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ABSTRACT 
 
Compared to other industries, the construction sector shows low productivity worldwide. 
However, holistic, data-oriented methods for investigating potential bottlenecks within the as-
performed construction stage are scarce. Our research presents an approach to acquiring raw data 
from job sites and its subsequent processing to high-level information. First, images were captured 
over a period of one year in high frequency using multiple crane cameras. Second, an end-to-end 
deep learning based approach was developed to derive and link information about construction 
activities, covering the classification and localization of specific on-site objects. This information 
was subsequently integrated into a knowledge graph. Finally, additional data sources like the 
weather were exploited to interpret different on-site scenarios. We demonstrate that construction-
related activities like working times can be detected. The presented approach provides a significant 
step towards exposing correlations on construction sites by using multiple data processing steps 
and showcases the possibility of identifying process patterns. 
 
INTRODUCTION 
 
In contrast to significant process optimization in other industries, the construction domain is still 
behind, reflected in extremely low productivity (Farmer, 2016). This results in a waste of time, 
money, and resources. At the same time, reusing existing approaches from the production industry 
is not straightforward since the construction environment varies significantly from well-controlled 
surroundings. Yet, the potential for optimization using state-of-the-art digital twin (DT) 
technologies is vast (Opoku et al., 2021). Barbosa et al. (2017) imply that on-site execution must 
be improved and engineering processes be rethought to increase productivity. The practiced 
monitoring is based on manually written daily reports on many construction sites. These reports 
lack information and are outdated and unsuitable for covering complex on-site environments. 
Precise, well-documented real-world data is rare, slowing down ongoing developments (Guo et 
al., 2021). Solid documentation of construction activities is required to enhance the construction 
sector in the future. Our research provides a digital twin for construction sites that focuses on 
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process aspects, aiming to uncover reasons behind schedule deviations and potential sources for 
improvements. A data pipeline was developed by generating data from multiple building 
construction sites. Further, a graph meta-model was created to store and structure big data retrieved 
from job sites without losing the context of construction environments. We contribute to a real-
world digital twin construction facing the demand of construction management and stakeholders.  
 
BACKGROUND 
 
The concept of digital twin construction developed by Sacks et al. (2020) provides an approach 
for creating a digitized representation of the on-site environment. Similar to digital twins in other 
industries, the ultimate objective of the framework is process improvement. Essential parameters 
for monitoring the subsequent on-site processes are time, location, resources, preconditions, and 
building elements. 
 
Process Monitoring. Most construction monitoring methods have limitations (Li et al., 2016). 
Vision-based approaches, for example, can usually reach precision rates up to the meter scale only. 
Nevertheless, image-based monitoring methods retrieving construction site activity have shown a 
recent reputation (Guo et al., 2021). Torabi et al. (2022), for example, developed an approach that 
applies a unified Convolutional Neural Network (CNN) architecture for real-time spatiotemporal 
localization in a video stream to detect the different poses of construction workers and thereby 
evaluate their performance. At the same time, many open-source on-site datasets, as shown by 
Xuehui et al. (2021), have found popularity within the on-site monitoring domain. Braun & 
Borrmann (2019) conducted an approach to automatically label images to enhance the creation of 
training datasets. These datasets are highly demanded to train a network that enables processing 
diverse images or point clouds and retrieving information.  
 
Object Detection. One of the major developments within the computer vision domain is object 
detection. Understanding image scenes based on neural networks has changed image processing 
fundamentally (Zou et al., 2019). Object detection describes detecting an object’s location and 
classifying it in a 2D image. A bounding box determines the size and position of an object. The 
location and classification of the detected items are stored in annotation files. One of the object 
detection development milestones was CNN-based One-stage Detectors, e.g., You Only Look 
Once (YOLO), allowing extremely fast prediction speed (Zou et al., 2019). This was achieved by 
dividing an image into several regions and predicting the type and location of the objects at once 
using a single network. Such networks support processing big image datasets within a short amount 
of time.  
 
Graph databases. In our research contribution, we are acquiring large amounts of data that must 
be structured. Graph technologies provide powerful tools for linked data, like modeling dynamic 
environments, finding predictive features, and uncovering patterns (Hodler et al., 2019). In the 
architecture, engineering, and construction (AEC) domain, linked data applications have 
significantly increased (Pauwels et al., 2017). A graph is a representation of connected data 
described with nodes and relationships. Ontologies define how and where data is stored in the 
graph by providing a schema. As-performed data can be stored similarly using a tailored graph 
meta-model, as Fang et al. (2020) demonstrated. They classify the entities into four categories: 
Human resources, equipment, materials, and environment. A data model supports structuring the 
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low-level information acquired from the construction site and simplifies obtaining higher-level 
information at a later stage. This can even be driven to the finest level of detail, as shown by Zheng 
et al. (2021), providing the framework digital construction ontologies for capturing individual 
construction processes. 
 
Research Problem. A recent challenge is that many computer vision methods applied in 
construction target to balance deficiencies of algorithms by using prior knowledge, e.g., as-planned 
data, to support on-site understanding (Xu et al., 2021). However, this is not accomplished when 
neglecting the construction surroundings by obtaining data from controlled environments aimed 
at an academic audience rather than industry professionals (Mostafa & Hegazy, 2021).  Therefore, 
an approach considering both a data-driven digital twin and integration in the real-world 
construction environment is needed to solve problems confronting the construction industry 
(Opoku et al., 2021).  Consequently, data acquisition, storage, and processing must be applied in 
authentic construction scenarios. With this scientific contribution, we want to show an end-to-end 
approach to embedding AI-based tools in the construction environment while considering realistic 
on-site situations and expert knowledge.  In conclusion, we are focusing on the following 
questions:  

• In which way can raw data from on-site environments be acquired, processed, and stored? 
• What is a suitable method to make as-planned vs. as-performed comparisons based on real-

world scenarios considering the construction conditions? 
• How can big data, retrieved from continuously monitored on-site environments, leverage 

its use case to support construction management? 
 
METHODOLOGY 
 

 
Figure 1. Flow of data to create a data-driven construction twin. 

 
The data-driven digital twin construction framework is shown in Figure 1. The developed concept 
is designed in a general way, making it applicable to other data sources. Our data pipeline focuses 
exemplary on processing one data source, the images. To keep the number of processes limited, 
we mainly concentrate on building construction sites and the shell construction phase. The as-
planned data gets derived based on the available information, e.g., the 4D-BIM model, 
construction schedules, and construction reports.  If parts of the as-planned data are incomplete, 
they are recreated synthetically based on acquired information and expert knowledge. Figure 1 
distinguishes between process (rectangles) and data (rhombuses). The individual process parts are 
classified into data acquisition, storage, and processing. The data segments of the scheme 
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categorize into raw data, processed data, information, and knowledge and show the level of 
information highlighted with a color scale. 
We use crane camera systems allocated to construction sites to collect raw data from real-world 
construction sites. In addition, further sensor systems are used for data capturing. However, in this 
contribution, we focus on the on-site images. 
Examples of preprocessing tasks are undistorting images, sorting data types and time-sensitive 
data, and storing data. Even though the data is more structured after this step, it has no relationship 
to the construction actions. Thus, linking this data to the construction context is unavoidable.  
We use deep neural networks to convert the image data into higher-level information. The object 
detection models are trained on labeled construction-based datasets to thoroughly handle the large 
amount of raw data. A combination of diverse datasets ensures higher prediction and reliability 
rates. After training, the weighted models are applied to the acquired datasets from the construction 
sites. The raw data gets converted into site-related information like classified construction items, 
locations, and temporal information as a by-product. We use graph databases to store and link the 
data.  
 

 
Figure 2. Graph meta-model for the as-performed construction graph. 

 
Data Management. A well-defined data structure, or schema, is required to make meaningful, 
unambiguous use of any data. Figure 2 shows the graph meta-model structured into seven base 
categories: Construction site, Camera, Image, Worker, Equipment, Vehicle, and Building 
Component. The information from the image gets extracted, linked, and stored following the graph 
meta-model. The graph can be extended with off-site data, like weather or traffic data. Desired 
information, for example, the time and location of a specific item, is accessed with Cypher queries 
(Francis et al., 2018). This supports construction managers in checking whether processes follow 
the construction schedule and exposes potential schedule deviations. In addition, it is possible to 
reveal and investigate the site influence of weather or traffic. Transforming and fitting such data 
sources to the construction environment enables assembling information beyond traditional 
construction reports.   
 
CASE STUDY 
 
The case study was conducted on a construction site in Munich, Germany. We monitored the shell 
construction phase of the 1.500 square meters large building site with two camera systems holding 
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three cameras each.  The cameras were set up to take an image every thirty seconds. A more 
detailed description of the used camera system can be found in Collins et al. (2022). We gained 
about 1.7M images from this construction site from April to August 2022. The images were stored 
at a local server and then regularly transferred to large cloud storage. Several preprocessing stages 
were conducted, including image sorting, image cleaning, and image undistorting, as well as 
anonymizing for privacy reasons. 
To process the image data, we trained a Yolov5-7.0x model in PyTorch-Docker on the MOCS 
(Moving Objects on Construction) dataset developed by Xuehui et al. (2021) on an Nvidia RTX 
8000 GPU. We finetuned the trained model with a self-labeled dataset of 2000 images based on 
the acquired data from on-site environments on 11 different classes: Concrete silo, Slab panel, 
Worker, Concrete mixer, Other vehicle, Pump truck, Loader, Pillar rebar, Pillar, Slab rebar, and 
Formwork. 
 

 
(a) Prediction visualized on an image   (b) Image node  

Figure 3. Processing construction-based image data.  
 
We used the trained model to detect objects on the self-acquired on-site image dataset. A slicing 
approach developed by Akyon et al. (2022) was integrated into the pipeline to enhance the 
detection of smaller items on images, like workers or formwork elements. In addition, to transfer 
the position of the images to the site plans, we used a predefined transformation matrix based on 
perspective transformation, as shown by Pfitzner et al. (2022). To store the detected information, 
we set up a Neo4j graph database encapsulated in a docker container. The abovementioned meta-
graph model enforced the linking and grouping of the eleven different predicted classes by creating 
individual nodes with the respective relationships based on the detected location, for example. A 
sample node of the graph is shown in Figure 3, highlighting the different on-site categories: In 
Figure 3 (a), the prediction of the image can be seen; Figure 3 (b) shows the equivalent node of 
the knowledge graph, adopting the on-site meta-graph model. 
We use the query language Cypher (Francis et al., 2018) provided by Neo4j to answer specific 
questions, like when and how often certain items appeared on the construction site. For obtaining 
the information from the graph and plotting sample diagrams, we used the Python libraries 
Neomodel and Matplotlib. The Neo4j container processes the queries. Using the linked 
construction data, we determined process-related information, like the number of on-site 
personnel, for mirroring as-panned scenarios. 
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Figure 4. Number of on-site personnel on multiple days aligned with temperature data. 

 
Construction site activity. Figure 4 demonstrates the plotted patterns based on the number of 
workers on-site. The daily course of the worker frequency shows that the start, end, and break 
times can be derived. Moreover, relationships between the construction site activity and the 
weather can be detected. During the hot summer days, the amount of on-site personnel decreased. 
The developed knowledge graph supports the recreation of specific construction processes in two 
ways: Top-down and bottom-up. Top-down enables recreating the construction processes using 
known dependencies, e.g., concreting a building component requires a concrete mixer, a concrete 
silo, and a group of workers. Bottom-up approaches build on dense clusters, e.g., many linked 
nodes, support a higher probability of on-site activity, found using graph data science algorithms.  
 
DISCUSSION, LIMITATIONS, AND FUTURE RESEARCH 
 

Table 1. Sample node statistics knowledge graph. 
 
 
 
 
 
 
 
 
With the introduced method, we established a data-driven construction twin. In contrast to many 
other research contributions, the data was acquired from a real-world construction site scenario. 
The trained object detection model achieved a mAP0.5 of 88 %. Most of the classes reached mAP0.5 

Labels Number of nodes Average rel. number 

Worker 1.210.000 1,0 
Equipment 920.000 1,7 

Vehicle 240.000 1,2 
Building Component 2.470.000 2,5 
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scores above 85 %. Some classes, like Formwork, were difficult to detect due to their variety and 
thus reached lower scores (76%). With our knowledge graph, we demonstrated to link on-site data. 
Table 1 shows the enormous number of nodes generated in the graph based on the introduced 
categories. Overall, the graph contains 5 million nodes. On average, 38 items get detected on one 
image. The average number of relationships depends on whether an object is moving.  
We must emphasize that we showed only a tiny fragment of potential data analysis of our approach. 
Possibilities go far beyond it, for example, a detailed investigation of the required resources 
associated with the daily concreting capacity across multiple job sites. An exemplary cross-domain 
analysis was performed by overlaying the weather data with the construction data. The 
construction managers in charge verified the temporary reduced on-site capacity. As highlighted 
in the methodology part, we aim to acquire data continuously over the construction phase. New 
possibilities like precise monitoring of individual items, combining external data, tracking project 
goals, and predicting future construction scenarios arose. Like other research contributions (Guo 
et al., 2021; Mostafa & Hegazy, 2021; Xuehui et al., 2021), we faced the problem of lacking open-
source training data. Open datasets are required to push the development of on-site investigations 
further. Finally, more research needs to be done on on-site activity investigation supporting 
construction management decision-making (Zheng et al., 2021).  
 
CONCLUSION 
 
Our research contribution demonstrates that digitized construction monitoring yields many 
opportunities on the one hand. On the other hand, it still has many challenges and complications. 
Covering the construction site entirely, beyond types of building construction sites and shell 
construction phases, requires significantly more data. By now, the on-site data acquisition part is 
an immense challenge and holds back the returns from modern data science methods. Our method 
demonstrated the potential of an AI-based image processing approach enabling in-depth 
construction process analysis. We recommend researching additional data sources and possible 
acquisition techniques that may already exist in related industries. Further, real-world on-site 
collaborations with the industry must be tremendously pushed forward to learn more about 
dynamic process monitoring and develop big data understanding related to the construction 
environment.  
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