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ABSTRACT
While reachability analysis is one of themajor techniques for formal

verification of dynamical systems, the requirement to adequately

tune algorithm parameters often prevents its widespread use in prac-

tical applications. In this work, we fully automate the verification

process for linear time-invariant systems: Based on the computa-

tion of tight upper and lower bounds for the support function of the

reachable set along a given direction, we present a fully-automated

verification algorithm, which is based on iterative refinement of

the upper and lower bounds and thus always returns the correct

result in decidable cases. While this verification algorithm is partic-

ularly well suited for cases where the specifications are represented

by halfspace constraints, we extend it to arbitrary convex unsafe

sets using the Gilbert-Johnson-Keerthi algorithm. In summary, our

automated verifier is applicable to arbitrary convex initial sets, in-

put sets, as well as unsafe sets, can handle time-varying inputs,

automatically returns a counterexample in case of a safety viola-

tion, and scales to previously unanalyzable high-dimensional state

spaces. Our evaluation on several challenging benchmarks shows

significant improvements in computational efficiency compared to

verification using other state-of-the-art reachability tools.

KEYWORDS
Formal verification, set-based computing, high-dimensional sys-

tems, iterative refinement, automated parameter tuning, counterex-

ample.
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1 INTRODUCTION
Formal verification of dynamical systems aims to show that unde-

sired system behavior is avoided in the presence of uncertainty. A

popular technique is reachability analysis, where one checks if the

reachable set intersects unsafe sets defined by safety specifications.

This principle has been applied in numerous use cases, such as

aerospace/automotive applications, circuits, power systems, robot-

ics, and biology [5, Tab. 2]. Since exact reachable sets cannot be

computed except for a few special system classes [28], reachability

algorithms either compute outer- or inner-approximations. Outer-

approximations prove safety by showing that no unsafe state is

reachable, whereas inner-approximations disprove safety by show-

ing that at least one unsafe state is definitely reachable. The practical

success of the verification process heavily depends on the tightness

of the outer- and inner-approximation, which in turn depends on

the tuning of algorithm parameters, such as the time step size. Due

to the difficulty of manual algorithm parameter tuning, we believe

that automation is a crucial step to facilitate the broader use of

reachability analysis for formal verification. We aim to achieve this

with the fully-automated verifier presented in this work.

1.1 Related work
There exist several groups of approaches for formal verification of

dynamical systems: Barrier certificates [46] are level sets separating

the unsafe region from the reachable states, thereby omitting an

explicit computation of the reachable set. They are primarily studied

in the context of stochastic systems [34, 47], where it is checked

whether the probability of entering an unsafe region can be bounded

by a given threshold. Another approach is theorem proving using

differential dynamic logic [43, 44]. This is a special type of first-

order logic for deductively proving properties of hybrid programs,

which encode safety specifications for hybrid systems. A third group

of approaches is based reformulating the reachability problem a

constraint satisfaction problem [48]. For linear time-invariant (LTI)

systems the predominant approach is to explicitly compute the

reachable set and check for intersection with unsafe sets to prove

or disprove safety [5]. As our approach utilizes reachability analysis,

we restrict the remainder of our literature review to this group and

focus on reviewing methods for LTI systems.

Since the reachable set is a zero sublevel set solution of aHamilton-

Jacobi-Isaacs partial differential equation [41], it can be approxi-

mated by solving the equation on a gridded state space. This is well-

known to scale exponentially with the system dimension, which

restricts the applicability to low-dimensional systems. Although

https://doi.org/10.1145/3575870.3587121
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the issue can be alleviated using decoupling [15] or decomposi-

tion techniques [14], these methods are essentially not used for

reachability analysis of linear systems.

Simulations from a sample of initial states within the initial

set can be used to construct reachable sets [19]; this technique

also extends to uncertain inputs [18]. Outer-approximations are

obtained by enlarging the simulations based on sensitivity analysis,

whereas inner-approximations can be constructed from the convex

hull of the simulated states at each point in time [23]. Moreover,

one can also construct an explicit representation of the reachable

set using star sets in polynomial runtime [10, 20].

Another group of methods is based on set propagation [5]. These

methods either outer- or inner-approximate the homogeneous and

particular solution of an LTI system using set-based computing.

Initially, griddy polyhedra [8, 16] and ellipsoids [37] were used as

a set representation for computing outer-approximations, while

current state-of-the-art techniques mainly use zonotopes [30, 32],

support functions [39, 40], or a combination of both [4] as a set rep-

resentation. In addition to the set representation, another difference

between the various set propagation methods is the choice of the

approximation model, which defines how to outer-approximate the

homogeneous and particular solutions composing the reachable

set. A recent survey [22] compares a wide variety of approximation

models, which heavily differ in tightness and runtime: First-order

methods [30, Sec. 3], [40, Eq. (2)] bloat the convex hull of the initial

set and its linear transformation by a ball whose radius is computed

using norms of the state matrix and the initial set. These methods

are fast but the least accurate due to the first-order Taylor series

expansion of the propagation matrix. The correction hull method [1,

Sec. 3.2] computes a curvature enclosure by multiplication of an

interval matrix representing the influence of higher-order terms

of the propagation matrix with the initial set. It yields a tighter

enclosure at the cost of a slightly increased computation time. The

most accurate method is the forward-backward method for sup-

port functions [27, Sec. 3.1], [25, Sec. 2.4]. However, it requires

the evaluation of 𝑛 quadratic optimization problems in each step,

with 𝑛 being the state dimension, resulting in a significantly slower

computation. Overall, one has to balance the trade-off between

tightness and computation time when choosing the approximation

model, which also has to fit the used set representation.

In contrast to the above algorithms for outer-approximations,

approaches for inner-approximations using set-based computing

are more scarce: By subtracting an error from the computed outer-

approximation, inner-approximations can be represented by griddy

polyhedra [17]. Another method is to use a union of ellipsoids, each

of which touches the exact reachable set at exactly one point from

the inside [37]. Linear matrix inequalities [33] have also been ap-

plied to compute ellipsoidal inner-approximations of the reachable

set. Moreover, polytopic inner-approximations can be constructed

by sampling vertices from zonotopes [32]. A simulation-based ap-

proach [23] aims to steer the trajectory toward edge cases by opti-

mizing for a piecewise constant input trajectory.

For successful verification, the computed outer-approximation

of the reachable set has to be tight enough. Since poor algorithm

parameter tuning is one of the main sources for spurious counterex-

amples, a natural extension is to tune the parameters automatically:

By using piecewise polynomial approximations in adaptively se-

lected time intervals, the reachable set of an autonomous system can

be approximated within a user-defined error bound by iteratively

reducing the time step size [45]. Another method [25, 27] tunes the

time step size to satisfy a user-defined error bound on the tightness

along the given directions for the support function evaluation of the

reachable set, but cannot rule out backtracking. A similar approach

adaptively tunes all algorithm parameters without backtracking

while respecting an error bound related to the Hausdorff distance

between the exact reachable set and the computed enclosure [54].

While the desired error bound still has to be manually specified for

the aforementioned approaches, automated verification algorithms

automatically refine this error bound until the specification can be

either proven or disproven: Brute-force approaches [9, 50] simply

re-compute the reachable set with improved algorithm parameter

values. The framework of counterexample-guided abstraction re-

finement (CEGAR) automatically refines the model [26, 53] or the

set representation [12, 13]. In a real-time setting, the work in [35]

refines the tightness constrained by the available computation time

to choose between different controllers.

1.2 Contributions
Wefirst introduce the general notation as well as set representations

and operations in Sec. 2 and formally define the problem statement

in Sec. 3. Afterward, we provide a comprehensive summary of the

reachability algorithm in [4] for computing outer-approximations

in Sec. 4.1. Our contributions are as follows:

• First, we present a novel reachability algorithm using support

functions to compute inner-approximations (Sec. 4.2).

• Next, we design a fully-automated verification algorithm for

the special case of unsafe sets given as halfspaces (Sec. 5.1).

• Moreover, we propose a fully-automated verification algorithm

for arbitrary convex unsafe sets (Sec. 5.2).

• In case of a safety violation, our verification algorithms return

a counterexample, which provides valuable insights to system

engineers (Sec. 5.1-5.2).

Overall, our paper provides a complete description of support func-

tion reachability, combining outer- and inner-approximation with

automated verification in a self-contained presentation. In contrast

to previous work on reachability analysis using support functions,

we provide the first approach that automatically verifies a given

problem in decidable cases. Finally, the practical benefits of our

novel algorithms are demonstrated on several challenging bench-

mark problems in Sec. 6.

2 PRELIMINARIES
We first define the notation and introduce all required set represen-

tations and operations.

2.1 Notation
We denote scalars and vectors by lowercase letters and matrices by

uppercase letters. Given a vector 𝑠 ∈ R𝑛 , 𝑠 (𝑖 ) represents the 𝑖-th en-

try; given amatrix𝑀 ∈ R𝑚×𝑛 ,𝑀(𝑖,· ) and𝑀( ·, 𝑗 ) refer to the 𝑖-th row
and the 𝑗-th column, respectively.We use 0 and 1 for vectors andma-

trices of proper dimension containing only zeros or ones, as well as

𝐼𝑛 to denote the identity matrix of dimension 𝑛. The concatenation

of two matrices𝑀1, 𝑀2 is written as [𝑀1 𝑀2] and diag(𝑠) returns a
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square matrix with the vector 𝑠 on its main diagonal and zeros other-

wise. Exact sets are denoted by standard calligraphic lettersS, outer-
approximations by Ŝ, and inner-approximations by

qS. Moreover,

we overload the vector notation 𝑠 to also denote the set {𝑠} consist-
ing only of the point 𝑠 and we abbreviate −𝐼𝑛 S to −S. Intervals are
represented by [𝑎, 𝑏], 𝑎, 𝑏 ∈ R𝑛 , where 𝑎 ≤ 𝑏 holds element-wise.

Interval matrices extend intervals by using matrices for the lower

and upper bounds: M = [𝑀,𝑀] = {𝑀 ∈ R𝑚×𝑛 | 𝑀 ≤ 𝑀 ≤ 𝑀},
where the inequality is again evaluated element-wise. The opera-

tions center

(
S
)
and box

(
S
)
return the volumetric center and the

tightest enclosing interval of S, respectively. The sign function

sgn(𝑥) returns −1, 0, and 1 for the input ranges 𝑥 < 0, 𝑥 = 0, and

𝑥 > 0, respectively. We use O(·) to denote the big O notation.

2.2 Set representations and operations
Our reachability algorithms are based on support functions [31,

Sec. 2], which can represent any convex set:

Definition 1. (Support function) Given a compact convex set S ⊂
R𝑛 and a direction ℓ ∈ R𝑛 , the support function 𝜌 (S, ℓ) : R𝑛 → R
and the support vector 𝜈 (S, ℓ) ∈ R𝑛 are defined as

𝜌 (S, ℓ) := max

𝑥∈S
ℓ⊤𝑥, 𝜈 (S, ℓ) := argmax

𝑥∈S
ℓ⊤𝑥 .

Note that the support vector is not necessarily unique. □

Our reachability and verification algorithms support arbitrary

convex sets, where we only require that the support function can be

evaluated. While the set S can also be defined by a symbolic equa-

tion returning its support function, the uncertain sets in verification

tasks are often defined using common convex set representations

such as intervals, zonotopes, polytopes, zonotope bundles [6], con-

strained zonotopes [52], ellipsoids, ellipsotopes [36], or capsules

[49]. Hence, we now provide the support functions and support

vectors for some of these set representations, where we focus on the

most commonly-used ones. We begin with zonotopes [30, Def. 1]:

Definition 2. (Zonotope) Given a center 𝑐 ∈ R𝑛 and a generator

matrix 𝐺 ∈ R𝑛×𝛾 , a zonotopeZ ⊂ R𝑛 is

Z :=

{
𝑐 +

𝛾∑︁
𝑖=1

𝐺 ( ·,𝑖 ) 𝛼𝑖

���� 𝛼𝑖 ∈ [−1, 1]} .
For the support function and support vector, we have [31, Sec. 2]

𝜌 (Z, ℓ) = ℓ⊤𝑐 +
𝛾∑︁
𝑖=1

|ℓ⊤𝐺 ( ·,𝑖 ) |,

𝜈 (Z, ℓ) = 𝑐 +
𝛾∑︁
𝑖=1

sgn(ℓ⊤𝐺 ( ·,𝑖 ) )𝐺 ( ·,𝑖 ) .

We use the shorthandZ = ⟨𝑐,𝐺⟩𝑍 . □

Polytopes can be represented in halfspace or vertex representation:

Definition 3. (Polytope) The halfspace representation of a poly-

tope P ⊂ R𝑛 is given by the intersection of 𝑤 halfspaces, which

corresponds to a set of inequality constraints defined by the matrix

𝐻 ∈ R𝑤×𝑛 and the offset vector 𝑓 ∈ R𝑤 :

P :=
{
𝑥 ∈ R𝑛

�� 𝐻𝑥 ≤ 𝑓 }.

The vertex representation is given by the convex hull of the polytope

vertices 𝑣1, . . . , 𝑣𝑠 ∈ R𝑛 :

P :=

{ 𝑠∑︁
𝑖=1

𝛽𝑖 𝑣𝑖

���� 𝑠∑︁
𝑖=1

𝛽𝑖 = 1, 𝛽𝑖 ≥ 0

}
.

For the vertex representation, the support function is given as

max𝑖∈{1,...,𝑠 } ℓ
⊤𝑣𝑖 and the support vector is the corresponding max-

imizing vertex. For the halfspace representation, the support func-

tion and the support vector can be obtained by linear programming.

We use the shorthands P = ⟨𝐻, 𝑓 ⟩𝐻 and P = ⟨[𝑣1 . . . 𝑣𝑠 ]⟩𝑉 . □

Another common convex set representation are ellipsoids:

Definition 4. (Ellipsoid) Given a center 𝑐 ∈ R𝑛 and a positive

semi-definite shape matrix 𝑄 ∈ R𝑛×𝑛 , an ellipsoid E ⊂ R𝑛 is

E :=
{
𝑥
�� (𝑥 − 𝑐)⊤𝑄−1 (𝑥 − 𝑐) ≤ 1

}
.

The support function and the support vector are computed as [38]

𝜌 (E, ℓ) = ℓ⊤𝑐 +
√︁
ℓ⊤𝑄ℓ, 𝜈 (E, ℓ) = 𝑐 + 𝑄 ℓ√︁

ℓ⊤𝑄ℓ
.

We use the shorthand E = ⟨𝑐,𝑄⟩𝐸 . □

Given the sets S1,S2 ⊂ R𝑛 and a matrix𝑀 ∈ R𝑚×𝑛 , we require
the set operations linear map𝑀 S1, Minkowski sum S1 ⊕ S2, and
convex hull conv

(
S1,S2

)
, which are defined as

𝑀 S1 := {𝑀𝑠1 | 𝑠1 ∈ S1},
S1 ⊕ S2 := {𝑠1 + 𝑠2 | 𝑠1 ∈ S1, 𝑠2 ∈ S2},

conv

(
S1,S2

)
:=

{
𝜆𝑠1 + (1 − 𝜆)𝑠2 | 𝑠1 ∈ S1, 𝑠2 ∈ S2, 𝜆 ∈ [0, 1]

}
.

For support functions, these operations are evaluated by [40, Prop. 2]

𝜌 (𝑀 S1, ℓ) = 𝜌 (S1, 𝑀⊤ℓ), (1)

𝜌 (S1 ⊕ S2, ℓ) = 𝜌 (S1, ℓ) + 𝜌 (S2, ℓ), (2)

𝜌 (conv
(
S1,S2

)
, ℓ) = max{𝜌 (S1, ℓ), 𝜌 (S2, ℓ)}. (3)

For zonotopes Z1 = ⟨𝑐1,𝐺1⟩𝑍 ,Z2 = ⟨𝑐2,𝐺2⟩𝑍 ⊂ R𝑛 , linear map

and Minkowski sum are computed by [1, Eq. (2.1)]

𝑀Z1 = ⟨𝑀𝑐1, 𝑀𝐺1⟩𝑍 ,
Z1 ⊕ Z2 = ⟨𝑐1 + 𝑐2, [𝐺1 𝐺2]⟩𝑍 ,

and the linear map MZ1 with an interval matrix M = [𝑀,𝑀]
can be tightly enclosed according to [7, Thm. 4]:

MZ1 ⊆
〈
𝑀𝑐𝑐1,

[
𝑀𝑐𝐺1 diag

(
𝑀𝑟 ( |𝑐1 | +

∑𝛾

𝑖=1
|𝐺

1( ·,𝑖 ) |)
) ] 〉

𝑍
, (4)

where𝑀𝑐 = 0.5(𝑀 +𝑀) and𝑀𝑟 = 0.5(𝑀 −𝑀).

3 PROBLEM STATEMENT
We consider linear time-invariant systems of the form

¤𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝑝, (5a)

𝑦 (𝑡) = 𝐶𝑥 (𝑡) +𝑊𝑣 (𝑡) + 𝑞, (5b)

where 𝑥 (𝑡) ∈ R𝑛 is the state, 𝑦 (𝑡) ∈ R𝑟 is the output, 𝑢 (𝑡) ∈ R𝑚
is the input, and 𝑣 (𝑡) ∈ R𝑜 represents additional uncertainty on

the output. Moreover, we have 𝐴 ∈ R𝑛×𝑛 , 𝐵 ∈ R𝑛×𝑚 , 𝑝 ∈ R𝑛 ,
𝐶 ∈ R𝑟×𝑛 ,𝑊 ∈ R𝑟×𝑜 , and 𝑞 ∈ R𝑟 . The initial state 𝑥 (𝑡0), the input
𝑢 (𝑡), and 𝑣 (𝑡) are uncertain within the initial setX0 ⊂ R𝑛 , the input
setU ⊂ R𝑚 , and the output uncertainty setV ⊂ R𝑜 , respectively.
Using the geometric center 𝑐𝑢 of the input setU, let us define the
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vector 𝑢̃ = 𝐵𝑐𝑢 +𝑝 ∈ R𝑛 and the setU0 = 𝐵(U −𝑐𝑢 ) ⊂ R𝑛 for later

derivations. Note that if the geometric center of the set cannot be

computed, one can use the center of the enclosing interval instead,

which can be calculated using support function evaluations only.

For a concise presentation, we will generally assume a constant

vector 𝑢̃ and address the extension to time-varying inputs 𝑢̃ (𝑡)
where appropriate. Without loss of generality, we set the initial

time to 𝑡0 = 0 and define the time horizon as [0, 𝑡
end
], which is

divided into an integer number of time intervals 𝜏𝑘 = [𝑡𝑘 , 𝑡𝑘+1]
using the time step size Δ𝑡 . The reachable set is defined as follows:

Definition 5. (Reachable set) For a given initial state 𝑥 (0) and an

input trajectory 𝑢 (·), let us denote the solution to (5a) at time 𝑡 by

𝜉 (𝑡, 𝑥 (0), 𝑢 (·)). The reachable set at time 𝑡 ≥ 0 for all initial states

𝑥 (0) ∈ X0
and all input trajectories 𝑢 (·) ∈ U is

R(𝑡) :=
{
𝜉 (𝑡, 𝑥 (0), 𝑢 (·))

�� 𝑥 (0) ∈ X0, ∀𝜃 ∈ [0, 𝑡] : 𝑢 (𝜃 ) ∈ U
}
.

We write R(𝑡𝑘 ) for the time-point reachable set at time 𝑡 = 𝑡𝑘 and

R(𝜏𝑘 ) for the time-interval reachable set over 𝑡 ∈ 𝜏𝑘 . □

As mentioned in the introduction, the exact reachable set as

defined above cannot be computed for general linear systems [28].

Hence, we aim to compute tight outer-approximations R̂ (𝑡) ⊇ R(𝑡)
and inner-approximations

qR(𝑡) ⊆ R(𝑡) instead, which extends to

the output sets
qY(𝑡) ⊆ Y(𝑡) ⊆ Ŷ(𝑡) obtained from a set-based

evaluation of (5b).

Our goal in this work is to automatically prove or disprove safety

of LTI systems using reachability analysis. We distinguish between

two types of safety specifications:

(1) First, we examine the common case with a polytope

K = ⟨𝐻, 𝑓 ⟩𝐻 as a safe set, which is equivalent to multiple

halfspaces as unsafe sets.

(2) More generally, we consider an arbitrary number of convex

unsafe sets L1, ...,L𝑏 .
Obviously, cases where both types of specifications occur are ana-

lyzed by combining the corresponding verification algorithms. The

overall verification task is formally defined as follows:

Problem 1. (Verification) Given an LTI system (5) with initial set
X0 ⊂ R𝑛 , input set U ⊂ R𝑚 , and output uncertainty set V ⊂ R𝑜 ,
as well as a safe set K = ⟨𝐻, 𝑓 ⟩𝐻 and/or a number of convex unsafe
sets L1, ...,L𝑏 , decide whether

∀𝑡 ∈ [0, 𝑡end] : Y(𝑡) ⊆ K ∧ Y(𝑡) ∩
𝑏⋃
𝑖=1

L𝑖 = ∅,

that is, whether the output set Y(𝑡) stays within the safe set K and
avoids the unsafe sets L1, ...,L𝑏 at all times 𝑡 ∈ [0, 𝑡end]. □

Please note that this problem formulation can be easily adapted

to time-varying safe and/or unsafe sets that are only active for a

fraction of the time horizon. Also, we do not explicitly consider

floating-point errors for simplicity, but restrict our attention to

approximation errors only.

4 REACHABILITY ANALYSIS
In this section, we present a self-contained overview of reachability

analysis using support functions: In Sec. 4.1, we recall the compu-

tation of outer-approximations of reachable sets, which is similar

to [4] but explicitly tailored towards computing upper bounds for

the support function rather than an explicit representation of the

reachable set in form of a template polyhedron. Next in Sec. 4.2,

we derive a novel approach for computing lower bounds for the

support function of the reachable set using a similar propagation

scheme as for the upper bounds. This allows us to unify both com-

putations into a single algorithm for computing upper and lower

bounds for the support function of the reachable set in Sec. 4.3. For

ease of presentation, we will focus on time-interval solutions as

they are required for verification purposes; time-point solutions

only serve as intermediate results.

4.1 Outer-approximations of reachable sets
The analytical solution for the linear differential equation (5a) is

given as

𝑥 (𝑡𝑘 ) = 𝑒𝐴𝑡𝑘𝑥 (0)︸    ︷︷    ︸
∈H(𝑡𝑘 )

+
∫ 𝑡𝑘

0

𝑒𝐴(𝑡𝑘−𝜃 ) (𝐵𝑢 (𝜃 ) + 𝑝) d𝜃︸                                 ︷︷                                 ︸
∈P(𝑡𝑘 )

,

which consists of the homogeneous solutionH(𝑡𝑘 ) resulting from

the propagation of the initial state and the particular solution P(𝑡𝑘 )
due to inputs, whose Minkowski addition yields the reachable set

R(𝑡𝑘 ) = H(𝑡𝑘 ) ⊕ P(𝑡𝑘 ). We use the following wrapping-free prop-

agation formula [27, Eq. (6)]:

P(𝑡𝑘+1) = P(𝑡𝑘 ) ⊕ 𝑒𝐴𝑡𝑘P(Δ𝑡), (6)

R(𝜏𝑘 ) = 𝑒𝐴𝑡𝑘 H(𝜏0) ⊕ P(𝑡𝑘+1) . (7)

For each time interval 𝜏𝑘 , we compute the homogeneous time-

interval solution H(𝜏𝑘 ) = 𝑒𝐴𝑡𝑘H(𝜏0) and the particular time-

interval solution P(𝜏𝑘 ), where we exploit that P(𝜏𝑘 ) ⊆ P(𝑡𝑘+1)
holds if 0 ∈ U [1, Prop. 3.3]. To guarantee that the origin is con-

tained in the input set, we first split the input set into two parts

U = 𝑢̃ ⊕ U0, such that 0 ∈ U0, where the solution due to 𝑢̃ is

integrated into the homogeneous solutionH(𝜏0) and the solution

due toU0 constitutes the particular solution P(𝜏𝑘 ). The evaluation
of (6)-(7) using support functions follows directly from (1)-(2):

𝜌 (P(𝑡𝑘+1), ℓ) = 𝜌 (P(𝑡𝑘 ), ℓ) + 𝜌 (P(Δ𝑡), (𝑒𝐴𝑡𝑘 )⊤ℓ), (8)

𝜌 (R(𝜏𝑘 ), ℓ) = 𝜌 (H (𝜏0), (𝑒𝐴𝑡𝑘 )⊤ℓ) + 𝜌 (P(𝑡𝑘+1), ℓ) . (9)

The back-propagated direction (𝑒𝐴𝑡𝑘 )⊤ℓ can be computed using a

sequence of matrix-vector multiplications as 𝑒𝐴𝑡𝑘 = 𝑒𝐴Δ𝑡 · . . . ·𝑒𝐴Δ𝑡 .
In some cases, the auxiliary sets H(𝜏0) and P(Δ𝑡) can be pre-

computed, e.g., when X0
andU are zonotopes. This accelerates the

computation immensely as one only has to evaluate the support

function of the pre-computed setsH(𝜏0) and P(Δ𝑡𝑘 ) in the direc-

tion (𝑒𝐴𝑡𝑘 )⊤ℓ and add the resulting scalar values to compute (8)-(9).

For zonotopes, this reduces the computational complexity from

O(𝑛3) for propagating entire zonotopes down to O(𝑛2) [4]. If the
pre-computation is undesirable because either the set representa-

tion forX0
and/orU is not closed under the required set operations

or these operations are not defined for that set representation, one

has to evaluate the support functions forH(𝜏0) and P(Δ𝑡) based
on the support functions for X0

andU in each step.

Let us now introduce the approximation models for computing

outer-approximations ofH(𝜏0) and P(Δ𝑡) in order to evaluate (8)-

(9). We use the correction hull approximation model [1, Sec. 3.2],
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which represents a good trade-off between fast but inaccurate first-

order models [30, Sec. 3], [40, Eq. (2)] and the accurate but slow

forward-backward method [27, Sec. 3.1], [25, Sec. 2.4]. The affine

time-interval solution is computed according to [1, Eq. (3.10)] by

H(𝜏0) ⊆ conv

(
X0, 𝑒𝐴Δ𝑡X0 ⊕ P𝑢 (Δ𝑡)

)
⊕ C, (10)

which translates to the support function evaluation

𝜌 (H (𝜏0), ℓ) ≤ max{𝜌 (X0, ℓ), 𝜌 (X0, (𝑒𝐴Δ𝑡 )⊤ℓ)
+ 𝜌 (P𝑢 (Δ𝑡), ℓ)} + 𝜌 (C, ℓ).

(11)

The outer-approximation in (10) is computed using the convex

hull of the initial set X0
and its propagation 𝑒𝐴Δ𝑡X0

, which is first

shifted by the particular solution P𝑢 (Δ𝑡) due to the constant input
𝑢̃ given as [1, Eq. (3.7)]

P𝑢 (Δ𝑡) = 𝑇𝑢̃, (12)

where 𝑇 = 𝐴−1 (𝑒𝐴Δ𝑡 − 𝐼𝑛) (13)

is the propagation matrix for constant inputs. Alternatively, the

term𝐴−1 can be integrated into the power series of the exponential

matrix 𝑒𝐴Δ𝑡 in case 𝐴 is singular. Finally, we enlarge the resulting

set by the curvature enclosure

C = FX0 ⊕ G 𝑢̃

using the interval matrices [1, Sec. 3.2]

F =

𝜂⊕
𝑖=2

[ (
𝑖
−𝑖
𝑖−1 − 𝑖

−1
𝑖−1

)
Δ𝑡𝑖 , 0

] 𝐴𝑖
𝑖!
⊕ E, (14)

G =

𝜂+1⊕
𝑖=2

[ (
𝑖
−𝑖
𝑖−1 − 𝑖

−1
𝑖−1

)
Δ𝑡𝑖 , 0

] 𝐴𝑖−1
𝑖!
⊕ E Δ𝑡, (15)

where the interval matrix E represents the remainder of the expo-

nential matrix [1, Eq. (3.2)]:

E = [−𝐸, 𝐸], 𝐸 = 𝑒 |𝐴 |Δ𝑡 −
𝜂∑︁
𝑖=0

(
|𝐴|Δ𝑡

)𝑖
𝑖!

.

While for zonotopes themultiplication of the interval matrix F with

X0
can be computed according to (4), it is unclear how to implement

this set operation for general set convex set representations. In this

case, we enclose X0
by an interval and represent it as a zonotope

to compute its product with the interval matrix F, leading to the

support function evaluation

𝜌 (C, ℓ) = 𝜌 (F box

(
X0

)
, ℓ) + 𝜌 (G 𝑢̃, ℓ).

Since the interval matrix F is small for large enough values for 𝜂 ,

the over-approximation induced by the enclosure box

(
X0

)
⊇ X0

does not notably impact the tightness of the overall reachable set.

The particular solution due to the time-varying inputs within

the setU0 can be enclosed by [1, Eq. (3.7)]

P̂U (Δ𝑡) =
𝜂⊕
𝑖=0

𝐴𝑖Δ𝑡𝑖+1

(𝑖 + 1)! U0 ⊕ E Δ𝑡U0 . (16)

Again, in case (16) cannot be computed directly for the given set

representation, we enclose the setU0 by a zonotope representing

the box enclosure to evaluate the product with the interval matrix E.

From (1)-(2), we obtain the support function evaluation

𝜌 (P̂U (Δ𝑡), ℓ) =
𝜂∑︁
𝑖=0

𝜌

(
U0,

(𝐴𝑖Δ𝑡𝑖+1
(𝑖 + 1)!

)⊤
ℓ

)
+ 𝜌 (E Δ𝑡 box

(
U0

)
, ℓ).

An explicit outer-approximation of the reachable set in form of

a template polyhedron can be constructed by choosing a set of

template directions ℓ1 . . . ℓ𝑤 :

R̂ (𝜏𝑘 ) = ⟨𝐻, 𝑓 ⟩𝐻
with 𝐻 = [ℓ1 . . . ℓ𝑤]⊤, 𝑓 = [𝜌 (R̂ (𝜏𝑘 ), ℓ1) . . . 𝜌 (R̂ (𝜏𝑘 ), ℓ𝑤)]⊤ .

The overall computation of upper bounds 𝜌 (R̂ (𝑡), ℓ) is summarized

in Alg. 1 in combination with the computation of lower bounds

presented subsequently.

4.2 Inner-approximations of reachable sets
We now present a novel approach for computing an explicit inner-

approximation
qR(𝑡𝑘 ) for the time-point reachable set and lower

bounds 𝜌 ( qR(𝜏𝑘 ), ℓ) for the support function of the time-interval

reachable set. To this end, we replace the outer-approximations for

the homogeneous solution Ĥ (𝜏0) (10) and the particular solution

P̂U (Δ𝑡) (16) by inner-approximations. For the homogeneous so-

lution, we can exploit that the time-point solutions are enclosed

by the time-interval solution to omit the curvature enclose, which

yields the lower bound

𝜌 (H (𝜏0), ℓ) ≥ max{𝜌 (X0, ℓ), 𝜌 (X0, (𝑒𝐴Δ𝑡 )⊤ℓ) + 𝜌 (P𝑢 (Δ𝑡), ℓ)}.
Since constant inputs over time are a subset of time-varying inputs,

the particular solution due to constant inputs represents an inner-

approximation of the particular solution due to time-varying inputs.

Moreover, we can use (13) to compute the analytical solution

qPU (Δ𝑡) = 𝑇 U0 (17)

for the particular solution due to constant inputs with 𝑇 as in (13).

For the computation of a lower bound for the support function of the

time-interval reachable set 𝜌 ( qR(𝜏𝑘 ), ℓ), we use the particular solu-
tion

qPU (𝑡𝑘 ) ⊆ PU (𝜏𝑘 ), which represents an inner-approximation

of the particular solution for the whole time interval.

An explicit inner-approximation of the time-point reachable set

qR(𝑡𝑘 ) can be obtained from the support vectors 𝜈 ( qR(𝑡𝑘 ), ℓ) [23],
which can be exactly computed via simulation since we have piece-

wise constant inputs. To this end, we first convert the continuous-

time system to the equivalent discrete-time system

𝑥 (𝑘 + 1) = 𝑒𝐴Δ𝑡𝑥 (𝑘) +𝑇𝑢 (𝑘) . (18)

The initial state 𝑥 (0) is given by the support vector of the back-

propagated initial set

𝑥 (0) = 𝜈 (X0, (𝑒𝐴𝑡𝑘 )⊤ℓ) (19)

Moreover, the input trajectory consisting of a sequence of piece-

wise constant inputs is given by the support vectors of the back-

propagated input sets:

∀𝑗 ∈ {0, ..., 𝑘} : 𝑢 ( 𝑗) = 𝜈 (U0, (𝑒𝐴𝑡 𝑗 )⊤ℓ) + 𝑢̃ . (20)

For each template direction ℓ1, . . . , ℓ𝑤 , we compute the initial state

by (19), the input trajectory by (20), and evaluate the system (18)

to obtain the set of points

∀𝑗 ∈ {1, . . . ,𝑤} : 𝑥 𝑗 (𝑘) = 𝜈 ( qR(𝑡𝑘 ), ℓ𝑗 ),
which represent the support vectors of the inner-approximation of

the reachable set. Since the time-point solution
qR(𝑡𝑘 ) is convex, the

convex hull of the support vectors yields an inner-approximation:

⟨[𝜈 ( qR(𝑡𝑘 ), ℓ1), . . . , 𝜈 ( qR(𝑡𝑘 ), ℓ𝑤)]⟩𝑉 ⊆ R(𝑡𝑘 ) .
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Figure 1: The halfspace polytope ⟨𝑯,𝒇 ⟩𝑯 (in red) with 𝑯 =
[ℓ1 . . . ℓ𝒘]⊤, 𝒇 = [𝝆( qR(𝒕), ℓ1) . . . 𝝆( qR(𝒕), ℓ𝒘)]⊤ constructed
from lower bounds of the support function is in general
not an inner-approximation of the exact reachable set R(𝒕).

In contrast, the time-interval solution R(𝜏𝑘 ) is in general non-

convex, so that we cannot obtain an explicit inner-approximation

analogously to the time-point solution. Moreover, note that a half-

space polytope constructed from the inner-approximations of the

support function is in general not an inner-approximation of the

reachable set, as illustrated in Fig. 1. The support vectors for the

outer-approximation of the reachable set can be computed in the

same way as above.

4.3 Reachability algorithm
The overall reachability algorithm computing upper and lower

bounds as presented in Sec. 4.1 and Sec. 4.2, respectively, is summa-

rized in Alg. 1: After some instantiations before the main loop, both

algorithms share the back-propagation of the direction (Line 8) and

the propagations of P𝑢 (𝑡𝑘+1) (Line 9) and H(𝑡𝑘+1) (Line 10). In
the same loop, we compute upper bounds 𝜌 (R̂ (𝑡), ℓ) (Lines 11-13)
and lower bounds 𝜌 ( qR(𝑡), ℓ) (Lines 14-16) of the time-point and

time-interval reachable sets in a user-defined direction ℓ. We reit-

erate that the propagation scales with O
(
𝑛2

)
if the setsH(𝜏0) and

P(Δ𝑡𝑘 ) can be pre-computed, e.g. when using zonotopes, follow-

ing (1)-(3). Note that one can easily parallelize Alg. 1 for multiple

directions of interest ℓ1, . . . , ℓ𝑤 . For an extension to a time-varying

input vector 𝑢̃ (𝑡), one simply has to re-compute the particular so-

lution P𝑢 (Δ𝑡) (Line 9) and the term G𝑢̃ to update the curvature

enclosure C in Line 13 in each step. If an output equation (5b) is

given, we compute the support function of the output set as

𝜌 (Y(𝑡), ℓ) = 𝜌 (R(𝑡),𝐶⊤ℓ) + 𝜌 (V,𝑊 ⊤ℓ) + ℓ⊤𝑞, (21)

which induces no additional approximation error. To increase ef-

ficiency, one can also pre-process any direction by ℓ → 𝐶⊤ℓ and
pre-compute the second and third term in (21) unless 𝑣 (𝑡) varies
over time. The computed upper and lower bounds become arbitrar-

ily tight for Δ𝑡 → 0 [40, Sec. 3], which we exploit in our automated

verification algorithms presented in the next section.

5 VERIFICATION
In this section, we introduce our fully-automated verification algo-

rithms. The first algorithm is tailored to the common case where

the unsafe sets are given as halfspaces; the second algorithm is

capable of verifying arbitrary convex unsafe sets. Both algorithms

also check for falsification and return a counterexample in case of

a safety violation. For ease of presentation, we implicitly assume

the specifications to be defined in the state space as the algorithms

can readily be extended to specifications defined on the outputs.

Algorithm 1 Reachability analysis using support functions

Require: Linear system ¤𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝑝 , initial set X0
, input set

U, direction ℓ, time horizon 𝑡
end

, time step size Δ𝑡 , truncation
order 𝜂

Ensure: Sequence of upper and lower bounds for the time-point

solutions 𝜌 (R̂ (𝑡𝑘 ), ℓ), 𝜌 ( qR(𝑡𝑘 ), ℓ) and time-interval solutions

𝜌 (R̂ (𝜏𝑘 ), ℓ), 𝜌 ( qR(𝜏𝑘 ), ℓ) in direction ℓ

1: 𝑡0 ← 0, 𝑑0 ← ℓ, 𝜌 (H (𝑡0), ℓ) ← 𝜌 (X0, ℓ)
2: 𝑢̃ ← 𝐵 center

(
U
)
+ 𝑝, U0 ← 𝐵(U − center

(
U
)
)

3: 𝜌 (P𝑢 (𝑡0), ℓ) ← 0, 𝜌 (P̂U (𝑡0), ℓ) ← 0, 𝜌 ( qPU (𝑡0), ℓ) ← 0

4: P𝑢 (Δ𝑡) ← Eq. (12), P̂U (Δ𝑡) ← Eq. (16),
qPU (Δ𝑡) ← Eq. (17)

5: C ← FX0 ⊕ G𝑢̃ ⊲ see Eq. (14)-(15)

6: for 𝑘 ← 0 to
𝑡end
Δ𝑡 − 1 do

7: 𝑡𝑘+1 ← 𝑡𝑘 + Δ𝑡, 𝜏𝑘 ← [𝑡𝑘 , 𝑡𝑘+1]
8: 𝑑𝑘+1 ← (𝑒𝐴Δ𝑡 )⊤𝑑𝑘
9: P𝑢 (𝑡𝑘+1) ← 𝑒𝐴Δ𝑡P𝑢 (𝑡𝑘 ) + P𝑢 (Δ𝑡)
10: 𝜌 (H (𝑡𝑘+1), ℓ) ← 𝜌 (X0, 𝑑𝑘+1) + 𝜌 (P𝑢 (𝑡𝑘+1), ℓ)

Upper bounds:

11: 𝜌 (P̂U (𝑡𝑘+1), ℓ) ← 𝜌 (P̂U (𝑡𝑘 ), ℓ) + 𝜌 (P̂U (Δ𝑡), 𝑑𝑘 )
12: 𝜌 (R̂ (𝑡𝑘+1), ℓ) ← 𝜌 (H (𝑡𝑘+1), ℓ) + 𝜌 (P̂U (𝑡𝑘+1), ℓ)
13: 𝜌 (R̂ (𝜏𝑘 ), ℓ) ← max{𝜌 (H (𝑡𝑘 ), ℓ), 𝜌 (H (𝑡𝑘+1), ℓ)}

+𝜌 (C, 𝑑𝑘 ) + 𝜌 (P̂U (𝑡𝑘+1), ℓ)
Lower bounds:

14: 𝜌 ( qPU (𝑡𝑘+1), ℓ) ← 𝜌 ( qPU (𝑡𝑘 ), ℓ) + 𝜌 ( qPU (Δ𝑡), 𝑑𝑘 )
15: 𝜌 ( qR(𝑡𝑘+1), ℓ) ← 𝜌 (H (𝑡𝑘+1), ℓ) + 𝜌 ( qPU (𝑡𝑘+1), ℓ)
16: 𝜌 ( qR(𝜏𝑘 ), ℓ) ← max{𝜌 (H (𝑡𝑘 ), ℓ), 𝜌 (H (𝑡𝑘+1), ℓ)},

+𝜌 ( qPU (𝑡𝑘 ), ℓ)
17: end for

5.1 Verifying halfspace specifications
It is well known that safety specifications given as halfspaces and

reachability analysis using support functions ideally complement

each other: By choosing the directions for the support function eval-

uation as the normal vectors of the halfspaces, one can efficiently

decide whether a given specification is violated. We propose an au-

tomated verification algorithm, which refines the upper and lower

bounds computed by Alg. 1 automatically by adequately tuning

the corresponding algorithm parameters until either the resulting

outer-approximation is fully located outside of the unsafe region

or the inner-approximation intersects that unsafe region. The ac-

curacy of the reachability algorithm in Sec. 4.3 depends on two

parameters, the truncation order 𝜂 and the time step size Δ𝑡 . Since
it holds that for arbitrary values 𝜂 > 1 the computed upper and

lower bounds converge to the exact value for Δ𝑡 → 0 [40, Sec. 3],

we first determine a suitable value for 𝜂 before tuning the time step

size. Hence, the truncation order 𝜂 is tuned as in [55, Sec. 5.1] by

using the partial sums

T
( 𝑗 ) =

𝑗⊕
𝑖=2

[ (
𝑖
−𝑖
𝑖−1 − 𝑖

−1
𝑖−1

)
Δ𝑡𝑖 , 0

]𝐴𝑖
𝑖!
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Algorithm 2 Verification algorithm (halfspace specifications)

Require: Linear system ¤𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝑝 , initial set X0
, input set

U, time horizon 𝑡
end

, safe set K = ⟨𝐻, 𝑓 ⟩𝐻
Ensure: Safe (∀𝑡 ∈ [0, 𝑡

end
] : R(𝑡) ⊆ K) or unsafe

(∃𝑡 ∈ [0, 𝑡
end
] : R(𝑡) ⊈ K)

1: for 𝑖 ← 1 to𝑤 do
2: ℓ𝑖 ← 𝐻⊤(𝑖,· ) ,Δ𝑡 ← 𝑡

end

3: repeat
4: verified← true

5: for 𝑘 ← 0 to
𝑡end
Δ𝑡 − 1 do

6: 𝜌 (R̂ (𝜏𝑘 ), ℓ𝑖 ), 𝜌 ( qR(𝜏𝑘 ), ℓ𝑖 ) ← Alg. 1 with Δ𝑡

7: if 𝜌 (R̂ (𝜏𝑘 ), ℓ𝑖 ) > 𝑓(𝑖 ) then
8: verified← false

9: else if 𝜌 ( qR(𝜏𝑘 ), ℓ𝑖 ) > 𝑓(𝑖 ) then
10: return unsafe

11: end if
12: end for
13: Δ𝑡 ← 0.5Δ𝑡

14: until verified = true

15: end for
16: return safe

from the computation of F in (14). We increase 𝜂 until the relative

change between T ( 𝑗 ) and T ( 𝑗+1) in the Frobenius norm computed

according to [21, Thm. 10] is smaller than 10
−10

. Since the size of

additional terms T ( 𝑗 ) goes to 0 for𝜂 →∞ and our bound is relative,

we will always find a value for 𝜂 . The time step size is tuned by

halving the last value. This simple tuning strategy is justified by

the fact that the reachability algorithm in Sec. 4.3 is so efficient that

the computation time of a more sophisticated tuning method for

Δ𝑡 may exceed the computation time for reachability analysis.

Alg. 2 summarizes our verification procedure for a specification

represented by the safe set K = ⟨𝐻, 𝑓 ⟩𝐻 , which is equivalent to

multiple unsafe sets represented as halfspaces: For each direction

ℓ𝑖 = 𝐻⊤(𝑖,· ) ,∀𝑖 ∈ {1, . . . ,𝑤}, we compute upper bounds for the

support function of the reachable set (Line 6) and check whether the

corresponding outer-approximation remains within K at all times

(Line 7). At the same time, we compute lower bounds (Line 6) and

check whether the corresponding inner-approximation leavesK in

any step (Line 9), which would immediately falsify the specification.

If the specification can neither be proven nor disproven by the

current results, we re-compute the upper and lower bounds using

a smaller time step size (Line 13). As both bounds converge to the

support function for the exact reachable set, Alg. 2 is always able

to verify or falsify decidable safety specifications in finite time.

In case of a safety violation (Line 10), we return a counterexample:

The support vector 𝜈 ( qR(𝑡𝑘 ), ℓ𝑖 ) for the inner-approximation
qR(𝑡𝑘 )

that violates the safety specification is located inside an unsafe

set, and thus corresponds to a falsifying trajectory. Hence, we use

(19)-(20) to obtain the initial state 𝑥 (0) and a piecewise constant

input trajectory𝑢 (𝑡), and then evaluate (18) to compute the support

vector 𝜈 ( qR(𝑡𝑘 ), ℓ𝑖 ), which represents the counterexample.

Substantial runtime improvements can be achieved as follows:

Instead of computing the upper and lower bounds for the entire

entire time horizon beforehand and checking for safety violation

afterward, we already perform the checks during the computation

of the reachable set. Moreover, previously verified time intervals do

not have to be checked in future iterations. Due to the fixed time

step size Δ𝑡 in each iteration of the main loop, one can pre-compute

all directions 𝑑𝑘 (Line 8 of Alg. 1). In some cases, this allows one

to reformulate the iterative vector-matrix multiplications in the

support function evaluation of the sets P(Δ𝑡) (Line 11 of Alg. 1) and
C (Line 13 of Alg. 1) into a more efficient matrix-matrix multiplica-

tion. Lastly, the main loop (Lines 1-15) can be parallelized. For our

evaluation in Sec. 6, we initialize the time step size by a hundreth

of the time horizon and quarter the time step size in Line 13, which

is a heuristic that we observed to work well in practice.

5.2 Verifying arbitrary convex unsafe sets
The Gilbert-Johnson-Keerthi (GJK) algorithm [29] offers an elegant

way to check if two convex sets intersect using only their support

function evaluation. Consequently, we can utilize this algorithm

to extend the verification algorithm from Sec. 5.1 to arbitrary con-

vex unsafe sets. A similar idea was previously presented in [24],

where the GJK algorithm is used in combination with support func-

tion reachable set computation to eliminate spurious transitions in

hybrid system reachability.

Let us briefly recall the GJK algorithm: It is based on the fact that

checking if two convex sets S1,S2 ⊂ R𝑛 intersect is equivalent to

checking if the origin is contained within the set S = S1 ⊕ (−S2):(
S1 ∩ S2 ≠ ∅

)
⇔

(
0 ∈ S1 ⊕ (−S2)

)
.

If there exists any direction ℓ for which 𝜌 (S, ℓ) < 0, the set S does

not contain the origin, and thus the two sets S1 and S2 do not inter-
sect. In contrast, if the polytope P = ⟨[𝜈 (S, ℓ1) . . . 𝜈 (S, ℓ𝑖 )]⟩𝑉 ⊆ S
constructed from the support vectors along multiple directions does

contain the origin, the sets S1 and S2 intersect. We can replace an

explicit computation of S by computing its support function and

corresponding support vectors using (2):

𝜌 (S, ℓ) = 𝜌 (S1, ℓ) + 𝜌 (S2,−ℓ), 𝜈 (S, ℓ) = 𝜈 (S1, ℓ) + 𝜈 (S2,−ℓ).
The GJK algorithm selects new directions ℓ𝑖 until either 𝜌 (S, ℓ𝑖 ) < 0

or 0 ∈ P holds, where the next direction is the normal vector of the

polytope facet from P that is closest to the origin. Determining this

facet is in general computationally demanding, since the number

of polytope facets can be exponential in the number of polytope

vertices. To avoid this issue, the GJK algorithm uses simplices, which

are polytopes with exactly 𝑛 + 1 vertices and consequently also

only 𝑛 + 1 facets. Thus, the algorithm constructs in each iteration

a new simplex from the polytope facet closest to the origin and

the support vector in the chosen new direction, and disregards all

remaining polytope vertices. This procedure is visualized in Fig. 2.

In the verification setting, the setS1 is the reachable setR(𝑡) and
the set S2 is a convex unsafe set L , so that S = R(𝑡) ⊕ (−L). Our
verification algorithm is summarized in Alg. 3: In each iteration we

first compute upper and lower bounds of the support function in the

current direction ℓ𝑖 (Line 3), based on which we try to disprove that

the sets intersect by checking if 𝜌 (S, ℓ𝑖 ) ≤ 𝜌 (R̂ (𝑡), ℓ𝑖 )+𝜌 (L,−ℓ𝑖 ) <
0 holds (Line 4). If true, we found a separating hyperplane between
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1 2

3 4

Figure 2: Schematic visualization of the iterations of the GJK
algorithm for a set S = S1 ⊕ (−S2).

R(𝑡) andL , which proves that the system is safe. Otherwise, we use

the corresponding support vector of the lower bound to check if we

can prove that the sets intersect (Line 12). In case safety can neither

be proven nor disproven based on the current direction ℓ𝑖 , we choose

a new direction ℓ𝑖+1 = ℎ. If the polytope qP constructed from the

support vectors is already non-degenerate (𝑖 > 𝑛 + 1, Line 18), the
new direction is chosen as the normal vector of the polytope facet

that is closest to the origin (Line 19), which can be determined by

solving the quadratic program min
𝑥∈ qP ∥𝑥 ∥

2

2
to obtain the point

in
qP closest to the origin. Otherwise, we apply Gram-Schmidt

orthogonalization to construct a direction orthogonal to the space

spanned by the support vectors and pointing towards the origin

(Line 23).

A major challenge is that we cannot compute the exact value of

the support function for the reachable set, but only tight upper and

lower bounds. Hence, we have to decide when to stop generating

new directions ℓ𝑖 and instead refine the tightness of the approxima-

tions. If 𝜌 ( qR(𝑡), ℓ𝑖 ) + 𝜌 (L,−ℓ𝑖 ) < 0 holds for any direction ℓ𝑖 , we

cannot prove that an intersection occurs using the current accuracy

of the lower bound (Line 7), but we may still be able to prove that no

intersection occurs using the upper bound. Only if the polytope P̂
constructed from the support vectors of the upper bound contains

the origin, we definitely cannot disprove the intersection using

the current accuracy, and thus reduce the time step size (Line 15).

The truncation order 𝜂 is tuned as described in Sec. 5.1. Finally,

since the computed upper and lower bounds converge to the exact

value for Δ𝑡 → 0 and an increasing number of directions ℓ𝑖 , it is

guaranteed that Alg. 3 is always able to either prove or disprove

safety in decidable cases.

For simplicity, Alg. 3 only considers the intersection between

the reachable set R(𝑡) at a specific point in time and a single unsafe

set L . To extend this to checking multiple unsafe sets L1, ...,L𝑏 for

all times 𝑡 ∈ [0, 𝑡
end
] as required by Problem 1, we can simply run

Alg. 3 for all possible pairs of time-interval reachable sets R(𝜏𝑘 )
and unsafe sets L 𝑗 , where we omit certain pairs if the unsafe sets

are time-varying. Note that we still use the time-point reachable

set
qR(𝑡𝑘 ) ⊆ qR(𝜏𝑘 ) ⊆ R(𝜏𝑘 ) for the inner-approximation since we

require that all sets are convex, which is not the case for
qR(𝜏𝑘 ).

Improvements to accelerate the verification include parallelizing

the computations for the different (R(𝜏𝑘 ),L 𝑗 )-pairs, re-using the
support functions computed for the current pair to disprove inter-

sections for other pairs, initializing the first search direction based

Algorithm 3 Verification algorithm (arbitrary convex unsafe sets)

Require: Linear system ¤𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝑝 , initial set X0
, input set

U, time 𝑡 , unsafe set L
Ensure: Safe (R(𝑡) ∩ L = ∅) or unsafe (R(𝑡) ∩ L ≠ ∅)
1: 𝑖 ← 1, ℓ1 ← 𝐼𝑛 ( ·,1) , Δ𝑡 ← 𝑡 , P̂, qP ← ∅, falsifiable← true

2: repeat
3: 𝜌 (R̂ (𝑡), ℓ𝑖 ), 𝜌 ( qR(𝑡), ℓ𝑖 ) ← Alg. 1 with Δ𝑡

4: if 𝜌 (R̂ (𝑡), ℓ𝑖 ) + 𝜌 (L,−ℓ𝑖 ) < 0 then
5: return safe

6: end if
7: if 𝜌 ( qR(𝑡), ℓ𝑖 ) + 𝜌 (L,−ℓ𝑖 ) < 0 then
8: falsifiable← false

9: end if
10: 𝑣̂𝑖 ← 𝜈 (R̂ (𝑡), ℓ𝑖 ) − 𝜈 (L,−ℓ𝑖 ), q𝑣𝑖 ← 𝜈 ( qR(𝑡), ℓ𝑖 ) − 𝜈 (L,−ℓ𝑖 )
11: P̂ ← conv(P̂, 𝑣̂𝑖 ), qP ← conv( qP, q𝑣𝑖 )
12: if 0 ∈ qP then
13: return unsafe

14: else if falsifiable = false ∧ 0 ∈ P̂ then
15: Δ𝑡 ← 0.5Δ𝑡 , 𝑖 ← 1, P̂, qP ← ∅, falsifiable← true

16: continue
17: end if
18: if 𝑖 > 𝑛 + 1 then
19: H = ⟨ℎ, 𝑓 ⟩𝐻 ← halfspace for facet of

qP closest to 0
20: 𝑜1, . . . , 𝑜𝑛 ← indices of the vertices that lie on facetH
21: P̂ ← ⟨[𝑣̂𝑜1 . . . 𝑣̂𝑜𝑛 ]⟩𝑉 , qP ← ⟨[q𝑣𝑜1 . . . q𝑣𝑜𝑛 ]⟩𝑉
22: else
23: ℎ← vector orthogonal to q𝑣1, . . . ,q𝑣𝑖 using Gram-Schmidt

24: end if
25: ℓ𝑖+1 ← ℎ, 𝑖 ← 𝑖 + 1

on the distance between the unsafe set and a simulated trajectory,

and selecting the new search direction based on the polytope P̂
instead of

qP once we know that the inner-approximation cannot

be used to disprove safety (falsifiable = false in Alg. 3).

Finally, we show how to construct a counterexample: If the

system is unsafe, the simplex
qP = ⟨[𝑣1 . . . 𝑣𝑛+1]⟩𝑉 in Alg. 3 contains

the origin. For each vertex of
qP, we determine the weighting factor

𝜆 𝑗 from the linear equation system

∑𝑛+1
𝑗=1 𝜆 𝑗𝑣 𝑗 = 0,

∑𝑛+1
𝑗=1 𝜆 𝑗 = 1,

and use them to obtain the initial state 𝑥 (0) and input trajectory

𝑢 (𝑘) by interpolation, i.e.,

𝑥 (0) =
𝑛+1∑︁
𝑗=1

𝜆 𝑗𝑥 𝑗 (0), 𝑢 (𝑘) =
𝑛+1∑︁
𝑗=1

𝜆 𝑗𝑢 𝑗 (𝑘),

between the values 𝑥 𝑗 (0) and 𝑢 𝑗 (𝑘) for the trajectories resulting in
the vertices of

qP.

6 NUMERICAL EXAMPLES
We now demonstrate the performance of our verification algo-

rithms on several challenging benchmarks. Our algorithms are

implemented in the MATLAB toolbox CORA [2] and a repeatability

package is publicly available
1
. All computations are performed on

a 2.59GHz quad-core i7 processor with 32GB memory.

1
https://codeocean.com/capsule/1155014/tree/v2

https://codeocean.com/capsule/1155014/tree/v2


Fully-Automated Verification of Linear Systems Using Reachability Analysis with Support Functions HSCC ’23, May 9–12, 2023, San Antonio, TX, USA

Table 1: Comparison of computation times for the ARCH benchmarks, where 𝒏 is the system dimension, 𝒎 is the number of
inputs, 𝒓 is the output dimension, and𝒘 is the number of halfspace specifications. For our approach we additionally specify the
number of refinement iterations of Alg. 2. The computation times of the other tools are taken from [3].

Benchmark Our approach Time comparison

Identifier 𝑛 𝑚 𝑟 𝑤 Safe? Time Refinements CORA [2] HyDRA [51] JuliaReach [11] SpaceEx [27]

HEAT01 125 0 1 1 ✓ 0.17s 2 2.2s 13.2s 0.13s 4.2s

HEAT02 1000 0 1 1 ✓ 2.2s 2 9.3s 160s 32s —

CBC01 201 0 1 1 ✓ 0.11s 2 7.1s — 1.4s 312.78s

CBC02 1001 0 1 1 ✓ 2.2s 2 — — — —

CBC03 2001 0 1 1 ✓ 28s 3 — — — —

CBF01 200 1 1 1 ✓ 0.27s 2 30s — 12s 318.88s

CBF02 1000 1 1 1 ✓ 3.7s 2 — — — —

CBF03 2000 1 1 1 ✓ 49s 3 — — — —

BLDC01-BDS01 49 0 1 2 ✓ 0.07s 2 2.9s 0.426s 0.0096s 1.6s

BLDF01-BDS01 48 1 1 2 ✓ 0.09s 2 3.3s — 0.012s 1.8s

ISSC01-ISS02 273 0 3 1 ✓ 0.11s 1 1.3s — 1.4s 29s

ISSC01-ISU02 273 0 3 1 ✗ 0.16s 2 0.072s — 1.4s 29s

ISSF01-ISS01 270 3 3 1 ✓ 0.49s 2 59s — 10s 49s

ISSF01-ISU01 270 3 3 1 ✗ 0.16s 1 38s — 10s 48s

6.1 ARCH benchmarks
In the annual ARCH competition, state-of-the-art reachability tools

compete to efficiently verify a set of benchmarks. We applied our

verification algorithm to all LTI systems from the 2021 edition [3]:

The HEAT benchmarks spatially discretize the partial differential

heat equation with varying mesh size, the CB benchmarks monitor

oscillations along a clamped beam, the BLD benchmarks describe

spatial and rotational movement of individual stories of a hospital

building, and the ISS benchmarks represent structural models of a

service module of the International Space Station.

Since the specifications of all benchmarks are defined by half-

spaces, we used the verification algorithm from Sec. 5.1. Table 1

shows that all specifications are correctly verified or falsified using

at most three time step size refinements. The computation time is

fastest in most cases and often even orders of magnitude faster than

for other tools, even though their results are expert-tuned and our

algorithm works fully automatically. Additionally, we were able to

solve higher-dimensional variations of the CB benchmark where

other tools failed, and our algorithms provide a falsifying trajec-

tory as shown in Fig. 3. Part of the reason is that the propagation

scales with O
(
𝑛2

)
as discussed in Sec. 4.3. In summary, this shows

a clear superiority of Alg. 2 over state-of-the-art reachability tools.

Moreover, even non-experts are able to efficiently solve challenging

verification tasks since our algorithm is fully automated.

6.2 Frequency and voltage control
To demonstrate the benefit of our verification algorithms for real-

world applications, we consider the highly relevant use case of

power system frequency and voltage control. In particular, we ex-

amine the verification task described in [42], where the goal is

to show that a given PI controller keeps the grid frequency and

voltage of a power systems stable within a certain margin. Here,

we analyze various IEEE busses, namely the 9-bus, 14-bus, and

33-bus systems with state dimensions 𝑛 = 28, 𝑛 = 46, and 𝑛 = 133,
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falsifying trajectory in blue (top); input trajectory 𝒖(𝒕) ∈ R3
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respectively, for the closed-loop dynamics. Additionally, the load

change is represented by a time-varying constant input vector 𝑢̃ (𝑡).
For all systems, the frequency has to remain within 50 ± 0.05Hz. In
addition, for the 9-bus the voltage drops of four generators have to

stay within a margin of ±0.05V of the individual reference values.

In [42], the authors computed explicit reachable sets using the

approach from [1, Alg. 3], which requires 15.1s, 15.5s, and 27.9s for

the different bus systems (on our machine). Our approach yields

significant speed-ups, since Alg. 2 successfully verifies all specifi-

cations in 0.49s, 0.14s, and 1.3s, respectively. Fig. 4 visualizes the

resulting reachable set enclosure for the 9-bus. In summary, our

verification improves the previous results by an order of magnitude,

which enables real-time execution of verification during runtime.

6.3 Quadcopter example
Finally, we demonstrate that our approach can efficiently verify lin-

ear systems even in the presence of complex time-varying obstacles.

To this end, we consider a quadcopter, where the task is to verify

that a planned reference trajectory 𝑥
ref
(𝑡) tracked by a feedback

controller is robustly safe despite disturbances and measurement

errors. We describe the dynamics of the quadcopter with a linear

point-mass model, which yields the closed-loop system[
¤𝑥 (𝑡)
¤𝑥
ref
(𝑡)

]
=

[
𝐴 + 𝐵𝐾 −𝐵𝐾

0 𝐴

] [
𝑥 (𝑡)
𝑥
ref
(𝑡)

]
+
[
𝐵 𝐵 𝐵𝐾

𝐵 0 0

]
𝑢 (𝑡) +

[
𝑝

𝑝

]
𝑦 (𝑡) =

[
𝐶 0

] [ 𝑥 (𝑡)
𝑥
ref
(𝑡)

]
+ 𝑣 (𝑡)

with 𝐴 = [0 [𝐼3 0]⊤], 𝐵 = [0 𝐼3]⊤, 𝐶 = [𝐼3 0], 𝑝 = −9.81 · 1 ∈
R6. The feedback matrix 𝐾 ∈ R3×6 is determined by applying an

LQR control approach with state weighting matrix 𝑄 = 𝐼6 and

input weighting matrix 𝑅 = 0.1 · 𝐼3 to the open-loop system. Given

an initial state 𝑥 (0) ∈ R6, a piecewise constant reference input

𝑢
ref
(𝑡), the set of process noiseW = 0.1 · [−1, 1] ⊆ R3, and the

set of measurement errors D = 0.01 · [−1, 1] ⊆ R6, the initial

set is X0 = (𝑥 (0) ⊕ D) × 𝑥 (0) and the set of uncertain inputs is

U = 𝑢
ref
(𝑡) ×W × D. The output 𝑦 (𝑡) ∈ R3 represents the space

occupied by the quadcopter, where the set V = ⟨0, 0.072 · 𝐼3⟩𝐸
accounts for the spatial dimension of the quadcopter.

As a first verification task, we consider that the quadcopter has

to reach the goal set at the end of a 15m long tunnel filled with

static obstacles. For this scenario the initial state is 𝑥 (0) = 0 ∈ R6,
the reference input 𝑢

ref
(𝑡) consists of 100 constant pieces, and the

final time is 𝑡
end

= 10s. For the setup described above, our approach

successfully verifies the given trajectory in only 0.51s. Next, we

increase the process noise toW = 0.2 · [−1, 1] ⊆ R3 to obtain an

unsafe scenario. Here, our automated verifier disproves safety in

only 2.9s and returns the falsifying trajectory visualized in Fig. 5a.

For the second verification task, the quadcopter has to avoid colli-

sions with a human, whose occupancy space is predicted by the tool

SaRA [49]. The resulting time-varying obstacles are represented

as capsules, the initial state is 𝑥 (0) = 0 ∈ R6, the reference input
𝑢
ref
(𝑡) consists of 30 constant pieces, and the final time is 𝑡

end
= 3s.

For the setup with process noiseW = 0.1 · [−1, 1] ⊆ R3 the refer-
ence trajectory is safe, which our algorithm sucessfully verifies in

0.94s. By increasing the process noise toW = 0.2 · [−1, 1] ⊆ R3 we
obtain an unsafe scenario, for which our verifier disproves safety in

0.64s and returns the falsifying trajectory depicted in Fig. 5b. This

0
5

10
15

(a) Static obstacles (red), goal set (green), and falsifying trajectory
(blue).

(b) Time-varying obstacles (red) and falsifying trajectory (blue) at
𝒕 = {0, 1, 2.3}s.

Figure 5: Quadcoptor verification task.

demonstrates that our automated verifier can solve highly complex

verification tasks with arbitrary convex time-varying obstacles very

efficiently, even though both considered tasks represent edge cases

with a narrow margin between safe and unsafe.

7 CONCLUSION
We address the verification of safety specifications for linear time-

invariant systems. Our proposed algorithm based on reachability

analysis with support functions operates fully automatically and

refines the tightness of the upper and lower bounds until safety can

either be proven or disproven; in the latter case, we additionally

return an initial state and an input trajectory yielding a counterex-

ample. For the common case with unsafe sets defined as halfspaces,

reducing the complexity of the propagation to quadratic with re-

spect to the state dimension results in significant runtime improve-

ments compared to state-of-the-art reachability tools, which enables

us to verify previously unanalyzable high-dimensional benchmarks.

Furthermore, an extension to verify arbitrary convex unsafe sets

without major computational overhead has been demonstrated on

a complex safety-critical scenario, where a quadrotor aims to avoid

a human moving in close proximity. The low computation time

highlights the real-time capability of our approach.
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