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Abstract

Vibration monitoring is an essential element of research in digitalization and automation.
With respect to rotating machinery, constrained devices based on integrated Micro-Electro-
Mechanical sensor technology (MEMS), typically provide acceleration-based health information.
These sensor systems are usually connected to the industrial internet via wireless transmission
technology. Here, the problem occurs. Wireless transmission standards require measurement
positions at the housing - far away from the fault origin. Accurate and precise, quantitative
fault diagnosis demands a dynamic, adaptive description of the holistic, mechanical transfer
paths between fault sources and sensor system position. These can be influenced by internal
support stiffnesses between rotor and housing, boundary conditions and specific operational
conditions. In this thesis, hybrid and exclusively experimental approaches are presented which
address this issue. For the application of these methods, an exemplary MEMS sensor is
characterized with respect to frequency response linearity and temperature sensitivity.
The experimental technique is proposed for monitoring of structures with low flexibility. A
virtual accelerometer is placed inside a roller bearing based on coupled frequency response
and transmissibility functions. The performance of this technique is validated on an industrial
centrifugal pump test rig with an exemplary roller bearing fault and a MEMS sensor system.
Therefore, several bearing fault diagnosis methods are evaluated and recommendations are
given with respect to restrictions of MEMS accelerometer technology.
The hybrid approach contains a combination of numerical and experimental modeling methods
and also suits high-flexible structures. An industrial blower is utilized as exemplary application.
Therefore, a numerical modeling technique for rotor systems with overhung impellers is
presented. The rotor is created and validated based on a one-dimensional Timoshenko beam
with an analogous stiffness model at the impeller aiming to reach minimum degrees of freedom
(DoF). This model is coupled with the machine housing utilizing Lagrange Multiplier frequency-
based substructuring (LM-FBS) and virtual point transformation (VPT) techniques.
Interface dynamics at the virtual bearing DoF are implemented by the System Equivalent
Model Mixing (SEMM) modal expansion framework. In the context of SEMM-based modal
expansion, a novel, iterative approach is presented for the integration of operational conditions
at the entire speed range. Filtering effects of the Moore-Penrose pseudoinverse are utilized
to find virtual unbalance forces at the rotor. The iterative updating process is exclusively
based on operational output measurements by a minimal sensor set-up containing two triaxial
accelerometers. Unphysical force-peaks are eliminated based on an adaptive force shaping
procedure. This technique is based on an iterative cubic spline fit on the force spectral
envelope. Finally, the entire methodology is validated by frequency response functions and
operational measurements with two different unbalance scenarios at the blower test rig. The
final adaption to varying boundary conditions with a same approach but solely based on the
monitoring accelerometer at the housing demonstrates further force estimation enhancement.
Even an exemplary unbalance force estimation scenario with a final MEMS sensor system
could be achieved successfully.
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Zusammenfassung

Vibrationsbasierte Zustandsüberwachung ist ein essenzieller Bestandteil im Forschungsbereich
der Digitalisierung und Automatisierung. Ressourcenbeschränkte Sensorlösungen basierend auf
Mikro-Elektro-Mechanischen Systemen (MEMS) können hierbei die wesentlichen Zustandsin-
formationen erfassen. Im Hinblick auf rotierende Maschinen betrifft das zumeist Informationen
über die Beschleunigung am Gehäuse. Die zugrundeliegenden Sensorsysteme sind mittels
drahtlosen Kommunikationsschnittstellen mit dem industriellen Internet verbunden. Die Mess-
position am Gehäuse ist dabei ein Problem, da sie für die drahtlose Kommunikationsmöglichkeit
unbedingt erforderlich ist, aber zumeist weit vom Ort des Schadens am Rotor entfernt liegt.
Deshalb benötigt die genaue, präzise und quantitative Zustandsüberwachung eine ganzheitliche
Beschreibung der mechanischen Transferpfade zwischen den Fehlerquellen und der Messpo-
sition am Gehäuse. Die Transferfunktionen können durch interne Kopplungssteifigkeiten
als auch durch Rand- oder Betriebsbedingungen beeinflusst werden. Diese Arbeit schlägt
hierfür zwei Lösungsansätze vor, welche an zwei industriellen Beispielen evaluiert werden.
Für deren Validierung wird ein beispielhafter MEMS-Beschleunigungssensor hinsichtlich
Übertragungslinearität und Temperaturempfindlichkeit charakterisiert.
Ein Ansatz für die Zustandsüberwachung, der ausschließlich auf experimenteller Modellierung
basiert, betrachtet ein Anwendungsbeispiel mit geringer interner Flexibilität. Hierbei wird
ein virtueller Beschleunigungsaufnehmer basierend auf gekoppelten Transmissibilitäten und
Admittanzen im Inneren eines Wälzlagers platziert. Die Validierung der Methode erfolgt
mithilfe eines beispielhaften Wälzlagerschadens in einem Kreiselpumpenprüfstand und einem
MEMS-Sensorsystem. Hierfür werden Techniken zur Lagerdiagnose spezifisch für die MEMS-
Sensorik evaluiert.
Der hybride Ansatz besteht aus einer Kombination von numerischer und experimenteller
Modellierung, welche auch für hochflexible Strukturen geeignet ist. Die Methodenentwicklung
erfolgt an einem industriellen Lüfterprüfstand. Für dessen Rotor, welcher eines weit verbreit-
eten Typs mit überhängendem Impeller entspricht, wird eine numerische Modellierungstechnik
mit dem Ziel entwickelt, minimale Freiheitsgradanzahl zu erreichen. Der Rotor besteht aus
einem eindimensionalen Timoshenko-Balken mit einem Ersatzsteifigkeitsmodell am Übergang
Welle-Impeller und wird mit dem Maschinengehäuse mithilfe der Lagrange Multiplikator-
basierten Substrukturierung und virtueller Punkt-Transformation gekoppelt.
Die Schnittstellendynamik wird im Nachhinein mithilfe der modalen Expansionstechnik System
Equivalent Model Mixing (SEMM) implementiert. Im Rahmen dieser Expansionstechnik
entsteht ein neuer, iterativer Ansatz, mit welchem strukturdynamische Änderungen durch die
Betriebsbedingungen der Maschine erfasst werden können. Dabei filtert die Moore-Penrose
Pseudoinverse virtuelle Unwuchtkräfte aus dem hybriden Modell und den Betriebsmessungen.
Diese werden mithilfe eines minimalen Sensor-Setups bestehend aus zwei triaxialen Beschleuni-
gungsaufnehmern erfasst. Unphysikalische Kraftspitzen können dabei auf der Basis iterativer,
adaptiver, kubischer Spline-Fits entfernt werden. Die Validierung der gesamten Methodik
erfolgt durch Frequenzübertragungsfunktionen und Betriebsmessungen bei zwei verschiedenen
Unwuchtszenarien am Lüfterprüfstand. Eine finale Adaption an veränderte Randbedingungen
mit einem einzigen Sensor sowie mit einem exemplarischen MEMS-Sensorsystem liefert mit
derselben Methodik eine gute Approximation der Unwucht am Rotor.
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Nomenclature

Roman Symbols

c damping constant
𝒸 quefrency
f frequency
k stiffness
𝓀 kurtosis
l intrinsic mode function residual signal
m mass
s intrinsic mode function start signal
t time

𝓌 whirl movement
A amplitude
 Cepstrum
E Expected value
F excitation force
I condition Indicator
 geometrical moment of inertia
T time period
X signal

Boldface Roman Symbols

e state error vector
f force vector
𝓯 filter vector
g interface gap force vector
m virtual load vector
q virtual displacement / rotation vector
𝓺 coordinate vector
r residual load vector
u displacement / rotation vector
v measurement noise vector
𝓿 state input vector
w weighting vector
𝔀 state uncertainty vector
𝔁 state vector
𝔂 state output vector
 state transition matrix
A acceleration matrix
 state influence matrix
B signed Boolean matrix
C damping matrix
 output gain matrix

 direct link matrix
F filter matrix
G gyroscopic matrix
 feedback matrix
I identity matrix
K stiffness matrix
 Kalman gain matrix
M mass matrix
 Boolean matrix
P Covariance matrix
 state error covariance matrix
R interface displacement modes matrix
 measurement error covariance matrix
𝓡 modal reduction matrix
S impact sequence vector
T transmissibility matrix
U displacement / rotation matrix
X signal matrix
Y transfer function matrix
Z dynamic stiffness matrix
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2 Contents

Greek Symbols

η(t) modal coordinates
µ residual
ε eccentricity
ϕ eigenmode
ψ rotation
σ error
ς singular value

ρ specific impact / sensor consistency
ϱ deviation
θ damping ratio
τ time increment
ω circular frequency
Ω angular excitation frequency

Boldface Greek Symbols

λ interface force vector
ρ overall impact / sensor consistency vector
Φ mode shape matrix

Ψ amplitude and phase vector
χ reciprocity matrix

Operators

⋆̃ filtered
⋆̇ time derivative
⋆̈ second time derivative
⋆̂ observed estimate
⋆−1 inverse

⋆ mean value
⋆+ Moore–Penrose inverse (pseudoinverse)
⋆T transpose
⋆H complex conjugate transpose
(⋆) Fourier transformation

Subscripts

⋆c compatibility
⋆CPW cepstrum prewhitened
⋆e equilibrium

Superscripts

⋆approx approximated
⋆est estimated
⋆− a priori state estimate
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Abbreviations

ADC analog-to-digital converter
DoF degree(s) of freedom
EMD Empirical Mode Decomposition
FBS frequency-based substructuring
FE finite element
FEM finite element method
FIR finite impulse response
FRF frequency response function
IDM interface displacement mode
IMF intrinsic mode function
LM-FBS Lagrange Multiplier FBS
MEMS Micro-Electro-Mechanical System
MOMEDA Multipoint Optimal Minimum Entropy Deconvolution Adjusted
RMS root mean square value
RUL remaining useful lifetime
SEMM System Equivalent Model Mixing
VP virtual point
VPT virtual point transformation





Chapter 1

Introduction

Vibrations are omnipresent. They can occur in an audible, visible, tactile manner or are
just hidden as in most instances of daily life. Mechanical vibrations are beautiful in music,
but can be annoying and cause great harm. We can observe vibrations from various point
of views in all engineering disciplines. Interdisciplinary orientated, they can be transformed
between different domain representations (see Sec. 2.1). In the age of digitalization and
automation, these dynamics are contemplated as data packets with specific resolution and size.
Another point of view is the analog signal form of vibration. Here, vibrations are enclosed
in dynamic current and voltage signals. In most cases, the signal chain is established by a
transducer that physically converts the mechanical vibration into an analog voltage signal,
where a superordinate sensor system is responsible for pre-processing, digitalization and post-
processing.
All these observations are based on inputs excitations and output responses of a mechanical
system. This thesis proposes a framework that brings together the inputs and outputs of
all representations described above and describes the correlation between these inputs and
outputs for industrial condition monitoring applications.
We focus on mechanical vibrations of rotating machinery and build a bridge to digital
observation. Therefore, novel modeling and transducer techniques are applied and evolved.

1.1 Classification of Vibration Monitoring

Emerging techniques in the past already pursued holistic approaches to vibration-based moni-
toring solutions, especially within industrial applications, where unexpected failures can cause
serious damages or long downtimes. Most vibration-based industrial condition monitoring
systems solely use information from sensor data. Within this thesis, we call these solutions
signal- or data-based systems. Research is very applied in this context and focuses on ap-
plications with far-reaching consequences. The centrifugal pump is a predestined example
in this context. Pumps and blowers are essential elements in a wide range of industrial use
cases like power plants and fluid supply solutions. In this case, monitoring systems need to
detect mechanical, hydraulic and peripheral disturbances. We can list a multitude of exam-
ples concerning these disturbances: unbalance, rotor-stator rubbing, bent or warped shafts,
misalignment, bearing or sealing faults, gas in pumping medium, dry run, cavitation pulsa-
tion, etc. are common representatives [19, 25, 38, 76]. State-of-the-art methods related to
data-based approaches often use machine learning [26, 124] or deep learning techniques [123]
for automatic classification of these faults. We will come back to the faults, but first discuss
common strategies to guarantee machine health.

To begin with the field of vibration monitoring, we look back into the past. Initially, the
first vibration-based monitoring system was established by Rathbone in the year 1939 [106].

5



6 1 Introduction

Within his paper named “Vibration Tolerance”, he created a chart which characterized the ma-
chine condition based on vibration amplitude and frequency. Hence, a new research topic was
opened, although systematic condition monitoring started with the invention of FFT (Fast
Fourier Transformation) analyzers in the 1970s [105]. Since these years, much has evolved.
Today, a distinction is made between three strategies [105]:

1. Run-to-Break Operation. This type of handling the machine state is a kind of brute-
force method, where an application operates until it breaks down, so that the operator
can benefit of a maximum of operating hours without downtime. However, this strategy
is only applicable if such a machine operates totally independent of its surroundings
e.g., other components or machines. Otherwise a sudden breakdown has the potential
to shut down an assembly line or even the entire production.

2. Preventive Maintenance at Regular Service Intervals. As a contrast to run-to-
break operation and to prevent incalculable risks, regular service intervals are defined
which must be shorter than the expected machine live. The interval time is calculated
based on statistical evaluations so that less than 1-2% of the machines fail in the defined
time. In practice, worst case assumption are made, with the result that most of the
regarded machines can work two- or threefold longer than the assumed time interval
would suggest [92]. This drastically reduces endurance, but the operator is on the safe
side. A solution to get as close as possible to the optimum maintenance interval is
described in the following point.

3. Condition-Based Maintenance. This maintenance technique is based on condition
monitoring or on its extension, the condition-based diagnosis. When a proper diagnosis
is made, the remaining useful lifetime (RUL) can be predicted. As a consequence, service
intervals can be saved and the machine live can be exhausted to a maximum while
ensuring that no damage is caused. Prerequisite is a condition monitoring algorithm built
on an accurate and precise model description of the entire observed system. This leads
to the need for hybrid dynamic models that support such monitoring approaches with
a powerful machine description to push maintenance intervals close to their optimum.
Hybrid in this occasion means a combination of numerical simulation, experimental
testing and measured data at operation. The demand for these models which are
commonly designated as Digital Twins will be discussed in Sec. 1.2.

1.1.1 Signal-Based Monitoring

Within this thesis, methods for condition-based diagnosis are developed in the context of
vibration-based maintenance. Therefore, we start with the measurement of mechanical vibra-
tions. Mechanical states can be captured by different sensors. They are either characterized
by displacement, velocity, or acceleration sensors in order to describe the state variables,
namely the displacement u and its time-derivatives u̇ and ü in the time-dependent mechanical
equation of motion

Mü(t) +Cu̇(t) +Ku(t) = f(t); u ∈ Rn. (1.1)

It contains the mass, damping and stiffness within the matrices M , C and K in a discretized
description of the physical state with n degrees of freedom (DoF).
Meaningfully, an appropriate sensor is selected, based on the final application. Resting
upon the characteristic vibration fingerprint and structural dynamic properties, some sensor
types are more suitable than others. Nowadays, accelerometers are established for most
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applications. Though, there are some fields where displacement or velocity transducers are
favorable. Especially in monitoring systems according to standards such as DIN ISO 20816
[39], which are based on vibration velocity, appropriate transducers are occasionally used.

Velocity sensors are mostly based on a seismically suspended magnet within a coil attached
to the housing. A big disadvantage of these sensors is the low bandwidth. Their bandwidth is
usually representative between 10Hz and 1 kHz. Due to that reason, common standards, as
well as the DIN ISO 20816, set their vibration amplitude limits within this range. Another
application for displacement and velocity transducers are light, slightly dampened structures.
In these cases, laser vibrometers are predestined because of their ability to measure vibration
without adding sensor mass to the structure. In Sec. 7.1, an exemplary scenario for that
application is shown. The focus for what concerns measurements within this thesis lies on
accelerations.

Accelerometers are in most cases the mean of choice when it comes to high bandwidth,
high sensitivity and low sensor mass. All examples from literature within this section are
based on acceleration signals. High-performance accelerometers are mostly based on a piezo-
electric principle [105]. The integrated piezoelectric crystal generates an electric charge which
is proportional to pressure applied to the crystal. This pressure is generated by a seismic mass
inside the sensor. An integrated circuit converts the charge to voltage utilizing an amplifier.
Of course, this voltage signal is analog. Before sampling for digitalization, analog filtering
is required to minimize effects such as noise, aliasing, and disturbances. Subsequently, the
signal is discretised by an appropriate analog-to-digital converter (ADC) and post-processed
by the measurement system. This entire measurement chain can be very expensive, although
in research and development applications, piezoelectric sensor types are indispensable due to
their unrivaled performance.
In this thesis, we focus on faults in rotating machinery. Most of the implied rotor systems
are supported by roller bearings. Their health is of big interest for industrial use cases. A
standard was created specifically for this purpose. Therefore, the VDI3832 guideline [140]
regards collective vibration level over a period of time or spectral analyses of the signal en-
velope. Further established methods for monitoring these components referring to [21, 28]
are Empirical Mode Decomposition, Multipoint Optimal Minimum Entropy Deconvolution
Adjusted (MOMEDA) filtering and combinations with Fourier and Hilbert transformation.
These methods are evaluated in more detail referring to the test environment in Sec. 3.4.
Further studies showed successful bearing fault detection utilizing Winger-Ville distribution
[13] or Wavelet transformation [14, 97]. Due to different kinematics-defining components of
the roller bearings (see Fig. 3.2), some methods are more expedient than others. Wavelet
transformation [97] and envelope analysis using Hilbert and Fourier transformation [44] for
instance, are well established in detecting outer race defects. On the other hand, inner race
and ball defects are better captured by Wavelet transformation due to the fine resolution in
high frequency range of the technique [135]. The upper mentioned Empirical Mode Decompo-
sition (EMD) was initially presented in [129]. It also builds on envelope analysis and uses
so-called Intrinsic Mode Functions (IMF) as pre-filtering of the vibration signal. We observe
it in Sec. 3.4.3. Particularly, the EMD works especially well as a self-adapting signal handling
technique for non-stationary processes [41, 150]. Thereupon, Peng explores an enhancement
of this fault diagnosis method [98]. Here, the raw acceleration signal is separated into slim
bands utilizing wavelet packet transformation as pre-processor. Subsequently, the standard
procedure of Empirical Mode Decomposition is performed on these bands to parse the signal
into IMFs. Afterwards, again the envelope spectral analysis is applied. Improvements of this
method, when comparing it for example with wavelet-based spectrograms, are better resolu-
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tion in the time and frequency domain representation, although some ripple in the resulting
post-processed signals are caused by drawbacks concerning fault identification. Though, com-
puting efficiency increases.
Of course, these methods were already combined and automated in various manner. In this
context, envelope analysis was applied in [77] to automatically find frequency bands in which
the bearing fault information can be captured. The underlying approach is led by a wavelet-
supported spectral kurtosis calculation. This statistical indicator (definition see Sec. 3.4.1) is
combined with a wavelet transformation to find a proper filtering technique for the vibration
signal. The subsequent envelope analysis successfully extracts the bearing fault information.

Although roller bearing defects play an important role in researching new condition moni-
toring methods, there is also a need for techniques that monitor rotor faults that can cause
bearing defects over time. Previous work has shown in [71] that an overload caused by rotor
unbalance can damage the bearings and also the entire machine. Even gearboxes are examples
which often require high reliability without maintenance, where bearings are not the only
vulnerable parts. Despite of a declining market due to increasing electrification, gearboxes
need condition-based preservation [149]. Moreover, effects at interaction of components within
the entire system including motor and gearbox led to extensive research findings [19]. In this
context, again the Empirical Mode Decomposition method helped to detect gearbox-specific
faults such as tooth cracks [44].

To sum up, we can imagine that all mentioned fault detection algorithms are based on
similar physical occurrences. Effectively, they express themselves within the vibration signal
either in a frequency modulated manner or within an amplitude modulated form. In the flow
chart of Fig. 1.1 this classification is made. All mentioned signal-based methods are based on
amplitude modulated signal analysis except the unbalance monitoring of Korkua et al. [71]
which is attributable to frequency modulation.

Most of the previously presented signal analysis work is based on high performance piezo-
electric sensor technology as described above. Although, all methods within this thesis are
developed for industrial sensor systems. Industrial requirements often go hand in hand with
costs.

Micro-Electro-Mechanical (MEMS) accelerometers can be the cost-effective solution
to this problem. These transducers including a signal condition unit cost about 10% or less
compared to piezoelectric accelerometers [3] but can reach high accuracy even in advanced,
industrial applications [2]. They consist of polysilicon structures atop silicon wavers which
are manufactured by surface micro machine processes. The structure contains a spring-mass
system which oscillates with the applied dynamic force. Structure deflection is measured
using differential capacitors, which are composed of electrodes fixed to the moving mass
and electrode counterparts at the surrounding sensor structure. The differential capacitor is
unbalanced by a mass deflecting force with the result of an acceleration proportional sensor
output amplitude [127].
Note, the signal chain is extremely shortened when talking about digital MEMS accelerometers.
After the presented transducer principle, all signal processing steps are integrated in the
sensor chip. Hence, the dynamic capacitance is transformed into a voltage signal, filtered and
digitalized directly on the sensor unit. The digital output values are usually collected by a
microprocessor. When adding a wireless communication unit and low-power energy supply, we
have a so-called constrained device or wireless sensor node. The short analogue path already
triggered the application to wireless communication units in the past [148]. These sensor
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nodes can be meshed within a big sensor network depending on the wireless communication
method. Generalized, it is called sensor system within this thesis.
In the past, MEMS sensor technology was already recognized as highly promising for the
future, especially for fault diagnostic due to its cost effectiveness, low power consumption,
integrability and reliability [71]. It is proven that piezoelectric accelerometers are substitutable
by MEMS sensors in vibration measurements applications especially in the low frequency
range [84]. Often, MEMS sensors imply drawbacks such as low sensitivity, unsatisfactory
noise performance or resolution. A study for structural health monitoring has shown that
these effects are improvable [67]. A further issue, namely temperature sensitivity can also be
handled [40]. By utilizing MEMS accelerometers, various fault examples such as bowed shafts,
unbalances and bearing faults were already successfully diagnosed [122]. In detail, MEMS
sensor systems were used, for example, on centrifugal pumps to detect cavitation, impeller
damage and dry run [38]. A further helpful advantage is that these integrated sensor systems
enable on-shaft vibration measurements to detect base looseness, unbalance and misalignment
in rotordynamics [43, 93, 101]. Especially, orbit measurements can be carried out particularly
well as demonstrated in [64].

Conclusion

Condition-based maintenance is the method of choice in the data-driven world. MEMS
vibration sensor systems are already established in various condition monitoring applications
due to several advantages such as cost effectiveness, low power consumption and integrability.
However, referring to the sensors, only the signal processing part was discussed. Note,
monitoring of dynamic mechanical phenomena requires a holistic approach as aforementioned
the beginning of this section.

1.1.2 Model-Based Monitoring

Accurate and precise diagnosis of faults under varying boundary conditions requires deep
knowledge about the system. This is only sustainable utilizing a signal-based approach when
sufficient amount and quality of data according to all possible operating scenarios is available.
In most applications, this requirement is not fulfilled. In these cases, signal-based techniques
can just detect faults.
We must distinguish between fault detection and fault diagnosis. Fault detection shows that
the disturbance happened, but only diagnosis can find the fault cause, location and quantity
[61]. When deeper fault information is required, model-based fault diagnosis is preferable.
Usually, input and output values are required to set up a reliable model [60]. Generally, the
model serves as a tool to predict output values when fed with new, unknown data.
When the model and failure modes are exactly defined, signal-based fault detection can be
used for preselection. In case the measurand exceeds defined vibration limits, the fault type is
found based on specific signal characteristics. Building on that prior knowledge, the model-
based algorithm can finally quantify the fault dimension by an optimization calculation [114,
130]. Here, the required models are usually created by numerical simulations.
Another big advantage of model-based techniques is the reconstruction of inaccessible degrees
of freedom (DoF) in the observed application. These DoF can be gathered as virtual sensors.
Virtual sensors are really helpful, if there are application-specific requirements for physical
sensor positions which are not suitable with respect to fault quantification. Kullaa [75] showed
that the virtual sensor should be still placed near to a physical transducer. In this scenario,
virtual sensing can even work with experimental models when the transfer paths between the
virtual sensor, the fault source and the physical sensor are well understood. A virtual sensing
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approach will be evaluated in Sec 7.2.1 of this thesis.
Since understanding model-based methods usually requires some insight into the algorithms,
two related state-of-the-art methods will be presented, namely the state-space observer
approach (see Sec. 3.1) and the Kalman filter (see Sec. 3.2).

1.2 Research Questions and Objectives

Accurate and precise predictive maintenance is still a challenge in recent development pro-
cesses. Current research strongly focuses on machine learning approaches and deep learning
based techniques which typically require enormous amounts of data to train the underlying
models. The contradiction is obvious. Within the development phase, there is often not
enough or even no operational data available. Learning approaches need huge datasets accu-
rately representing the required healthy and faulty machine states. Even if a prototype or
pilot system exists, tremendous manual effort is needed to implement all types of faults which
are to be identified an quantified.
Moreover, imagine that the fault diagnosis algorithm was trained for a component (rotating
machine) at a locomotive A. Will the same algorithm detect and quantify these faults at
locomotive B with the same accuracy and precision? What happens if the bogie of locomotive
B changed to significantly differing stiffness and damping properties?
The algorithm will only perform in case of these changes are captured in the training data
sets.
Imagine a second example. The new component was perfectly numerically simulated includ-
ing all conceivable fault scenarios1. Imagine that this component is now mounted inside the
locomotive and someone uses that component as rack for heavy wedges. In order to hang
these wedges, an extra stiff rack is mounted on the component. As a consequence, the entire
system’s dynamics change. The fault specific acceleration amplitude can be halved compared
with the original healthy state. What if this acceleration complies with an unbalance which
will continuously destroy the bearings? Probably nobody will notice. These changes of bound-
ary conditions at varying peripheries are usually not captured.
Another problem comes up when the diagnosis is based on wireless sensor systems. These
nodes have to be placed at the outside housing due to its shielding effect in order to guarantee
a robust data connection. The fault occurs usually at the rotor system - far away from that
measurement position. Nevertheless, the diagnosis algorithm needs to address the entire sys-
tem, including the disturbances due to transfer paths between fault and measurement position
to capture the holistic system states.
Within this thesis, hybrid modeling approaches are pursued to solve the discussed issues of
a MEMS-based sensor system. Drawbacks of single approaches either based on operational
data or numerical simulations are handled by such hybrid techniques2.
The presented methodology for model description contains a minimum amount of DoF to be
compatible with constrained devices based on MEMS accelerometers. Finally, the presented
method must be retrofittable since monitoring solutions are sometimes needed at already
widely deployed systems.
When looking at all domain representations (see Sec. 2.1), a bundle of techniques for setting
up models is already established. With respect to numerical modeling, the type, location and
connection of finite elements must be well considered in order to find a minimum DoF set. In
1Note, this is not the typical industrial use-case, since 3D-models including all material properties are not
always provided by the subcontractors.

2Note, an exclusively experimental testing strategy can also fail when not all substructures of the component
are physically available.
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the field of experimental testing, the interface dynamics are difficult to capture. We deal with
these dynamics by mixing hybrid models based on the Lagrange Multiplier frequency-based
substructuring (LM-FBS) technique with the modal expansion framework System Equivalent
Model Mixing (SEMM). The operational conditions are captured by a modal expansion tech-
nique. The signal-based part for feeding the models focuses on the MEMS restrictions and
researches for the best suitable fault identification method. Finally, the entire diagnosis is
realized based on a single, triaxial accelerometer at the housing.
Therefore, the objective of this thesis is formulated as:

Method development for a holistic, hybrid adaptive modeling strategy which allows quan-
titative fault diagnosis of rotating machinery by industrial, constrained sensor systems.

1.3 Scientific Contribution

In this thesis, novel methods within the scope of hybrid dynamic models for vibration
monitoring are contributed by the author:

• A modeling approach for rotor types widely used in industrial pump and blower applica-
tions is developed. The basic idea, which is also published in [72], focuses on a minimum
degrees of freedom set and can therefore be seen as a model reduction technique.

• The effect of orthotropic elastic rotor support on unbalance monitoring is initially
described in publication [73].

• A SEMM-based modal expansion strategy is created for the implementation of interface
dynamics between rotor and housing of rotating machinery. The results are published in
[74]. Here, a simple numerical housing approach is utilized in combination with the rotor
model of [72]. The implementation of rotor support dynamics is further increased by
coupling an experimental housing model with the upper mentioned rotor (see Sec. 5.2.1
and 5.2.2)

• Operational conditions are introduced into hybrid dynamic models utilizing a novel,
iterative, SEMM-based modal expansion scheme (see Chap. 6).

• All proposed methods are successfully validated with application to an industrial use-case
based on a Micro-Electro-Mechanical sensor system (MEMS) in Chap. 7.

1.4 Structure of the Thesis

At the beginning of this thesis, vibration monitoring strategies were presented. These were
classified into signal-based methods and model-based approaches. In the context of signal-based
fault diagnosis, we distinguish between amplitude-modulated signals and their frequency-
modulated counterparts. The model-based component builds on the theory of structural
dynamics which can be formulated in different domain representations. They are described in
Chap. 2, in the beginning of Part I. Here, the main theory of this thesis is outlined within the
Lagrange Multiplier frequency-based substructuring method in combination with the virtual
point transformation (VPT) and the SEMM-based modal expansion.
Afterwards, we come back to the signal-based monitoring methods and their classification
into frequency modulation (unbalance identification in Sec. 3.3) and amplitude modulation
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(roller bearing fault identification in Sec. 3.4).
In Chap. 4, two test rigs of industrial applications are characterized for subsequent method
development - namely a blower for locomotive motor cooling and a centrifugal pump which is
responsible for circulating the oil within the cooling circuit of a traction transformer.
Subsequently, Part II describes the entire modeling strategy. All models have been calculated
using MATLAB®3. Part II starts with Chap. 5 which shows the overall modeling approach
with respect to a hybrid dynamic model, assembled by a numerical rotor and a machine housing
(numerically and experimentally modeled). This approach and its subsequent extension is solely
shown on the blower test rig. The combination of the numerical rotor and the experimental
housing is further pursued by modal expansion in Sec. 5.2.2. This expanded, hybrid model is
then adapted in Chap. 6. Here, structural dynamic changes due to operational conditions
are implemented for the entire rotational speed range. The model is validated based on two
exemplary unbalances in Sec 6.1.1. Here, unphysical spikes occur which are filtered out based
on an iterative, adaptive cubic spline fit within the force spectrum in Sec 6.1.2. A similar
technique is subsequently applied on a scenario with changed boundary conditions.
Chap. 7 introduces the industrial sensor system applications of the final Part III. An exemplary
sensor system is presented and evaluated. Here, we characterize a MEMS accelerometer
concerning amplitude response linearity and temperature sensitivity. The same sensor is then
applied to a virtual sensing approach at the pump test rig concerning roller bearing fault
quantification. Furthermore, it is also applied to the hybrid dynamic model which is the
outcome of Chap. 6. This exemplary case study is outlined in Sec. 7.3.
The entire thesis can also be classified into methods and applications. This structure is
graphically shown in Fig. 1.1.
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Methods Applications

Frequency-Modulated
Signal Analysis

Forward- and backward
FIR-filtering (Sec. 3.3)

Rotor Unbalance Estimation
Blower case study concerning

• Operational mode shapes evalua-
tion (Sec. 4.1.1)

• Hybrid adaptive model validation
(Sec. 6.1.1)

Sensor Calibration
MEMS accelerometer transmissi-
bility characterization (Sec. 7.1)
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Amplitude-Modulated
Signal Analysis

• Kurtogram-based FIR filtering

• Envelope Analysis using Hilbert
Spectrum and Empirical Mode
Decomposition

• Multipoint Optimal Minimum En-
tropy Deconvolution Analysis

Roller Bearing Fault Identification
Pump case study concern-
ing MEMS accelerometer

based fault diagnosis (Sec. 3.4)

Rotor & Housing
Blower case study concerning ro-

tor beam modeling with analogous
stiffness estimation (Sec. 5.1) and
housing minimal model (Sec. 5.2.1)

Numerical Modelling

• Timoshenko beam modelling

• Plate analogous stiffness mod-
elling
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Hybrid Modeling
LM-FBS coupling at bearing VP DoF

Rotor & Housing Coupling
Blower case study concerning

• Numerical rotor & numerical
housing model at bearing VP’s
(Sec. 5.2.1)

• Numerical rotor & experimental
housing model at bearing VP’s
(Sec. 5.2.1)

Modal Expansion

• SEMM for updating of the numer-
ical and hybrid model

• Iterative SEMM updating for
adaption to varying operating-
and boundary conditions

Entire System Adaption
Blower case study concerning

• Updating of the numerical and
hybrid model regarding an experi-
mental model (Sec. 5.2.2)

• Hybrid modal expansion to oper-
ating conditions (Sec. 6.1)

• Hybrid modal expansion to
periphery-specific boundary
conditions (Sec. 6.2)

Virtual Force Estimation

• FRF-based force estimation with
iterative shaping

• FRF & transmissibility-based
force estimationFa
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Fault Force Estimation

• MEMS-based pump roller bearing
fault quantification (Sec. 7.2)

• Blower unbalance force estima-
tion (Sec. 6.1.1) and adaption to a
MEMS sensor system (Sec. 7.3

Figure 1.1: Flow chart with methods and applications to a blower- and a pump test rig.
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Chapter 2

Structural Dynamics for Monitoring Appli-
cations

In the era of ephemeral words for digitalization scopes such as the Internet of Things (IoT),
the Digital Twin or the Industrial Metaverse, we must not forget that we talk about physical
relationships, when bringing sensor data into cloud solutions. These laws are old. Many inno-
vations in the field of structural dynamics build on Isaac Newton’s Principia Mathematica
[91]. Even vibration-based monitoring solutions can not exist without Newton’s laws, when
they are based on physical relations. His fundamental theory of mechanics builds on three
laws: The Law of Inertia, The Law of Acceleration and The Law of Action and Reaction.
Within structural dynamics for monitoring applications, the second law has high impact. It is
translated from the Latin language as follows:

“A change in motion is proportional to the motive force impressed and takes place along
the straight line in which that force is impressed.” [30, 100]

Within this thesis, solutions are developed which should best describe relations between
an interaction of forces and the change of motion of the entire system as a result of these
forces. The focus lies on rotating machinery with forces acting on the rotor system. The
dynamic state and therefore relationships between these forces and their responses can be
formulated in different domains.

2.1 Representation Domains for Hybrid Dynamic Models

A major decision within hybrid modeling is the choice of representation domain. Essentially,
the physical domain can be divided into five different representations which are most relevant
in structural dynamics. Generally, we can transform them into each other. The chosen
classification into five representations is based on [139]. Here, they are categorized into the
physical domain, modal domain, state-space domain, time domain and frequency domain.
These representations can be alternatively classified according to [5]. Here, they are divided
into a spatial description which implies the physical and modal domain, a spectral description
which contains the time domain and the frequency domain and the state description which
comprises the state-space domain and the Laplace domain. Our chosen classification does not
contain the Laplace representation, but this representation is not utilized within this thesis
anyway. Starting from Newton’s second law, we define the continuous mechanical equation of
motion as physical domain. All five chosen representations are discretized approximations of
the physical domain. Hence, we specify them as physical domain, modal domain, state-space
domain, time domain and frequency domain. An overview over the chosen classification is
given in Fig. 2.1.
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Figure 2.1: Visualization of five representations of structural dynamic models inspired by [139]. Some
transformation possibilities are delineated to show the versatility between these domains. Dynamic
models can be created in a numerical or experimental manner. These typical starting points are
depicted in the top left and bottom right corners of the figure.

2.1.1 Physical Domain

The physical domain describes the continuous equilibrium between the system’s internal forces
based on inertia, velocity-proportional damping and elasticity in this thesis. The discretized
physical domain can also be called physical since the relation between these internal forces is
directly readable from the system matrices with displacements u(t) or their time derivatives
and an external load f(t) on the equation’s right hand side. Usually, this discretization is
based on a numerical simulation using finite elements (FE). Based on the formulation of
Newton’s second law, the discretized balance of forces is written as:

Mü(t) +Cu̇(t) +Ku(t) = f(t); u ∈ Rn. (2.1)
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Here, the mass matrix M , the damping matrix C and the stiffness matrix K are defined for
a linearized system. When discretized, the forces are vectors that are non-linear functions of
ü(t), u̇(t) and u and can no longer be expressed using constant matrices. As the presented
techniques are further based on measurements which require a time-invariant system, nonlinear
behavior is not considered within this thesis. In order to be comprehensive, G should be
added to the velocity-proportional term as further system matrix. Note, G depends on the
rotational speed and therefore applies only to the rotating component1. We define a dimension
of n degrees of freedom for the displacements u(t) and external loads f(t). In principle, a
node of a finite element is usually associated to a maximum of six DoF. In this case, u(t)
would imply three displacements which are associated with the forces and three rotations
correlated with three external moments on the right hand side of Eq. (2.1). When observing
a complex system by FE analysis, we usually need a fine mesh with a huge amount of DoF.
This leads to big computational effort and can be reduced by modal reduction techniques.
Although this is not part of this thesis, it is briefly described in the next section for the sake
of completeness.

2.1.2 Modal Domain Representation

When looking at modal shapes, mainly global behavior is observed. These mode shapes often
rather represent dynamic properties in the lower frequency range. As the same amount of
modes in the physical domain representation can be calculated as there are DoF utilizing
the finite element method (FEM), the local resonances at higher frequencies are often not of
interest. Hence, the modal domain representation is suitable to reduce the model size. For
more information and an overview over model reduction techniques, also in the modal domain
representation, please find [17].
Generally, there are n eigenmodes ϕ (natural vibration modes) in a system of n DoF com-
putable. When damping is neglected, the inertia forces are balanced with the elastic forces
and can be written as an eigenvalue problem referring to [49]:(

K − ω2
kM

)
ϕk = 0; k = 1, ..., n. (2.2)

with the eigenfrequencies ωk of the mode shape k. The eigenmodes ϕ are written in columns
of the mode shape matrix Φ:

Φ = [ϕ1,ϕ2, ...,ϕn] . (2.3)

The modes can be scaled to be mass-normalized, M - and K-orthogonal and sorted by
increasing eigenfrequency ωk so that

ΦTMΦ = I and ΦTKΦ = diag
(
ω2
1, ..., ω

2
n

)
. (2.4)

A set of modal coordinates, η(t) now replaces the displacements u. They represent either the
amplitude of the full space of modes n or a subspace of the first modes k = 1, ...,m in case of
model reduction intentions. This kind of model reduction is called modal truncation. The
underlying reduction matrix is defined as

𝓡 = [ϕ1, ...,ϕm] . (2.5)

1Essentially, the gyroscopic effect is large at high rotational speeds and specific rotor geometries and will be
neglected here. For more information about these rotordynamics, please find [48].
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Therefore, the response u can be assembled back, using the principle of mode superposition
as

u(t) =
n∑
k=1

ϕkηk = Φη(t) (2.6)

or approximated by m out of n modes in case of the truncated model:

u(t) ≈
m∑
k=1

ϕkηk = 𝓡η(t); η ∈𝓡m. (2.7)

Now, an equivalent representation to the discretized physical domain representation via the
force equilibrium is built:

M𝓡η̈ +C𝓡η̇ +K𝓡η = f(t) + r(t). (2.8)

Since there are now less unknowns to represent the DoF than there are equilibrium equations
to solve, there is in general always a residual force (captured by r(t)), whatever the solution
for η. A „best choice“ for η is then for instance to ensure that the residual force is zero in
the representation subspace, i.e. that it does not produce any work in that space: 𝓡Tr = 0.
That can be seen as applying the principle of virtual work in case the solution is constraint to
satisfy Eq. (2.7) and is often referred to as the Rayleigh-Ritz method [49]. Therefore, Eq. (2.8)
is pre-multiplied with 𝓡T resulting 𝓡Tr = 0:

Mmη̈ +Cmη̇ +Kmη = fm(t). (2.9)

For further details, please find [5, 139]. Generally, the modal domain representation is not
utilized for the presented methods in this thesis. In order to build up an experimental model
in the modal domain representation, a huge bundle of sensors is needed for proper mode shape
representation of complex structures. The modal domain representation seems not to be a
suitable solution as we choose an approach based on substructures and a small amount of
measurement DoF.

2.1.3 State-Space Domain Representation

The state-space formulation is usually widely used in control and in signal processing applica-
tions. After successful application of the state-space approach in structural dynamic system
identification and substructuring by Su and Juan [126], further research with respect to ex-
perimental substructuring techniques was expedited by Sjövall and Abrahamsson [118–120].
They showed several advantages of this formulation, especially concerning robustness and
convergence properties [121] with respect to model identification. Furthermore, the state-
space domain representation is suitable to represent structural dynamic models in cases of
strong damping (see Sec. 3.3 in [49] for details). An overview over possible substructuring
applications in the state-space domain representation is given by Gibanca in [50].
A basic property of the state-space domain representation is the first-order form. The sec-
ond order ordinary differential equation of Eq. (2.1) is transformed to the first order 
equation of motion. Therefore, the state vector 𝔁 is introduced:

𝔁(t) =̂

[
u(t)
u̇(t)

]
(2.10)
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which contains the displacements and its first time derivative. The external loads are written
as input vector

𝓿(t) =̂ f(t). (2.11)

The state transition matrix A and the state influence matrix  contain the mass, stiffness
and damping matrices in the following notation:

A =̂

[
0 I

−M−1K −M−1C

]
;  =̂

[
0

−M−1 f

]
. (2.12)

The output gain matrix  and the direct link matrix  supplement the first order representation
utilizing the n× n Boolean matrices  f ,  d and  v which are responsible for selection of a
subset of input force or output displacements and their first time derivative. Note that they
do not necessarily have to be Boolean. For a second order dynamic system as the mechanical
equation of motion,  is zero. Hence,  and  are defined as

 =̂

[
 d 0
0  v

]
;  =̂

[
0
0

]
. (2.13)

Now, the equation of motion is split into a form describing the internal dynamics �̇�(t):

�̇�(t) = A𝔁(t) +𝓿(t) (2.14)

and the output 𝔂(t):

𝔂(t) = 𝔁(t) +𝓿(t) (2.15)

which also contains all displacements and their first time derivative at certain DoF. These
DoF are selected by  f ,  d and  v. In case they are n× n identity matrices, all loads f are
chosen for the input vector 𝓿. In this case, all displacements u and velocities u̇ are considered
by the output vector 𝔂 as well. The relations are:

f(t) =̂  f𝓿(t); u(t) =̂
[
 d 0

]
𝔂(t); u̇(t) =̂

[
0  v

]
𝔂(t). (2.16)

Note, the system’s dimension is now 2n× 2n. Although, the equation of motion has changed
to first order now. In Fig. 2.2, an exemplary state-space loop of a coupled rotor system is
depicted. Here, the exciting loads during operation at the rotor (blue) are described by 𝓿in.
For example, the output variables 𝔂out can be used to determine the input variables 𝓿in with
a monitoring system on the housing. Therefore, these operational forces can be found based
on the sensor values and the state-space matrices A,  and .

+ uu̇
+



𝓿in
𝔂out

Figure 2.2: State-space loop of an exemplary rotor system with input load vector 𝓿in at the rotor.
The output displacements and velocities at the housing are represented by 𝔂out.
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2.1.4 Time Domain Representation

The time domain representation suits for a bundle of modeling problems. Even for monitoring
applications and for structures with high damping, the representation can be utilized. In
particular, nonlinear systems or components excited by impact-like forces can be reasonably
described in the time domain representation.
However, we can determine a time domain representation model with more or less compu-
tationally efficient methods. Starting from a numerical model - for example in the physical
domain representation, the time representation can be reached by a Newmark time-stepping
scheme. This technique, as well as a launch from the modal domain representation using a
bundle of modes to capture high-frequency content, would be inefficient examples.
On the other hand, impulse response functions (IRFs) are well suited for constrained devices.
A quick solution for operating in the time representation would be the inverse Fourier trans-
form of frequency response functions Y (ω). We will have a closer look at these functions
in Sec. 2.1.5. However, applying the inverse Fourier transform, we get the linear harmonic
response of motion in the time domain representation based on the Duhamel convolution
integral:

u(t) = Y (t) · f(t) =
∫ t

τ=0
Y (τ) · f(t − τ )dτ. (2.17)

Here, the IRF matrix Y (t) describes the relation between input force impulses f(t = 0) and
output displacements u(t) in a time sequence τ .
For further details and typical applications, please find [110–112, 136]. Impulse response
determination by impact measurements were considered in [78, 138]. Actually, the time
domain representation formulation is only indirectly utilized within this thesis. We focus
on the frequency domain representation and use the inverse Fourier transform to estimate
operational forces in the time domain representation based on coupled frequency response
functions and operational displacements.

2.1.5 Frequency Domain Representation

The equation of motion Eq. (2.1) in the physical domain representation can be transformed
into the frequency domain representation by Fourier transformation of the displacements
u(t) and its time-derivatives u̇(t) and ü(t). Therefore, these vectors are a function of the
excitation circular frequency ω using

u(t) =

∫ ∞

−∞
u(ω)e−jωtdω. (2.18)

When applying the relations u̇(ω) = jωu(ω) and ü(ω) = −ω2u(ω), the linear harmonic
response of motion gets the form:[

−ω2M + jωC +K
]
u(ω) = f(ω). (2.19)

The content of the left-hand side angular brackets is summarized by the dynamic stiffness
matrix Z(ω):

Z(ω)u(ω) = f(ω). (2.20)

When taking the inverse of the dynamic stiffness matrix, we get the admittance matrix Y (ω)
as

Y (ω) = (Z(ω))−1 ; Y ,Z ∈ Cn×n; (2.21)
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which describes the transfer function in the frequency domain representation. The admittance
matrix contains n DoF complex-valued frequency response functions (FRFs) of the dynamic
system in the form of

Yij(ω) =
ui(ω)

fj(ω)
. (2.22)

Here, i and j feature the DoF of responses u to excitations f . The name admittance generally
stands for the displacements u or their time derivatives u̇ and ü in response to the excitation
load f . In case of displacements, it is called receptance and in the cases of velocities or
accelerations, it is designated as mobility or accelerance.
Now, a bridge to experimental testing is built. Usually, the elements of Y (ω) are determined
by FRF measurements. Therefore, the accelerance description is valued as commonest
representation of the admittance due to popular response measurements by accelerometers.
When coupling these experimental accelerations with FE models, they usually have to be
converted into receptances due to the displacement-dependent dynamic stiffness Z(ω). As we
will primarily operate in the frequency domain representation within this thesis, henceforth
the circular frequency ω is omitted at the admittance notation for clarity reasons.

2.1.6 Summary

The five presented domain representations of structural dynamic system representation serve
as a framework for hybrid modeling techniques. All variants describe the relation between
an input load and the structure’s response based on their mechanical properties inside the
system matrices, their internal displacements and their time-derivatives. These relations are
most visible in the physical domain representation. Hence, this description is favorable within
FE-modeling techniques. Of course, the representation of a dynamic system can be written in
the time domain representation, but also in the frequency domain representation by Fourier
transformation of the time representation. Restructuring of the system matrices for the state-
space domain representation is advantageous for model-based monitoring as we see directly
the correlation between inputs and outputs. This confirms the state-space as a common
representation for control systems. Furthermore, the system can be written as a superposition
of mode shapes in the modal domain representation which is preferable within some model
reduction techniques, but not for the presented monitoring methods. Due to best suitability
with experimental determined transfer functions, the frequency domain representation will
be the method of choice for the presented techniques within this thesis. All subsequently
explained methods are written in the frequency domain representation.

2.2 Lagrange Multiplier Frequency-Based Substructuring

The frequency domain representation was introduced as preferred representation for dynamic
modeling within vibration monitoring (Sec. 2.1.5). In this section, a classical, frequency-
based approach for system assembling based on substructures is shown. The substructuring
technique is helpful especially in the context of hybrid models since numerical and experimental
models can thus be combined. Most content is based on [139], unless otherwise noted. The
classical frequency-based substructuring theory was initially established by Jetmundsen et
al. in [63]. De Klerk et al. reformulated the method with respect to the interface forces
between substructures in [36]. These interface forces were defined as Lagrange Multipliers. A
general overview over the dynamic substructuring methods in terms of Lagrange Multiplier
frequency-based substructuring (LM-FBS) is given in [35].
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2.2.1 Substructure Coupling

The coupling and decoupling procedure will be presented on an example based on two
substructures A and B. Therefore, ω is omitted from the notation since all matrices depend
on frequency. Based on Eq. (2.22), we write for the displacement responses:

u = Y (f + g) . (2.23)

Compared with Eq. (2.22), there is an additional load vector g, which describes the contact
forces and moments between A and B. uA2 and uB2 collect all interface DoF, whereby uA1
and uB3 belong to DoF of the structures where the response is known before or should be
calculated after coupling. The vectors within Eq. (2.23) for n DoF are defined as follows:

u =


uA1

uA2

uB2

uB3

 , f =


fA1

fA2

fB2

fB3

 , g =


0

gA2

gB2

0

 , with u,f , g ∈ Rn. (2.24)

The exemplary coupling scheme is depicted in Fig. 2.3. In this figure, the rotor A is coupled

Y A
21

gA2
fA2 ,u

A
2 gB2

fB2 ,u
B
2

Y B
32

fB3 ,u
B
3

Y AB
31

fAB3 ,uAB3

fA1 ,u
A
1

λ

fAB1 ,uAB1

A

B

AB

fAB2 ,uAB2

Figure 2.3: Exemplary coupling scheme of two substructures. The rotor (substructure A) is coupled
with a sliced motor housing (substructure B) at the lower bearing seat (f2, u2).

with a sliced motor B at the bearing seat. Hereby, the rotor is excited by a force fA1 at the
impeller. This force results in a displacement uA1 at the same DoF. At this location and
direction, there is the so-called driving-point FRF Y A

11. The rotor transmits the excitation via
its transfer function Y A

21 to the interface DoF at the bearing seat. Here, the load results in a
displacement uA2 . Normally, we would get a displacement gap δ between uA2 and uB2 now. In
order to prohibit that gap, the compatibility condition is introduced. This term ensures uA2
and uB2 to be equal:

δ = uB2 − uA2 = 0, δ =̂ Bcu = 0, with Bc =
[
0 −I I 0

]
. (2.25)

To close the gap, the force λ is introduced. System B is represented by a motor housing in our
example. It is sliced for better visibility of the coupling point. At the interface of substructure
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B, the load gB2 reacts to gA2 . In order to reach force equilibrium, the equilibrium condition
must be fulfilled:

gA2 = −gB2 = λ, g =̂ −BT
e λ = 0, with Be =

[
0 −I I 0

]
. (2.26)

Bc and Be are signed Boolean matrices, which allow the selection of interface DoF. In our
example, Bc and Be are equal, but they can differ from each other especially when it comes
to real measurements, where the amount of excitations differs from the measured acceleration
response DoF. When enforcing both conditions within the coupling procedure, the dual
formulation is performed. The dual assembly is preferred within experimental testing [36].
In this case, the Boolean matrices have one row per interface compatibility condition for
Bc and one column per interface equilibrium condition for Be. In Eq. (2.26), the Lagrange
Multiplier λ is introduced. The Lagrange Multiplier represents a virtual force or moment and
is responsible for the cohesion of the substructures as already shown in Fig. 2.3 (gray double
arrow).
Now, the example is further discussed. Due to the excitation at the interface, we get Y B

32 as
FRF between the input DoF two and the output DoF three. Here, reaction uB3 is observable.
After coupling, the system AB shows new dynamics as marked on the right side of Fig. 2.3.
When coupling or decoupling substructures, they must be excited at all interface DoF. All
responses have to be measured at all interface DoF as well. Thus, Y is occupied in block-matrix
form. In the presented example, it is assembled as follows:

Y =


Y A

11 Y A
12 0 0

Y A
21 Y A

22 0 0

0 0 Y B
22 Y B

23

0 0 Y B
32 Y B

33

 . (2.27)

The uncoupled linear harmonic response of motion is thus expressed as:

u = Y (f + g) →


uA1

uA2

uB2

uB3

 =


Y A

11 Y A
12 0 0

Y A
21 Y A

22 0 0

0 0 Y B
22 Y B

23

0 0 Y B
32 Y B

33






fA1

fA2

fB2

fB3

+


0

gA2

gB2

0



 . (2.28)

To replace the interface load g in Eq. (2.28), we write for the linear harmonic response of
motion using the equilibrium condition:

u = Y
(
f −BT

e λ
)

with g = −BT
e λ =


0
λ
−λ
0

 . (2.29)

Take the linear harmonic response of motion with satisfied force equilibrium from Eq. (2.29),
and insert it into the compatibility condition as follows:

BcY
(
f −BT

e λ
)
= 0 with Bcu = 0 and u = Y

(
f −BT

e λ
)
. (2.30)

Hence, we solve for the Lagrange Multiplier:

λ =
(
BcY BT

e

)−1
BcY f . (2.31)
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Now, we go back to the dynamic equation Eq. (2.29) and insert the Lagrange Multiplier λ.
Thus, the general formulation of the coupled system response is written as:

u = Y f︸︷︷︸
uuncoupled

−Y BT
e

(
BcY BT

e

)−1
BcY f︸ ︷︷ ︸

uinterface gap︸ ︷︷ ︸
ucoupling

. (2.32)

It essentially consists of a difference between the uncoupled responses and the new coupling
term. The interface force λ closes the interface gap, which is produced by the uncoupled
responses. The dual assembled FRF matrix is therefore defined as:

Y AB = Y − Y BT
e

(
BcY BT

e

)−1︸ ︷︷ ︸
interface stiffness

BcY .

︸ ︷︷ ︸
λ

(2.33)

In the coupled admittance formulation, the interface stiffness

Z int = (BcY BT
e )

−1, (2.34)

can be extracted which must be invertible. Hence, proper conditioning of Z int is mandatory.
This can lead to problems in case of experimental testing. Bc and Be help to choose the best
combination of measured DoF to enhance the conditioning of the interface stiffness. A lot of
research is being done in this field [132, 141].
The LM-FBS algorithm in Eq. (2.33) serves as a framework for coupling any number of
substructures with almost arbitrary DoF. Though, note that after the coupling procedure,
all rows and columns according to the interface DoF have the same entries. (uA2 = uB2 and
fA2 = fB2 referring to the presented example). These sub-matrices can be removed in order to
reduce the system dimension since they do not contain extra information.

2.2.2 Substructure Decoupling

In some scenarios, only information about the entire system is available and one component
should be changed. In this case, a decoupling technique is helpful. Imagine that the motor
housing of the presented example in Fig. 2.3 gets a new design from different material and
measurements only can be performed at the old, built-in machine. For the old and the new
housing, simulation data is available including the entire FRF matrices. Thus, we aim to
decouple the old substructure B from AB like AB - B = A before coupling the new system B
with A again. A related example was investigated in [15].
The basic procedure is delineated, focusing on the dual formulation as within the coupling tech-
nique. Generally, the method strongly resembles, but the compatibility condition (Eq. (2.25))
is formulated reversely. The initial equations of motion are written as

uAB = Y AB
(
fAB + gAB

)
(2.35)

and

uB = −Y BgB (2.36)
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with the negatively set contact force gB in the system response linear harmonic response of
system B. Similar to Eq. (2.28), the equation is formulated as:

uAB1

uAB2

uAB3

uB2

uB3


=



Y AB
11 Y AB

12 Y AB
13 0 0

Y AB
21 Y AB

22 Y AB
23 0 0

Y AB
31 Y AB

32 Y AB
33 0 0

0 0 0 −Y B
22 −Y B

23

0 0 0 −Y B
32 −Y B

33







fAB1

fAB2

0

0

0


+



0

gAB2

0

gB2

0




. (2.37)

The negative contact force gB is considered by the negative admittances in Eq. (2.37) due to
the removal of B. Now, a similar starting situation as within the coupling procedure before
performing the LM-FBS algorithm is observed. This algorithm is essentially the same except
of Y and the Boolean matrices for compatibility and equilibrium. These are defined as:

Bc =
[
0 −I 0 I 0

]
and Be =

[
0 −I 0 I 0

]
. (2.38)

Note, the system dimension further increases compared with the coupling procedure since
the entire system and substructure B are written in block-matrix form. Here, all DoF of B
also appear in AB and are therefore doubled. Thus, the substructure A can be identified by
extracting B using the same LM-FBS algorithm as in Eq. (2.33):

Y A = Y − Y BT
e

(
BcY BT

e

)−1
BcY . (2.39)

The basic difference can be read from:

Y =

[
Y A 0

0 Y B

]
coupling A and B: A + B = AB (2.40)

and

Y =

[
Y AB 0

0 −Y B

]
decoupling B from AB: A = AB− B. (2.41)

For practical recommendations in experimental frequency-based substructuring, please find
[133]. Further details concerning the decoupling procedure are described in [34, 142]. A deeper
insight into the conditioning problem at the interfaces is given in [115, 134]. In some cases, the
decoupling can be enhanced by extending the interface for the compatibility and equilibrium
conditions at so-called internal DoF, which are not part of the interfaces. This technique will
play a more important role at the different SEMM methods in Sec 5.2 and Chap 6 of this
thesis.

2.3 Virtual Point Transformation

Frequency-based substructuring within experimental testing applications requires proper FRF
measurements at the interface DoF. These FRFs are usually based on impact force excitations
and acceleration measurements by piezoelectric sensors. There is ongoing research utilizing
rotation sensors in order to characterize the interfaces [22, 23]. State-of-the-art interface
rotation and displacement modeling is established by a filtered coordinate transformation.
This convention is called virtual point transformation (VPT) due to the fact that these points
are mostly not accessible by sensors and therefore designated as virtual. The VPT reduces an
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overdetermined set of excitations and responses around the interfaces to six DoF, which fully
describe the coupling point by three displacements uX ,uY ,uZ , three rotations qψX

, qψY
, qψZ

and the correlating excitations. This technique assumes maximum stiffness in the area of
sensor and actuator sets so that the dynamic of the structure(s) can be referred to as rigid
body motion. The following passage describes the VPT methodology based on [139] and [89].
A basic requirement for the selection of excitation and response DoF is the ability to represent
all six rigid body modes. Therefore, the excitation and measurement points should be well
distributed over the structure. A well imaginable reason for this specification is the demand
for controllability and observability of the underlying dynamic system. Of course, this would
work best, if the system were a rigid body. We will come back to that issue later. In general,
maximum information can be reached by well distributed actuator and sensor DoF. Start
from the linear harmonic response of motion

u = Y (f + g) with u ∈ Rn (2.42)

regarding only non-collocated DoF n. As introduced in the presented example of Sec. 2.2, two
systems A and B (see Fig. 2.3) are coupled. Now, the focus lies on the interface admittances
Y A

22 and Y B
22. Previously, these interface DoF were assumed to be well-accessible for excitation

and measurement. Imagine a rotating machine where the coupling point is a non-accessible
bearing. These six interface DoF inside this bearing should be found in order to couple A
and B properly. These interface dynamics are found by a set of non-collocated inputs and
outputs. The therefore measured accelerations are characterized by the displacements uk and
the applied excitation forces by fh. An exemplary scenario is depicted in Fig. 2.4. Here, a
VPT is performed at the lower bearing seat of a rotor to find three displacements qvX , q

v
Y , q

v
Z

and three rotations qvψX
, qvψY

, qvψZ
and the related loads m at the virtual point v (orange).

2.3.1 Displacement Transformation

The virtual point displacements q are written in the columns of a n×m Interface Displacement
Mode (IDM) matrix. The IDM matrix complies with a frequency-independent mode shape
matrix (see brace in Eq. (2.44)). By means of the IDM matrix, the virtual displacements
q ∈ m can be found by a reduction of the set of n > m non-collocated outputs. The correlation
between these matrices is defined as

u = Ruq + µ. (2.43)

Here, the overdetermined system of measured outputs u is reduced to the virtual point
displacements and rotations q by the IDM matrix Ru. Note that only rigid body modes are
considered as IDMs in this case, but also more advanced IDMs could be used to determine
the system. Due to the reduction process, a residual µ appears. Eq. (2.43) is written for a
triaxial accelerometer2:


ukx

uky

ukz

 =


ekx,X ekx,Y ekx,Z

eky,X eky,Y eky,Z

ekz,X ekz,Y ekz,Z


1 0 0 0 rkZ −rkY
0 1 0 −rkZ 0 rkX

0 0 1 rkY −rkX 0


︸ ︷︷ ︸

Rkv
u =Ekrk



qvX

qvY

qvZ

qvψX

qvψY

qvψZ


+


µkx

µky

µkz

 . (2.44)

2Even when writing about accelerometers, we always regard the displacements u after twofold integration of
the acceleration.
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ekx

ekz

eky

rk

rh

qvXqvY

qvZ

ukx

uky
ukz

fh eh
qvψXqvψY

qvψZ

Figure 2.4: Visualization of the virtual point spatial transformation at the lower bearing seat of a
rotor. The virtual point (orange) is characterized by three displacements qvX , q

v
Y , q

v
Z , three rotations

qvψX
, qvψY

, qvψZ
and the related loads m (not delineated). An exemplary acceleration sensor k (blue,

k ≥ 3) is shown to visualize the measured displacements ukx,u
k
x,u

k
x in appropriated directions e. This

sensor is placed at a distance of rk from the virtual point. An exemplary impact force fh (green,
h ≥ 9) excites the structure at the lower bearing seat, rh.

Here, Rkv
u stands for the IDM matrix of a triaxial accelerometer k which contributes to the

virtual point v. All sensor axes orientations are caught by Ek = [ekxe
k
ye

k
z ]. Furthermore, the

relative position vector between all sensors and the VP are defined by rk.
According to an overdetermined system, at least three triaxial sensors are needed. Therefore,
the general definition of Ru by Rkv

u is written in block-matrix form as follows:

Ru =



R1,1

R2,1

R3,1

R4,2

R5,2

R6,2

. . .
RNk,Nv


. (2.45)

We go back to Eq. (2.43). Essentially, the virtual point displacements and rotations q are of
interest. The equation is pre-multiplied with RT

u , enforcing RT
uµ = 0:

RT
uu = RT

uRuq +RT
uµ (2.46)

Solving for q, we get

q = (RT
uRu)

−1RT
u︸ ︷︷ ︸

R+
u=Tu

u = T uu. (2.47)
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R+
u is the Moore-Penrose pseudo-inverse of Ru. This matrix multiplication is tantamount

to filtering on the virtual point displacements. It is equivalent to a transformation matrix
Tu. By this filtering process, the residual µ is eliminated. For a detailed view on the filtering
effect, q is inserted into Eq. (2.43) [133]. Thus, the filtered displacements is written as:

ũ = Ru (R
T
uRu)

−1RT
u︸ ︷︷ ︸

R+
u=Tu

u = RuT uu. (2.48)

The filtering process can also be considered as least-squares minimization. Therefore, the
measured displacements are explicitly computable from q, assuming an ideally stiff structure.
For practical considerations and more information - especially about the assembly of the
interface deformation modes, please find [51, 55].

2.3.2 Force Transformation

When deriving six virtual loads m at the virtual point, the forces and moments can not be
calculated in both ways as it was the case with the displacements. Only the determination of
m based on a set of loads f is possible. When the set of force excitation DoF is collocated
with the sensor DoF, we get an IDM matrix for f with structure similar to the displacements.
Hence, the correlation between all excitations and the virtual loads does not contain a residuum
anymore. We can imagine, that different combinations of forces can generate the same virtual
moment. Though, all virtual loads m can be determined explicitly by excitations f . The
following relationship applies:

m = RT
f f . (2.49)

The IDM matrix Rhv of an excitation h for a virtual point v can be assembled by the product
of the distance rh and the orientation eh. Note, rh describes the distance between a single
load and the virtual point and eh stands for the excitation orientation of f . Hence, the virtual
point loads are written as:



mv
X

mv
Y

mv
Z

mv
ψX

mv
ψY

mv
ψZ


=



1 0 0

0 1 0

0 0 1

0 −rhZ rhY

rhZ 0 −rhX
−rhY rhX 0



e
h
X
T

ehY
T

ehZ
T



︸ ︷︷ ︸
Rhv

f =rheh

fh. (2.50)

Generally, an overdetermined system is favorable - also for the virtual loads determination.
Here, we define p > m excitation DoF. Usually, at least nine DoF p are a good choice.
The sub-matrices Rhv are written in block diagonal form in order to assemble Rf for the
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transformation. Therefore, Rf is replaced in Eq. (2.49):

m = RT
f f with Rf =



R1,1

...
R9,1

R10,2

...
R18,2

. . .
RNh,Nv


. (2.51)

Since more than six applied excitations are usually chosen, Eq. (2.49) gets underdetermined.
In this case, the Moore-Penrose pseudo-inverse R+

f helps to filter the excitations [55, 137].
This matrix is equal to the transformation matrix T f which converts these measured forces
to the virtual point loads. Thus, we write for the filtered forces:

f̃ = Rf (R
T
fRf )

−1︸ ︷︷ ︸
R+

f =TT
f

m = Tf
Tm. (2.52)

Again, Eq. (2.49) can be inserted into Eq. (2.52) when comparing the measured forces with
the filtered ones [133]:

f̃ = Rf (R
T
fRf )

−1︸ ︷︷ ︸
R+

f =TT
f

RT
f f = Tf

TRT
f f . (2.53)

2.3.3 Virtual Point Coupling

In experimental testing, the practical coupling is done with admittances, which are projected
to virtual points, as shown above. Therefore, Eq. (2.43) and Eq. (2.49) need to be inserted
into the LM-FBS coupling algorithm (Eq. (2.33)). Regard the displacements and loads
again separately within the compatibility and equilibrium condition (Eq. (2.25) and (2.26)).
According to the presented example considering two substructures, we have

Bq = BT uu = 0 with B =
[
−I I

]
(2.54)

for the compatibility condition and

u = Y (f + g) = Y (f + T T
fm) = Y (f − T T

fB
Tλ) (2.55)

for the equilibrium condition. According to [133], the relation between the interface forces g
and the virtual point loads m is written as

g = T T
fm →


0

gA2

gB2

0

 =


I 0 0 0

0
(
TA
f

)T
0 0

0 0
(
TB
f

)T
0

0 0 0 I




0

mA
2

mB
2

0

 . (2.56)
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The virtual displacements are defined as

q = T uu →


qA1

qA2

qB2

qB3

 =


I 0 0 0

0 TA
u 0 0

0 0 TB
u 0

0 0 0 I




uA1

uA2

uB2

uB3

 . (2.57)

Just as with the standard LM-FBS coupling, we can combine the compatibility condition with
the equilibrium condition as within Eq. (2.32) and get for the coupled response:

u = Y f − Y T T
fB

T (BT uY T T
fB

T )−1BT uY f (2.58)

This equation can be further explained similarly to the standard LM-FBS algorithm referring
to [139]:

u = Y f︸︷︷︸
uncoupled
response

−Y T T
fB

T︸ ︷︷ ︸
response to
VP force λ

(B

VP admittance
Y qm︷ ︸︸ ︷

T uY T T
f BT )−1︸ ︷︷ ︸

VP interface
admittance

BT uY f︸ ︷︷ ︸
qinterface gap

. (2.59)

Finally, the coupled admittances are obtained by

Y AB = Y − Y T T
fB

T (BT uY T T
fB

T )−1BT uY with u = Y ABf . (2.60)

According to [133], the virtual point admittance Y qm is found:

Y qm = T uY T T
f (2.61)

with the virtual point displacements

q = Y qmm− Y qmB
T
(
BY qmB

T
)−1

BY qmm. (2.62)

2.3.4 Virtual Point Quality Indicators

It is very important to check, how well the applied excitations and response measurements
describe the virtual point DoF. This can be evaluated by several quality indicators [133]:

• Passivity,

• Observability,

• Consistency,
→ Global (overall) consistency concerning all sensors / excitations,
→ Specific consistency observing the sensor / excitation DoF,

• Reciprocity.

These criteria are briefly discussed in the following paragraphs.
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Passivity

The passivity indicator observes the energy within the driving point system. It only regards
the diagonal terms and therefore the driving point FRF at the virtual point Y ii. When
the system acts passive, no energy is stored. Passivity can also be an indicator for stability.
Although passivity and stability are related, they are slightly different. Note that the system
can be non-passive, and still be stable if there is enough damping inside. The passivity
indicator is formulated observing the phase:

∠Y ii


∈ [−180, 0] in case of receptance FRFs
∈ [−90, 90] in case of mobility FRFs
∈ [0, 180] in case of accelerance FRFs

with Y ii ∈ Y qm (2.63)

Observability

Observability can be schematically imagined in the way that a certain virtual point movement
needs sensors at all anti-nodes of the surrounding body in order to be able to represent the
entire virtual point dynamics adequately. When evaluating the VPT observability before
performing measurements, the spatial transformation grade can be observed by the square
matrix S [94]:

S = (RTR) (2.64)

As this matrix must be inverted in Eq. (2.47) and Eq. (2.52), it must be well conditioned.
This condition number of S is defined as

κ(S) =
ςmax(S)

ςmin(S)
(2.65)

The higher κ the worse the conditioning. Here, ςmin(S) and ςmax(S) are the smallest and
largest singular values, respectively eigenvalues of S. In order to reach good conditioning, S
should be full rank and contain no linear dependence. Otherwise, κ becomes infinity and the
virtual point DoF can not be fully described by the chosen excitation and sensor positions. A
rough guideline for the condition number is κ < 105 [133]. Practically, we can imagine that
the sensor positions and directions must be well distributed around the virtual point.

Sensor Consistency

The sensor consistency was initially introduced as rigidity of the virtual point interface [37].
Some characteristics are shown here. For subsequent explanations based on [139] let us
introduce the filter matrix F :

F =̂ RuT u =̂ RuR
+
u filtering the displacements ũ = Fu. (2.66)

F filters a set of n measured DoF to a set of virtual point rigid body modes m. Note that this
is a rank reduction of the space of u: rank (n) > rank (m). When looking back to Eq. (2.48),
u1,2 can be observed based on a certain load case some distance away from the virtual point.
The exemplary load case would be an excitation f2 which induces a response u1,2 at the
virtual point 1. The load 2 can contain one or more excitations around the virtual point.
Transferred to this case, Eq. (2.66) means for the unfiltered sensor responses:

u1,f2
= Y 12f2. (2.67)
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and for the filtered responses:

ũ1,f2
= F 11Y 12f2. (2.68)

utilizing the filter function at the virtual point 1, reducing the space of u (n measured
displacements) to m virtual point rigid body motions.

Overall Sensor Consistency

The overall sensor consistency assessment criterion compares the unfiltered responses u with
the filtered ones ũ. Here, the overall sensor consistency evaluates these values at the entire
frequency range by

ρu1,2
(ω) =

||ũ1,2(ω)||
||u1,2(ω)||

(2.69)

It essentially evaluates the amplitude of both DoF sets. When the amplitude does not
change due to the filtering process, all virtual point responses are perfectly described by the
surrounding sensors. In this case, the overall sensor consistency ρ(ω) = 1. In the worst case,
this value becomes zero. Bad positioning, calibration or alignment of a single sensor decreases
the overall sensor consistency. If the consistency drops at a specific frequency, this can be
reasoned by a flexible interface displacement mode. [139].

Specific Sensor Consistency

The specific sensor consistency is based on a variation of the spectral coherence function. It is
evaluated based on [139] and is formulated for two complex vectors a and b as:

coh(a, b) =
(a+ b)

(
aH + bH

)
2
(
aaH + bbH

) a, b ∈ C →


0 in case of a = −b
1
2 in case of a ⊥ b

1 in case of a = b

(2.70)

This indicator can also be seen as the Modal Assurance Criterion (MAC) value between all
sensor DoF and the virtual point DoF [4, 137]. Usually, the MAC value is utilized for the
degree of consistency among modal vectors but this consistency criterion can also be applied
to the observed FRFs within the VPT framework.
In the presented example, it is defined for every sensor channel ui and the excitation force f2

as

ρui,2 = coh (ũi,2(ω),ui,2(ω)) (2.71)

The specific sensor consistency is a powerful tool for identification of sensor DoF which
contribute poorly to the VPT. If bad channels are dropped based on the specific consistency,
the overall consistency can directly show possibly enhancements on the entire transformation
ability.

Force Consistency

Usually, the force excitations within VPT measurements are performed utilizing an impact
hammer. Hence, the quality indicator described subsequently is also called impact consistency.
This criterion is very important to distinguish between proper and poor impacts - similar
to the sensor channels. Again, we observe a set of filtered and unfiltered DoF. In this case,
the measured and filtered forces fj ∈ f1 according to a virtual point 1, which produce a
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response u2 at the surrounding sensors. Therefore, a weighting vector w is introduced to get
a weighted scalar y2 as a linear combination of the responses around the virtual point:

y2 = wT
2 u2 with w ∈ Rn2 (2.72)

The weighting vector w just selects and assembles some responses of u2. Therefore, the linear
combination for the summed filtered responses including the force filtering matrix F :

F =̂ RfT f =̂ RfR
+
f (2.73)

is written as:

ỹ2,1 = wT
2 Y 2,1F 11. (2.74)

Here, F 11 filters the impacts at the interface to an equivalent load combination at the virtual
point. Note that the weighting vector w here only consists of ones.

Overall Impact Consistency

The overall impact consistency, is defined by the norm of filtered and unfiltered responses
similar to the sensors. Though, in this case, the responses are filtered by the forces. This
indicator shows how well the full set of forces f1 is represented by the six virtual point DoF.

ρf1,2
(ω) =

||ỹT2,1(ω)||
||yT2,1(ω)||

(2.75)

Specific Impact Consistency

The specific impact consistency criterion is closely related to the previously introduced sensor
quality indicator (see Eq. (2.71)). Here, just the responses due to unfiltered and filtered forces
for each impact j are regarded. Therefore, the specific consistency indicator is defined based
on the spectral coherence (Eq. (2.70)) as:

ρfj,2 = coh
(
ỹ2,j(ω),y2,j(ω)

)
with fj ∈ f1. (2.76)

Virtual Point Reciprocity

A big advantage of the virtual point excitations and responses is the collocation of input and
output DoF. Therefore, the reciprocity can be raised as quality assessment criterion for the
VPT. The reciprocity states that the impact and sensor DoF of two FRFs are permutable.
Define i to be located at the virtual point and j to be a reference DoF at the presented
coupled structure. The quality of the reciprocity can be evaluated by the coherence between
the admittances Y ij and Y ji:

χ(ω)ij = coh(Y ij(ω),Y ji(ω)) with Y ij ,Y ji ∈ Y qm. (2.77)

Note, i = j and χ = 1 at the diagonal entries of Y qm [139]. The reciprocity criterion is
generally useful in terms of linearity verification. A hint for linearity generally exists, if two
admittances Y ij and Y ji have the same magnitude. In this case, the system shows reciprocity
and can be approximated by a model with linear damping and a symmetric damping matrix
[24, 146]. Even if reciprocity is not given, the system can be linear. Non-collocated impact
and sensor locations, insufficient stiffness at these locations, and geometric errors often result
in poor reciprocity at the virtual point, even when the system is linear. Apart from the VPT,
note that reciprocity is often assumed if excitation forces are estimated based on measured
responses. This is prerequisite in Sec. 6.1.1.
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2.4 System Equivalent Model Mixing (SEMM)

The Lagrange Multiplier frequency-based substructuring technique was previously introduced
to couple or decouple dynamic models especially with respect to experimental sub-models.
This method can be extended to problems where dynamic information of different, entire
systems is available. For example, numerical simulations are usually noiseless and can capture
detailed information at any DoF of interest. Though, these numerical solutions are afflicted
with more or less coarse structural dynamic assumptions.
On the other hand, experimental models keep the reality concerning these dynamics - often
on a smaller subset DoF. Now, it is obvious that a blend of both models would be beneficial.
We can think even further and imagine applications, where numerical models are coupled with
experimental substructures within the development process and some dynamic information
about the entire system is available later on. A mix of all these information can be done with
some restrictions utilizing expansion techniques as Guyan expansion, IRS technique, Dynamic
stiffness expansion, Hurty Craig-Bampton method and the SEREP/VIKING technique [69].
Even the virtual point transformation can be regarded as expansion technique [137]. Modal
expansion uses information from the model (e.g., modes) to extend the measurement to
unmeasured DoF. For details concerning these expansion methods, please find [11, 32, 59].
Another approach would be model updating, where parameters of the numerical model are
tuned so that the simulation result match the measurement, then the model is used to evaluate
responses at unmeasured DoF. In this thesis, the focus is set on an expansion method based
on the LM-FBS algorithm. This technique is called System Equivalent Model Mixing (SEMM).
The big advantage of SEMM compared to the aforementioned expansion techniques is the
persistence of internal DoF which are not affected by all admixed models. These internal DoF
are required for virtual sensing inside the machine according to fault quantification within
condition monitoring. Note that SEMM is equivalent to SEREP if the two mixed models have
the same number of modes [99]. This section gives an overview over the SEMM framework
referring to [69]. Essentially, SEMM is implemented in four extension levels. There are two
extreme cases

• Basic SEMM,

• Fully Extended Interface SEMM

and the two cases in between:

• Extended Equilibrium SEMM and the

• Extended Compatibility SEMM.

The two intermediate cases refer to the force equilibrium and displacement compatibility
conditions in the LM-FBS algorithm. In order to explain SEMM, a set of model types is
introduced:

Y S: Start model or model that inadequately describes the structural dynamics of the
system. It is improved by the expansion technique and can be numerical, experimental
or hybrid in nature.

Y R: Removed model, which is an extracted part of Y S. In case of removing the start
model at the boundaries b: Y R

bb = Y S
bb.

Y E: Experimental model, which contains the desired dynamics and which is expanded
to the DoF of Y S. Its DoF are equal to Y R.
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Y δ: The delta model is introduced as an intermediate stage for better explanation.

Y SEMM: The SEMM model has the same, full rank as Y S but implies the dynamics of
Y E.

The essential task of SEMM is to exchange the dynamics at the interface DoF which belong
to Y R and Y E, respectively and expand the information to all remaining, internal DoF. The
dynamics of Y R is exchanged by Y E and the difference is expanded to the internal DoF. This
can be visualized as a scenario when some springs are removed from a coupled system and
new, different springs are added instead. The entire dynamics change due to that modification
since these changes affect all internal DoF which are indirectly connected to the modified
interface dynamics. An exemplary scenario is depicted in Fig. 2.5.

Start Model Y S Removed Model Y R Experimental Model Y E SEMM Model Y SEMM

− + =

uoutf in f in f in f inuoutuoutuout

Figure 2.5: SEMM operating principle. An exemplary rotor is excited at the impeller (f in) whereby
the response of interest (uout) is located at the housing. The start model Y S (blue) contains all
intriguing DoF (internal and interface DoF) whereby the removed model Y R only implies a small
subset of interface DoF, where dynamics are replaced by the experimental model Y E (orange). All
interface DoF are subsequently expanded to the surrounding internal DoF by decoupling the removed
model and coupling the experimental model. The resulting SEMM model Y SEMM essentially contains
the dynamics of the small experimental model, but still includes the same complete set of DoF as the
initial start model.

Y S and Y SEMM have the same, global dimension g. The experimental model Y E has boundary
dimension b since it appears only on a boundary subset DoF of Y S. Y S is divided into these
shared boundary DoF b and into unique internal DoF i appearing only in the space of Y S.
Particularly the start model is assembled as follows:

Y S
gg =

[
Y ii Y ib

Y bi Y bb

]S

, Y S
gb =

[
Y ib

Y bb

]S

and Y S
bg =

[
Y bi Y bb

]S
. (2.78)

Note, the sub-admittances Y ii,Y ib,Y bi,Y bb do not necessarily have to be symmetric. They
can also appear as Y iuif ,Y iubf ,Y buif ,Y bubf if there are different amounts of excitation forces
f and response displacements u within the internal and boundary DoF.

2.4.1 Basic SEMM

We start from the LM-FBS algorithm (see Eq. (2.33)) where two systems to be coupled or
decoupled are written in block matrix form in Y :

Y coupled / decoupled = Y − Y BT
e

(
BcY BT

e

)−1
BcY (2.79)
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The coupling or decoupling depends on the chosen boundary DoF through the Boolean
matrices Bc and Be and the structure of the admittance matrix Y :

Y =

[
Y A 0

0 Y B

]
coupling A and B: A + B = AB (2.80)

and

Y =

[
Y AB 0

0 −Y B

]
decoupling B from AB: A = AB− B. (2.81)

This basic principle can also be found in the SEMM equations where A and B can be for
example a start model and an experimental model. In SEMM notation, A and B are not
written in block matrix form in Y . They are sorted directly by the boundary and internal DoF,
since the DoF of B are always a subset of A, even though they are physically two different
models. Moreover, both coupling and decoupling are included in the SEMM equations. First,
the basic SEMM method will be explained. It is defined as follows:

Y SEMM
basic = Y S

gg − Y S
gb

(
Y S
bb − Y δ

bb

)−1
Y S
bg (2.82)

with the delta model

Y δ
bb, basic = Y R

bb−Y R
bb

(
Y R
bb − Y E

bb

)−1
Y R
bb︸ ︷︷ ︸

Interface Reduction

. (2.83)

The understand how Eq. (2.82)) produces a transfer function that is improved by the experi-
mental information in Y E

bb, the delta model is inserted into the SEMM equation (2.82) using
Y R
bb = Y S

bb because the reduction happens at the boundaries (see Eq. (2.87)):

Y SEMM
basic = Y S

gg − Y S
gb

(
Y S
bb − Y S

bb + Y S
bb

(
Y S
bb − Y E

bb

)−1
Y S
bb

)−1
Y S
gb. (2.84)

Simplified:

Y SEMM
basic = Y S

gg − Y S
gb

(
Y S
bb

(
Y S
bb − Y E

bb

)−1
Y S
bb

)−1
Y S
gb (2.85)

and resolved:

Y SEMM
basic = Y S

gg − Y S
gb

(
Y S
bb

)−1 (
Y S
bb − Y E

bb

) (
Y S
bb

)−1
Y S
gb. (2.86)

If we resolve it further, a reduction on the interface at the boundary DoF is striking:

Y SEMM
basic = Y S

gg − Y S
gb

(
Y S
bb

)−1
Y S
bg︸ ︷︷ ︸

Condensation

+Y S
gb

(
Y S
bb

)−1
Y E
bb

(
Y S
bb

)−1
Y S
bg︸ ︷︷ ︸

Expansion

(2.87)

Eq. (2.87) can be written in a different matrix form according to the initially explained internal
DoF i and boundary DoF b. This is equal to Eq. (2.86):

Y SEMM
basic = Y S

gg −
[
Y ib

Y bb

]S (
Y S
bb

)−1 (
Y S
bb − Y E

bb

) (
Y S
bb

)−1 [
Y bi Y bb

]S
. (2.88)

Subsequently, the condensation and expansion will be explained and interpreted. Note that
the superscript S for the start model is omitted from all of the following equations related
to the condensation for clarity. The condensed part in Eq. (2.87) can be interpreted as the
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dynamics of the start system when the boundary DoF are fixed, as explained subsequently:
The global displacements are now regarded concerning the condensation3:[

Y ii Y ib

Y bi Y bb

] [
f i

f b + f̃ b

]
=

[
ũi

ũb = 0

]
. (2.89)

It can also be written as:

Y ggfg + Y gbf̃ b = ũg. (2.90)

For an admittance matrix, the condensation computes the admittance at the boundary DoF
when the boundary displacements are fixed (ũb = 0 in the second line of Eq. (2.89)). Here,
the boundary forces are extended by f̃ b which is needed to fix the boundary displacements:

Y bif i + Y bb

(
f b + f̃ b

)
= 0. (2.91)

We can solve Eq. (2.91) for this additional force f̃ b:

f̃ b = −Y −1
bb (Y bif i + Y bbf b) = −Y −1

bb Y bgfg (2.92)

and insert it into Eq. (2.90) to get the global, condensed displacements:

Y ggfg − Y gbY
−1
bb Y bgfg = ũg. (2.93)

Now, we can see exactly the condensation in Eq. (2.87):(
Y gg − Y gbY

−1
bb Y bg

)
fg = ũg. (2.94)

This can be interpreted as a condensation of the admittance matrix on the boundary DoF
and understood in a dual form (stiffness and admittance). In case of a stiffness matrix, the
condensation computes the stiffness on the boundaries when the internal DoF are left free.
Now, the expansion step will be explained:

Additional responses due to a motion of ub are added by the expansion step. These ad-
ditional responses are obtained by the experimental measurements in Y E

bb.
The mathematical formulation of the expansion can be understood when regarding Eq. (2.87)
from right to left considering an applied force fS

g . This is visualized in Fig. 2.6 and will now
be explained.
The applied force fS

g creates a set of displacements uS
b on the boundaries:

uS
b = Y S

bgf
S
g . (2.95)

These same boundary displacements uS
b could have been produced by a fictitious boundary

force fS
b on the boundaries:

fS
b =

(
Y S
bb

)−1
uS
b . (2.96)

Based on that force fS
b on the boundaries, the experimental admittances predict a set of

displacements uE
b :

uE
b = Y E

bbf
S
b . (2.97)

3The following interpretations are based on a discussion between Prof. dr.ir. Daniel J. Rixen and the author of
this thesis.
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Figure 2.6: Basic SEMM expansion scheme starting from the global forces of a start model and
ending with the expanded global displacements of an experimental model.

To produce this boundary displacements uE
b , the model would predict an equivalent force f eq

b

f eq
b =

(
Y S
bb

)−1
uE
b . (2.98)

Finally, this equivalent boundary force on the boundaries would create inside the system an
expanded displacement uE

g

uE
g = Y S

gbf
eq
b (2.99)

of all global DoF due to the forces f eq
b needed on the boundaries to obtain the displacements

uE
b that the experiments predict at the boundaries.

The upper mentioned reduction on the interface DoF can cause issues in form of fixed interface
modes ending up in spurious peaks inside the FRFs. This might occur due to the reason
that the boundary DoF are put to zero within the condensation. The expansion step can
only modify the behavior of the system due to the motion of the boundary DoF, but can not
influence (or correct) the modes of the system fixed on them. In order to deal with it, the
decoupling step can be extended either for the compatibility or for the equilibrium condition.
Alternatively, the decoupling can be expanded to all internal DoF within the fully extended
interface SEMM.

2.4.2 Fully Extended Interface SEMM

This option implies full interface extension to all global DoF and represents the counterpart
of the basic SEMM. The compact formulation writes:

Y SEMM
fully ext = Y S

gg − Y S
gg

(
Y S
gg − Y δ

gg

)−1
Y S
gg (2.100)
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with the fully extended delta model

Y δ
gg, fully ext = Y R

gg −Y R
gb

(
Y R
bb − Y E

bb

)−1
Y R
bg︸ ︷︷ ︸

Reduction on the global DoF

. (2.101)

This delta model can be inserted into the SEMM equation (2.100) using Y R
bb = Y S

bb, Y
R
bg = Y S

bg,
and Y R

gb = Y S
gb because the reduction happens not only at the boundaries but also at the

global DoF of the start model (see Eq. (2.105)):

Y SEMM
fully ext = Y S

gg − Y S
gg

(
Y S
gg − Y S

gg + Y S
gb

(
Y S
bb − Y E

bb

)−1
Y S
bg

)−1
Y S
gg. (2.102)

Simplified:

Y SEMM
fully ext = Y S

gg − Y S
gg

(
Y S
gb

(
Y S
bb − Y E

bb

)−1
Y S
bg

)−1
Y S
gg (2.103)

and resolved:

Y SEMM
fully ext = Y S

gg − Y S
gg

(
Y S
bg

)+ (
Y S
bb − Y E

bb

) (
Y S
gb

)+
Y S
gg. (2.104)

By multiplying, the condensation and expansion steps are clarified again:

Y SEMM
fully ext = Y S

gg −Y S
gg

(
Y S
bg

)+
Y S
bb

(
Y S
gb

)+
Y S
gg︸ ︷︷ ︸

Condensation

+Y S
gg

(
Y S
bg

)+
Y E
bb

(
Y S
gb

)+
Y S
gg︸ ︷︷ ︸

Expansion

(2.105)

The inverse becomes a Moore-Penrose pseudoinverse due to non-squareness of the inverse
matrices. Within the condensation, we invert on the boundaries using pseudoinverse filtering,
whereas the experimental model is expanded to the global set of forces and displacements.
The big advantage is now, that there are no fixed interface modes compared with the basic
SEMM method. Write it in the same matrix manner as Eq. (2.88):

Y SEMM
fully ext = Y S

gg−
[
Y i ke Y ib

Y b ke Y bb

]S ([
Y b ke Y bb

]S)+ (Y S
bb − Y E

bb

)([Y kc b

Y bb

]R
)+ [

Y kc i Y kc b

Y bi Y bb

]S

(2.106)

The expansion step of the fully extended interface method (Eq. (2.105)) is similar to the basic
SEMM (Eq. (2.87), Fig. 2.6) can be interpreted according to the scheme in Fig. 2.7.
In the next step, we can decide, which global or boundary DoF are kept in the equilibrium or
compatibility condition. These are indicated by ke and kc. Although the boundaries are not
fixed anymore, the fully extended Interface method can cause issues concerning this kind of
free behavior. Therefore, intermediate extension levels as the extended equilibrium or the
extended compatibility variant can be preferable.
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Figure 2.7: Fully extended interface SEMM expansion scheme starting from the global forces of a
start model and ending with the expanded global displacements of an experimental model.

2.4.3 Extended Equilibrium SEMM

Depending on the application, there might be a lack either of controllability or of observability
based on the experimental DoF Y E

bb. Then, the extended equilibrium or the extended
compatibility condition in the condensation step of SEMM might reduce that problem. The
extended equilibrium condition is formulated as follows:

Y SEMM
ext eq = Y S

gg − Y S
gg

(
Y S
bg − Y δ

bg

)+
Y S
bg. (2.107)

Again, the delta model is written as:

Y δ
bg, ext eq = Y R

bg −Y R
bb

(
Y R
bb − Y E

bb

)−1
Y R
bg︸ ︷︷ ︸

Reduction on the global DoF
within the equilibrium condition

(2.108)

Here, the reduction occurs on the global system, but only within the equilibrium condition.
Afterwards, the delta model is put into the SEMM equation again with Y R

bb = Y S
bb and

Y R
bg = Y S

bg:

Y SEMM
ext eq = Y S

gg − Y S
gg

(
Y S
bg

)+ (
Y S
bb − Y E

bb

) (
Y S
bb

)−1
Y S
bg (2.109)

and multiplied together:

Y SEMM
ext eq = Y S

gg −Y S
gg

(
Y S
bg

)+
Y S
bb

(
Y S
bb

)−1
Y S
bg︸ ︷︷ ︸

Condensation

+Y S
gg

(
Y S
bg

)+
Y E
bb

(
Y S
bb

)−1
Y S
bg︸ ︷︷ ︸

Expansion

. (2.110)

After transferring Eq. (2.110) to block-matrix form we get:

Y SEMM
ext eq = Y S

gg − Y S
gg

([
Y b ke Y bb

]S)+ (Y S
bb − Y E

bb

) (
Y S
bb

)−1 [
Y bi Y bb

]S (2.111)
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2.4.4 Extended Compatibility SEMM

As mentioned above, we can also extend the decoupling to global DoF within the compatibility
condition. On this occasion, the SEMM model is defined as:

Y SEMM
ext comp = Y S

gg − Y S
gb

(
Y S
gb − Y δ

gb

)−1
Y S
gg (2.112)

with the correlating delta model:

Y δ
gb, ext comp = Y R

gb −Y R
gb

(
Y R
bb − Y E

bb

)−1
Y R
bb︸ ︷︷ ︸

Reduction on the global DoF
within the compatibility condition

. (2.113)

The reduction occurs on the global system, but only at the compatibility condition. The delta
model is put in the SEMM equation again with Y R

bb = Y S
bb and Y R

gb = Y S
gb:

Y SEMM
ext comp = Y S

gg − Y S
gb

(
Y S
bb

)−1 (
Y S
bb − Y E

bb

) (
Y S
gb

)+
Y S
bb (2.114)

and multiply it together:

Y SEMM
ext eq = Y S

gg −Y S
gb

(
Y S
bb

)−1
Y S
bb

(
Y S
gb

)+
Y S
gg︸ ︷︷ ︸

Condensation

+Y S
gb

(
Y S
bb

)−1
Y E
bb

(
Y S
gb

)+
Y S
gg︸ ︷︷ ︸

Expansion

. (2.115)

The block-matrix form for the selection of specific DoF which are kept in the compatibility
condition looks as follows:

Y SEMM
ext comp = Y S

gg −
[
Y ib

Y bb

]S (
Y S
bb

)−1 (
Y S
bb − Y E

bb

)([Y kc b

Y bb

]S
)+

Y S
gg. (2.116)

The SEMM techniques presented now serve as a framework for modal expansion. All four
variants are evaluated with respect to the modeling of the presented industrial blower example
in Sec. 5.2.2.





Chapter 3

Vibration Monitoring Methods

Vibration Monitoring with respect to continuous state observation of rotating machinery has
specific requirements within this thesis. We focus offline on snapshot observation and do not
develop a real-time system. This perspective on monitoring mainly stems from the target
of wireless, industrial sensor networks. Here, continuous streaming of sensor data with real-
time post-processing is mostly not practicable due to restricted resources of micro-controlled
systems. Also, the condition decision is not time-sensitive within the regarded examples, since
operational forces due to faults inside rotor systems increase slowly. Thus, sensor data post-
processing can last from several minutes up to hours. In this case, discrete data snapshots are
favorable. These are collected during steady-state operation and are evaluated retrospectively.
In this chapter, methods for extracting the desired information from vibration signals are
introduced in order to combine them with hybrid models for quantitative fault diagnosis.
Essentially, a distinction is made between two exemplary fault types. On the one hand,
these are faults which expresses themselves within an increased amplitude at the fundamental
rotational frequency. In this context, unbalance in the form of harmonic vibration excitation
is considered as a representative example of bearing load in section 3.3. On the other hand,
there are faults which manifest within small impact forces. These are amplitude-modulated in
high frequency bands. The frequency position of these bands complies with resonances of the
rotor system, such as the bearings. In section 3.4, an exemplary condition indicator is shown
based on the presented bearing diagnosis methods.
In general, there are two common model-based approaches which can help in observing these
fault types. They will be presented next.

3.1 State-Space Observer Approach

A common approach to set up the model for vibration monitoring is the integration of a finite
element (FE) model which is often anyway created during the development process. Though,
these FE-models need some operational data to adapt themselves to real boundary conditions
[48]. This adjustment can for example be implemented by a controller which measures the
deviation between simulation and the monitored system. Some parameters of the model are
selected and adjusted based on the measurement. Therefore, the healthy state must be well
known. A classical approach for model-based monitoring is realized by the first order form of
the mechanical equation of motion. For this occasion, the state space -representation
using the state vector 𝔁 and external loads within the input vector 𝓿(t) =̂ f(t) is used for
model description1. Here, a feedback matrix  is assembled which contains the difference
between reality and model. Referring to the equations 2.10-2.16, a representative model-based
monitoring method by Gasch et al. [48] is described as follows:

1Details concerning assembling of the state-space matrices are described in Sec. 2.1.3
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The internal dynamics are represented by the first time derivative of 𝔁(t) containing the
displacements u(t) and velocities u̇(t):

�̇�(t) = A𝔁(t) +𝓿(t); 𝔁 ∈ R2n. (3.1)

According to Eq. (2.1), the dimension 2n refers to the duplication of n DoF within the second
order form. These dynamics are further described by the state transition matrix A and
the state influence matrix  which capture the mass, stiffness and damping matrices of the
observed structure. The external loads are characterized by 𝓿(t). The difference between
reality and the observed system is defined as

∆𝔂(t) =  (𝔁(t)− �̂�(t)) (3.2)

where  characterizes a Boolean matrix which selects accessible degrees of freedom for
system output measurements. �̂�(t) is the observed counterpart to 𝔁(t). Generally, the hat ⋆̂
designates the observed estimate in this context.
The observer itself consists of the matrix Â to be corrected by measurements and  amplifying
the difference between these measurements and the model. Eq. (3.1) and Eq. (3.2) can be
combined for the observed state as

˙̂𝔁(t) = Â�̂�(t) + (𝔁(t)− �̂�(t)) +𝓿(t) (3.3)

By subtraction of Eq. (3.3) from Eq. (3.1), we get the differential equation of faults:

∆�̇�(t) =
(
Â−

)
∆�̂�(t) + ∆A𝔁(t) (3.4)

containing the state vector error ∆𝔁(t) = 𝔁(t) − �̂�(t) and the error within the system
matrices ∆A = A − Â. The feedback matrix (observer matrix)  must be well chosen
so that Eq. (3.4) has proper solutions. This can be done by pole specification [48] or by a
Kalman filter approach (see Sec. 3.2.) Further details concerning the assembly of the state-
space matrices are described in Sec. 2.1.3. Often, they are big and therefore computationally
expensive for the operating system. Thus, model order reduction is required, especially when
the monitoring system should decide about the state during operation. Ludwig et al. [81, 82]
divided the numerical model into substructures (rotor and bearings) and reduced the model’s
degrees of freedom based on the Craig-Bampton method [17, 108]. The extended Kalman
filter was then used to estimate magnitude and position of a rotor unbalance [82] and to detect
changed rotor stiffness properties [81] by measuring shaft displacements.

3.2 Kalman Filter

In the context of monitoring using numerical models based on reduced DoF, the state-space
observer approach is often combined with a Kalman filter [65]. Due to its usability for fault
force estimation [90] and the important role of fault force quantification within this thesis (see
Sec.6.1.1), the technique is briefly outlined based on [18]. The Kalman filter notation is based
on the state-space domain representation. All underlying equations are explained in Sec. 2.1.3.
We show the technique based on time-dependent states but leave out the time-dependence in
the notation here for clarity reasons.
The entire Kalman filter iteration scheme is depicted in Fig. 3.1 to get a first overview.
It utilizes a time-discrete state space model based on the solution of Eq. (3.1) for a certain
time sample:

𝔁k+1 = Ak𝔁k +k𝓿k; 𝔁 ∈ R2n. (3.5)
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Measurement Update (Correction)Time Update (Prediction)

A priori state estimate �̂�−
k+1

A priori error covariance estimate P−
k+1

Kalman gain computation k

A posteriori state update �̂�k

Integration of measurements 𝔂k

A posteriori error covariance update P k

Initial a priori state and error covariance estimation

�̂�−
k and P−

k

Figure 3.1: Kalman filter iteration scheme. Initially, an a priori state and an error covariance must
be estimated. Subsequently, the estimates are updated by measurements. Based on these corrections,
the state and error covariance are updated and further corrected until the state converges. Solid lines
represent unique steps. All iteratively updated values are delineated by dotted lines. The integrated
measurements can differ from each other and are therefore linked with the a posteriori state update by
a dashed line.

The state is subject to a random process uncertainty 𝔀k ∼ N(0, I) with the state error
covariance :

𝔁k+1 = Ak𝔁k +k𝓿k +wk. (3.6)

Furthermore, we utilize m measurements2 in form of the output vector 𝔂k superimposed with
noise vk ∼ N(0, I) and the measurement error covariance  under the assumption that the
direct link matrix  is zero3:

𝔂k = k𝔁k +vk; 𝔂 ∈ Rm. (3.7)

For vk and wk the assumption is made that they correspond to uncorrelated, white noise.
The filter bases on a model-based a priori state assumption x̂−

k+1 . In this context, the minus
superscript stands for an initial (a priori) guess of the predicted state:

�̂�−
k+1 = Ak�̂�k +k𝓿k. (3.8)

An initial prediction must also be estimated for an a priori error covariance matrix

P−
k = E

[
e−k e−k

T
]

with the a priori error estimate e−k =̂ 𝔁k − �̂�−
k (3.9)

and the expectation E. Further, we need the corresponding a posteriori covariance matrix

P k = E
[
ek ek

T
]

with the a posteriori error estimate ek =̂ 𝔁k − �̂�k. (3.10)

2Usually, the size of the numerical model significantly exceeds the measurement degrees of freedom since only
some measurement points are used for model correction (m < n DoF)

3see Sec. 2.1.3 for details
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Now, we come to the Kalman filter’s task. Its state prediction �̂�k at any time step k is
computed, based on the previous state estimate �̂�−

k and the actual measurements �̂�k as well
as the model-based measurement estimate k�̂�−

k :

�̂�k = �̂�−
k +k

(
𝔂k − k�̂�−

k

)︸ ︷︷ ︸
residual

. (3.11)

In Eq. (3.11), the Kalman gain  tries to minimize the residual
(
𝔂k − k�̂�−

k

)
. This is done

indirectly by minimizing the error covariance P k (see Eq. (3.10)). A popular form of the
Kalman gain is defined as:

k = P−
k 

T
k

(
kP−

k 
T
k +k

)−1
. (3.12)

Here, the Kalman gain weighs the residual to a greater or lesser extent depending on the
measurement noise. The smaller the measurement error covariance  the less the predicted
measurement k�̂�−

k is trusted. In the opposite case, the smaller the error covariance P−
k , the

less the measurement is trusted as  approaches zero.
In terms of implementation, the filter is constructed as a feedback control loop. Initially, the
a priori state is estimated and the feedback is obtained as computed, noisy “measurement”.
Subsequently, the feedback is corrected by real measurements. Therefore, the discrete Kalman
filter is structured into two steps: The time update (measurement prediction) and measurement
update (correction). These are defined as follows:

Time
Update

{
�̂�−
k+1 = Ak�̂�k +k𝓿k a priori state estimate

P−
k+1 = AkP kAT

k +k a priori error covariance estimate

(3.13)

and

Measurement
Update


k = P−

k 
T
k

(
kP−

k 
T
k +k

)−1
Kalman gain computation,

�̂�k = �̂�−
k +

(
𝔂k − k�̂�−

k

)
new state estimate

P k = (I −kk)P−
k a posteriori error covariance estimate

(3.14)

Based on the converged state, an accurate estimation of the real dynamic behavior can be
made. For detailed information about the initial guesses for �̂�−

k and P−
k and and the extended

Kalman filter for nonlinear problems, please find [18]. For condition monitoring of rotating
machinery, the extended Kalman filter is usually required since estimated fault forces strongly
depend on the rotational frequency. Here, a linearization must be made at the operating
speed of interest [81].
Referring to further research in this context, condition monitoring up to remaining life time
estimation already succeeded building on the Kalman filter methodology. In that sense, fault
force identification using iterative state estimation was successfully implemented in [80].4 In
roller bearing diagnostics, the Kalman filter has already been used to estimate the remaining
life of bearings [117]. The advantage of the Kalman filter lies in its ability to correct state
models by measurements. Nevertheless, we must not forget that the filter is applied under
the assumption of eliminating white, uncorrelated noise. This assumption is not necessarily
fulfilled when changes in structural dynamic properties are involved, such as resonance shifts
due to varying boundary conditions.
4Fault force quantification will play an important role within this thesis (see Sec.6.1.1). Roller bearing diagnosis
will also be an issue in Sec. 3.4.
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3.3 Frequency Modulated Fault Extraction of Rotor Unbalance

Within unbalance identification, we have to track frequency-modulated excitation. This can
be done via different approaches. One example is the Fourier-fit [1], when knowing exactly at
which frequency the excitation occurs. Alternatively, the signal can be specifically filtered
within a band of interest, where the excited frequency due to the unbalance is expected. Here,
we have to wait until a complete time-snapshot of the sensor data is acquired. Additionally,
the signal must be filtered in forward and backward direction, when the phase information is of
interest. The big advantage of this method is the flexibility with respect to varying excitation
frequencies. We do not have to know it exactly - the bandpass filter excuses inaccuracies.
These inaccuracies can especially occur within industrial target applications since the exciting
frequency is usually not directly measurable. Here, additional sensors are utilized which
exemplary observe the magnetic field to estimate the rotational frequency indirectly. However,
the magnetic field frequency does not exactly match the mechanical rotor speed, which is
pivotal for unbalance excitation. In this thesis, the type of filtering is used on a blower
test rig to observe the rotor fundamental frequency with and without unbalance for test rig
characterization and model validation.

3.4 Amplitude Modulated Fault Diagnosis of Roller Bearings

Vibration-based roller bearing fault diagnosis implies a huge field of techniques especially
concerning signal-based methods [116]. Here, we have to distinguish between methods which
build on physically-based feature extraction and purely learning-based techniques. Data-based
learning approaches can be Neural Networks or classical machine learning solutions such as
Support Vector Machines gain importance [27, 66, 102, 128]. The big advantage is that there
is no knowledge about fault models needed. On the other hand, huge training data sets are
potentially required - especially in case of deep learning approaches as within the neural net-
works. Especially in the context of development processes of condition monitoring systems,
where applications and boundary conditions can change again and again, huge data sets are
often not available. These variations preclude learning-based approaches since new conditions
require new training data with healthy and faulty conditions.

Hence, we focus on physical-supported methods within this thesis. In this section, the
most important techniques to extract the bearing fault information from raw vibration sig-
nals, in a physical manner, specified for MEMS-based sensor systems, is shown. All explained
filtering processes try to extract small impacts from the signal.
These impacts are caused by the bearing balls rolling over irregularities on their own surface
or on the inner/outer raceway. An example is shown in Fig. 3.2. Here, the three lower balls
are impinged with a radial load and pass an outer ring fault. When the ball enters the pit,
it is temporarily unloaded (see area within green dotted circle at the left side of Fig. 3.2).
After passing the pit, it excites the enclosed structure by an impact force since it is suddenly
loaded again. These impacts occur in a regular manner depending on geometry and rota-
tional frequency of the bearing (green marked area at the right side of Fig. 3.2). The aim is
to extract these impacts. Within this section, we will present several exemplary results in
order to compare the underlying methodology. All examples are based on the proposed final
sensor system (specified in Chap. 7) based on a wireless MEMS sensor device (STMicroelec-
tronics LSM6DSL [125]) at the pump test rig5 with a rotational frequency of f n =58.3Hz.
5See Sec. 4.13 for the measurement setup. In this chapter, the axial z-direction is observed. Thus, we see in
the results that the axial direction is affected by the impact responses even with a horizontally aligned fault.
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The measurements were performed by Röhrl [113].

Dp

FrFr

Load Free Zone

Load Zone

Db

Ball Unloaded Ball Loaded

Figure 3.2: Faulty roller bearing kinematic with rotating inner ring and resting outer ring treated
with a vertical radial force Fr referring to [46]. Three balls are situated in the load zone due to radial
load. Left: scenario with ball in an exemplary outer ring fault (see Fig. 4.14) The ball is unloaded due
to the space between inner ring an ball. Right: scenario ∆t later, the ball has passed the pit and it is
suddenly loaded again.

The fault frequencies which depend on geometry and kinematic roller bearing are defined as
follows:

• Frequency of a fault at the outer ring

f O =
1

2
f n · Z ·

[
1− Db · cosα

Dp

]
, (3.15)

• Frequency of a fault at the inner ring

f I =
1

2
f n · Z ·

[
1 +

Db · cosα
Dp

]
, (3.16)

• Frequency of a fault at the rolling element

f B =
f n ·Dp

Db
·
[
1−

(
Db · cosα

Dp

)2
]
. (3.17)

This is reasoned by the axial operating force in the axial flow conveying direction.
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These three characteristic bearing fault
frequency types depend on the fol-
lowing parameters (see Fig. 3.2 and
Fig. 3.3):

f n: Rotor operational frequency,
Z: Number of rolling elements,
Db : Rolling element diameter,
Dp : Pitch diameter,
α: Contact angle.

The above mentioned contact an-
gle α is depicted in Fig. 3.3 which
depends on an axial force FA. This
load issues from operational forces or
static boundary conditions.

FA

FN

α

Figure 3.3: Visualization of the contact angle α
depending on an axial load FA. The exemplary ball
bearing transmits the normal force FN between inner
and outer ring.

3.4.1 Statistical Indicators

We start with statistical indicators which are representative for the bearing state usually in a
broad frequency range, although we pointed out the importance of discrete defect frequencies
above. These indicators are easy to implement and often provide proper information about
the bearing state since they can capture a bundle of raceway irregularities within a scalar
value. Statistical indicators according to VDI3832 [140] regard the collective vibration level
over a period of time. The subsequently mentioned properties are called statistical central
moments’ :

• Root Mean Square Value (Effective Value): xrms =
1
T

∫ T
0 x(t)2dt usually increases due

to signal peaks based on fault force impacts,

• Maximum Value: xmax = max|x(t)|. Impact forces evoke increased peak values.

• Crest Factor: 𝒸𝓇 = |xmax|
xRMS

. Measure for impact content of the signal, complies with the
quotient of maximum value and root mean square value.

• Kurtosis: 𝓀 = 1
n

∑n
i=1(

xi−x
s )4: The curvature of the signal describes the peakedness

within normal distribution. It is characterized by the mean value x of n samples xi
containing a standard deviation s. The Gaussian normal distribution is specified by
three. In case of bearing defects, this value is exceeded.

• K(t)-Value: Relation of the product of peak and effective value at two different time
snapshots.

3.4.2 Envelope Analysis

As we introduced the discreetness of impacts caused by bearing faults, broadband indicators
are often not suitable to characterize them properly. These impacts are usually measured
indirectly regarding decay processes of the entire system. Now, the frequency of these abating
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Figure 3.4: Exemplary ball bearing outer ring fault signal (blue) with associated envelope (orange).
Specific impacts due to the fault appear within the time interval TO - inverse to the frequency f O.
The underlying bearing defect can be found in Fig. 4.14

vibrations must be captured. To solve this problem, the envelope (Fig. 3.4) is regarded as
discussed by [113].
We can determine the envelope of a signal x(t) in an number of ways. The process can be
imagined for example as a rectifier in combination with low-pass filter to remove the carrier
signal. A very popular option is the utilization of Hilbert Transformation xH(t). It is applied
within this thesis referring to [58], defined for a considered time sequence τ :

xH(t) = {x} = 1

π

∫ +∞

−∞

x(τ)

t− τ dτ = x(t) ∗ 1

πt
. (3.18)

Based on the Hilbert-Transformation we get the complex, analytical signal from a real signal:

xa(t) = x(t) + ixH(t). (3.19)

with real part x(t) equal to the original signal and imaginary part ixH(t) containing the
Hilbert-Transformation. The Hilbert Transform as imaginary part is equivalent to a 90◦ phase
shifted original signal. When envisaging this signal comprising sines and cosines, they are
converted into each another by the Hilbert Transform. In order to compute the envelope
curve, the basic signal’s mean value x is subtracted to get rid of static offsets. Resting upon
this adjusted base, the analytical signal is calculated:

xa(t) = (x(t)− x) + i{(x(t)− x)}. (3.20)

Afterwards, the upper (x+) and lower (x−) envelopes are obtained by the mean value summed
up or subtracted by the absolute value of the analytical signal:

x+(t) = x+ |xa(t)| (3.21)
x−(t) = x− |xa(t)| (3.22)

(3.23)

In terms of bearing diagnosis, the upper envelope is usually further analyzed in the frequency
domain representation. Especially within this work, the Hilbert implementation by MathWorks
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is utilized according to [85]. A more efficient realization of the envelope computation can be
implemented for example by a correlation operation in the frequency domain representation
[45]. This can be very helpful for implementations on constrained sensor systems, but
the method has drawbacks as filtering in the frequency domain representation. Here, the
envelope’s resolution can be reduced. However, since we do not have big post-processing
resource constraints, efficiency in envelope calculation does not matter that much to us.

3.4.3 Optimal Filter Design

As mentioned in Sec. 3.4.2, the impacts can only be measured indirectly and they might be
superimposed by interfering signals due to operational conditions such as excitation by the
fluid conveyed by the pump for example - or simply by the rotational frequency harmonics.
In order to extract the blank acceleration responses to these impact forces, some filtering is
helpful. The art consists in figuring out the frequency range, where the impacts are amplitude-
modulated. When the perfect frequency band is known, it can be extracted with a simple
band-pass filter, but there are a bundle of methods to pull out the desired information from
measured vibrations. Some of them will be presented here.

Spectral Kurtosis and Kurtogram

The Spectral Kurtosis SK(f) emphasizes non normal distribution or non-stationary behavior
within an inspected frequency area. The main feature lies in the ability to separate frequency
ranges including peaks as evoked by the bearing fault force impacts from rather Gaussian
areas. Thus, transient events can be found in noisy signals [7, 10, 113]. It is a statistical tool
and defined as

SK(f) =

〈
|X(t, f)|4

〉
⟨|X(t, f)|2⟩2

− 2. (3.24)

Here, we have a short time Fourier transformed (STFT) signal X(t, f) as input. The frequency
resolution depends on the length of the STFT-blocks, which are exponentiated and averaged
over time defined by the brackets ⟨·⟩. The correlation between STFT block length and
frequency resolution of a given signal X(t, f) depending on the sampling rate fs is depicted
in Fig. 3.5. If a time frame of 2/fs is chosen as block length, the frequency resolution would
be fs/2 since the maximum frequency is fs/2. In order to calculate the first Spectral Kurtosis
value, a STFT block length of at least 4/fs is needed. In this example, a single scalar Spectral
Kurtosis value SK(f) would be calculated over the entire frequency range up to 2/fs by
exponentiating and averaging over the two frequency bins (0 - fs/4 and fs/4 - fs/2). The
center frequency in this case would be fs/4. Here, the Spectral Kurtosis cannot distinguish
between signal content in different frequency ranges. Due to the averaging between two
adjacent frequency bins, the frequency decomposition level (see Fig. 3.6) must be at least
two (STFT block length 4/fs). The longer the STFT time frame, the higher the frequency
resolution. If the STFT-frame is chosen as long as the entire signal X(t, f), the frequency
resolution would be maximal but it would be hard to find the best frequency range because of
the narrowness of the frequency ranges.



54 3 Vibration Monitoring Methods

Frequency Resolution / Hz

fs
16

fs
6

fs
24

fs
12

fs
8

fs
4

fs
2

...
...

ST
F
T

B
lo

ck
Le

ng
th

/
s

2
fs

4
fs

6
fs

8
fs

12
fs

16
fs

24
fs

Figure 3.5: Correlation between the STFT block length and frequency resolution for the calculation
of scalar Spectral Kurtosis values.

Essentially, the Spectral Kurtosis can distinguish between three scenarios:

• White noise: SK(f) = 0,

• Harmonic signals: SK(f) < 0,

• Impact signals: SK(f) > 0.

This ability figures out frequency ranges of interest, where the impacts provoked by the
bearing faults are present. Therefore, the Kurtogram was established to find the frequency
band with maximum Kurtosis by evaluating a frequency/frequency resolution dyad. The
Kurtogram regards the spectrum in predefined frequency blocks by using a decomposition
in form of a frequency/frequency resolution plane representation. This plane is depicted in
Fig. 3.7. The frequency blocks are defined by breaking down the entire spectrum by a defined
decomposition index k in 2k frequency blocks. The index k is chosen depending on the type of
a binary tree of filter banks (for example 1/2 or 1/3 binary tree [8]). The higher the number
of frequency blocks, the smaller the block size and the higher the resolution at a certain index.
In case of a 1/2 binary tree, the index counts up in a way of k = [1; 2; 3; ...]. In case of a 1/3
binary tree, the index counts up in a way of k = [1; 1.6; 2; 2.6; 3; 3.6; ...]. Therefore, the 1/3
binary tree expansion contains an additional intermediate stage of kurtosis evaluation due to
the index count and thus shows a finer resolution than the 1/2 binary tree.
For all frequency blocks at a given index, the spectral kurtosis is determined. In order to pick
these frequency blocks, the center frequency of each block is needed by the algorithm. By using
the center frequency, low-pass and high-pass filters are applied through the filterbank to cut
out the frequency blocks with the center frequencies in their respective centers. Consequently,
the frequency decomposition level must be twice as high as the amount of frequency blocks.
This level is defined by k in 2k+1. By searching for the band with maximum spectral kurtosis,
it is possible to find out how narrow the frequency block, and thus how high the degree
of decomposition, must be in order to identify a frequency range where the bearing fault
impacts are located. Fig. 3.7 shows an example measured at the pump test rig with built-in
roller bearing (see Fig. 4.14). The figure was generated based on the MATLAB® function
by Antoni [8, 9] utilizing the 1/3 binary tree. Here, the maximum Kurtosis SKmax = 4.06
is reached at a decomposition level of six (note the brightest, yellow frequency block). This
results in a center frequency of 1388Hz and a frequency band of 278Hz to the left and right
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Figure 3.6: Schematic representation of the Kurtogram frequency/frequency resolution plane with
example decomposition levels of 2-24 and a frequency block decomposition of 1-12 (highlighted in
blue) based on the 1/3-binary tree Kurtogram estimator in [8]. An exemplary frequency block at
decomposition index 2 is picked and divided into two sub-blocks by the center frequency fc (blue
dotted line) according to frequency decomposition level 8. The filter bank would select this block with
a high-pass and a low-pass filter to the left and right of the center frequency.

of the center frequency. Thus, referring to a frequency resolution of 1.6Hz, the band pass
filter specification optimum would be situated from 1093Hz up to the maximum of 1666Hz.
The sensor’s bandwidth is limited to this maximum in the presented example. Therefore,
the Kurtogram just leads to a high-pass filter. Based on this filter, we have a look at the
resulting envelope spectra. The post-processed signal based on same test conditions as in
Fig. 3.7 is depicted in Fig. 3.8. Here, the mean envelope spectrum of 55 snapshots (0.615 s
measurement time each in axial z-direction) is observed. The unfiltered acceleration envelope
magnitude contains higher amplitudes at the fundamental rotational frequency fn and its
fourth harmonic 4 · fn. These signal parts stem from the basic rotor imbalance and harmonic
flow processes within the pump housing. Due to the large amount of snapshots, non-stationary
rotational speed can amplify or lower these peaks on average. Especially the frequency line
of the mean value can differ from the expected basic rotor frequency due to time-variant
load of the built-in asynchronous motor, provoked by the pump medium. Regarding the
high-pass filtered envelope magnitude, these peaks are almost damped out - especially the
protrusion at 4 · fn. Contrary to that, the over-rolling impact at the fault frequency line FO
emerges significantly. Conclusively, a Kurtogram-based filter can clearly improve the visibility
of bearing faults within the vibration envelope signal.
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Figure 3.7: Exemplary Kurtogram structure based on an outer ring fault (see Fig. 4.14), measured
with a wireless MEMS sensor device (LSM6DSL) at the pump test rig in axial z-direction referring to
[113] based on [9].
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Figure 3.8: Averaged envelope spectrum of an exemplary outer ring fault (see Fig. 4.14). Measurement
performed with a wireless MEMS sensor device (LSM6DSL) at the pump test rig in axial z-direction
(Sec. 4.13) by [113]. Rotational frequency f n =58.3Hz, outer ring rollover frequency f O =149Hz at n
harmonics.
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Empirical Mode Decomposition

Another data filtering method targeting the extraction of transient events within vibration
signals is the Empirical Mode Decomposition (EMD) [107, 129, 145] or its extension - the
Ensemble Empirical Mode Decomposition (EEMD) [147]. Both methods perform in the time
domain representation and try to find so called Intrinsic Mode Functions (IMFs), which build
an orthogonal basis for the original signal. The only difference introduced by the EEMD
compared with the standard EMD can be an enhanced decoupling of the IMFs. The EMD’s
idea is essentially that every signal x(t) comprises an individual amount of IMFs and a residual.
Based on [107, 113], the technique to find these IMFs via an iterative scheme is defined as
follows:

1. Calculation of the upper and lower envelope x+(t) and x−(t) of a time signal x(t) as
described in Sec. 3.4.2,

2. Mean value xk,i(t) computation of both envelopes within the iteration i:

xk,i(t) =
1

2

[
x+(t) + x−(t)

]
, (3.25)

3. Utilizing sk(t) = x(t) as start signal with subtraction of the mean envelope at each
iteration

sk(t) = sk(t)− xk,i(t). (3.26)

Here, we get a new signal sk(t) at every iteration step. Note that the signal sk(t) will
not change anymore if the signal is symmetric to the time axis because in this case
the mean value xk,i(t) of the upper and lower envelope would be zero. An initial stop
criterion must be introduced depending on the definition of an Intrinsic Mode Function.
As assessment for an IMF we utilized the criterion proposed in [144] using the scalar
relative tolerance specification:

∥s(t)i−1 − s(t)i∥2

∥s(t)i∥2
< 0.2 (3.27)

If sk(t) does not correspond with an IMF, step four is skipped and sk(t) is utilized as a
new start signal for the envelope computation in step one.

4. If the assessment criterion is fulfilled, sk(t) complies with an IMF and a new start signal
(or leftover residual) lk(t) is calculated by subtracting the IMF from the original start
signal x(t). After finding the first IMF, we get a new residual lk(t) after every new
identified IMF. Thus, the subsequent start signal is defined as

lk(t) = lk−1(t)− sk(t) (3.28)

Afterwards, we go back to step one again, replacing x(t) by lk(t) and computing the
envelopes. Finally, every sk(t) in Eq. (3.28) is stored as a IMF.

Conversely, the original signal x(t) is reassembled by the sum of all IMFs together with the
final residual. Defining N IMFs, we get the origin based on

x(t) =

N∑
i=1

si(t) + lN (t). (3.29)
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The following example in Fig. 3.9 shows the first four IMFs of the same exemplary bearing
vibration signal as considered in Sec. 3.4.3 within the Kurtogram evaluation. When evaluating
these four Intrinsic Mode Functions, the decreasing content of high frequency parts from
IMF 1 to IMF 4 is obvious. In the presented example, only the first IMF implies information
about the high-frequency amplitude modulated fault impacts. Comparing it with Fig. 3.10,
the impacts become visible within the first IMF. It works a bit like the presented high pass
filter. Although the stopping criterion is not reached, the fourth IMF does not contain any
expedient components anymore. The frequencies would further decrease with higher IMFs.
Hence, no more Intrinsic Mode Functions are plotted here.
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Figure 3.9: Exemplary Empirical Mode Decomposition of an outer ring fault (implemented defect
see Fig. 4.14). Measurement performed with a wireless MEMS sensor device (LSM6DSL) at the pump
test rig in axial z-direction at 58.3Hz rotational speed (Sec. 4.13) based on [113].

As discussed in the previous paragraph, the bearing faults are rather visible within the first
IMFs. Thus, the envelope spectra of the first and second IMF and a comparison with the
raw envelope spectrum are depicted in Fig. 3.10. Here, a slight enhancement of the first over-
rolling frequency peak at 149Hz at the first IMF is observed by contrast with the raw signal.
However, the second IMF does not contain any information about the bearing fault impacts.
In this example, we can even stop the Empirical Mode Decomposition after the first Intrinsic
Mode Function.
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Figure 3.10: Envelope spectra of the first two IMFs with an exemplary outer ring fault (see Fig. 4.14).
Data snapshot (0.615 s) acquired with a wireless MEMS sensor device (LSM6DSL) at the pump test
rig in axial z-direction at 58.3Hz rotational speed referring to [113].
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Multipoint Optimal Minimum Entropy Deconvolution Adjusted Filtering

Another filtering method in order to extract bearing fault signal properly from interfering
vibrating components is the Multipoint Optimal Minimum Entropy Deconvolution Adjusted
(MOMEDA) signal processing technique [86]. Here, the filtered signal is not utilized as input
for an envelope spectral analysis as in the previous examples. The MOMEDA essentially
consists of a Fourier spectrum in a particularly specified frequency range. This range is
defined according to the expected frequency location of impacts. We just define a time interval
containing impacts at multiples of time t referring to the bearing fault frequencies. The timing
of the impacts due to the expected bearing fault is known based on the rotational frequency
and the bearing kinematics. For an exemplary rollover impact at the times t = 3 and t = 6,
the target vector would look as follows:

t =
[
0 0 1 0 0 1 0 0

]T
. (3.30)

Within this target vector, we search for a filter 𝓯

𝓯 =
(
X0X0

T
)−1

X0t (3.31)

which best extracts the impacts from a time signal X:

X0 =


XL XL+1 XL+2 · · · · · · XN

XL−1 XL XL+1 · · · · · · XN−1

XL−2 XL−1 XL · · · · · · XN−2
...

...
...

. . . · · · ...
X1 X2 X3 · · · · · · XN−L+1

 (3.32)

with filter length L and N samples of the measured signal. The filter length must be higher
than the calculated impulse period of the bearing fault in order to maintain a tolerance. As
tested by [46, 113, 143], 1.4 times the impulse period is an empirically proven value for that
length. Finally, to find the best combination of filter length L and number of samples N
based on the Kurtosis values, m different target vectors t are evaluated. Therefore, we get
sm impact sequences in the frequency domain representation for further evaluation by the
Kurtosis:

S =
[
s1 s2 · · · sm

]
= X0

T𝓕 (3.33)

with

𝓕 =
[
𝓯1 𝓯2 · · · 𝓯m

]
=
(
X0X0

T
)−1

X0

[
t1 t2 · · · tm

]
. (3.34)

In order to determine a sequence which best describes the over-rolling fault impacts, a
Multipoint-Kurtosis 𝓀m is calculated:

𝓀m =

(∑N−L
n=1 tn

2
)2∑N−L

n=1 (tnsn)
4

∑N−L
n=1 tn8

(∑N−L
n=1 sn2

)2 . (3.35)

The highest Multipoint-Kurtosis value is utilized to find the best combination of L and N .
In order to use this method to filter out the frequency ranges containing the fault impacts,
the frequency resolution of the signal must be high enough. If the frequency resolution is
not high enough, too few multiples of the rollover frequency may be included in the time
sequence t. A low bandwidth can lead to the same effect. In this cases the impulses are not
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contained in the impact sequence s and the corresponding Multipoint-Kurtosis is low. If the
regarded time signal X0 is a time-limited snapshot and thus has low frequency resolution as
well as limited bandwidth, the method is not suitable for finding the bearing fault indicators
[113]. Despite the high performance of MOMEDA to detect bearing faults, the method is
not evaluated in detail here due to the bandwidth and frequency resolution restrictions. The
target application in the scope of this thesis are MEMS-based sensor systems, which have low
frequency resolutions and limited bandwidths.

Cepstrum Prewhitening

A further helpful method to emphasize peaks at the bearing defect rollover frequencies is the
cepstrum prewhitening technique. It was also discussed by [113] and is primary based on the
complex cepstrum. This description was initially defined by Oppenheim and Schafer [103].
The complex cepstrum (𝒸) is defined as inverse Fourier transformation of the logarithmic
spectrum:

(𝒸) = −1 (log(X(f ))) = −1 (ln(A(f )) + iφ(f ))) ;  ∈ C (3.36)

with X(f ) as the Fourier transformed time signal  (x(t)) and the so-called quefrency 𝒸. [29].
We get the so-called real cepstrum by setting the phase component in Eq. (3.36) to zero:

(𝒸) = −1 (ln(A(f ))) ;  ∈ R. (3.37)

A peak within the cepstrum at a certain quefrency can be imagined as the inverse period of
harmonics in a spectrum.
The prewhitened cepstrum is calculated in two steps: In the first step, the entire cepstrum
is set to zero, except for the zero-quefrency line. In the second step, the zero-quefrency
line is transformed back into the time domain representation, taking into account the phase
information. The effect of this procedure corresponds to a cancellation of discrete frequencies
by deterministic excitations. Resonances of the entire system can also be filtered out by this
technique [20, 104]. In contrast to that, harmonic excitations such as the bearing fault impacts
can therefore be amplified. The prewhitened cepstrum is obtained by dividing the complex
spectrum by its absolute value:

xCPW = −1

(
X(f )

|X(f )|

)
. (3.38)

We target an amplification of the defect rollover-frequency and its harmonics based on the
theory of deleted discrete frequencies. The exemplary outer ring fault signal is threatened
with that method and the result is depicted in Fig. 3.11.
Here, the cepstral prewhitened envelope spectrum is averaged over 55 snapshots (0.615 s
measurement time each) and normalized with the unfiltered standard envelope spectrum
for better comparability. The peaks which are not associated with the fundamental rotor
frequency or the defect frequencies are erased by the cepstrum prewhitening. Moreover, both
amplitudes at the outer ring rollover frequency and its harmonic slightly increase. Thus, the
positive effect of this method is visible.
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Figure 3.11: Unfiltered, but averaged (blue) and cepstrum prewhitened (orange) envelope spectra
of an exemplary outer ring fault (depicted in Fig. 4.14). Measurement snapshot acquired with a
wireless MEMS sensor device (LSM6DSL) at the pump test rig in axial z-direction by [113]. Rotational
frequency f n = 58.3Hz, outer ring rollover frequency f O = 149Hz at n harmonics.

3.4.4 Concluding Signal-Based Condition Indicator

Now, the different methods presented in this section are compared. Considering only rea-
sonable techniques which turned out to be suitable for a wireless sensor node application,
the Kurtogram-based envelope spectrum, the Empirical Mode Decomposition-based envelope
spectrum and the Cepstrum prewhitened envelope spectrum have to be taken into account.
(compare Fig. 3.8, 3.10 and 3.11). Here, it turns out that the classical bandpass/highpass
filtered envelope spectrum provides the best results. The Kurtogram seems to be the best
method to design the filter. In cases of low bandwidth and low resolution sensor data, the
frequency range has to be analyzed where the amplitude-modulated over-rolling impacts are
placed. Based on these findings, a signal-based condition indicator If is defined in order to
obtain a scalar assessment criterion.

If =

√√√√√ 1

N

f +6.5Hz∑
f −6.5Hz

X(f )2 +

√√√√√ 1

N

2f +6.5Hz∑
2f −6.5Hz

X(f )2, (3.39)

using

X(f ) = {x+(t)},
f = Bearing over-rolling frequency,

x+(t) = Highpass-filtered envelope of x(t),
N = Amount of Samples.

The indicator calculates the sum of the RMS-values within an exemplary 13Hz-band around
the over-rolling frequency and its twofold harmonic. For this purpose, the raw time signal
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Hilbert FFT
∑

RMSx(t) If

Figure 3.12: Condition indicator signal flow chart starting with a highpass-filter, continuing with
Hilbert transformation for envelope approximation and finally calculating the RMS-based Indicator
inspired by [113].

x(t) is high-pass filtered based on a Kurtogram (Fig. 3.7) and the envelope is computed via
Hilbert-Transformation. Fig. 3.12 shows an exemplary signal flow chart for this purpose. A
method for vibration monitoring of roller bearings placing a virtual sensor in the bearing
center using this condition indicator is discussed in Sec 7.2.1.

3.4.5 Summary

All presented techniques aim to detect bearing faults based on physical reasons and are tailored
for MEMS accelerometer sensor systems. These physical reasons are small impacts which are
the consequence of small defects inside the bearing. These impacts express themselves within an
amplitude-modulated impulse over the entire measured vibration signal. Statistical indicators
allow a first statement to the machine health based on a broad-frequency range since the impacts
emphasize these statistical features inside the overall vibration. Differentiating between fault
source and fault type, envelope analysis is the method of choice. The amplitude-modulated
impulse can be well extracted by this technique with subsequent Fourier transformation.
Further enhancement is possible by pre-filtering the measured signal before calculating the
envelope. Here, the spectral kurtosis helps to find a frequency range where the impacts of
interest are modulated. On that base, a proper band-pass filter can be found. Empirical
Mode Decomposition is another tool to extract the bearing fault information from the signal.
Here, Intrinsic Mode Functions (IMFs) are found which can pull out the bearing fault content
from the entire machine vibration. Envelope spectral analysis of these IMFs provide enhanced
fault extraction results compared to the unfiltered analysis. Another roller bearing fault
peak emphasizing filter can be designed by cepstrum prewhitening. This technique enhances
the results with respect to MEMS sensor system measurements. Though, MOMEDA fails
in this context since the frequency resolution of these sensor systems is too low for this
method. The best fault detecting results are found by utilizing a filter which is designed on
the Spectral Kurtosis base. Subsequent envelope spectral analysis allows to define a signal-
based condition indicator which provides a scalar value correlating with the fault type and the
specific provoked vibration amplitude. This indicator will be used later for a virtual sensing
approach in Sec 7.2.1.





Chapter 4

Test Rig Characterization

Within this chapter, we present two test rigs which are essential for method development and
validation according to the thesis. Both setups comprise industrial rotating machines with
a similarly structured rotor implying an overhung impeller. At the outset, we introduce a
blower test rig containing a high-dynamic housing as characteristic feature. Moreover, a pump
test rig is presented as second example which has, in contrast to the blower, stiff housing
properties and a highly damped rotor. Both applications will be used for validation of the
hybrid models. Their development will be described in Chap. 5 and 6.

4.1 Blower Test Rig

The main application to demonstrate our hy-
brid modeling approach is an industrial blower
test rig. Its task is the cooling of a locomotive
drive, which is mounted below. The blower
represents a predestined example due to its dy-
namic properties. The test rig is depicted in
Fig. 4.1 in form of a hybrid visualization. In
the figure, an insight into the blower is given to
highlight the rotor (1). It includes an overhung
impeller (2) which is widely used in blowers
and centrifugal pumps. The rotor with its im-
peller sucks the air axially and expels it via a
centrifugal principle on a mechanical decoupled
steel base (3). Especially the struts (4) and
the bearings (5) as coupling points between
rotor and housing influence the entire dynam-
ics. The rotor is supported by the bearings
inside a relatively stiff motor block (6). The
blower constitutes a scenario where a sensor
position at the outside housing is required due
to wireless sensor data transmission. An ex-
emplary wireless sensor system (7) is mounted
on the housing. The transfer path from rotor
forces via the two roller bearings to the sensor
position is denoted by orange (8).
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Figure 4.1: Locomotive drive cooling blower
test rig as exemplary application for hybrid
dynamic models. All main features (1-8) are
described on the left.

All essential technical information of the blower is specified in Tab. 4.1.

65
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Table 4.1: Technical specifications at of the blower at rated operating point.

Power P 7.5 kW Frequency f 60Hz
Current IN 13A Flow rate Q 1.65m3/h
Voltage U Y-440V Temperature range T −40 ◦C...40 ◦C
Rated speed nN 3540min−1 Active power factor cos(φ) 0.85

4.1.1 Housing Dynamics and Their Influence on Unbalance Monitoring

In case of monitoring rotor faults, as for example discussed in [130], we must be aware of
the entire systems’ structural dynamics. In the following section, rotordynamic effects are
presented on the blower test rig. These are caused by an orthotropic rotor support and affect
the housing dynamics within unbalance monitoring. The influence of the stiffness orthotropy
due to the bracing between motor and housing is particularly emphasized when monitoring
the rotor unbalance. All results in this section are based on [73]. In this publication, the
measurements are acquired at a roughly similar blower system. The presented application is
evaluated in a healthy and in a defined unbalanced state by measurements utilizing horizontally
distributed accelerometers to answer two questions:

1. Is an unbalance detectable at different operating conditions by measuring on the outside
housing?

2. Which effects have to be considered, when estimating an orthotropicly supported rotor?

Coupled Effects - Minimal Model

Orthotropic rotor support causes two divergent stiffnesses in the horizontal x-y plane. This
can also be seen in the transfer functions between rotor excitation and a housing measurement
position. These transfer functions represent the inverse dynamic stiffnesses, differing from
each other in x- and y-axis direction (orthotropic rotor support). Fig. 4.2 shows the simplified
analogous model of a flying supported rotor with orthotropic bearing stiffnesses and associated
FRFs.

x

z
kc

kx ky

ky

kx

m

y
Ω

Axε , A
y
ε

ωx ωy

ε

Figure 4.2: Left: Flying, orthotropic supported rotor as simplified analogous model related to the
blower with shaft stiffness kc and bearing stiffness kx ̸= ky. Right: FRF of the analogous model with
mass unbalance and neglected damping. Gyroscopic effects are also not considered here. Response
amplitudes Axε (Ω), Ayε(Ω) in x-direction (black) and y-direction (blue), excitation frequency Ω, two
resonances ωx, ωy and eccentricity ε according to [73].
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In Fig. 4.2, the rotor orthotropic support is represented by kx and ky, mainly expressed by
the blower’s struts and housing. For the outlined minimal model, we assume a homogenous,
symmetric shaft (stiffness kc ) which is connected with a lumped mass m as overhung impeller
at the rotor end. With respect to the mass position, Fig. 4.2 contains just a schematic depiction
concerning the flying rotor support of the real application. By performing an eigenanalysis of
the model, the two resonances

ωx =

√
kc
m
· 2kx
2kx + kc

and ωy =

√
kc
m
· 2ky
2ky + kc

. (4.1)

are obtained. These eigenfrequencies appear as vertical dotted lines in the FRF (see Fig. 4.2).
Here, the black line represents the frequency response amplitude Axε (Ω) in x-direction with
eigenfrequency ωx whereby the blue line (Ayε(Ω)) depicts the corresponding response in y-
direction with resonance ωy. Within the schematic FRF representation, we only regard
unbalance excitation (eccentricity ε) and ignore possibly damping effects. Until the ωx line, x-
and y-direction respond in phase1. Above this first eigenfrequency, a 180 degree phase shift of
Axε (Ω) is observed (rotational speed of the application between 19Hz and 22Hz). After passing
ωy (ωy = 22Hz in the presented example), the amplitudes respond phase-synchronously again.
These phase shifts can express themselves within the acceleration signal if measuring at the
blower housing in the two horizontal directions. This effect can also be clarified referring to
[48]. Here, the phenomenon is explained as increasing and abating of an elliptical motion of
the unbalance-excited shaft center involving principal axes x (real part) and y (imaginary
part). For that, Axε and Ayε are utilized in the time domain representation. In this case, they
imply the elliptical half-axes

Axε =
ε · Ω2

ω2
x − Ω2

and Ayε =
ε · Ω2(t)

ω2
y − Ω2

(4.2)

with the equality of the absolute values of the sum and difference of the two amplitudes:

|Axε +Ayε | = |Axε −Ayε |. (4.3)

In the x-direction resonance, Ayε = 0 and in the y-direction resonance, Axε = 0. The motion
can be represented in the complex plane by the complex amplitude

𝓌ε = 𝓌x
ε,re + j𝓌y

ε,im = Axε cosΩt+ jAyε sinΩt. (4.4)

Ω constitutes the current operational speed and ε the unbalance mass eccentricity. When
applying the Euler Equations, we write the shaft center movement as

𝓌ε =
1

2
(Axε +Ayε) e

jΩt +
1

2
(Axε −Ayε) e−jΩt = A𝓌

(+)e
jΩt +A𝓌

(−)e
−jΩt (4.5)

with the elliptical shaft movements A𝓌
(+) and A𝓌

(−) in sense and opposed to the rotor turning
direction. Depending on these two superimposed orbits, the mode correlated, highest amplitude
is responsible for whirling direction: In case of |A𝓌

(+)| > |A𝓌
(−)|, the shaft orbit shape is elliptical

and its rotation direction is orientated in forward whirl. In case of |A𝓌
(+)| < |A𝓌

(−)|, the shaft
moves on an elliptical shape too, but in backward whirl direction. In case of |A𝓌

(+)| = |A𝓌
(−)|,

oscillating linear motion is observable (see Fig. 4.7). Inserting the half-axes (Eq. (4.2)) into
Eq. (4.5), we determine both amplitudes of the forward and backward whirling movement
ratio:

A𝓌
(+) =

εΩ2

2

ω2
y + ω2

x − 2Ω2(
ω2
y − Ω2

)
(ω2
x − Ω2)

and A𝓌
(−) =

εΩ2

2

ω2
x + ω2

y(
ω2
y − Ω2

)
(ω2
x − Ω2)

. (4.6)

1rotational speed of the application below 19Hz.
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Operational Measurements

To get an idea of the blower’s vibration resulting from a unbalanced rotor at the entire
operating range, we acquired the system response during a rotor run up. For data acquisition,
triaxial Kistler 8688A piezoelectric accelerometers combined with a Siemens LMS Test Lab
System2 were used. Note that triaxial accelerometers are utilized for the measurements but
only the horizontal X- and Y-directions are considered here. A waterfall diagram is determined
via Fast Fourier Transform3 and depicted in Fig. 4.3. Looking at the test configuration on
the left side of the figure, the circle represents the housing’s top ring with centered rotor
(not shown) and delineated rotation direction with accelerometer position (black dot). The
waterfall diagram results from an y-direction measurement. Regarding the waterfall plot, the
first order resonance at 22Hz is striking. Here, the excitation is realized by a defined, 10 g
unbalance mass and 204mm eccentricity. The speed-dependent amplitude at the 22nd speed
multiple is excessive due to eleven impeller blades and their twofold excitation frequency due
to a flow channel division in the housing.
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Figure 4.3: Y-direction run up waterfall diagram of a blower with an unbalanced rotor (10 g unbalance
mass, 204mm eccentricity). Note the resonance at 22Hz which is excited by the first order. The 11th
and 22nd orders also occur with striking amplitudes.

Here, the orbit is shaped elliptically and the unbalanced rotor just shows an increased
amplitude. The rotation direction of the signal is equally aligned compared with the rotor’s
sense of rotation. We observe forward whirl [48]. The same measurement was subsequently
made for further operating speeds. Considering the 20Hz operational frequency near the
resonance of 22Hz, and compare the result with the 16Hz plot, two conspicuities were observed:
The ellipsis inclination has rotated by 90 degrees and the rotating direction has reversed. Now,
the signal is oppositely orientated compared with the rotor’s sense of rotation. This specific
effect will be discussed in the next subsection.

28192 S/s sampling frequency.
330 s measurement time for each rotational speed frequency, (5Hz - 60Hz, 1Hz step resolution). Note, all
written speed frequencies in this section refer to the magnetic field frequency and do not correspond to the
exact mechanical rotation speed.



4.1 Blower Test Rig 69

For the subsequent considerations, the sensors were arranged
as shown in Fig. 4.4 consisting of two horizontally, orthogo-
nally aligned measurement DoF (black dots). Utilizing that
test set-up, we evaluated a healthy reference blower and a
blower with unbalanced rotor (10 g unbalance mass, 204mm
eccentricity). As operational speed frequency, 16Hz were
chosen in order to stay far enough away from the first order
resonance as depicted in Fig. 4.3. For all subsequent orbit
plots, a FIR bandpass filtera was used, applying MATLAB®’s
filtfilt function to the time signals in order to to eliminate
phase shift errors. The resulting acceleration orbits (black
reference rotor, blue unbalanced rotor) are plotted in Fig.4.5
(left).
a± 5Hz around the considered operational speed frequency, forward
and backward filtering.

Y

Rotation

X

Figure 4.4: Measurement
set-up (blower top view) with
marked sensor positions at the
outer housing (black dots).
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Figure 4.5: Acceleration orbits of the blower housing with a reference rotor (black) and an unbalanced
rotor (10 g unbalance) at 16Hz rotational speed with forward whirling rotor (left). Right: backward
whirling rotor at 20Hz rotational speed.
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Now, a significantly higher rotational speed
at 37Hz is considered to be far apart from
the resonance area. Comparing the result-
ing acceleration orbit with the correlating
plot at 20Hz rotational speed, we find the
same effect that occurs between 16Hz and
20Hz. The ellipsis inclination has rotated
again by 90 degrees and the signal direc-
tion is now again equally aligned to the
rotating direction. The ellipses of both ref-
erence and unbalanced rotor excitation are
now drawn in rotational sense of the ro-
tor. We also observe a strong amplitude
increase compared with the lower operat-
ing speed measurements due to the un-
balance effect. Both directions reversed
their phases two times. Hence, a correla-
tion to resonance effects might be obvious.
Particularly, the orbit shapes direction of
inclination, which alters by about 90 de-
grees at each regarded operational speed
might result from the mode shapes.
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Figure 4.6: Acceleration orbits of the blower
housing with a reference rotor (black) and an un-
balanced rotor (10 g unbalance) at 37Hz rotational
speed. Forward whirling rotor.

We assume that the orbit forms come from
the bending mode direction associated to
the modes, but an evidence is needed.
Therefore, the operational excitation re-
sponse at the resonance frequency of 22Hz
is observed. The rotational speed was var-
ied around 18Hz-33Hz to find a second
mode shape, orthogonal to the known y-
direction movement at 22Hz. The associ-
ated x-direction mode shape was found
with a resonance at 19Hz. The anal-
ysis was performed on the blower with
a balanced reference rotor. Both reso-
nances lie very close together (orbits see
Fig. 4.7.). The reason for this kind of
orthogonal modes are two different stiff-
nesses of the housing relative to the rotor.
These dynamic properties are obvious re-
garding Fig. 4.1. Here, entire structure’s
y-direction is much more rigid then the
x-form. We have a closer look at these
modes with correlation to signal rotation
direction, hereinafter.
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Figure 4.7: Acceleration orbits of the two or-
thogonal mode shapes determined utilizing a
balanced reference rotor. Mode 1 at 19Hz and
mode 2 at 22Hz. The two half axes are plotted
in orange.
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Intermediate Summary

In this section, the influence of housing dynamics on unbalance monitoring was investigated,
especially with respect to the effect of an orthotropic elastic rotor support. Forward and
backward whirls are represented within the rotational frequency of the orthogonally aligned,
horizontal measurement DoF. The effect on these horizontally measured acceleration signals
when passing through resonances was discussed using the blower test rig. At resonance, the
vibration orientation at the outer housing is aligned exclusively with the mode shape direction.
Due to these orthogonally aligned mode shapes (Fig. 4.7), an elliptical orbit is no longer
visible during operation at the two resonances (19Hz and 22Hz). Therefore, a "rotating force"
is no longer visible in the measurements and the unbalance force is difficult to determine. In
the measurements, the two half axes are visible in the resonant case (orange lines in Fig. 4.7).
In an undamped system, the amplitude of the resonating axis would approach infinity, while
the amplitude of the axis orthogonal to it would be zero. Due to these effects, the operating
frequency range for further investigations in this work was set to a range between 30Hz and
60Hz4 to avoid these resonances.

4range of the exciting magnetic field rotational speed.
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4.1.2 Modal Analysis

As seen in Sec. 4.1.1, the blower test rig has some resonances which would affect monitoring
strategies if the rotational speed overlaps with them. In order to further become familiar
with the system, Mulser [89] performed an experimental modal analysis. For the investigation
within this thesis, the entire operating frequency range up to 60Hz is regarded. Therefore,
measurements were carried out utilizing Siemens LMS Test Lab, an electrodynamic shaker
(Type Brüel & Kjaer 4809) for radial and tangential excitation. In order to determine the
system’s response properly, 44measurement points at ten different heights (Sensor Type
8688A50T) were distributed over the entire blower. The system was excited applying a
periodic chirp force signal to the shaker5. All measurement and excitation DoF are visualized
in Fig. 4.8. Here, the height of the sensors in the left blower overview is marked by dotted
lines. Based on the depicted setup, seven modes were found within the operational frequency

x
y

z

y
x

Excitation

Top View

Fr

Ft

Figure 4.8: Experimental modal analysis test setup based on [89]. Left: housing and base measurement
points. Sensor grouping according to the height highlighted by dotted lines. Right: rotor disc
measurement points, radial and tangential excitation forces Fr, Ft.

range. These are listed in Tab. 4.2. Here, we have two horizontal foundation resonances below
the pronounced bending mode shapes in x- and y-direction as discussed in Sec. 4.1.1. In this
case, only structural properties excluding rotational effects are regarded. Comparing the first
resonance frequency (18Hz) with the preliminary operational measurements, we recognize
that it is slightly lower compared to the resonance within operation (19Hz). On the one hand,
this effect could be argued with a centrifugal stiffening due to an axial compressive force on
the overhung rotor in the blower in the resonance case [47]. On the other hand, the deviation
is only one hertz and thus within the tolerance of the measurement uncertainty. A foundation
eigenfrequency at 31Hz in z-direction appears beyond the first blower bending mode shapes,
but does not cause issues regarding the measurement signals at operation, probably because
it is not excited by the rotor unbalance. Modes six and seven also do not affect the output
signal in the same way compared to the first two bending modes. For this reason, they are not
discussed in detail. Note that modes one to six show high damping ratios. This is probably
5measurement time: 5.12 s, excitation frequency range: 0-3000Hz.
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caused by the foundation: When looking at the mode shapes (see for example Fig. 4.9), we
recognize that the foundation seems to be part of the modes and the decoupling elements
(high damping) are part of the shape movements. Following the investigations carried out as
part of this work, the elastomeric elements of the foundation were replaced with air bellows to
improve decoupling. Now, we have a closer look at the first two bending mode shapes due to

Table 4.2: Resonance frequencies f i, damping ratio θ and mode shapes of the blower test rig within
the frequency range of 5Hz - 60Hz according to [89]

Mode f i/Hz θ/% Shape
1 9 3,5 Foundation mode in x-direction
2 11 3,2 Foundation mode in y-direction
3 18 3,0 Bending mode in x-direction
4 22 3,6 Bending mode in y-direction
5 31 3,2 Foundation mode in z-direction
6 41 3,0 Bending mode in x-direction
7 52 0,5 Bending mode in y-direction

their influence on the system as described in Sec. 4.1.1. These are depicted in Fig. 4.9. Here,
a three-panel projection including an isometric view of the blower test rig is depicted. The
deformation within both modes is highlighted in orange. On the left hand side, the x-axis
shape (18Hz) is observed whereby the y-direction shape (22Hz) is depicted on the right. The
defined movements with slightly diagonal orientation are conspicuous. These are comparable
with the rotor orbit alignments in Fig. 4.7. To sum up, both expected operational modes are
validated by the experimental modal analysis.

xy
z

22Hz18Hz

Figure 4.9: Experimental modal analysis results based on [89]. Left: Bending mode shape in x-
direction at 18Hz. Right: Bending mode shape in y-direction at 22Hz.
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4.1.3 Transfer Function Reciprocity

Besides the knowledge of mode shapes,
linearity and reciprocity between hous-
ing and rotor is of big interest for the
presented modeling approach. As dis-
cussed in Sec. 2.3.4, a hint for linear-
ity generally exists, if two admittances
Y ij and Y ji have the same magnitude.
In this case, Y ij and Y ji are repre-
sented by Y Housing, Rotor upper shaft end and
Y Rotor upper shaft end, Housing. This is justi-
fied since different model types must be
characterized with respect to operational
rotor forces by measuring at the outside
housing. The test setup to investigate
reciprocity is depicted in Fig. 4.10. Here,
the automatic modal hammer AMimpact
[83] was utilized. The system responses
were gathered by triaxial piezoelectric ac-
celerometers (Kistler 8688A). A Müller-
BBM PAK front-end was used for signal
acquisition and for building the transfer
functions up to 1.6 kHz (0.5Hz resolution).
From this point on, the observed frequency
range is restricted to that maximum.

Rotor
Upper
Shaft
End

Housing

z

y
x

Figure 4.10: Test setup for an exemplary reci-
procity measurement between the rotor upper
shaft end (obscured by flow guiding coverage) and
the housing based on [89]. Horizontally aligned
excitation and measurement direction.

We chose sensor and impact posi-
tion at the housing based on a strut
connection between motor block and
housing. Here, proper structure-
borne transfer is ensured. The rotor
excitation DoF was selected based on
accessibility reasons. Based on that
restriction, radial excitation is exclu-
sively possible on the rotor upper
shaft end. This shaft end is hidden
by the impeller blades in Fig. 4.10
and depicted in Fig. 4.11.

Rotor
Upper
Shaft
EndHousing

Figure 4.11: Top view on the test setup with impeller
blades and the transfer path between rotor upper shaft
end within the impeller and housing.
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For better understanding of this special shaft extension within the impeller, Fig. 4.11 shows
a top view of the rotor inside the blower. The upper shaft end of the rotor can be seen as
measuring and excitation point. The results of both FRFs6 are plotted in Fig. 4.12. Comparing
them, we notice proper reciprocity for the most part of the observed frequency range. Though,
within an area between 100Hz and 400Hz, the reciprocity is less satisfactory. This is also
represented by the coherence which reaches its maximum at 500Hz. The range with greater
discrepancy between 120Hz and 200Hz is discussed in 5.2.3. Here, an advanced model is
needed to describe the dynamic behavior between rotor and housing sensor position.
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Figure 4.12: Frequency response accelerance magnitudes and coherences concerning reciprocity at
rotor upper shaft excitation and housing measurement (black) and reversed (gray) based on the setup
in Fig. 4.10 referring to measurements of [89].

4.1.4 Summary

The presented blower test rig shows some specific phenomena concerning orthotropic elastic
rotor support. Although vibration monitoring in the frequency range below 30Hz is problem-
atic due to resonances, the specified frequency range (30Hz - 60Hz) is in a suitable frequency
range for monitoring, especially with the 11th and 22nd harmonic excitations. This is also
shown by the transfer function in terms of reciprocity and coherence between rotor and hous-
ing over a wide frequency range. All resonances and associated mode shapes within the
operating speed area including higher harmonic excitations must be kept in mind for the anal-
yses. This high dynamic content even within the specified speed range qualifies the blower
test rig as predestined, complex example for vibration monitoring utilizing hybrid dynamic
models.

6housing excitation, upper shaft end measurement and upper shaft end excitation with housing measurement.
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4.2 Pump Test Rig

As introduced in the flow chart (Fig. 1.1) in the beginning of this thesis, different types of
methodology are shown at two applications. Our second application besides the blower setup is
an oil pump test rig. Essentially, we use it to show a simple virtual force estimation approach
for bearing condition monitoring at the end of this thesis (see Sec. 7.2.1). Furthermore, some
bearing fault detection algorithms were evaluated utilizing an exemplary MEMS accelerometer
(Sec. 3.4). The whole set-up is depicted in Fig. 4.13. Required measurement positions and
transfer functions are delineated (1-3). The installed centrifugal pump is responsible for
oil circulation within a cooling circuit of a traction transformer7 . If the pump stands still
because of a defect of its roller bearings, the whole train stops. Due to the importance of
that component, exact and precise monitoring is essential. The aim is to find the force and
the resulting acceleration induced by a roller bearing defect by measuring far away from the
bearing - above the electrical junction box (9). Therefore, the MEMS sensor8 system is built
in a customized box (10). In Fig. 4.13, we see the pump and a pipe system which is fed by
an oil compensation tank (not on the photo). The pump is driven via an inverter9 and one
can increase the resistance by a throttle (8) in a defined manner. The flow is principally
verifiable by an ultrasound flow measurement system (4). Though, this measurand is not
employed within this thesis, since focusing on stationary rotational speed is sufficient for the
observations. In order to keep an eye on the temperature with a PT100 sensor, a measurement
case (5) is integrated into the pipe system. The test rig is connected to the oil compensation
tank via a hose (6) and can be deflated at the drain outlet position (7).
The pump rotor is supported by fixed-free bearings. Axial forces are transmitted by a double-
row angular ball bearing (SKF type 3305 ATN9/C3). Additional radial support is ensured by
a single-row deep groove ball bearing (SKF type 6304/C3). Further important information
about the test rig is written in Tab. 4.3.
For the measurements, we utilize two types of accelerometers. As reference, the single-axis
sensor (Brüel & Kjaer type 4397) is used in combination with a SKF Microlog GX data logger
at 25.6 kS/s sampling frequency. This piezoelectric accelerometer is visible twice in Fig. 4.1510.
Furthermore, a MEMS accelerometer11 is used for the final application within the presented
methodology. This sensor device is integrated in the box above the pump’s electrical junction
housing. Note, the global coordinate system is actually identical with the MEMS system.
This system is rotated around the z-axis by −22.5◦ compared with the test rig base plate and
the pipe system.

Table 4.3: Technical specifications at of the centrifugal oil pump B2/120/80 at rated operating point
based on [113].

Motor Data Hydraulic Data
Power P 2.8 kW Discharge head H 17.7m
Current IN 4.4A Flow rate Q 30m3/h
Voltage U Y-440V Oil temperature range T −25 ◦C...115 ◦C
Rated speed nN 3500min−1

Frequency f 60Hz
Active power factor cos(φ) 0.83

7A traction transformer transforms the overhead line voltage of a railroad line to the operating voltage of the
locomotive.

8evaluated in Sec. 7.1.
9Sinamics G120C, not on the photo.
10This sensor is also applied as reference for the MEMS sensor evaluation in Sec. 7.1.
11STMicroelectronics LSM6DSL, characterized in Sec. 7.1, 3332 S/s sampling frequency.
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Figure 4.13: Oil pump test rig with bearing acceleration measurement position (1), housing accelera-
tion measurement position (2), MEMS sensor and reference acceleration measurement position (3),
ultrasound flow sensor (4), temperature measurement position (5), connection to oil compensation
tank (6), drain outlet position (7) and throttle (8). Admittances Y11, Y21 and the transmissibility T23
are drawn in for future considerations in Sec. 7.2.1. The pump is powered by the electrical junction
box (9). On top of its housing, a customized sensor box with wireless data transmission is mounted
(10, cover omitted).

In Sec. 3.4, roller bearing fault diagnosis methods were
already evaluated. These were investigated with respect
to the limitations of an exemplary MEMS sensor sys-
tem. All measurements concerning bearing faults were
performed at the oil pump test rig. The implemented,
synthetic outer ring bearing fault is depicted in Fig. 4.14.
Although its lack of realism compared with real roller
bearing faults, the defect is exactly defined by a groove
(1.5mm width) and definitely over-rolled by the balls. In
the presented example, the the single-row ball bearing
(SKF type 6304/C3) is prepared. The corresponding bear-
ing seat is visible in Fig. 4.15 below the sensor position
(1).

Figure 4.14: Exemplary, syn-
thetic outer ring fault with
1.5mm groove width at the single-
row ball bearing (SKF type
6304/C3) prepared by [113]
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At the pump test rig, we essentially
have three measuring positions re-
garding operating accelerations and
transfer functions. All three loca-
tions are depicted in Fig. 4.13. Po-
sition (1) is placed directly at the
single-row deep groove ball bearing
and position (2) is selected at the
outside pump housing. Here, the
shortest transfer path (Y21) to the
bearing is ensured. At sensor posi-
tion (3) we have the MEMS sensor
and the same reference accelerometer
glued as chosen for locations one and
two. Both positions and the transfer
function (white dotted line) are de-
picted in Fig. 4.15. Here, we see the
right disassembled flange including
the bearing seat below sensor posi-
tion (1).
Now, the pump test rig’s vibration
will be evaluated. In order to explain
all fundamental frequencies which oc-
cur in operation, specific character-
istics need to be known.

y z

x

2

1

Y21

Figure 4.15: Disassembled right pump flange of the test
rig in Fig. 4.13. Partial view of the single-row deep groove
ball bearing location (1) and the housing acceleration
measurement position (2). The drawn admittance (white
dotted line) and the sensor positions are required in
Sec. 7.2.1.

During operation, impulse response frequencies caused by the blades of impeller and flow
guiding elements are observable. According to [57], based on hydraulic forces, the blade pass
frequency (f BPF) appears in the vibration signal of centrifugal pumps:

f BPF = nib · f n (4.7)

with rotational frequency f n and number of impeller blades nib. Impulse forces appear due to
loading and unloading of the impeller blades. Particularly, they arise when passing stationary
components of the housing during each turn of the rotor.
Furthermore, there is the blade rate frequency (f BRF):

f BRF =
nib · nfb
E

· f n, (4.8)

with number of flow guiding blades nfb plus E, the greatest common divisor of impeller blades
and flow guiding blades. Usually, the amount either of impeller- or flow guiding blades is
odd. If their number were both even, more than one pair of blades would cross at the same
time during rotation. This would lead to pronounced pulsation effects and must be absolutely
avoided. Due to this context, the factor E appears in Eq. (4.8). In the presented example,
that constellation expressed itself in seven impeller blades and eight flow guiding blades of
the housing (see Fig. 4.16 and 4.17). Consequently, the following frequencies can appear at
operation:

f BPF = 7 · f n

f BRF =
7 · 8
1
· f n = 56 · f n
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Figure 4.16: Oil pump
impeller [113].

Figure 4.17: Oil pump housing partial view with flow guiding
blades [113].

In Fig. 4.18, a spectrum of the healthy pump state is depicted. Here, the Fourier transformation
of the MEMS sensor measurement above the electrical junction box is plotted. In this context,
Röhrl [113] measured over a snapshot time block (0.615 s)12. Essentially, the pump operated at
steady state (58.3Hz rotational speed f n). Thus, we regard dominant peaks in the spectrum
and find correlations between the frequency components and the pump geometry.
To begin with, an amplification can be seen at around 175Hz belonging to a structural
resonance13. Visible harmonics start with the seven impeller blades as well as the eight
flow guiding blades. They are dominant based on multiples of the rotational speed. When
going further along the frequency axis, the twofold of both blade peaks are conspicuous
(14 f n and 16 f n). The oil is divided into the stator winding chamber and a surrounding flow
cavity. This partition wall can cause these twofold frequencies. Furthermore, there are four
additional chambers at the opposite pump side. These four boundaries and their duplicates
are modulated around the impeller and flow guiding blade frequencies. As a consequence,
additional peaks are visible at 18 f n , 20 f n, 22 f n and below the 14 f n (not marked). The
frequency band in which the main resonances of the system are located can also be excited by
the third harmonic originating from a modulation on the left side of the impeller blade pass
frequency.

12As it will be discussed in Sec. 7.1, the acquisition time of the MEMS device is restricted to this value of
0.615 s due to low power wireless data transmission requirements. By observing a single snapshot, random
discrete events are not eliminated by virtue of averaging. Proper averaging is not possible in this case by the
MEMS, since all snapshots are recorded at intervals of 30 s. Unsteady flow processes would lead to increased
noise in the resulting spectrum.

13see transfer function plot in Fig. 4.19 for details.
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Figure 4.18: Vibration spectrum characterizing the healthy pump test rig state. Fourier transfor-
mation of a single wireless sensor system snapshot (MEMS accelerometer type LSM6DSL, 0.615 s
measurement time at 58.3Hz pump rotational speed f n). Measurement performed by Röhrl [113].

4.2.1 Transfer Function Reproducibility

Within the scope of rotor system fault monitoring, there is always a transfer path between
fault source and measurement position. Since the FRFs are utilized to find virtual forces and
accelerations, these FRFs need to be known properly. By virtue of that, three pumps of the
same type were investigated with respect to reproducibility of the radial x-direction transfer
function. Here, we utilized the build-in pump (filled with oil) and excited the structure
at position (3) with an impact hammer (Brüel & Kjaer 8204) and measured the response
at the bearing position (1) (see Fig. 4.13, 4.15 for the positions). Comparing the transfer
functions in Fig. 4.19, the reproducibility of all three pumps in magnitude and phase is striking.
Excepting the frequency range around 700Hz, the repeatability is more than satisfactory.
This is an important outcome, as there is a lot of potential to change the system during
dismantling and set-up including a new oil filling process at changing pumps within the test
rig. Although all screws were tightened with the same torque14 and the overall system was
vented, small differences can arise concerning the filling degree. These mass changes and
possibly stiffness discrepancies after the mounting procedure can be responsible for the visible
lacks of reproducibility.

14installation information: Tightening torque of bolts between pump ↔ pipe system: 100Nm, tightening
torque of bolts between pump flanges ↔ pump housing: 20Nm, tightening torque of bolts between electrical
junction box ↔ pump housing: 10Nm.
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Figure 4.19: Radial x-direction transfer functions resulting from excitation at the MEMS sensor
position (3) and acceleration response measurement at the oil pump bearing (1). See Fig. 4.13, 4.15
for the positions. The reproducibility is shown at three pump models of the same type.

4.2.2 Operational Output Reproducibility

Besides transfer function reproducibility, the influence of disassembling and reassembling the
bearings must be evaluated. This is necessary in order to quality the test rig concerning
comparability of healthy and faulty bearing states. The general qualification of the test
rig for roller bearing monitoring methods in Sec. 3.4 also required this step. Operational
forces mainly occur at the rotor and are transferred over the bearing position. This bearing
position is not accessible by utilizing a classical impact hammer. Hence, the comparison
of operational vibration signals after a disassembling and reassembling procedure provides
an additional statement about transfer function reproducibility. Here, we measured the
operational acceleration in all three sensor axes using three monoaxial Brüel & Kjaer 4397
sensors and regarded the space absolute value of these three axes. In this context, we evaluated
scalar values according to the statistical indicators of VDI3832 [140]. These indicators were
observed at healthy state before and after installation of a defective bearing in the interim.
Specifically, we compared Root Mean Square (RMS) value, Crest Factor and kurtosis15 of these
two healthy states over the entire reference sensor bandwidth of 25.6 kHz. The measurements

15explanation see Sec. 3.4.1.
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were recorded for 30 s and broken down into 10 blocks of 3 s each. We performed the FFT
over these blocks and regarded the averaged spectrum of these 10 samples up to a frequency
of 500Hz. This additional frequency spectrum is plotted in Fig. 4.20. The measurements
were performed in dry run in order to avoid errors due to differing flow influences at possible
venting deviation of the test rig. Furthermore, four days were allowed to elapse between the
first and second measurement.
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Figure 4.20: Comparison of two operational measurements at healthy bearing states concerning
reproducibility based on [113]. The measurements were performed before (blue plots) and after (orange
plots) installation of a defective bearing in the interim at dry run. Note that the bearing was healthy
at both measurements, before and after mounting the defective one. The space absolute value of x, y
and z-direction (three times monoaxial sensor type: Brüel & Kjaer 4397, 58.3Hz rotational speed) was
regarded here.

The first and second results of all three scalar values differ from each other by less than 10%.
When examining the spectrum, it is difficult to distinguish between both measurements at
the fundamental frequency and its first harmonic (first and second peak). Conversely, the
higher harmonics show larger differences. Though, the whole investigated frequency range up
to 25.6 kHz is captured by the scalar values. Therefore, we attribute additional importance to
them and classify the results as reproducible.

4.2.3 Temperature Influence

During rated operation of the oil pump test rig, 2.8 kW are consumed by the motor. This
power over time is converted into mechanical work with thermal energy. The total amount is
divided into flow, kinetic and dissipation work. Due to low flow speed and pressure differences
within the pump test rig, the most of consumed power during operation time is converted to
dissipative thermal energy. By virtue of this effect, the test rig heats up very fast. In our
measurement example, the temperature increases from 36 ◦C to 82 ◦C during an operation time
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of 30min. Linear temperature rise by this measurement is not assumed, but the approximated
temperature increase speed is known. Based on this information and an acquisition of 60
MEMS sensor snapshots within an operating time of 30min, a Fourier transformation on every
snapshot was performed and the result was plotted in Fig. 4.21. When looking at the plot in
detail, we see the magnitude slightly decreasing, especially in the second half of the operation
time. This effect mainly occurs in the lower frequency range. The amplitude decrease can be
explained by declining oil viscosity at rising oil temperature. The lower oil viscosity reduces the
axial pump resistance due to diminished displacement work. Because of this lower resistance,
the restoring axial rotor force decreases. Thus, the fixed bearing is pressed less into the seat
and consequently impact forces caused by bearing faults are also reduced. Note, the exemplary
bearing fault (Fig. 4.14) was implemented to see the temperature effect based on proper
excitation at operation. However, within the first ten minutes of pump operation, we ensure
quasi-stationary condition concerning the vibration amplitude, although the temperature
course was not exactly measured. In this time section, all stationary operational measurements
for this thesis are taken. Furthermore, note that temperature sensitivity effects of the applied
MEMS sensor are evaluated separately in Sec. 7.1.2. Doubts concerning possibly temperature
cross-correlations can be eliminated there.
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Figure 4.21: Envelope spectrum of 60 snapshots at stationary rotational speed performed with a
wireless MEMS sensor device (LSM6DSL) at the pump test rig in axial z-direction at 58.3Hz rotational
speed. The measurements were performed by [113] with an exemplary bearing fault (6304-A-II). The
temperature increased from 36 ◦C to 82 ◦C during the snapshots within 30min.

4.2.4 Summary

The oil pump test rig is successfully qualified for virtual sensing applications with respect
to bearing diagnosis. Therefore, the main peaks within the operational vibration spectrum
can be physically justified even when utilizing a MEMS sensor system. The transfer function
reproducibility is satisfactory determined at three different pumps of the same type after
disassembling and reassembling. Also, broadband indicators as RMS value, crest factor
and kurtosis show proper repeatability when measuring at operation. Based on increasing
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temperature of the pump medium during operation and the slightly decreasing vibration
amplitudes with the operating time, a time window with stationary operating conditions is
defined.
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Hybrid Dynamic Substructuring
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Chapter 5

Hybrid Dynamic Modeling

Complex systems are not easy to model strictly numerically or experimentally. Our approach
to deal with that problem is a hybrid solution. In this chapter, we propose a step-by step
technique which is demonstrated on the exemplary blower application. Therefore, the entire
system is divided into the sub-components rotor and housing. Firstly, the rotor is modeled
numerically by a reference simulation based on a detailed finite element simulation (Sec 5.1.1).
Building on these results and an experimental validation, a rotor model with reduced DoF is
created (Sec 5.1.2). We aim to reach an efficient rotor model with a small amount of DoF in
order to get it suitable for monitoring applications. The content of Sec 5.1 with the entire
rotor modeling technique has been published in [72]. Alongside, the housing is modeled in two
ways. A simplified numerical solution as well as an experimental model are created (Sec 5.2.1).
In Sec 5.2, the rotor is coupled with both housing types performing the Lagrange Multiplier
frequency-based substructuring technique. To correct the resulting overall model estimate, we
perform further FRF measurements at some locations of the complete blower set and then
expand this dynamic information to the entire DoF set in Sec. 5.2.2. This modal expansion is
based on the System Equivalent Model Mixing technique. Conclusively, the hybrid blower
model is validated by frequency response measurements.

5.1 Rotor Modeling

To begin with the rotor modeling, we need an overview of the rotor type. This component is
widely used in applications like blowers and pumps. It is depicted in Fig. 5.1. On the left, the
mounted state shows the working principle within the blower, whereby the rotor sucks air
from the top and blows it on a motor below. On the right, all main rotor parts are labeled.
We see two bearing seats on the shaft, to support the overhanging rotor. Also on the shaft
section, there is a bundle of laminations which belongs to the integrated cage motor. The
transition between shaft and impeller blades consists of a thin circular disc, which is mainly
responsible for the rotor’s structural dynamics within the presented application. This blade
will be challenging in terms of model set-up within this section. Eleven impeller blades are
directly welded on this transition. These are covered by a flow guiding hood.
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Air in

Air out

Shaft

Bundle of laminations

Thin circular disc

Impeller blades

Flow guiding coverage

with bearing seats

Figure 5.1: Blower application (left) with extracted rotor (right) and marked main sections based on
[72].

5.1.1 Reference Simulation

The modeling is started by a reference finite element simulation (ANSYS® SOLID 187
tetrahedral volume elements). Therefore, a very fine mesh structure (575 718 DoF) was chosen.
Here, we focus on proper experimental validation possibility. In the given case, boundary
conditions are challenging. Due to this problem, the rotor is virtually hung up at the rotor
disc during simulation in order to provide approximately free-free boundary conditions. In
reality, for the experimental validation, elastic bands were utilized to hang up the rotor. The
stiffness of these bands is measured and embedded as boundary condition in the simulation
(see Sec. 5.1.3). This band support has different stiffnesses in axial and radial direction. These
stiffnesses are needed by ANSYS® in form of a stiffness per surface to which the stiffness
is linked. Therefore, the axial band stiffness is divided by the impeller underside surface in
order to approximate the axial rotor support stiffness for ANSYS®. This area is assumed
as axial active surface required by the ANSYS® simulation. The radial active surface is
similarly implemented: For this purpose, the disk is virtually cut horizontally in the center
along the rotor axis. The resulting cut surface is used twice as a surface for the connected
radial "springs" of ANSYS®. These assumptions are made to obtain a base stiffness in the
unit N/m3 for ANSYS® to solve the eigenvalues. On these conditions, two first mode shapes
were calculated at 81.6Hz and 795.2Hz) (Fig. 5.2). Note that the quasi-rigid low-frequency
modes due to the support conditions were not regarded here.
Based on the applied boundary conditions, the rotor shows characteristic bending in the
impeller disc area. Especially, the first mode bends only at this thin transition. Also within
the second mode, we see pronounced deformation of the blade. Here, the upper bearing seat
is part of the deflection. Although, the second mode will change significantly in installed
condition, it is a structural property of the extracted rotor and will be used for experimental
validation. These results serve as an orientation for the subsequent reduced model creation.
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Figure 5.2: First two rotor bending mode shapes based on the reference simulation (very low modes
due to soft supports not regarded). Left: 81.6Hz, right: 795.2Hz based on [72].

5.1.2 Reduced Simulation

Now, a rotor model is developed which describes its main dynamic properties along the rotary
axis on a minimal DoF set. We are aiming at building a model containing a small number of
DoF in order to use it for monitoring purposes. In that case, the model should be small so that
it can run fast and with small computation resources for instance on a microprocessor. Hence,
we will develop a model based on simple one-dimensional elements having four DoF per node
(two horizontal displacements and two bending rotational DoF). Due to the aspired monitoring
solution, where the fault forces mainly occur in horizontal direction, we concentrate on four
DoF per element. Only two radial displacements and two axial bending DoF are regarded.
Therefore, the association of elements is primarily modeled as a one-dimensional Timoshenko
beam. Every beam element is structured as

ue =


ux
ψx
uy
ψy


{
ux, uy : translational DoF → radial displacements
ψx, ψy : rotational DoF→ bending around the rotor axis

(5.1)

For this reduced simulation, the rotor is divided into four sections. These sections are selected
based on their likewise geometries. Parts should be found, where similar discretization methods
are applicable. These belong mainly to three rotor substructures (shaft, disc and adjoining
upper impeller part). Here, the upper impeller part is discretised differently concerning rotor
blades and flow guiding coverage. In Fig. 5.3, we see the MATLAB®-based rotor visualization
of the presented blower rotor example. In this figure, the shaft which is based on the beam
model as well as the flow guiding coverage are rendered in blue, whereby the thin circular
disc is highlighted in orange. Note that the beam elements used to discretize the cylindrical
shaft (Fig. 5.3) have different lengths. Although this dimension dz is initially set to 20mm,
we enforce‚ an optimal element distribution along the shaft sections and prohibit diameter
jumps that overlap elements. Fig. 5.3 shows a schematic side view of the discretized rotor.
We begin with the rotor shaft section. The rotor coordinate system starts at the lower shaft
end. Here, the z-axis points along the rotor axis, upwards to the impeller. x- and y are
radially orientated as depicted in Fig. 5.3. The simulation is performed in MATLAB® under
the same boundary condition assumptions as in Sec. 5.1.1.
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Figure 5.3: Isometric blower rotor visualization based on the axial discretization of the reduced
model. The underlying cylindrical Timoshenko beam elements (blue) are distinguished from the thin
circular disc (orange).

Rotor Shaft Discretization

We outlined the rotor shaft by Timoshenko beam elements along the rotor axis [131]. This
is easily conceivable due to simple cylindrical shaft sections. Therefore, cross-sections and
geometrical moments of inertia are decisive. In this context, the general axial (x,y), polar
(p) and mixed (xy) geometrical moments of inertia [6], are specified as

x =

∫
A
y2 dx, y =

∫
A
x2 dy p = x+ y and xy = −

∫
A
xy dA. (5.2)

Within this section, the geometrical and polar moments of inertia x = y and p are
represented based on ring and circle sections (outer and inner diameter Da, Di) as

x =
π · (D4

a −D4
i )

64
, p = 2 · Ix and xy = −

∫
A
xy dA = 0. (5.3)

In case of the shaft: Di,circle = 0.
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z

Figure 5.4: Schematic sectional view of the axially discretized rotor (partially cut) with impeller disk
(orange). The light blue section contains the impeller blades in the area where they are not covered
with the flow guiding coverage (dark blue right end of the rotor).

Impeller Blades Discretization

Regarding the impeller blades, there are sections with constant cross-sectional areas and
sections with variable cutting surfaces depending on the z-coordinate along the rotor axis. We
start with the constant interfaces which border on the circular disc (Fig. 5.5). These blades
are described by their inner and outer radii r1, r2. Essentially, they are ring sections ranging
from rti to rvi over the angle φ with circle center Ms. D characterizes the intersection point
on a virtual line y in the middle between r1 and r2. Considering a single blade, we recognize
a coordinate system rotation to the individual blade η - ξ system. In order to calculate the
blades’ geometrical moments of inertia, their cross-sectional area as well as the distance yS
between their centroid S and the individual blade radial coordinate system center MS are
needed. Based on these parameters, the geometrical moments as well as the volumes along
the rotor axis are defined. Particularly, they are derived in App. A.1. Note that there is also
a section with varying rotor blade cross-sectional area along the rotor axis. The according
geometrical correlation is figured out in App. A.2.
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Figure 5.5: Impeller sectional view. Extract with two blades (blue) and all utilized coordinate
systems as well as geometric parameters based on [72].

Flow Guiding Coverage Discretization

Adjacent to the blades, there is the flow guiding coverage which structurally stiffens the
impeller. To implement these effects, the cover is discretized in four sections. Each section has
a law in which the specific, geometrical correlation between z-axis and cross-sectional area is
defined. Within these sections, we approximate the ring radii rva(z) and rvi(z) = rva(z)− dw.
The four segments depicted in Fig. 5.6 are:
z0 to z1 (dashed black), z1 to z2 (black), z2 to z3 (orange), z3 to z4 (green). The equations
which describe rva(z) are written in Sec. A.3. Based on the resulting outer and inner ring
radii of the coverage, Eq. (5.2) is applied to calculate the moments of inertia.
The reduced rotor simulation should possess as less DoF as possible. Hence, the discretization
width step along the z-axis is set as wide as possible. As an indicator, we consider the mass
compared with the reference model. When setting the increment dz to 20mm, the volume
deviation of the entire rotor including impeller is less than 2%. Note that the rotor with
bundle of laminations and the impeller both consist of several elements. Thus, the rotor
weights 22.20 kg containing 136 degrees of freedom.

Transition Stiffness Approximation

The focus lies now on the transition between rotor shaft and impeller blades connected to a
thin circular disc. This disc obviously can not be modeled as a Timoshenko beam, since its
diameter in relation to the length along the rotor axis is huge. For that reason, we need an
analogous stiffness model to properly represent the blade’s dynamics. For this purpose, we set
up another reference simulation. Therefore, a load condition is modeled based on the finely
meshed impeller, similar to section 5.1.1. The scenario is depicted in figure 5.7.
As an answer to the outlined load condition, we calculate the bending stiffness of the plate.
Specifically, a deformation is caused similar to what we saw at the first or second mode shape
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Figure 5.6: Partial section view of the rotationally symmetric flow guiding coverage in x-z plane
based on [72]. All necessary parameters for the moments of inertia calculation are shown.

FbFb

φ

Ds

FbFb

Figure 5.7: Load condition set-up according to [72]. Left: Scheme of the deformed impeller disc with
circumferential, rigid clamping at the outer diameter Ds. The axial bending moment generating forces
Fb act at a distance of d and evoke a bending angle φ. Right: Same presentation as impeller finite
element model (ANSYS®) including clamping and bending forces.
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focusing the circular plate (Fig. 5.2). Therefore, two oppositely orientated unit forces Fb are
applied at the interface between rotor shaft and impeller at a distance of d. Meanwhile, the
impeller is rigidly clamped circumferential at the outer disc diameter Ds. We get a resulting
bending moment M = Fb · d and an angle φ. Based on these values, the bending stiffness
kb =M/φ is obtained which is representative for the transition between shaft and impeller -
especially relevant for the first two mode shapes. Conversely, the lateral stiffness is assumed to
be close to infinity because the plate has almost no shear flexibility. We call its stiffness kinf .
Therefore, the stiffness value of the adjoining shaft element (diameter d) is multiplied with 106

in order to approximate kinf . This is just an approximation to get an idea of plate’s stiffness
against lateral force since infinite large values are unfavorable within numerical simulations.
To complete the element assembling, we neglect the coupling terms between rotational DoF ψ
and translational DoF u. Considering the one-dimensional Timoshenko beam approximation,
a node between shaft and impeller plate was taken and occupied by these assumed values.
Finally, the element lateral forces F and bending moments M of this impeller disc element
are written as


Fx
Mx

Fy
My

 =


kinf 0 −kinf 0
0 kb 0 −kb

−kinf 0 kinf 0
0 −kb 0 kb



ux
ψx
uy
ψy

 . (5.4)

Finally, the adjoining shaft node is connected to the impeller by this element stiffness matrix.

Results

Using the model described
above, the first two bending
mode shapes are calculated
by using the eigensolver of
MATLAB®. These are lo-
cated at 82.1Hz and 813.0Hz
(Fig. 5.8). As for the orienta-
tion of the graphs shown, we
see the bottom rotor end on
the lefta. Regarding the mode
shapes, we can recognize two
characteristic antinodes. In
case of the first mode (blue),
this bending point is located
at the transition between shaft
and impeller, evoked by the
thin circular disc at 335mm
rotor axis z-coordinate.
aNote, only the symmetry line of the
rotor is shown for clarity.
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Figure 5.8: First (blue) and second (orange) axial bending
mode shape of the reduced simulation according to [72].
The rotor axis is aligned horizontally.

The second mode shape antinode (orange graph) appears at the upper bearing seat (z =
270mm) - of course only within this free-free boundary condition scenario. In comparison
with the results of the reference simulation (Fig. 5.2), we qualitatively recognize the same axis
deflection. The first natural frequency is 0.6% higher and the second 2.3% higher than the
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reference. The element types and sizes of the reduced simulation differ significantly from the
reference finite elements net. This can be a justification for the deviations (see [70], p. 316).
However, it is only a justification besides which all the approximations described above must
nevertheless be taken into account. Despite the approximations, the deviation is still within
an acceptable range.

5.1.3 Experimental Rotor Validation

In order to validate the simulation, an experimental modal analysis was performed with
multiple inputs (x, y, and z-direction) as well as with multiple outputs1.

Test Set-Up

The excitation force (Fe in Fig. 5.9) was applied by an impact hammer (Brüel & Kjaer 8204) at
the lower rotor end and the response was measured using triaxial piezoelectric accelerometers
(Kistler 8688A). All signals were acquired by a Siemens LMS Test Lab System. We carried
out the roving accelerometer method (3 sets with 7 accelerometers each) in order to obtain a
complete column within the FRF matrix. The driving point FRFs were performed by hitting
the shaft on the opposite side of the sensor. Afterwards, we employed the LMS PolyMAX
algorithm [95] on behalf of modal parameter estimation.
For the experimental modal analysis, the rotor was supported with four elastic bands to realize
free-free boundary conditions. The set-in angle φs of each band based on impeller maximum
radius ra and the start length l0 is depicted in Fig. 5.9. Furthermore, the elongation δl of the
elastic bands due to gravity Fg of the rotor is shown. Thus, we get a set of radial, linearized
stiffnesses to Fax = Fg and Fr = Fg · tan(φs). These results were also set for the simulation
models’ boundary conditions as described above.

Fr, ra

Fg, Fax, l0 + δl
φs

Fex

yz

Figure 5.9: Left: Hung rotor suspended by means of four bands. The picture contains the first set of
seven attached accelerometers. Middle: Schematic rotor drawing with marked position and direction
of the impact excitation force Fe. Right: Sketch of acting forces along the geometry of an elastic band
for the stiffness approximation. All figure content is based on [72].

121 measurement DoF, spread over the entire rotor.
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Results

Based on this set-up, we firstly regard the hor-
izontal FRFs. In Fig. 5.10, the constellation is
depicted. The same excitation DoF at the lower
shaft end are utilized as within the experimen-
tal modal analysis setup. As response DoF, we
choose the protruding upper shaft end within
the impeller (pin) to properly capture the ex-
pected bending modes. The results are plotted
in Fig. 5.11. Here, we can see that the FRFs
with respect to x- and y-direction are very simi-
lar due to the symmetric rotor properties. The
two resonance peaks at f1 = 79.9Hz and f2 =
810.3Hz are noticeable. In particular, there is
no dynamic in between. Because of a welded
steel impeller structure, the damping ration is
generally low (0.07% at f1 and 0.52% at f2)a.
aestimation by the Polymax algorithm [95] utilizing all
21 measurement DoF.

x,y

Fe

Figure 5.10: Test set-up with horizon-
tal x- and y- excitation force Fe and
appropriate measurement DoF concern-
ing the FRF determination for Fig. 5.11.
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Figure 5.11: Frequency response functions in x- and y-direction (measurement set-up see Fig. 5.10).
The first resonance at 79.9Hz (dashed line) and the second resonance at 810.3Hz (dotted line) are
visible.
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For the experimental modal analysis, the mode shapes are estimated based on all 21 measure-
ment DoF. The modes are depicted in Fig. 5.12. Here, we can consider the first two mode
shapes’ x-axis projection. All measurement points are highlighted and the undeformed geome-
try is drawn in black to illustrate relative displacement. The reason why the measurement
points are not placed along a line along the rotor shaft is the possibility of detecting torsional
modes.

Mode 1 Mode 2

Figure 5.12: Experimental determined, axial bending mode shapes at resonance frequencies f 1 (blue)
and f 2 (orange) according to [72]. The modes are compared with the reference simulation results.

Comparing the first resonance frequency of the different models with the experimental val-
idation, we observe a deviation to the reference model of 2.2% and 2.8% to the reduced
simulation. Basically, the mode shapes are very different (mode shape similarity based on the
Modal Assurance Criterion: 7.2%) The mode shapes are only comparable at the transition
between shaft and impeller. Here, the impeller tilting is striking. The big difference occurs at
the upper bearing. It is rigid at the first mode and shows a pronounced bending at the second
mode. The second considered resonance differs 1.9% from the reference and 0.3% from the
reduced model. In this case, disc deflection is opposed to the first - in agreement with the
simulation results. Furthermore, there is a likely antinode at the upper bearing seat position
underneath the impeller.
A possible explanation for the frequency deviations is the mass distribution. Although
reference- and reduced model masses were checked and corrected, especially at the bundle of
laminations, the mass might be distributed unrealistically.
In addition, the coating is not included in the simulations. Also, the stiffness assumption at
the impeller is only an approximation due to numerous reinforcing welding seams.
To sum up, the resonance frequency deviations are low and the mode shapes comparable.
Despite the 136 DoF, a small number compared to the 575,718 elements of the reference, the
reduced rotor model reflects the first two bending modes very well. The discrepancy is located
within a range of 10%, which can be valuated as standard deviation according to Klein ([70],
p.316).
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5.1.4 Summary

In this subsection, we created a validated base to set up efficient simulations for a widely used
rotor type. The Timoshenko beam theory is combined with an analogous stiffness of a char-
acteristic, circular impeller disc. The resulting small model represents the rotors’ structural
dynamics utilizing just 136 DoF. The model will be used in the following sections to assemble
an entire model of the exemplary blower application. To sum up, all rotor resonances are
opposed in Tab. 5.1.

Table 5.1: Axial bending resonance frequencies f 1 and f 2 of the reference simulation and the reduced
model compared with the experimental validation according to [72]

Resonance Frequencies Reference Reduced Experimental

f 1 81.6Hz 82.1Hz 79.9Hz

f 2 795.2Hz 813.0Hz 810.3Hz

5.2 Frequency-Based Model Mixing

In this main section of Chap. 5, we show a hybrid approach for combining rotor and housing
models. The basic principle using both numerical rotor and housing is based on [74]. This
technique is supplemented by an experimentally determined housing which is coupled with
the numerical housing. The coupling procedure is performed in the frequency domain
representation, based on Lagrange Multiplier frequency-based substructuring and System
Equivalent Model Mixing. The SEMM method is used in Sec. 5.2.2 for further model updating
of the coupled system. This enhancement is needed since there are applications where the
overall system dynamics can not be properly described by standard LM-FBS. Joint dynamics
or bearing stiffnesses for example are hardly captured by LM-FBS because ideal compatibility
and equilibrium condition is assumed at these interfaces.
The multi-stage technique consists of three parts:

1. A finite element rotor model with a small amount of (DoF) is created based on [72],
(see Sec. 5.1.2). All DoF are used in order to calculate the fully occupied Frequency
Response Function (FRF) matrix.

2. This entire FRF-matrix is coupled with the transfer functions of the housing. In a first
analysis, the assembly is obtained by coupling the numerical submodel of the rotor and
a very simplified numerical model of the housing. In a second analysis, the assembly
is built by coupling the numerical rotor submodel with an experimental model of the
housing.

3. Admittances of a collocated subset DoF of the entire, assembled system are experimen-
tally determined and expanded to the FRF-matrix of the coupled model (numerical
rotor submodel coupled with an experimental model of the housing) by all variants of
the SEMM framework.

Finally, we get the complete, symmetrical FRF-matrix being full rank and containing structural
dynamics of the entire, coupled system. Note, rotordynamic effects are not regarded here. For
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the experimental validation, we use an exemplary transfer function, which is not included in
the measurements for modal expansion.

5.2.1 Housing Model Estimation

The entire model is estimated in two ways. Each approximation consists of two coupled
models (rotor and housing). Note that the housing consists of the motor block (stator) and
the entire surrounding casing. In the first step, the housing is a rough, simplified numerical
assumption. This numerical assumption was similarly published in [74]. In the second step,
an experimentally determined housing is used for coupling with the rotor.

Numerical Housing Model

The numerical housing is approximated by a single-side supported, hollow, cylindrical single-
dimensional Timoshenko-beam using 20 nodes with four DoF each (cylindrical component
B at Fig. 5.13). Its wall thickness and clamping stiffness (springs in Fig. 5.13) are tuned to
match the first eigenfrequencies and housing mass of the blower test rig. The first two modes
stemming from the support stiffness occur at 9Hz and 11Hz2. By means of this very simplified
model, a coarse assumption of the housing FRFs can be made. Based on this experimentally
tuned model, the entire 80× 80 DoF model is coupled at the rotor connection point (lower
bearing position node). We assume that the rotor is directly coupled at its two roller bearings
(b1 and b2) with the single-dimensional Timoshenko-beam node at the lower bearing position
(4× 4 DoF). Generally, the housing is assumed to be fully rigid between b1 and b2 due to the
massive motor block, which is part of the housing. Bearing- and support-stiffnesses between
motor block and housing are neglected. Only displacements along the x, y axis and rotations
around the same two axes are considered. Compatibility and equilibrium condition between
the lower bearing VP of the housing and the two bearing positions b1 and b2 of the rotor are
enforced performing the LM-FBS method. The coupling of A and B is delineated by gray
arrows in Fig. 5.13.

Thus, the solution for the coupled system
is formulated with respect to the LM-FBS
algorithm (see Eq (2.33)) as:

Y
(AB)
coupled = Y −Y BT (BY BT )−1BY .

(5.5)

In this case, the Boolean matrices for com-
patibility Bc and equilibrium condition Be

are the same since we use the same amount
of excitation and response DoF. There-
fore, Bc and Be are simply represented
by B. Equation 5.5 uses the complex ad-
mittances Y = Y

(AB)
uncoupled with displace-

ment responses to external forces of the
uncoupled subsystems A and B in block
diagonal form.

BA

l
b1

b2
ψh
x

ψh
y

xh

yh

Figure 5.13: Numerical rotor model and hous-
ing representation as schematic subsystems A
and B with two displacements and two rota-
tions (x- and y-direction). The DoF at the
rotor bearings (b1 and b2) are coupled with
the housing at the lower bearing (Timoshenko
beam node, orange).

2experimental modal analysis reported in 4.1.2.
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In case of using the numerical housing, the uncoupled admittance has n = 1 . . . 136 rotor-
DoF (system A) and m = 1 . . . 80 housing DoF (system B). Generally, it is defined by the
block-diagonal matrix:

Y
(AB)
uncoupled =



Y A
11 Y A

12 · · · Y A
1n

Y A
21 Y A

22 · · ·
...

...
. . .

Y A
n1 Y A

nn

Y B
11 Y B

12 · · · Y B
1m

Y B
21 Y B

22 · · ·
...

...
. . .

Y B
m1 Y B

mm



. (5.6)

The signed Boolean matrix B contains the coupling DoF between rotor and housing. In order
to implement the displacements due to the rotations in b1, the distance l between b1 and b2
occurs as factor for ψh

x and ψh
y in B. In case of the numerical simulated housing, B is written

as follows:

B =



ψb1
y yb1 ψb1

x xb1 ψb2
y yb2 ψb2

x xb2 xh yh ψh
x ψh

y

... 1 0 0 0 ... 0 0 0 0 ... 0 0 0 −1 ...

... 0 1 0 0 ... 0 0 0 0 ... 0 −1 l 0 ...

... 0 0 1 0 ... 0 0 0 0 ... 0 0 −1 0 ...

... 0 0 0 1 ... 0 0 0 0 ... −1 0 0 −l ...

... 0 0 0 0 ... 1 0 0 0 ... 0 0 0 −1 ...

... 0 0 0 0 ... 0 1 0 0 ... 0 −1 0 0 ...

... 0 0 0 0 ... 0 0 1 0 ... 0 0 −1 0 ...

... 0 0 0 0 ... 0 0 0 1 ... −1 0 0 0 ...


. (5.7)

As noted above, the indices b1 and b2 represent the upper and the lower bearing position
(z-distance l), h stands for the housing DoF (global z-coordinate same as b2). Thus, we get a
coupled FRF matrix describing the blower system (AB), comprising rotor and housing with
216 × 216 DoF. Due to the fact that the cylindrical housing does only introduce new DoF
into the system above and below the coupling node, the FRF-matrix can be reduced to size
212× 212 DoF. Note that the upper connection point on rotor which, although kinematically
coupled, is not directly equal to the lower connection point. This renders Y

(AB)
coupled singular,

which has no consequence in this work.

Experimental Housing Model

Now, we examine the second possibility to assemble the entire system. Therefore, an experi-
mental housing model is required. A well assumption of the structural dynamics with a lower
amount of DoF compared with the coarse housing simulation is assumed.
A virtual point transformation was performed to determine the housing’s dynamics and to
apply them on the rotor at the bearing positions. Here, the same assumption as in Sec. 5.2.1
was made concerning a very stiff motor block (connection between the roller bearings b1 and
b2). Thus, the rotor was coupled again with the lower bearing VP of the housing. In order to
acquire proper force impacts for the VPT, the automatic modal hammer AMimpact [83] was
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used and the system responses were sensed by triaxial piezoelectric accelerometers (Kistler
8688A). A Müller-BBM PAK front-end was utilized for data acquisition3.

As described in Sec. 2.3, proper selection of
impact and measurement DoF is required.
In the presented example, we selected 19
impact- and 15 accelerometer-DoF from
a set of 26 inputs and 18 outputs on the
motor block. An exemplary selection of
representative impacts and sensors is de-
picted in Fig. 5.14. The decision criteria
was the specific impact and sensor consis-
tency. The selected subset DoF should
best describe the virtual point dynamics.
Therefore, both specific and global consis-
tency criteria were evaluated (see Sec. 2.3.4
for explanation). Based on a trade-off be-
tween the amount of DoF for proper con-
trollability and observability of the system
and sufficient specific consistency, the qual-
ity index was set to 68%. All DoF below
were discarded (orange line in Fig. 5.15).
An overview over all specific impact and
sensor consistencies is given in Fig. 5.14.

z
y

x

Figure 5.14: Blower housing section with a
selection of representative, exemplary excita-
tion arrows and accelerometers (blue). These
are transformed on the lower bearing virtual
point (orange). As shown in orange, in accor-
dance with the rotor model, only horizontal
displacements in x- and y-directions and the
corresponding axial bending DoF of the vir-
tual point are used for modeling. The 2 × 2
housing DoF are labeled by blue but long ar-
rows and one sensor.

3Note, for all frequency-based models, a bandwidth up to 1.6 kHz with 0.5Hz frequency resolution was used.
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Figure 5.15: Specific consistencies of all utilized impact DoF (left) and all acceleration sensors (right).
The chosen consistency limit is drawn in form of the orange line.

Besides the specific consistency, we can also observe the global consistency as quality index for
evaluating the VPT by a chosen impact and sensor set. Fig. 5.16 shows the global consistency
of all DoF before the specific selection for input DoF (left) and output DoF (right). After the
selection of DoF for the VPT based on the specific consistency, we get an overall consistency
which is depicted in Fig. 5.16. Here, significant improvement is observable especially in
the lower frequency range up to 800Hz. At around 960Hz, a significant drop is noticeable
especially in the overall force consistency. As described in Sec. 2.3.4, this can be an indicator
for a flexible interface displacement mode. If the residual displacements

µu = u1,2(ω)− ũ1,2(ω) and forces µf = y2,1(ω)− ỹ2,1(ω) (5.8)

within the VPT are considered at this frequency, the residuum increases at two impacts and
one sensor DoF. These DoF are all orientated in the same direction, located on a strut between
the motor block and the housing directly at the connection between suspension and motor
block. They therefore include the flexibility of the strut between motor block and the housing.
Despite of this effect, they are kept in the VPT because there are no alternative practically
accessible impact and sensor DoF inside the blower to provide proper controllability and
observability.
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Figure 5.16: Overall impact- (left) and sensor consistency (right) of the entire measurement set-up.
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Figure 5.17: Overall consistency of the impact DoF (left) and the sensor DoF (right) at a selected
subset DoF based on the specific consistencies (see Fig. 5.15).
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Based on the selected subset DoF of impacts and sensors, we performed a VPT to each bearing
containing radial displacements and axial bending DoF. The result is a 6 × 6 FRF-Matrix
implying one 4× 4 virtual point at the lower bearing seat (VP2) and the 2× 2 housing DoF.
It is assembled as follows:
In order to assemble the experimental housing with the rotor, we perform the LM-FBS
algorithm exploiting the Boolean matrix

B =



ψb1
y y

b1ψb1
x x

b1 ψb2
y y

b2ψb2
x x

b2 ψVP2
y yVP2 ψVP2

x xVP2yh xh

... 1 0 0 0 ... 0 0 0 0 ... −1 0 0 0 0 0

... 0 1 0 0 ... 0 0 0 0 ... 0 −1 l 0 0 0

... 0 0 1 0 ... 0 0 0 0 ... 0 0 −1 0 0 0

... 0 0 0 1 ... 0 0 0 0 ... −l 0 0 −1 0 0

... 0 0 0 0 ... 1 0 0 0 ... −1 0 0 0 0 0

... 0 0 0 0 ... 0 1 0 0 ... 0 −1 0 0 0 0

... 0 0 0 0 ... 0 0 1 0 ... 0 0 −1 0 0 0

... 0 0 0 0 ... 0 0 0 1 ... 0 0 0 −1 0 0


. (5.9)

After the coupling process, size
(
Y

(AB)
coupled

)
= 142×142 DoF. One 4x4 bearing-VP DoF appears

twice. Thus, these duplicate DoF were dropped, so that afterwards size
(
Y

(AB)
coupled

)
= 138×138

DoF.
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5.2.2 SEMM-Based Modal
Expansion

By coupling the rotor with two differ-
ent housing models, we got a first nu-
merical or hybrid approximation of
the entire system dynamics. In this
section, it is called start model. In or-
der to refine the validity of the start
model further on, the model is mixed
with additional transfer functions of
the entire system. Even when hav-
ing a perfect start model performing
LM-FBS, the bearing stiffnesses are
not captured, since ideal transmis-
sion is assumed by compatibility and
equilibrium condition between rotor
and housing. We use the modal ex-
pansion technique SEMM (Sec. 2.4)
to improve these interface dynam-
ics. The frequency response mea-
surements DoF on the entire system
are depicted in Fig. 5.18. Note that
all excitation DoF are in-plane with
the rotor axis in order to avoid tor-
sional excitation.

z
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x x

x
x

y

x,y

x,y

x,y

x,y

Figure 5.18: Partial blower representation with
marked measurement set-up. Blue force impacts (ar-
rows) and accelerometers are used for modal expan-
sion. Note that the two longer arrows correspond to
the outer housing excitation DOF. These are in-plane
with the rotor axis and are at the same z-position as
the accelerometer on the outer housing. All sensor
axes incorporated herein are mapped in the figure.
The orange set-up (accelerometer and impact arrow)
represents the validation measurement point at the
motor block center.

We assume that the assembly is very
rigid along the radial direction at
the location of the sensors and im-
pacts. Therefore, it is expected that
the measurements can be assumed
to represent the force and displace-
ments for a given position along the
vertical axis of the assembly, as if
the entire system would be beam-
like (see Fig. 5.19). This allows us
to impose compatibility conditions
between the experimental measure-
ment of the assembly (green string
of nodes) and the start models of
SEMM (blue and black nodes repre-
sent rotor and housing). Hence, the
measured inputs and outputs and
the DoF in the start model (numeri-
cal and hybrid) are matching. There
is no need for a B matrix because
the DoF in the measured FRFs have
exact corresponding DoF in the start
models (gray arrows).

Numerical Start Model
with Experimental
Overlay Model

Hybrid Start Model
with Experimental
Overlay Model

Figure 5.19: Scheme of the start models and the
overlay model in form of one-dimensional beams (not
all DoF depicted). Rotor (blue) and housing (black)
are coupled at the orange marked DoF and combined
with the green experimental model.
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All expanded measurement DoF are outlined in Fig. 5.18 (blue). Note that these measurement
DoF correspond to the overlay SEMM model. These DoF are a subset of the entire start
and parent model, respectively, and are measured exactly against the corresponding DoF of
the start model. The same sensor type and the automatic modal hammer as described in
Sec 5.2.1 were utilized for FRF identification. In this case, Siemens LMS Test Lab was used
for data acquisition to set up an experimental FRF-matrix with 11× 5 DoF containing eleven
responses and five impacts in x- and y-direction as depicted in Fig. 5.18. This FRF-matrix
represents the overlay or experimental model within the SEMM framework. Therefore, all
these measured DoF are considered as boundary DoF for mixing with the start model. One
strength of SEMM is the ability to expand the experimental determined dynamics to internal
DoF at the rotor, which are not accessible for measurements. Especially in rotating machines,
the rotor is often at least partially housed in the motor. The surrounding motor block needs
to be stiff in order to transmit the drive torque to further periphery as the housing. Maximum
controllability and observability should be reached by the presented experimental overlay
model. Thus, we chose the experimental DoF on the motor, based on specific sensor and
impact consistency criteria like within the VPT of Sec 5.2.1 but a VPT was not performed for
the experimental model. Only output and input DoF possessing specific consistency >85%
were included in the overlay model. Within these DoF, exclusively horizontal directions (x,
y) are picked. On that base, four sensor positions containing three x- and two y- direction
measurements were selected on the motor block. One x- and one y-excitation were chosen. To
ensure gathering coupling dynamics between the subsystems rotor and housing, two additional
sensors are applied on the impeller. These contain two x- and y-directions. In order to
enhance observability according to the sensor setup at all components (rotor and housing),
two horizontal excitation and measurement DoF (x- and y-direction) were additionally placed
at the outside housing. All calculated SEMM models were validated with an exemplary FRF
acquired by the orange setup in x-direction (see Fig 5.18).
Generally, there are four primary extension levels to implement the SEMM method referring
to [69] which were described in Sec. 2.4. We show the results by implementing all four variants
on the presented application. The global SEMM start model is defined as:

Y S
gg =

[
Y ii Y ib

Y bi Y bb

]S

. (5.10)

As mentioned in Sec. 2.4, the sub-admittances Y ii,Y ib,Y bi,Y bb do not necessarily have to be
symmetric. They can also appear as Y iuif ,Y iubf ,Y buif ,Y bubf if there are different amounts
of excitation forces f and response displacements u within the internal and boundary DoF.
This is now the case. Therefore, the global SEMM start model is defined as:

Y S
gg =

[
Y iuif Y iubf

Y buif Y bubf .

]S

(5.11)

According to the dimensions, we have to separate between the numerical and the hybrid
start model.
The numerical start model serves as the parent model according to the SEMM framework
with

• size(Y gg) = 212× 212 DoF,

• size
(
Y iuif

)
= 201× 207 DoF,

• size
(
Y iubf

)
= 201× 5 DoF,

• size
(
Y buif

)
= 11× 207 DoF,
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• size
(
Y bubf

)
= 11× 5 DoF.

The hybrid start model is defined as

• size(Y gg) = 138× 138 DoF,

• size
(
Y iuif

)
= 127× 133 DoF,

• size
(
Y iubf

)
= 127× 5 DoF,

• size
(
Y buif

)
= 11× 133 DoF,

• size
(
Y bubf

)
= 11× 5 DoF

and the experimental overlay model is defined as size
(
Y bubf

)
= 11× 5 DoF.

The four implemented SEMM variations are:

Basic SEMM with reduction of the experimental dynamic information solely on the
interface DoF. Problems due to fixed interface modes can occur. It is written as:

Y SEMM
basic = Y S

gg −
[
Y iubf

Y bubf

]S (
Y S
bubf

)+ (
Y S
bubf
− Y E

bubf

)(
Y S
bubf

)+ [
Y buif Y bubf

]S
.

(5.12)

Fully Extended Interface SEMM. Here, the experimental blower model is decoupled
from the numerical or hybrid start model at all global DoF. This full extension with no
fixed interfaces promises proper improvement especially of the hybrid start model due to the
fact that the hybrid start model already contains measured information about the dynamic
behavior. This prevents fixed interface resonances due to potentially high dynamics of both
models (start model and experimental model). It is implemented as:

Y SEMM
fully ext = Y S

gg − Y S
gg

([
Y buif Y bubf

]S)+ (Y S
bubf
− Y E

bubf

)([
Y iubf

Y bubf

]S
)+

Y S
gg. (5.13)

Extended Equilibrium SEMM. In case of better controllability of the experimental
model compared with the start model, this extension of the standard method can enhance the
significance of the SEMM model. This can be achieved by a large set of independent force
action DoF. Although this is not the case in the presented application, the results are shown
for a comparison of the methods. The equation is defined as:

Y SEMM
ext eq = Y S

gg − Y S
gg

([
Y buif Y bubf

]S)+ (Y S
bubf
− Y E

bubf

)(
Y S
bubf

)−1 [
Y buif Y bubf

]S
.

(5.14)

Extended Compatibility SEMM. This extension of the standard method is preferred in
case of extraordinary observability of the experimental model by a large set of sensor DoF. In
fact, the experimental model includes many more distributed sensor DoF than excitations
points and suggests promising results according to an enhancement of the start model. It is
written as:

Y SEMM
ext comp = Y S

gg −
[
Y gb

Y bubf

]S (
Y S
bubf

)−1 (
Y S
bubf
− Y E

bubf

)([
Y iubf

Y bubf

]S
)+

Y S
gg. (5.15)
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5.2.3 Results

The described SEMM methods are tested via predicting an exemplary driving point FRF
at the blower test rig (see orange markers in Fig. 5.18). The figures (5.21 and 5.22) show a
comparison between the presented two LM-FBS start models4, all four SEMM implementations
and the experimental validation. Both figures are divided into three parts. Each part shows a
frequency range extract. The whole regarded range is depicted on the top, whereby zoomed
sections are arranged below. Here, we give an overview and show specifically two frequency
areas of interest. In the whole frequency range, significant deviations between the models can
be observed. Especially, the purely numerical solution seems almost static along the regarded
frequency range, except the first foundation mode. None of the SEMM solutions can represent
the measurement in the higher frequency range properly. Here, the best approximation is
given by the fully extended interface SEMM. Although, some of the hybrid models come close
to the validation measurement at some frequencies. The bad reproduction of the experimental
high frequency FRF does not need to be necessarily a problem. Particularly, the observed
frequency range of interest, concerning unbalance estimation for example, is related to the
lower frequency range.

Therefore, we consider the
middle figure which includes a
frequency range with dynam-
ics between about 120Hz and
200Hz. These dynamics stem
from local resonances between
motor block and housing in-
cluding bearings and struts.
The specific mode shapes,
based on the test setup in
Fig. 4.8, are depicted in
Fig. 5.20. Here, the top view
of a mode shape of the blower
test rig at 143Hz is depicted
- directly within the discussed
medium frequency range. The
resting system is plotted in
black, whereby the moving
contour is marked in orange.
Regarding the motion of the
rotor (small circle) and the
blower housing (wide circle),
we observe relative move-
ment between both compo-
nents. Conclusively, the mode
shape of the bearings - coupled
with struts between rotor and
housing is notable.

x

y

Figure 5.20: Top view at the mode shape of the blower test rig
at 143Hz. Initial contour (black) and moving shape (orange).
Figure of the two maximum relative deflections between rotor
(small circle) and housing (wide circle). Visualization of the
coupled bearing-struts mode between rotor and housing.

Concerning the different SEMM models - at the numerical start model based approximation
(Fig. 5.21), the basic SEMM best describes the dynamics. This can be justified by the non
4Strictly numerical SEMM results are depicted in Fig. 5.21 and SEMM results of the combination of an
experimental housing and a numerical rotor model are delineated in Fig. 5.22.
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existing dynamics inside the fully numerical parent model. The interface resonances are best
introduced by the basic SEMM since they are able to force the static parent to its unique
behavior without needing to extend the compatibility or equilibrium condition. There is no
extension needed due to non existing interface resonances. An extension rather leads to free
behavior [69] and static offsets of the three further SEMM variations. This effect is also
observable at the blower operational frequency range (bottom part of the figure). To sum
up, the basic SEMM model with the numerical start model approximates the experimental
solution very well in the low and mid-frequency range, but the number of DoF is significantly
higher than when using the hybrid start model (212 numerical vs. 138 DoF hybrid).
Fig. 5.22 looks somewhat different with the fully hybrid approximations. Each solution - even
the start model shows dynamic behavior. The whole frequency range overview at the top is
confusing, especially in the higher frequency area, the FRFs are hardly separable. Therefore,
we zoom in the middle and lower range. Here we observe a better adaption of the main
dynamics at the mode depicted in Fig. 5.20 compared with the hybrid start model. The
correlating resonance is adapted by most of the SEMM models but missed by the LM-FBS start
model. Here, the inclusion of support dynamics by the SEMM models become clear. These are
missing due to the strict compatibility and equilibrium conditions at the interfaces of LM-FBS.
Even the lower blower operating speed frequency range shows proper results respecting the
SEMM approximations. Here, the basic SEMM and the extended compatibility SEMM yield
the best outcomes. This might be justified by the extended measurement setup compared
with the excitations, which results in improved observability. This extended observation is
introduced by the additional accelerometers at the rotor compared with the setup within
experimental housing modeling in Sec. 5.2.1. The input force DoF at the modal expansion
step does not introduce much additional information compared with the housing system
identification. This might be a reason for failing of the extended equilibrium SEMM model.
The amount of force DoF in the experimental overlay model is too less for better controlling
the entire system. This information is already implemented in the hybrid start (parent) model.
With respect to the extended compatibility condition, the results look different. Here, the
extension to all output DoF within the decoupling step enhances the FRF quality. In this
case, the parent as well as the overlay model embody different information about the dynamic
behavior in form of the displacements. Considering the approximation of the 143Hz resonance
between motor block and housing and the performance in the operational and in the entire
frequency range, the basic SEMM model constitutes the best choice. Nevertheless, there will
be further enhancement in the subsequent section.
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Figure 5.21: Admittance Comparison of the numerical start model with four SEMM methods
and experimental validation. Driving point admittance magnitudes in x-direction based on impact
excitation on the motor block. Green: hybrid start model (numerical rotor model coupled with
numerical housing (4 DoF) the lower bearing-VP), blue: FRF-prediction by the hybrid SEMM model
variants, orange: experimental validation. Top: full bandwidth up to 1.6 kHz, center: lower frequency
range, bottom: blower operational frequency range (30Hz - 60Hz).
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Figure 5.22: Admittance Comparison of the hybrid start model (experimental housing, numerical
rotor) with four SEMM models and experimental validation. Driving point admittance magnitudes in
x-direction based on impact excitation on the motor block. Green: hybrid start model (numerical rotor
model coupled with experimental housing (6 DoF) at the two rotor bearing positions), blue: FRF-
prediction by the hybrid SEMM model variants, orange: experimental validation. Top: full bandwidth
up to 1.6 kHz, center: lower frequency range, bottom: blower operational frequency range (30Hz -
60Hz).
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5.3 Summary

In this chapter, a hybrid modeling strategy for rotating machinery was evaluated at a blower
test rig. Firstly, a numerical rotor model with reduced DoF was created and experimentally as
well as numerically validated. Furthermore, the housing model was established as counterpart
both numerically and experimentally. These two housing models were subsequently coupled
with the rotor utilizing the Lagrange Multiplier Frequency-Based Substructuring algorithm.
The coupling was performed at the virtual bearing degrees of freedom. Therefore, a virtual
point transformation was implemented and enhanced based on excitation and response
consistency criteria. Finally, the two coupled systems were adapted using the SEMM method
at the entire structure in order to introduce interface dynamics at the roller bearing coupling
points. Main differences concerning a validation FRF were discussed with additional aid of an
experimental modal analysis of the entire blower test rig.



Chapter 6

Iterative SEMM-Based Model Adaption

A proper model description including the interaction between rotor and housing is essential
to estimate operational forces of rotating machinery from measurements at the housing. In
most instances, the rotor is not directly accessible for the application of a monitoring system.
Hybrid models can solve this problem. In Chap. 5, we built up structural dynamic models
of the exemplary blower application. A method for adaption of those models to operational
conditions and varying boundary conditions is shown in this chapter. The associated changes
of dynamic properties are supposed to be captured by the proposed technique utilizing a
minimal sensor setup and a start model with minimum degrees of freedom (Basic SEMM start
model resting upon the hybrid start model of Sec. 5.2.2)

6.1 Model Adaption to Operating Conditions

In order to evaluate the operational forces,
the horizontal transfer functions between
rotor disc and housing according to the
global coordinate system are considered.
These FRFs can not be measured directly
due to inaccessibility of the plate for excita-
tion. Nevertheless, the exciting forces can
be validated during operation, since we are
able to attach a defined unbalance mass to
the plate. Exemplary horizontal forces dur-
ing operation are shown in Fig. 6.1. The
transfer functions from the plate (1), which
connect the upper and lower roller bearing
(2) with the housing measurement posi-
tion (3), are also delineated (gray dotted
lines). An informative outline over the ad-
mittances based on the hybrid start model
is given in Fig 6.2.

z

y
x

1

2

3

Figure 6.1: Blower sectional view with virtual
excitation forces (arrows) at the rotor plate
(1) and transfer paths (dotted lines) from the
bearings (2) to an exemplary accelerometer at
the housing (3).

113
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In this preceding context, all future SEMM models are build on the hybrid start model
utilizing the setup of Fig. 5.18. Now, these hybrid models are fed with measurements at all
operational speed frequencies (30Hz - 60Hz, steady state, 1Hz increment) by an advanced
SEMM-based iteration procedure.
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Figure 6.2: Admittance magnitudes for virtual rotor blade excitation and housing measurement
at the blower operational frequency range (30Hz - 60Hz). Upper figure: x-direction, lower figure:
y-direction.
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The underlying measurement setup for this
modal expansion optimization is depicted
in Fig. 6.3. Two virtual forces at a motor
block sensor position, close to the lower
bearing, are calculated based on horizontal
acceleration outputs. These virtual forces
can be considered as in-situ forces as ini-
tially introduced by Moorhouse & Elliot
[42, 88] and further explained by Van der
Seijs [139]. The assembly consisting of ro-
tor and housing is considered in-situ, with
the exciting rotor (active component A)
coupled to the surrounding motor block
with outer housing (passive component B).
Note that the motor block can also be con-
sidered as an active component, as it is stiff,
receives the rotor’s dynamics transmitted
through the bearings, and generates the
driving magnetic field for the rotor. In con-
trast, the connection to the outer housing
is relatively soft.

z
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x,y

x,y

2

1

Figure 6.3: Measurement setup with virtual
excitation forces at lower motor block end (gray
arrows) and triaxial accelerometers at motor
block (1) and outer housing (2).

Note that the mass unbalance is not an uncorrelated excitation in the both measured, horizontal
directions and it is not the only excitation force at operation (additional electromagnetic
excitation, bearing forces,...). Hence, it is helpful to estimate these virtual forces to update
the model. The measurements for the modal expansion were performed on component B.
Therefore, two triaxial accelerometers were applied, placed at the virtual force position at the
motor block (1) and at the outer housing (2). Note that only the horizontal measurement
directions of the accelerometers (x,y) were utilized because the z-direction does not appear
in the models. The hybrid basic SEMM model resting upon on the hybrid start model (see
Sec. 5.2.3) will be updated by these measurements due to the reduced model size compared
with the numerical start model. This start model therefore serves as “parent model” for the
subsequent SEMM-updating. In this context, according to (Eq. (5.12)) the parent start model
Y SEMM

basic is structured as:

Y k
gg =

Y k
iuif

Y k
iubf

Y k
buif

Y k
bubf

 . (6.1)

Here, the modal expansion becomes an iterative procedure. For iteration k = 1...n, Y k
gg is

recalculated for each loop pass. In the presented example, its sub-dimensions are defined as:

• size
(
Y k
gg

)
= 138× 138 DoF,

• size
(
Y k
iuif

)
= 134× 136 DoF,

• size
(
Y k
iubf

)
= 134× 2 DoF,

• size
(
Y k
buif

)
= 4× 136 DoF,

• size
(
Y k
bubf

)
= 4× 2 DoF.
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The boundaries are now allocated to a new experimental model including the operational
acceleration measurements indicated in Fig. 6.3. To establish Y bubf , we need the operational
excitation forces. The problem is that they are unknown. Thus, we assume two virtual,
horizontal forces at the lower motor block end. They are marked by gray arrows in Fig. 6.3.
The force location was selected because of the presence of the triaxial accelerometer at this
position, and because they allow good observability for the exemplary minimal number of
sensors.
Hereinafter, we explain the model optimization loop, building on this operational measurement
data and the hybrid start model:
Based on the four acceleration outputs, a virtual boundary load matrix (x- and y- forces at the
lower motor block end) is calculated iteratively. For iteration k = 1...n, this force estimation
is obtained from

F k
b =

(
Y k
bubf

)+
Uk
b . (6.2)

with the displacement matrix Uk
b and the boundary admittance matrix Y k

bubf
. In the presented

example, the new experimental model matrices have the dimensions:

• size
(
F k
b

)
= 2× 1 DoF,

• size
(
Uk
b

)
= 4× 1 DoF,

• size
(
Y k
bubf

)
= 4× 2 DoF.

The estimated excitation force F k
b is utilized to calculate a new experimental model Y k+1

bubf
:

Y k+1
bubf

= Uk
b

(
F k
b

)+
. (6.3)

This experimental model is implemented in the SEMM expansions (Eq. (5.12) - 5.15) in
every iteration step. After that expansion, we get a new SEMM model Y SEMM, k

gg for each
SEMM technique. From this global model description, we take the boundary admittance
subset

(
Y k
bubf

)
and start again at Eq. (6.2). Within the loop, the hybrid solution converges

to an iterative SEMM-model Y SEMM,n
gg for each of the four SEMM methods. Note, the entire

procedure is applied for each SEMM method separately. The overall technique from model
setup to iterative model adaption is represented by the flowchart in Fig 6.4. Here, the iterative
determination of Y k

bubf
is explained as follows:

During the iterative SEMM model updating, we search for two virtual forces at the lower
motor block end which best describe four displacements at the housing. Here, the assumption
is made that the motor block is relatively stiff. This approximation is justified given the
sensor consistency within the virtual point measurements at the motor block (Sec. 5.2.1). The
position of forces is chosen based on observability condition, since these loads are estimated
at the same DoF as the accelerometer is set. In order to identify these forces, we apply a
second sensor at the outside housing, away from the accelerometer on the motor, to capture
maximum information about the operational dynamics between rotor and housing although
using a minimal sensor setup. By utilizing four displacement outputs and the Moore–Penrose
pseudoinverse of a 4×2 DoF admittance subset within Eq. (6.2), the forces are estimated. These
two forces have to justify four outputs, so the row-rank four of the 4× 1 DoF displacements is
reduced to rank two of the forces which equals to column rank two of the admittance subset
matrix. Here, a projection 4 → 2 is performed. After determination of these forces within
the iterative SEMM loop, they are applied to estimate the 4× 2 DoF admittance matrix by
performing the pseudoinverse multiplication in Eq. (6.3). The resulting 4× 2 DoF admittance
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matrix has rank one, since we apply the same acceleration measurement as already utilized
for the previous force identification. These steps are necessary to find the iterative admittance
Y k
bubf

as overlay model for the SEMM. We substitute Eq. (6.2) in Eq. (6.3) and write it as
follows:

Y k+1
bubf

= Uk
b

((
Y k
bubf

)+
Uk
b

)+

. (6.4)

Note that in the presented case:

Y k+1
bubf
̸= Uk

bY
k
bubf

(
Uk
b

)+
(6.5)

because
(
Y k
bubf

)+
in Eq. (6.4) has column-rank two, but Uk

b owns only column-rank one.
Consequently, the necessary and sufficient condition for this simplification is not given [52].
For the presented example, the acceleration response was measured at steady state for all
operational frequencies, 34 s acquisition time each. It was transformed into frequency domain
representation (sample rate = 8192 S/s). The time data was split into snapshots (two seconds
each) with 0.5Hz resolution up to a frequency of 1.6 kHz in order to deal with the same
dimensions as we utilized within the previous FRF measurements (see for example Sec. 5.2.2).
A Kaiser window (β = 20) was applied prior to the FFT in order to avoid leakage effects.
Subsequently, all 34 snapshots were averaged in the frequency domain representation at steady
state operational speed condition to get a smooth result for each sensor DoF.
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Figure 6.4: Model assembling and iterative updating. It starts with the Hybrid Basic SEMM Start
Model and the Steady-State Operational Outputs. All underlying models were previously developed in
Chap. 5. Solid lines represent unique steps. Some of them are replaced by iterative models within
the loop (dotted lines). The operational displacements interact with the start models and with the
iterative model inside the loop (dashed line). Finally, we obtain an iteratively adapted hybrid entire
system model (blue).
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6.1.1 Operational Force Estimation

Starting from the non-operating model ob-
tained by applying the four different vari-
ants of SEMM to the initial hybrid assem-
bly model (see Chap 5), four in-operation
models where obtained after applying the
SEMM-iterations just explained and sum-
marized in Fig. 6.4. The procedure was
applied separately for each rotation speed,
so that we obtained four in-operation mod-
els per operation speed. Using then these
updated in-operation models, we try to
identify the operational forces by using a
final updated admittance matrix between
the impeller of the rotor and the outer
housing. In order to validate the model
for this admittance and to get an impres-
sion about the linearity of the system, we
sequentially attached two exemplary un-
balance masses mu to the impeller disc
(10 g and 20 g). The test setup is depicted
in Fig. 6.5. Here, the unbalance mass at-
tached to the outer edge of the circular
plate is shown.

z

y
x

x,y

Fu
mu

Figure 6.5: Test setup for acceleration out-
put measurements due to a defined unbalance
force Fu based on different masses mu (small
blue disc at the rotor blade). Only two hor-
izontal directions (x, y) of a single, triaxial
accelerometer at the outside housing are con-
sidered as responses to the unbalance during
operation.

During operation, a defined radial unbalance force Fu acts on the rotor plate DoF in global
x and y direction. With the applied mass mu, radial vector er(t) with eccentricity r and
operational speed Ω(t), the validation force is defined as

Fu(t) = mu er(t) Ω
2(t) (6.6)

We utilize Fu(t) to compare it with the resulting force from the presented SEMM models
and measured acceleration at the housing position marked in Fig. 6.5 for each unbalance.
Therefore, we pick the two horizontal transfer paths between plate and housing and write
them into an admittance matrix Y k

hurf
. This admittance characterizes the path of forces on

the rotor plate r to the housing h. The operational force is estimated by the iterative SEMM
model during iteration k by

F k
r = Uk

h

(
Y k
hurf

)−1
. (6.7)

Note that the iterative process of Fig. 6.4 is meant and that no further iterative updating is
carried out here. Thus, we investigate the estimated operational force (unbalance) as function
of the rotation speed:

F k
r =

[
Fx
Fy

]k
(6.8)

with

Uk
h =

[
Ux
Uy

]k
and (6.9)
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Y k
hurf

=

[
Yxx Yxy
Yyx Yyy

]k
. (6.10)

After all, a scalar unbalance force is estimated:

F ku =

√
(F kx )

2
+
(
F ky
)2
. (6.11)

This unbalance force is now compared with the result of Eq. (6.6). The iterative force
estimation is depicted in Fig. 6.6 and also compared with the basic SEMM start model before
the first SEMM adaption (see Fig. 6.4). The rated/maximum mechanical rotational speed
(59Hz) is regarded as representative scenario.
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Figure 6.6: Unbalance force estimation based on the basic SEMM start model and the four iterative
SEMM models at rated 59Hz mechanical rotation speed. Left: 10 g unbalance mass, right: 20 g
unbalance mass.

Comparing the different approximations, they converge to a constant force within ten iterations
except the extended compatibility SEMM model. Here, a slight decrease after eight iterations
is observable. Compared with the reference, the force is far too high. Conversely, the extended
equilibrium method underestimates the force by 10 orders of magnitude (plot cut at 1N).
These two techniques seem to be inappropriate. Even the hybrid start model provides better
outcomes. The basic method does not show any changes after the first iteration and we
observe almost perfect convergence of the fully extended interface SEMM model. Note that
the whole iteration progress is passed through for every operational speed separately. Based
on the outlined results and efficiency reasons, the loop termination criterion is set after five
iterations. The results of both unbalance masses are plotted to show the linearity in this
respect. For further considerations, the focus is set to the 20 g unbalance mass measurements.
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Due to greatly varying force estimations depending on the chosen SEMM method (Fig. 6.6), an
extended frequency range around the operational speed is evaluated in Fig. 6.7 and Fig. 6.8 for
all SEMM models. In the upper two sub-figures, the admittances between applied unbalance
mass location and the housing’s measurement position are depicted in the two horizontal
directions x and y. Below, the estimated unbalance force based on these admittances1 is
plotted before and in the course of five iterations.
Within the iterations, the curves seem to become spiky. The evaluation at 59Hz rated
rotational speed shows these effects in all SEMM models. Although, the fully extended
interface keeps the smoothest shape without offset. Keeping in mind the multiple decoupling
and coupling within the SEMM loop, local resonances can be introduced [68, 109]. Thus,
these introduced peaks seem to be unphysical.
Regarding the basic SEMM model, spikes arise with certain regularity and the SEMM loop
can not improve the model. The iteratively extended compatibility force shape offset is quite
higher and the extended equilibrium’s offset is crucial. Extending the decoupling step on the
equilibrium seems not to be an appropriate assumption, since in this case, an equilibrium of
two virtual force DoF is extended to 138 degrees of freedom. Note, these forces are found
based on only four measurement DoF. Extending the equilibrium of these filtered forces to all
remaining DoF can therefore lead to this bad issue.
Also extending the compatibility based on the four measurement DoF does not work. The
reason for restriction of the three methods (basic, extended equilibrium, extended compatibility)
can be found in the concentration of information about changing dynamics within operation.
This information is accumulated in Eq. (6.4) and is expanded within the loop in every SEMM
expansion.
Due to the best results provided by the fully extended interface method, henceforth, we focus
on that technique. Hereinafter, all outlined SEMM models are assembled by this procedure.

1see Eq. (6.11) with 59Hz rotational speed and 20 g unbalance mass
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Figure 6.7: Admittances and force magnitudes estimated with operational measurements at a given
rotational speed (Ω = 59Hz). Left top: basic SEMM start and iterative SEMM admittance after
five loop passes. Right top: fully extended interface SEMM start and iteratively determined
admittance. Bottom left: force estimation based on the basic SEMM start model and iterations one
to five. Bottom right: force estimation based on the fully extended interface SEMM start and
iterative models one to five. The calculated unbalance force depending on the rotational speed of 59Hz
and 20 g unbalance mass is depicted in form of an orange horizontal line.
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Figure 6.8: Similar figure as Fig. 6.7 but with applied extended equilibrium SEMM and extended
compatibility SEMM.
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Although the spikes of the fully extended interface model do not arise directly on the operational
frequency line in Fig. 6.7, conditions might occur, where this is not the case. Now, another
operating speed (44.5Hz) is regarded (Fig. 6.9). Here, we see that the shape degradation in
form of a local peak can occur directly on the operational frequency line. Due to these effects,
we developed an autonomous solution to filter out the peaks, which is presented in Sec. 6.1.2.
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Figure 6.9: Similar figure as Fig. 6.7 but only for the fully extended interface SEMM method
and SEMM adaption at Ω = 44.5Hz.
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6.1.2 Adaptive Force Shaping

The objective of this section is ab brief introduction of a robust algorithm which adaptively
shapes the iterative SEMM force estimation to the SEMM start model force curve in order to
eliminate the unphysical spikes. This procedure will be shortly explained based on Fig 6.10.
More details can be looked up in App. B. The smoothing of the iterative SEMM force
magnitude is done using a spline fit. Basically, the start model (green curve in Fig 6.10)
and the iterative SEMM model (gray curve in Fig 6.10) are considered as physical bases for
defining the fit. This basis should still remain after smoothing. For this purpose, scalar values,
such as the force-magnitude RMS value in a frequency band around the rotational frequency
are determined. After the first spline fit is placed over the iterative SEMM model (dotted blue
curve in Fig 6.10), the scalar values of this spline fit curve are determined and compared with
the base values. If they are outside an acceptable deviation from the base values, the sample
with the highest magnitude of the iterative SEMM model is deleted (top orange bubble in
Fig 6.10). A spline fit is then formed again and the deletion of spike samples is repeated until
the scalar values of the spline fit are within an acceptable deviation from the base values. The
force magnitude of the final spline fit at the rotational speed frequency is finally taken as the
smoothed, scalar force value2.
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Figure 6.10: Force estimation at 30Hz rotational speed with main force peak at the fundamental
frequency. Adaptive spline fit with depicted first two dropped spike samples within seven fit iterations.
First fit iteration: blue dotted curve, second fit iteration: blue dashed curve, last fit iteration: blue
solid curve.

2In case the reader wondered at the beginning of this thesis what the point of the cover picture is: The
cover picture corresponds to a top view of a three-dimensional representation of the iteratively formed force
estimation. It starts at the bottom with the spiky, iterative SEMM model and is shaped toward the center at
the top. The center corresponds to the final, estimated force.
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The presented technique is nonlinear with respect to the operational condition. Therefore, we
linearized it for certain operating speeds over the entire rotational frequency range (magnetic
field frequencies 30Hz to 60Hz). Thus, the two iterative procedures (Fig. 6.4 and Fig B.1)
have to be passed through for every rotational speed condition separately. The result is
depicted in Fig. 6.11. We see the calculated unbalance force as reference (orange) and the
force estimation via three models3. The force estimation technique should provide robust
results. The robustness can be evaluated regarding the entire operating speed range as well
as different unbalance masses (Fig. 6.6). Generally, the presented method is very robust
concerning varying unbalances. In contrast to that, the unbalance force is not approximated
with the same quality at all operational speeds. However, the shaped force estimation can
increase the robustness compared with the raw iterative SEMM solution (see for example the
estimations at 30Hz and 44.5Hz in Fig. 6.11) but it does not significantly improve the result
over the entire frequency range. Generally, the iterative SEMM mostly provides better force
assumptions than the SEMM start model.
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Figure 6.11: Entire frequency range unbalance force estimation (20 g unbalance) strictly at operational
speed frequency lines based on the SEMM start model, the iterative SEMM model and the iterative
SEMM model including the adaptive force shaping technique.

3SEMM start model (green), iterative SEMM model without force shaping (gray) and iterative SEMM
approximation including iterative force shaping (blue).
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6.2 Model Adaption to Varying Boundary Conditions

Due to promising results of the iterative
SEMM expansion in Sec. 6.1, a likewise
approach for system adaption to varying
boundary conditions is evaluated. The ob-
jective is an adaption of the rotating ma-
chine to field peripheries. Therefore, we
rely on a single measurement position at
the outside housing. Note that the proce-
dure is similar as in Sec. 6.1 (see Fig. 6.3
for the measurement setup) but only two
outputs instead of four were used. The
single measurement position with the two
outputs represents the two DoF of a fu-
ture, triaxial monitoring sensor. In the
presented example, regarding horizontal
accelerations only, there are two outputs
to describe the excitation forces. These two
outputs should capture information about
changing transfer functions due to vary-
ing boundary conditions. These boundary
condition changes are simulated by an ad-
ditionally attached mass at the outside
housing.

z
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Figure 6.12: Measurement setup for adaption
to varying boundary conditions (additionally
attached mass mbc). Virtual excitation forces
at the lower motor block end (gray) and one
triaxial accelerometer at the housing (only ra-
dial directions considered). For the validation,
two different unbalance masses (blue disc, mu

10 g and 20 g ) are sequentially attached to the
rotor blade, evoking a defined unbalance force
Fu.

In the particular example, we attached 37 kg (mbc in Fig. 6.12). This mass represents a
realistic system detuning due to heavy tool bracket purpose of the locomotive motor blower.
The measurement setup is depicted in Fig. 6.12. Now, the two acceleration outputs at the
housing for determining two virtual forces at the motor block in a similar manner as described
in Sec. 6.1 are used. These forces are utilized in order to construct a 2× 2 DoF admittance
matrix

(
Y bubf

)
, which is expanded to the entire system subsequently. Here, this expansion

step is applied only once. Again, we have a couple of different models for the SEMM adaption:
The parent model with global structure

Y gg =

[
Y iuif Y iubf

Y buif Y bubf

]
(6.12)

implies the dimensions:

• size(Y gg) = 138× 138 DoF,

• size
(
Y iuif

)
= 136× 136 DoF,

• size
(
Y iubf

)
= 136× 2 DoF,

• size
(
Y buif

)
= 2× 136 DoF,

• size
(
Y bubf

)
= 2× 2 DoF.

The estimation of two virtual forces at the motor block is defined as

F b =
(
Y bubf

)+
U b (6.13)
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containing the displacements U b based on outputs with changed boundary conditions and the
admittance matrix Y bubf between the motor forces and housing displacements. Now, they
simply hold the dimensions

• size(F b) = 2× 1 DoF,

• size(U b) = 2× 1 DoF,

• size
(
Y bubf

)
= 2× 2 DoF.

The approximated virtual excitation force F b is utilized to assemble a second experimental
model Y (2)

bubf
:

Y
(2)
bubf

= U b (F b)
+ . (6.14)

This new experimental model is now implemented in the fully extended interface SEMM
expansion. Here, no iterative approach is chosen, since we have no force filtering possibility as
within the iterative adaption to operational conditions. The system is not over-determined
so pseudoinverse filtering is not possible in the same way as in Eq. (6.4). Though, putting
Eq. (6.13) and Eq. (6.14) together, we write:

Y
(2)
bubf

= U b

((
Y bubf

)+
U b

)+
. (6.15)

Note that

Y
(2)
bubf
̸= U bY bubf (U b)

+ (6.16)

since
(
Y bubf

)+ in Eq. (6.15) has column-rank two, but U b only column-rank one. As already
mentioned in Sec. 6.1, the necessary and sufficient condition for the simplification of Eq. (6.16)
is not given in the presented case [52].
An overview flow chart of the entire technique of periphery adaption is depicted in Fig 6.13.
The whole procedure is passed through for every operational speed frequency separately. Now,
we utilize the adapted iterative SEMM model to determine the unbalance force at varied
boundary conditions. The procedure is similar to the force estimation process in Sec. 6.1.1 4.
Based on the unbalance force vector

F u = Uh

(
Y n
hurf

)+
(6.17)

we get the scalar unbalance force

Fu =

√
(Fx)

2 +
(
F ky
)2
. (6.18)

This unbalance force is now calculated for each frequency line. Here, unphysical spikes might
occur again. Due to that, we perform the same evaluation method as in Sec. 6.1. Hence, we
strictly select the operational frequency line and perform the adaptive force shaping algorithm
(see Fig. B.1) on the adapted iterative SEMM model to get rid of possible unphysical spikes.
The outcome is depicted in Fig. 6.14. The iterative SEMM model including adaption and
force shaping (black) increases the accuracy of force estimation almost at the entire frequency
range except in an area between 36Hz and 42Hz compared with the SEMM start model
(green). Also the iterative SEMM model without adaption to changed boundary conditions
(gray) slightly enhances the force estimation at most operational frequencies but note that
there are exceptions at 30Hz and 44.5Hz operational speed as discussed in Sec. 6.1.
4see Eq. (6.7) up to Eq. (6.11).
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Figure 6.13: Model adaption to varying boundary conditions via unique SEMM expansion. The
operational outputs are extracted from measurements at an application with boundary conditions
different to the iterative SEMM model. This SEMM model is updated by these measurements containing
information about the system modification. In the end, we get an iterative SEMM model including the
new boundary conditions due to the adaption process (blue).
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Figure 6.14: Unbalance force estimation over the entire operational speed range strictly at the
operational speed frequency lines at 20 g unbalance. The results are based on the SEMM start model
(green), the iterative SEMM model (gray) and the iterative SEMM model including one-step adaption
to the changed boundary conditions and adaptive force shaping (black).

6.3 Summary

Within this chapter, an iterative modal expansion method was presented based on a minimal
sensor setup containing two accelerometers for model adaption to operational conditions.
Furthermore, a single triaxial accelerometer was used for a model adaption to changed
boundary conditions. The method behind builds on the System Equivalent Model Mixing
technique. In the presented methodology, the “magic” happens within an iterative Moore-
Penrose pseudoinverse filtering on virtual operational forces. These forces were subsequently
smoothed by an iterative spline fitting technique. This method was introduced since at some
operational speed frequencies, the resulting force spectrum showed pronounced, unphysical
spikes. Proper robustness of the final force estimation was shown at the overall operational
frequency range. Furthermore, the entire process was applied to changed boundary conditions
of the exemplary test rig. In this context, the sensor setup was further reduced to a single
accelerometer at the housing. Here, the force shaping robustness fails at some operational
frequencies. Though, the technique can properly adapt the hybrid model to changed boundary
conditions. All estimated forces along the operating frequency range were experimentally
validated by implementing an exemplary unbalance on the blower test rig. Due to varying
operational conditions at different rotational frequencies, the entire process was gone through
for each rotational speed frequency separately.
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Chapter 7

Application of a Final Sensor System

In this chapter, we propose a possible solution for a final sensor system as exemplary application
for the presented hybrid models. Our condition monitoring strategy targets constrained
devices as industrial, wireless sensor nodes. In the first section, we show a case study for an
experimental sensor characterization based on a MEMS sensor, which was already utilized
within Sec. 3.4 for the comparison of roller bearing diagnosis methods. The subsequent
evaluation concerning frequency response and temperature sensitivity is based on a condition
indicator. This tracer was described in Sec. 3.4.4 and has emerged as suitable criterion for
bearing fault diagnosis based on wireless MEMS sensor systems. Also on that foundation,
the proposed sensor system is evaluated on a virtual sensing technique, whereby the virtual
sensor is placed in the inaccessible bearing center. Finally, the same device is applied to the
scenario of adapting the sensor system to varying boundary conditions on the blower test rig
example in Sec. 7.3.

7.1 Experimental Sensor Characterization

MEMS sensors often imply interdependent drawbacks as noise, limited bandwidth and
acceleration range or sensitivity [31, 79]. Despite of these problems, they can reach high
bandwidth, high acceleration range [53] or rather high resolution [151]. However, their
significant benefit of having a digital output can be destroyed by internal filtering, which
cannot be modified. These specific filter characteristics are often not disclosed by manufacturers.
In order to ensure proper transfer quality, the sensor’s individual transfer function must be
evaluated experimentally. A reasonable approach to improve the measured signals from MEMS
accelerometers was already shown in [12]. Here, the authors determined a characteristic filter
function to enhance the linearity. In the presented case, we regard the sensor system as an
additional transmissibility, which can be added to the presented hybrid model in the frequency
domain representation. Furthermore, the sensor’s transfer behavior itself is evaluated by
applying different references and varying temperature conditions.

7.1.1 Frequency Response Linearity Evaluation

A test rig was set up for an experimental MEMS accelerometer characterization. A LabView-
based control unit was used, which was essentially constructed by Pejic in [96]. He assembled
an electrodynamic shaker (Brüel & Kjaer 4809) on a decoupled basis and controlled it based
on a National Instrument NI PXIE-1062Q Chassis. Therefore, a piezoelectric reference
accelerometer was mounted on the shaker. This vibration exciter is supplied with a test
voltage signal which is defined in the LabView program, created by a waveform generator and
boosted by a shaker power amplifier. The reference sensor measures the resulting acceleration
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Laser Doppler Vibrometer

Reference Accelerometer

Electrodynamic Shaker

MEMS Accelerometer

Wireless Sensor Node for External Transducers

Waveform Generator

Acquisition and Control Unit

Decoupled Basis

Shaker Power Amplifier

Figure 7.1: MEMS accelerometer amplitude response characterization test rig. The set-up is depicted
including both reference sensors (piezoelectric accelerometer and a laser doppler vibrometer).

on the shaker’s table. This signal is fed into the NI chassis again and checked in terms of
deviation from the nominal value. The shaker voltage is then adapted and the reference
acceleration is measured again. Based on that groundwork, we developed a software for test
automation and integrated a laser doppler vibrometer for signal acquisition to get a non-
intrusive, high-quality reference vibration signal. Utilizing the laser vibrometer, drawbacks as
additional mass on the shaker and distortion due to inconvenient sensor mounting or specific
resonances within the reference measurement chain are eliminated. An overview over the test
rig is depicted in Fig. 7.1. Instead of characterizing the entire node, we characterized only the
MEMS built in the node. Hence, we utilized an external MEMS accelerometer without any
disturbances by structural dynamics of circuit boards or housing of the sensor node. Therefore,
the accelerometer is connected via an external cable with the wireless sensor node. This
box contains a micro-controlled digital signal processing unit including wireless connectivity
infrastructure. The main characteristic properties of the evaluated accelerometer (LSM6DSL
by STMicroelectronics) associated with the sensor box are:

• Output data rate (sampling rate): 3332 S/s,

• Measurement range: ±20m s−2

• Sensitivity: 0.61mms−2/LSB,

• Noise density: 800µ/s2/
√

Hz,

• Snapshot measurement time: 0.615 s,

• Samples per snapshot: 2048,

• Ambient temperature: 20 ◦C (unless otherwise specified).
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Based on the MEMS sensor Nyquist frequency, we desire sharp low-pass filtering at 1666Hz
evoked by the internal anti-alias filtering. This specific filter characteristic is evaluated with
the presented test rig. Therefore, a logarithmic 200-point frequency vector for the shaker
input was defined from 10Hz up to 10 kHz using an excitation amplitude of ±5m s−2. This
amplitude was selected to ensure a sufficient signal-to-noise ratio within the low frequency area.
Furthermore, we needed to stay properly within the measurement range keeping in mind the
9.81m s−2 static acceleration of gravity. The measurement time of 0.615 s was repeated every
30 s. Due to the use-case envisioned for this method will later require low power consumption,
the time was set that short. All snapshots were sent to a gateway (Siemens IOT 2040) via
Wireless-LAN. The snapshots were downloaded from there in order to evaluate them offline.
Within the snapshot measurements, stationary excitation is required. We must not measure
within switching between two frequencies. Therefore, the hold time at every frequency step
was set to 45 s to ensure stationary snapshots within all 200 frequency steps. In that time
slot, the Root Mean Square (RMS) amplitude was measured by the reference and the MEMS
sensor. We used a laser doppler vibrometer (Polytec OFV-525/-5000-S) and a monoaxial
piezoelectric accelerometer (Brüel & Kjaer 4397) at 100 kS/s sampling rate as references. The
MEMS RMS amplitude is calculated for every snapshot. This value divided by the reference
RMS amplitude is written for every frequency line. Thus, we get an amplitude response
function. An example is depicted in Fig. 7.2. Here, the results are shown for a triaxial MEMS
sensor (STMicroelectronics LSM6DSL) utilizing the piezoelectric accelerometer as well as
the laser doppler vibrometer. Note that only the sensor z-axis is observed here because it
is most used within the exemplary applications here. We observe an almost linear transfer
transmission behavior up to a frequency of nearly 500Hz. Here, a small peak is visible, which
is more pronounced in the transmissibility utilizing the piezoelectric reference. The mass
removal when using the laser vibrometer instead of the piezoelectric accelerometer in this
frequency area might be a reason for that. Thus, we expect a test setup specific phenomena
which has probably nothing to do with sensor specific properties. On the other hand, this
peak can come from digital filtering ripple. This leads to the transfer performance around
the Nyquist frequency. The roll-off starts beyond 2 kHz, which is far too late. The range
from the Nyquist frequency at 1666Hz up to that value can be mirrored at the Nyquist line.
Thus, this aliasing renders an important frequency range of the measurement unusable. The
internal filtering is too weak. The subsequent amplitude amplification increase starts again
above 3 kHz but remains somewhat better low-pass filtered.
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Figure 7.2: Evaluation of the applied MEMS sensor (STMicroelectronics LSM6DSL generation 2017)
concerning the amplitude response function. The sensor is evaluated utilizing a piezoelectric accelerom-
eter as reference (dotted line) and a laser doppler vibrometer (solid line). Entire transmissibility range
(top) and zoomed transmissibility up to the Nyquist frequency area (bottom).
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7.1.2 Temperature Sensitivity Characterization

Temperature-specific sensitivity and temperature dependent sampling frequency drift are
common disadvantages of various MEMS sensor types [56]. These changes express themselves
within the specific frequency response. Hence, the same single-sine excitation test as in
Sec. 7.1.1 was performed to evaluate the amplitude frequency response. In this case, a
piezoelectric accelerometer was utilized as reference (Brüel & Kjaer type 4309) since the test
rig needs to be placed inside a climatic chamber in which there is not enough space for a laser
doppler vibrometer. The experimental test set-up is depicted in Fig. 7.3.

The MEMS sensor and
the piezoelectric refer-
ence are placed on the
electrodynamic shaker
described in Sec. 7.1.1.
The surrounding air tem-
perature is measured by
two thermocouples (Na-
tional Instruments type
K). Essentially, the tem-
perature is controlled
by the climatic cham-
ber (Völtsch type VCL
7010) using a PT100
transducer and cross-
checked by the ther-
mocouple measurement.
The amplitude response
measurements were per-
formed at four different
temperature steps from
0 ◦C up to 60 ◦C.

Figure 7.3: Climatic chamber interior with electrodynamic shaker,
piezoelectric reference accelerometer (left) and MEMS sensor as device
under test (right). The two red wires rising into the surrounding air
represent thermocouples for temperature monitoring during the amplitude
frequency response measurements.

For each temperature stage, steady state was ensued by a hold time of half an hour, before
the test from 10Hz to 10 kHz at 200 logarithmic frequency steps was performed. The result
is depicted in Fig. 7.4. Here, a slight transmissibility decrease with rising temperature is
observable. This effect remains within one decibel below the Nyquist frequency. At the
amplitude response increase shortly after that, the temperature impact is a little bit higher
(approximately two decibel). Nevertheless, the temperature sensitivity keeps in acceptable
limits.
Even though the temperature sensitivity seems insignificant, we need to check if the small
observed effect does not issue from inadequate repeatability. In order to examine that
potential manifestation, the same test as depicted in Fig. 7.4 was repeated at constant
temperature of 20 ◦C. The result is depicted in Fig. 7.5. Here, proper reproducibility is
visible over the entire tested frequency range except for an outlier at the Nyquist frequency.
When comparing the temperature sensitivity with reproducibility measurements (Fig. 7.4 and
Fig. 7.5), irregularities around 700Hz also seem to result from a lack of repeatability. Overall,
however, the reproducibility is to be classified as satisfactory.
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Figure 7.4: Temperature sensitivity consideration of a MEMS accelerometer (STMicroelectronics
LSM6DSL generation 2017) at four different temperature levels. Whole transmissibility dynamic (top)
and zoomed range up to shortly above the Nyquist frequency (bottom).
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Figure 7.5: Amplitude response reproducibility check at a constant temperature of 20 ◦C regard-
ing the exemplary MEMS accelerometer (STMicroelectronics LSM6DSL generation 2017). Whole
transmissibility dynamic (top) and zoomed range up to shortly above the Nyquist frequency (bottom).
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7.1.3 Summary

In this section, an exemplary MEMS accelerometer was qualified for a final sensor system
concerning its frequency response linearity, reproducibility and temperature sensitivity. The
evaluated sensor showed deficiencies referring to filtering around the Nyquist frequency. The
transmissibility slightly decreases with higher temperatures but stays in an acceptable range.
Even the reproducibility within four samples was classified as satisfactory.

7.2 Virtual Sensing for Bearing Fault Diagnosis

In this section, an exemplary scenario is shown where the presented constrained sensor system
is applied to calculate virtual vibrations at inaccessible measurement positions. The approach
is based on a virtual force assumption [87, 88]. Essentially, the idea of the virtual force consists
in accounting for the fact that the measurement for the diagnosis is not performed directly at
the inaccessible location of the force related to the fault, but is observed away from it at a
location that can be accessed. Therefore, coupled transfer functions in combination with a
transmissibility function at operation of the pump test rig are applied. With the proposed
technique, we are able to estimate the fault impact forces directly at the bearing utilizing a
virtual sensor there. These forces are converted to accelerations using an adequate frequency
response to validate it with a piezoelectric reference accelerometer. Finally, industrial usability
is observed by calculating the dispersion of results based on the transfer functions of three
pumps within the presented test rig.

7.2.1 Virtual Sensing and Validation

In the presented case study, we placed a piezoelectric reference sensor at an exemplary,
inaccessible point at the bearing seat to validate the predicted acceleration. The setup
including preprocessing of the transfer functions is demonstrated at the pump test rig. The
final observation is made using the previously introduced MEMS sensor system to calculate
the exact acceleration at a faulty bearing1. The reference accelerometer is mounted directly
at this bearing to validate the results2.
In the presented example, we roughly estimate the transfer behavior by considering only one
single axis. In reality, the fault impacts excite the structure more or less in all six degrees
of freedom. We just pick out the radially orientated x-direction and observe the system
concerning that single axis. This radical approximation drastically simplifies the preprocessing
test effort in order to get the required FRFs within industrial requirements. These FRFs can
be determined by different partners in the industrial environment. Hence, preprocessing effort
must be minimized. Specifically, the following assumed transfer-/transmissibility functions
are required for the presented method3:

• The bearing driving point admittance Y 11 (not accessible for an impact hammer or
shaker) is roughly approximated by the driving point FRF Y 22.

• The transfer function Y 21 between bearing excitation position (1) and housing response
measurement position 2 is estimated under reciprocity assumption by Y 12.

1see Fig. 4.14 for the implemented, exemplary bearing defect.
2sensor position (1) in Fig. 4.15.
3see descriptions in Fig. 4.13 and Fig. 4.15.
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• The transmissibility function T 23 between housing measurement location (2) and MEMS
sensor position (3) is additionally required to implement further information about the
transfer behavior at operation.

In this context, rough assumptions are needed. These are reasonable because of some
investigations, we made within the test rig characterization (Sec. 4.2). In Sec. 4.2.1, the
reproducibility of three pump samples in radial direction was proven. On this basis, and because
of the rigid axial flange design, the estimation is made that the radial FRFs Y 11 and Y 22 are
not too different. The hope is to reduce resulting errors by including a transmissibility function
at pump operation. Hereby, the transmissibility T 23 is integrated between the well accessible
housing position (2) and MEMS sensor location (3). Using that information, dynamics are
captured which are missed by the FRF assumptions. In detail, a measurement at these two
locations was performed within steady-state pump operation (58.3Hz rotational speed). In
terms of measurement equipment, a Brüel & Kjaer piezoelectric reference accelerometer type
4397 in combination with a SKF Microlog GX® data logger at 25.6 kS/s sampling frequency
was used. We measured for 30 s and performed the FFT over two second blocks. The resulting
15 magnitude spectra with 0.5Hz frequency resolution were averaged in the frequency domain
to eliminate time-variant peaks. In order to calculate the transmissibility T 23, the quotient of
these spectral absolute values concerning the results at measurement locations (2) and (3)
was formed.
The set-up to generate these operational output spectra for transmissibility computation
contained a defective bearing. The defective bearing was chosen due to an impact-like
excitation of the entire system by the fault at the bearing position (1). Note, this excitation
does not constitute a perfect, broadband, uniformly distributed noise and - to be precise
because of that - T 23 captures not a real transmissibility function. Though, we utilized a
large bearing defect (similar to Fig. 4.14 but with 3mm groove fault width) and applied this
kind of oscillating impact excitation.
Now, a relation between the functions explained above and the virtual bearing vibration a1 is
established. The transfer behavior Y 21 between housing and bearing is initially needed to get
the force on the bearing as

F 1 = (Y 21)
−1 · a2. (7.1)

Therefore, the housing acceleration a2 at operation is indirectly calculated by the transmissi-
bility function T 23 and a snapshot of operational acceleration a3 is obtained by the MEMS
sensor system4:

a2 = T 23 · a3. (7.2)

To sum up, we get

a1 = Y 11 (Y 21)
−1 T 23︸ ︷︷ ︸

T 13

·a3 (7.3)

for the virtual bearing acceleration.
In order to validate the results via an accelerometer due to immeasurability of the force F 1

directly at the bearing, we calculated the resulting acceleration by the estimated driving
point admittance Y 11. Finally, the results were cross-checked by MEMS-snapshots which
were taken within operation using the large bearing fault as well as the smaller bearing defect.
These snapshots were utilized as a3 to feed Eq. (7.3) aiming to calculate the virtual bearing
acceleration a1

4measurement time: 0.651 s.
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This acceleration was subsequently compared with the real measured accelerations at bear-
ing (1), housing (2) and the MEMS position (3). The real bearing vibration was taken to
validate the result of Eq. (7.3). Fig. 7.6 shows the coupled transfer function T 13. The approx-
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Figure 7.6: Transmissibility function T 13 resulting from Eq. (7.3) between the MEMS sensor
position (3) and a virtual bearing location (1) in radial x-direction of the oil pump test rig.

imated transmissibility implies pronounced dynamics over the whole frequency range. It will
significantly influence future considerations regarding a1. Note that most of the recurring
peaks stem from the excitation at operation. They are related to the operational speed and
seem not to come only from the housing dynamics.

Considering possibly temperature influence as discussed in 4.2.3, we picked a measurement
at approximately constant 20 ◦C oil temperature5. In order to properly evaluate the validity
of the procedure, we considered the signal-based condition indicator f 6 to obtain a scalar
assessment criterion. Therefore, the Hilbert spectrum of the low-pass filtered virtual snap-
shot a1 was calculated. In Fig. 7.7, the Hilbert spectrum result of the real measured MEMS
snapshot at position (3) is shown, which is strongly dampened at the over-rolling frequency
compared with the results at observed locations (1) and (2). Looking at the housing measure-
ment (orange), the amplitude at bearing fault specific frequencies is much higher than at the
MEMS position. Though, it deviates sharply from the original bearing acceleration (gray).
However, the virtual calculated bearing acceleration at the bearing (blue) properly maps the
real measured bearing vibration. The result with smaller bearing fault7 also shows very good
approximation although the integrated transmissibility T 23 was trained with the big fault.
This kind of validation shows that the method including monitoring algorithm can be applied
to existing (probably already defective) systems.

5oil temperature measured by a PT100 sensor at position (5) of the pump test rig.
6introduction see Sec. 3.4.4.
7see bottom parts of Fig. 7.7 and Fig. 7.8.
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Now, the condition indicator was calculated for all measurement positions (1-3) including
the virtual vibration snapshot. Referring to the indicator, with use of the Hilbert spectrum
absolute values, we took a 13Hz frequency band around the over-rolling frequency and its
twofold harmonic. Subsequently, the summed RMS-value of these two bands was formed. In
order to compare the results by scalar values, we calculated the errors which were made by the
reference sensor at the housing, by the MEMS in the sensor box and by the MEMS including
the coupled transmissibility T 13 - namely the virtual bearing vibration. These errors σ were
referenced to the real measured bearing vibration based on the condition indicator. Thus, we
get for the large bearing fault (errors in relation to the actual measured bearing vibrations as
reference):

• MEMS sensorbox measurement at position (3) in relation to the real value at position (1):
σ3 = 50%,

• Housing measurement at position (2) in relation to the real value at position (1): σ2 =
29%,

• Virtual bearing vibration measurement at position (1) in relation to the real value at
position (1): σ1 = 8%.

This means up to 42% error reduction by integrating the coupled transmissibility T 13 in the
MEMS measurement compared with the standard MEMS measurement at position (3). The
MEMS sensorbox position is compared with the virtual bearing measurement position (1).
For the smaller bearing fault, we get:

• MEMS sensorbox measurement at position (3) in relation to the real value at position (1):
σ3 = 50% ,

• Housing measurement at position (2) in relation to the real value at position (1):
σ2 = 23%,

• Virtual bearing vibration measurement at position (1) in relation to the real value at
position (1): σ1 = 28%.

Analogously, for the smaller fault, up to 22% error minimization is reached comparing the
MEMS result with and without the virtual bearing position transformation.

Furthermore, the variation of the results for three pump samples was investigated. In
detail, we determined the FRFs of three pump samples considering Y 11 and Y 21. These affect
the entire transmissibility T 23 in Eq. (7.3). With respect to error calculation, the standard
deviation utilizing a k-factor of 3.3 for the expanded uncertainty was computed referring
to [62]. This factor was chosen based on selected 95% coverage probability. Summarized,
this implies that all coupled admittances yield the averaged depicted peak values in Fig. 7.8
with 3.3-fold standard deviation. This standard divergence can be that high due to the small
amount of tested pumps and the desired 95% coverage probability. In Fig. 7.8, the averaged
virtual vibrations are depicted including error bars. Here, the over-rolling frequency Hilbert
spectra maxima (fundamental frequency and first harmonic) are visualized again considering
the large and the small bearing fault (top and bottom part of the figure). The error bars are
shifted 3Hz to the left from the peak for better visibility. At the large bearing defect (top of
Fig. 7.8), we get:

• 1.00m s−2 ± 0.07m s−2 concerning the over-rolling frequency peak,

• 0.18m s−2 ± 0.01m s−2 at its harmonic



146 7 Application of a Final Sensor System

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

0.2

0.4

0.6

0.8

1

1.2

Frequency / Hz

M
ag

ni
tu

de
/
m s
2

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

0.2

0.4

0.6

0.8

1

1.2

Frequency / Hz

M
ag

ni
tu

de
/
m s
2

Real Measured Acceleration by the MEMS at Position (3)
Real Measured Housing Acceleration at Position (2)
Virtual Bearing Acceleration a1 at Position (1)
Real Measured Bearing Acceleration at Position (1)

Figure 7.7: Hilbert spectra of the pump acceleration at stationary 58.3Hz operational speed in radial
x-direction. Comparison of the pump test rig measurement points (1-3). Bottom: Observation of the
bearing fault of Fig. 4.14. Top: Results based on a bearing fault with twice fault groove width.
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Figure 7.8: Hilbert spectra at the bearing measurement point (1). Error analysis at stationary 58.3Hz
operational speed in radial x-direction concerning the virtual vibration. The real measured bearing
acceleration of the first pump sample is delineated as reference (gray). Bottom: Observation of the
bearing fault of Fig. 4.14. Top: Results based on a bearing fault with twice fault groove width. The
error bars (95% coverage probability) are shifted to the left for better visibility of the peaks.
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and the following values for the measurements at the smaller bearing defect:

• 0.56m s−2 ± 0.04m s−2 again at the first peak and

• 0.19m s−2 ± 0.01m s−2 at its harmonic.

In summary, this means relatively low dispersion and demonstrates independence from a single
pump sample. Hence, the method is applicable within a series of the exemplary pump type
since the dispersion is below 10% for the considered small and large bearing fault dependent
peaks within the Hilbert spectra.

7.2.2 Concluding Summary

A case study with application of a virtual sensing technique for bearing fault diagnosis was
shown. The error which is made when measurements are recorded far away from the vibration
source can be significantly reduced by this method. Here, a coupled transmissibility function
between a wireless sensor system and the bearing position showed proper results although only
one measurement direction was observed. Based on the presented technique, the operational
force and the vibration directly at the bearing can be determined. All FRFs show small
dispersion within three tested pumps. The virtual bearing vibration allows early condition
decisions due to accurate and precise diagnosis. Early condition decisions can lead to extension
of required service intervals and cost reduction as long-term consequence within the final
application.

7.3 Application of an Industrial Sensor System to the Blower
SEMM Model

In the this section, we apply the exemplary industrial MEMS sensor system to the blower test
rig under the same, modified boundary conditions as in Sec. 6.2. In this case, the additional
mass that was used to change the boundary conditions (see Fig. 7.9) changes the dynamics
of the system and thus also the transfer path between an applied unbalance force and the
sensor. The sensor system itself introduces system dynamics by its circuit board and housing.
Note that these dynamics are not included in the model so far - unlike the experimental
model in Sec. 7.2.1, where these dynamics were accounted for by the measured transmissibility.
The MEMS accelerometer is mounted directly on this board, where all electronic devices
of the system are placed. An experimental modal analysis of the mounted circuit board
yielded a first resonance at 900Hz. This resonance of the sensor system’s antenna on the
board directly falls into the measurement range of the MEMS sensor. Note, these board
vibrations are not reproducible due to manufacturing tolerances and mounting variations.
Thus, individual sensor box dynamics can be regarded as part of the transfer path between
fault and measurement position.
With the presented method, the dynamics of the sensor box are handled by counting them as
an element of varied boundary conditions of the entire monitored system. Before starting with
the presentation of our findings, we look back to Sec. 6.2. Here, a proper validated hybrid
model of the blower test rig was adapted to changed boundary conditions. The motivation was
an adjustment of an existing model to a varied field periphery. This modified field periphery
was represented by an attached extra mass of 37 kg8. Now, the blower is observed by the
sensor box containing the previously tested MEMS sensor.
8see mbc in Fig. 7.9.
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The MEMS sensor box is glued on the
blower housing as schematically depicted
in Fig. 7.9 utilizing adhesive wax. We only
regard the two horizontal operational out-
put DoF of the triaxial MEMS sensor U b

to estimate two virtual motor block forces
F b

F b =
(
Y bubf

)+
U b. (7.4)

with the same dimensions of F b, U b and
Y bubf as we had within the reference mea-
surements in Sec. 6.2. These forces are
not directly used for fault estimation but
applied to assemble a new, small experi-
mental model Y (2)

bubf
:

Y
(2)
bubf

= U b (F b)
+ . (7.5)

This admittance is subsequently imple-
mented into the fully extended interface
SEMM. The objective is the introduction
of information about the changed bound-
ary conditions as well as the sensor box
dynamics by this single SEMM expansion
step. We summarize the procedure again
as follows:

Y
(2)
bubf

= U b

((
Y bubf

)+
U b

)+
. (7.6)
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Figure 7.9: Setup of an exemplary final sensor
system for model adaption to varying boundary
conditions (additionally attached mass mbc).
The same virtual excitation forces as in Sec. 6.2
at the lower motor block end (gray arrows) are
used to adapt the model. A defined unbal-
ance mass (blue disc, mu = 20 g) is attached
to the rotor blade, evoking a defined unbal-
ance force Fu. The model is adapted and vali-
dated by measurements at the outside housing
utilizing an exemplary wireless sensor node
(blue) including an onboard triaxial MEMS-
accelerometer. Only horizontal directions are
considered.

Y
(2)
bubf

is fed into the fully extended interface SEMM method as shown in the flow chart of
Fig 6.13. Subsequently, the unbalance force vector is estimated as

F u = Uh

(
Y hurf

)+ (7.7)

based on the admittance matrix Y hurf between operational unbalance forces at the rotor plate
DoF r and responses at the housing DoF h. Hence, again we get the scalar unbalance force Fu
according to Eq. (6.11). This force is validated by the unbalance excitation of Eq. (6.6). In
this example, an unbalance mass mu of 20 g is applied at rated 59Hz mechanical operational
speed9.
The force is estimated by different models. We obtained the preliminary unbalance force
estimation by the SEMM start model without the iterative updating to operational conditions
(green line). By including the expansion loop for adaption to operational conditions as
described in Fig. 6.4, we get the gray curve which is much more spiky than the green basis
estimation. Though, the force would be approximated better when these peaks were eliminated.
However, the adaption to changed boundary conditions was integrated by Eq. (7.6) to obtain
Y

(2)
bubf

. Herewith, the black force line in Fig. 7.10 was obtained. We can see a slightly better
force estimation compared with the gray one except a high peak near to the operational
frequency line. In order to minimize the peakedness, the spline fit-based iterative force shaping
was applied according to Sec. 6.1.2. Finally, we got the blue force line as resulting estimation.
9This scalar represents the reference in form of an orange line in Fig .7.10.
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The force shaping worsens the estimation of the iterative SEMM model including adaption
to the varied boundary conditions in this example although it is better than the estimation
by the SEMM start model. The result before the force shaping comes pretty close to the
calculated reference force and can be valued as satisfactory.

Concluding Summary

The force magnitude at rated operational speed frequency approaches the calculated reference
force well. By using the iterative SEMM model including adaption to varied boundary
conditions, we have a deviation of 7%. In this case, the adaptive force shaping worsens the
result. Nevertheless, the estimation is still in the same order of magnitude afterwards. However,
the results can be valued as satisfactory, keeping these complex, coupled transfer paths between
fault source and measurement position in mind. Generally, an accurate statement concerning
the operational forces is not easy due to pronounced, spiky dynamics along the frequency
axis around the rotational frequency. Although, the final force estimation at the rotational
frequency line is difficult to quantify exactly, the final outcome delivered an improved result of
more than 500% compared with the SEMM start model. The underlying, iteratively adapted
SEMM technique can therefore serve as a helpful tool for operational force estimations even
for industrial MEMS sensor systems.
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Figure 7.10: Force estimation by an exemplary onboard MEMS sensor at rated 59Hz rotational
speed and applied 20 g unbalance mass. The main force peak is visible near the fundamental frequency.
An extended frequency range is depicted to show a spline fit’s curve progression.
Representation of force estimations based on three different SEMM models: start model, iterative model
and iterative model with further adaption to modified boundary conditions due to 37 kg additional
mass at the outside housing. Dynamics of the sensor circuit are also part of these boundary conditions.
On the black curve, adaptive force shaping is applied. The spline fit after two dropped spike samples
within three shaping loop runs (blue) is shown.





Chapter 8

Conclusion and Perspective

In this thesis, a methodology for condition monitoring approaches was developed based on
hybrid dynamic models. Therefore, some of the latest methods in the context of structural
dynamics were further adapted and extended to the application of fault quantification of
rotating machinery. This chapter summarizes the main findings and provides a perspective
for future research to tackle remaining challenges.

8.1 Concluding Summary

In the context of answering the research questions, how to develop hybrid dynamic models for
industrial condition monitoring requirements, we found:

Orthotropic elastic rotor support can reduce condition monitoring flexibility in
case of measuring at the housing.

Industrial rotor systems can be supported by bearings with orthotropic bearing stiffnesses.
Here, forward and backward whirl occur within the rotor orbit when measured by two
orthogonally aligned DoF at the housing. When the operational speed frequency merges with
one of the support resonances, the vibration orientation at the outer housing can be solely
aligned towards mode shape direction. These modes dominate the measured accelerations and
can limit the frequency range for condition monitoring to a range excluding the associated
resonances (see Sec. 4.1.1).

Overhung impellers can be connected by equivalent stiffnesses to beam element
shafts.

Overhung impellers are often part of rotor systems in pump or blower systems containing
abrupt, huge diameter changes. A common shaft modeling approach uses Timoshenko beam
elements. This technique can not be applied to thin, circular discs which are often the base
element of impellers. Here, an analogous stiffness element which connects the shaft with the
impeller can solve the problem. This stiffness can be computed by an exemplary load scenario
within a reference simulation. Based on the bending angle and the bending moment, the
stiffness can be implemented in the element matrix in order to assemble a rotor model with
only few degrees of freedom (see Sec. 5.1.2).

System Equivalent Model Mixing can add missing interface dynamics of Lagrange
Multiplier frequency-based substructuring but it can also introduce static offsets.

In a perfect interface scenario, the Lagrange Multiplier frequency-based substructuring coupling
constructs all system dynamics from the subsystems to a coupled, entire model which contains
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the real structural dynamic properties. When the method is to be used on rotating machines
where the rotor and housing are separate sub-components, the coupling must often be
implemented at the bearings. The interface dynamics are usually unknown and not considered
in this approach. Modal expansion using System Equivalent Model Mixing can add the
information of the lacking interface dynamics. This effect was shown at a certain mode shape
between rotor and housing. Although these dynamics are captured by almost all SEMM
methods in the presented example, static offsets can occur for an extended frequency range.
If the SEMM start model appears to be static but has enough DoF to be adaptive, a highly
dynamic experimental model can adequately fit it to real dynamics, especially through the
basic SEMM method (see Sec. 5.2.2).

Pseudoinverse filtering can find virtual operational forces by iterative estimations
using a small set of accelerometers.

The Moore-Penrose pseudoinverse is a powerful method to filter core information from an
overdetermined system. The structural dynamic changes due to operational conditions of a
rotating machine can be implemented by a minimal sensor set. Here, one triaxial accelerometer
close to the acting rotor force (for example the motor block) and one further sensor at the
final monitoring system location (typically at the outside housing) can suffice to find an
operational rotor force. This load is detected by filtering the displacement information in
combination with pre-determined admittances. The technique is based on a hybrid model
in the frequency domain representation and finds the virtual, desired force in an iterative,
fast converging process. Due to varying operational conditions at different rotational speeds,
the entire process was successfully implemented for each speed frequency line separately (see
Chap. 6).

Lack of observability and controllability due to a small set of accelerometers can
lead to unphysical spikes within the System Equivalent Model Mixing.

The problem that SEMM modal expansion can lead to spurious peaks due to fixed boundary
modes is well known. When the experimental model consists of a really small subset of DoF1,
the entire system dynamics can neither be controlled by the two virtual forces nor observed
by these four DoF of the reaction measurement2. We can eliminate these peaks in a defined
frequency range by shaping the spectrum with a cubic spline fit (see Sec. 6.1.1 and Sec. 6.1.2).

The mechanical fault information manifests in modulation.

The fault modulation has to be filtered out by the monitoring method which has to be tailored
for the mechanical vibration source. Impacts as produced by bearing faults have to be filtered
out by amplitude-modulation extracting methods and harmonic excitations can simply be
characterized at the exciting frequency line. Amplitude-modulated impacts have just to
be inside the bandwidth and resolution of the sensor system. This sensor system must be
sensitive enough. If one assumes that MEMS sensor systems fulfill these requirements, they
are the applications of choice due to their proper integrability and low price. Envelope spectral
analysis in combination with appropriate filtering based on the spectral kurtosis provided
the best results within an exemplary MEMS sensor system case study within this work (see
Sec. 3.3 and Sec. 3.4).

1four DoF vs. 138 DoF in the presented example.
2four horizontal DoF based on two triaxial accelerometers at two measurement positions.
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Temperature can influence both load scenarios and the performance of Micro-
Electro Mechanical sensor systems.

When condition monitoring is established on the base of a Micro-Electro Mechanical sensor
system (MEMS), the holistic system has to be kept in mind. Temperature can change the
dynamic properties of the rotating machine and the MEMS accelerometer sensitivity. The
oil pump medium viscosity decreases with temperature and results in less axial force on the
rotor. This leads to smaller bearing fault impacts and erroneously, artificially improves the
condition of the machine. When high accuracy and precision is required, the surrounding
conditions should be observed by additional sensors in order to uphold the quality of sensing
(see Sec. 4.2.3 and Sec. 7.1.2).

Virtual sensors based on mixed transfer functions can significantly increase the
accuracy of industrial condition monitoring systems.

Industrial sensor systems are typically not located directly at the fault source. They are rather
mounted at the outside housing, some distance away from the rotor. On the base of coupled
frequency response functions and transmissibility measurements, a virtual accelerometer can
be placed directly inside the bearing. The virtual bearing acceleration was experimentally
validated and assessed on the basis of an envelope spectrum-based condition indicator. This
indicator was applied to the virtual bearing vibration at an exemplary fault and showed to
enhance accuracy by 50% compared to the standard MEMS measurement on the housing. In
case of three pump samples, the dispersion of FRFs was determined below 10% (see Sec. 7.2.1).

Varying boundary conditions including circuit board dynamics can be observed
as change in the entire admittance and adapted by Pseudoinverse filtering based
on a single accelerometer.

Changing boundary conditions for example due to extra masses at the housing of rotating
machinery can lead to inaccurate fault quantification since the entire system’s admittance
changes. The influence of these modifications can be captured by a single, triaxial accelerometer
at the outside housing. Here, the Moore-Penrose Pseudoinverse helps again to find a virtual
force based on the two horizontal acceleration response DoF and the transfer paths to this
force. In case of applying a MEMS sensor system, the accelerometer is typically located
directly on the circuit board due to cost-efficiency reasons. The circuit board dynamics can be
considered as part of the changing boundary conditions, as it is directly related to the transfer
function between the operating force and the monitoring accelerometer. In the presented
example, the effect of changing boundary conditions did express itself within the operational
force estimation of a reference sensor and also within the prediction by an industrial MEMS
sensor system. In this final example, the Pseudoinverse filtering was able to enhance the force
estimation accuracy up to 7% (see Sec. 7.3).

8.2 Recommendations and Future Work

In this thesis, experimental, numerical and hybrid modeling approaches showed proper results
concerning fault quantification at exemplary, industrial test rigs. Nevertheless, significant
improvements and further developments can still be achieved in terms of methodology, usability,
industrial practicability and automation. The following recommendations are discussed for
future research.
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Extend the hybrid modeling approach to all six DoF per element.

The hybrid modeling method was only implemented for horizontal displacements and bending
rotations DoF due to requirements of minimal model size. This led to 4× 4 element matrices.
Though, axial fault forces can definitely occur during operation of rotating machinery. The
centrifugal pump example even showed significant bearing fault excitation responses in this
direction due to the axial operating force in the axial flow conveying direction. In this case, all
six DoF per element should be included in a model. A first approach was pursued by Benkler
[15]. Here, a Timoshenko beam rotor model was created including all six DoF per element.
In that case study, the influence of high damping was evaluated and the impeller modeling
was also generalized without the need to implement an analogous stiffness. The approach of
Benkler has not been applied to operational measurements, so its suitability for condition
monitoring requires further research.

Create a fault model library.

This thesis focuses on structural dynamic modeling methods and does not pay attention to
fault models. When the structural dynamic model is validated and possible fault scenarios
are known, a fault library can serve as a base for condition decision algorithms. A first
step into this direction was developed in [16]. Here, some roller bearing fault scenarios were
implemented utilizing a multi-body simulation. In case of roller bearing fault modeling,
assumptions concerning the shaft and outer ring must be well thought of. Also the frequency
response functions from the bearing impacts to a sensor on the housing should be ensured by
placing a virtual six DoF point in the bearing and a triaxial sensor on the housing.

Enhance the DoF selection for modal expansion.

The offsets of some FRFs after the application of SEMM (see Fig. 5.21, 5.22) and their ability
of mapping the correct dynamics can be further enhanced especially in the higher frequency
range. When there were much more DoF included in the experimental model, an optimization
scheme for the best impact and sensor DoF selection can be created. Of course, the desired
optimization criteria must be chosen based on the frequency range where the machine faults
are expected. Also the appearance of unphysical spikes within the adaption to operational
conditions (Sec. 6.1) could be reduced by choosing the best sensor setup with respect to
controllability and observability.

Improve and extend the estimation of operational forces.

The estimation of operational forces in Sec. 6.1.1 is restricted to unbalances. When observing
a whole fault library, the force estimation can not be implemented with the shown procedure.
Also the cubic spline-based shaping of the force spectrum may not be compatible with all fault
types. Therefore, an enhanced filtering technique should be developed to get rid of possible
unphysical spikes. Of course, the best solution would be avoiding them by improving the
iterative modal expansion. Furthermore, a comparison of the iterative SEMM expansion with
a Kalman filter-based approach to estimate the operational forces can be interesting.
Moreover, the virtual accelerations in Sec. 7.2 are based on fault forces. Their estimation
could be improved by including all six DoF of the virtual bearing point in the coupled transfer
paths. Note, virtual point transformations would be necessary which can lead to bad industrial
practicability.
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Implement hybrid models including fault selection and quantification on a con-
strained sensor system.

The presented methods were all implemented in MATLAB® and are based on an offline
evaluation. In order to improve the industrial relevance, these methods should be exported
to a constrained MEMS sensor system. Although, some matrix multiplications are not a
big deal for these micro-controlled systems, the final condition decision algorithm must be
well evaluated concerning computational and storage efforts. A possible solution would be
the preprocessing of key property indicators as simple filtered Fourier spectra of measured
snapshots with subsequent transmission to a cloud service. All further calculations, online
adaptions of the model as well as the final fault classification and quantification can be
implemented there.





Appendix A

Impeller Specific Parameters for Geometri-
cal Moments of Inertia Calculation

In this chapter, we derive the geometrical moments of inertia, which are specific for the blower
rotor type regarded within the thesis. All equations are based on [72].

A.1 Rotor Blades with Constant Cross-Sectional Area

Here, we have a look at the impeller section, depicted in Fig. 5.5. The angle φ can split a
single blade into two circle segments (radii r1, r2) due to symmetry. The distances to the
individual centroids of each blade yS1/2 span the areas A1/2 based on [54]. Imagine that the
two circle segments are subtracted from each other to get the blade geometry. We write

yS1/2 =
4 · sin

(φ
2

)
· r1/2

3 · φ and A1/2 = r21/2 ·
φ

2
. (A.1)

Based on these values, the yS-distance to the blade centroid according to [54] is calculated as

yS =
yS2 ·A2 − yS1 ·A1

A2 −A1
=

4 · sin
(φ
2

)
·
(
r32 − r31

)
r22 − r21

. (A.2)

The geometrical moments of inertia xs , ys as well as xsys relating to the blade section
centroid S are determined by integrating over the blades based on [6, 54]:

xs =
(
sin
(φ
2

))3
3

·
(
(r2 − ys)3 − (r1 − ys)3

)
· cos

(φ
2

)
· (r1 + r2) , (A.3)

ys =
(
cos
(φ
2

))3
3

·
(
r31 + r32

)
· sin

(φ
2

)
· (r2 − r1 − 2ys) , and (A.4)

xsys = −
(
sin
(φ
2

))2
2

·
(
(r2 − ys)2 − (r1 − ys)2

)
·

(
cos
(φ
2

)2)
2

·
(
r21 + r22

)
. (A.5)

Now, the blade is rotated to the η - ξ coordinate system around the centroid S. The emerging
geometrical moments of inertia η and ξ are

η =
1

2

(
xs + ys

)
+

1

2

(
xs − ys

)
· cos (2φn) + xsys · sin (2φn) , and (A.6)

ξ =
1

2

(
xs + ys

)
− 1

2

(
xs − ys

)
· cos (2φn)− xsys · sin (2φn) with (A.7)

φn = φn0 + n · 2 · π
N

, (A.8)
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where φn0 represents the start angle for a first regarded blade referred to η−ξ-axes, n = 0...N−1
constitutes the respective blade index and N outlines the total amount of blades. Finally, the
rotated moments of inertia are shifted via η and ξ into rotor coordinates x and y. Thus, we
get

x = η + y2s ·A and y = ξ + x2s ·A using A =
(
r22 − r21

)
· φ
2

and

(A.9)

xs = a · sin
(φ
2

)
, ys =

rvi + rti
2

− a+ a ·
(
1− cos

(φ
2

))
, a = r1 − ys +

r2 − r1
2

.

(A.10)

A.2 Rotor Blades with Varying Cross-Sectional Area

In this section, the blade discretization within the impeller sector is considered, which is
directly adjacent to the flow-guiding coverage. Here, the cross-sectional surface shrinks
from outside to inside with increasing z-coordinate. Therefore, a variable reduced angle
φvr(z) is introduced and deducted from φ. The parameters are illustrated in Fig. A.1. As a
consequence, we get the variable angle φv(z) in exchange for φ. To calculate this variable, a
geometrical approximation based on angular relationships is used. Firstly, we get d(z) due
to the marked right-angled triangle by d(z) = sin (γ) · (rvi0 − rvi (z)) (see Fig. 5.6 for the
radius rvi). Afterwards, φvr(z) is estimated based on this length and the radii r1 and r2 by
φvr(z) = arctan

(
2·d(z)
r1+r2

)
.

rvi(z)

γ

Approximation
r2 − r1

r2

r1

d(z)

MS

φvr

rvi0

γ

rvi(z)rvi0

Figure A.1: Single impeller blade representation with decreasing cross-sectional area (blue) and
geometrical simplifications for φvr approximation based on [72]. φvr is needed for the calculation of
varying cross-sectional area and the geometrical moment of inertia (Sec. A.1 - A.2).

Within the flow guiding coverage adjoining blades’ sector, the angle φv(z) depends on the
z-coordinate. We utilize the reducing part φvn(z) linked to the length d(z). Applying the
additional parameters which are depicted in Fig. A.1, we get

φv(z) = φ−φvr(z) with φvr(z) = arctan

(
2 · d(z)
r1 + r2

)
and d(z) = sin (γ)·(rvi0 − rvi (z)) .

(A.11)
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A.3 Flow Guiding Coverage

The segments of the flow guiding coverage are depicted in Fig 5.6. Here, the equations for the
outer radius rva(z) are noted. Within the first section (dashed black), rva is approximated to
be constant. The radius for the second segment (black) is defined as

rva(z) = rva(z0)− ra1 · (sinφd(z)− sinφd0) with (A.12)

φd(z) = arccos

(
z0 − z
ri1

+ cos (φd0)

)
− φd0. (A.13)

Regarding the third segment (orange), we write

rva(z) = rva(z2)− ra2 · (sinφd(z)− sinφd(z2)− sinφd0) with (A.14)

φd(z) = arccos

(
z2 − z
ri2

+ cos (φd(z2))

)
− φd(z2). (A.15)

Concerning the last segment (green), we simplify again rva to be constant.





Appendix B

Adaptive Force Shaping Conditions

In order to shape the spiky iterative SEMM force approximation, a physical based reference
is needed. This reference is built on scalar values of the force magnitude in a frequency
range around the rotational frequency. Examples for such indicators can be found in bearing
diagnosis [140]. Here, these scalars are utilized to gain information about roller bearing faults.
Generally, they provide knowledge about the shape of a signal within a scalar value. In this
context, the features are extracted from the SEMM start model, the final iterative SEMM
model and additionally from an iterative cubic spline fit function which is fitted to the final
iterative SEMM force magnitude. Particularly, we calculate the subsequent scalars:

• Root mean square value

frms =

√√√√ 1

n

n∑
i=1

f2i , (B.1)

• Force Maximum fmax, force minimum fmin,

• Crest factor

𝒸𝓇 =
|fmax|
frms

and (B.2)

• Force kurtosis factor

𝓀 =
1

n

n∑
i=1

(
fi − f̄
s

)4

(B.3)

within a range around the operational speed frequency line of ± 10Hz (i=1...20 samples). f̄
represents the force mean value and s denotes the standard deviation within the specified
frequency band.
The root mean square value is utilized as general level of the force hill, whereby the minimum
and maximum is used for more specific significance within the iterative force adaption. The
crest factor describes the ratio between peak and root mean square value and well characterizes
the shape of a smooth signal. More specific information is provided by the kurtosis factor. It
is defined by the fourth standardized moment of a signal and properly describes tails of a
sample distribution. These tails can be outliers or spikes in the presented case.
The question arises how to define a spike. We decided between different feature types
according to the introduced scalar values. Some of them are unique for the SEMM start
model (superscript start). Properties with superscript tolstart are computed only for the
final iterative SEMM model, before the iterative force shaping starts. They represent a start
deviation between the SEMM start force magnitude and the iterative SEMM force magnitude.
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We put together a linked condition which takes effect to keep this deviation within a physically
justified tolerance (−5% to 250% deviation). All features comprising superscript tol are
not unique and replaced by iterative values within the loop. The entire shaping technique is
depicted in Fig. B.1 within a flow chart.
At the beginning, the listed force signal scalars of the iterative and of the start model were
calculated. Next, we design a start force envelope utilizing a cubic spline fit function. This
curve fit is based on the Shape Language Modeling toolbox [33]. It is specified for our signals
using Hermite boundary conditions. The required knots are set to an amount of only 100 over
the entire frequency range. This decision is made based on weighting the accuracy of peak
fitting ability, a generic approach and computation time. In the next step, the loop starts
by extracting the fit features f tol

rms and 𝒸𝓇tol.These are compared with the properties of the
SEMM starting force estimate and with those of the iterative SEMM model, which includes
potential unphysical spikes.
When the linked condition decision results in true, the sample point of maximum amplitude
is dropped. This sample must be located within the same frequency range around the
rotational frequency (± 10Hz which is utilized for calculating the scalars. After dropping
the spike samples, we get a shaped, truncated unbalance force vector of the iterative SEMM
approximation. The technique of canceling spikes involves eliminating the sample either to
the left or right of the rotational frequency. Depending on this, the considered frequency
range is shortened with respect to the feature extraction for the subsequent iteration step
in the corresponding direction to the left or right of the rotation frequency. Now, the spline
is fitted to the shaped force vector and features are extracted both from the adapted force
vector as well from the appropriate new fit function. All dynamic properties (superscript tol)
are now replaced within the iteration. The linked condition decides again, if a spike sample
occurs and drops it in case of condition fulfillment. Unless the prerequisite is true, the loop
terminates. Finally, the rotational speed frequency line of the final iterative force envelope is
taken as scalar force value.
As depicted in the flow chart (see Fig. B.1), the assessment criteria for spike removal distinguish
between fitted envelopes and “raw” force signals. Particularly this affects four features (f tol

rms,
𝒸𝓇tol, f tol

max and 𝓀tol). f tol
rms and 𝒸𝓇tol are taken from the fit function, since their force shape is

smooth but either too high or too low. For example, when having a spike at the beginning of
the loop, the fit covers it with a wide, large hill. This hill is characterized properly by its root
mean square value and crest factor. Another extremum might occur, if too many samples are
dropped. As a consequence, we get a jagged signal with low amplitude. This is also wrapped
by a smooth fit, but with much lower root mean square value and crest factor compared with
the SEMM start model. By this choice, we get rid of outliers but keep robust against too
many dropped samples.
As further iterative feature, there is the kurtosis factor 𝓀tol describing steepness and peakedness
of the force curve. If these differ to strong from the SEMM start model, the peak is removed.
In order to keep robustness, f tol

max is regarded. Here, the iteratively shaped maximum must
exceed the minimum of the SEMM start model. These two assessment criteria are only
reasonable within the unfitted force vectors since the envelope smoothing would distort the
feature’s significance.
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Figure B.1: Iterative force shaping. Unbalance force vectors of the SEMM start model and the
iteratively updated SEMM model (outcome of Fig. 6.4) as input data. The start features are used as
physical reference within the loop. 𝒸𝓇tol and f tol

rms are replaced by fit-based scalars within the loop
(dotted lines). The iteration continues until the linked condition decision results in false. In that case,
the amplitude at the rotational frequency line of the iterative force envelope is taken as final force
value (blue).
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