̂�𝑖 ⋅ 𝑆𝐹𝑖
(A.3)
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