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Abstract

Metal-organic frameworks are microporous materials composed of inorganic building
units held together by organic molecules. As a result of their construction, there is an
enormous variety of compositions, structures, properties and applications. Depend-
ing on the substances used in the synthesis, different metal-organic frameworks are
obtained. These frameworks have different properties depending on the synthesis
parameters, such as temperature, time, and reactants ratio, forming an almost infinite
chemical space, and exploring this space requires an extensive amount of sample
points. Therefore, it is advantageous to use computational methods instead of ex-
perimental methods for the discovery and modification of metal-organic frameworks.
However, there is a lack of research on the usefulness of machine learning methods
to find parameters for metal-organic framework synthesis, as machine learning is
still quite new in the field of chemistry. This bachelor thesis attempts to address this
knowledge gap by implementing Bayesian optimization with Gaussian Processes, a
machine learning technique, to find the optimal synthesis conditions of metal-organic
framework nanoparticles. Bayesian optimization is a global optimization strategy that
is particularly useful for black-box functions that are difficult to evaluate. This thesis
discusses the process of selecting a suitable kernel for the Gaussian process and applies
single-objective and multi-objective Bayesian optimization methods on the example of
ZiF-8. The given dataset used to train the model only consists of 30 data points, which
presented a challenge for accurate and meaningful predictions. Nevertheless, Bayesian
optimization predicted suitable synthesis parameters, as confirmed by experiments
at Karlsruhe Institute of Technology. Based on this work, Bayesian optimization for
synthesis parameter discovery can be further developed and improved.
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1. Introduction

Much of the progress of today’s society and life can be attributed to achievements in
material science, as these have enabled new products in a variety of areas, such as
energy, health, transportation and the environment. Metal-organic frameworks are one
class of materials that have contributed to this progress. There is an enormous number
of metal-organic frameworks with a diverse spectrum of properties, all of which are
characterized by porosity. Therefore, they find applications in a wide variety of fields,
such as energy and gas storage, drug delivery, gas separation and chemical sensors.
Metal-organic frameworks can also help to meet future challenges such as the climate
crisis, where they have the capability to capture CO2 [36]. Therefore, it is important to
further research and optimize these materials to discover their great chemical potential.
Increasing research has focused on the search for synthesis conditions in order to
create optimal metal-organic frameworks that meet current needs. Since the discovery
of suitable synthesis parameters is difficult, the development of parameter search
algorithms is of great importance. Therefore, in this thesis Bayesian optimization
and Gaussian processes are used to predict synthesis conditions for metal-organic
frameworks to obtain optimal materials.

Metal-organic frameworks consist of metal ions and organic linkers that form three-
dimensional structures. By varying their components, previously undiscovered metal-
organic frameworks can still be synthesized. Since their structure and properties are
determined by their synthesis conditions, it is particularly important to find the optimal
set of synthesis parameters. However, this is not trivial because the synthesis parameters
form a very large search space which cannot be fully explored experimentally. The
use of sophisticated experimental techniques and equipment increases the number of
controllable synthesis parameters, expanding the search space of possible synthesis
conditions even further. It is difficult, and sometimes impossible, to find the best
synthesis conditions in a multidimensional search space using an uncontrolled trial-
and-error approach. Therefore, it is necessary to develop more sophisticated approaches
to deal with the high dimensionality and complexity of this problem. Machine learning
methods have proven to be valuable tools for identifying regions of interest, and several
machine learning approaches have been applied for the discovery of optimal sythesis
parameters [21]. In this application, it has been shown that early machine learning
models already outperform human experts. Machine learning can capture and exploit
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1. Introduction

even small correlations in the data to improve estimates of synthesis conditions where
human experts cannot compete since it exceeds the experts general intuition [21].
Although there has been rapid progress in the field of metal-organic frameworks, the
potential of predicting metal-organic framework synthesis conditions using machine
learning still has not been fully explored.

Bayesian optimization is a more promising method as it can find the gobal optimum
in fewer search steps than other approaches. It is an efficient method to find the global
optimum of an expensive to evaluate black-box function. The exploration of metal-
organic framework properties requires the optimization of a multidimensional space of
synthesis parameters. Bayesian optimization is a method for efficient multidimensional
optimization and therefore capable of optimizing the synthesis parameters with a
small number of experiments. This is desirable since conducting an experiment is
time and resource consuming. Recently it was found useful in the application area
of chemistry [15, 13, 4, 14] but has not yet been sufficiently explored [31]. It has been
shown that Bayesian optimization outperforms human expert decision making [31].
Some papers differentiate and Bayesian optimization algorithm prevails both in average
optimization efficiency, i.e., the number of experiments, and in consistency, i.e., the
variance of the result to the initial data set [31].

In chapter 2, the required theory on Bayesian optimization, Gaussian process and
metal-organic frameworks is fist explained. In the main part (chapter 3), the metodol-
ogy of the discovery and optimization of synthesis conditions is discussed in more
detail and the background of the metal-organic framework used to perform Bayesian
optimization is explained. Afterwards, the two applied approaches single-objective
Bayesian optimization and multi-objective Bayesian optimization are explained and
evaluated.
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2. Related Work

2.1. Gaussian Processes

A Gaussian process (GP) is a data-driven method, which uses a probabilistic approach to
machine learning methods. The goal of GPs is to find the function f that best describes
the given training data. The advantages of GP include accurate generalization of new
and unseen data as well as providing an uncertainty estimation without additional
evaluation.

2.1.1. Introduction to Gaussian Processes

Simplified, a stochastic process is a generalization of a probability distribution describ-
ing a finite-dimensional random variable to functions. Therefore, a GP is a stochastic
process of random variables with a Gaussian distribution. The idea is given a dataset
D = {(xi, yi) | i = 1, ..., n}, considering all functions which fit to the given dataset. In
the following X will be the input and since x is a vector, X can be either a set or a
matrix.

Definition 2.1.1 (Gaussian Process). "A Gaussian process is a generalization of the
Gaussian probability distribution. Whereas a probability distribution describes random
variables which are scalars or vectors (for multivariate distributions), a stochastic
process governs the properties of functions [28]."

This definition is the main advantage of GPs, since they combine a sophisticated
and consistent view with computational tractability. Generalization of the normal
distribution results in the multivariate normal distribution, which samples vectors of
numbers instead of numbers. Further generalization leads to a sampling of an infinite
vector of numbers, which in other words are functions. This is the approach of a GP,
since the properties of the function are only described by finitely many points and
the inference is done at these points, it is computationally tractable to compute with
functions and it is still consistent with considering all infinitely many points. Therefore,
it is not a hindrance that no analytical description of the probability density function of
the GP exists in general.
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2. Related Work

Figure 2.1.: Samples drawn from a GP with RBF kernel adapted from [27].

A GP is a distribution over functions, which can be completely determined by its
mean and covariance functions. The GP entirely defines the properties that the functions
of its set hold. The above objective, the best function of the set, is defined by the mean of
the distribution over functions, with a minimum probability assigned to each function.
This can be adjusted by assigning an individually higher probability to some functions
that seem more likely based on certain probabilities, e.g. smoother functions [28].

2.1.2. Introduction to Bayesian modeling with Gaussian Processes

In Bayesian inference, the GP begins before conditioning on the data; the GP is a
prior distribution over functions and represents the beliefs over the kinds of functions
which are expected to be observed. Without any knowledge, the mean over the sample
functions at each x is zero. The posterior distribution over the target functions is
obtained using Bayes’ theorem on the prior distribution and data. The posterior is then
used to make predictions.

In Figure 2.1 samples of a GP are shown for a 1D regression problem. In the first
figure the samples are drawn from the prior distribution and in the second figure from
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2. Related Work

a posterior distribution with eight observations. The standard deviation is independent
of x for the prior and is adjusted to be zero at already observed points and high in
areas without close function evaluations. The mean is shown in black and represents
the prediction of the GP.

2.1.3. Gaussian Process Regression

In this section, a formal definition of the above concept is introduced with regard to
the regression problem at hand. Gaussian process regression (GPR) is a supervised
machine learning method usually based on a dataset mapped from an input x to an
output f (x), where the function f is continuous. This training data is not absolutely
necessary, since the GP can already be evaluated without training.

As stated, the GP is completely specified by its mean function m(x) and covariance
function called kernel k(x, x′)

f (x) ∼ GP(m(x), k(x, x′)). (2.1)

The mean and kernel of a real process f (x) are defined as follows,

m(x) = E [ f (x)]

k(x, x′) = E
[
( f (x)− m(x))( f (x′)− m(x′))

]
.

(2.2)

The mean function is usually set to zero, m(x) = 0, since uncertainty about the
mean function can also be accounted for by adding an additional term to the kernel.
This is especially done when there is no specific knowledge about a trend in the
data. Therefore, the GP is completely determined by its kernel, which specifies how
the functions are interpolated between data points. The kernel is a measure of the
correlation of two inputs x and x′. The main difficulty with GPs is to construct a kernel
that best represents the particular structure of the data being modeled.

Since the GP is a collection of random variables, it implies consistency, called the
marginalization property. This means that the probability distribution of the different
sizes of subsets does not change. It is always fulfilled, if the kernel specifies the entries
of the kernel matrix

Σ = K(X, X) =

k(x1, x′1) . . . k(x1, x′n)
...

. . .
...

k(xn, x′1) . . . k(xn, x′n)

 . (2.3)

The kernel matrix represents the covariance between two elements of the training data
X. A kernel matrix must be positive definite to be valid, implying that the matrix is
symmetric and invertible [28, 1].

5



2. Related Work

GPR learns a generative probabilistic model of the objective function and can thus
provide meaningful confidence intervals and posterior samples along with the predic-
tions [27].

2.1.4. Prediction of Gaussian Process Regression

In the following, the theory underlying the prediction of GPR will now be explained. A
distinction is made between noise free and noisy observations.

Prediction using Noise free Observations

Given a training dataset with noise free function values f = ( f (x1), . . . , f (xn)) and
inputs X, the prior has to be transformed in the posterior to make predictions f∗ at new
inputs X∗. The joint distribution of the observations f and the predictions f∗ is[

f
f∗

]
∼ N

(
0,
[

K(X, X) K(X, X∗)

K(X∗, X) K(X∗, X∗)

])
. (2.4)

To obtain the posterior distribution over the functions, the joint Gaussian prior
distribution needs to be constrained to contain only functions which fit the observed
data points. This can be done by conditioning the joint Gaussian prior distribution on
the observations:

p(f∗|X, f, X∗) = N (µµµ∗, Σ∗), where
µµµ∗ = K(X∗, X)K(X, X)−1f,
Σ∗ = K(X∗, X∗)− K(X∗, X)K(X, X)−1K(X, X∗).

(2.5)

The function values f∗ can now be sampled from the joint posterior distribution by
evaluating the mean and covariance matrix from equation 2.5. It should be noted, that
the covariance only depends on the training data and not on the observered test points.

Prediction using Noisy Observations

In an experimental setting, it is assumed that there is normally distributed additive
noise in the output data ε ∼ N (0, σ2

n), which distinguishes the observational model
from the real model:

y = f (x) + ε. (2.6)

Therefore, the prior is now given by K(X, X) + σ2
n I and the predictive distribution is

given by

p(f∗|X, y, X∗) = N (µµµ∗, Σ∗), where
µµµ∗ ≜ E[f∗|X, y, X∗] = K(X∗, X)[K(X, X) + σ2

n I]−1y,
Σ∗ = K(X∗, X∗)− K(X∗, X)[K(X, X) + σ2

n I]−1K(X, X∗).
(2.7)
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In practical implementations, most often the posterior means and variances are
calculated using Cholesky decomposition and then the linear system of equations is
calculated, rather than using Equation 2.5 and inverting the matrix directly, as this is
faster and numerically more stable [28].

2.1.5. Kernel functions

The kernel function k(x, x′) represents the characteristics of the process, such as smooth-
ness, characteristic length-scale, and stationarity. The space of kernels can be divided
into two different classes: stationary and non-stationary kernels. Stationary kernels
depend only on the distance between two data points and not on their absolute value
k(xi, xj) = k(d(xi, xj)) and are therefore invariant to translations in the input space.
Non-stationary kernels additionally depend on the specific values of the data points.

The kernel encodes assumptions about the function to be learned. The value of the
kernel function k(x, x′) is an indicator of the interaction between two states x and x′ [8].

Kernels determine the shape of prior and posterior of the GP, and therefore, the
covariance of the GP between data points. Pre-existing knowledge about the kernel
function, e.g. the shape of the objective function, can be exploited by using specialized
kernel functions [12, 27].

The Radial Basis Function (RBF)

The radial basis function (RBF), also known as the squared exponential (SE) function

k(xi, xj) = exp

(
−

d(xi, xj)
2

2l2

)
(2.8)

only depends on the distance between xi and xj. The kernel expresses that the corre-
lation of points decreases with the square of the distance between these points. The
parameter l > 0 defines the length scale of the kernel, with smaller or larger length
scales leading to smaller or larger variations in the resulting functions, as can be seen
in Figure 2.2. d(·, ·) is the Euclidean distance for the n-dimensional space. This kernel
is stationary and infinitely differentiable, meaning that GPs with this kernel have mean
square derivatives of all orders and are thus very smooth. The RBF kernel is commonly
used as the default kernel [27, 7].
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Figure 2.2.: Random functions drawn from a GP prior with the RBF kernel. Each plot
has a different length scale that decreases from the left plot to the right plot.
Taken from [8].

The Matern Kernel

The Matern kernel [27] is a generalization of the RBF kernel and its equation is given
by

k(xi, xj) =
1

Γ(ν)2ν−1

(√
2ν

l
d(xi, xj)

)ν

Kν

(√
2ν

l
d(xi, xj)

)
. (2.9)

Kν(·) represents a modified Bessel function and Γ(·) the gamma function Γ(m) =

(m − 1)!.
Compared to the RBF kernel, the Matern kernel has an additional parameter ν =

n + 1
2 , n ∈ N, which controls the smoothness of the resulting functions. With ν → ∞

the kernel is equivalent to the RBF kernel. A small ν leads to less smooth functions.
The kernel represents n-times differentiable functions. Important ν-values are ν = 1.5
(once differentiable) and ν = 2.5 (twice differentiable).

For ν = 0.5 the kernel becomes identical to the absolute exponential kernel, which
has the following definition:

k(xi, xj) = exp
(
−

d(xi, xj)

l

)
. (2.10)

In contrast to the squared exponential kernel, which is smooth, the absolute exponential
kernel is only continuous, thus it is not differentiable. The function approximations
generated by kernel methods inherit the smoothness of the kernel, which has implica-
tions for modeling. A smooth kernel is suitable for fitting smooth functions, while a
differentiable kernel is suitable for differentiable functions [3].
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The Rational Quadratic Kernel

The Rational Quadratic kernel [27] can be considered as a scale mixture of RBF kernels
with different characteristic length scales. A scale mixture is an infinite sum. Therefore,
functions drawn by this kernel vary smoothly across many length scales. It is character-
ized by the length scale parameter l > 0 and the scale mixture parameter α > 0, which
determines the relative weighting of large and small scale variations. Its definition is
given by

k(xi, xj) =

(
1 +

d(xi, xj)
2

2αl2

)−α

. (2.11)

ExpSineSquared Kernel

The ExpSineSquared kernel [27] models periodic functions. It is parameterized by the
length scale l > 0 and a periodicity parameter p > 0 and is given by

k(xi, xj) = exp

(
−

2 sin(πd(xi, xj)/p)2

l2

)
. (2.12)

Other Kernels

There are also a number of other kernels [1, 27, 28], such as the White kernel, which
controls the noise component of the signal and can be used as part of a sum kernel,
the Constant Kernel, which is mostly used in a sum kernel to modify the mean of the
Gaussian process, the Dot-Product kernel, which can be obtained from Bayesian linear
regression. A special Dot-Product kernel is the linear kernel.

Kernel Operations

Several kernels can be combined by kernel operations to one kernel [1, 27, 28]. Kernel
operations which combine two kernels K1, K2 include the Sum kernel, which is defined
as

Ksum(X, Y) = K1(X, Y) + K2(X, Y), (2.13)

and the Product kernel being defined as

Kproduct(X, Y) = K1(X, Y) · K2(X, Y). (2.14)

The exponentiation kernel takes one base kernel and a scalar parameter p and connects
them via

Kexp(X, Y) = K(X, Y)p. (2.15)

9
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2.1.6. The Log Marginal Likelihood

The marginal likelihood is generally used to provide a measure of model fit and
therefore enable comparison between models. It can be derived from the marginal
likelihood, which is the marginal over the set of parameters that determine the model
and is defined as the integral of the likelihood times the prior:

p(y|X) =
∫

p(y|f, X)p(f |X) df. (2.16)

It is in general not calculateable in closed form, but an approximation can be found
using the sum of the full probability and a penalty term. The logarithmic marginal
likelihood is specified by

log p(y|X) = −1
2

y⊤(K + σ2
n I)−1y︸ ︷︷ ︸

1

2︷ ︸︸ ︷
−1

2
log|K + σ2

n I| −n
2

log 2π︸ ︷︷ ︸
3

(2.17)

where σ2
n is the noise variance and K = k(X, X). The term consists of a sum of three

parts. (1) is the only one that depends on the output data and thus represents the data
fitting. (2) penalizes the complexity depending on the kernel and the input data and
(3) is the normalization constant. It can be observed that y ∼ N (0, K + σ2

n I). Small or
negative values indicate a good model fit [28].

2.2. Bayesian Optimization

Bayesian optimization (BO) has proven useful for globally optimizing black-box objec-
tive functions that are difficult to evaluate, with the advantage of tolerating noise in the
function evaluations. Thus, Bayesian optimization results in a point that minimizes or
maximizes the function f . BO is part of a class of methods called surrogate models,
which include all approaches for optimizing objective functions where it is not possible
to efficiently evaluate a function point. It has proven to be very powerful and has
excellent performance. Several paper [26, 21, 31] showed that BO outperforms both
experts and other modern global optimization algorithms.

BO can be applied to various search spaces that include arbitrary parameterized
response domains and continuous domains, optimally with less than 20 dimensions.
The objective function f is typically difficult, time consuming, or even impossible
to evaluate directly. Therefore, BO uses adaptive sampling to reduce the required
function evaluations. Moreover, BO is usually used when there is no known structure
in f , such as concavity or linearity, otherwise other optimization methods might be
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more efficient regarding the number of function evaluations. BO consists of two main
components: GPR as the method for statistical inference, and an acquisition function
that decides where to draw the next sample. A surrogate is created for the objective
function and the GPR is used to quantify the uncertainty in this surrogate. The GP has
the advantage that it has a quantification of predictive uncertainty which is used by the
acquisition function to get the next best sampling position. Other methods for creating
this prediction model for the objective function than GPR include random forest [34] or
deep neural networks [32], but will not be considered in this work.

BO is used in many areas, such as tuning hyperparameters in machine learning
algorithms, especially deep neural networks, reinforcement learning, calibration of
environmental models, cognitive science and chemistry.

2.2.1. Introduction to Bayesian Optimization

Since the objective function is difficult to evaluate, the goal of BO is to approximate
the global optimum well enough while minimizing the number of evaluations of the
objective function. Therefore, a probabilistic surrogate model for modeling the objective
function is created. This Bayesian statistical model is a GP and is compared to the
objective function easy to evaluate. For BO an initial dataset is beneficial, which is
used to train the GP. This initial dataset can be obtained by evaluating the objective
according to an initial space-filling experimental design, often consisting of uniformly
randomly selected points. Like in section 2.1 explained, the GP is constructed from
prior observations and a prior over functions that capture our assumptions about the
response surface. Assumptions could be about the smoothness or experimental noise,
but are not always available, which is why several kernels often have to be evaluated.
The fitted GP can be evaluated at a candidate point x to obtain possible values for the
objective function f (x).

After training the surrogate model an acquisition function is used to select the
next position for evaluating the objective function. The acquisition function uses
the GP to determine the expected utility of candidate experiments. After evaluation
the objective function at the suggested point, which is obtained by optimizing the
acquisition function, the dataset and the GP posterior gets updated. Repeating the
process leads to improved results [8, 31, 12].
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In the following the BO algorithm is shorty summarized:
1: Train GP with initialization data.
2: loop
3: Update posterior prabability distribution of GP with all available data.
4: Optimize acquisition function based on the current posterior distribution.
5: Observe the objective function at the optimized point.
6: end loop
7: return Position of best value.
Four iterations of BO using GPR for one-dimensional inputs can be seen in Figure 2.3.

Each row represents one iteration, and the left panels show the objective function in
red with red circles representing the observations. The red shading represents the noise
in the objective function. Also shown in green is the output of the GPR. The green
solid line is the mean µGP(x) of the underlying GP and the green shadow represents
the variance σGP(x) of the GP at some point x. The mean can be interpreted as the
point estimate of the objective function at x and interpolates the previously evaluated
points. In unexplored areas, the uncertainty of the GP is high and thus zero in the
observation points because the variance predicts the uncertainty of the model. Both
the mean and variance are updated with each subsequent evaluation. On the right
side, the corresponding acquisition functions for each iteration after the GP is fit, are
shown. The acquisition function represents the most promising areas based on the
given knowledge. Here, the expected improvement is used, which will be explained
below. The blue circle indicates the next evaluation point and is always the maximum
of the acquisition function. At points that have already been observed, the acquisition
function is low, since these points are already known and should not be selected again.

2.2.2. Acquisition Functions

The acquisition function u(x) can efficiently determine the next sampling position since
the GP is used instead of the objective function, which is inexpensive to evaluate. When
selecting the next sample, two relevant criteria are balanced against each other: explo-
ration and exploitation. Exploration aims to explore areas where the uncertainty about
the objective function σ(·) is high and thus in unexplored areas, whereas exploitation
uses the previously gained knowledge and selects a point that is assumed to be closer
to the global optimum and thus µ(·) is high. To achieve the goal of obtaining the best
possible value with as few function evaluations as possible, the optimal balance of
exploration and exploitation is required [12].

There is a variety of different acquisition function, each has a slightly different goal
when selecting the next sample point. There are acquisition functions that are optimal
in their minimum, but also those that are optimal in their maximum. They can be
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Figure 2.3.: Four Bayesian optimization steps. On the left the true objective function
(red) with observations (red dots), mean (green) and covariance function
(light green) and on the right the acquisition function. Taken from [16].
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Figure 2.4.: EI contour plot, in terms of ∆n(x), the expected difference between the pro-
posed point and the best point f (x′), and the posterior standard deviation
σn(x). Red indicates high and blue smaller values. Taken from [8].

transformed into each other by negation. Most acquisition functions have a parameter
κ, which controls the exploration-exploitation trade-off.

Probability of Improvement (PI)

The negative Probability of Improvement (PI) prefers the strategy exploitation by
prefering areas with a high probability for improving the current maximum f (x′) =
maxm≤n f (xm), where n is the number of evaluations [16]. It is given by

−PI(x) = −P( f (x) ≥ f (x′) + κ). (2.18)

Expected Improvement (EI)

The expected improvement (EI) is the most common acquisition function and is cal-
culated using the previously evaluated point with the best observed value f (x′). By
assuming that only one additional evaluation is possible, EI is derived. The evaluation
at the position x leads to the observation f (x). The value of the best point is then either
f (x) or f (x′), and the improvement is then [ f (x) − f (x′)]+, where a+ = max(a, 0).
Therefore, x should be chosen to maximize the improvement, and thus the negative
expected improvement is calculated by

−EI(x) = −E[ f (x)− f (x′)]. (2.19)

The expected improvement is usually calculated using integration by parts, described
in more detail in [8].

In Figure 2.4, the contours of EI are plotted in terms of ∆n(x) and the posterior
standard deviation σn(x) of the n-th iteration at the proposed point. ∆n(x) = µn(x)−
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f (x′) is the expected quality difference between the proposed point x and the best point
so far. Blue represents small values, while red indicates high values. As a result, the
graph shows that EIn(x) increases in both ∆n(x) and σn(x), and lines with constant EI
show, how EI balances between exploitation (high expected quality and therefore high
∆n(x)) and exploration (high uncertainty and therefore high σn(x)). Evaluation at points
with high ∆n(x) is desirable because these points are likely to be good approximations
of global optima. In contrast, points with high uncertainty provide more information
about the target in areas that are not well explored. Therefore, the tradeoff between
exploration and exploitation is considered by the EI.

In Figure 2.3, EI is used as acquisition function and is shown in the right panels.
Exploitation is used in the first and last figures, while exploration is preferred in the
second and third figures [16, 8].

Lower Confidence Bound (LCB)

By using the Lower Confidence Bound (LCB), the trade-off between exploitation and
exploration can be controlled by the parameter κ [16].

LCB(x) = µGP(x)− κσGP(x) (2.20)

2.2.3. Bayesian Optimization for Material Synthesis

Bayesian optimization has been found useful in the fields of chemistry, chemical
engineering, materials design, and drug discovery, where it takes years and many
resources to fully implement BO because it requires repeated experimentation. Some
research has already been done, but the number of researchers in these fields who are
aware of the benefits of BO is still quite small [8].

BO can be used to predict synthesis parameters for a certain material. The number of
evaluations required to build a model is related to the number of parameters. That is,
with a large number of parameters, the number of observations also increases, making
the creation of the model more complex and challenging. The number of parameters for
material science is mostly managable, but depends on the material under consideration.
Repeating the process of BO leads to improved results and the process stops when
the reaction yield is maximized, the resources are exhausted, or the reaction space is
sufficiently explored.

In classical experimental design, modeling and optimization are two different pro-
cesses. However, in BO, a potentially more efficient sampling is performed by adapting
to previous evaluations. Thus, optimization is integrated into the modeling process.
Since the goal in the discovery of new materials is to minimize the required resources
and thus the number of experiments, BO is suitable because its advantage is a minimal
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Figure 2.5.: Overview of BO cycle. It is an iterative process in which the unknown
black-box function is modeled as a GP, based on which the acquisition
function selects the most promising parameter. As more values of the
objective function become available over time due to measurements of the
performed experiments, the model quality improves. Taken from [12].

number of functional evaluations by using a model-based approach with an adaptive
sampling strategy.

Figure 2.5 shows the cycle of BO for experimental applications. Since there exists
no objective function, the experiment must be performed after each proposal of the
acquisition function. The GP models the belief about the experiment based on the given
knowledge, and based on this, the acquisition function selects the next sample point
and is thus cheap to compute, unlike the experiment. These synthesis parameters are
then used to run and evaluate an experiment, which is then used to further train the
GP in the next step [12].

2.2.4. Multi-objective Bayesian optimization

So far, optimization problems had a single objective according to which the optimiza-
tion was performed. However, in most optimization problems, optimization is not
performed according to one objective, but according to several objectives simultaneously.
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Figure 2.6.: Pareto front in red for two objectives.

This problem is approached by multi-objective Bayesian optimization (MOBO), which
works similarly to single-objective Bayesian optimization (SOBO).

In MOBO, the n-dimensional input space X remains the same as in SOBO, but
contrary, the m-dimensional target space Y is not bounded by m = 1. m is defined
by the number of targets. x = (x1, x2, ..., xn) ∈ X is called the decision vector and
y = (y1, y2, ..., ym) ∈ Y the target vector [33]. Therefore, the multi-objective optimization
problem is defined as

max
x∈X

(or min
x∈X

) y = (y1, y2, ..., ym) = f (x). (2.21)

Pareto Front

The problem with the optimization of multiple objectives is that they are usually in
conflict with each other, i.e. optimal regions of the different objectives are located in
different regions of the search space. Thus, optimizing one objective function leads
to the other objectives not being optimal. Therefore, the solution to the optimization
problem is a set, called the Pareto front, which is the tradeoff between the objectives.
A Pareto front for a problem with two objectives can be seen in Figure 2.6. None of
the objectives of the Pareto front can be further improved without degrading the other
objective [10].

Definition 2.2.1 (Pareto-dominance). For any two decision vectors a and b,

a ≻ b (a dominates b) if f(a) ≥ f(a), (2.22)

where fi(a) > fi(b) for at least one component i of f. (2.23)
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The comparisons between vectors are made elementwise.

The Pareto set is given by

{x⋆} = {x∗ ∈ X | x∗ ≻ x, ∀x ∈ X} . (2.24)

Therefore, it contains exactly all non-dominated points of the objective space. The
Pareto front is the image of the Pareto set:

F = {f(x) | x ∈ {x⋆}} . (2.25)

There exist different approaches to approximate the Pareto set, most of them need
a large number of objective function evaluations, which is not ideal in the case of
predicting synthesis parameters. MOBO deals with highly expensive objective functions
and minimizes the number of function evaluations, which is the simulation bottleneck
of the problem, as explained above. Therefore, an approximation of the Pareto set is
obtained by the BO.

MOBO uses a separate GP for each objective. In every iteration, after MOBO
proposes the synthesis parameters and updates the GPs, the GPs are used to compute
an approximation of the Pareto set. Since now no single value is predicted, but several,
BO cannot determine an optimal value, but only decide which decision vectors are
included in the Pareto set. In the end, the approximated Pareto set is returned instead
of the optimal point. There are several approaches for computing such approximations.
In this work, the non-dominated sorting genetic algorithm II (NSGAII) [5] is used [10].

Acquisition function

As with SOBO, there are several different acquisition functions in MOBO. In this
work, only the acquisition function described in [10] is discussed. It concentrates on
improving the Pareto front and represents a compromise between exploitation and
exploration.

Mainly points from the approximated Pareto set are selected. The method selects the
point on the approximated Pareto set that is farthest from all previously observed points.
Then, a randomly selected element of the decision vector with probability r ∈ [0, 1] is
replaced by a value from the respective allowed interval to ensure exploration.

2.3. Metal-organic frameworks

From 1990 onwards, there has been an increased amount of research on materials with
porous structures, based on metal ions and organic bridging linkers, which are called
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Figure 2.7.: Synthesis of a MOF kindly provided by Lena Pilz.

metal-organic frameworks, or MOFs for short. Some papers also refer to MOFs as
coordinating polymers, although some authors use the term MOFs only for structures
which exhibit porosity. A large surface area and tunable pore size, which can result in
porosity of up to 90%, are generally characteristic of these crystalline materials.

As shown in Figure 2.7, a MOF is a porous 3-dimensional framework of metal nodes
(blue spheres) and organic bridging linkers (yellow struts), that create pores inside.
This property of MOFs, makes them interesting in the first place, because one can store,
transport, and separate other substances. The linker is responsible for the size of these
pores, whereby a longer linker creates a larger pore, and thus larger molecules can
be stored in it. To support the formation of the MOF, modulators and additives are
usually added. The modulator "modulates" the reaction, there are several possibilities
how this can happen, e.g. by blocking binding sites. In general, modulators can either
facilitate the nucleation process or interfere with particle growth.

There is a wide range of inorganic metal components and an almost infinite choice
and design of organic linkers, leading to a variety of material structures and properties.
The sum of the physical properties of the inorganic and organic components and the
possible synergistic interactions between the two lead to the large number of MOFs. In
addition, depending on the respective parameters of the synthesis, such as temperature,
time, metal, modulator ratio and reactant ratio, different properties of a MOF are formed
during the reaction. As a result, a wide range of structural, magnetic, electrical, optical,
and catalytic properties can be introduced into such materials. Recently, there has
been a lot of interest in discovering new MOFs. The advantageous properties of MOFs
include extremely high surface area, adjustable pore size, and flexible functionality.
Creating porosity in these polymeric metal-organic structures has been a challenging
but crucial aim in the advancement of this field, as it offers possiblities for chemical
separations, ion exchange, sensing, and possibly even catalytic behavior [18, 37].

Their applications range widely, including catalysis and chemical sensors, removal
of absorption and separation of toxic substances from gas and liquid, storage of clean
energies and environmental applications, like energy and gas storage, and medical and
biological applications, like novel drug delivery systems [29, 19, 37].
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Figure 2.8.: Three dimensional structure of ZiF-8, created with [23].

There is also a varity of challanges in the fabrication and application of MOFs, includ-
ing brittleness, cracking and the scalability of the process. Besides, the reproducability
of identical properties is challenging, since it is difficult to obtain completely identical
synthesis conditions. This is due to the circumstance that some of them vary naturally,
e.g. the temperature in the room where the synthesis takes place [18, 37].

Although over 100,000 MOFs have already been discovered [9], including only pre-
dicted but not yet synthesized MOFs, there is still an incredible number of undiscovered
MOFs, where the number cannot be determined. The goal of this work is therefore to
optimize the process of the parameter discovery.

In this thesis, the focus will be on three MOF structures to demonstrate Bayesian
optimization of material synthesis: ZiF-8, UiO-66 and NH2-UiO-66. Since MOFs are
very diverse, it is generally not possible to draw conclusions regarding good synthesis
parameters from one subclass to another.

ZiF-8 belongs to the subclass of zeolitic imidazolate frameworks (ZiFs). ZiFs represent
a unique and well researched class since the network topology and associated properties
vary widely while maintaining core chemical connectivity. They combine properties
and thus advantages of both MOFs and zeolites, which are often compared to MOFs.
These include crystallinity, porosity, and superior chemical and thermal stability. ZiF-8
is one of the best developed MOF structures, because of its easy, controllable, and
cheap sythesis leading to structural flexibility, high chemical and thermal stability, good
gas separation performance, and large specific surface area. Since they can also be
manufactured to be biocompatible, they are likewise used for bone fabrication [17].
ZiF-8 has a microporous structure composed of zinc ions (Zn(ac)2 · 2 H2O) coordinated
with 2-methyl imidazolate linkers forming a solidate zeolite topology. This structure
features a space group of interconnected six-membered annular windows, as shown in
Figure 2.8. In this work sodium hydroxide (NaOH) is used as modulator and methanol
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(CH3OH) as solvent. Due to its properties such as large surface area and robustness,
ZiF-8 finds application in gas separation processes by absorption, membranes, sensing
and catalysis, among others [2, 20].

UiO-66 consists of zirconium metal nodes obtained from zirconium chloride (ZrCl4)
as well as benzene-1,4-dicarboxylic acid (BDC) as linker. In this work acetic acid
(CH3COOH) and water (H2O) are used as modulator and the solvent is propanamide
(C3H7NO). UiO-66 has gained scientific popularity due to its large surface area and high
thermal stability, which is attributed to the fact that the metal oxide is cuboctahedral.
In addition, it has exceptional tunability and functionality and can therefore be used
for many different applications. It can be easily synthesized on a laboratory scale and
has high mechanical, acid, aqueous, and water vapor stability. Applications of UiO-66
include catalysis, photocatalysis, adsorption separation, sensors, and biomedicine [35].

NH2-UiO-66 has in principle the same structure as UiO-66 and differs only in one
functional group, at the linker, the amino group. The metal, which is zirconium, the
modulator, and the solvent are the same in both cases. This makes the systems very
similar, both in structure, properties and applications, because the pore size is not really
affected by this modification. However, the functionality of the amino group is added;
for instance, something can be specifically bound to it.
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3.1. Introduction to predicting synthesis conditions

The overall goal of this thesis is to implement BO capable of predicting new good
synthesis parameters, while minimizing the number of time- and resource-intensive
experiments required. In this way, the time spent on unsuccessful experiments should
be significantly reduced. BO predicts the relationship between the synthesis conditions
and the fitness metric of the resulting MOFs based on the available data and the
sequential search for the global optimum within the search space. The fitness metric
is a criterion for the quality of the reaction and is determined by experiments. Since
the selection of the kernel and its hyperparameters is crucial for BO, this process has
received special attention and has taken a considerable amount of time.

Due to the large search space and the lack of a priori knowledge about the location
of good synthesis parameters, predicting the synthesis conditions is a difficult search
problem. In MOF synthesis, the linker and metal nodes are often simple enough that
the synthesis itself is not the bottleneck. It should be noted that many syntheses are
not feasible, and the number of syntheses should therefore be kept as small as possible.
Instead, the real challenge is finding the optimal synthesis conditions which result
in MOFs with the best properties, like large surface area, stability, and porosity. In
this work, the desired properties are uniform nanoparticle size and crystallinity. The
understanding of the synthesis process of MOFs, such as crystal growth, kinetics, and
energetics of framework bond formation, etc., is too limited to make reliable predictions
about good synthesis parameters. A synthesis experiment must first be conducted,
which takes a considerable amount of time, to reliably determine the properties of the
respective MOF, since the exact geometry is typically unkown a priori. Since MOFs
involve many different and numerous chemical compounds, even the known synthesis
conditions for a MOF are generally not transferable to new MOFs. As a result, no
general synthetic pathway exists for MOFs [25].

The parameters of a typical MOF synthesis include the choice of solvents and their
composition, temperature, reaction time, amount of metal, reactants ratio, and modula-
tor ratio. Since there are numerous parameters, the search space grows exponentially
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with the number of categorical components, therefore some parameters are held con-
stant. In this work the choice of solvent, metal source, modulator, solvent, and solvent
volume is considered as fixed, while the temperature, time, metal, reactants ratio,
and modulator ratio are variable parameters whose value must be optimized. More
about these variable parameters can be found in section 3.3 Dataset. This results in a
high-dimensional chemical space that must be searched for the parameters that lead to
the desired formation, crystallisation and properties of the MOF.

3.2. Approaches for predicting synthesis conditions

In the following, the different approaches for predicting synthesis conditions are
presented.

3.2.1. Classical approach

The classical discovery of reaction parameters for experiments is usually done as
follows. Chemists search the chemical literature for similar reactions and deduce the
most influential dimensions for reaction success based on experience, mechanistic
understanding, empirical data and simple heuristics. Then they perform experiments,
changing only one parameter at a time, because the parameters might influence each
other. Afterwards, the resulting MOF is analyzed and based on that the next synthesis
parameters are selected. This leads to a large number of experiments, which is very time
and resource consuming. However, since only a small subset of all possible synthesis
parameters can be performed in practice, finding the best experimental conditions is
not guaranteed, and chemists must hope to obtain reasonably good results [31].

Several algorithms for finding MOF synthesis parameters have already been explored,
among them grid search, which is an approach to search the chemical space without
any prior knowledge. However, the cost of this approach increases exponentially with
the number of variables and is thus not optimal. Therefore, a more sophisticated search
method, such as a machine learning approach, would be desirable.

3.2.2. Machine learning approach

Since chemists have already been able to synthesize thousands of MOFs, they must
be able to develop a chemical intuition given the vast search space and therefore beat
the brute force approach. Chemical intuition is a set of unwritten guidelines that
synthetic chemists use to find the right synthesis conditions. Several papers [25, 24]
have successfully shown that chemical intuition learned by a computer can find optimal
MOFs faster than humans are capable of [25]. However, since machine learning is still
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Figure 3.1.: BO workflow.

very new to the field of chemistry and is still used to a very small extent, the potential
of machine learning for predicting synthesis conditions has not been explored enough
and is far from being fully exhausted. Promising results have also already obtained in
previous work for chemical synthesis with Bayesian reaction optimization [31].

Moreover, the parameter combinations suggested by a machine learning method may
not seem intuitive to a chemist and therefore are usually left unconsidered, but could
still lead to satisfactory or even better results.

3.2.3. Bayesian optimization approach

In this thesis the goal is to capture chemical intuition using BO and therefore predict
synthesis parameter resulting in MOFs with a good fitness score. BO does not rely on a
detailed chemical understanding of MOFs and how the fitness is computed.

In the following, first an approach for a single-objective BO with the fitness score
as objective implemented with the scikit package [16] is provided, and then a multi-
objective BO implemented with MOBOpt [10] is presented. The fitness is computed
from various indicators measured to evaluate the performed experiment (for more
details see section 3.5.6). For the implementation of BO, the calculation of the fitness is
not relevant, only the value is needed. The fitness is a value between zero and one and
is optimal at one.

BO requires a computable objective function to propose synthesis parameters. But
since in the discussed problem statement experiments have to be performed and
analyzed first to get the fitness and thus the function value of the objective function,
the objective function has to be modeled to approximate the fitness function. For this
purpose, GPR, hereafter referred to as external GP, was used to predict the outcome
of the synthesis. It was trained with the available data and then assumed to be the
reality so that multiple proposals could be produced at once. The BO workflow can
be seen in Figure 3.1. The external GP should not be confused with the internal GP,
which approximates the objective function and thus the external GP, and is used by
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Table 3.1.: Ranges of the parameter for the all three structures.

Structure
Temperature Time Metal Reactants ratio Modul. ratio

[°C] [min] [mmol] [eq L of M] [eq of M]

ZiF-8 (40.0, 145.0) (10, 45) (0.01, 2.00) (0.5, 50.0) (0.0, 10.0)
UiO-66 (80.0, 150.0) (5, 36) (0.01, 2.00) (0.0, 71.5) 1.0
NH2-UiO-66 (100.0, 175.0) (15, 47) (0.25, 2.00) (30.0, 95.0) 1.0

the acquisition function to generate new sample points while minimizing function
evaluations.

An alternative to the external GP would be to wait each time between suggesting
parameter sets until the experiment has been performed and use the true fitness value
instead of the prediction of the GP, like proposed in subsection 2.2.3. This is not practical
for the MOF synthesis method used in this work, because up to six experiments can be
conducted simultaneously and take the same amount of time as one experiment. The
purification and analysis to determine the fitness value requires a cosiderable amount
of time. Therefore, the approach with the external GP was chosen.

3.3. Dataset

The search space of the synthesis parameters is infinitely large. Therefore, it makes
sense to limit the search space by restricting the limits of the parameters to chemically
reasonable numbers, e.g. the reactants ratio should not be zero and the temperature
should be within a range, where it is possible to obtain the specified MOF. The
ranges vary depending on the MOF structure and can be seen in Table 3.1. Therefore,
impossible or very unlikely condition areas are excluded based on an experts opinion.

As already mentioned in section 2.3, the focus is on three different MOF structures:
ZIF-8, UiO-66, and NH2-UiO-66. The variable parameters for the synthesis are tem-
perature, time, metal, reactants ratio, and modulator ratio. A particular experimental
condition can be described as a point in a 5-dimensional chemical space. Reactants
ratio is the ratio of metal salt to linker. Metal salt is used because the metal is not added
as an element but as a salt and dissolved so that it is present as an ion and combines
with the linkers. The reactants ratio is fixed for UiO-66 and NH2-UiO-66 to one. The
modulator ratio is the ratio of metal and modulator.

Since the number of parameters varies depending on the structure, the reaction space
has a different size depending on the structure. Exemplarily for ZIF-8, the reaction
space contains more than 3.62 · 1011 possible configurations.
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The available learning data, consisting of 30 data points, which can be seen in
Table A.6, was generated by three generations (10 data points each) of the Genetic
algorithm (GA) inspired by natural selection presented in [25] with an initial dataset
suggested by the grid search of SyCoFinder on the Materials Cloud website, with
parameter ranges based on literature research [25].

The goal in predicting the synthesis conditions of ZIF-8 is to produce 100 nm sized
particles for bioapplications in the field of drug delivery, i.e. drug incorporation and
specific re-release, as in the case of recognition of a tumor receptor or similar.

In practice, a major problem is that some parameters, such as temperature, are
difficult to determine accurately. Since the temperature in a room varies, it is difficult
to replicate MOFs. In addition, not all measurement results are exact. Therefore, the
measurements were performed several times. For example, the DLS value, the particle
size component of the fitness value, is measured 15 to 20 times and the mean value
is calculated as the result. Then this process is repeated and the average of the two
results is calculated as the final DLS value. Therefore, it must be assumed that the
measurements of the physical properties are sufficiently accurate.

3.4. Preprocessing of data

Preprocessing of the data, which in this work is normalization of all data in a uniform
range is especially useful if the kernel uses some kind of location difference of the
points, since the GP can then learn the correlation between synthesis parameters and
the weighting of importance of the parameters without any restrictions. Without
normalizing the data, the kernel is implicitly weighted due to the different ranges of the
various parameters. It is highly unlikely that these weights reflect the actual correlation
of the parameters. Kernels that are particularly affected by this are kernels that factor
the difference between points in an arbitrary way, i.e., kernels that include a length
scale. Examples of such kernels are perodic kernels like the ExpSineSquared kernel,
the RBF kernel, the RationalQuadratic kernel, and the Matern kernel. In this work,
normalization is done by transforming all parameters to a range of [0, 1].

To highlight the difference between processed and raw data, Figure 3.2 shows the
raw data on the left and the scaled data on the right in an multidimensional scaling
projection (MDS) of the synthesis parameter space. A MDS projection visualizes
the similarity between individuals in a dataset, computed by the pairwise Euclidean
distance of the normalized variables. As can be seen, the data relationships have
different shapes.
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Figure 3.2.: Multidimensional scaling projection of the 5-D parameter space onto a 2-D
plane. Similar conditions are close to each other. The green points are
part of the given dataset from the GA and the blue ones are part of the set
proposed by BO. On the left side the data is not normalized, on the right
side it is.

3.5. Single-objective Bayesian optimization

To use BO, first, the best kernel of the external GP with the best hyperparameters
was selected by training and evaluating the models with the available data. Then, BO
could be performed, like visualized in Figure 3.1, with the intention that it converges
to the optimal synthesis conditions based on the predictions of the external GP. The 10
proposed synthesis parameters were synthesized experimentally. The goal was to use
the experimental data to further refine the regression model. Theoretically, the process
should be repeated until the regression model fits perfectly and BO suggests the best
synthesis parameters.

Due to the limitations of the project only few experiments could be performed. Thus,
the focus was mainly on ZiF-8. For the others, only the first step, the basic selection of
useful kernels, was performed.

3.5.1. Optimizing the kernel of the external Gaussian Process

Considering that the kernel has an immense impact on the posterior mean and variance
and thus on the prediction, the choice of the kernel and its hyperparameters is crucial
for the entire model. The choice of kernel and the choice of hyperparameters can be
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regarded as a degree of freedom of the regression [1]. Because of the small dataset,
these degrees of freedom should be kept small and therefore, not many different kernels
where combined into one kernel to ensure that the number of hyperparameters is still
small enough.

Not only the kernel must be selected, but also the kernel’s hyperparameters, the
number of which varies depending on the kernel. The influence of hyperparameters
on the model were explained in subsection 2.1.5. Tuning them is important to obtain
an appropriate predictive model capable of explaining the relationship between the
experimental data. To highlight the importance of hyperparameter tuning, Nakayama et
al. [26] showed by simulating actual material synthesis, that the worst hyperparameters
display an increased number of syntheses where the global maximum can be reached
with 90% probability by a factor of 2.4 compared to the optimal hyperparameters.
They showed the importance of selecting hyperparameters appropriate to decrease
the number of required searches. With optimal hyperparameters, BO can beat human
experts already in the one-dimensional case. When optimizing several parameters, it is
even more difficult for experts to find proper synthesis parameters.

Since the structure of the data and thus the structure of the objective function is
not known, this cannot be exploited and does not lead to a preference for a particular
kernel. Typically, kernels are chosen according to the assumptions about the structure
of the data and objective function. However, since both are unknown in this setting, all
kernels have been taken into account.

From a Bayesian point of view, the hyperparameters must be found that are most
likely to predict the output data given the input data by the respective GP. There exist
two different approaches to optimize the hyperparameters: optimizing the log marginal
likelihood function of the GP and cross-validation.

Log Marginal Likelihood approach

For the first approach, the negative log marginal likelihood function gets minimized.
The definition for it can be found in subsection 2.1.6. The optimal hyperparameters
regarding the likelihood are obtained from the minimum of the negative log marginal
likelihood function

φφφ = arg min
φφφ∈Φ

log p(y|X, φφφ) (3.1)

where φφφ is the vector of hyperparameters and Φ is the corresponding parameter space.
A gradient-based optimization algorithm is used for minimization since an analytical
solution is not computable. As the negative log likelihood is non-convex, the resulting
optimum of the hyperparameters is not guaranteed to be optimal, since the space
can have several local optima [1]. For example, gradient descent starts at some initial
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position and follows the negative gradient towards a local minimum. As such, it is
important to provide appropriate initial values for the hyperparameters. The advantage
of the log-marginal likelihood approach is that it balances the fit and complexity of a
model.

Cross-validation approach

Cross-validation splits the dataset into a training set and a test set to avoid the overfitting
that occurs when testing with training data. The model would produce a perfect result
because the data has already been trained with the test data, but is unable to predict
useful, previously unseen data.

There is still a risk of overfitting on the test set, as the parameters can be changed until
the estimator performs optimally and therefore, the model can represent knowledge
about the training data and not the general data. This problem is exacerbated by
the small dataset, such that results may depend on the selection of sets. Hence, the
validation was performed several times with different training and test sets.

Cross-validation can be performed using different strategies, with all strategies
withholding the test set for final evaluation. In this work, the performance measure for
the test fold is calculated by the coefficient of determination R2, which measures how
well the model predicts the outcome and is defined by

R2(y, y′) = 1 − ∑n
i=1(yi − y′)2

i

∑n
i=1(yi − yi)

2 (3.2)

where y is the real data, y′ the predicted data, and y the mean of the real data [11]. It
indicates the accuracy of the observed results by the model, based on the proportion
of the total variation in the observations that is explained by the model. This score is
used since it shows the model fit, this means how well the predicted values match the
unseen test data.

In general the cross-validation approach is compared to the log marginal likelihood
approach more computationally expensive but might achieve a better representation of
the dataset [1, 27].

3.5.2. Model selection of Gaussian Process Regression

To avoid overfitting, the model should not be too complicated, but detailed enough
to avoid underfitting. Due to the very small dataset, there is a high risk of overfitting
because the data may not be sufficient to generalize patterns across the entire data
space, but only represent patterns that occur locally. Therefore, the selection of the
kernel was conducted in several steps to reduce the risk of overfitting. In the following
section, the division of the dataset is always performed randomly.
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Table 3.2.: The best five kernels of the first selection step. The columns show the average
difference of the two sets stated in the first row: internal GP (I-GP), external
GP (E-GP) and true fitness (T-F).

Kernel E-GP & I-GP E-GP & T-F I-GP & T-F

RationalQuadratic + ConstantKernel 0.00612 0.18070 0.18460
Matern + RationalQuadratic 0.00672 0.16604 0.16521
Matern + RBF 0.00728 0.16679 0.16564
RationalQuadratic + ExpSineSquared 0.00903 0.16765 0.16668
RationalQuadratic + RBF 0.00939 0.16723 0.16596

First selection step: Rough selection

A very rough selection of kernels was made during the first iteration. All single kernels:
Constant, Dotproduct, ExpSineSquared, Matern, Rationalquadratic, RBF and White
kernel, the sum of two kernels, the product of two kernels and all kernels with several
exponents were tested without considering in detail the optimization of the kernel
hyperparameter. This resulted in 56 different kernels. The kernels were compared
based on several indicators. To compute these indicators, the available set of data
points was divided into 20 training and 10 test data. From the training set, 10 points
were given as initialization data to BO. The first comparison indicator assessed whether
the trained external GP was able to predict the training data. Most kernels correctly
predicted the test data, but some kernels were not even able to predict these training
points, such as the DotProduct kernel. Kernels whose predictions of the training data
deviated overly far from the actual fitness were neglected.

During the training of a GP, the hyperparameters of the kernel were optimized by
maximizing the marginal likelihood using gradient-ascent. This is done by minimizing
the negative log marginal likelihood. However, this is rather limited, so it is still neces-
sary to specify suitable hyperparameters as initial parameters. Thus, each time the GP
is re-trained, the hyperparameters change. The internal optimization of the parameters
during the fitting process was used to propose suitable kernel hyperparameters which
fit the given data. Since the log marginal likelihood may have multiple local optima, the
optimizer was started repeatedly at random positions to propose good hyperparameter.

For each parameter-fitness pair in the test set, the fitness of the parameter was
predicted by both the external and the internal GP and then compared to the true
fitness. The difference between the internal GP and the external GP, the external GP
and the true value, and the internal GP and the true value were calculated for each test
point, and the average of each difference was used to evaluate each kernel. The five
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best kernels were selected for the next decision step, which can be seen for ZiF-8 in
Table 3.2 and for the other structures in Table A.1.

Second selection step: Evaluate kernel and its parameters

In the next step, the learning rate of the kernel was examined. The focus was on the
external kernel. Again, the external kernel was trained with 20 training points, leaving
10 test points to probe the trained kernel. To provide an indicator of the learning rate,
one data point was moved from the test set to the training set at each step. Hence, in
the first iteration there were 20 training points and 10 test points, in the second there
were 21 training points and 9 test points, in the third there were 22 training points and
8 test points and so on until there was only one test point left. Of course, only one
remaining test point can lead to incorrect assumptions, which is why a final evaluation
was performed afterwards. Again, the average of the difference between the true fitness
and the external GP prediction at each test point was calculated and can be seen in the
appendix Table A.2.

The second indicator for the comparison was the negative log marginal likelihood,
explained in subsection 2.1.6. The smaller this value, the better the kernel. This
likelihood was calculated when the kernel was trained with 20 data points.

The last aspect to consider in this iteration was the noise level. The noise level can
either be specified directly by the GP, or considered as a hyperparameter and thus
modeled as a kernel, the White kernel, as part of a sum kernel. Therefore, it can be
optimized in the same way as the hyperparameters. Here, the noise was included
by adding the White kernel in addition to the best kernels, and compared with the
two approaches above: Learning rate comparison and log marginal likelihood. The
result especially for the likelihood was reasonably clear. Kernels without noise had
a likelihood around −30, 000, 000 and kernels with noise around 5. Since there is not
much data available, the White kernel is not able to fit the data in this case. Thus, we
are dealing with overfitting. Noise is only useful in a case with more data. The log
marginal likelihood is around zero and therefore states that the model does not fit the
data.

Third selection step: Final evaluation

The final evaluation attempted to address all previously neglected aspects by varying
in the selection of the training and test set. In this step, the best kernels and its best
hyperparameters from the previous step were compared. The first comparison was
performed using 5-fold cross-validation. This cross-validation approach was used, since
with other approaches the resulting subsets are too small to lead to promising results.
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Figure 3.3.: Learning rate of the best kernels with best hyperparameters evaluated by
R2 score using cross-validation.

For each fold, R2 and then the mean of all folds was calculated, which can be seen in
Table A.3.

The second and most important decision criterion is another cross-validation ap-
proach: 20 training data points and 5 test points were randomly selected. Then the
coefficient of determination of the prediction of the external GP of the test points
was calculated. This process was repeated 100 times and the mean of the folds was
calculated. This ensured that the score does not depend on the selected datasets and
models the real score. Then the training set was increased by one and the whole process
was repeated until the number of training points was 25. In this way, one can determine
the learning rate of the GP, where the best kernels can be seen in Figure 3.3.

The criteria for selecting the final kernel and its parameters are the following:

1. A high learning rate, since the GP is probably not yet good enough to compute
the best synthesis parameters due to the small dataset available. Therefore, it is
important to have a kernel that improves drastically by just a few more training
points.

2. A good overall coefficient of determination ensures already that the kernel not
only has a good learning rate, but that the basic prior distribution already models
the dataset well enough.

3. Some of the individual calculations of the coefficient of determination for a
specific pair of training and test set were really bad. Therefore, another goal is
that the number of really bad results is small.
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3.5.3. Acquisition Functions

Three different acquisition functions were considered: Expected Improvement (EI),
Probability of Improvement (PI), and Lower Confidence Bound (LCB). EI was chosen as
the acquisition function because it provided the best results, even though the variation
between acquisition functions was not significant. EI is the most commonly used
acquisition function and generally provides a good balance between exploration and
exploitation. For this reason, and because the results were slightly better, EI was chosen.
Since there are still too many knowledge gaps in external GP anyway, the focus was
more on improving the GP model than on the acquisition function, since this is the real
bottleneck of the approach.

There exist also more suffisticated approaches for the acquisition function, like
Knowledge Gradient or Entropy Search. These are not applied here, since the available
dataset is too small, and the GP not exact enough yet to tune the acquisition function.

3.5.4. Final result of single-objective BO

The final best kernel has been found to be the RationalQuadratic + RBF kernel. The
hyperparameters alpha and length scale of the RationalQuadratic kernel and the length
scale of the RBF kernel are all set to 10−5. The RBF kernel is a universal kernel, which
means it satifies the universal approximating property [22]. A GP using a universal
kernel can approximate any continuous function on a compact set with arbitrary
accuracy. Therefore, it is able to learn any continuous function given enough data.
However, universal kernels sometimes learn relatively slowly, which is called the curse
of dimensionality. In general, the more structure considered, the less data needed,
called the blessing of abstraction. Thus kernels with a significant amount of structure
often require less data than flexible kernels [1, 7]. This problem is solved by summing
with the RationalQuadratic kernel, since it is not a universal kernel, the learning rate is
usually faster.

The RBF kernel models the long-term trend and the RationalQuadratic medium-term
irregularities. A too big length scale of the RBF kernel is not suitable for predicting
steeply rising peaks, which could be the global maximum. The initial variance of the
RBF kernel should correspond to the changes in the physical properties. Therefore, if
the variance is larger than the actual changes in the physical properties, the prediction
curve is not appropriate and tends to ignore datapoints [26]. The results therefore
suggest that the true objective function form steeply rising peaks.

The presented approach should lead to good predictivy accuracy, since it tries out a
large number of different regression models by an basic trial and error approach. As
can be seen in the tables, the scores are in general (also the one for the final result)
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Figure 3.4.: Synthesized MOFs kindly provided by Lena Pilz, Karlsruhe Institute of
Technology.

quite bad (R2 is usually < 0) which indicates that there is still not enough training data
available. Therefore, the goal is to propose the next sythesis parameters with BO to
further train the GP and improve the model.

3.5.5. Realization of Bayesian optimization

To propose the synthesis parameter, the external GP was trained with all available
data and then assumed to be reality. The BO was passed the available training data as
intitial data to train the internal GP. The same kernel was specified for the external and
internal GP. Since 10 experiments could be performed, BO ran for 10 iterations. During
this process, the internal GP was trained with the new proposed data. The resulting 10
proposed parameters are the data points that the acquisition function used found most
useful for further training the internal GP. This process is illustrated in Figure 3.1.

3.5.6. Evaluation of the single-objective BO approach

The synthesis parameters proposed by BO were tested experimentally and the resulting
MOFs were analyzed, including the calculation of the the fitness score. This was carried
out at Karlsruhe Institute of Technology by Lena Pilz and the synthesized MOFs can be
seen in Figure 3.4.

Calculation of the Fitness

The fitness value consists of several measurements and is computed by

Fitness value =

1 −

 1

| d(g)
d(r)−d(g) |+ 1

 · (1 − PDI) · XRD. (3.3)

XRD stands for X-Ray Diffraction. In this measurement, X-rays are diffracted at the
crystal lattice or, more precisely, at the metal nodes of the nanoparticles and then,
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Table 3.3.: Synthesis results of parameters proposed by BO and GA. Optimal value is
one for all parameters.

SOBO

d(r)-F PDI-F XRD Fitness

0.1293 0.00 1 0.0
0.0553 0.64 1 0.0352
0.3269 0.24 1 0.0798
0.6583 0.94 1 0.6192
0.1552 0.15 1 0.0227
0.3262 0.50 1 0.1636
0.1362 0.29 1 0.0402
0.0968 0.00 1 0.0
0.0950 0.34 1 0.0319
0.1703 0.49 1 0.0839

GA

d(r)-F PDI-F XRD Fitness

0.1663 0.81 1 0.1351
0.2610 0.33 1 0.0854
0.3621 0.92 1 0.3347
0.7192 0.92 1 0.6613
0.7065 0.92 1 0.6485

- - 0 0
0.5280 0.88 1 0.4659
0.1571 0.54 1 0.0851
0.2017 0.03 1 0.0062

- - 0 0

depending on their position in the lattice, generate a signal or, in the case of ZiF-8,
several substance-specific signals, which can then be seen in the form of "peaks" in the
diffractogram. The resulting pattern or positions of these peaks can then be compared
to a simulation or publication to determine if the desired structure, namely ZiF-8, has
emerged. XRD becomes one if this is the case, and zero if the structure is not present,
which leads to a fitness of zero.

Desired are ZiF-8 nanoparticles of 100 nm size and, if possible, only one particle size
should be produced, not a mixture of several. The term in round brackets consisting
of d(g), the goal-value, and d(r), the measured real value, is responsible for the
approximation to 100 nm. This term approaches one as the particle sizes approach
100 nm. The term (1 − PDI) is dedicated to the criterion of achieving only one particle
size if possible. PDI stands for polydispersity index and is a value between zero and one.
The closer it gets to one, the greater the polydispersity, i.e. the larger the distribution of
particle sizes.

Synthesis results

In the following the result of BO is compared to the second generation of the genetic
algorithm (GA) [25], which already proposed the parameters for the given dataset (see
section 3.3). The results can be seen in Table 3.3 and are visualized in Figure 3.5. The
raw data of the proposed synthesis parameters and the measurements of the resulting
MOFs can be seen in the appendix in Table A.7.
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Figure 3.5.: On the left a bar plot shows the number of succeeded XRD of GA (only
last generation) and BO. On the right comparison of MOFs which synthe-
sis parameters were proposed by BO and GA in terms of their size and
monotony of the particle sizes. Here, only the MOFs with succeded XRD
are included.

The comparison of the XRD can be seen in the first plot of Figure 3.5. With BO, the
desired structure was generated in all 10 syntheses, while with GA, even in the second
learning generation, there were still two syntheses that did not lead to the desired
structure. Thus, BO is clearly better concerning XRD.

The fitness values of BO are generally lower. In terms of molecular size, on the whole
generation, GA is better because it has significantly more values in the closer region
around the target value 100 nm than BO. However, in the absolute value of the best
experiment they are similar (GA: 139nm BO: 152nm).

The BO experiments generally have much higher PDI in the whole generation than
the GA. In some cases even values of one, which is the limit of the PDI. This is also
reinforced by closer analyses: an accumulation (more than 5%) of at least one other
particle size, i.e. not only a distribution of particle sizes (a polydisperse mixture), but
even an accumulation of one other size, was clearly exhibited by one sample at BO and
ambiguously by three. This was not found with GA in any of the samples. Although
this information is not included in the fitness, it shows that this is more often the case
with BO and not at all with GA.

The right plot of Figure 3.5 visualizes the results of BO and GA in terms of monotony
and particle size. It can be seen that GA is overall better at predicting MOFs with more
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Figure 3.6.: Multidimensional scaling projection of the 5-D parameter space onto a 2-D
plane. Similar conditions are close to each other and connected if they have
a normalized distance below 0.25.

accurate size than BO. The best results, the Pareto front, is plotted in orange. Since
both algorithms predicted one optimal synthesis parameter set, both algorithms are
equally good in terms of the best proposed parameter.

Model assessment

The model is assessed by averaging the mean absolute error (MAE) in the predictions
to evaluate the accuracy of the model prediction. Without the proposed ten parameters,
the MAE was 15.9% and with them 14.6% when evaluated with cross-validation. Thus,
an improvement can be observed. The MAE depending on the size of the training set
can be seen in Figure A.2.

After finishing all interations of BO and therefore, training the internal GP, an optimal
value gets suggested. However, this suggested value is most likely not good because
each synthesis parameter is on the edge of the allowed range. The poor proposal is due
to the few evaluations. Therefore, to obtain realistic optimal parameters, more data is
needed and thus more experiments must be carried out.

In Figure 3.6, a MDS plot of the synthesis parameter space can be seen. Both the
training set and the set proposed by BO are shown to visualize the similarity between
individuals in a dataset. The most diverse set is located at the edges. BO does not select
the most diverse set, but still suggests versatile parameters since most parameters are
not connected. Considering that the variances of the synthesis parameters predicted
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Figure 3.7.: Permutation Importance of Synthesis Parameter evaluated by permutation
feature importance.

by GP are all around one, the acquisition function still performs pure exploration. 30
data points are not enough to ensure that there is enough knowledge about the entire
five-dimensional parameter space.

The importance of the experimental variables was calculated by the permutation
feature importance [27]. The validation performance was measured by the R2 score
and is 0.202. The importance of the synthesis parameters can be seen in Figure 3.7.

So far, the data has not been normalized like described in section 3.4. Since the
prospective kernel is a sum of a RBF and a RationalQuadratic kernel, preprocessing of
the data should be relevant. The R2 score for cross-validation using the two methods
described above and the log marginal likelihood of the GP give an improvement of
less than 0.01% using the version with preprocessing. Also, the predictions and their
variances of the GP at the points suggested by BO do not change appreciably. Although
it is usually recommended to preprocess the data, it was concluded that it is not
absolutely necessary with the selected kernel and its parameters, because of the small
values of the hyperparameters.

When increasing the kernel’s hyperparameters, the results vary drastically, this is due
to the definition of the hyperparameter length scale, since it measures the correlation
between synthesis parameters. Therefore, if the data would have been normalized,
a different kernel may have been chosen. In addition, the preprocessing of the data
leads to less variation in the results, which facilitates the comparison of kernels and
hyperparameters.
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Figure 3.8.: Pareto front of dataset with parameters proposed by SOBO.

3.6. Multi-objective bayesian optimization

Since the problem of SOBO is the comparatively lower PDI and particlesize score, one
solution is to include these two values directly in the BO as objectives and thus to
perform MOBO on two objectives instead of only on the fitness. Thereby it could be
achieved that the result is not only very good with respect to XRD, but also with respect
to the other two values. Since XRD is not continuous, but can only take the discrete
values zero and one, it cannot be approximated by GPR since it is a classification
problem. However, since the other two objectives result in zero when XRD becomes
zero, an additional XRD objective would be redundant anyway.

3.6.1. Implementation of MOBO

Since in MOBO several objectives compete with each other, as described in section 2.2.4,
the Pareto set of the problem must be found, which is the set of all non-dominated
points. The Pareto front with the present data is shown in Figure 3.8, where it can be
seen that the values with the best fitness score are on the Pareto front. Therefore, this
approach seems to be a promising method.

The MOBOpt package was used for the implementation because it computes the
Pareto set with fewer objective function evaluations than other methods [10] and is
implemented in a way that allowed reuse of code from the SOBO implementation. The
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Figure 3.9.: Learning rate of 4 best kernels of MOBO evaluated by R2 score with cross-
validation. On the left the particlesize score and on the right PDI score.

data was preprocessed as explained in section 3.4. As with SOBO, external GPs were
used to model the objective functions. In doing so, one GP predicted the particlesize
and one PDI, using in each case not the actual value for d(r) and PDI, but their fitness,
which are optimal at one.

Due to lack of time, the complete selection process of the kernel and its hyper-
paremeter was not performed, but the best six kernels of SOBO were selected and their
hyperparameters were optimized as described in subsection 3.5.2. The accuracy of
the regression model was again assessed by comparing the predictions of the model
with the actual outcome of experiments using among others cross-validation. Also, the
proposed synthesis parameters of SOBO were used to train and validate the GPs. Each
GP was trained individually.

The R2 score of the cross-validation with increasing training data can be seen for
the four best kernels with the best hyperparameters in Figure 3.9. The R2 results are
significantly better than the SOBO optimization, which is due to the prior preprocess-
ing of the data and the 10 additional data points. Other evaluation indicators can be
seen in Table A.4. Thus, the selected kernels were RationalQuadratic(alpha=0.00602,
length_scale=0.304) + ExpSineSquared(length_scale=0.0451, periodicity=1.56e+03) for
the particlesize GP and RationalQuadratic(alpha=0.0194, length_scale=0.207) + ExpSi-
neSquared(length_scale=15.1, periodicity=0.00778) for the PDI GP.

With the chosen library it was only possible to specify one kernel for all internal GPs.
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Table 3.4.: Synthesis results of parameters proposed by MOBO. Optimal value is one
for all parameters.

d(r)-F PDI-F XRD Fitness

1 0.1166 0.08 1 0.0092
2 0.0431 0.30 1 0.0129
3 0.7372 0.90 1 0.6602
4 0.1686 0.16 1 0.0277
5 0.2426 0.71 1 0.1717
6 0.1302 0.08 1 0.0101

Therefore, for each hyperparameter the average of both GPs was chosen, since it is the
best possible starting hyperparameters for all GPs and the hyperparameters are further
adjusted during the execution of the MOBO.

The acquisition function used was described in section 2.2.4 and led to the selection
of similar synthesis parameters as the points were located on the calculated Pareto set
approximation. With the help of MOBO, an Pareto set approximation can be obtained.
Five Experiments were proposed by the MOBO and one additional parameter set was
computed of the mean of the Pareto set, since all decision vectors in the Pareto front
were close to each other. The goal was to examine how good the calculated Pareto front
already was.

3.6.2. Results of MOBO

The six proposed experiments were conducted and the results can be seen in Table
3.4 and are visualized in Figure 3.10. XRD was good for all of them as the structure
always appeared. The third proposed MOF was on the Pareto front and thus optimal.
Regarding the particlesize and the PDI the other predictions where generally lower
than the ones predicted by SOBO and GA.

In Figure 3.11 the five predicted parameters by MOBO can be seen in terms of their
predicted value, the variance and the true value. For the third MOF, which is the
optimal one, the prediction was fairly precise. It can be seen that the GPs overestimated
the fitness in all cases with high variance, which is the case for the second, the
fourth and the fifth MOF. This leads to the conclusion that the GPs need more data
to accurately represent reality. However, since only five MOFs were predicted, it is
difficult to conclude something in general about the accuracy of the GPs. Nevertheless,
the number of given data points is not sufficient to adequately and completely represent
the five-dimensional search space.
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Figure 3.10.: Pareto front of dataset with parameters proposed by SOBO and MOBO.

As can be seen in Figure 3.12, the predicted parameters are very close, which is
caused by the choice of the acquisition function. Three parameters are especially similar,
and therefore, close to each other in the figure. Since the used library MOBOpt focuses

Figure 3.11.: Fitness of objectives predicted by the external GPs compared to true fitness.
The corresponding numbers can be seen in Table A.5.
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Figure 3.12.: Multidimensional scaling projection of the 5-D parameter space onto a
2-D plane of synthesis parameters proposed by GA, SOBO and MOBO.
Similar conditions are close to each other and connected if they have a
normalized distance below 0.25.

on approximating the Pareto set of the problem with a reduced number of function
evaluations, sampling is done as close as possible to the Pareto set of the problem. This
probably led to the three really close synthesis parameters being proposed, since the
external GP predicts a good area there and therefore, points of this area were included
in the approximated Pareto set.
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In this work, Bayesian optimization with Gaussian processes was applied to find
synthesis parameters for the ideal MOF composition. The MOF under study was ZiF-8.
Since performing the reaction synthesis and evaluating the resulting MOF is time and
resource consuming, a GP was used to model the real data distribution. The complexity
of GP models scales with the number of training points. Since the used dataset was
small, the GP was not complex and compuations were fast. The best kernel was selected
based on cross-validation and log marginal likelihood. The hyperparameters were
optimized in several steps and the most promising model was selected to perform
SOBO. For ten proposed parameters, the reaction synthesis was performed and the
resulting materials analysed at Karlsruhe Institute of Technology. Evaluations showed
that XRD was optimal, but PDI and particlesize could be improved. Therefore, MOBO
was applied to improve the result by concrete optimization of PDI and particlesize. For
MOBO, six proposed syntheses were conducted. SOBO and MOBO each proposed one
synthesis parameter set located on the Pareto front. In summary, it has been shown
that BO can predict useful synthesis parameters already with a very small data set.

The external GP is a problematic area of implementation because it is only an
approximation of reality. If the posterior is not a good fit to the available data, BO
cannot predict promising synthesis conditions. Due to the small amount of available
data, the selection of the best fitting kernel was difficult.

Each SOBO and MOBO has its advantages. While SOBO is faster, which is not signif-
icant because of the small dataset, MOBO is capable of optimizing several objectives
simultaniously. Since a different number of experiments were performed for SOBO and
MOBO, it is not possible to clearly determine the better approach. However, MOBO
has significantly more optimization possibilities.

Since the selected acquisition function of MOBO resulted in similar synthesis pa-
rameter predictions, another acquisition function might lead to better results. The
EI-maximin acquisition function [11] has already proven itself useful for material dis-
covery and can obtain an adequate result with a small amount of data in a few function
evaluations. Compared to other methods it is more efficient and would therefore be a
good alternative for the current acquisition function.

Interesting possibilities for additional objectives of the MOBO include crystallinity
and yield, which are currently not considered and also not included in the fitness. The
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crystallinity is a percentage value for the X-ray diffraction pattern, i.e., it indicates the
suitability of XRD.

So far, it has been assumed that the objective function can be evaluated accurately,
although this is not true since the GP is an approximation to reality and every prediction
has uncertainty. Therefore, an optimization approach would be to perform the Pareto
front evaluation considering uncertain objectives, as described in [33].

The further overall goal is to predict the synthesis conditions for an arbitrary MOF,
and not only for one structure. Therefore, further work should evaluate the kernel
and hyperparameters for other MOF structures and generalize the algorithm for an
arbitrary MOF structure. It would be interesting to evaluate to what extent a kernel and
its parameters can be reused for other MOFs. Since their structures are very different,
optimal synthesis parameters cannot be directly transferred between MOFs. Future
research should investigate to what extent chemical intuition can be transferred.

A larger amount of training data would allow refinement and thus improvement of
the BO model. Synthesis data from the literature could be used to obtain more data and
allow more promising results to be obtained. However, there is the problem that data
is usually not shared between scientists, only successful results are published, failed
experiments are often neglected in publications, and the data behind them is often
not available for published papers. As a result, experiments in studies are often not
even reproducible. In addition, data must not only be shared, but also organized and
characterized in the same way to make different datasets compatible, due to different,
inconsistent metadata (information that explains and characterizes the measured or
calculated data), ontologies (relationships between metadata), and workflows.

The NFDI project FAIRmat has created a FAIR (findable, accessible, interoperable
and reusable) data infrastructure for condensed matter physics and solid state chemical
physics. FAIRmat provides access to data and tools from and for materials synthesis,
experimentation, theory, and computation [30]. Another platform for data sharing is
NOMAD (Novel Materials Discovery) Laboratory, a user-driven platform for sharing
and processing materials science data [6]. These projects enable efficient data sharing,
better documentation, and thus new opportunities for materials science. With the help
of the presented platforms, more data could be obtained and thus the GP model could
be improved.

In addition, FAIRmat is currently developing new tools for fitting data, removing
noise from data, and detecting and learning patterns in data. With these capabilities,
an understanding of the correlation between synthesis parameters and fitness can be
built and used to optimize the prior of the GP to better fit the posterior of the GP to the
data.
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A. Appendix

A.1. Single-objective Bayesian Optimization

Table A.1.: The best kernels of the first selection step of UiO-66 and NH2-UiO-66.

UiO-66 NH2-UiO-66

RationalQuadratic + RBF RationalQuadratic + RBF
RationalQuadratic + ExpSineSquared RationalQuadratic + ExpSineSquared
RationalQuadratic + ConstantKernel RationalQuadratic + ConstantKernel
RationalQuadratic + DotProduct RationalQuadratic + DotProduct
Matern + RBF Matern + RBF
Matern + ConstantKernel Matern + RationalQuadratic
Matern + ExpSineSquared Matern + ExpSineSquared
RationalQuadratic ** 2

Table A.2.: The best four kernels considering the learning rate evaluated by computing
the average of the difference between the true fitness and the external GP
prediction at each test point. Visualized in Figure A.1.

Matern+RBF Matern+RQ RQ+ConstantKernel RQ+RBF

20 0.1674 0.1672 0.1807 0.1673
21 0.1769 0.1768 0.1845 0.1769
22 0.1956 0.1952 0.1958 0.1954
23 0.1538 0.1549 0.1445 0.1535
24 0.1541 0.1531 0.1514 0.1541
25 0.1560 0.1534 0.1567 0.1554
26 0.1657 0.1642 0.1524 0.1653
27 0.1939 0.1931 0.1927 0.1926
28 0.0154 0.0439 0.0327 0.0375
29 0.0002 0.0763 0.0242 0.0714
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Figure A.1.: Learning rate of the best kernels computed by the average of the difference
between the true fitness and the external GP prediction at each test point.

Table A.3.: The 5-fold cross-validation score of the best kernels.

.

Kernel 5-fold cross-validation

Matern + RationalQuadratic -1.3706
Matern + RBF -1.4009
RationalQuadratic + ExpSineSquared -1.4020
RationalQuadratic + RBF -1.4016

Figure A.2.: Mean absolute error depending on the size of the training set.
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A.2. Multi-objective Bayesian Optimization

Table A.4.: Results of kernel optimization of MOBO. On the top half is the GP for
particlesize score and on the lower half the GP for PDI. The evaluation
methods are 5-fold cross-validation with R2 score, negative log marginal
likelihood, Difference of prediction of external GP and true values. Abbr.:
M: Matern, RQ: RationalQuadratic, Exp: ExpSineSquared.

M + RQ M + RBF RQ + Exp RQ + RBF

5-Fold CV -0,2946 -0,2946 -0,2702 -0,2946
N-LML -42745332 -42745189 -42745200 -42745284

Diff GP-Test 0,1637 0,1637 0,1596 0,1637
5-Fold CV 0,1049 0,1088 0,2060 0,1047

N-LML -2250000 -2250002 -2249999 -2250002
Diff GP-Test 0,2598 0,2351 0,2456 0,2605

Table A.5.: Fitness of objectives predicted by the external GP of the MOBO compared
to the true fitness.

Pred d(r)-F Var d(r)-F True d(r)-F Pred PDI-F Var PDI-F True PDI-F

1 0.7176 0.0171 0.1166 0.92 0.0523 0.08
2 0.4075 0.1754 0.0431 0.77 0.2577 0.30
3 0.7064 0.0036 0.7372 0.92 0.0061 0.90
4 0.3814 0.1823 0.1686 0.81 0.2939 0.16
5 0.4436 0.1674 0.2426 0.89 0.2293 0.71
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A.3. Dataset

Table A.6.: Dataset parameter, proposed by GA. Temperature, time, metal, reactantsra-
tio, modulatorratio, fitness, XRD, d(r) in nm and PDI.

Temp. Time Metal Reactant. Modulat. Fitness XRD d(r) PDI

1 140.00 45.00 2.00 50.00 10.00 0.2085 1 322.75 0.33
2 40.00 10.00 1.00 50.00 10.00 0.0000 0 - -
3 40.00 45.00 2.00 0.50 5.00 0.0000 0 - -
4 90.00 45.00 0.01 50.00 0.00 0.0000 0 - -
5 140.00 10.00 2.00 25.25 0.00 0.0825 1 906.40 0.25
6 140.00 27.50 0.01 0.50 10.00 0.0000 0 - -
7 40.00 27.50 2.00 50.00 0.00 0.2895 1 336.75 0.03
8 40.00 45.00 0.01 25.25 10.00 0.0000 0 - -
9 90.00 10.00 2.00 0.50 10.00 0.2601 1 309.30 0.20
10 140.00 10.00 0.01 50.00 5.00 0.0000 0 - -
11 40.00 14.18 0.29 25.47 10.00 0.0000 1 401.45 1.00
12 144.45 44.38 2.04 53.78 10.13 0.0710 1 729.95 0.48
13 83.88 44.73 0.77 50.00 0.00 0.1585 1 511.65 0.19
14 40.00 17.17 1.10 50.00 0.25 0.0000 0 - -
15 140.00 10.92 0.01 19.60 8.06 0.0000 0 - -
16 40.33 36.84 2.17 14.45 0.00 0.1505 1 440.00 0.34
17 140.00 10.00 1.53 48.31 3.75 0.0243 1 3399.00 0.17
18 63.34 29.44 1.86 9.79 9.02 0.0625 1 1368.00 0.15
19 40.00 27.50 2.00 50.00 0.00 0.4014 1 233.80 0.06
20 140.00 27.39 1.82 2.60 8.97 0.0161 1 2357.00 0.62
21 56.33 28.56 1.90 50.00 0.00 0.1351 1 601.25 0.19
22 59.71 30.37 1.95 10.16 8.00 0.0854 1 383.10 0.67
23 40.00 18.73 1.87 50.00 0.07 0.3347 1 276.20 0.08
24 130.14 11.77 1.22 48.66 2.34 0.6613 1 139.05 0.08
25 123.60 16.43 1.11 49.65 0.80 0.6485 1 141.55 0.08
26 40.00 22.19 0.39 42.13 1.80 0.0000 0 - -
27 136.44 15.87 1.98 44.84 4.31 0.4659 1 189.40 0.12
28 51.73 41.39 0.91 23.82 0.00 0.0851 1 636.55 0.46
29 93.33 15.22 2.46 42.61 9.72 0.0062 1 495.80 0.97
30 40.32 20.97 1.63 21.02 4.34 0.0000 0 - -
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Table A.7.: Proposed synthesis parameters by SOBO (first 10) and MOBO (last 6). The
order is consistent throughout the thesis to allow comparison.

Temp. Time Metal Reactant. Modulat. Fitness XRD d(r) PDI

1 138.9 41 1.89 1.7 6.3 0.0000 1 0.1293 0.00
2 60.6 37 0.16 14.6 7.0 0.0352 1 0.0553 0.64
3 109.5 27 1.57 47.7 9.0 0.0798 1 0.3269 0.24
4 137.5 37 1.53 37.2 0.7 0.6192 1 0.6583 0.94
5 41.6 11 1.79 21.1 2.3 0.0227 1 0.1552 0.15
6 63.3 34 0.43 47.9 2.0 0.1636 1 0.3262 0.50
7 144.2 35 0.48 46.7 7.8 0.0402 1 0.1362 0.30
8 101.1 38 0.83 11.7 9.7 0.0000 1 0.0968 0.00
9 101.8 35 0.68 33.5 9.0 0.0319 1 0.0950 0.34
10 115.4 40 2.00 19.4 6.6 0.0839 1 0.1703 0.49
11 130.1 12 1.22 48.7 2.3 0.0092 1 0.1166 0.08
12 128.5 12 0.92 48.4 2.4 0.0129 1 0.0431 0.30
13 123.6 16 1.11 49.7 0.8 0.6602 1 0.7372 0.90
14 113.7 17 1.59 47.7 2.7 0.0277 1 0.1686 0.16
15 126.2 13 1.22 47.6 2.9 0.1717 1 0.2426 0.71
16 132.4 12 1.27 49.8 2.0 0.0101 1 0.1302 0.08
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