
Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Master’s Thesis

Object Detection with Limited Labels

Rahul Parthasarathy Srikanth

Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Master’s Thesis

Object Detection with Limited Labels

Objekterkennung mit limitierten Labeln

Author: Rahul Parthasarathy Srikanth
Examiner: Dr. rer. nat. Felix Dietrich
Advisor 1: M. Sc. Mathias Sundholm (PreciBake GmbH)
Advisor 2: M. Sc. Alexander Dolokov (PreciBake GmbH)
Submission Date: December 1st, 2022

I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

December 1st, 2022 Rahul Parthasarathy Srikanth

Acknowledgments

This thesis is a cumulative effort of many individuals. I want to thank myself for taking
the risk to drop out of a premier institute and change career paths, believing that I am
more suited to building AI products than automobile engines.

This thesis was only possible with the support of M. Sc. Mathias Sundholm and M. Sc.
Alexander Dolokov from Precibake GmbH. I appreciate them for providing the freedom to
choose the scientific problem that interested me the most. Furthermore, I am grateful for
the constant motivation and support provided during the thesis period. Finally, I thank
them for instilling the courage to explore new directions, irrespective of how the results
may turn out. I also thank the Machine Learning team at Precibake for their discussions
and support during the thesis.

I am grateful to Dr. Felix Dietrich for graciously agreeing to examine this thesis despite
his numerous commitments. His insights were crucial to building this thesis into more rig-
orous scientific standards. I also thank him for his methodical feedback and discussions
throughout the thesis.

Finally, I thank my parents, brother, and friends for supporting me when times looked
tough and for their constant motivation and encouragement.

vii

Abstract

Most modern machine learning techniques based on neural networks need large
amounts of well-annotated training data to demonstrate outstanding performance.
However, obtaining instance-level annotations like object bounding boxes in real-world
settings is tedious, and it is still a significant challenge in many industrial applications
of neural networks. Additionally, the distribution of classes in real-world datasets is
inherently imbalanced. This thesis deals with the challenge of few-shot object detection.
Given a set of base classes with abundant labeled data and a set of novel classes with few
support images, this thesis aims to devise algorithms that can predict and classify the
object instance belonging to both the base and novel classes in a query image.

In the first part of the thesis, a representative multi-modal model CLIP [38] as well as
a self-supervised model, DINO [6], are experimented with to test the efficacy of different
pretraining strategies. Then, algorithms based on class codes are introduced to classify the
query image into target novel classes. Finally, experiments were performed on CUBS 200
dataset [50]. With the proposed classification algorithm, the CLIP encoder demonstrated
strong few-shot capability with just ten support images a class and competed with a fully
supervised ResNet-50 [19] model.

In the second part of the thesis, a novel few-shot object detector CLIPtheCenter is de-
signed that extends CenterNet for the task of few-shot object detection. Generalization
experiments are performed on a dataset consisting of fifteen base classes and five novel
classes from the PASCAL VOC dataset [12]. As a result, CLIPtheCenter doubled the class
agnostic detection performance compared to a vanilla CenterNet in this base class splits.
Furthermore, when classification performance is also taken into account, CLIPtheCenter
tripled the performance of the CenterNet on the base classes split when CLIP Encoder-
based class codes are used for class assignments. Finally, ablation studies verified the
underlying intuitions for these performance gains.

ix

Contents

 Acknowledgements vii

 Abstract ix

 1 Introduction 1

 2 State of the Art 3
 2.1 Visual Feature Extraction . 3

 2.1.1 What are Visual Features? . 3
 2.1.2 Learned Feature Extraction Backbones 4
 2.1.3 Self-Supervised Methods . 8
 2.1.4 Multi-Modal Learning Methods . 9

 2.2 Object Detection with Deep Learning . 10
 2.2.1 Multi-Stage Detectors . 11
 2.2.2 Single-Stage Detectors . 13
 2.2.3 Evaluation of Detection Models . 14

 2.3 A Review of Few-Shot Object Detection Methods 17
 2.3.1 Meta-Learning Based Methods . 18
 2.3.2 Fine Tuning Based Methods . 20
 2.3.3 Other Notable Works . 22

 3 Few Shot Image Classification 23
 3.1 Problem Definition and Goals . 23
 3.2 Methodology . 23

 3.2.1 Choice of Classification Dataset . 24
 3.2.2 Caltech-UCSD Birds 200 Dataset . 24
 3.2.3 Preparation of a Few Shot Classification Dataset 25
 3.2.4 Concept of Class Codes . 26
 3.2.5 Few Shot Classification through Class Codes 26
 3.2.6 Extraction of Image based Support Class Codes 27
 3.2.7 Extraction of Text based Support Class Codes 28

 3.3 Experiments and Results . 29
 3.3.1 Experiment 1 - Few-shot Classification through Text Supports 29
 3.3.2 Experiment 2 - Few-shot Classification through Visual Supports . . . 31

 3.4 Summary of Few-Shot Classification . 34

xi

Contents

 4 Translating Few Shot Classification to Few Shot Detection 35
 4.1 Problem Definition and Goals . 35
 4.2 Building a Few Shot Object Detector Ground Up - CLIPtheCenter 35

 4.2.1 Architectural Design . 36
 4.2.2 Training and Inferring Object Proposals from CLIPtheCenter 38
 4.2.3 Algorithmic Test on Single Instance Object Detection 42
 4.2.4 Extending to Multi-Instance Object Detection 46

 4.3 Generalization to Large Scale Datasets . 49
 4.3.1 Dataset and Metrics . 49
 4.3.2 Experiment 1 - Performance of CLIPtheCenter 50
 4.3.3 Troubleshooting and Evolving Towards CLIPtheCenter v2 50
 4.3.4 Experiment 2 - Class Agnostic Detection Performance 52
 4.3.5 Experiment 3 - Class Inclusive Detection Performance 56
 4.3.6 Experiment 4 - Ablation Studies . 58

 4.4 Summary of Few-Shot Object Detection . 61

 5 Conclusions 63

 List of Figures 67

 List of Figures 68

 Bibliography 69

xii

1 Introduction

Over the past decade, machine learning based methods have significantly impacted vari-
ous fields, such as computer vision, natural language processing, and medical diagnosis.
In particular, with the reemergence of deep learning models since the period the early
2010s, the applications of machine learning are steadily expanding. Two fundamental rea-
sons exist for this explosion of deep learning in driving performance benchmarks. One is
the amount of organized large-scale datasets available for training models. One of the ear-
liest computer vision datasets, CIFAR-10 and CIFAR 100 [24], was released by Krizhevsky
in 2009, with each consisting of 60k lower resolution color images of 10 and 100 classes,
respectively. Subsequently, the ImageNet [9] dataset and ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) were also proposed in 2009, serving as a benchmark
dataset for image classification. These large-scale, diverse datasets led to increased re-
search in applying neural models for computer vision, resulting in higher performances.
The second driving factor for this explosion is the tremendous improvements in GPU hard-
ware. Compute Unified Device Architecture (CUDA) [36] programming model, released
in 2008, enabled the utilization of massively parallel codes in the NVIDIA Graphics Pro-
cessing Unit (GPU). The model training speeds have improved multi-folds with improve-
ments in transistor technology, specialized processors such as tensor cores, and algorithmic
advancements.

With all these performance improvements evaluated on benchmark datasets, there is an
important caveat. These benchmark datasets, such as ImageNet [9], PASCAL Visual Ob-
ject Classes (PASCAL VOC) [13], or Common Objects in Context [30] have object classes
that are quite varied in visual appearance. While this is helpful for the learning visual
feature with widely distributed dataset classes, it is far apart from real-world applications
of neural models. In most applications, the dataset classes are visually very similar in ap-
pearance. Therefore, the separation of objects into different classes is more challenging.
Thus performance on the benchmark dataset may only partially reflect on real-world ap-
plications. The classification experiments of this thesis take this into account by choosing
an evaluation dataset with similar-looking dataset classes.

Another crucial missing piece in translating performance in benchmark datasets to real-
world scenarios is the class imbalances that are more prominent in reality. Most bench-
mark datasets use a balanced number of images across classes to evaluate the model’s
performance without introducing any uncertainties due to the class imbalance. However,
in real-world scenarios, all object classes are not observed with the same frequencies. Es-

1

1 Introduction

pecially in industrial applications, it is extremely unusual for different object classes to
have uniformly the same number of images. These differences may come from product
demands, production cycles, camera positions that capture the data, and other possible
reasons. This thesis aims to tackle this problem of the ability of the model to detect classes
that are not frequently seen, hereafter called the novel classes, by using both the abun-
dantly seen data, called the base classes, and the limited images of the novel classes. This
problem is referred to in the literature as few-shot learning.

More specifically, this thesis is motivated by the task of few-shot object detection from
color images. Provided that abundant data is available for a set of base classes with bound-
ing box and class annotations along with similar limited annotated images for a set of novel
classes, the thesis proposes algorithms that can localize and detect object instances in both
the base and novel classes.

The thesis is organized into five major chapters. The chapter 2 takes a deep dive into the
current state-of-the-art feature extraction, object detection, and few-shot learning method-
ologies. Chapter 3 proposes algorithms for few-shot image classification, leveraging the
advances in self-supervised and multi-modal learning. Chapter 4 builds a few-shot object
detection architecture from scratch using the findings from the experiments of few-shot
classification. The final chapter 5 summarizes the insights derived from the thesis and
looks ahead into the horizon for further possible developments.

2

2 State of the Art

2.1 Visual Feature Extraction

2.1.1 What are Visual Features?

The perception mechanism of humans has evolved over millennia to understand visual
inputs in the color space to more valuable patterns in the image, such as object bound-
aries, relative depth, and distances. Visual features are the fundamental building blocks to
imitate this visual recognition system for practical semantic tasks such as classifying the
presence of an object or localizing where the object is. In addition, these features act as a
bridge between the commonly used Red Green Blue (RGB) color space to more numerical
descriptive matrices. Through the development of computer vision as a scientific field,
what defines visual features and the methods of estimation have continuously undergone
advancements. Before the era of deep learning and learning visual features, the extraction
of features was through handcrafted algorithms and rules. These algorithms tried to iden-
tify the primitive geometrical properties of the image, such as the location of lines, curves,
or splines and retrieved more semantic high-level features from these. For example, by
carefully designing convolutional kernels, the edges of different objects in an image can be
detected. One such kernel is demonstrated in figure 2.1 .

In order to describe these visual features into numerical matrices, more methods such as
SIFT[33], SURF[2], and ORB[43] were proposed. These methods come from the intuition
that the image’s most useful visual features are those invariant in geometric transforma-
tions, such as different rotations and scales, and transformations in appearance, such as
brightness and contrast. These methods pick up those features from the image that are
robust to these transformations and provide a numerical encoding for each feature.

With the advent of deep learning, especially since the publication of AlexNet[25] in 2012,
deep learning has taken over extracting features from an image. Instead of designing the
handcrafted features for the downstream semantic task, the model can learn to define a
visual feature and how to encode them. The model learns to extract features most suitable
for the semantic task, such as classification, detection, or segmentation, by designing suit-
able loss functions. These learned features have demonstrated exceptional generalization
ability across datasets.

3

2 State of the Art

(a) Source Image (b) Output Image after Sobel Operator

Figure 2.1: Handcrafted Convolutional Kernels for Edge Detection. The figures show the
edge detections generated from the application of the Sobel operator [22]. High-
level features such as object boundaries can be detected by carefully designing
convolution kernels. Image Source: [8].

Model Inputs Feature
Extractor

Task
Dependent

Heads

Model
Outputs

Figure 2.2: Abstraction of Deep Learning Models. Most deep learning models can be
decomposed into a feature extractor backbone and a set of task-specific heads
to regress or classify the model outputs.

2.1.2 Learned Feature Extraction Backbones

The feature extractor backbone is the most vital part that drives the model’s performance,
independent of the task of the deep learning model. Most deep learning modules can be
simplistically abstracted to two major components - a feature extractor and task-dependent
heads, as shown in the figure 2.2 . For example, this task-dependent head is usually a fully
connected linear layer for classification or a series of convolutions for a segmentation task.
The feature extraction networks are derived from the backbones of classification mod-
els trained on large-scale datasets such as ImageNet [9]. Since the classification model is
trained to identify diverse dataset classes, the backbone provides great generalization abil-
ity, and the final backbone layer’s output is considered a feature descriptor. The further
sections discuss some of the most landmark and state-of-the-art feature extractor back-
bones proposed in the literature.

4

2.1 Visual Feature Extraction

Figure 2.3: Residual Block of the ResNet Architecture. The concatenation of the input of
the block to its output provides an additional pathway for the flow of gradients
to prevent vanishing gradient problems. Image Source: [19].

Convolution Based Networks

Convolutional Neural Networks (CNN) comes from the fundamental idea of handcrafted
convolution kernels. Instead of manually fixing the kernel values to target the image prim-
itives, CNN learns these kernel values. This way, the CNN model decides the kernel values
most suitable for the target task. One of the most commonly used feature extraction back-
bones is the idea of Residual Network (ResNet) [19] proposed by He et al. The residual
blocks allow the construction of deeper neural networks with numerical stabilities during
training iterations. An individual residual block is shown in figure 2.3 . By concatenating
the input of the residual block to its output, the vanishing gradient problems are mini-
mized to a large extent. This auxiliary concatenation branch provides an additional path
for the gradients. In cases where the value of gradient flow becomes small through weight
layers, this auxiliary branch prevents the gradients from vanishing.

Several other backbone architectures exist for the classification task that can condense
the global context of the image into a unifying feature map. Howard et al. proposed
the MobileNet [20] family of architectures to improve the training and inference speeds
from the ResNet models. This set of models uses depthwise separable convolutional to re-
duce the number of operations carried in both the forward and backward passes through
the network. Tan and Le proposed the EfficientNet[45] family of architecture that mini-
mizes the number of model parameters without sacrificing performance on classification.
It achieves this through independent scaling of the layer dimensions and the number of
convolutional filters through empirical observations.

However, for instance-level tasks such as semantic segmentation or object detection, the

5

2 State of the Art

features of the different scales of images must be considered during the calculation of the
feature description. Ronneberger et al. proposed the U-Net [42] architecture for medical
image segmentation. This proposed model was a pioneer model that used features across
multiple scales to accurately capture local primitives in the image. On a similar note,
Newell et al. proposed the Hourglass[35] module for the task of human pose estimation.
The main novelty of this hourglass architecture is the introduction of additional convolu-
tional layers before concatenating the feature maps from different stages of the encoder
and decoder. Deep Layer Aggregation [56] by Yu et al. extended this intuition by building
a hierarchy of feature maps across different layers and fusing these features iteratively for
better fine-grained image recognition. These architectures are illustrated in the figure 2.4 .

Vision Transformers Based Frameworks

Transformer-based architectures have been at the forefront of driving benchmarks in nat-
ural language processing. Especially models such as Generative Pre-trained Transformer 3
(GPT-3) [4] have demonstrated human-level fluency in generating prose from text prompts.
Dosovitskiy et al. proposed the Vision Transformer architecture that used the power of a
multi-head self-attention mechanism for vision-based inputs. The multi-head self-attention
mechanism is a cornerstone of transformers’ strong performance. Subsequently, a lot more
optimizations in performance, as well as training schedules, led to a more diverse variety
of transformer mechanisms such as Swin Transformer [32], Focal Transformer [53] and
Pyramid Vision Transformer [47].

A schematic of the vision transformer architecture is shown in figure 2.5 . The input im-
age is divided into a set of patches of uniform dimension and fed into a learned linear
projection layer that encodes each patch into feature embedding. A positional encoding is
also added to the patch encodings to preserve the local contexts. This positional encoding
for each patch is also learned through backpropagation by passing the index of the patch.
Finally, the transformer encoder takes the projected patches as input and provides a resul-
tant feature map. Since the model is designed for classification purposes, a Multi-Layer
Perceptron (MLP) head is used for assigning the probabilities to the individual classes.
This process is shown in figure 2.5a .

As shown in figure 2.5b , the encoder consists of a multi-head attention module at its
core sandwiched between normalization layers for numerical stability. Each attention head
takes the encoded patches as the input and provides an output feature map considering all
the image patches. The model also learns the weighting coefficients assigned to different
patches. This mechanism is in contrast to convolution-based networks, where the context
that layers receive is limited to the neighborhood whose boundaries depend on the dimen-
sions of the kernel. Three different variants of the vision transformer were proposed: Base,
Large and Huge, depending on the number of layers and number of attention heads used.

6

2.1 Visual Feature Extraction

(a) U-Net Architecture

(b) A block of the Hourglass Architecture

(c) Deep Layer Aggregation Algorithm

Figure 2.4: Different Feature Aggregation Methods for Instance Level Tasks. Instance-
level tasks rely on the presence of local context information in the feature maps.
The figure illustrates some of the different aggregation schemes used for com-
bining features at different scales. Images (a), (b), and (c) were taken from [42],
[35], and [56], respectively.

7

2 State of the Art

(a) Schematic of Vision Transformer (b) Encoder block of the
transformer

Figure 2.5: Vision Transformer Architecture. The ViT model takes the input images as
patches along with local context through a positional embedding. These are
projected and fed into an Encoder block consisting of multi-head attention
mechanisms. Multi-head attention mechanism enables the encoder to perceive
the global context of the image with varying patch weights for a more descrip-
tive embedding. Images Source: [10].

2.1.3 Self-Supervised Methods

In recent years, self-supervised learning methods have found a lot of attention, especially
for image classification. The most significant advantage of these models is the freedom
of not requiring annotated datasets for training. Since the targets for the model training
are derived from the inputs, these models can use volumes of non-annotated data, saving
annotation effort. Momentum Contrast (MoCo) [18] proposed by He et al. investigated
the use of contrastive training for learning visual representation. By using different views
of the same image and among different images for generating positive and negative sam-
ples, MoCo demonstrated strong performance in various benchmarks task. While MoCo is
suited to image-level tasks due to the global pooling of information, other training meth-
ods also aim to capture the local context in the image. Xie et al. proposed Detco [51]
for pretraining object detection backbones. DetCo builds upon MoCo by using additional
losses for local-local, global-global patches, and cross-local-global patch correlations.

On a similar note, DINO [6] proposed by Caron et al. investigated the representational
ability of self-supervised vision transformer models. DINO uses a similar momentum en-
coding framework as proposed in MoCo [18]. However, it uses a wise choice of image
views for encoder inputs. As shown in figure 2.6 , DINO uses a student and a teacher
model from the standpoint of knowledge distillation. The teacher encoder receives only
the global crops of the image. In contrast, the student encoder receives global and local

8

2.1 Visual Feature Extraction

Figure 2.6: Training Methodology of DINO. DINO combines the effectiveness of
momentum-based distillation with multiple image views for self-supervised
learning. The student model needs to match the outputs for the teacher model
even though input views are different between them. This produces more pow-
erful visual representations that capture global and local image contexts. Image
Source: [6].

crops of images. Enforcing the similarity of outputs between the two networks enables
the models to learn effective representations for both local and global image contexts. This
learning paradigm is also adapted to other tasks, such as segmentation and object discov-
ery. For example, TokenCut [49] proposed by Wang et al. adapted DINO as the feature
extraction backbone for unsupervised object discovery. Similarly, Kyriazi et al. demon-
strated using Deep Spectral Methods [34] along with the DINO-based feature descriptions
for unsupervised object segmentation.

2.1.4 Multi-Modal Learning Methods

Combining vision and text inputs is well-demonstrated for image-captioning and visual
question-answering applications. However, the research in unifying representation for
pretraining feature extraction backbones is a relatively new application of multi-modal
models. This is inherently a more challenging task since vision and text are modalities of
widely different characteristics. Combining them into a shared latent space would enable
images to be classified only by providing the object class name present in the image as the
prompt. In 2021, Radford et al. proposed the Contrastive Language Pre-Training (CLIP),
widely considered a pioneer work in unifying visual and text information into a common
latent space, where cosine distances could directly compute feature similarities.

Figure 2.7 shows the training schematic of the CLIP architecture. The model was trained
on a large-scale dataset of 400 million text-image pairs scraped from the internet. CLIP

9

2 State of the Art

Figure 2.7: Training Methodology of CLIP. CLIP uses paired image-text inputs for train-
ing each of the text and vision encoders. The diagonal elements become the
positive samples, and the non-diagonal elements become the negative samples
for calculating the contrastive loss across all input combinations. Image Source:
[39].

uses an independent vision and text encoder to extract the feature from image and text in-
puts. During training, these paired images and prose are fed into the respective encoders
to generate embedding across all combinations of the inputs. The diagonal elements de-
noting the right pairing are considered positive samples, and all non-diagonal elements
become negative samples. The contrastive loss is used to train the model with these posi-
tive and negative samples.CLIP pre-trained backbones have demonstrated solid zero-shot
performance across various classification benchmarks.

Recently, a lot more similar methods for vision-text distillation have been proposed. Li
et al. proposed Align before Fuse (ALBEF) [28] that uses an additional momentum encoder
to improve downstream performance. Yang et al. proposed the use of Triple Contrastive
Learning [54] that builds upon ALBEF by using separate momentum-based learning for
vision and text.

2.2 Object Detection with Deep Learning

While the neural networks designed for classification had demonstrated substantial per-
formance in the benchmark datasets as early as 2012 with the introduction of AlexNet [25],
architectures for object detection took a slightly lower progress rate. This is because feature

10

2.2 Object Detection with Deep Learning

Figure 2.8: Architecture of Faster-RCNN.. Faster-RCNN, being a two-stage detector, has
a Region Proposal Network (RPN) to detect the presence of objects through
learned objectness scores. RPN is also trained simultaneously along the detec-
tion heads. Image Source: [41].

extractor backbones for classification do not need to capture all the local details in an in-
put image. However, object detection tasks require preserving the positional information
to localize the object correctly.

The Regional Convolutional Neural Network (RCNN) [15] architecture proposed by
Girshick et al. first investigated the use of learned feature backbones for regressing the
positions of the object as well as classifying the object proposals. Since then, multiple
models have been proposed that have bought improvements in performance and inference
rates. Most object detection architectures can be schematically represented as multi-stage
or single-stage architecture. The further sections discuss them in greater detail.

2.2.1 Multi-Stage Detectors

The biggest roadblock in object detection during its inception was the generation of bound-
ing box proposals. Since feature extractors for classification are quite mature, early detec-
tion models used non-learning-based object region proposals such as Selective Search [46].
These methods often used texture definitions to connect potential object regions. Ren et
al., with the proposal of Faster-RCNN [41], successfully demonstrated a learned region
proposal network that trains along with the detection heads. Figure 2.8 illustrates the
schematic structure of Faster-RCNN.

Faster-RCNN uses a backbone feature extractor, usually pre-trained on ImageNet, to

11

2 State of the Art

Figure 2.9: Architecture of Detection Transformer. The detection transformer uses a vi-
sion transformer-based encoder-decoder to predict the bounding box from the
feature maps of a pre-trained encoder. The predicted and ground-truth bound-
ing boxes are matched to encourage bipartite connections. Image Source: [5].

help the model achieve faster convergence. The feature maps generated by this backbone
serve as a common precursor to both a Region Proposal Network (RPN) and the detection
heads. A set of predefined anchors with varying aspect ratios are attached to each output
feature map pixel to detect potential objects of different sizes. The Region proposal net-
work calculates the probability of an object’s presence in each of these anchors. The RoI
pooling operation then re-sizes the anchors of different shapes with top objectness scores
into a unifying feature map dimension for feeding as input to the detection heads. The de-
tection head consists of an object classifier for scoring the probabilities of different classes
and a regression head to refine the anchor dimensions. The success of Faster-RCNN led
to a lot of derivative work such as R-FCN [7], R-FCN++ [29], which further improved
the performance of Faster-RCNN by optimized training speed as well as performance by
reducing the costs of RoI pooling operations.

More recently, with the success of vision transformer backbones, Carion et al. l proposed
the detection transformer (DETR) as an end-to-end object detection framework. As shown
in the figure 2.9 , DETR used a vision transformer to convert the feature maps from a pre-
trained encoder into a set of bounding box predictions along with a class label. These
predicted bounding boxes are matched with the ground-truth boxes using a bi-partite
matching mechanism. The loss functions for the bi-partite matching are defined to en-
courage one prediction to be matched to precisely one ground truth box by maximizing
the number of edges. Several architectures have also been proposed, such as Deformable
DETR [61] and Efficient DETR [55], that build upon mechanisms proposed in DETR.

12

2.2 Object Detection with Deep Learning

2.2.2 Single-Stage Detectors

While multi-stage detectors use separate modules for generating object proposals apart
from a feature extractor and the detection heads, single-stage detectors are designed to
combine the region proposal and feature extractor into a common module. This unifi-
cation eliminates the need for multiple stages. As a result, the inference performance is
greatly improved for potential real-time applications by eliminating the need for this ad-
ditional proposal stage. In 2016, Redmon et al. pioneered the single-stage object detection
framework with the You Look Only Once (YOLO) model. Instead of requiring predefined
or learned object proposals, YOLO divides the image into a set of patches and assumes
the presence of a bounding box within each grid. Even though this restricts the maximum
number of proposals that can be generated depending on the patch dimensions, the gains
in inference speed make up for the lack of detection performance. Liu et al. improved this
further with the Single Shot Detector (SSD) [31] by using feature maps at different recep-
tive fields for regression and classification heads. SSD aimed at improving the detection
performance by considering multiple scales of the anchor box to reflect different possible
object scale variations in an image.

CornerNet [27] proposed by Law and Deng redefined object localization into a paired
keypoint problem. Once the top left corner and bottom right are predicted, the bounding
box can be completely defined. CornerNet models these keypoints as gaussian peaks of
the heatmaps, which are then used as detection targets for training the model. Zhou et
al. improved this further with CenterNet [60]. CenterNet used the object center as the
heatmap peaks instead of the corner points of the bounding box. This greatly improved
the detection performance, surpassing some of the more computationally heavy two-stage
detectors and at the same time having high-inference speeds as shown in the figure 2.10 .

For each input image, the CenterNet architecture predicts three heatmaps. They are the
object centers, bounding box dimensions, and offsets. As seen from the figure 2.11 , the
output heatmap is downsized to a scale of 25 percent of the original image dimensions.
The input image is fed into an encoder-decoder-style network to extract useful visual fea-
tures. This extractor feature becomes the precursor for all the heatmap heads. The center
heatmap head calculates the probability of a pixel in the feature map being an object center.
Similarly, the other two heads regress the height and width of the potential bounding box.
To prevent the loss of center localization accuracy due to the downsizing of the heatmap,
offset heads regresses the fractional pixel value to add to the center heatmap values as an
adjustment for pixel shifts. The heatmap head also carries out the classification of the pro-
posals. While the bounding box and offset heatmap heads are independent of the object
classes, the center heatmap has as many output dimensions as the number of classes in the
dataset. During inference, the top-valued center heatmap pixels and the corresponding
bounding box and offset head values are used to predict objects.

13

2 State of the Art

Figure 2.10: Performance - Inference Time trade-off of different object detection archi-
tectures on the COCO validation dataset.. Different points within the same
series indicate different encoder backbones used. The larger the encoders are,
the more the inference time and detection performance. CenterNet achieves
the right balance between performance and speed. Image taken from [60].

2.2.3 Evaluation of Detection Models

Object detection, being an instance-level task, requires a more careful design of evaluation
criteria. For the tasks such as classification, metrics like precision and recall are easier to
calculate since there is a one-to-one relationship between the predicted class and the tar-
get class. In contrast, in object detection, the number of predictions generated could be
multiples of the number of ground-truth objects. In order to reduce the number of redun-
dant and overlapping bounding box proposals, iterative refinements like Non-Maximum
Suppression are used for each object class. NMS removes redundant bounding boxes suc-
cessively by considering the value of intersection over the union of overlapping boxes and
the confidence score of the box proposals. The process of NMS is formalized in the algo-
rithm 1 . Figure 2.12 shows a sample input image processed through NMS to retain only
more relevant non-overlapping bounding boxes.

Mean Average Precision (MAP) is the most commonly used metric for evaluating ob-
ject detection frameworks. The presence of ”Mean” and ”average” denotes two iterative
calculations upon which the metric is calculated. One, the value of precision is averaged
across all the classes. Two, for each class, the precision is again averaged over multiple
recall values through a precision-recall curve. For example, in most common benchmarks
datasets such as Common Objects in Context (COCO) [30], evaluation is carried out across
varying Intersection over Union (IoU) thresholds (usually in the range of 50 percent to 95
percent at 5 percent), and the precision is averaged at the level of these thresholds.

For determining the positive and negative samples for the calculation of the confusion

14

2.2 Object Detection with Deep Learning

Input Image

Encoder
(ResNet-50)

3,512,512

2048,16,16

Decoder
(ConvT)

Center
Heatmap

BBox
Heatmap

Offset
Heatmap

C,128,128 2,128,128 2,128,128

256,128,128

Figure 2.11: Architecture of CenterNet. CenterNet consists of an encoder-decoder back-
bone to extract visual features followed by three detection heads. Center
heatmap heads predict the positions of the object center as peaks in the output
dimension. Similarly, the BBox heatmap and offset head regress the bounding
box dimensions. Since the heatmap dimensions are downsized compared to
the input image, the offset head predicts the fractional pixel positions of the
object center.

15

2 State of the Art

Figure 2.12: The process of Non Maximum Suppression. Subfigure (a) is the input im-
age fed into the model. Subfigure (b) visualizes the different bounding box
proposals without considering classes. Subfigure (c) distinguishes bounding
boxes based on the proposed class. After processing through NMS, subfigure
(d) shows that only the most appropriate bounding box was retained, and all
the redundant, overlapping boxes were eliminated. Image Source: [3].

16

2.3 A Review of Few-Shot Object Detection Methods

Algorithm 1 Non Maximum Suppression
Input : A List of Bounding Box Predictions B with corresponding confidence score B.S,
IOU threshold T
Output : A List of Filtered Bounding Box Predictions P

1: procedure NMS(B, S)
2: P = EmptyList()
3: while B not NULL do ▷ Iterate till Bounding Boxes remain.
4: Bmax = B[ArgMax(B.S)] ▷ Pick Bounding Box of Highest Score.
5: B.Remove(Bmax) ▷ Pick Bounding Box of Highest Score.
6: P .Append(Bmax) ▷ Add it to list of filtered boxes.
7: for Bi ∈ B do ▷ Iterate over the remaining set of Bounding Boxes.
8: IOUP,Bi = CalculateIOU(P ,Bi) ▷ Calculate IoU for each pair.
9: if IOUP,Bi > T then

10: B.Remove(Bi) ▷ Remove Boxes with IoU greater than set threshold.
11: end if
12: end for
13: end while
14: return P ▷ Return the filtered boxes.
15: end procedure

matrix, the IoU threshold needs to be set. Those predictions with an IoU value more than
the threshold are considered positive samples, and those intersections with an IoU value
less than the threshold are considered negative samples. This process is also illustrated in
figure 2.13 . For experiments across the thesis, IoU threshold values are fixed at 0.5, and
evaluations are performed only for this IoU value.

2.3 A Review of Few-Shot Object Detection Methods

Few-Shot Learning is a particular case of limited data learning. Limited data learning
focuses on methodologies to train neural models with scarce labeled data. Even though the
advancement in self-supervised methods has demonstrated strong performance in image
classification benchmarks, translating this into a detection task is a much more complex
challenge. Moreover, even with the availability of volumes of data, annotating this dataset
for object bounding boxes is labor intensive.

Few-Shot Object Detection (FSOD) divides the classes in the dataset into two categories
depending on the number of samples that are available to each of them. This splitting of
classes simulates real-world scenarios where the universal object class distribution can be
considered long-tailed. The first category, called the base classes, has abundant bounding
box annotated data. The second category of classes, called Novel classes, is a set of classes
with only small instances for the model to train. For example, in most literature studies,

17

2 State of the Art

Figure 2.13: Illustration of positive and negative samples for calculating MAP. Those
bounding box predictions with an IOU value more than the threshold with
the ground truth box are considered the positive sample and vice-versa. Im-
age Source: [44].

novel classes dataset are constructed such that each class has 10-30 images as learning sup-
port. The fundamental motive of FSOD is to build algorithms such that the performance
of a model that is trained on the base class can be adapted to the set of novel classes. Most
FSOD methods can be represented as one of the two learning schemes. One is the idea
of meta-learning, which uses the concept of class prototypes at its core. The other uses
intelligent fine-tuning of components to enable adaption into novel classes.

2.3.1 Meta-Learning Based Methods

Meta-learning-based methods are fundamentally motivated by the idea that for each ob-
ject class, a prototype or a set of prototypes can be used as representative of all the image
variations within the class. However, this ideal prototype may not necessarily be described
in the RGB color space but also as a discriminative class separable encoding. The learning
of this class prototype is aided by a functional block called the Meta-Learner. The distin-
guishing characteristic of meta-learning-based frameworks is the use of episodic learning.
Episodic learning simulates limited image support even for the base classes, making it
easier for the model to adapt to similar data-scarce settings in novel classes.

The training happens in two stages, as described in 2.14 . The first training step is com-
monly referred to as base training. The function of this training step is two-fold. One,
the meta-learning needs to learn to derive a functional class prototype with a set of sup-
port images. Two, from the query images, the feature extractor needs to learn to represent
useful visual features that can help the bounding box classifier and detector heads. The
base dataset is set up into pairs of query images and support images belonging to the

18

2.3 A Review of Few-Shot Object Detection Methods

(a) Base Training Step

(b) Meta Training Step

Figure 2.14: Meta-Learning Based Methods. In meta-learning-based architectures,
episodic learning is used to train the models. Episodic training rearranges
the dataset into pairs of the query image and support images for each object
instance in the query image. In the first stage, only the base classes are used
for training the extractor, meta-learner, and detector heads to adapt to object
detection. In the second stage, a combination of base and novel classes is used
to help the model adapt to the novel classes. Images Source: [48].

19

2 State of the Art

same class. By feeding these pairs to the meta-learner and the feature extractor, the meta-
learner learns to encode these support images. A functional operator such as reweighing
or concatenation combines the support encoding with the feature extractor output. This
functional operator is designed to highlight only the instances that belong to the same
classes on the feature map with the help of support encoding. By training on a set of pairs
on the large base training set, the meta-learner becomes an effective support encoder for
the base classes. Similarly, the feature extractor effectively provides useful visual features
that are compatible with both the detection heads and the meta-learner.

In the second stage of training, referred to as meta-training, both the base and novel
classes are used to recreate a set of query and support image pairs. The function of this
training stage is to help the meta-learner and feature extractors to adapt to novel classes.
The mixture of the base classes is also added to avoid catastrophic forgetting. Catastrophic
forgetting is a phenomenon in which the model can no longer perform effectively on the
base classes due to completely overfitting the novel class.

Most of the state-of-the-art meta-learning-based detectors vary on the two aspects. The
first is how the meta-learner block is modeled, and the second is the functional operator
that combines the meta-learning encoding with the feature extractor. For example, Kang
et al. extended YOLO [40] architecture to few-shot detection using a Feature Reweighting
Module [21] module as the meta-learner block. This meta-learner block learns an em-
bedding that signifies the weight that needs to be provided to each class based on the
presence of the object instance. Yan et al. proposed the Meta-RCNN [52] framework with
Faster-RCN as the detection module. Here, a Predictor Head Remodelling Network was
proposed to perform the same function as the Feature Reweighting Module for a two-stage
network. Fan et al. extended this further with a Multi-Relation Detector [14] that used con-
trastive losses between the support and query encoding to optimize class separations in
the latent space. More recently, Zhang et al. proposed Meta-DETR [58] that demonstrated
substantial performance gains in benchmarks using vision transformer-based encoders.
Additionally, a Correlational Aggregation Module based on an attention mechanism was
proposed as the meta-learner.

2.3.2 Fine Tuning Based Methods

While meta-learning-based methods have demonstrated strong performance in the few-
shot object detection benchmarks, they come with the added complexity of meta-learning
modules and the feature aggregation function. Fine-Tuning based methods circumvent
this by taking a more simplistic approach to few-shot detection. The fundamental as-
sumption that these approaches take is the existence of a set of learnable weights such that
the performance on the novel and the base classes can be equally optimized. Therefore,
by intelligent training optimizations, the model can learn this exact solution without the
requirement of additional modules.

As shown in the figure 2.15 for a Faster-RCNN-based detection framework, the training
again happens in two stages. In the first stage, the detector trains on the set of base classes.

20

2.3 A Review of Few-Shot Object Detection Methods

(a) Base Training Stage

(b) Fine Tuning Stage

Figure 2.15: Fine Tuning Based Methods.. Fine-tuning-based methods rely on intelligent
hyperparameter tuning to converge to an optimal solution that performs well
on the base and novel class. In the first stage of training, the model is trained
only on the base class, as in the traditional object detection paradigm. The
second stage includes a mixture of base and novel classes for training. This
helps the model also adapt to the novel classes. Image Source: [48].

21

2 State of the Art

This training stage is to help the backbone, Region Proposal Network, and the detection
heads to learn useful visual features for detecting objects. This step is no different from
training a Faster RCNN network in a traditional non-few-shot training paradigm. A bal-
anced dataset of both the base and novel classes is sampled in the second stage. Unlike
the previous stage, specific components of the module, such as the backbone and region
proposal network, are frozen. This is based on the intuition that visual features and region
proposals generated are independent of the classes. Therefore, these two modules do not
require retraining. Only the detection heads are trained during the fine-tuning stage to
adapt to the novel classes.

The methods that rely purely on fine-tuning are far and few. Finding an optimal solution
that works on the novel and base classes is fundamentally complex. This requires precise
and intelligent fine-tuning that is hard to control in iterative gradient propagation schemes.
Fine-tuning-based methods were introduced by Wang et al. with the Frustratingly Simple
Few-Shot Object Detection [48] framework and demonstrated significant performance on
the benchmark datasets. However, to the best of author’s knowledge, no other methods
that only use fine-tuning have demonstrated remarkable results on the common bench-
mark datasets.

2.3.3 Other Notable Works

Apart from the meta-learning and fine-tuning approach, some similar research directions
are also quite complimentary to the fundamental motivations of few-shot object detection.
Incremental Few-Shot Object Detection is an extension of few-shot object detection where
the novel classes are not fully limited to a known set of classes. Even after fine-tuning
on a set of novel classes, the model must adapt to newer novel classes when and if they
may arise. This is a much harder problem to tackle since the models must also remember
the classes that were previously learned. Pérez-Rúa et al. proposed the Open Ended Cen-
terNet (ONCE) [37] to approach this problem with a meta-learning-based method and is
considered a pioneer for introducing this heavily constrained learning paradigm. One of
the important highlights of this work was the use of CenterNet [60] as the base detection
architecture, which was quite unusual in studies of few-shot object detection.

Other works focusing on open vocabulary object detection problems are also relevant
to meta-learning-based methods. These models aim to localize and detect the position
of an object by using prompts to specify which class to focus on. With the availability
of large-scale zero-shot capable multi-modal like CLIP, several architectures have been
proposed to take advantage of these pre-training schemes. Gu et al. proposed Vision
and Language knowledge Distillation (ViLD) [16] that combined the discriminative CLIP
embedding into a Faster-RCNN detection backbone towards open-world adaption. More
recently, Zhong et al. adapted the pre-training methodologies for CLIP by matching the
text-image pairs at the level of cropped object instances instead of complete images. The
proposed RegionCLIP [59] improved the downstream detection further than the vanilla
CLIP backbones.

22

3 Few Shot Image Classification

3.1 Problem Definition and Goals

Any generic object detector has two fundamental challenges. First is the precise localiza-
tion of the object proposal regions. The second is classifying the proposed object region
into the accurate semantic class. This thesis section focuses on the classification task in
object detection pipelines. The algorithms and experiments described in the section aim to
perform few-shot classification from the detected object proposals, assuming methods to
identify the object proposals from images are immaculate and precise.

Given a query image Q and k support samples S = {Sj}, j ∈ 1, 2, . . . , k for each of the N
classes, determine the class query image Q belongs to among the N classes. This problem
is generally referred to in the literature as N way k shot detection. Here, the support
samples can be both images and textual descriptions of the classes. To ascertain the few
shot classification performance of a different training methods for image classification, the
performance is evaluated on the following neural models:

1. Self-Supervised Learning - DINO [6].

2. Multi-Modal Learning - CLIP [38].

3. Supervised Learning - ResNet50 [19], ViT B-16 [10].

The selection of these models is based on the training paradigm that each used and
the demonstrated benchmark performances shown by them. Therefore, the performance
of the individual models is considered representative of the training method it uses. As
congruent with the aim, a dataset that is designed for image-level classification benchmark
is chosen. This dataset chosen is class balanced and converted into a few-shot classification
dataset. A more detailed discussion follows in section 3.2.3 . Since the dataset is class-
balanced, classification accuracy serves as a suitable metric to assert the performance of
the models. In the cases of class-imbalanced datasets, accuracy would not have been a
justifiable metric. However, this is not applicable in this experimental setup.

3.2 Methodology

This section deals with data flow from images and class to a comparable metric across the
different learning paradigms. First, the choice of dataset and the process of converting it
to a few-shot compatible dataset is discussed. This is followed by the introduction of the

23

3 Few Shot Image Classification

concept of class codes and methods to extract them from visual or text inputs. Finally, the
proposed method for class assignments based on the class codes is illustrated.

3.2.1 Choice of Classification Dataset

The dataset used for classification is a crucial choice for the few-shot classification exper-
iments and for building the detection modules. The most accurate classification model
forms the basis for the object detection architecture, as described in the section 4 . The
classification performance is heavily dependent on the experimental dataset used. Funda-
mentally, since not all datasets are suitable for the few-shot training paradigm, the insights
may not be fully transferable across all image classification benchmarks. There were three
main considerations when selecting the datasets, as follows

1. The dataset must primarily contain only one object instance in an image. This re-
quirement comes from this chapter’s fundamental motive: that the images in the
dataset are simulated to be the output from an ideal object proposal generator. Hav-
ing multiple instances of an object in an image negates this assumption. An ideal
object proposal generator would only output one object instance in a proposed re-
gion.

2. The classes in the dataset must have low inter-class visual variance. To illustrate
this with an example, a cat and a horse have considerably large visual distances,
whereas a black horse and a white horse are close to each other on the visual scale.
This requirement comes from the application use cases at Precibake. Most of the
actual product classes look similar to each other. To improve the transferability of
the proposed models into use cases, datasets with similar-looking object classes are
more appropriate.

3. The scale of the dataset must be suitable for fast experimentation based on the prac-
tical GPU hardware constraints. Since the experiments act as a test of the algorithms
than pure performance tuning with optimal hyper-parameters, the scale of datasets
consisting of around 10k images is optimal.

After a thorough investigation of various datasets that are frequently used as bench-
marks, the Caltech-UCSD Birds 200 Dataset [50] was deemed most suitable. More details
on the dataset follow in the next section.

3.2.2 Caltech-UCSD Birds 200 Dataset

The dataset consists of images of primarily North American birds belonging to 200 species.
Each of the species of the bird becomes the classes into which they are divided. Sample
images from the dataset are illustrated in figure 3.1 . The figure shows that the visual
distance between images of birds belonging to different classes is relatively small. This
satisfies the first requirement from the previous section. Additionally, most of the images

24

3.2 Methodology

(a) Black Footed Albatross (b) Frigatebird
(c) Herring Gull

(d) Pelagic Cormorant

(e) Pigeon Guillemot
(f) Slaty Backed Gull

Figure 3.1: Samples from Caltech-UCSD Birds 200 datasets. Some images from the
dataset and the classes are visualized. These samples illustrate how the classes
are visually close to each other. Even for top human performance benchmarks,
this task requires specialized domain knowledge. Image Source: [50].

in the dataset consist of only one instance of a bird in an image, gratifying the second
requirement. From the total of 11788 images belonging to different classes, the training,
validation, and test split are made in the ratio of 60 percent, 20 percent, and 20 percent of
images, respectively. To preserve the class distribution of the dataset, the ratios are applied
for every class. The dataset was well-balanced before the splitting. This balance is also thus
conserved after splitting.

3.2.3 Preparation of a Few Shot Classification Dataset

The few-shot classification paradigm operates on disjoint sets of base and novel classes.
Base classes have ample training data for the models to learn from, whereas novel classes
have only a few images or text describing them. For the experiments, a specific case of
the few-shot classification is explored. All the 200 classes of the CUBS200 dataset are con-
sidered novel classes. The classes the experimental model was pre-trained on are the base
classes. These base classes vary for each of the models used. For example, most large-
scale pretraining datasets such as ImageNet [9] consists of everyday context objects like
airplanes, cats, or dogs. Few-shot classification framework additionally requires the defi-
nition of support and query images. The query image is the test image to which the class
needs to be assigned. Support images assist the model in identifying the class the query

25

3 Few Shot Image Classification

image objects belong to. In the following experiments, the test split becomes the query
images, and the support images are picked from the training set.

3.2.4 Concept of Class Codes

The objective of class code is to condense the visual or textual information of all the pos-
sible variations of objects belonging to a class into a unifying embedding. Given that this
unifying embedding is in a common latent space across classes, it is straightforward to
compute the similarity between the classes directly by cosine distance. As elegant as the
idea of class code sounds, extracting such descriptive ideal embedding for every class is
challenging. To map every visual variation of an object class into a singular representa-
tion requires a powerful many-to-one mapping function. One feasible candidate to derive
such a mapping is using a powerful image or text encoder. This way, the mapping func-
tion becomes agnostic to different classes and unifies representations into a common latent
space.

For experiments with self-supervised and multi-modal learning paradigms, the map-
ping functions are the models themselves. The output feature map from the encoder is
considered the class code. This intuition comes from the demonstrated ability of these
models to adapt to new dataset classes without retraining the encoder. Even though these
encoders may not provide the ideal mapping across all possible classes, they are still vi-
able candidates to experiment with and improve upon. This transferrable mapping per-
formance results from the large-scale datasets and the long training schedules that these
encoders have been trained with. More details on these encoders are discussed in sections
 2.1.3 and 2.1.4 . For experiments with fully supervised learning, these class codes are es-
sentially the integers assigned to each of them as labels. Even though these integers are of
the position in the output one-hot encoding of the target label, they are the most simplistic
formulation of the idea of class codes, with each of the classes separated by a unit distance.

3.2.5 Few Shot Classification through Class Codes

With this concept of class code, it is now possible to reconceptualize the few-shot paradigm.
Instead of query input as an image, it is encoded into query class code. Similarly, the sup-
port images or texts are also encoded as class codes into the same latent space. More details
on this extraction of support class codes are discussed in the sections 3.2.6 and 3.2.7 . Once
both the query and support class codes are in a common latent space, the assignment of
query class code becomes direct. By comparing the cosine distance between the query
class code and each support class code, the query class code is assigned the class with the
least cosine distance. This process is formalized in the algorithm 2 .

The class codes for self-supervised and multi-modal models are the output feature map
of respective encoders. The CLIP model supports text and visual inputs, whereas DINO
only works with image inputs. In fully supervised models, there is no explicit requirement

26

3.2 Methodology

for class code. Instead, the classes are directly assigned through the peak of a softmax
function.

Algorithm 2 Classify the Query Image
Input : Query image Q, Support embedding S, Embedding function f
Output : Class k of the query image Q

1: procedure CLASSIFYQUERY(Q, S, f)
2: q = PreProcess(Q)
3: ϕ = f(q) ▷ Get the Embedding of the query image
4: for Sc in S do ▷ For all Classes
5: ∆c = CosineSimilarity(Sc, ϕ) ▷ Calculate similarity score
6: end for
7: k = argmax(∆) ▷ Assign class to maximum cosine score
8: return k ▷ Return the class index
9: end procedure

3.2.6 Extraction of Image based Support Class Codes

For CLIP and DINO encoders, the support class codes are generated from the training split
of the dataset. Suppose more than one support image is used for code generation. In that
case, the extracted feature map is averaged across the support samples to maintain the
dimension of support embedding, irrespective of the number of images used for support
generation. This process is formalized in algorithm 3 .

Algorithm 3 Extract Image Support Information
Input : Support images S, Embedding function f , Number of supports k
Output : Support embedding of all classes Ω

1: procedure EXTRACTIMAGESUPPORT(S, f , k)
2: for c in Nc do ▷ For all Classes
3: for i in range(k) do ▷ For all support images
4: Sc = PreProcess(Sc) ▷ Preprocess the Image
5: Ωci = f(Sci) ▷ Calculate the embedding of the image
6: end for
7: Ωc = mean(Ω

ci) ▷ Average over class supports
8: end for
9: return Ω ▷ Return the support embedding

10: end procedure

27

3 Few Shot Image Classification

Figure 3.2: This table shows the list of attributes that the dataset provides for each of the
bird classes. Image Source: [50]

3.2.7 Extraction of Text based Support Class Codes

This section deals with generating text-based support class codes using the multi-modal
model CLIP. Unlike extracting support codes using images, extracting text features require
the input text prompts to be defined. The performance of the text encoder heavily depends
on these text prompts. Furthermore, the more descriptive these texts are, the performance
of few-shot classification is enhanced.The CUBS 200 Dataset [50] provides attributes de-
scribing each of the bird classes. The list of attribute keys provided in the dataset is in
figure 3.2 . An important thing to note is that the dataset provides probabilities for all at-
tribute key-value pairs instead of boolean values for every possible class. These probability
scores help filter for the most correlated attributes. Two approaches were demonstrated to
generate text prompts for encoding the novel classes. One was automatic sentence gener-
ation. The other was handcrafted feature selection before generating the sentences.

Automatic Text Prompt Generation

In the case of automatic text generation, the attributes are selected based on the top proba-
bility scores. The number of attributes (k) used can be considered equivalent to the number
of support images used. For experimentation, k with values of 0, 1, 3, and 5 are tried out.
The first sentence is always of the template ”This is a Photo of a class name.” For each of
the selected attributes, an additional sentence follows with the template ”It has a attribute
value attribute key.” For example, ”This is a Photo of a Black-footed Albatross. It has black
eye color” .

Hand-Crafted Text Prompt Generation

An additional filter was supplemented in the attribute selection process to optimize the
text generation process further. As seen in figure 3.2 , some attributes are not visually

28

3.3 Experiments and Results

descriptive. For example, the attribute Bird-HasSize had the size provided in inches. Even
in the case of visually descriptive attributes such as the Tail-HasUnderTailColor, these may
not be the most effective descriptors, irrespective of the probability score it holds.

To overcome these limitations of automatic selection, the five most visual attributes were
chosen before sorting by the class-level probability scores. These selected attributes are
Wing-HasWingColor, Eye-HasEyeColor, Body-HasPrimaryColor, Leg-HasLegColor, and
BeakHasBillColor. With handcrafted feature selection, the intuition was to improve the
descriptiveness of the support class codes and, ultimately, few-shot image classification.
Once the text prompts were generated using the above methods, the support class codes
were generated by tokenizing the text and subsequent extraction from the text encoder.
This process is formalized in the algorithm 4 .

Algorithm 4 Extract Text Support Information
Input : Support text S, Embedding function f
Output : Support embedding of all classes Ω

1: procedure EXTRACTTEXTSUPPORT(S, f)
2: for c in Nc do ▷ For all Classes
3: Sc = PreProcess (Sc) ▷ Tokenize the Text
4: Ωci = f(Sci) ▷ Calculate the text embedding
5: end for
6: return Ω ▷ Return the support embeddings
7: end procedure

3.3 Experiments and Results

With the re-imagined few-shot paradigm, given a query image, the classes are assigned
using either textual support class codes as well as visual support class codes. The further
sections discuss the setup of the experiments and the results inferred from them.

3.3.1 Experiment 1 - Few-shot Classification through Text Supports

In the first set of experiments, the performance of the Multi-modal learning method CLIP
is evaluated for its few-shot classification performance. The algorithms for extraction of
textual support class codes and class assignment are discussed in detail in the sections

 3.2.7 and 3.2.5 . Figure 3.3 shows the performance of both the automatically generated
and handcrafted textual prompts on the test split of the dataset. There are three main
observations from this experiment.

29

3 Few Shot Image Classification

0 1 2 3 4 5
0

20

40

60

80

100

Number of Attributes used for Text Generation(k)

C
la
ss
ifi
ca
ti
o
n
A
cc
u
ra
cy

Automatic Text Prompt Generation
Hand-Crafted Text Prompt Generation

Figure 3.3: Performance of Textual Supports on Few-shot Classification. Class names are
the most critical textual prompt for classification accuracy. Adding more textual
descriptions only has marginal gains.

1. CLIP provides up to 55 percent accurate zero-shot classification performance.

This result illustrates the efficiency of multi-modal models, in particular, CLIP. Without
any visual support and purely driven by text descriptions, the algorithm proposed was
able to classify roughly half of the images into the correct classes. Had the results been
tested with datasets with common object classes such as Aeroplane, Cat, or Dog, this same
accuracy result would have been less impressive. However, this is a noteworthy zero-shot
performance in a domain-specific dataset.

2. Class names are the most useful class descriptors. Adding more descriptions does
not always translate to large performance gains.

In both automatic and handcrafted experiments, the best performance was extracted when
only the class names were used to generate textual prompts (k = 0). With an increasing
number of attributes, the classification accuracy takes a minor drop in performances on
the scale of 1-3 percent. This fundamentally means that the class names, which are the
species the bird belongs to, help CLIP almost single-handedly to assign the query image
to the correct class. Any additional descriptions, such as the wing color or primary color
of the bird, are only of little significance.

30

3.3 Experiments and Results

0 2 4 6 8 10
0

20

40

60

80

100

Number of Image Supports

C
la

ss
ifi

ca
ti

o
n

A
cc

u
ra

cy

MML CLIP-ViT
SSL DINO-ResNet
SSL DINO-ViT
FSL ResNet
FSL ViT-B

Figure 3.4: Performance of Visual Supports on Few-shot Classification. CLIP model can
compete with fully supervised models with just 10 support images a class with-
out any fine-tuning on the domain specific dataset.

3. Handcrafted text prompts perform marginally better than automatic text prompts.

The use of handcrafted text prompts had a meager effect on improving accuracy. This is
in direct correlation with the previous observation. Other than the class name, other at-
tributes did not serve great importance. Additionally, with all the handcrafted features
being color based, there is a plausibility that too much color information can confound the
model. The text encoder would require a great semantic language understanding to match
the colors to the appropriate parts and output a distinguishable query embedding.

In the next section, a similar few-shot classification was carried out with image supports
instead of textual supports. The classification performance is expected to improve since it
is easier to correlate images with images than images with text.

3.3.2 Experiment 2 - Few-shot Classification through Visual Supports

In this set of experiments, the support class codes used for assigning the classes are gen-
erated from support images belonging to different classes. The algorithms for extraction
for visual image supports and the class assignment process are explained in the sections

 3.2.6 and 3.2.5 . To compare the performance among different paradigms, five models were
chosen that were representative of the corresponding training technique.

31

3 Few Shot Image Classification

Fully Supervised Learning (FSL)

In fully supervised trained models, the entire training data consisting of 7129 images are
used to train the model. Two variations of the standard classification backbones are used
for experimentation. They were based on a ResNet50[19], and Vision Transformer Base-
16 [10] model. These models are explained in more detail in the sections 2.1.2 and 2.1.2 ,
respectively. The fully supervised models are expected to be the upper bound on the clas-
sification performance since they are trained on the complete CUBS200 training set. This
is in stark contrast to the self-supervised and multi-modal models, where no fine-tuning
was done on the CUBS 200 dataset.

Self Supervised Learning (SSL)

As a representative model for self-supervised training, DINO [6] is used to evaluate the
few-shot performance. The official repository provides both a ResNet50 as well as a Vision
Transformer Base-16 based parameter weights. They are used directly for experiments
without fine-tuning on the CUBS 200 dataset.

Multi Modal Learning (MML)

Similar to the experiments in the previous section 3.3.1 , CLIP is used to test the efficacy of
multi-modal training. The fundamental difference here is that the image encoder is used
to generate the support codes as opposed to the text encoder that was used in the previous
experiment.

Figure 3.4 shows the performance of the different learning paradigms on the test set of
the CUBS-200 dataset with varying support images. One important caveat here is that
the performance of classification heavily depends on the support image used in the class
assignment. More closer the support image is to the query image in terms of color, pose,
or photographic style of the image, the easier it is to assign the query image to the correct
class. To eliminate any inconsistencies that may occur due to the selection of support
images, especially when the number of support images (k) is low, the experiment was
conducted over 100 runs, and the mean of the results is reported along with error scores.
However, the error bars are almost imperceptible in the figure due to minimal error values.
There were four important results from this experiment.

1. The Multi-Modal CLIP model can compete with a fully supervised trained model
without finetuning.

Using only ten images supports for generating each class code, the CLIP model can com-
pete with a fully supervised ResNet50 model. This is a compelling performance from the
multi-modal model due to two crucial aspects of the experiment. One, the CLIP model was
not finetuned for the CUBS-200 dataset, whereas the fully supervised model was trained

32

3.3 Experiments and Results

on the training split of the dataset. This shows the noteworthy few-shot performance of the
CLIP model to translate to datasets with which it was not trained or finetuned. Second is
the domain specificity of the dataset. Even with models that can translate well to different
datasets, performing successfully in a domain-specific dataset is quite challenging.

2. Increasing the number of support images boosts classification accuracy with
diminishing returns.

As seen from the figure, the classification accuracy increases with the number of sup-
port images used to generate class codes in both multi-modal and self-supervised models.
However, returns in performance diminish with an increase in support images. Intuitively,
the performance of the classification directly correlates with how descriptive each of the
class codes is and how well separated they are in the latent space. This distinctiveness of
classes comes from the ability of the image encoder model to output well-separated latent
embedding. This again shows the utility of the CLIP’s image encoder. Additionally, since
the embedding is averaged over support images, this inherently means that as the num-
ber of support image increase, the value of the average embedding approaches towards
the ideal class code with reducing errors. This is only possible if the output embedding
provided by the model encoder for each of the support images independently is close to
the average class code, irrespective of the variations in the pose, lighting, and view of the
object variations within the class.

3. Multi-Modal models produce more discriminative class codes than self-supervised
models.

Another important observation is that the performance of the self-supervised models is
lower than that of multi-modal models. This performance gain in multi-modal models
comes from the intelligence that is inherently distilled into human language through nat-
ural evolution. This is also discussed in more detail in the section 2.1.4 .

4. Vision Transformer backbones are more effective feature extractors than
ResNet-based backbones.

In correlation with findings in the recent literature, the vision transformer backbones per-
form better than the ResNet backbone. This is observed in cases of both fully supervised
and self-supervised DINO-trained models. As discussed in the section 2.1.2 , this improve-
ment in the classification comes from the attention mechanism that is the foundation of the
vision transformer architecture.

33

3 Few Shot Image Classification

3.4 Summary of Few-Shot Classification

This section dealt in detail with the experiments on few-shot classifications across multiple
learning paradigms. By reframing the few-shot classification experiments through the lens
of class code, experiments were conducted across multiple modalities of the support class
codes, particularly vision and text. The details on the generation of query embedding,
support class codes, as well as the class assignment process were discussed in detail. The
experiments provided us with some exciting results. One, the CLIP model competed with
fully supervised models by using just a quarter of the training data without any finetuning
on the dataset. This illustrated the power of learning across multiple modalities as well as
the discriminative power of CLIP embedding. Two, visual support class codes perform
better than text-based support class codes. However, there is also a lot more potential
in improving classification accuracy purely using text support class codes, primarily by
improving the text generation process and providing image-specific descriptions instead
of descriptions for the entire class.

This concludes the experiments on the second part of the pipeline, where the focus is on
building a few-shot algorithm that classifies the query images into the correct classes from
the proposed object regions. In the next chapter of this thesis, the impetus is to use the CLIP
visual encoder to build an object detector that can provide accurate object proposals.

34

4 Translating Few Shot Classification to Few
Shot Detection

4.1 Problem Definition and Goals

This chapter deals with the challenge of localizing the object proposal regions in images.
One of the important insights from the last chapter was the effectiveness of the multi-
modal model, CLIP, for few-shot object classification. Thus the fundamental motive is to
build a detection module that can utilize the class codes generated from CLIP for few-shot
classification. If the detection modules are class agnostic and since the classification mod-
ules are already verified for the few-shot performance, the entire framework combined
completes the few-shot object detection pipeline. This proposed object detection frame-
work is referred to as CLIPtheCenter. Given a set of training images belonging to the base
classes B with abundant labeled data and only k labeled images of novel class N , the aim
is to build a detector that can localize and classify the instances of both the base and novel
classes in a query image, subject to the following constraints:

1 ≤ k ≤ M (4.1)

B ∩N = ∅ (4.2)

The value of M is the least maximum number of possible support images available for
all the novel classes. In practical applications, this comes from the sampling strategies that
are used to generate the dataset. Additionally, some classes are not frequently observed
due to naturally occurring category distribution. Thus the value of M will depend on
the combination of these two factors. For the experiment, the value of M is chosen as
30, in alignment with the state-of-the-art benchmark studies, as most illustrate the model
efficiency with 10 or 30 support samples a class.

4.2 Building a Few Shot Object Detector Ground Up -
CLIPtheCenter

This section describes in detail the intuition behind the architecture of CLIPtheCenter as
well algorithmic tests for verification of the design. Once the model’s performance is
demonstrated, additional experiments are designed to check its generalization ability to
larger, more challenging datasets.

35

4 Translating Few Shot Classification to Few Shot Detection

Input Image Feature
Extractor

Detection
Heads

Output
Detections

Ci, Hi, Wi N Cx Cy W H C

Figure 4.1: Abstraction of Object Detection Modules. Most popular single-stage object
detection architectures can be decomposed into a feature extractor and a de-
tection module consisting of different heads. These same fundamental mod-
ules are used to build CLIPtheCenter. Here, Ci, Hi, and Wi represent the input
number of channels, height, and width of the image, respectively. Each of the
N proposals in the output detection is represented by the object center coordi-
nates Cx, Cy in the width and height coordinates along with the object proposal
width W and height H . Additionally, the class C of the object proposal is also
classified into a class, denoted by C.

4.2.1 Architectural Design

The fundamental design of the CLIPtheCenter is derived from the CenterNet[60]. A de-
tailed discussion of CenterNet is in the section 2.2.2 . There were two main reasons for this
choice. One, for higher inference performance measured as the number of image frames
processed per second, single-stage detectors are most suitable. Two, as seen in figure 2.10 ,
even though CenterNet is a single-stage architecture, CenterNet demonstrated more pre-
cise object detection performance comparable to large and more computationally expen-
sive multi-stage architectures. However, CLIPtheCenter was built from scratch, only using
the spirit of its design. As shown in figure 4.1 , the most commonly used single-stage archi-
tectures, including CenterNet, can be decomposed into two modules. These two modules
are the feature extractor and the detection head.

Feature Extraction Module

The feature extraction module’s utility is learning descriptive visual features from an im-
age. Here, the visual feature can be a very primitive visual feature such as a line, spline, or
circle, as well as more significant context features such as object boundaries. If the feature
extractor also learns through the backpropagation of gradients when training a model,
then the model determines the features to inherently lower the loss function. In the orig-
inal CenterNet model, the feature extractor is an encoder-decoder neural network. The
purpose of such a design is to condense all the visual information into a smaller dimen-
sional latent space and upsample these latent features into a large scale for downstream
postprocessing. The encoder takes in a three-channel RGB image input and distills it into
the higher channel but much lower resolution feature maps. The decoder takes these as

36

4.2 Building a Few Shot Object Detector Ground Up - CLIPtheCenter

input, which usually processes it to provide a much smaller channel and higher resolution
feature map. For practical reasons, the input dimension of the image is a multiple of the
output dimension of the decoder. This enables the estimation of correspondences between
the input and output pixels, if necessary.

The CenterNet architecture provides four different feature extractors, which are Hourglass-
104 [35], DLA-34 [56], ResNet-101, and ResNet-18 [19] as the feature extractors. Each of
these backbones is discussed in detail in the section 2.1 . Out of these four possible choices,
only Hourglass and DLA-based architectures take into account the hierarchical represen-
tation of features of different scales. This is particularly useful in instance-level tasks such
as object detection and semantic segmentation. In image-level tasks such as classification,
the features are required only in the global context of the image. This is quite contrastive
with object detection, where the features need to be localized due to the possibilities of
multiple object instances in an image. To capture objects of different scales with respect to
the image size, features with different receptive field scales must be used to calculate the
detection parameters. With this possibility of multi-scale object instances in consideration
for building a feature extractor, a U-Net [42] style encoder-decoder is used. U-Net is a
heavily cited architecture proposed for medical image segmentation and then adapted to
similar tasks in the RGB image domains. It uses a staged downsampling and a subsequent
upsampling strategy with the cross-concatenation of the feature maps between each en-
coder to the corresponding decoder stage. This process is also explained in detail in the
section 2.1 .

Detection Heads

The detection heads perform the crucial task of transforming the feature maps of the de-
coder into different object proposals. The object proposals consist of the bounding box
localization coordinates and the classification of the proposal. In CenterNet, the bound-
ing box coordinates are parameterized as the tuple of the bounding box center coordinates,
width, and height of the bounding box. The CenterNet architecture consists of three heads:
Center Heatmap head, Bounding Box Heatmap Head, and Offset Heatmap Head. The cen-
ter heatmap provides probability scores for each pixel of the feature map being an object
instance center. Similarly, the bounding box and offset heatmap provide the dimensions
of the bounding box and offset values for each feature map pixel.

In the design of CLIPtheCenter, the bounding box heatmap head and center heatmap
are used with the same functionality as that of the CenterNet. One notable difference in
the center heatmap is that the center heatmap is made class agnostic by using only one
center heatmap filter in CLIPtheCenter as opposed to a center heatmap filter for each of
the object classes in CenterNet. Since the bounding box heatmap and center heatmap are
class agnostic, the challenge of assigning the classes for each proposal lies with the Region
of Interest (RoI) heatmap head. The RoI heatmap head acts as a precursor for the Pooling
Encoder to learn the CLIP embedding for each proposed object region. This is discussed
in more detail in the upcoming sections.

37

4 Translating Few Shot Classification to Few Shot Detection

The idea of an offset head is no longer required since the dimensions of each heatmap
head are the same as that of the input image dimension. This is a deliberate choice made
not to downscale the heatmap dimension due to two significant reasons. One, the pixel
correspondences are preserved by retaining the same dimension as input for each output
heatmap. Thus, there is no need for an additional pixel adjustment through an offset head.
This reduces the amount of information the model needs to learn, thus improving the
learning potential. Two, downscaling the heatmap dimensions makes it harder for the
model to learn due to a decrease in the number of learnable parameters compared to a
non-downscaled counterpart. The model does not have to distill information in an image
region into a smaller output pixel region and thus learns more pixel-level information,
which is helpful for instance-level tasks.

Introduction of the Pooling and CLIP Encoder Modules

The Pooling and CLIP encoders provide the few-shot capability to the CLIPtheCenter
model. The CLIP encoder is the frozen CLIP Vision transformer-based encoder on which
the previous experiments of few-shot classification described in the section 3.3.2 were per-
formed. From a knowledge distillation viewpoint, the CLIP Encoder acts as a teacher
model while the Pooling Encoder acts as a Student model. The fundamental motive of
aligning the outputs of these two encoders through a cosine embedding loss is to train the
pooling encoder to learn to output the CLIP embedding for each object proposal. Once
the model is fully trained, the output of the pooling encoders can be directly used for clas-
sifying the object region proposals. This process is described in more detail in the next
section.

4.2.2 Training and Inferring Object Proposals from CLIPtheCenter

From the individual modules described in the previous sections, this section discusses in
detail the training and inference process of the proposed CLIPtheCenter model. The flow
of the image can be visualized as the composition of two different functions that finally
classify and localize the object proposals. This is illustrated with a sample input image in
figure 4.3 . This illustrates the ideal case, where the detections are perfectly localized from
the model.

Detection Data Flow

The detection data flow transfers the input RGB image to a set of object proposal bounding
boxes along with a score for each proposal. This score indicates the probability that the pro-
posal contains the object, also referred to as the objectness score. This function of CLIPthe-
Center resembles the detection process of the CenterNet. From the input RGB image, the
features are extracted from a learned encoder-decoder-style neural model. With these fea-
tures, the center heatmap and bounding box heatmap learns to predict the probability of

38

4.2 Building a Few Shot Object Detector Ground Up - CLIPtheCenter

Query
Image

2048,10,10

UNet Decoder

RoI Heatmap Center
Heatmap

BBox
Heatmap

1,320,320 1,320,320 2,320,320

3,320,320

ResNet50
Encoder

Cosine Embedding

Get TopK
Region

Proposals per
Image

Pooling
Encoder

CLIP Encoder

Masked RoI
Heatmap

CLIP
Preprocess

Image

K,512 K,512

Validate
Detections

3,320,320

K,320,320

Figure 4.2: Architecture of the proposed CLIPtheCenter. CLIPtheCenter adapts Center-
Net for a few-shot paradigm primarily by addition of a RoI Heatmap head and
an auxiliary branch to generate CLIP embedding for targets for the pooling en-
coder.

39

4 Translating Few Shot Classification to Few Shot Detection

M
as

ke
d

Ro
I

He
at

m
ap

s

Ro
I H

ea
tm

ap

Ce
nt

er
He

at
m

ap

BB
ox

He
at

m
ap

G
et

 T
op

K
Re

gi
on

Pr
op

os
al

s
pe

r
Im

ag
e

Va
lid

at
e

De
te

ct
io

ns
Fe

at
ur

e
Ex

tra
ct

or

Ro
I H

ea
tm

ap

Ro
I H

ea
tm

ap

Po
ol

in
g

En
co

de
r

Co
sin

e
Em

be
dd

in
g

CL
IP

Pr
ep

ro
ce

ss
Im

ag
e

CL
IP

 E
nc

od
er

Au
xil

la
ry

 B
ra

nc
h

Au
xil

la
ry

 B
ra

nc
h

De
te

ct
io

n
M

od
ul

es

Fe
w

Sh
ot

Cl
as

sif
ica

tio
n

M
od

ul
e

Fe
w

Sh
ot

Cl
as

sif
ica

tio
n

M
od

ul
e

Fi
gu

re
4.

3:
Sa

m
pl

e
il

lu
st

ra
ti

on
of

te
ns

or
flo

w
in

C
LI

Pt
he

C
en

te
r.

In
th

e
ex

am
pl

e
sh

ow
n,

th
e

to
p

tw
o

pr
op

os
al

s
ar

e
re

tr
ie

ve
d

fr
om

th
e

bo
un

di
ng

bo
x

an
d

ce
nt

er
he

at
m

ap
.

Th
e

R
oI

he
at

m
ap

us
es

th
es

e
tw

o
ob

je
ct

pr
op

os
al

co
or

di
na

te
s

to
ge

ne
ra

te
a

bi
na

ry
m

as
k

fo
r

ea
ch

pr
op

os
al

be
fo

re
fe

ed
in

g
it

to
th

e
po

ol
in

g
en

co
de

r.
Si

m
ila

rl
y,

th
e

ou
tp

ut
of

ob
je

ct
pr

op
os

al
s

is
al

so
cr

op
pe

d
ou

to
ft

he
or

ig
in

al
im

ag
e

to
ca

lc
ul

at
e

th
e

C
LI

P
en

co
di

ng
s

th
at

ac
ta

s
ta

rg
et

s
fo

r
co

si
ne

em
be

dd
in

g
lo

ss
.T

he
in

pu
ti

m
ag

e
is

ta
ke

n
fr

om
[1

3]
.

40

4.2 Building a Few Shot Object Detector Ground Up - CLIPtheCenter

the object center and bounding box values for each pixel in the input image. To find the
object proposal coordinates, the positions with high values of the center heatmap are ex-
tracted along with the corresponding values of bounding box coordinates in the same pixel
positions. Thus, the probability of the pixel being the center of an object is taken as the ob-
jectness score of the proposal in the model. The number of proposals extracted from the
center heatmap is a hyperparameter of this model. For training, fewer proposals are used
to reduce the training time and GFLOPS. However, more proposals are preferred during
inference, and with additional post-processing methods like Non-Maximum Suppression,
the overlapping and redundant bounding box can be filtered out.

Additionally, the derived bounding box coordinates are validated for inherent boundary
conditions that come with it. The Validate detections module has two primary operations.
One, it ensures that the minimum dimensions of the bounding box are at-least 10 pixels
each. This is useful, especially during the initial training step, where the regression of
the width and height values can be error-prone and provide too low values. Two, the
module confirms that the object proposals are within the image size. In the cases where
the bounding box proposal extends outside the image space, they are truncated up to the
size of the image. At the end of the detection flow, the bounding box coordinates of the
top object proposals are extracted.

Few Shot Classification Data Flow

The few shot classification modules in CLIPtheCenter are derived from the algorithms
proposed in the classification experiments on the CUBS-200 dataset, described in the sec-
tion 3.3.2 . From the input image passed into the feature extractor, the object proposals
can be constructed as described in Detection Data Flow. The fundamental motive of the
few shot classification modules is to learn the CLIP embeddings of these object proposals.
Once these modules learn the CLIP embeddings of the object proposals, the classification
of the proposal into individual classes can be performed using the algorithm 3.2.5 as a
downstream task. To generate the CLIP embeddings, the frozen CLIP encoder is used in
the auxiliary branch of the CLIPtheCenter. First, cropped region proposals are generated
using the output of detection modules and the input image. These cropped images are
then preprocessed in accordance with the requirement of the CLIP encoder by re-sizing
the image and adjusting the mean and standard deviation values for each channel.Finally,
the target CLIP embeddings for training the Pooling Encoders are calculated by passing
the processed image into the encoder.

The RoI heatmap and the pooling encoder aim to learn the CLIP embedding of the object
proposals. Once the model is fully trained, the output of the pooling encoder must resem-
ble that of CLIP. These outputs can be directly used for few-shot classification instead of
an additional downstream step to classify the object proposals. This would also eliminate
the need for the auxiliary branch containing the CLIP encoder, improving the inference
speed. The RoI heatmap is repeated as many times as the number of proposals generated
from the detection module. In each RoI heatmap filter in the repeated stack generated, the

41

4 Translating Few Shot Classification to Few Shot Detection

values are activated only within the regions proposed and made zero outside the bound-
ing box proposal. This is done by multiplying a binary mask of the regional proposal with
the corresponding RoI heatmap filter layer. This stack of masked RoI heatmap is fed into
the pooling encoder, which outputs an embedding of the same shape as CLIP. With the
outputs of the pooling encoder and the CLIP encoder, the losses can be calculated using a
cosine similarity function.

The process is formalized in the algorithm 5 . In the following algorithm, the input image
is represented as I along with the ground-truth bounding boxes B. The output bounding
box coordinates are represented as Bo, along with the corresponding embedding output
from the pooling encoder as Ω. The feature extractor is modeled as function F . The center
heatmap head, bounding box heatmap head, and the RoI heatmap head are denoted as
HC , HB , and HR, respectively. The CLIP encoder is denoted as FCLIP while the pooling
encoder is denoted as FPOOL. The stage variable S signifies if the model is training or in
inference.

4.2.3 Algorithmic Test on Single Instance Object Detection

The idea behind devising this test is to check for the algorithmic sanity of the proposed
model. The model overfits to the dataset’s training split, and the results are evaluated on
the same training split. This acts as a fundamental test of the proposed algorithm before
moving on to larger-scale training.

Dataset, Model and Metrics

In accordance with the goal of the test, a miniature dataset of three images consisting
of three classes- an airplane, a sheep, and a dog, is designed. These images are shown
in figure 4.4 . These images are picked from the PASCAL VOC 2012 dataset [13]. The
details of the architecture used for the experiment are presented in table 4.1 . Mean Average
Precision(MAP) is used to evaluate the algorithmic test’s performance. Mean Average
Precision is the standard benchmark criterion for object detection tasks. This evaluation
metric is also discussed in detail in the section 2.2.3 .

Results and Discussion

The CLIPtheCenter model was trained for 1000 epochs to allow the model to overfit the
training set completely. Figure 4.5 shows the detection results of CLIPtheCenter on the
dataset. As seen from the figure, the model was able to overfit the three images of the
training set and provide accurate detections in the image. For classification purposes,
algorithm 2 is used. Groundtruth bounding box crops are used to generate the support
class codes and to calculate the cosine similarity metrics for classification. There were two
main results from this experiment.

42

4.2 Building a Few Shot Object Detector Ground Up - CLIPtheCenter

Algorithm 5 CLIPtheCenter - Data Flow
Input : Input Image I, GroundTruth Bounding Boxes B, number of object proposals k,
stage S
Output : Bounding Box proposals parametrized as coordinate B and the corresponding
embedding Ω

1: procedure CLIPTHECENTER(I , B, k, S)
2: f = F (I) ▷ Extract the Image Features
3: hC , hB , hR = HC(f), HB(f) , HR(f) ▷ Get the output heatmap from the heads
4: Bo = ArgMax(hC , hB , topk =k) ▷ Extract the top object proposals
5: if S equals TRAIN then
6: loss + = L2Loss(B,Bo) ▷ Calculate the L2 loss on Center and Bounding Box

Heatmap
7: end if
8: Bo= ValidateDetections(Bo)
9: for P in Bo do ▷ Iterate through object proposals

10: P = GenerateBinaryMasks(P) ▷ Create a binary mask for each object region
11: P = P ∗ hR ▷ Extract RoI heatmap values filtered through the binary mask
12: Ωi = FPOOL(P) ▷ Perform Forward Pass on the Masked RoI heatmap
13: ICROP = CropInputImage(I , P) ▷ Crop Input Image to the Proposed Region
14: ICROP = PreProcessImage(ICROP) ▷ Preprocess the cropped Image for CLIP

Encoder
15: ΩCLIP = FCLIP (ICROP) ▷ Calculate CLIP Embedding for the proposed region
16: if S equals TRAIN then
17: loss + = CosineEmbeddingLoss(Ωi, ΩCLIP)
18: loss.backward()
19: end if
20: return Bo, Ω
21: end for
22: end procedure

43

4 Translating Few Shot Classification to Few Shot Detection

(a) Aeroplane
(b) Sheep (c) Dog

Figure 4.4: Dataset used for Single Instance Object Detection. The dataset has three im-
ages belonging to three different classes.

Table 4.1: Architecture Details of the CLIPtheCenter.

Module Details

Feature Extractor Encoder ResNet-50
Feature Extractor Decoder U-Net

Image Input Dimension 320
Dimensions of Heatmap 320

Bounding Box Heatmap Head 3 blocks of [Conv2D, BatchNorm, ReLU] layers
Center Heatmap Head 1 block of [Conv2D, ReLU] layers

RoI Heatmap Head 3 blocks of [Conv2D, BatchNorm, ReLU] layers
Pooling Encoder 2 blocks of [Conv2D, BatchNorm, ReLU] layers

followed by Linear Layer
Number of Proposals per Image 1 (for both Training and Inference)

1. CLIPtheCenter was able to both detect the positions of the bounding boxes as well as
classify them into the correct semantic categories with the Mean Average Precision
of 100. This confirms the algorithmic sanity and practical feasibility of the proposed
architecture.

2. In order to check for the effectiveness of the generated embeddings of the pooling
encoder for few-shot classification, an additional experiment was devised. Instead of
using the ground-truth bounding box to generate the support class codes, alternate
instances of the object were used. These alternate images are shown in figure 4.6 .
Even with these alternate support codes, there was no drop in the Mean Average
Precision Metric. This shows that the pooling encoder can learn the discriminative
class codes from CLIP. This also again confirms the effectiveness of CLIP embedding
in few-shot classification.

44

4.2 Building a Few Shot Object Detector Ground Up - CLIPtheCenter

(a) Aeroplane
(b) Sheep (c) Dog

Figure 4.5: Results on the Single Instance Object Detection. Blue Rectangles denote the
ground-truth bounding box, and the Red rectangles are the predicted bounding
box. The model could correctly detect the position of the object classes in all
three images.

(a) Aeroplane

(b) Sheep

(c) Dog

Figure 4.6: Alternate support images used for class assignments. Class supports in polar
contrast in the training object instances are used to check for the effectiveness
of the pooling encoder of CLIPtheCenter.

45

4 Translating Few Shot Classification to Few Shot Detection

(a) Input Image (b) Groundtruth Center Heatmap

Figure 4.7: Data Sample for Multi-Instance Object Detection. The heatmap has multiple
peaks to account for multiple object instances of the aeroplane within an image.

4.2.4 Extending to Multi-Instance Object Detection

In the previous section, the algorithmic test was performed on images that contained only
a single object instance. This test is devised as an extension of the previous test to check the
algorithmic efficiency in cases where the image contains more than one object instance. The
following changes were made to make the object compatible with multi-object detection.

1. The ground-truth heatmap has multiple peaks to account for multiple instances. A
sample ground-truth heatmap peak is shown in figure 4.7 .

2. The number of object proposals extracted from the image was made to a hundred
during inference. However, only the top five object proposals were used during
training to speed up training and reduce the computation load.

3. For loss computation and backpropagation through the network, the losses are only
considered to be the actual number of instances in the object, irrespective of the num-
ber of proposals generated by the model. This is illustrated in figure 4.8 .

Dataset, Model and Metrics

A dataset of 30 images with ten samples from each dog, aeroplane, and sheep class is
used to test multi-object detection performance. These images are again chosen from the
PASCAL VOC 2012 dataset [13]. Figure 4.9 shows some sample images from the dataset.
As in the last experiment, Mean Average Precision is used as the evaluation metric for
estimating the detection performance. Again, the same model architecture from the single
object detection experiments was used.

46

4.2 Building a Few Shot Object Detector Ground Up - CLIPtheCenter

(a) Number of Groundtruth
instances

(b) Number of proposals gener-
ated from the Model

(c) Instances used for loss calcu-
lation

Figure 4.8: Schematic of Loss Calculation for Multi-Object Detection. Columns repre-
sent the images in a batch, and rows represent object instances in each image.
Irrespective of the number of proposals generated per image in the architecture,
the losses are calculated only for the actual number of object instances in each
image in the batch.

(a) Sample 1
(b) Sample 2 (c) Sample 3

Figure 4.9: Dataset used for Multi-Instance Object Detection. The dataset has 30 images
belonging to three different classes.

47

4 Translating Few Shot Classification to Few Shot Detection

(a) Sample 1
(b) Sample 2 (c) Sample 3

Figure 4.10: Object Proposals generated from the model. Hundred proposals were gen-
erated from the model for each of the images. Due to the clustering of peaks
in the heatmap, multiple redundant bounding boxes are generated for each of
the object instances.

(a) Sample 1
(b) Sample 2 (c) Sample 3

Figure 4.11: Object Proposals after Non-Maximum Suppression. Non-maximum sup-
pression filters the redundant boxes by considering the objectness score and
Intersection over Union between different proposals.

Results and Discussion

The model was trained again for 1000 epochs to overfit the training set, and the results
were also evaluated on the same training split. An additional Non-Maximum Suppression
(NMS) post-processing step is used to remove redundant bounding boxes and improve
the detection’s precision. This algorithm is explained in detail in the section 2.2.3 . There
were two significant results from the experiment.

1. With NMS postprocessing included, the model achieved 84.8 percent mean average
precision on the training split based on pure detection performance. Some sample
results before and after NMS postprocessing are shown in the figures 4.10 and 4.11

respectively. This confirms the proposed detection model’s effectiveness in localizing
multiple instances in an image.

2. Additionally the detections are also classified using the same support class codes
generated from the ground-truth objects as in the previous single-instance object de-
tection experiment. When also considering classification, the Mean Average Preci-

48

4.3 Generalization to Large Scale Datasets

sion of the model was reduced to 38.6 percent. However, this drop in performance
is expected. Since the number of images was increased to thirty, the Pooling encoder
has to learn a more diverse visual representation for each of the three classes, which
is quite hard to learn from just ten images a class. Ideally, the classification perfor-
mance must improve by using a larger training split and a more powerful model to
improve the learning capacity of the pooling encoder.

4.3 Generalization to Large Scale Datasets

In the previous section, a novel few-shot object detection framework was built from scratch.
The framework was also tested for algorithmic feasibility to make sure that the model has
the potential to provide accurate object proposals. In addition, the ability of the pooling
encoder embedding was verified to discriminate different classes in accordance with the
few-shot paradigm. In the sections, experiments are designed to test the model’s gen-
eralization ability. Therefore, the model is trained on a larger dataset and tested for the
detection performance on an unseen test split. This is in contrast to the previous experi-
ments where the model was overfitting on the training set, and the evaluations were also
performed on the same seen training set.

4.3.1 Dataset and Metrics

A few-shot dataset was designed to test generalization ability based on the PASCAL VOC
2007 dataset [12]. In cognizance of other state-of-the-art works in few-shot object detection,
a base to the novel class split of 15-5 is made. For each class in the dataset, the dataset
contained at least a hundred instances of the classes in each of the splits. The dataset
details are cataloged in the table 4.2 .

Table 4.2: Details of the generalization dataset.

Parameter Base Classes Novel Classes

Number of Classes 15 5
Class Names Bicycle, bird, boat, bus, car,

cat, chair, diningtable, dog,
motorbike, person, potted-
plant, sheep, train, tvmon-
itor

Aeroplane, bottle, cow,
horse, sofa

Training Set 1230 Images 462 Images

Test Set 1354 Images 494 Images

49

4 Translating Few Shot Classification to Few Shot Detection

(a) Sample 1 - Target (b) Sample 2 - Target (c) Sample 3 - Target

(d) Sample 1 - Prediction (e) Sample 2 - Prediction (f) Sample 3 - Prediction

Figure 4.12: Trivial solution convergence of the center heatmap. The figure shows the
ground-truth and predicted center heatmap for three sample images of the
training set. The model reaches a local minimum where all the center heatmap
being zeros still leads to low loss function values, thus leading to convergence.

4.3.2 Experiment 1 - Performance of CLIPtheCenter

The same model architecture defined in the table 4.1 with the multi-object detection exten-
sions was trained in the training set of the prepared dataset. However, even though the
losses reduced during training, the model did not provide any observable performance on
both the training and test set with nearly near zero Mean Average Precision. On closer
evaluation, it was observed that the model had converged to a trivial solution of zero cen-
ter heatmap. However, since the loss of bounding box values is only calculated at the peaks
of the heatmap, it leads to incorrect learning of the bounding box values at the wrong pixel
locations. This phenomenon is illustrated in the figures 4.12 and 4.13 .

4.3.3 Troubleshooting and Evolving Towards CLIPtheCenter v2

After the initial experiment on training CLIPtheCenter on the generalization dataset, sev-
eral deficiencies in the design of the proposed model and the foundational CenterNet
model were illuminated in great detail. To address these deficiencies, several tweaks and

50

4.3 Generalization to Large Scale Datasets

(a) Processed Input Image (b) Target Peak positions of the Heatmaps

(c) Predicted Center Heatmap
(d) Predicted Bounding Box

Width Heatmap
(e) Predicted Bounding Box

Height Heatmap

Figure 4.13: Incorrect Learning of Bounding Box Values. Due to incorrectly predicted
heatmap during advanced training epochs, the bounding box values are
learned at the wrong pixel positions. This is reflected in highly diffuse bound-
ing box peaks leading to false detections.

51

4 Translating Few Shot Classification to Few Shot Detection

fixes were tried out. A complete list of performed troubleshooting experiments is tabu-
lated in the table 4.3 . After a thorough troubleshooting and exploration phase, any other
possibility of improving the model was ruled out within the project timelines. Addition-
ally, it was observed that the detection modules, even without the embedding losses, did
not provide quantifiable results to confirm the detection performance on a larger dataset.

A new version of CLIPtheCenter is proposed to circumvent this challenge, hereafter re-
ferred to as CLIPtheCenter v2. Instead of building the detection modules of CLIPtheCen-
ter from scratch, the newer version uses the foundational CenterNet without any changes
to the individual components. With the detection modules from the original CenterNet,
the RoI head, the Pooling Encoder, and the auxiliary branches are re-implemented on this
base architecture to add the few-shot capability to the CenterNet model. The details of this
proposed architecture are tabulated in table 4.4 and illustrated in figure 4.14 .

4.3.4 Experiment 2 - Class Agnostic Detection Performance

In this experiment, the pure detection performance of the models is evaluated on the train-
ing and test split of the generalization dataset. In addition, this experiment aims to assess
the impact of the added few-shot classification as auxiliary branches on localization per-
formance. Two experimental models were considered to evaluate the performance.

1. CenterNet - A vanilla Centernet is trained on training split with all the classes pro-
vided a zero class index to make the evaluation class agnostic. For fairness of the
experiment, the same feature extractor and head layers are used as in table 4.4 .

2. CLIPtheCenter - The proposed CLIPtheCenter v2 model is trained on the training
split with the architecture described in table 4.4 .

The models were trained only on the base classes, and no finetuning was performed
on the novel classes. The performance on the dataset splits are tabulated in the table 4.5 .
Three main results are to be inferred.

1. Across both the base and novel classes, CLIPtheCenter performed better than Center-
Net. This is a surprising finding since the proposed extension modules are motivated
toward few-shot classification. However, as this is an experiment of class agnostic
detection performance, these extensions are not directly evaluated for their perfor-
mance. This gain in performance of CenterNet could be intuitively explained from
the cross-interaction mechanisms between the RoI head and the detection modules,
namely, the center, bounding box, and the offset heatmap heads. The RoI head and
the pooling encoder proposed as extensions could be functionally viewed as a classi-
fication module. However, there is an essential difference in how the targets for this
classification function are formulated. In most object detection networks, the class
targets are integer codes in the range of a number of classes in the training set. In
contrast, the target for the pooling encoders is the CLIP embedding, on which the

52

4.3 Generalization to Large Scale Datasets

Table 4.3: Failure Analysis of CLIPtheCenter on generalization dataset.

Problem Causes Solutions Explored

The center heatmap is very
sparse.

Only the pixels close to the
object centers have non-zero
values. It is rare for an im-
age to contain more than five
object instances, leading to
many zero-valued pixel posi-
tions.

1. The focal loss was used
to combat the sparsity of
heatmap values.
2. The gaussian radius of the
heatmap peaks was increased
to reduce sparsity.
3. The L2 loss function is
changed to an L1 loss func-
tion for a sparse solution
space that is closer to the tar-
get

Learning of Bounding Box
values depends on accurate
center heatmap peaks.

To reduce the model learn-
ing load of three separate
heatmaps, the CenterNet ar-
chitecture proposes learning
the width and height values
only at the peaks of the center
heatmaps.

1. Bounding box heatmap
losses are trained once the
center heatmap loss stabilizes
to stagger the learning objec-
tive of the model.
2. The bounding box loss is
calculated across the entirety
of the heatmap instead of just
the peaks to decouple with
the performance of the center
heatmap.

The solution does not gener-
alize and is prone to underfit-
ting the dataset.

With a larger generalization
dataset, the feature extractors
and pooling encoder may not
have the learning capacity to
learn from more diverse ob-
ject instances.

1. Increased the number of
layers of the pooling encoder
to improve its learning capac-
ity.
2. ResNet-18[19] was used in
each of the heads pre-trained
on the ImageNet dataset to
extract better visual features.

The model converges to a
local minimum instead of
a global minimum that can
generalize to the dataset.

By the design of loss func-
tion and sparsity of the tar-
gets, the trivial solution of
zero heatmaps still leads to
decreased loss

1. The learning rate was op-
timized using Optuna[1] to
find more optimized gradient
step sizes.
2. Different Optimisers such
as Adam[23], Adagrad[11],
and Adadelta[57] were tried
out to improve model learn-
ing capacity.

53

4 Translating Few Shot Classification to Few Shot Detection

Table 4.4: Architecture Details of the CLIPtheCenter v2.

Module Details

Feature Extractor Encoder ResNet-18
Feature Extractor Decoder 3 blocks of [ConvTranspose2d, ReLU] layers

Image Input Dimension 512
Dimensions of Heatmap 128

All Heatmap Head 1 blocks of [Conv2D, ReLU, Conv2D] layers
Pooling Encoder ResNet 18 followed by Linear Layer

Number of Proposals per Image 25 for Training. 100 for Inference.

Table 4.5: Class Agnostic Detection Performance on the generalization dataset. CLIPthe-
Center doubled the performance of the vanilla CenterNet on base classes. Signif-
icant performance increases are also observed in the novel classes, even though
the models were only trained on the base classes.

Serial Number Model
Dataset Split

Base Classes Novel Classes
Training Set Test Set Test Set

1 CenterNet 28.4 17.2 7.6
2 CLIPtheCenter 62.3 34.3 10.1

54

4.3 Generalization to Large Scale Datasets

Query
Image

512,16,16

Conv2D
Transpose

RoI Heatmap Center
Heatmap

BBox
Heatmap

1,128,128 1,128,128 2,128,128

3,128,128

ResNet18
Encoder

Cosine Embedding

Get TopK
Region

Proposals per
Image

Pooling
Encoder

(ResNet18)
CLIP Encoder

Masked RoI
Heatmap

CLIP
Preprocess

Image

K,512 K,512

Validate
Detections

3,512,512

K,128,128

Offset
Heatmap

2,128,128

Figure 4.14: Architecture of the proposed CLIPtheCenter v2. The revised version uses the
vanilla CenterNet as the detection module with extended few-shot capabilities
through a RoI head, Pooling Encoder, and an auxiliary branch.

55

4 Translating Few Shot Classification to Few Shot Detection

losses are backpropagated. From the previous experiments with CLIP, the descrip-
tive, as well as the discriminative ability of the CLIP encoder is well demonstrated.
Furthermore, by classifying each of the object proposals in the latent space of the
CLIP encoding instead of a primitive integer space, the model has more useful infor-
mation available to detect the presence of an object within a proposed region. The
objectness learning potential of the center heatmap head has improved object infor-
mation from the gradient propagation of the RoI head. Thus, the peaks of the Center
heatmap are more accurate due to cross-interactions through the gradient sharing
through the unifying decoder module.

2. Both the models have translating ability on the novel classes even though the model
was not trained on any of the novel classes. Out of these, CLIPtheCenter has signifi-
cant performance gains compared to the CenterNet model. This translation ability to
the CenterNet comes from the priors that the feature extractor encoder and pooling
encoder modules provide. Since both of these models were pre-trained on ImageNet
and the novel classes are also a subset of the thousand classes of ImageNet, these
modules may extract useful visual features for detecting these novel classes. The
performance gain in CLIPtheCenter comes from the improved discriminative em-
beddings of the CLIP encoder that aids the detection modules to localize better.

4.3.5 Experiment 3 - Class Inclusive Detection Performance

In this experiment, the performance of the models was evaluated for the complete object
detection performance, considering both the localization and the classification tasks. For
experimentation, three frameworks were considered.

1. CenterNet - The vanilla CenterNet model was trained on the 15 base classes with
class indexes. Once again, the same feature extractors as described in the table 4.4

were used for fairness of comparison.

2. CLIPtheCenter - Pooling Encoder - The CLIPtheCenter model was trained on the
15 base classes without providing class labels to the modules. The assignment of
the classes was performed downstream by extracting the support class codes using
algorithm 3 . The classes of object proposal are assigned the algorithm 2 .

3. CLIPtheCenter - CLIP Encoder - Similar to the previous detection framework, the
same CLIPtheCenter model trained was used. However, for the assignment of classes,
the embeddings of the CLIP encoder were used instead of the pooling encoder, sim-
ilar to the few-shot classification experiments described in the section 3.3.2 .

In all of these frameworks, the model was trained only on the training set of the base
classes and evaluated for performance on both the base and novel classes. For CLIPtheCenter-
based frameworks, the support class code was generated from 30 random images from the

56

4.3 Generalization to Large Scale Datasets

Table 4.6: Class Inclusive Detection Performance on the generalization dataset. Using
the detection proposals from CLIPtheCenter and the CLIP Encoder for class
code-based classification, the performance is tripled compared to the vanilla
CenterNet. However, the embedding from Pooling Encoder reports poor per-
formance due to incomplete knowledge distillation.

Serial Number Model
Dataset Split

Base Classes Novel Classes
Training Set Test Set Test Set

1 CenterNet 17.8 8.2 -
2 CLIPtheCenter - CLIP Encoder 50.2 32.3 15.9
3 CLIPtheCenter - Pooling Encoder 0.5 0.4 1.4

training set for each class. The results of this experiment are illustrated in figure 4.6 . There
are three main inferences to be derived from this experiment.

1. CLIPtheCenter, when used with CLIP encoder for class assignments, triples the per-
formance on the base classes. This performance gain comes from two main factors.
One is the improvement in localization performance due to the cross-interaction phe-
nomenon between the RoI head and the detection heads. Two, the class assignment
are also improved due to the CLIP embeddings’ effectiveness in generating discrim-
inative class codes and a more rigorous classification through class codes instead of
pure integer class targets.

2. Additionally, CLIPtheCenter adds a few-shot capability to the CenterNet model with
up to 15.9 percent Mean Average Precision. Due to architectural constraints of the
CenterNet model, the set of classes that are used in training and test set must be
identical. Therefore, performance metrics cannot be evaluated unless CenterNet is
retrained on the novel classes. However, doing so will make different frameworks
no longer comparable.

3. However, when using the pooling encoder for the assignment of the classes, the
Mean Average precision across both the base and novel classes was reduced to near
negligible values. This is due to non-discriminative embeddings generated by the
pooling encoder. This is also reflected in the encoder training loss curves shown in
figure 4.15 The gradient of the loss curve is relatively small, and it would require
much longer training schedules for the error to reduce significantly. Unless the pool-
ing encoder can reduce embedding loss by learning to output embeddings closer to
CLIP, the classification results are expected to be not optimal.

From a knowledge distillation viewpoint, the pooling encoder with a relatively
meager learning capacity of a ResNet-18 model needs to reproduce the outputs of
a much more powerful vision encoder-based CLIP encoder by training on just 1230

57

4 Translating Few Shot Classification to Few Shot Detection

Figure 4.15: Embedding Loss Curves in CLIPtheCenter Training. The revised architec-
ture uses vanilla CenterNet as the detection module and extends it for few
shot object detection.

images of the training set. This pushes the distillation challenge to a much harder
bound of transferring the knowledge of a powerful teacher to a relatively less pow-
erful student, which is an allied research direction in itself.

.

4.3.6 Experiment 4 - Ablation Studies

The previous experiments demonstrated the few-shot performance of the proposed model
across both the base and novel classes. This experiment is designed to dive deeper to un-
derstand the reasons for the performance gains. There are two possibilities of where the
improved detection performance could come from. One, it could be due to the effective-
ness of the CLIP embeddings used as the target of the Cosine Embedding loss to help the
pooling encoder learn useful embeddings. Two, there is a possibility that the use of de-
scriptive class code for scoring the object proposals makes it more useful for the model
to find object instances instead of usual integer targets. To check which of the above two
ideas boosts model performance, additional frameworks were devised in addition to the
ones proposed in sections 4.3.4 and 4.3.5 . This involved changing the CLIP encoder of the
auxiliary branch to an ImageNet pre-trained ResNet-34 [19] encoder. This change is shown
in the schematic figure 4.16 .

All the frameworks are trained on the training set of the base classes and evaluated for
their performance on both the base and novel classes without any finetuning. Figure 4.7

shows the performance of the detection frameworks trained without consideration of class
indexes on the base classes split. Similarly, figure 4.8 considers the detection and classifi-
cation performance of the frameworks on the base classes. Similarly to the CLIPtheCenter
experiment 4.3.5 with the CLIP Encoder, the classification is performed with the embed-
dings of the pooling encoder and ResNet34 encoder for the ablation model described in
the figure 4.16 . There are two main results from the experiment.

58

4.3 Generalization to Large Scale Datasets

Query
Image

512,16,16

Conv2D
Transpose

RoI Heatmap Center
Heatmap

BBox
Heatmap

1,128,128 1,128,128 2,128,128

3,128,128

ResNet18
Encoder

Cosine Embedding

Get TopK
Region

Proposals per
Image

Pooling
Encoder

(ResNet18)

ResNet-34
Encoder

Masked RoI
Heatmap

ResNet
Preprocess

Image

K,512 K,512

Validate
Detections

3,512,512

K,128,128

Offset
Heatmap

2,128,128

Figure 4.16: Architecture of the ablation studies on CLIPtheCenter v2. To study the
underlying reasons for performance gains, the CLIP model is replaced by a
ResNet-34 in the auxiliary branch to generate targets for embedding loss.

59

4 Translating Few Shot Classification to Few Shot Detection

Table 4.7: Ablation Study Results on Class Agnostic Detection Performance. When the
CLIP encoder is exchanged for a pre-trained ResNet 34 encoder, significant per-
formance gains can still be observed on the base classes. Even though descriptive
class encodings were formulated for classification purposes, pure detection per-
formance improves due to potential cross-head interactions.

Serial Number Model
Dataset Split
Base Classes

Training Set Test Set
1 CenterNet 28.4 17.2
2 CLIPtheCenter - CLIP Distillation 62.3 34.3
3 CLIPtheCenter - ResNet-34 Distillation 57.3 32.8

Table 4.8: Ablation Study Results on Class Inclusive Detection Performance. Following
the previous studies, when the encodings of ResNet-34 are used to classify the
object proposals from CLIPtheCenter, the object detection performances take a
huge hit. This shows the importance of class discriminative encodings, which
the CLIP model has demonstrated throughout several experiments. While de-
tection performance can be improved with descriptive feature encodings, classi-
fication performance relies on discriminative ability.

S.No Model
Dataset Split
Base Classes

Training Set Test Set
1 CenterNet 17.8 8.2
2

CLIPtheCenter - CLIP Distillation
CLIP Encoder 50.2 32.3

3 Pooling Encoder 0.5 0.4
4

CLIPtheCenter - ResNet34 Distillation
ResNet34 Encoder 0.5 0.5

5 Pooling Encoder 0.6 0.4

60

4.4 Summary of Few-Shot Object Detection

1. As seen from table 4.7 , by using ResNet-34 as the teacher model instead of the CLIP
model, there is still a significant improvement in the performance when compared
to the vanilla CenterNet model. However, the model’s performance based on the
ResNet-34 encoder still lags behind the model that uses CLIP as the teacher. This
provides a meaningful inference. For pure detection performance that aims at local-
ization of the bounding box, it is only essential that the target class codes are descrip-
tive in the visual feature space. Since both the ResNet-34 and CLIP are pre-trained
on classes that are very similar to the base and novel classes of the generalization,
there is not a huge drop in the performance when a different teacher model is used.

2. In the class inclusive detection performance as shown in the table 4.8 , the perfor-
mance of the model that uses ResNet-34 as the teacher shows an abysmal detection
performance irrespective of Pooling encoder or the ResNet-34 encoder is used for
classifying the object instances. This shows the vital requirement of the encoder’s
discriminative ability to separate the classes in the latent space. Even though descrip-
tive embeddings were a sufficient condition for improving class agnostic detection
performance, they are not sufficient to perform the downstream task of object pro-
posal classification. This is because few-shot classification requires the discrimina-
tive ability of the embedding, which CLIP encoders have thoroughly demonstrated
throughout the experiments.

4.4 Summary of Few-Shot Object Detection

This section of the thesis was motivated by the challenge of translating few-shot classifi-
cation results to the task of object detection. To achieve this effect, a novel few-shot object
detection, CLIPtheCenter, was built from the bottom up that uses CLIP encoding to clas-
sify the object proposals into different object classes. The model was thoroughly tested for
algorithmic feasibility, and extensions were also proposed for multi-instance object detec-
tion. A custom dataset consisting of fifteen base classes and five novel classes was con-
structed from the PASCAL VOC [12] dataset. The ability of the CLIPtheCenter model to
generalize results to a larger scale dataset was experimented on with this custom dataset.

From the experiments, several vital results were inferred. When only pure detection
performance was evaluated, CLIPtheCenter performed almost twice as well on the vanilla
CenterNet on the base classes. The model also demonstrated significant performance gains
in the novel classes. The intuition behind these performance gains comes from cross-head
interactions between the RoI head and detection heads. Classifying the object proposals
into a more descriptive latent space instead of pure integers enhances the detection heads
to discover the object regions more precisely, as the model is trained end to end. Additional
ablation studies were performed to verify this intuition by exchanging the CLIP encoder
with an ImageNet pre-trained ResNet encoder. When experimented with for both classi-
fication and detection performance, CLIPtheCenter almost tripled the performance on the
vanilla CenterNet, when the CLIP encoder is used to assign the class through class codes.

61

4 Translating Few Shot Classification to Few Shot Detection

At the same time, it provides up to 15 percent Mean Average Precision on the novel class
without any fine-tuning on the novel classes. The experiments successfully demonstrated
the effectiveness of CLIPtheCenter for few-shot object detection.

62

5 Conclusions

The thesis focussed on solving the task of few-shot object detection. Methods were pro-
posed to translate the performance of a model trained in classes with abundant data into
a set of classes with limited support instances. In order to tackle this challenge, the object
detection task was decomposed into two different stages of classification and detection.

The first stage of the thesis aimed to solve a special case of few-shot classification. Given
a query image and support images belonging to a set of target classes, the goal was to clas-
sify which class the query image belonged to among the target classes. A representative
self-supervised method DINO [6] and a multi-modal model CLIP [38] were experimented
with. These models with different learning paradigms were evaluated for their ability to
provide discriminative class encoding. A classification algorithm was designed using the
concepts of class code, and the performance of the encoders was evaluated on a domain-
specific CUBS-200 [50] dataset. This dataset is specifically chosen to simulate real-world
scenarios where the object classes look visually very similar. The most important results
from the experiment were as follows:

1. Classification through CLIP encoded class codes can compete with a fully supervised
ResNet-50 model without any finetuning. This demonstrates the discriminative abil-
ity of multi-modal embeddings for classification tasks.

2. With the increase in the number of support images for the generation of class codes
better was the classification performance across both the DINO and CLIP encoders.

3. Transformer-based backbones are better feature extractors than ResNet encoders due
to the self-attention mechanism that enables the model to learn the global context of
the image.

The second stage of the thesis focused on translating the results from the few-shot clas-
sification into object detection. A few shot object detector was built from the ground up
that used the CLIP embedding for classification instead of traditional integer-based class
labels. To test the performance of this proposed model, CLIPtheCenter, experiments were
carried out in various stages of development for single instance detection, extensions to
multi-object detection, and a larger-scale generalization test. Finally, an ablation study
was conducted by exchanging the CLIP as the target encoder for a less potent ImageNet
pre-trained ResNet-34 model. The important revelations from the experiment were:

63

5 Conclusions

1. When evaluated for pure detection performance, CLIPtheCenter doubled the base
classes’ performance compared to vanilla CenterNet. A significant performance in-
crease is also seen in novel classes.

2. Considering performance on classification and detections, CLIPtheCenter almost triples
the performance on the vanilla CenterNet, when the pre-trained CLIP encoder is
used for class code-based classification. Additionally, CLIPtheCenter extends the
few-shot capability to CenterNet.

3. CLIPtheCenter provides up to fifteen percent Mean Average Precision on the novel
classes, without any finetuning on the novel classes and having trained only on the
base classes.

4. Use of descriptive class code such as CLIP encodings, instead of primitive integer
codes, greatly enhanced detection performance. This result was verified and con-
firmed with the ablation study.

The performance of CLIPtheCenter shows a lot of promise with the test on the gener-
alization dataset. However, these results raise an important and exciting question. Can
similar gains in performance be observed on the larger benchmark datasets splits such
as COCO [30] or Large Vocabulary Instance Segmentation (LVIS) [17] datasets that are de-
signed with a long-tailed class distribution. Even if half of the observed performance gains
are realized, the results would still be significant. However, there are two main constraints
to carrying out large-scale training schedules.

1. Lack of CPU and GPU optimized implementation.

During the training of CLIPtheCenter, a few CPU loop-intensive operations do
not take advantage of multicore processors. For instance, when the masked RoI
heatmaps are generated from the object proposal, the current implementation has
O(BK) operations, B being the batch size and K, the number of object proposals
per image. This makes scaling up the training more challenging due to the GPU
VRAM constraints. Similarly, to generate the targets for training, the pooling en-
coder requires O(BK) forward passes on the CLIP encoder since the inputs are not
batched to take advantage of GPU hardware parallelism. This can be fixed by us-
ing Numba [26] for vectorizing CPU-based operations and PyTorch batch operations
solving GPU-based bottlenecks. With these two fixes, speed-ups in O(mK) are ex-
pected with m ∈ [0.5, 1].

2. Challenging of distilling CLIP into a smaller ResNet model.

The function of the pooling encoder is to learn to generate CLIP-like class discrim-
inative embedding so that the outputs of it can be used for class code-based classi-
fication instead of the CLIP encoder. However, from the standpoint of knowledge
distillation, this is a more challenging task with minimal data. The student model,

64

a ResNet-18 encoder, in the current implementation, must learn from a much more
powerful vision transformer-based CLIP encoder by using only 1230 images. This
pushes the theoretical possibility of the effectiveness of such imbalanced distillation
to its limit. There are two ways to solve this issue. One is by using a more power-
ful encoder for a student model so that model capacities between the student and
teacher are comparable. The second remedy is to train on a much larger dataset to
enhance knowledge transfer. Unfortunately, both these are currently blocked by the
previous constraint of ineffective code optimization to the training hardware archi-
tectures.

The above optimizations provide a lot of potential to improve the CLIPtheCenter architec-
ture further. By carrying out these optimizations and performing a more extended training
schedule on a larger benchmark dataset, the intuitions and the algorithms proposed can
be verified with even more assurances. Furthermore, if the performance gains still trans-
late to these benchmark datasets, it opens a new direction of rethinking object detection
through the lens of class codes.

65

List of Figures

 2.1 Handcrafted Convolutional Kernels for Edge Detection. 4
 2.2 Abstraction of Deep Learning Models . 4
 2.3 Residual Block of the ResNet Architecture . 5
 2.4 Different Feature Aggregation Methods for Instance Level Tasks 7
 2.5 Vision Transformer Architecture . 8
 2.6 Training Methodology of DINO . 9
 2.7 Training Methodology of CLIP . 10
 2.8 Architecture of Faster-RCNN . 11
 2.9 Architecture of Detection Transformer . 12
 2.10 Performance - Inference Time trade-off of different object detection architec-

tures on the COCO validation dataset . 14
 2.11 Architecture of CenterNet . 15
 2.12 The process of Non Maximum Suppression 16
 2.13 Illustration of positive and negative samples for calculating MAP 18
 2.14 Meta-Learning Based Methods . 19
 2.15 Fine Tuning Based Methods . 21

 3.1 Samples from Caltech-UCSD Birds 200 datasets. 25
 3.2 List of the CUBS 200 Attributes . 28
 3.3 Performance of Textual Supports on Few-shot Classification. 30
 3.4 Performance of Visual Supports on Few-shot Classification. 31

 4.1 Abstraction of Object Detection Modules. 36
 4.2 Architecture of the proposed CLIPtheCenter. 39
 4.3 Sample illustration of tensor flow in CLIPtheCenter. 40
 4.4 Dataset used for Single Instance Object Detection. 44
 4.5 Results on the Single Instance Object Detection. 45
 4.6 Alternate support images used for class assignments. 45
 4.7 Data Sample for Multi-Instance Object Detection. 46
 4.8 Schematic of Loss Calculation for Multi-Object Detection. 47
 4.9 Dataset used for Multi-Instance Object Detection. 47
 4.10 Object Proposals generated from the model. 48
 4.11 Object Proposals after Non-Maximum Suppression. 48
 4.12 Trivial solution convergence of the center heatmap. 50
 4.13 Incorrect Learning of Bounding Box Values. 51

67

List of Figures

 4.14 Architecture of the proposed CLIPtheCenter v2. 55
 4.15 Embedding Loss Curves in CLIPtheCenter Training 58
 4.16 Architecture of the ablation studies on CLIPtheCenter v2 59

68

List of Tables

 4.1 Architecture Details of the CLIPtheCenter . 44
 4.2 Details of the generalization dataset . 49
 4.3 Failure Analysis of CLIPtheCenter on generalization dataset 53
 4.4 Architecture Details of the CLIPtheCenter v2 54
 4.5 Class Agnostic Detection Performance on the generalization dataset. 54
 4.6 Class Inclusive Detection Performance on the generalization dataset 57
 4.7 Ablation Study Results on Class Agnostic Detection Performance 60
 4.8 Ablation Study Results on Class Inclusive Detection Performance 60

69

Bibliography

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.
Optuna: A next-generation hyperparameter optimization framework. Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
2019.

[2] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features.
In ECCV, 2006.

[3] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S. Davis. Soft-nms —
improving object detection with one line of code. 2017 IEEE International Conference
on Computer Vision (ICCV), pages 5562–5570, 2017.

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christo-
pher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Lan-
guage models are few-shot learners. ArXiv, abs/2005.14165, 2020.

[5] Nicolas Carion, Sergey Zagoruyko, and Francisco Massa. End-to-end ob-
ject detection with transformers. https://ai.facebook.com/blog/
end-to-end-object-detection-with-transformers/ . [Online; accessed
18-November-2022].

[6] Mathilde Caron, Hugo Touvron, Ishan Misra, Herv’e J’egou, Julien Mairal, Piotr Bo-
janowski, and Armand Joulin. Emerging properties in self-supervised vision trans-
formers. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pages
9630–9640, 2021.

[7] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-based
fully convolutional networks. ArXiv, abs/1605.06409, 2016.

[8] Daniel de Souza Carvalho. Sobel edge detection filter - wolfram
demonstrations project. https://demonstrations.wolfram.com/
SobelEdgeDetectionFilter . [Online; accessed 16-November-2022].

71

https://ai.facebook.com/blog/end-to-end-object-detection-with-transformers/
https://ai.facebook.com/blog/end-to-end-object-detection-with-transformers/
https://demonstrations.wolfram.com/SobelEdgeDetectionFilter
https://demonstrations.wolfram.com/SobelEdgeDetectionFilter

Bibliography

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 248–255, 2009.

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. ArXiv, abs/2010.11929, 2021.

[11] John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. In J. Mach. Learn. Res., 2011.

[12] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PAS-
CAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

[13] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PAS-
CAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[14] Qi Fan, Wei Zhuo, and Yu-Wing Tai. Few-shot object detection with attention-rpn
and multi-relation detector. 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4012–4021, 2020.

[15] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hier-
archies for accurate object detection and semantic segmentation. 2014 IEEE Conference
on Computer Vision and Pattern Recognition, pages 580–587, 2014.

[16] Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object de-
tection via vision and language knowledge distillation. In International Conference on
Learning Representations, 2022.

[17] Agrim Gupta, Piotr Dollár, and Ross B. Girshick. Lvis: A dataset for large vocabu-
lary instance segmentation. 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5351–5359, 2019.

[18] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum
contrast for unsupervised visual representation learning. 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 9726–9735, 2020.

[19] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

[20] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications. ArXiv, abs/1704.04861, 2017.

72

Bibliography

[21] Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng, and Trevor Darrell. Few-
shot object detection via feature reweighting. 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 8419–8428, 2019.

[22] Nick Kanopoulos, Nagesh Vasanthavada, and Robert L Baker. Design of an im-
age edge detection filter using the sobel operator. IEEE Journal of solid-state circuits,
23(2):358–367, 1988.

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2015.

[24] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. Communications of the ACM, 60:84 – 90, 2012.

[26] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: a llvm-based python jit
compiler. In LLVM ’15, 2015.

[27] Hei Law and Jia Deng. Cornernet: Detecting objects as paired keypoints. International
Journal of Computer Vision, 128:642–656, 2019.

[28] Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Deepak Gotmare, Shafiq R. Joty,
Caiming Xiong, and Steven C. H. Hoi. Align before fuse: Vision and language repre-
sentation learning with momentum distillation. In Neural Information Processing Sys-
tems, 2021.

[29] Zeming Li, Yilun Chen, Gang Yu, and Yangdong Deng. R-fcn++: Towards accurate
region-based fully convolutional networks for object detection. In AAAI Conference on
Artificial Intelligence, 2018.

[30] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in
context. In European Conference on Computer Vision, 2014.

[31] W. Liu, Dragomir Anguelov, D. Erhan, Christian Szegedy, Scott E. Reed, Cheng-Yang
Fu, and Alexander C. Berg. Ssd: Single shot multibox detector. In European Conference
on Computer Vision, 2016.

[32] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted win-
dows. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pages 9992–
10002, 2021.

[33] David G Lowe. Object recognition from local scale-invariant features. In Proceedings of
the seventh IEEE international conference on computer vision, volume 2, pages 1150–1157.
Ieee, 1999.

73

Bibliography

[34] Luke Melas-Kyriazi, C. Rupprecht, Iro Laina, and Andrea Vedaldi. Deep spectral
methods: A surprisingly strong baseline for unsupervised semantic segmentation
and localization. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 8354–8365, 2022.

[35] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass networks for human
pose estimation. In ECCV, 2016.

[36] John R. Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel
programming with cuda. 2008 IEEE Hot Chips 20 Symposium (HCS), pages 1–2, 2008.

[37] Juan-Manuel Pérez-Rúa, Xiatian Zhu, Timothy M. Hospedales, and Tao Xiang. Incre-
mental few-shot object detection. 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 13843–13852, 2020.

[38] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual models from natural lan-
guage supervision. In ICML, 2021.

[39] Alec Radford, Ilya Sutskever, Jong Wook Kim, Gretchen Krueger, and Sandhini Agar-
wal. Clip: Connecting text and images. https://openai.com/blog/clip/ . [On-
line; accessed 16-November-2022].

[40] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 779–788, 2016.

[41] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39:1137–1149, 2015.

[42] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. ArXiv, abs/1505.04597, 2015.

[43] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary R. Bradski. Orb: An efficient
alternative to sift or surf. 2011 International Conference on Computer Vision, pages 2564–
2571, 2011.

[44] Deval Shah. Mean average precision (map) explained: Everything you need to
know. https://www.v7labs.com/blog/mean-average-precision . [Online;
accessed 19-November-2022].

[45] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolu-
tional neural networks. ArXiv, abs/1905.11946, 2019.

74

https://openai.com/blog/clip/
https://www.v7labs.com/blog/mean-average-precision

Bibliography

[46] J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, and A.W.M. Smeulders. Selective
search for object recognition. International Journal of Computer Vision, 2013.

[47] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu,
Ping Luo, and Ling Shao. Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions. 2021 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 548–558, 2021.

[48] Xin Wang, Thomas E. Huang, Trevor Darrell, Joseph Gonzalez, and Fisher Yu. Frus-
tratingly simple few-shot object detection. ArXiv, abs/2003.06957, 2020.

[49] Yangtao Wang, Xiaoke Shen, Yuan Yuan, Yuming Du, Maomao Li, Shell Xu Hu,
James L. Crowley, and Dominique Vaufreydaz. Tokencut: Segmenting objects in
images and videos with self-supervised transformer and normalized cut. ArXiv,
abs/2209.00383, 2022.

[50] Peter Welinder, Steve Branson, Catherine Wah, Serge Belongie, and Pietro Perona.
Caltech-ucsd birds 200. Technical Report CNS-TR-2011-001, California Institute of
Technology, 2011.

[51] Enze Xie, Jian Ding, Wenhai Wang, Xiaohang Zhan, Hang Xu, Zhenguo Li, and Ping
Luo. Detco: Unsupervised contrastive learning for object detection. 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pages 8372–8381, 2021.

[52] Xiaopeng Yan, Ziliang Chen, Anni Xu, Xiaoxi Wang, Xiaodan Liang, and Liang
Lin. Meta r-cnn: Towards general solver for instance-level low-shot learning. 2019
IEEE/CVF International Conference on Computer Vision (ICCV), pages 9576–9585, 2019.

[53] Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan, and
Jianfeng Gao. Focal self-attention for local-global interactions in vision transformers.
ArXiv, abs/2107.00641, 2021.

[54] Jinyu Yang, Jiali Duan, S. Tran, Yi Xu, Sampath Chanda, Liqun Chen, Belinda Zeng,
Trishul M. Chilimbi, and Junzhou Huang. Vision-language pre-training with triple
contrastive learning. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 15650–15659, 2022.

[55] Zhuyu Yao, Jiangbo Ai, Boxun Li, and Chi Zhang. Efficient detr: Improving end-to-
end object detector with dense prior. ArXiv, abs/2104.01318, 2021.

[56] Fisher Yu, Dequan Wang, and Trevor Darrell. Deep layer aggregation. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2403–2412, 2018.

[57] Matthew D. Zeiler. Adadelta: An adaptive learning rate method. ArXiv,
abs/1212.5701, 2012.

75

Bibliography

[58] Gongjie Zhang, Zhipeng Luo, Kaiwen Cui, Shijian Lu, and Eric Xing. Meta-detr:
Image-level few-shot detection with inter-class correlation exploitation. IEEE transac-
tions on pattern analysis and machine intelligence, PP, 2022.

[59] Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chengkun Li, Noel C. F. Codella, Li-
unian Harold Li, Luowei Zhou, Xiyang Dai, Lu Yuan, Yin Li, and Jianfeng Gao. Re-
gionclip: Region-based language-image pretraining. 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 16772–16782, 2022.

[60] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as points. ArXiv,
abs/1904.07850, 2019.

[61] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. De-
formable detr: Deformable transformers for end-to-end object detection. ArXiv,
abs/2010.04159, 2021.

76

	Acknowledgements
	Abstract
	Introduction
	State of the Art
	Visual Feature Extraction
	What are Visual Features?
	Learned Feature Extraction Backbones
	Self-Supervised Methods
	Multi-Modal Learning Methods

	Object Detection with Deep Learning
	Multi-Stage Detectors
	Single-Stage Detectors
	Evaluation of Detection Models

	A Review of Few-Shot Object Detection Methods
	Meta-Learning Based Methods
	Fine Tuning Based Methods
	Other Notable Works

	Few Shot Image Classification
	Problem Definition and Goals
	Methodology
	Choice of Classification Dataset
	Caltech-UCSD Birds 200 Dataset
	Preparation of a Few Shot Classification Dataset
	Concept of Class Codes
	Few Shot Classification through Class Codes
	Extraction of Image based Support Class Codes
	Extraction of Text based Support Class Codes

	Experiments and Results
	Experiment 1 - Few-shot Classification through Text Supports
	Experiment 2 - Few-shot Classification through Visual Supports

	Summary of Few-Shot Classification

	Translating Few Shot Classification to Few Shot Detection
	Problem Definition and Goals
	Building a Few Shot Object Detector Ground Up - CLIPtheCenter
	Architectural Design
	Training and Inferring Object Proposals from CLIPtheCenter
	Algorithmic Test on Single Instance Object Detection
	Extending to Multi-Instance Object Detection

	Generalization to Large Scale Datasets
	Dataset and Metrics
	Experiment 1 - Performance of CLIPtheCenter
	Troubleshooting and Evolving Towards CLIPtheCenter v2
	Experiment 2 - Class Agnostic Detection Performance
	Experiment 3 - Class Inclusive Detection Performance
	Experiment 4 - Ablation Studies

	Summary of Few-Shot Object Detection

	Conclusions
	List of Figures
	List of Figures
	Bibliography

