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Abstract

Model Predictive Control is a process control method that produces a series of control inputs
at each time step by predicting the future outputs of a dynamical system among which the
first one is applied to the system to move it closer to the target state. When the underlying
system is linear, the optimization problem is convex and easy to solve. However, for most
cases where the underlying dynamical system is non-linear or when complicated constraints
must be satisfied, local optimization becomes computationally expensive.

To tackle this problem, Koopman Operator Framework can be utilized which in theory, lifts
the dynamics of the system into an infinite dimensional space where the dynamics becomes
linear. In practice, a finite-dimensional approximation of the Koopman Operator can be ob-
tained by Extended Dynamic Mode Decomposition which being a purely data-driven method,
is efficient to use. MPC controllers designed with the Koopman Operator can use linear opti-
mization techniques to produce the set of control inputs at each time step for a limited horizon
by estimating the future states of the system sufficiently accurate enough for the prediction
horizon.

Koopman MPC still requires local optimization at every time step. In this thesis, the Infinite
Horizon Control framework is investigated instead, where no local optimization is needed.
An implementation of Infinite Horizon Control that uses Linear Quadratic Regulator to gen-
erate optimal control inputs is presented which aims to achieve better efficiency while still
providing a reliable controller. The results of the different scenarios are evaluated by using
various metrics and a specially designed one that utilizes the nature of the test cases. The IHC
controller is able to accurately control the spacecraft with a fraction of the computational cost
of Koopman MPC.
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1

Introduction

Model Predictive Control (MPC) is a process control method that produces a control input which
is optimized by predicting the future outputs of the system. It has a wide range of use cases
in the industry for the complex processes requiring many constraints to be satisfied that are too
complex for Proportional, Integral, Derivative (PID) Controllers to deal with. As the interest in
autonomous driving and space exploration grows, MPC becomes the backbone for advances in
many areas of technology (Faulwasser et al., 2021).

However, MPC uses costly optimization for each input suggestion to the real system and non-
linear systems make this process computationally hard to overcome since convex optimization is
not possible for them. Koopman Operator Framework provides a solution to this by lifting the
non-linear dynamics of the system into a higher dimension where it can be treated as a linear
system. It is sufficient for the Koopman MPC (KMPC) to provide an estimator that can closely
approximate the dynamics for a long enough time interval since it only needs to produce proper
control inputs for a limited horizon. But what if the linearized system covers the dynamics suf-
ficiently so that it is not needed to compute control inputs for a receding horizon on each time
step? What if we can just solve the system and get optimal control inputs for an infinite horizon?

This thesis provides an implementation of Infinite Horizon Control (IHC) using Linear Quadratic
Regulator (LQR) on a system linearized with a finite-dimensional approximation of the Koop-
man Operator obtained with Extended Dynamic Mode Decomposition (EDMD). It evaluates
how accurate and efficient this approach is compared to regular MPC and KMPC. Kerbal Space
Program (KSP) will be the simulation tool and existing implementations of the MPC and PID con-
trollers will be utilized (Atukalp, 2021; Ganbarov, 2020). Collaborated data is used for training
and evaluations. The next chapter will summarize the theory behind the key concepts, the third
chapter will go over the environment, metrics, implementation and evaluation; and finally, the
last chapter will summarize everything and discuss the future directions.
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2

Theoretical Background

This chapter gives a theoretical background to the concepts of open and closed loop control sys-
tems, PID Controllers, Model Predictive Control (MPC), Infinite Horizon Control (IHC), Koop-
man Operator, Dynamic Mode Decomposition (DMD) and Extended Dynamic Mode Decompo-
sition (EDMD). Finally, it explains what Kerbal Space Program (KSP), the testing environment
for this thesis is and how it works.

2.1 | Proportional Integral Derivative Control
Understanding types of control systems is essential for building a solid background before mov-
ing further. The open loop control system is the first concept to be elaborated. It is the very basic
control system that one can think of. Consider a car that goes from point A to point B. A trivial
approach would be to calculate the distance, give the input throttle signal and expect it to arrive
at point B based on the calculations. However, there may be obstacles on the road that can divert
the vehicle from its goal. One of the tires may be exposed to more friction that can bend the path
the car is expected to follow. There may be other factors such as wind or rain that may require the
vehicle to have extra throttle to arrive at point B. The necessity of a feedback loop emerges from
scenarios like this so that it is possible to alter control inputs for achieving the goal (Prasad et al.,
2014).

This is where closed-loop control systems are often used. In a closed-loop control system, there is
a feedback mechanism that allows the control input to be changed based on the output produced
from the previous input signal. Output is provided to a controller which calculates the error
between the output and the reference signal, and then produces the new input signal to get
closer to the reference.

2



2. Theoretical Background 2.1. Proportional Integral Derivative Control

In order to generate the input signal, a control system called PID Control can be used that is
proven to be very simple, efficient and effective. PID stands for Proportional, Integral, Deriva-
tive which composes three separate components for calculating new input signal. Figure 2.1
illustrates the flow of a PID Controller.

Figure 2.1: Diagram of a PID Controller.

Figure 2.1 shows that there are three paths to follow when calculating the next input signal. In the
proportional path, the error term is multiplied with a constant called Proportional Gain (KP).
In the integral path, the error term is integrated and multiplied with another constant, Integral
Gain (KI) and in the derivative path, it is differentiated and multiplied with yet another constant,
Derivative Gain (KD). Equation 2.1 shows how these terms form the control signal:

u(t) = KPe(t) + KI

∫ t

0
e(τ)dτ + KD

de(t)
dt

, (2.1)

where Proportional path measures how much error there is in a given time and contributes to
control input directly to eliminate the error. Integral path removes the constant errors in the
system by accumulating errors over time to make them significant enough eventually. Deriva-
tive path takes the rate of change of the error into consideration to assure a more stable path to
reference by preventing overshoots. See Figure 2.2. (Ang et al., 2005).

Figure 2.2: Response over time to error for each path.
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2. Theoretical Background 2.2. Model Predictive Control

2.2 | Model Predictive Control
The next concept in line to elaborate is Model Predictive Control (MPC) which is a process con-
trol method for closed-loop control systems. Consider the example given to explain PID Control.
There is a car that needs to reach a point and there may be many factors that can divert it from
the reference, as before.

MPC predicts an optimal control input sequence that takes the car closer to the reference, over a
finite time horizon. After the input sequence is optimized, the first input signal is applied which
brings the car to a new state that is closer to the reference and another optimization is made over
the slid horizon. A set of new input signals is produced, the first signal is applied, the new state
is observed, the prediction horizon is slid one time step further and this procedure is repeated
over and over again until the car reaches the goal. Figure 2.3 illustrates these prediction horizons
and their application to reach reference signal. Figure 2.4 shows the interaction pattern between
MPC and the system it optimizes (Morari et al., 1988).

Figure 2.3: Model Predictive Control for three time steps.
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2. Theoretical Background 2.2. Model Predictive Control

Figure 2.4: Model Predictive Control diagram.

The power of MPC comes from optimization. It optimizes the input signal while taking also the
future inputs into consideration. It also enables constraints to be put on the input signal. On a
regular scheme, a badly designed controller can tell the car to go a lot faster than it is able to go.
With MPC, it can be imposed that the input given to the car stays within some threshold. Ability
to optimize over a set of constraints and consideration of the future inputs makes MPC a very
powerful strategy (Kaiser et al., 2018).

Another very important feature of MPC is that it can optimize the input signal for non-linear
systems as well, though it can be costly (Findeisen and Allgöwer, 2002). Here rises an even
better strategy when there is a non-linear system to optimize. The system can be linearized and
optimized with MPC. It will be a lot faster and MPC can optimize the input signal very good
thanks to its ability to reinitialize and optimize at each time step over and over again. This reduces
the probability of making critical errors that arose from the accuracy of the approximated non-
linear system (Zhakatayev et al., 2017).

Now, consider the case where there is a linear system with a lot of disturbances or a linearized
system which also has its deviations since it is an approximation of a non-linear system. An
optimal input signal can be calculated for a linear system using an LQR. Yet, external factors can
steer the car far away from the predicted path. This is where MPC shines because it optimizes
the input signal in each iteration and so, it compensates the effects of external factors over time
(Mattingley et al., 2010).

When it comes to the downsides of MPC, it depends on the assumption that there is a computer
with sufficient power to carry out necessary calculations fast enough since the whole optimization
scheme is needed to be computed in each time step over and over again. Optimizing a linear
system is the more flexible option here since it requires less resources than optimizing a non-
linear system. This is why linearization is a very useful strategy when there is a non-linear system
to optimize. It will produce input sequences faster, but it also needs to be considered that success
can depend on how good the approximation is.
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2. Theoretical Background 2.3. Infinite Horizon Control

2.3 | Infinite Horizon Control
In this section, the concept of Infinite Horizon Control (IHC) will be discussed. First, it is im-
portant to distinguish two different approaches to control a process in terms of horizons that are
receding and infinite. For the receding horizon control, optimal control inputs are recalculated
in each time step for a finite horizon. Reaching the goal at the end is what matters here and the
path can be corrected over and over again if the controller observes diversion from it (Mattingley
et al., 2010).

On the contrary, infinite horizon optimal control approach does not have a chance to recalculate
the dynamics of the system. The start and end points of the journey do not matter here because
the whole set of equations that describe the dynamics of the system has a solution that is within
reach. When an initial state and a target state are given, optimal control inputs that take the
process to the target state can be calculated (Carlson and Haurie, 1987).

Before moving further, it is necessary to go over the state space representation of a linear system.
There are three vectors and four matrices that define a linear control system. State vector x defines
the state of the system, input or control vector u defines the control inputs and output vector y
defines the output of the system which is basically what can be observed outside instead of the
full internal state of the system, x. The first matrix is the system matrix A which defines how
the state of the system evolves without any control input. The next one is the control matrix B
which describes how the control inputs applied to the current state contribute to the next state
of the system. There are two other matrices output matrix C and feed-through matrix D that
define how the state and control input directly modifies the output of the system which is in the
scope of this thesis, not the case. Equations 2.2 and 2.3 shows the state space representation of a
discrete-time linear system (Brogan, 1985):

xk+1 = Axk + Buk, (2.2)

yk+1 = Cyk + Duk, (2.3)

which can be solved to obtain control inputs for the process. The linear equation zk+1 = Azk + Buk

defines the linear system in this thesis and matrices C, D and output y are neglected because all
the internal states of the system can be observed here through the output (Kalman, 1960). In order
to find optimal control inputs for the infinite horizon, discrete-time systems, Linear Quadratic
Regulator (LQR) can be used. But first, a performance metric needs to be defined, or in other
words, a cost function.
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2. Theoretical Background 2.3. Infinite Horizon Control

Cost function J composes the weighted sums of performanceQ and actuator effortR and these
two matrices allow controlling the behaviour of the system. Bad performance can be penalized
by adjustingQ and bad actuator effort can be penalized by adjustingR. Equation 2.4 shows how
the cost function is formed (Brunton and Kutz, 2019):

J =
∞

∑
k=0

(xT
kQxk + uT

kRuk). (2.4)

Equation 2.5 shows how the optimal control sequence uk that minimizes the cost function:

uk = −Kxk (2.5)

is obtained by multiplying the current state of the system xk with the feedback matrix K. In
order to obtain state feedback gainsK, solution to the Discrete Time Algebraic Riccati Equation
(DARE) P is required which can be obtained through dynamic programming, by iterating the
dynamic Riccati equation until convergence. Equation 2.6 shows DARE and Equation 2.7 shows
how the feedback matrix is calculated (Kostova et al., 2013):

P = Q + ATPA− ATPB(R + BTPB)−1BTPA, (2.6)

K = (R + BTPB)−1BTPA. (2.7)

In order to solve the discrete-time LQR problem, Python Control Systems Library (Fuller et al.,
2021) can be used which returns the optimal gain set as shown in Equation 2.8 when system,
control, performance and actuator effort matrices are provided:

K,S , E = dlqr(A, B,Q,R), (2.8)

where K is the state feedback gains, S is the solution to Riccati equation and E is the eigen-
values of the closed loop system. Optimal control input for the system can be obtained as in
Equation 2.5. How well Infinite Horizon Control approach works can be considered as a feedback
on how good the linear approximation of the underlying system is when applied on a linearized
system. Moreover, a successful result on this approach can also save a lot of resources and time
by getting rid of recalculating the dynamics of the system at each time step. Feedback matrix K
can be used to obtain optimal control inputs regardless of the time step as in Equation 2.5. If the
approximation is well enough, process will get closer to the target state.
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2. Theoretical Background 2.4. Koopman Operator

2.4 | Koopman Operator
Using MPC reduces the cost and improves speed for both linear and non-linear systems. How-
ever, optimizing a linear system instead of a non-linear one takes less resources. This section will
introduce the Koopman Opearator that can approximate a non-linear systems to a linear one and
discuss how it can improve the speed with a compromise on accuracy.

In theory, Koopman Operator shows that it is possible for non-linear systems to be represented
with linear operators in an infinite-dimensional space. Let D ⊆ Rn, let f : D → D, and for all
k ≥ 0, consider the discrete-time system below:

x(k + 1) = f (x(k)) where x(0) = x0, (2.9)

y(k) = g(x(k)), (2.10)

where x, y ∈ D and g : D → R. Now, let G be a set of real-valued functions on D which satisfy
the following property:

If g ∈ G then g ◦ f ∈ G. (2.11)

If 2.11 holds, then G becomes compositionally complete and since g ∈ G and G is compositionally
complete, g is an observable function. Now we can define the Koopman Operator K : G → G as
follows:

K(g) ≜ g ◦ f (2.12)

and since G is compositionally complete, if g ∈ G, then g ◦ f ∈ G which makes K(g) ∈ G.
Now, we assume that G is a compositionally complete vector space over R. Then, for all g1, g2 ∈
G and all a1, a2 ∈ R,

K(a1g1 + a2g2) = (a1g1 + a2g2) ◦ f

= a1g1 ◦ f + a2g2 ◦ f

= a1K(g1) + a2K(g2).

(2.13)

Therefore,K is a linear operator on G. This provides a simple overview of the Koopman Operator.
For the whole proof and numerical examples, see Bruce et al. (2019).

8



2. Theoretical Background 2.4. Koopman Operator

This thesis aims to find a finite-dimensional representation of Koopman Operator so that linear
representation of the underlying system can be obtained. Non-linear state space will be lifted to
a higher dimension where zk is the lifted state vector at time step k, uk is the input and the non-
linear state vector xk is considered as the output so yk := xk. The non-linear system and its linear
approximation:

xk+1 = f (xk, uk) and yk = g(xk), (2.14)

zk+1 = Azk + Buk and yk = Czk for z0 = ϕ(x0) (2.15)

is shown in Equations 2.14 and 2.15. Remember that in this thesis, the system is in discrete-time
which will be considered for the future calculations.

Solving a linear system is a lot faster than optimizing a non-linear system and if the approxima-
tion is good enough, goal can be achieved with a lot less computational resources. Koopman
Operator will serve this thesis as a linearizer for the non-linear system. Then the linear system
obtained by Koopman Operator will be optimized using Infinite Horizon Optimal Control ap-
proach. Figure 2.5 illustrates how Koopman Operator works (Brunton, 2019). It is important to
note that stated functions in the figure works as shown in Equation 2.16:

Ft : xk → xk+1,

g : xk → yk,

Kt : yk → yk+1.

(2.16)

Figure 2.5: Visualization of the Koopman Operator’s workflow.
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2. Theoretical Background 2.4. Koopman Operator

2.4.1 | Dynamic Mode Decomposition
This subsection will provide the theory behind the Dynamic Mode Decomposition (DMD) and
show how it approximates the Koopman Operator with a linear model. The reason that DMD is
an algorithm that is applicable to many cases is that it is purely data driven. Without the need
for any knowledge of the underlying dynamical equations of a system, data snapshots can be fed
into DMD and spatial temporal modes along with a linear dynamical system defining how they
evolve in time can be fetched (Schmid, 2010).

DMD takes the data of a dynamical system evolving in time to work. Snapshots taken at different
time steps of the dynamical system are reshaped and stacked into matrix X and another matrix
X’ contains the same data, just shifted one time step into the future. Columns of these matrices
are evolving in time along with the dynamics of the system. These matrices are constructed as
follows:

X =

x1 x2 . . . xm−1

 , X′ =

x2 x3 . . . xm

 . (2.17)

The aim of DMD is to find the best linear operator A that advances the dynamical system one
time step further, or in other words, maps X into X’ as such:

X′ ≈ AX, (2.18)

A = X′X†, (2.19)

where X† is the pseudo inverse of X. Computing the matrix A, let alone its eigenvalues and
eigenvectors, is too hard since it will be a huge matrix for most cases. What DMD does is that
it approximates the leading eigendecomposition of this matrix where leading eigenvectors corre-
sponds to the spatial temporal coherent modes, and leading eigenvalues define how these modes
evolve in time. In order to compute DMD, first step is to compute the Singular Value Decompo-
sition (SVD) of matrix X as in Equation 2.20:

X = UΣV∗ and X′ = AUΣV∗, (2.20)

where matrix U contains the Proper Orthogonal Decomposition (POD) modes of X hierarchically
ordered in terms of capturing the variance of X. From this point on, a proper truncation value r
is selected and the reduced matrices can be used.

10



2. Theoretical Background 2.4. Koopman Operator

Equation 2.21 describes how leading singular values are filtered by computing the reduced ma-
trices that are used to obtain an approximation of the SVD of X:

X = UΣV∗ =
[
Ũ Ũrem

] [Σ̃ 0
0 Σ̃rem

] [
Ṽ∗

Ṽ∗rem

]
≈ ŨΣ̃Ṽ∗, (2.21)

where U ∈ Rn×n, Σ ∈ Rn×m−1, V∗ ∈ Rm−1×m−1, Ũ ∈ Rn×r, Σ̃ ∈ Rr×r, Ṽ∗ ∈ Rr×m−1 and
notation rem denotes the remaining parts of these matrices. Using the SVD of matrix X, an ap-
proximation for the operator A and a dynamic model of the process can be constructed as in
Equations 2.22 and 2.23:

A ≈ Ā = X′ṼΣ̃−1Ũ∗, (2.22)

xk+1 = Āxk. (2.23)

The next step in DMD is to project matrix Ā onto the dominant singular vectors Ũ∗ and Ũ to
get matrix Ã which is a lower order linear dynamical system that describes how the POD modes
evolve in time. This matrix is smaller than Ā and has the same eigenvalues. Equation 2.24 shows
how to obtain Ã:

Ũ∗X′ṼΣ̃−1 = Ũ∗ĀŨ = Ã. (2.24)

Since the matrix Ã has the same eigenvalues as matrix Ā, eigendecomposition of Ã can be used
to get eigenvalues of Ā as in Equation 2.25:

ÃW = WΛ. (2.25)

Now that the eigenvalues of Ã are calculated, dynamic modes that represent the dominant co-
herent structures of the system can be obtained, which is described by the eigenvectors of Ā that
is an approximation of A. See Equation 2.26:

Φ = X′ṼΣ̃−1W. (2.26)

What DMD achieves is that it extracts the leading dynamic modes of the system without actually
calculating the matrix A. These DMD modes (Φ in Equation 2.26) represent the spatial correla-
tions between each snapshot of the system and the eigenvalues of matrix A (Λ in Equation 2.25)
defines the growth, decay and oscillations of these modes over time. See Tu et al. (2014) for the
detailed computations and proofs.
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2. Theoretical Background 2.4. Koopman Operator

2.4.2 | DMD and EDMD For Control
Now that the basics of DMD is explained, it is time to add control inputs to the equation. This
subsection will go over the theory behind computing system and control matrices for a dynamic
process using DMD, give an introduction to EDMD and introduce an example on how these
algorithms perform. Dynamic Mode Decomposition is able to approximate both system and
control matrices just by processing snapshots of the control inputs and outputs of the system.
The snapshots of the process, X and X′ are already introduced. Now, another matrix that contains
the snapshots of control inputs will be introduced as in Equation 2.27:

Υ =

u1 u2 . . . um−1

 , (2.27)

where Υ ∈ Rl×m−1 since each input snapshot has a length of l and the dynamics of the system
will be as in Equation 2.28 where G and Ω are constructed as follows:

X’ ≈ AX + BΥ = GΩ where G =
[
A B

]
and Ω =

[
X
Υ

]
. (2.28)

In order to get the best fit solution for the operator G which contains process dynamics A and
control inputs B, SVD can be utilized as before. See Equations 2.29, 2.30 and 2.31:

G = X′Ω† ⇐⇒
[
A B

]
= X′

[
X
Υ

]†

, (2.29)

Ω = UΣV∗ ≈ ŨΣ̃Ṽ∗ =

[
Ũ1

Ũ2

]
Σ̃Ṽ∗, (2.30)

G ≈ Ḡ = X′ṼΣ̃−1Ũ∗. (2.31)

Note that the truncation value p for Ω is larger than the truncation value for X. Now that the SVD
of Ω is found, linear operator Ũ can be broken into two seperate components to approximate
system and control matrices A and B as follows:

G =
[
A B

]
≈

[
Ā B̄

]
= Ḡ =

[
X′ṼΣ̃−1Ũ∗1 , X′ṼΣ̃−1Ũ∗2

]
, (2.32)

12



2. Theoretical Background 2.4. Koopman Operator

where G ∈ Rn×(n+l), Ũ1 ∈ Rn×p, Ũ2 ∈ Rl×p. Unlike the DMD algorithm, Ũ cannot be used for
defining the subspace states evolve. In the context of control, they define the input space. In
order to get a reduced order model, reduced order subspace of the output should also be utilized
so that a reduced order dynamics of the system and control matrix can be obtained. To find the
reduced order subspace, another SVD should be performed as in Equation 2.33:

X′ ≈ ÛΣ̂V̂∗, (2.33)

where Û ∈ Rn×r, Σ̂ ∈ Rr×r, V̂∗ ∈ Rr×m−1 and the truncation value r for the second SVD is
smaller than the first, p. The reduced order approximations of the system and control matrices
can be computed as follows:

Ã = Û∗ĀÛ = Û∗X′ṼΣ̃−1Ũ∗1Û, (2.34)

B̃ = Û∗B̄ = Û∗X′ṼΣ̃−1Ũ∗2 , (2.35)

where Ã ∈ Rr×r and B̃ ∈ Rr×l . Now, the reduced order system dynamics can be defined as
follows:

x̃k+1 = Ãx̃k + B̃uk. (2.36)

Next thing in line is to find the dynamic modes of A which can be done by solving the eigenvalue
decomposition ÃW = WΛ and the dynamic modes of A can be obtained with a little modification
to the equation before, as follows:

Φ = X′ṼΣ̃−1Ũ∗1ÛW. (2.37)

Dynamic Mode Decomposition and how it can be used in the context of control is summarized
until this point. For the detailed proof and examples, see Tu et al. (2014). From now on, an
extension of DMD will be utilized as a method to approximate Koopman Operator. Extended
Dynamic Mode Decomposition (EDMD) improves the accuracy of DMD by utilizing a dictio-
nary of observables on a finite space in which the Koopman Operator can be approximated (Li
et al., 2017). The choice of dictionary determines the accuracy of EDMD and the optimal choice
depends on the underlying dynamical system. Possible choices of the elements of this dictionary
can be polynomials, Fourier modes, radial basis functions or spectral elements (Williams et al.,
2015). The next section will investigate DMD and EDMD with a basic implementation that relies
on the software package datafold which contains the implementation of EDMD utilized in the
rest of this thesis (Lehmberg et al., 2020).
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2. Theoretical Background 2.4. Koopman Operator

2.4.3 | DMD and EDMD on Limit Cycle
This section will summarize the example implementation of DMD and EDMD on the Limit Cycle,
from datafold tutorials, to provide an understanding on how EDMD improves the performance
over DMD (Lehmberg et al., 2020). Data for this tutorial sampled from a Hopf ODE described as
in Equation 2.38:

ẏ0 = −y1 + y0(µ− y2
0 − y2

1),

ẏ1 = y0 + y1(µ− y2
0 − y2

1)
(2.38)

with µ = 1. ODE is solved with different initial conditions to sample time series data from the
Hopf system. Figure 2.6 below shows how the sampled time series data looks like, which has two
components for each time step, x1 and x2.

Figure 2.6: Plot of the sampled training data for DMD and EDMD.

First, a DMD is performed that uses identity dictionary to decompose spatio-temporal modes
of the dynamical system. As can be seen in the Figure 2.7, when the observable functions only
include state identities x1 and x2, Koopman matrix is not capable of describing the dynamics of
the underlying system.
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2. Theoretical Background 2.4. Koopman Operator

Figure 2.7: Data sampled from the DMD model with an out of sample prediction shown in red.

Now, an EDMD model will be trained with the same data and the extension is that first, time
series data will be processed in a dictionary that is formed with polynomial features. A degree
3 polynomial features dictionary of the states x1 and x2 contains the following composed spaces:
x1, x2, x2

1, x1x2, x2
2 x3

1, x2
1x2, x1x2

2 and x3
2. Figure 2.8 shows the data sampled from the constructed

model.

Figure 2.8: Data sampled from the EDMD model with polynomial features dictionary.
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Reconstruction is improved, but still not ideal. The model cannot capture the limit cycle and
some time series cross which is not expected. As stated previously, or in Williams et al. (2015),
choice of dictionary is important to capture the true dynamics. In the last part of this section,
Radial Basis Functions (RBFs) will be utilized to construct dictionary, see Figure 2.9.

Figure 2.9: Data sampled from the EDMD model with RBF dictionary.

Finally, an out of sample prediction is compared with ground truth in Figure 2.10. See EDMD on
Limit Cycle tutorial in datafold documentation for more (Lehmberg et al., 2020).

Figure 2.10: Out of sample prediction compared with the true system.
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2.5 | Kerbal Space Program
Testing suite for this thesis is the Kerbal Space Program (KSP) which is a video game that let’s
players create their own spaceship, install modifications to it, launch or land and test the be-
haviour of their creation. Players need to consider many important aspects such as weight bal-
ance, maintaining a trajectory, escaping the atmosphere etc. while building their spaceship since
the mechanics of the game are based on the laws of physics and it is also necessary to input
proper control actions to successfully complete the intended journey. The data collected from
Kerbal Space Program is collaborated between students working on consecutive projects in this
area. See Figure 2.11 to see the game’s relevant parts for this project.

Figure 2.11: Interface of the KSP.

1: Altitute. 2: Vertical Speed. 3: kRPC Interface. 4: Speed. 5: Throttle. 6: Pitch, Yaw, Roll. 7: Fuel.

Interaction with the game is performed using a mod called Kerbal Remote Procedure Call (kRPC).
It supports many languages, among which the Python libraries will be used for this research. It
functions by running a server in the game to which users connect for executing remote proce-
dures. It provides action inputs and read the state of the spaceship in this thesis.
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3

Infinite Horizon Control Using Koopman
Operator Surrogate Models

This thesis aims to implement Infinite Horizon Control (IHC) to reduce the computational re-
sources required by MPC and KMPC while still providing a reliable process controller. The re-
sults of the implementation will be evaluated by performing simulations and comparing results
with the MPC and KMPC implementations.

This chapter contains a description of the environment and; implementation and evaluation of
Infinite Horizon Control to land a spaceship in Kerbal Space Program. In particular, Section 3.1
will introduce the development environment where the previous work and packages the project
rely on will be introduced along with the simulation tools. Section 3.2 will describe the metrics
that are used to evaluate performance of the controller. Section 3.3 will go over the implementa-
tion and finally, Section 3.4 will evaluate the performance of the implementation using the metrics
described in Section 3.2.

3.1 | Environment
This project is a continuation of the previous work on Model Predictive Control (MPC) by Ali
Ganbarov and Kaan Atukalp as well as the Koopman MPC implementation provided by Dr.
Felix Dietrich as a code base. MPC and KMPC implementations are used for comparisons with
the Infinite Horizon Control (IHC) implementation that is integrated over the existing code base.
See (Ganbarov, 2020) and (Atukalp, 2021).

Kerbal Space Program (KSP) is used as the simulation tool and kRPC plugin enabled control-
ling the spaceships constructed in the game for testing different scenarios. The whole project is
implemented in Python.
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3.1.1 | Aircraft Dynamics
In this subsection, numerical data related to the aircraft used in the experiments throughout the
project and the simulation dynamics will be discussed. Kerbal Space Program (KSP) allows users
to create their own spaceships. In order to use for training and testing, a spaceship we call ’Au-
rora’ has been created in the game.

Aurora is a relatively simple aircraft that is composed of 9 parts. From top to bottom, it has
a Small Nose Cone, Mk1 Command Pod, two FL-T400 Fuel Tanks, one LV-T30 Liquid Fuel
Engine and four LT-2 Landing Struts. It has a height of 7.5 meters, width and length of 4.6
meters and it weighs 7 tons. It is possible to give 4 different control inputs to Aurora, thrust,
pitch, yaw and roll. The axes of these control inputs originate at the center of gravity of the
aircraft and are perpendicular to each other except for ’thrust’ which has the same axis as ’roll’.
Figure 3.1 shows the directions of these control inputs.

Figure 3.1: Directions of the control inputs acting on the aircraft.
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Among these four control inputs, PID controllers implemented by Ali Ganbarov will be used to
control pitch, yaw and roll of the aircraft. Infinite Horizon Control (IHC), MPC and Koopman
MPC controllers will determine the input throttle to control thrust force acting on the aircraft to
reach the target values and achieve a safe landing.

There are also four different forces acting on the aircraft; weight, drag, lift and thrust. Weight
pulls the aircraft towards the center of the planet. Lift and drag are the aerodynamic forces that
depend on the shape and velocity of the aircraft, and density of the atmosphere aircraft is travel-
ling in. Lift is perpendicular to the direction of the airflow and drag acts on the opposite direction
of motion. Thrust is the only force that is controllable in the aircraft and pushes the aircraft against
the direction of the exhausting fuel. See Ganbarov (2020) for detailed explanations.

The API of kRPC plugin allows users to fetch a rich set of measurements from the game at any
moment during the flight. Throttle, roll, pitch, yaw, altitude, direction, thrust, drag, mass, ver-
tical velocity and mass are the measurements that can be obtained through kRPC and since the
dynamics of the game follows Newtonian physics, quantities like weight (See Equation 3.2) and
acceleration (See Equation 3.1) can be calculated using Newton’s motion laws (Newton et al.,
1848) as follows:

at =
T + sign(vt)× D−W

m
, (3.1)

W = G
m×M
(R + y)2 , (3.2)

where at is the acceleration, T is the thrust, vt is the velocity, D is the drag, m is the mass, y
is the altitude and W is weight of the aircraft; M is the mass and R is the radius of the planet
and finally, G is the gravitational constant. The planet that the spaceship lifts of and lands is
called Kerbin which has a mass of 5.29× 1022 kilograms and a radius of 600 kilometers. It is
important here to note that in order to obtain vertical component of the acceleration, projection
to the desired orbit needs to be performed or the desired components of the forces need to be used
in calculations. Apart from utilizing the forces acting on the aircraft, acceleration, or its vertical
component through projection can also be calculated as follows:

at =
vt − vt−∆t

∆t
, (3.3)

where ∆t is the time between velocity measurements. Equation 3.3 shows another formulation
used to obtain vertical acceleration throughout this project.

20



3. Infinite Horizon Control Using Koopman Operator Surrogate Models 3.1. Environment

3.1.2 | Existing Setup
The existing implementation already connects the game through kRPC. It allows interfering the
game at any point through running the run_landing() method of the Controller object. It also
logs the measurements throughout the journey as a CSV file that can be processed later for further
analysis.

The main.py script is the entrypoint for the application which takes an argument to define which
mode the script should be running. It can be MPC, KMPC or IHC for which the last one is imple-
mented to serve the purpose of this project. It also accepts an optional argument to specify a save
game file to connect with. If not specified, it connects to the current session and takes over the
control of the aircraft.

Ali Ganbarov implemented fundamental MPC controller that works with two different drag
models as well as a PID controller that takes care of orienting the aircraft. Kaan Atukalp trained
various predictors to generate control inputs for the specified horizons and created another con-
troller called ControllerML that works with trained models. See Atukalp (2021) for details. Dr.
Felix Dietrich provided pre-trained Koopman system and control matrices and implementation
of the Koopman MPC.

There are four control inputs that can be given to the aircraft, as denoted before. Pitch, roll and
yaw are controlled through PID controllers implemented and tuned by Ali Ganbarov. Check
Ganbarov (2020) for the details. What this project focuses on is determining accurate values for
throttle input to achieve convenient thrust values that take the aircraft to the desired targets and
land it safely.

The existing code base needed some restructuring to make it more understandable and easy to
work with. In order to achieve this, separate log handlers are merged into a single class. Con-
trollers, handlers, wrappers, predictors, models, settings and utility functions are moved into dif-
ferent files and class structure is updated. Predictors and data gathering functions implemented
by Kaan Atukalp merged under a class called Estimators. Notebooks for data analysis and var-
ious data collected by former programmers are restructured to ensure each sell produces proper
outputs with a proper order without an issue. Other notebooks that contributed to Theoretical
Background are merged under a single notebook. How to work with the existing code base and
notes about plugins, packages and various keynotes to deal with unexpected issues during in-
stallations are documented in the README.md file to speed up the on-boarding process of the next
person working on this project.
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3.2 | Metrics
In this chapter, the statistics used to evaluate the performance of Infinite Horizon Control will be
discussed. The aim of this thesis is to provide a method to control an aircraft that is both resource
efficient and reliable. Firstly, the computational resources used throughout the flight scenarios
will be investigated. As the measurements are prune to bias, it is important to evaluate the results
relative to each other instead of looking at them individually. This approach will provide insights
about the improvements of the new implementation over the older ones.

The most trivial statistics used are the mean µ and the standard deviation σ. Mean value gives
insight about the overall magnitude of the measurements whereas standard deviation shows how
much they deviate from the mean. The mean value can be obtained as follows:

µ =
∑ xi

N
, (3.4)

where N is the number of measurements. Since the data collected in this thesis are discrete, we
only need the formula for the discrete-time cases. Together with the standard deviation, which
can be calculated as follows:

σ =

√
∑ (xi − µ)2

N
, (3.5)

they provide extremely valuable insights about the investigated data sets. In the upcoming chap-
ter, mean and standard deviation will not only give broad insights about the scenarios, they will
also serve as an anchor point for other statistics computed. For instance, as mentioned before,
computing relative performance increase of a method over the other is an essential statistic that
depicts how successful the new method is. The relative performance increase (in percentages) of
method 1 (m1) over the method 2 (m2) can be calculated as follows:

Performance Increase (%) =
−(pm1 − pm2)

pm2

× 100, (3.6)

where pm1 and pm2 denotes the performances of methods 1 and 2 respectively. It is worth noting
that performance here can stand for any two measurements that one wants to compute how
much of a performance increase one provides over the other. It is also important to note that
Equation 3.6 considers smaller values to be better. One can say that the performance of the first
method (m1) is better as much as the percentage value calculated using the Equation 3.7, from the
performance of the second method (m2).

22



3. Infinite Horizon Control Using Koopman Operator Surrogate Models 3.2. Metrics

Another measurement used throughout this project shows how much one value is larger than the
other, or in other terms, how much of an increase one is over the other. Computing this statistic
is also trivial and similar to Equation 3.6 which is as follows:

Increase (%) =
v2 − v1

v1
× 100, (3.7)

where v1 denotes the first measurement and v2 denotes the second measurement. One can say
that the measured statistics is increased as the calculated percentage using the Equation 3.7 when
the new value of the measurement is v2 and the old value is v1.

Even though it is trivial, also worth mentioning that metrics computed will also be compared in
terms of factor of each other so that another insight about the improvement can be obtained.

The statistics introduced so far will be used to infer that the new implementation is more resource
efficient than the older ones. The next thing to measure is how reliable the new implementation
is. In order to achieve this, trajectories followed by the aircraft on each flight scenario as well as
the vertical velocities will be compared with the reference which includes a target velocity and a
target altitude for each time step.

However, it is challenging to obtain an unbiased score for how well the path is followed. Since the
target states are slided based on the current state of the aircraft, whenever target state changes,
there emerges a huge gap between the target values and the current values. Controller needs
to adjust throttle to reach the new target state first, then it needs to provide appropriate throttle
values to follow this targets.

In order to acquire statistics that give more reliable scores for reference following performance,
time series data will be split into two sets of fragments. For vertical velocities, first set will include
the parts where controller is trying to get the target velocity value and as soon as it reaches a
predetermined proximity of the target, fragment will be extracted; the next fragment starts at this
point until the the point where the target state changes, which will construct the next fragment
that will be sent to the second set. We will call the first set as the Approach Set, and the second
set as the Proximity Set.

The Approach Set will be evaluated in terms of how fast the controller reaches the target value.
The time it takes the controller to reach ±10% of the target value will be computed for each
approach fragment of each method. Since the target values have the same intervals, the fragments
of each method’s time series data that correspond to the same target state, will be normalized as
follows:
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xnormalized =
x− xmin

xmax − xmin
, (3.8)

where x is an element of the set that contains fragments of data corresponding to the time inter-
vals that has the same target state. After a score is calculated for each approach fragment, an
average value of the approach scores will be calculated for each method, by computing the mean
value of approach scores for that method; and will be stored as the Approach Score, one for each
method.

As for the Proximity Sets; what matters is how good the controller can keep the aircraft stable at
the target state. In order to get a well defining value for this, Root Mean Squared Error (RMSE)
will be computed for each proximity fragment between the real trajectory and the target trajec-
tory of the time series data. As the diversion from the reference gets larger, penalty value of the
RMSE gets larger as well. It will be an appropriate statistic to get an insight on how good the
controller follows reference after the reference value is reached. The score obtained for each frag-
ment will be normalized among methods and will be averaged within methods to get a Proximity
Score, again, one for each method.

Approach scores and proximity scores will be combined to get an insight on how good the refer-
ence is reached and how stable it is followed. If the controller applies too much throttle to get to
the target state quickly, it may reach a velocity that is hard for it to control. The velocity overshot
created in this scenario will increase the RMSE error of the upcoming proximity fragment and
since it is proportional to the square of the value, larger deviations will result in larger penalties.
In order for a method to get a good overall score which will be the average of approach and
proximity scores, controller of that method both have to provide a good approach and a stable
trail of the target.

Another metric calculated that gives an insight about how good the trajectory is compared to the
reference is a simplified version of the aforementioned split approach. This time, the time series
data will be split only according to the target state intervals and RMSE will be calculated for
each method, for each interval. Data will be normalized again among the methods and averaged
within the methods, as before.

For each score computed, lower means there is less error which in this scale, refers to a better
model. After the final scores are computed, relative performance of the models will be evaluated,
again, in terms of factors of improvement. Figure 3.2 illustrates the approaches to achieve both
scores. After the application of this process on each segment, approach and proximity scores are
obtained for each model.
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Figure 3.2: Illustration of the algorithm computing approach and proximity scores.
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3.3 | Implementation
This section will explain how the system and control matrices are obtained using Extended Dy-
namic Mode Decomposition (EDMD) and how the linear system is solved using Linear Quadratic
Regulator (LQR) to obtain control inputs at each step. It will also explain how crucial data that
are going to be used to evaluate performance of the implementation using metrics explained in
Metrics section, are gathered.

3.3.1 | Data Preprocessing
The first phase of achieving the intended results is to gather and process the data. Thankfully, Ali
Ganbarov and Kaan Atukalp cooperated to provide a collaboration database that contains many
flight data from various scenarios which can be used to obtain system and control matrices. Since
EDMD is a purely data driven method, data used during training is very important to achieve
proper results. It is necessary to provide a rich dataset to avoid memorizing. We have performed
our tests on the system and control matrices that are provided by Dr. Felix Dietrich, but also we
have performed EDMD over a larger dataset to get a system more robust over different scenarios.
We have compared the results of both approaches in the Evaluation section.

There are two different types of files available in the collaboration database. One type contains
data in the form of XLS files and the other contains data in the form of CSV files. Even though
file types are different, they both contain all the essential information during the flight scenarios.
Existing implementation logs flight records in the form of CSV files and for the training, XLS files
collected by Kaan Atukalp are used.

To begin with, time stamps in the data are evenly spaced using interpolation (See Atukalp (2021))
by calling format() method of the DataFormatter class. Time delta is defined as 0.25 seconds
and then, offset is removed from the column containing time stamps to make it start from zero.
Afterwards, vertical acceleration values are computed by calling get_vertical_acceleration()

method which first, computes weight of the aircraft using Equation 3.2 and uses that value to
compute vertical acceleration using Equation 3.1. Next step is to construct TSCDataFrame object
from the processed data and use normalize_ts() method provided by Dr. Felix Dietrich to
normalize it using following equation:

xnormalized =
x− xmin

xmax × 2
− 1 (3.9)

which is the final component of the method construct_tsc() that processes raw data and pro-
duces TSCDataFrame containing formatted training data for EDMD.
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3.3.2 | Obtaining System & Control Matrices
The next phase for implementation is to obtain system and control matrices. There already exist
a system and control matrix pair with its normalizer to use in computing optimal control values.
Even though it works great for the scenarios where aircraft starts its motion towards the planet,
when the script is run during an upward trajectory, it fails to give proper inputs. In order to deal
with this issue, data from all the scenarios are used to train EDMD.

First off, a dictionary of observables need to be selected. Polynomial features with a degree of 2
is chosen with an included bias. EDMDControl method from datafold is used to get the system
and control matrices. As denoted before, there will be only one control input determined by
the controller implemented here which is the thrust. As detailed in the Theoretical Background
chapter, EDMDControl method stacks the control and state columns to obtain a solution to the
problem. It expects the user to specify control and state columns of the data given. In this setting,
state columns are altitude, vertical velocity, mass, vertical component of the drag and vertical
acceleration which will be used to create polynomial features dictionary for EDMD whereas there
is only one column for control which is thrust. After fitting the data using EDMDControl, system
and control matrices are saved into sys_matrix and control_matrix fields of the object returned
by the fit() method. They are dumped into a JSON file that is later processed by the remaining
components of the implementation.

3.3.3 | Infinite Horizon Control
The final section of this chapter will focus on the implementation of Infinite Horizon Control
using the system and control matrices obtained in the previous section. In order to get the optimal
control inputs for the aircraft, Linear Quadratic Regulator (LQR) is used which is implemented as
a method under the IHC object that is created as a class that fits into the existing implementation
structure.

The optimal control input is calculated by the get_val() method of the IHC class. The method
takes the current_state and the desired_state as inputs as well as the current_time which
is used together with the class field last_time to determine time delta. The velocity of the
aircraft at the previous time step is used together with the calculated time delta to obtain ver-
tical acceleration as described in the Equation 3.3. Lifting function of the class is used to lift
the current_state with features altitude, velocity, mass, drag and vertical acceleration into a
higher dimension, as done in EDMD using polynomial features with degree 2. The same is ap-
plied to the target_state, then the obtained lifted states are stored into variables actual_state
and desired_state respectively.
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The next step is to compute state_error by subtracting desired_state from the actual_state.
Then, the optimal control input can be calculated by multiplying state feedback gains matrix K
with the state_error. After the optimal control input is obtained, current time is saved into the
class variable last_time and the current velocity is saved into the variable last_vel to be used
for calculating vertical acceleration in the next time step.

The heart of the LQR is to obtain the feedback gains matrix K. As described in the Section 2.3 of
Chapter 2, first step of achieving this is finding a solution S to Discrete Time Algebraic Riccati
Equation (DARE) which is a non-linear equation that can be solved using dynamic programming.
DARE generally has more than one solution but the aim is to get one stabilizing solution if exists.
I order to obtain a stabilizing solution to DARE, solve_discrete_are() method of scipy is used
for which 4 matrices are passed: the state transition matrix A, control matrix B, state cost matrix
Q and finally, control cost matrix R. Matrices Q and R can be used to set different penalty values
for each of the lifted states and the control inputs. In the scope of this thesis, all the lifted states
treated equally and matrix Q is set to be a 21× 21 diagonal matrix with ones on the diagonal. The
control cost matrix R has one element which determines how much thruster effort is penalized.
Unless specified otherwise, it is set to be 0.01 throughout the experiments.

After method solve_discrete_are(A, B, Q, R) returns a solution to DARE, the stabilizing so-
lution is used to obtain state feedback gains matrix K as follows:

K = (BTSB + R)−1BTSA (3.10)

and the eigenvalues of the closed loop system E can be calculated with scipy.linalg.eigvals()

function by passing the matrix A− BK as argument. This concludes obtaining the optimal gain
set K, S , E . The final thing left to do is to compute optimal control input U∗ that takes the
aircraft to the desired target state which can be calculated as follows:

U ∗ = K× E(s), (3.11)

where E(s) denotes the state error that can be obtained by subtracting desired_state from the
actual_state. Solving DARE has various approaches that takes different amounts of work to
obtain a stabilizing solution. The solve_discrete_are() function of scipy uses QZ Algorithm
to obtain a solution to DARE. See Laub (1979) and Van Dooren (1981) for the details on how
the algorithm is implemented and see Benner (2000) for understanding how the accuracy of QZ
decomposition is improved.
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At this point, with the optimal control inputs calculated, aircraft is successfully landing from
reasonable initial conditions such as altitude between 1000 meters and 20000 meters and vertical
velocity less than 100 meters per second. It can be further discussed what the reasonable initial
conditions are, but except for scenarios in which the crash is inevitable, IHC does a pretty good
job landing the aircraft. Various scenarios will be investigated in Section 3.4.

At each time step, optimal control inputs can be calculated with the implementation so far to
reach the desired altitude and vertical velocity. What matters next is how the reference values at
each state are calculated. Theoretically, Infinite Horizon Control can obtain all control inputs that
eventually achieve the target at once if the system and control matrices are perfectly describing
the dynamics of the underlying system. However, approximations made to acquire these matrices
makes it unrealistic to expect this solution to work since the smallest error can cause catastrophic
results. Different scenarios showing that this is, indeed, the case are discussed in the next section.
Instead of planning the whole flight at once, current state is updated at each time with the real
values and one optimal control input set is generated at each time step using fixed state feedback
gains matrix K that only needs to be calculated once for the whole flight. This approach also
requires intermediate targets, as existing MPC and Koopman MPC implementations did. The
target values for the altitude can be computed using the following equation:

ytarget =

y− 500, if y > 1000

0, else
(3.12)

for which the values are in meters and the target values for the vertical velocity can be computed
based on the current altitude, as follows:

vtarget =



−150, if y > 1000

−50, if 1000 ≥ y > 150

−20, if 150 ≥ y > 20

−3, if 20 ≥ y > 5

0, else

(3.13)

for which the units are meters/seconds. Until this point, implementation lands the aircraft suc-
cessfully but since one of the primary objectives of this thesis is to reduce the resources used to
obtain control input while keeping a reliable controller, it is essential to correctly measure how
much resources are used to produce each control input.
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For achieving this objective, some standard libraries of Python are used. First off, process_time()
method of the time library gives an insight of how much CPU time elapsed to obtain a single opti-
mal control input. This method only includes the time processor was actually busy. It shows how
many clock cycles passed between two points.Then, timeit() computes average time it takes for
a method to run by actually running it a number of times and calculating the average. This func-
tion disables the garbage collector and since the processor will be occupied mostly computing the
desired function over and over again, it also minimizes the influence of other tasks. Though, it is
not reasonable to run the same function over and over again at each time step, so; this function
is only used for several scenarios to give a broad unbiased oversight of the resource usage. The
final library is called tracemalloc which gives many insights on computational resources used
over time. However, it injects itself deep into code and adds a considerable overhead to computa-
tions which effect the results gathered. For that, as in the case with timeit(), it will only be used
on several scenarios to gain insights on memory usage over time for different control methods.
Algorithm 1 shows how resource calculation is integrated to the main loop. Note that logs are
accumulated in memory, but output is generated only after the flight is over.

Algorithm 1: Gathers the computational resources used by the controllers.
Data:
Target handler: target_handler,
Termination handler: termination_handler,
Log handler: log_handler,
Controller: controller,
Vessel status: status
Result:
Log files containing information about flight and resources used.
while True do

target← target_handler(status)
if termination_handler(status, target) then

break
end
controller← controller.update(status)
cpu_time_start← time.process_time()
tracemalloc.start()
new_inputs← controller.get_new_inputs(status, target)
cpu_time_elapsed← (time.process_time() - cpu_time_start)
average_memory, peak_memory← tracemalloc.get_traced_memory()tracemalloc.stop()
timeit(stmt=’get_new_inputs(status, target)’ number=n)
log_handler.write(status, new_inputs, cpu_time_elapsed, average_memory, peak_memory)

end
log_handler.save()
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In the final subsection of Evaluation, there arises a need to fit a polynomial that takes time delta
and throttle as inputs and generates a prediction for how much will the mass of the fuel that will
be consumed during time delta when throttle value is given, will be. This model will be used to
generate control inputs and simulate flights by only using the initial conditions. In particular, the
aim is to find the coefficients of the following equation:

m = f (t, u) = a0 + a1t + a2u + a3t2 + a4t2u + a5t2u2 + a6u2 + a7tu2 + a8tu, (3.14)

where m stands for mass, t stands for time delta and u stands for throttle. In order to obtain the
set of coefficients that best describes the relation, least squares solution to the following equation
is obtained:

Ax = B, (3.15)

where the vector x contains the coefficients a0 ... a8 that approximately solves the Equation 3.15.
Algorithm 2 shows how the model is fitted to the data to get the coefficients of the polynomial.
Note that the first row of matrix A contains a row vector of ones with the same dimension as the
vectors X and Y.

Algorithm 2: Obtains coefficients of the polynomial model of change in mass.
Data: Time Deltas: t, Throttles: u, Masses: m
Result: Solution to least squares problem Ax = B: x
T← [ t; . . . ; t ]
U← [ uT, . . . uT ]
T, U← T. f latten(), U. f latten()
M← mTm

A←



1
TT

UT

(T ⊙ T)T

(T ⊙ T ⊙U)T

(T ⊙ T ·U ⊙U)T

(U ⊙U)T

(T ⊙U ⊙U)T

(T ⊙U)T



T

B← M. f latten()
solve_least_squares(A, B)

31



3. Infinite Horizon Control Using Koopman Operator Surrogate Models 3.4. Evaluation

3.4 | Evaluation
In the last section of the main chapter of this thesis, using the metrics described in Chapter 2, the
performance of the Infinite Horizon Control implementation will be evaluated. In particular, first
subsection will compare the computational resources used by Infinite Horizon Control (IHC),
MPC with one dimensional drag model, MPC with two dimensional drag model and Koopman
MPC. There will be three different scenarios: landing from 3000 meters, landing from 5000 meters
and landing from 10000 meters. The second subsection will compare the trajectories and vertical
velocities through time for the aforementioned four different methods and give statistics about
how well they performed. In the final subsection, an attempt to use approximated system and
control matrices to generate a complete flight plan from the initial conditions will be evaluated
and discussed.

3.4.1 | Computational Resources
In this subsection, computational resources used by different implementations will be evaluated
and discussed. First thing to denote here is that measuring resources used by a piece of code is
a process that is vulnerable to bias. There are certain measures taken to reduce bias as much as
possible, but what matters most is that relatively, analysis performed here gives valuable insights
about computational efficiency of different methods.

Firstly, CPU Time is measured in seconds and the method used here excludes times that the pro-
cessor was idle. Statistics collected are converted into milliseconds and plotted for each method
in a single chart, shown at the top for each scenario. Next thing to measure was memory usage.
As explained before, tracemalloc module provides valuable insights but adds an overhead to
the process. Average and peak memory usages for a single optimal control input to be generated
are measured for each method and plotted in the middle and bottom charts, respectively. At last,
CPU Time statistics were measured once again for the same scenarios but without tracemalloc
in order to avoid overhead and see how much it affects the overall performance.

As can be clearly seen in the Figures 3.3, 3.4 and 3.5, Infinite Horizon Control approach uses a
lot less resources than the other approaches to compute control inputs. In terms of CPU Time,
Peak and Average Memory usages, Infinite Horizon Control has a clear advantage over the other
methods. In the Table 3.1, resource usage by different methods is summarized. Mean and stan-
dard deviation values gives insights about the methods’ performance. The ways these methods
are implemented have impacts on resource usage patterns. Take a look at the relative trajectory,
velocity and target plots of the same scenarios in the Section 3.4.2 simultaneously for better un-
derstanding of the behaviours.
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As an elaboration of how the implementation changes resource usage patters, consider MPC
implementations versus Koopman MPC and IHC. MPC methods have larger standard deviations
which is because when the aircraft gets closer to target, they need to act more to stay in proximity
of the target, whereas other methods have same dimensional matrix computations at each step
which makes CPU Time for Koopman MPC and Infinite Horizon Control more stable over time
compared to MPC.

Table 3.1: Mean and Standard Deviation values of different resources for different methods.

Method CPU (µ) CPU (µ) CPU (σ) CPU (σ) Memory (µ) Memory (σ)

MPC
34.17 16.26 20.52 10.97 6.38 1.95
43.7 21.09 16.72 8.84 6.89 2.43

42.61 20.36 18.95 9.61 6.76 2.23

Average 40.16 19.24 18.73 9.81 6.68 2.20

MPC (2D Drag)
42.79 17.6 25.62 11.42 6.69 2.33
53.91 22.37 20.67 9.62 6.67 2.31
52.95 22.12 24.71 10.43 6.85 2.33

Average 49.88 20.70 23.67 10.49 6.74 2.32

Koopman MPC
20.75 10.56 2.08 1.44 8.89 2.29
20.71 10.58 1.66 1.27 8.69 2.26
20.36 10.47 1.98 1.3 8.88 2.66

Average 20.61 10.54 1.91 1.34 8.82 2.40

IHC
1.17 0.71 0.48 0.22 1.32 2.00
1.23 0.7 0.53 0.21 1.56 2.25
1.21 0.71 0.51 0.23 1.45 2.10

Average 1.20 0.71 0.51 0.22 1.44 2.12

Unbiased (without the tracemalloc module) measurements are shown in orange, best
measurements are in bold. CPU Time values are in milliseconds and Memory Usage values are

in kilobytes. From top to bottom of each row: 3000, 5000 and 10000 meters landings.

At this point, it is also important to discuss the bias introduced during measurement processes.
The CPU Time values here measure the time it takes the CPU to compute a single optimal control
input, but it is worth denoting that there are other processes also running in the background
during measurement. The tests are repeated by running the minimum background processes
during measurements, but it still cannot capture the exact resources only used by the intended
code piece. For that, it is important to evaluate these values relative to each other instead of
evaluating them individually. In the Table 3.2, it can be seen how much Infinite Horizon Control
increased relative performance.
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Table 3.2: Relative performance increase of IHC compared to the other methods.

Method
CPU (µ) CPU (µ) Memory (µ)

(%) (∗) (%) (∗) (%) (∗)
MPC 97.00 33.37 96.33 27.22 78.38 4.63

MPC (2D Drag) 97.59 41.45 96.59 29.29 78.57 4.67

Koopman MPC 94.16 17.12 93.29 14.91 83.64 6.11

Unbiased measurements are shown in bold. First values (%) depicts performance increases as
percentages, whereas the second ones (∗) as factors.

The next important bias to elaborate occurs during peak and average memory usage measure-
ments. As denoted before, in order to capture memory usage, tracemalloc module is used which
injects itself into the code to get an accurate measure, however it also increases the runtime of the
code. Peak and average memory values correctly capture how much the targeted code piece uses
these resources but when memory measurements are active, CPU Time measurements are not
reliable. Table 3.3 summarizes and Figure 3.6 illustrates the bias introduced. Also denote that as
the resources used increase, the amount of bias introduces increases as well which is the expected
behaviour.

Table 3.3: Increase (%) in CPU time due to bias.

Method
Increase in CPU Time due to bias (%)

3K 5K 10K

MPC 110.15 107.21 109.28

MPC (2D Drag) 143.13 140.99 139.38

Koopman MPC 96.50 95.75 94.46

IHC 64.79 75.71 70.42

Bias refers to the measurements taken while tracemalloc module is active. Values refer to 3000,
5000 and 10000 meters landings.

As a closing remark of this subsection, the IHC implementation presented in this thesis greatly
reduces resource usage and may be a viable option when the resources are scarce. The next
thing that determines whether this implementation was a success or not is that whether the new
resource efficient method is reliable enough or not. It will be elaborated in the next subsection,
Trajectory Comparisons.
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Figure 3.3: Resources used for the landing from 3000 meters scenario.
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Figure 3.4: Resources used for the landing from 5000 meters scenario.
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Figure 3.5: Resources used for the landing from 10000 meters scenario.
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Figure 3.6: Comparison of CPU times between biased and unbiased (dotted) measurements.

From top to bottom: 3000, 5000 and 10000 meters landings.
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3.4.2 | Trajectory Comparisons
As emphasized before, aim of this thesis is to present an implementation of Infinite Horizon
Control that is both resource efficient and reliable. In the previous subsection, it was clearly
shown that implementation presented here greatly reduces resource usage, both in terms of CPU
and Memory. We were able to see around 95% reduction in CPU time and around 80% reduction
in the average memory usage.

In this subsection, the trajectories followed by different scenarios will be investigated to deter-
mine how reliable each method is. In particular, Altitude and Vertical Velocity values will be
plotted together with their target values to give an insight on how quickly each method reaches
the reference and how good they can stay on it. There are two different approach used to evaluate
performance of the controllers. These approaches were introduces in detail before, in the Metrics
section. The first one splits each flight data into approach and proximity fragments and evaluates
corresponding fragments together to get an estimation of the performance.

Unfortunately, flight data during the flights of MPC methods had hard time to reach the target
altitude which made it hard to properly split the fragments. In order to deal with this problem,
the first method that splits fragments into two sets is only used to get approach and proximity
scores of Infinite Horizon Control and Koopman MPC.

Table 3.4: Flight Times for each model’s fragments.

Method
1st Fragment
(150m/s)

2nd Fragment
(50m/s)

3rd Fragment
(20m/s)

4th Fragment
(3m/s)

Total Flight Time
(s)

MPC
17,48 11,50 4,81 1,40 35,19
27,05 12,86 5,26 1,97 47,14
67,07 13,71 4,96 1,97 87,72

MPC (2D Drag)
16,29 7,02 3,79 4,30 31,41
23,85 7,29 3,98 2,77 37,88
58,21 6,82 4,62 5,33 74,98

Koopman MPC
16,98 12,71 4,84 2,13 36,66
27,29 13,18 5,44 2,17 48,08
68,08 14,04 5,19 1,80 89,12

IHC
17,48 11,50 4,81 1,40 35,19
27,05 12,86 5,26 1,97 47,14
67,07 13,71 4,96 1,97 87,72

From top to bottom of each row: 3000, 5000 and 10000 meters landings.
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For comparing all methods with each other, flight data split into fragments according to sliding
targets. RMSE values are computed for each scenario, normalized among the methods and av-
eraged within each method. There are four fragments for each flight scenario. Vertical speed
targets for these fragments are 150m/s, 50m/s, 20m/s and 3m/s in order. Table 3.4 shows the time
it takes for the aircraft to complete each fragment, for different controllers, as well as total flight
times in seconds whereas Table 3.5 shows the RMSE values together with their normalized scores
for each segment of the flight scenarios.

Table 3.5: RMSE values with normalized scores for each fragment of methods and scenarios.

Method
1st (150m/s) 2nd (50m/s) 3rd (20m/s) 4th (3m/s)

(RMSE) (∼) (RMSE) (∼) (RMSE) (∼) (RMSE) (∼)

MPC
49,61 0,21 74,72 0,98 17,58 0,91 4,71 0,05
32,81 0,97 73,47 0,99 16,16 1,00 3,85 0,00
55,14 0,92 73,97 0,98 15,17 0,90 3,81 0,00

MPC (2D Drag)
49,64 0,21 75,40 1,00 18,31 1,00 4,48 0,00
33,25 1,00 74,07 1,00 15,82 0,95 4,89 0,28
56,13 1,00 74,68 1,00 15,86 1,00 3,91 0,03

Koopman MPC
48,87 0,00 33,38 0,00 10,15 0,00 7,24 0,55
17,13 0,00 30,76 0,00 9,38 0,00 6,96 0,84
44,32 0,00 28,13 0,00 9,11 0,00 7,43 1,00

IHC
52,45 1,00 37,73 0,10 10,92 0,09 9,52 1,00
19,93 0,17 32,63 0,04 9,56 0,03 7,54 1,00
46,09 0,15 30,12 0,04 9,20 0,01 7,24 0,95

As can be easily seen in Figures 3.7, 3.8, 3.9 and 3.10; it is obvious that the best performing con-
troller is the Koopman MPC. It reaches the target velocities through a smooth path while reducing
over shots by adjusting the speed as it gets closer to the proximity of the target. IHC method also
maintains a smooth path; however, due to the approximation and the fact that it cannot re-adjust
itself at each time step, it cannot follow the target values as close as Koopman MPC method.
Though, as can be seen in the plots and in the various tests we have performed, it still seems to
be a reliable option. Especially when the resources are scarce for it is extremely efficient in terms
of CPU time and memory usage, as explained before. Moreover, as can be seen in the plots and in
Table 3.6, IHC is performing far better than both implementations of MPC for which they fail to
reach the target values smoothly and keep the ship steady. Even though MPC implementations
are able to land the aircraft for most scenarios, the existing implementations are not very reliable
since they fail to maintain close trajectory to the reference.
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Table 3.6: Average performances for different landing scenarios.

Height
Method

MPC
MPC

(2D Drag)
Koopman

MPC
IHC

3000 Meters 0,5369 0,5536 0,1369 0,5494

5000 Meters 0,7398 0,8085 0,2108 0,3109

10000 Meters 0,6997 0,7569 0,2500 0,2884

Average 0,6588 0,7063 0,1992 0,3829

Lower value refers to the better controller.

Table 3.6 is showing that as expected, the best performing operator is Koopman MPC while In-
finite Horizon Control controller follows it closely. It is hard to come up with a metric that says
how much reliable the new method is, but statistics we gathered here together with the scenarios
observed shows that IHC can be a reliable option.

This sections last analysis will focus on IHC and Koopman MPC implementations relative perfor-
mance. Existing MPC implementations has shown clearly poor performance compared to these
two methods. Even though the metrics calculated before supports the claim that KMPC is a better
option in terms of accuracy, it is worth digging deeper into these methods’ performances. The
first approach described in the Metrics section that classifies fragments into two sets and performs
calculations on them will be applied here to compare two methods in depth.

It is worth noting that there are only two methods to compare at this point. So, Equation 3.8 which
shows how the measurements of the fragments will be normalized among methods becomes a
voting mechanism since it will only output 0 or 1. The better method in each comparison will
get a 0 whereas the other one gets 1. At the end, the votes will be summed to get metrics for
comparison. It is also worth emphasizing that lower value means better performance here too, as
before.

The upper part of the Table 3.7 shows which controller performed better in each segment of the
trajectories. It is worth noting here that there is no need to plot the same table for the Koopman
MPC since where IHC gets a 0, KMPC gets 1. Lower part of the table shows average proximity
and approach scores of both methods for different landing scenarios as well as an overall score
pair for both implementations. Finally, Table 3.8 shows raw values of error statistics for each
particular flight fragment as well as their averages. Again, for both, lower is better.
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Table 3.7: Analysis of trajectory fragments for all scenarios of IHC and KMPC.

Height Infinite Horizon Control
(Fragments)

3000 Meters 1 1 0 0 1 1 1 1

5000 Meters 1 1 0 1 1 0 1 0

10000 Meters 1 1 0 0 1 1 1 1

Height IHC KMPC
3000 Meters 0,5 1 0,5 0

5000 Meters 0,75 0,5 0,25 0,5

10000 Meters 0,5 1 0,5 0

Average 0,58 0,83 0,42 0,17

Bold or blue values refer to the proximity fragments whereas the orange ones and the rest refer
to the approach fragments. For the table on the top, zero means current controller performed

better whereas one means the opposite.

In the lights of the analysis performed so far, even though IHC did not perform as well as KMPC,
it has shown to be a reliable alternative, especially when the resources are scarce.

Table 3.8: Calculated error metrics for all fragments of IHC and KMPC.

Height Infinite Horizon Control
(Fragments)

3000 Meters 10,95 3,68 1,12 0,57 6,89 1,88 1,86 1,74

5000 Meters 6,11 3,10 1,38 0,56 5,51 1,09 1,11 1,25

10000 Meters 15,52 2,51 0,56 0,84 4,52 1,38 1,25 1,16

Average 10,86 3,10 1,02 0,66 5,64 1,45 1,41 1,38

Height Koopman MPC
(Fragments)

3000 Meters 9,94 3,28 1,51 1,49 4,41 0,90 0,35 0,87

5000 Meters 5,26 2,76 1,48 0,32 2,65 1,46 0,71 1,36

10000 Meters 15,09 2,45 0,57 0,86 1,65 0,84 0,72 0,74

Average 10,10 2,83 1,19 0,89 2,90 1,07 0,59 0,99

Bold ones are the RMSE values that refer to the proximity fragments whereas others are the
time it takes the aircraft to get to the proximity of the target (in seconds), which refer to the

approach fragments.
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Figure 3.7: Comparison of trajectories for MPC.

Altitude on the left, Vertical Velocity on the right.
From top to bottom: 3000, 5000 and 10000 meters landings.
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Figure 3.8: Comparison of trajectories for MPC (2D Drag Model).

Altitude on the left, Vertical Velocity on the right.
From top to bottom: 3000, 5000 and 10000 meters landings.
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Figure 3.9: Comparison of trajectories for Koopman MPC.

Altitude on the left, Vertical Velocity on the right.
From top to bottom: 3000, 5000 and 10000 meters landings.
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Figure 3.10: Comparison of trajectories for Infinite Horizon Control.

Altitude on the left, Vertical Velocity on the right.
From top to bottom: 3000, 5000 and 10000 meters landings.
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3.4.3 | Infinite Horizon Control
In the final subsection, Infinite Horizon Control implementation will be used to construct a com-
plete flight plan that presumably takes the aircraft to the desired state. The only known variable
will be the initial state and the Koopman matrix will perform state transformations and compute
optimal control inputs to reach the target. There will be two different test cases. The first one
is that there is only one target throughout the whole flight and it is the zero altitude and veloc-
ity. The second one is the same as the previous flight scenarios where there is a sliding target
generator that generates a specific target based on the current state of the aircraft.

The current state of the aircraft contains four values: Altitude, Vertical Velocity, Mass and Drag.
The first attempt was to compute how all these four values evolve using the system and control
matrices. The results were extremely different than the expected scenarios. Mass and drag values
are changing rapidly in a bizarre way and corrupts all predictions. In order to eliminate unreal-
istic evolution of these values, polynomial models are generated and used. There already exists
a 2D polynomial drag model implemented by Ali Ganbarov. This model is used to obtain drag
values at each time step using vertical velocity and altitude predictions. See Ganbarov (2020) for
details on how this model was implemented.

Since the drag model did not prevent the distortion of the values through time, a mass model
is implemented to model how the mass of the aircraft changes depending on the time delta and
the throttle value. Implementation details can be found under Section 3.3.3. As the throttle value
increases, the total mass reduced will increase as well due to the fuel burn. Also, since the throttle
value stays the same until the next control input comes, time delta also affects how much fuel
burn, which is proportional to the mass loss. The change of mass versus time delta and throttle
can be seen in Figure 3.11.

Figure 3.11: Comparison between mass delta, time delta and throttle.
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The coefficients of the second degree polynomial that describes how much mass is lost based
on certain throttle and time delta values is found using The Method of Least Squares which is
explained in detail at the end of the Section 3.3.3. The resulting models predictions can be seen in
Figure 3.12.

Figure 3.12: 2D Polynomial Mass Model.

Using the aforementioned mass and drag models, there leaves only two variables to estimate in
order to obtain a prediction of the next state of the aircraft: vertical velocity and altitude. Recall
the matrices Q and R from the Equation 2.4. The former is used to induce penalty on particular
states. In our implementation, this is a matrix of dimension 21× 21 with ones on the diagonal
since the state space with five variables is lifted into a higher dimension. Each lifted state is
treated equally in all the scenarios so far, and beyond. The latter on the other hand, is a 1× 1
matrix that contains a value which can be used to penalize thruster effort. PID Controller is
responsible for pitch, yaw and roll whereas IHC only controls one input, which is the throttle.
9 different penalty values with an exponential increase are tested for the flight scenarios in the
Figures 3.13, 3.14, 3.15 and 3.16. It is worth noting that results in this section are inconclusive and
there is a high possibility of a bug in the code we cannot spot.

The first test case has a single target state, zero velocity and altitude. In order to test this, sim-
ulation is run from the initial state for all values of thruster effort penalty. Figure 3.13 shows
altitude, velocity, mass and throttle changes through time for all values of matrix R. As for the
second case, the same sliding target handler is used to generate the same targets, as it did for all
the previous tests, based on the current altitude. The initial state of the aircraft is passed to the
simulation, results are fetched, then closed loop system is run to actually control the aircraft and
fetch the data of the flight starting from the same initial condition. Figures 3.14, 3.15 and 3.16
shows the change in altitude, velocity and throttle through time for different altitudes.
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Figure 3.13: Altitude, Vertical Velocity, Mass and Throttle change during simulations.

Effects of different thruster efforts are illustrated. There is a single target velocity and altitude
that are both zero all the time for all flights.
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Figure 3.14: Change in Altitudes through time for different landing scenarios.

From top to bottom: 3000, 5000 and 10000 meters landings.
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Figure 3.15: Change in Vertical Velocities through time for different landing scenarios.

From top to bottom: 3000, 5000 and 10000 meters landings.
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Figure 3.16: Change in Throttle values through time for different landing scenarios.

From top to bottom: 3000, 5000 and 10000 meters landings.
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Conclusion

This thesis has shown that Koopman Operator approximated through the use of EDMD can cap-
ture the dynamics of the underlying system accurately so that the equations describing the sys-
tem dynamics can be used to obtain control inputs directly by utilizing LQR instead of optimizing
over a prediction horizon at each time step. It also proves that this approach extremely reduces
computational resources used by the controller.

Infinite Horizon Control approach that utilizes LQR to obtain control inputs for the approximated
linear system reduces CPU Time to generate a single control input by a factor of 14 compared to
Koopman MPC, by a factor of 27 compared to MPC and a factor of 29 compared to the MPC
implementation with 2D Drag model. In terms of Memory Usage, IHC uses 83% less memory
than KMPC and 78% less than both MPC implementations. In order to determine whether it is a
reliable method to use, an evaluation metric is designed to provide scores that are in line with the
nature of the testing scenarios. Interpretation of the computed confidence scores and plotted time
series data for different test cases shows that Infinite Horizon Control using Koopman Operator
Surrogate Models is both reliable and extremely resource efficient option compared to the other
models.

Even though the results are very promising in this thesis, they can be further improved. Obtain-
ing a solution to Discrete Time Algebraic Riccati Equation is the most resource consuming part of
this implementation and there are various approaches in the literature that suggest better com-
putation times. Investigation and implementation of different methods to solve DARE can take
this project one step forward. At its current state, this project provides an efficient and reliable
controller for landing an aircraft. However, the biggest weakness of all the aforementioned im-
plementations is the inability to land at a specific location which would be an important goal to
achieve for the future work, but would require much more detailed flight planning procedures
on top of the regular control framework.
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