
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Robotics, Cognition, Intelligence

Domain Adaptation for Light Microscopy
Image Segmentation

Qing Sun



DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Robotics, Cognition, Intelligence

Domain Adaptation for Light Microscopy
Image Segmentation

Domänenanpassung für die Segmentierung
von Lichtmikroskopiebildern

Author: Qing Sun
Supervisor: Dr. Felix Dietrich
Submission Date: 15.11.2022



I confirm that this master’s thesis in robotics, cognition, intelligence is my own work and I
have documented all sources and material used.

Munich, 15.11.2022 Qing Sun



Acknowledgments

My deepest and most sincere gratitude goes to Dr. Felix Dietrich, who has been and will
continue to guide my academic journey. A big thank you to my parents for their unconditional
love and support as I pursue my dream, even though they have no clue what I am doing. My
final thanks go to everyone who has helped me in any way. Without you my life would never
be the same.



Abstract

While deep learning techniques are nowadays commonly used in the field of computer
vision and have achieved outstanding performance, collecting sufficient data for training
a deep neural network remains a challenge. In this work, domain adaptation techniques
are utilized in order to learn from a different yet related domain, where data are more
readily available. In this thesis, a framework called Synergistic Image and Feature Adaptation
(SIFA) is implemented using PyTorch, and in the project it is demonstrated how to perform
semantic segmentation task on light microscopy images of fungal-colonized root sections.
The identified classes are arbuscules, vesicles and root cortex. This helps the analysis of
arbuscular mycorrhizal fungi (AMF). The training dataset is composed of images from
two domains: unlabeled real-world light microscopy images and labeled synthetic images.
The synthetic images and the labels are acquired from a 3D model of a root section. A
baseline model adopting the U-Net architecture trained with the synthetic images suffers
from severe performance degradation when applied to the light microscopy images, while the
segmentation model developed in this work is able to create better segmentations. The result
is overall promising, and future developments and possible improvements are suggested in
the final section.
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1 Introduction

Semantic segmentation has been a popular task in the field of computer vision. It is the
process of classifying each pixel in an image into a certain class. In recent years, Deep Neural
Networks (DNNs) are booming, and they are becoming ubiquitous in this field. If DNNs are
provided with sufficient training data, they can learn very well. In semantic segmentation
tasks, various DNNs have outperformed the state of art and become the new benchmark
models. However, these segmentation models cannot generalize well to new settings, such as
new datasets. For example, a semantic segmentation model is trained with a set of synthetic
images of a colonized root section, the model can achieve good performance in predicting
synthetic images, but its performance is severely degraded when predicting real-world light
microscopy images of a root section. This problem is referred to as domain shift. Many
domain adaptation techniques focus on solving this problem.

The study of domain adaptation is of great significance. One of its contributions is the
transfer of knowledge from one domain to another. This allows the model to learn from
one domain and apply the knowledge to another related domain. DNNs for semantic
segmentation can also benefit from the domain adaptation techniques, as the lack of training
data is one of the biggest obstacles in some cases. In fields such as medicine and biology,
obtaining sufficient images for training a DNN is challenging enough, not to mention the
amount of time and effort required to manually annotate the images. With the help of domain
adaptation techniques, it is possible for a semantic segmentation model to learn from existing
data in the source domain and then make predictions for a different target domain without
obtaining additional training data.

In this work, light microscopy images of plant roots are to be predicted, and fungal objects
in the image should be identified. However, these images have no ground truth labels, so
training a DNN for segmentation in the traditional way with a large amount of training data
is not an option. A 3D model of a colonized root section is available, which can provide
synthetic images of the root as well as the labels. Therefore, domain adaptation techniques
can be utilized to learn from these labeled images. Figure 1.1 is an illustration of the data
pipeline in this work.

The thesis first provides some background knowledge of arbuscular mycorrhizal fungi
(AMF), semantic segmentation and domain adaptation (Chapter 2). Then the main work is
described in detail in Chapter 3. A framework called Synergistic Image Feature Adaptation
(SIFA) is implemented, which utilizes domain adaptation techniques [3], while a U-Net trained
without domain adaptation in [46] serves as a baseline model for comparison (Section 3.3).
The experimental results are presented with images, figures and short discussions (Section
3.4). Finally, the work is summarized, and possible future improvements are discussed
(Chapter 4).
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1 Introduction

Figure 1.1: Data pipeline. Above is the training process. A 3D model created using the
software Blender provides synthetic images and the corresponding labels. The
baseline model (U-Net) is trained solely on the labeled synthetic images, while the
model implemented in this work (SIFA) uses both the labeled synthetic images
and unlabeled light microscopy images. Below is the test process. Both models
perform semantic segmentation on light microscopy images. The model which
utilizes domain adaptation techniques yields better results.
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2 Related work

This chapter covers the basic knowledge applied in this work. A brief introduction of the
biological background (Section 2.1), the computational methods (Section 2.2 and 2.3) and the
preliminary work (Section 2.4) is given.

2.1 Arbuscular Mycorrhizal Fungi

Mycorrhizal symbiosis is a form of fungal symbiosis with plants. Based on the anatomy, it
can be further divided into two categories: ectomycorrhizas (EMs) and endomycorrhizas, and
EMs are further divided into three categories, including arbuscular mycorrhizas (AMs), which
are the most common of all types [8, 2]. This association involving plants and arbuscular
mycorrhizal fungi (AMF) is quite ancient and is found in most plant families [11, 1]. It
promotes the absorption of nutrients from the soil, and has received increasing attention for
its potential use in sustainable agriculture [33, 21, 5]. Figure 2.1 shows the root colonization
structures. With the help of highly extended hyphal network of AMF, a larger area of soil
is available for nutrient uptake. Through arbuscules, the plant and the fungus exchange
nutrients such as minerals and carbon, and this is mutually beneficial.

The traditional method for analyzing AMF is to collect light microscopy images and
manually mark the regions of interest, which is time consuming. First, AMF samples are
prepared as described in [46]:

Lotus japonicus ecotype Gifu wild-type (plant-name) seeds were scarified and
surface sterilized. The imbibed seeds were germinated for 10-14 days and culti-
vated in quartz sand as substrate. For colonization with Rhizophagus irregularis
(fungus-name) the roots were inoculated with 500 spores per plant and harvested
after five weeks after inoculation.

Next, the samples are stained using the method described in [45], so that the plant structures
are visible and can be imaged by a microscope, but there are also risks that the staining is not
successful. After that, the plant biologists analyze the images and count the fungal structures.

2.2 Semantic segmentation

Image segmentation is the process of analyzing an image and identifying different regions
and structures. Each and every pixel that constitutes the image should be labeled with a
class. There are two main types of image segmentation. One is semantic segmentation. In a
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2 Related work

Figure 2.1: Illustration of arbuscular mycorrhizal (AM) colonization structure. In the AM
colonization, the hyphal network of AMF developed from the spore in the soil
spread inside the plant root, and arbuscules are formed inside the root cells. Taken
from [2].
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semantic segmentation task, objects of the same kind should be given the same label, and
this requires recognizing and understanding the semantic meaning of pixel-level contents
in the image. The other is instance segmentation. It is similar to semantic segmentation,
but different instances should also be distinguished. In other words, when doing instance
segmentation, a unique label is given to each instance, even if they are objects of the same
class, while in semantic segmentation, they have the same label.

Semantic segmentation has long been a popular topic in the field of computer vision,
because it has the potential to help in many areas such as autonomous driving and medical
image diagnosis. There were attempts to solve this problem even before the booming of
deep learning [17, 41] (see Figure 2.2). Modern computer vision algorithms are based on
convolutional neural networks (CNNs). CNN is a multilayer neural network specifically
designed to deal with images, and it outperformed other traditional techniques at that time
[28, 29]. Later, deeper and more complex CNNs appeared, yielding increasingly better results.
For example, in [32, 4, 37, 48, 39, 7], CNNs are trained for supervised semantic segmentation
tasks (see Figure 2.3).

However, powerful deep learning comes at a cost. It typically requires huge amounts of

Figure 2.2: Example semantic segmentation results on the MSRC 21-class database with a
non-neural network algorithm. Taken from [41].

training data. In the case of supervised semantic segmentation, pixel-wise manual annotation
of images is inefficient and expensive. Therefore, people turn to unsupervised learning
techniques, where ground truth labels are not involved in the training. Some works focus on
unsupervised image segmentation by combining the idea of clustering with deep learning in
various ways, so that image patches and pixels which share the same semantic meaning can
be identified and grouped using only unlabeled data samples [22, 6, 14].

2.3 Domain adaptation

In the field of computer vision, supervised learning has made tremendous progress. Most
methods require that the test data and the training data come from the same distribution.
However, this is not always the case. In some applications, the testing scenarios may vary
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Figure 2.3: Architecture of a CNN designed for semantic segmentation. The convolution
network (left) extracts features from input image. With convolution layers and max
pooling layers, the size of the image shrinks and the number of filters increases.
The deconvolution network (right) reconstructs the image to its original size and
assigns a label to each pixel. The architecture of the deconvolution network is
typically a mirrored version of the convolution network, but with transposed
convolution layers and unpooling layers.

significantly. For example, a model trained for autonomous driving on a particular dataset
may encounter different weather conditions and different geographic regions during test, and
this can result in dramatically degraded performance. This problem is referred to as domain
shift (see Figure 2.4). A naive idea to solve this problem is to add more training data that
cover more scenes, but acquiring labeled data can be a big problem by itself. In some cases,
labeled data for training are only available in one domain, called the source domain, while test
is performed on data which come from another domain, called the target domain. Due to the
scarcity of labeled data, various domain adaptation methods have been investigated to bridge
the gap between training data and test data, so that knowledge gained from one domain
can be transferred to another related domain where only a few or even no labeled data are
available.

There are many interesting ideas on how to solve this problem for both image classification
and segmentation tasks. Some early works try to learn a feature space transformation between
two domains to compensate for the domain-induced changes [40, 27, 12]. Figure 2.5 is a
simple illustration of this idea. Later more works focus on the idea of adversarial adaptation
methods, for example, introducing a domain classifier, thus encouraging the CNN model to
extract domain-invariant features during training in order to confuse the classifier [43, 9, 10,
19] (see Figure 2.6). The well-known Generative Adversarial Network (GAN) also belongs to
the category of adversarial learning [13]. It has inspired the use of a GAN-based loss as the
adversarial loss [44], as well as the use of generative models in domain adaptation [31, 36].

GAN is known for generating realistic fake images, e.g., human faces (see Figure 2.7). A
vanilla GAN consists of a generator and a discriminator. The generator randomly generates
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Figure 2.4: An example showing the impact of domain shift on semantic segmentation. If
a model is trained on the synthetic GTA5 dataset A and is tested on the real
Cityscapes dataset B without any domain adaptation, the segmentation result C
is not very good. An unsupervised domain adaptation framework proposed in
[36] yields better result D. Comparing the two results with the ground truth E
reveals that large errors on roads, sidewalks and buildings are fixed. The mean
Intersection Over Union (IOU) values are reported. Taken from [36].
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Figure 2.5: Illustration of Information-theoretic Metric Learning (ITML) method proposed in
[40]. Data come from two different domains A and B (blue and green). A linear
transformation W between A and B is learned by optimizing the (dis)similarity
constraint xTWy (solid and dashed lines), where x ∈ A and y ∈ B. This is applied
in kernel space, so that non-linear transformations can be learned.

Figure 2.6: T-SNE embedding visualization of distributions of extracted features. Blue are
source domain images. Red are target domain images. The adaptation method
proposed in [9] makes the two distributions closer. Taken from [9].
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images, and the discriminator distinguishes between real and fake images. They compete
against each other, thus encouraging the generator to generate realistic-looking images. In
more detail, the generator tries to generate images from the target distribution, while the
discriminator tries to predict if the image is from the target distribution or not. They are
jointly trained, and the train losses are exactly the opposite. In the end, the generator will
learn to approximate the target distribution, and the discriminator cannot distinguish between
them, so it has to predict randomly.

In many works, researchers have gone beyond obtaining completely random images and

Figure 2.7: Fake human faces generated by Progressive Growing GAN (ProGAN) proposed
in [24]. ProGAN is an extension of GAN which adopts a new training process and
can produce large high-quality images. Taken from [24].

move further to modify the GAN model so that the generator can produce certain outputs
based on given inputs. GANs applied in the conditional settings are called conditional GANs
(cGANs). The conditions can be labels [35], text [38], and even images, for example, the
pix2pix model converts images from one style to another [20] (see Figure 2.8). There are also
other models that do similar things [23, 47] (see Figure 2.9). However, cGANs are not suitable
for solving domain adaptation problems, because they require paired inputs. The core idea
of cGAN is presenting the condition/target (ground truth images) pair and condition/output
(fake images generated by the generator) pair to the discriminator. For comparison, the
discriminator in a vanilla GAN takes in target and output (with no conditions) and tries
to distinguish them. In the case of domain adaptation, the condition is an image from one
domain, but there is no guarantee that there is a paired image from the other domain to be
used as the target.

It is Cycle Generative Adversarial Network (CycleGAN) that makes the idea of unpaired
image-to-image translation possible [49]. The approach is easy to understand. Images {xi}N

i=1
and {yj}M

j=1 are available for training. They come from two different domains X and Y, where
x ∈ X and y ∈ Y. For these images, a mapping function G : X → Y should be learned by the
generator. The discriminator DY is responsible for distinguishing between images {y} and
generated images {G(x)}. In order to do the mapping in the other direction, a second set of
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Figure 2.8: A cat image generated by the pix2pix model that corresponds to the edges. This
model is trained on cat images and their edges. The pix2pix model can do a lot
of other things, such as generating street scenes given the labels and generating
colored images given the gray images. The setting is always the same. It maps
pixels to pixels. The interactive demo made by Christopher Hesse is available
under the link: https://affinelayer.com/pixsrv/.

Figure 2.9: Images generated showing different weather conditions given the semantic layout.
This model proposed in [23] is named AL-CGAN. Taken from [23].
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2 Related work

generator and discriminator is trained in a similar way. The generator learns the mapping
F : Y → X, and the corresponding discriminator is denoted as DX. However, this process
alone cannot guarantee that the resulting mapping is ideal. As [49] points out:

With large enough capacity, a network can map the same set of input images to
any random permutation of images in the target domain, where any of the learned
mappings can induce an output distribution that matches the target distribution.

Therefore, the constraint of cycle-consistency is introduced, which states that the transfor-
mation of an image from one domain to the other and then back again should result in
the original image, i.e., x → G(x) → F(G(x)) ≈ x. This process is called forward cycle
consistency. Similarly, the backward cycle consistency y → F(y) → G(F(y)) ≈ y should also
be satisfied. This concept is illustrated in Figure 2.10.

CycleGAN is one of the benchmarks for domain adaptation. There are frameworks

Figure 2.10: Illustration of the CycleGAN technique. CycleGAN model consists of two gen-
erators which learns the two mappings G : X → Y and F : Y → X and two
corresponding discriminators. Furthermore, forward and backward cycle consis-
tency are required, i.e., x → G(x) → F(G(x)) ≈ x and y → F(y) → G(F(y)) ≈ y.

based on CycleGAN for image classification and segmentation, for example, Cycle-Consistent
Adversarial Domain Adaptation (CyCADA), Synergistic Image and Feature Adaptation (SIFA)
and Cycle Consistency Panoptic Domain Adaptive Mask R-CNN (CyC-PDAM) [18, 3, 30].
CyCADA is a direct extension of CycleGAN. In addition to pixel loss and cycle consistency,
CyCADA also considers feature loss and semantic loss. SIFA, which is developed for semantic
segmentation of medical images, adopts a similar idea to CyCADA, but has a more elegant
architecture by fusing the CycleGAN with a semantic segmentation model. This framework
will be explained in detail in Section 3.3.3. CyC-PDAM focuses on instance segmentation. It
combines CyCADA and an instance segmentation framework called Mask R-CNN [15], and
it also has a lot of other features, such as panoptic level domain adaptation inspired by [26]
and [25].
These three frameworks are different from each other, but they share the same basic idea
of using CycleGAN to disguise images from the source domain as images from the target
domain, which makes sense. Usually, there is more information available for data from
the source domain, such as the ground truth labels for doing semantic segmentation, while
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little information is given for the data from the target domain, which makes the training
difficult or even infeasible. With the help of CycleGAN, source images are stylized as target
images, which are used to train the model, and the training can benefit from the additional
information on the source images. Of course, a naive implementation of this idea will face a
lot of problems. The frameworks contain plenty of other details, which are not mentioned
here.

2.4 Light microscopy image simulation using Blender

The tradition way to investigate AMF is explained in Section 2.1. However, if an image
segmentation model is to be trained for this task, it is not ideal to obtain training data in this
way. Light microscopy images are typically of very high resolution, and manual annotation
of different plant structures per pixel is nearly infeasible. In addition, identifying plant
structures is not easy, and manual labeling cannot guarantee 100% accuracy. If these flawed
data are used for training, the performance of the model will degrade.

In order to solve this problem, a 3D model of a fungus-colonized root section is built in
[46] using the 3D computer graphics software Blender, so that synthetic 2D images and labels
used for training a semantic segmentation model can be generated automatically. The root
anatomy is modeled, and deformation is allowed so that the root can be imaged in different
positions and poses (see Figure 2.11). The rendering and output configurations are also set
(see Figure 2.12), and images can be directly exported. With this 3D model, training data can
be easily obtained.

Figure 2.11: Screenshot of the software Blender showing the root model. Bones (structure
with orange outlines in the middle) are added to the model and enable the
deformation of the 3D mesh (gray structure surrounding the bones).
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Figure 2.12: Images exported by the software Blender. Left is a realistic rendered image
of the root. The black line in the background is the simulation of the edge of
an air bubble, as cotton fibres and air bubbles can sometimes be seen in light
microscopy images. Right are the corresponding labels. There are four classes
in addition to the background: root cortex (green), vesicles (blue), arbuscules
(yellow) and hyphae (red).
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3 Light microscopy image segmentation

This chapter describes the development of the segmentation model for light microscopy
images. First, the background and the goal of this work is given (Section 3.1). Next,
the evaluation metric of the model is discussed (Section 3.2). Then the model and its
implementation are described in detail (Section 3.3). After that, experimental results are
presented (Section 3.4). Finally, possible improvements of the current model are suggested
(Section 3.5).

3.1 Problem description

Light microscopy images of roots are provided by the Life Science department at TUM (see
Figure 3.1). A segmentation model should be developed to identify the AMF colonization in
these images. The main challenge is the lack of ground truth labels for the light microscopy
images. In the conventional method of training a semantic segmentation model, each pixel
of an image should be assigned a label, which is not possible in this case. Training without
manually labeled images is the problem this project aims to overcome. In addition, the
number of light microscopy images is limited, because the process of obtaining these images
is tedious and requires a lot of effort. This also adds to the difficulty of this project.

There has been much effort devoted to this project. A simulation pipeline is developed

Figure 3.1: Light microscopy images of roots available through the Life Science department
at TUM, lab of Prof. Caroline Gutjahr. These images are of very high resolution
(2048 × 1536). Manual annotation of these images is very costly.

in the 3D modeling environment Blender to simulate the light microscopy images [46]. As
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3 Light microscopy image segmentation

shown in Figure 2.11 and Figure 2.12, the 3D model of the plant root can be adjusted into
different poses and then rendered. Specific parts of the root are highlighted to generate
labels for segmentation tasks. This ensures that there are adequate data to train a semantic
segmentation model. However, the model will face problems when dealing with real-world
data, as it has only been trained on synthetic data. Another work focuses on the problem
of the limited number of light microscopy images and explores the field of deep generative
modeling [42]. A model which generates realistic light microscopy image data is developed
(see Figure 3.2). These data can potentially be used to train a segmentation model, but the
corresponding labels are still not available. New approaches should be adopted in order to
combine these two efforts and solve the above problems. This is the starting point for this
work.

Figure 3.2: Sample image patches generated by a Variational Autoencoder (VAE) with a
ResNet-18 architecture trained in [42]. The model is able to learn details in the
light microscopy images. Taken from [42].

3.2 Evaluation metrics

When evaluating classification models in machine learning, predictions are classified into four
categories: true positives (TP), true negatives (TN), false positives (FP) and false negatives
(FN). Among them, TP and TN are correct predictions, while FP and FN are wrong predictions.
Table 3.1 is a 2 × 2 confusion matrix that summarizes the relationship between these four
outcomes. Figure 3.3 is an illustration of classification results.

In this work, a semantic segmentation model should be developed. Pixel accuracy,
Intersection over Union (IoU) and Dice similarity coefficient (DSC) are evaluation metrics
commonly used for semantic segmentation model evaluation, and they will be further
explained in the following subsections.
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Table 3.1: Confusion matrix.
Ground truth

Prediction y = 1 y = 0
ŷ = 1 TP FP
ŷ = 0 FN TN

Figure 3.3: Classification result of a certain class. A pixel either belongs to the class (positive)
or it does not (negative). Left and middle are the ground truth and the prediction
repectively. Right is the classification result. TP and TN are pixels that are
successfully predicted by the model to be positive (black) or negative (white). FP
are pixels predicted to be positive, but actually they are not (orange). Similarly,
FN are pixels falsely predicted to be negative (green).
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3.2.1 Pixel accuracy

Pixel accuracy is one of the most basic evaluation metrics. It considers the percentage of pixels
that are correctly classified. When evaluating a semantic segmentation model, there are two
ways to calculate pixel accuracy. One is per-class pixel accuracy, which reports accuracy for
each class. This is equivalent to a binary classification of the class in question while masking
out all the other classes. The calculation of the per-class pixel accuracy is

acc =
TP + TN

TP + TN + FP + FN
. (3.1)

The other is overall accuracy, which simply calculates the ratio of correctly classified pixels
to total pixels. However, this evaluation metric can be problematic when working with
unbalanced data. For example, if an image has a large background, a dummy model that
predicts all pixels to be background will be evaluated as having high pixel accuracy, and this
result is misleading.

3.2.2 Intersection over Union

IoU is an alternative metric to evaluate a semantic segmentation model. It is also known as
Jaccard index. The definition of IoU is

IoU =
|gt ∩ prediction|
|gt ∪ prediction| , (3.2)

where gt is the ground truth. As can be seen in Figure 3.3, the intersection of the ground
truth and the prediction is TP, and the union of the ground truth and the prediction is
TP + FP + FN. Therefore, IoU can be calculated as

IoU =
TP

TP + FP + FN
. (3.3)

This should be calculated for each class, and then the scores are averaged over all classes. The
averaged IoU score is referred to as mean IoU.
This evaluation metric performs better when dealing with unbalanced data. As described
in Section 3.2.1, if a dummy model ignores the object class and only predicts that all pixels
belong to the background class, evaluation with pixel accuracy fails, because the model
correctly and yet meaninglessly states that either there are many pixels that are background
(TP) or there are many pixels that are not object (TN), so the pixel accuracy is always high.
However, with IoU evaluation metric, the score for the object class is 0, because the model
does not correctly predict any pixel to belong to the object class. This result is more relevant
in this case.

3.2.3 Dice similarity coefficient

DSC, also known as the F1 score, is similar to the IoU metric. The definition is

DSC =
2|gt ∩ prediction|
|gt|+ |prediction| . (3.4)
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3 Light microscopy image segmentation

In the binary class cases, this is equivalent to

DSC =
2TP

2TP + FP + FN
. (3.5)

The ratio between IoU and DSC is

IoU
DSC

=
1
2
+

IoU
2

, (3.6)

where both DSC and IoU range from 0 to 1. It can then be deduced that DSC ≥ IoU ≥ DSC
2 .

The ratio is close to 1
2 when both values are close to 0, which means that the IoU metric tends

to punish bad classifications harder than the DSC metric. In general, the DSC metric has a
similar performance to the IoU metric, and they are positively related.
In this work, the DSC evaluation metric is adopted. The training images contain a large
amount of background, and it is important to identify minor classes which are of interest.
This makes the DSC metric a proper choice.

3.3 Implementation

3.3.1 Dataset

This work utilizes data from two domains: synthetic images as the source domain and
real-world light microscopy images as the target domain. Synthetic images of the plant root
as well as the corresponding labels are generated by the 3D model developed in [46]. Light
microscopy images are provided by Dr. Catarina Cardoso from the Gutjahr Lab at the TUM
School of Life Sciences. The images are cropped and normalized.

The original images are of high resolution. They are cropped into small patches, and these
patches constitute the dataset used for developing the model in this work. The cropping is
done in a sliding window fashion, as illustrated in Figure 3.4. The resulting image patches
have parts that overlap each other. The advantage of doing this is that the limited number of
original images is fully utilized and a large amount of data is obtained. The original images
have a lot of blank parts, and these blank patches are discarded. These cropped image patches
are originally RGB images, which have three color channels. Later, they are converted to
grayscale images, which have one color channel. Table 3.2 shows more details of the image
cropping process.

Data augmentation is a strategy commonly used in deep learning to increase the amount
of data available for training. Models are usually trained to handle real-world data, which are
complex, so the training dataset should ideally cover various circumstances that the model
may encounter during test. However, it is not always feasible to collect more data for training,
so the existing data are augmented, which increases the diversity as well as the size of the
dataset. For image data, artificial transformations are performed for data augmentation,
such as rotating, flipping, blurring, shearing, adding noise and changing brightness. In this
work, image patches are first flipped horizontally and then rotated by 90 degrees for data
augmentation, as shown in Figure 3.5. This doubles the number of image patches.
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Figure 3.4: Example of image cropping using a synthetic image. The three bounding boxes
indicate the three cropped patches. The patches can overlap each other. The
corresponding label image is also cropped in the same way, which is not shown
here.

Table 3.2: Image cropping. Images are cropped into small patches before being fed into the
model. The cropping is done in a sliding window fashion, so that a single image
can produce more image patches. Blank patches are not included in the dataset.

Synthetic images + labels
(source domain)

Light microscopy images
(target domain)

Original image size 2048 × 1600 2048 × 1536
Cropped image patch size 256 × 256 256 × 256
Number of original images 15 16
Number of cropped patches 5011 4964
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Figure 3.5: Data augmentation of an image patch. Flipping and rotating are commonly used
data augmentation techniques. Image patches are first flipped horizontally and
then rotated by 90 degrees. These augmented image patches are added to the
original dataset, so the size of the dataset is doubled.

Normalization is often used in data pre-processing to obtain ordered and consistent data.
For image data, the pixel values change according to the chosen normalization scheme. In
this work, min-max normalization is performed on each image patch. The minimum pixel
value of the image patch is transformed to 0, and the maximum pixel value is transformed to
1. All other pixel values are transformed to decimals between 0 and 1 depending on their
original scale. The calculation formula is

x′ =
x − min(x)

max(x)− min(x)
, (3.7)

where x is the original image patch and x′ is the normalized image patch.
The image patches are divided into two datasets: the training dataset and the validation

dataset. The training data are used to train the model, and the validation data are used
to assess the model during training and to assist in hyperparameter tuning. 80% data are
training data, and 20% data are validation data. It is worth noting that the validation dataset
also contains augmented images. Since variations are expected in real-world data, a mild
augmentation of the validation data may help to better evaluate the model during training.

The test data come from two microscopy images. They show the same colonized root
section, but they are obtained at different z-positions, which means the two images are sightly
different from each other and they share the same label. Each image is cropped into 400
image patches. These image patches have ground truth and are used to test the performance
of the model after training. The ground truth label is obtained by manually labeling the
microscopy image. Figure 3.6 shows the light microscopy image annotated by plant biologists.
The label is created based on the annotations. Due to current circumstances, the label is not
guaranteed to be pixel-wise accurate, but it is sufficient to serve as an evaluation standard.
Table 3.3 shows details of the three datasets.
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Figure 3.6: A light microscopy image annotated by plant biologists in the lab from Prof.
Gutjahr. The yellow circles indicate the arbuscules, and the blue circles indicate
the vesicles. The ground truth label of this image is created with the help of the
annotations and is used as test data.

Table 3.3: Division of dastaset. Image patches are divided into a training dataset, a validation
dataset and a test dataset. The test dataset does not contain synthetic images, as
the test process only involves predicting light microscopy images.

Synthetic images + labels
(source domain)

Light microscopy images
(target domain)

Number of patches
(with data augmentation)

10022 9928

Training + validation 8018 + 2004 7943 +1985
Test - 800 (with label)
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3.3.2 Baseline model

In [46], a U-Net is developed for semantic segmentation of synthetic images with fungal
objects. Figure 3.7 shows the architecture of the model. This model is able to make predictions
with high accuracy. However, the model suffers from a serious performance degradation
problem when dealing with real-world light microscopy images, because it is only trained
with the synthetic images. In this work, the model serves as the baseline model for semantic
segmentation without domain adaptation.

The U-Net architecture is first proposed in [39] for biomedical image segmentation. This

Figure 3.7: The U-Net architecture. The semantic segmentation model in [46] adopts this
architecture. Taken from [46].

network only needs to be trained with a few images to achieve a good performance, which
makes it a popular choice for biomedical tasks. As shown in Figure 3.7, the U-Net has a
symmetric architecture. The contracting path on the left is a typical fully convolutional
network that extracts features, and the expansive path on the right brings the image to its
original size using transposed convolutions. A skip connection at each level brings additional
information about the low-level features, and these connections also enable the fusion of
features from different levels. The model in [46] is a 4-class model. For simplicity, the hyphae
class is omitted in the following figures. The model makes good predictions for background,
arbuscules and vesicles, but it fails in predicting the real-world images. Figure 3.8 shows the
prediction results.
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Figure 3.8: Prediction results of the baseline model. The baseline model is a U-Net trained on
synthetic images. It makes good predictions for the synthetic images (top row),
but it cannot predict the real-world images because of the domain gap (bottom
row). The root cortex, vesicles and the arbuscules are represented by the green,
blue and yellow colors. The baseline model does not include the root cortex class.

3.3.3 SIFA framework

The Synergistic Image and Feature Adaptation (SIFA) framework is proposed in [3] for
unsupervised domain adaptation in medical image segmentation. The segmentation model
is integrated with the domain adaptation network. It considers both pixel and feature
adaptations and has achieved good performance on the task. This work implements the SIFA
framework for light microscopy image segmentation using PyTorch. The implementation
details are discussed in this subsection.

Architecture

The SIFA framework can be divided into 6 modules. For clarity, the source domain (synthetic
image) is denoted by the letter A and the target domain (light microscopy image) is denoted
by the letter B. The aim is to perform domain adaptation from A to B. The 6 modules are
listed in Table 3.4. These modules are sequentially optimized during the training process, and
the training is end-to-end. Figure 3.9 shows the architecture of the framework.

The network GA receives images from domain A, denoted as images a, and converts them
to images from domain B, denoted as images b. The network DB receives both fake images
b generated by GA and real images b, and tries to distinguish which images are real. The
GB and DA pair is similar and works in the opposite direction, but the architecture of GB is
different from GA. GB consists of an encoder E and a decoder U. The encoder E is shared
in the segmentation network SB. GA, DB. GB and DA together form a CycleGAN, but it is
different from the vanilla CycleGAN and has some other features. These features will be
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Table 3.4: Modules in the SIFA framework. The modules in the SIFA framework as well as
the number of trainable parameters are given in the table. It should be noted that
the encoder E is shared between the module SB and the module GB.

Module type Module name Number of trainable parameters
Generator GA 2844289
Discriminator DB 2762689
Segmentation model SB (E and C) 27527524 (27525472 + 2052)
Generator GB (E and U) 29426849 (27525472 +1901377)
Discriminator DA 2770882
Discriminator DP 2765761

Figure 3.9: Architecture of the SIFA framework. It can be divided into 6 modules: GA, DB, SB,
GB, DA and DP. E is an encoder, U is a decoder, and C is a classifier.
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further explained afterwards. Figure 3.10 illustrates how these 4 modules work.
The segmentation model SB consists of an encoder E and a classifier C. It receives images

Figure 3.10: Illustration of GA, DB, GB and DA modules. GA is a generator which generates
images from domain B given images from domain A. The discriminator DB

should distinguish whether the received images are real images or generated by
GA. The other generative module GB is composed of an encoder E and a decoder
U. The decoder U is shared in another module SB, which is not shown in this
figure. GB converts images b to images a, and a discriminator DA distinguishes
between real and fake images a. In addition, DA is asked to differentiate between
fake images a and reconstructed images a so that the encoder E is encouraged to
extract domain-invariant features.

from domain B and assigns a label to each pixel of the images. The label belongs to one of
the following 4 classes:

• Background

• Root cortex

• Vesicles

• Arbuscules

Both real images b and fake images b generated by GA are presented to SB for semantic
segmentation. Fake images b have ground truth labels, since they are converted from real
images a. These ground truth labels are used to optimize SB by encouraging it to make
predictions close to the ground truth, as in other semantic segmentation models without
domain adaptation. Real images b do not have ground truth labels. The discriminator DP

receives predictions of fake images b and real images b, and distinguishes between them.
Figure 3.11 is an illustration of these 2 modules.

During the test, only the module for semantic segmentation SB is required, namely the
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Figure 3.11: Illustration of SB and DP modules. SB is a semantic segmentation model which
consists of an encoder E and a classifier C. It receives images b and makes pre-
dictions. The discriminator DP differentiates whether the images are predictions
of real images b or fake images b.

encoder E and the classifier C. This trained segmentation model receives real-world light
microscopy images and makes prediction for the images.

Losses

In order to optimize the modules, losses in different aspects are calculated and minimized:

• Image adaptation: Lb
ls, La

ls, Lcyc and Lseg

• Feature adaptation: Lp
ls and Lã

ls

Image adaptation aims to align the appearance of images. In some cases, a domain adaptation
network can already achieve good results with only image adaptation. Feature-level adap-
tation provides additional improvement and leads to better performance when the domain
shift is significant.

Common GANs use minimax loss, which is derived from the binary cross-entropy. This
network uses least squares loss function instead, and the GAN is called Least Squares GAN
(LSGAN) [34]. The generator GA converts image a to image b. The process can be described
as

GA(xa) = xa→b, (3.8)

where xa is real image a and xa→b is fake image b. The objective functions for LSGAN are
defined as

Lb
ls(DB) =

1
2

Exb∼Xb [(DB(xb)− 1)2]+

1
2

Exa∼Xa [(DB(GA(xa)))2],

Lb
ls(GA) =

1
2

Exa∼Xa [(DB(GA(xa))− 1)2].

(3.9)

Minimizing the objective function is equivalent to minimizing the Pearson χ2 divergence, and
this encourage the generator to generate images as real as possible.
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The other pair GB and DA is trained in the same way with the loss La
ls. The loss functions

are

La
ls(DA) =

1
2

Exa∼Xa [(DA(xa)− 1)2]+

1
2

Exb∼Xb [(DA(U(E(xb))))2],

La
ls(E, U) =

1
2

Exb∼Xb [(DA(U(E(xa)))− 1)2].

(3.10)

GB receives images b and converts them to image a, which is similar to Equation 3.8 but in
an opposite direction. DA distinguishes between real and fake images in domain A. Unlike
GA, GB consists of an encoder E and a decoder U. The encoder E is shared in the semantic
segmentation module.

The cycle-consistency constraint is imposed on the image conversion process. As shown in
Figure 3.10, real image xa is converted to fake image xa→b by GA and then converted back by
GB. The reconstructed image should be close to the original image, which can be written as

GB(GA(xa)) = U(E(GA(xa))) ≈ xa. (3.11)

Similarly, the original image b should also be recovered after the series of conversions, which
can be written as

GA(GB(xb)) = GA(U(E(xb))) ≈ xb. (3.12)

The corresponding loss can be calculated by imposing an L1 penalty on the reconstruction
error in Equation 3.11 and 3.12, and the loss function is

Lcyc(GA, E, U) =Exa∼Xa [∥U(E(GA(xa)))− xa∥1]+

Exb∼Xb [∥GA(U(E(xb)))− xb∥1],
(3.13)

which is referred to as the cycle-consistency loss.
The SB module is a semantic segmentation network for domain B. It consists of an encoder

E and a classifier C and is trained by minimizing a hybrid segmentation loss Lseg. As in
Equation 3.8, image xa is converted to image xa→b, and the image has ground truth label
ya. The encoder E receives image xa→b and extracts features, then the classifier C makes
prediction for the image. This process can be written as

ŷa→b = C(E(xa→b)). (3.14)

The prediction ŷa→b is supposed to be the same as ya, and this pair is used to calculate the
loss. The cross-entropy loss is widely used to measure the performance of classification.
However, the Dice loss is preferred in medical image segmentation, because it has a better
performance when encountering unbalanced dataset. Therefore, a hybrid of these two losses
is used, which is

Lseg(E, C) = CE(ya, ŷa→b) + α · Dice(ya, ŷa→b), (3.15)

where the first term is the cross-entropy loss and the second term is the Dice loss. α is a
hyperparameter, which assigns different weights to the two losses.
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In addition to pixel-level methods, feature-level adaptation is considered, which encourages
the network to extract domain-invariant features. The common approach is to use adversarial
learning directly in the feature space. This work takes a different approach, because the
feature space is high-dimensional. It is easier to work with the lower-dimensional semantic
prediction space. As shown in Figure 3.11, the module SB receives both real image xb and fake
image xa→b, and makes predictions ŷb and ŷa→b for them (see Equation 3.14). The module
DP discriminates between ŷb and ŷa→b. This leads to the losses

Lp
ls(DP) =

1
2

Exa→b∼Xa→b [(DP(C(E(xa→b)))− 1)2]+

1
2

Exb∼Xb [(DP(C(E(xb))))2],

Lp
ls(E, C) =

1
2

Exb∼Xb [(DP(C(E(xb)))− 1)2].

(3.16)

This encourages the module SB to extract aligned features from xb and xa→b so that the
discriminator DP cannot distinguish between them.

The discriminator DA differentiate not only between real image a and fake image a, but
also between fake image a and reconstructed image a (see Figure 3.10). Fake image a and
reconstructed image a are generated by the module GB, which consists of an encoder E and
decoder U. The encoder E is encouraged to extract domain-invariant features so that the
discriminator DA cannot tell the difference. The losses are

Lã
ls(DA) =

1
2

Exa→b∼Xa→b [(DA(U(E(xa→b)))− 1)2]+

1
2

Exb∼Xb [(DA(U(E(xb))))2],

Lã
ls(E) =

1
2

Exb∼Xb [(DA(U(E(xb)))− 1)2].

(3.17)

Implementation details

The generator GA consists of 3 convolution layers, 9 residual blocks, 2 deconvolution layers
and 1 output convolution layer. The convolution layers downsample the input. The spatial
size of the input is reduced, while more features are extracted. The deconvolution is achieved
by using transposed convolution layers. The input is upsampled and the original size of the
image is recovered. The residual blocks are first introduced in [16] as the building blocks of the
ResNet. They are widely used in deep neural networks. Figure 3.12 shows a single residual
block. After two layers, the output is added together with the input. A traditional network
learns directly the output, while the residual block learns the difference between the output
and the input, namely the residue. The skip in the residual block can prevent the gradient
vanishing problem, because even when the weights and the biases of the layer become zero,
the same input value is kept and a non-linearity is added, so the residual block can only
improve the performance of the network. Figure 3.13 shows the complete architecture of
the generator module. The last convolution layer is followed by a tanh activation layer. An
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additional skip connection is introduced.
The discriminators DB, DA and DP use the PatchGAN discriminator structure [20]. It is

Figure 3.12: A residual block. W is the weight, b is the bias and f is the non-linear activation
function. Even when the weights and the biases go to zero, the residual block has
an output xL+2 = f (xL). The identity is easy to learn, so introducing residual
blocks into a network will not hurt its performance.

basically a set of convolution layers and an average pooling layer as the final layer. Each
pixel in the output of the convolution network has a receptive field of 70 × 70, and its value
indicates whether the 70 × 70 patch in the 256 × 256 input image is real or fake. This is
equivalent to cropping the input image into overlapping 70 × 70 patches and applying a
normal discriminator to each patch. The output of the convolution layers is then averaged
to produce the final result. The output of DA has 2 channels instead of 1, because it not
only discriminates between real images and fake images, but also between fakes images and
reconstructed images.

An encoder E and a decoder U constitute the GB module. The encoder is composed of
a series of convolution layers, residual blocks and max-pooling layers. For a residual block,
if the input and output dimensions do not align, the dimensions are converted with zero
padding. A max-pooling layer reduces the spatial size of the input. While a convolution layer
computes the features in a region, a max-pooling layer select the strongest feature in a region.
The encoder also uses dilated convolutions. In a normal convolution, if the kernel size is
k × k, features in a k × k region is computed. In a dilated convolution, holes are inserted into
the k × k kernel so that it can cover a region larger than k × k (see Figure 3.15). This enlarges
the receptive field, which is the region of input that affects an output unit. The decoder has 1
convolution layer, 4 residual blocks, 3 deconvolution layers and 1 output convolution layer. It
receives the latent information provided by the encoder and transforms it back to an image.
The decoder has a skip connection, which requires the input image of the GB module. Figure
3.16 shows the architecture of the encoder and the decoder.

The classifier C consists of a convolution layer and an upsampling layer. It receives latent
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Figure 3.13: Architecture of the generator GA. C denotes a convolution layer, R denotes
a residual block and T denotes a transposed convolution layer. The number
in the image indicates the number of output channels in each layer. For the
first 3 convolution layers, the number of channels is doubled and the image
size is halved in each layer. In the following 9 residual blocks, the dimensions
remain unchanged. Then 2 transposed convolution layers reconstruct the image
to its original size. In the last convolution layer, the output channel number is
1, because the grayscale image has 1 color channel. This module uses a skip
connection. The input and output are summed before a tanh layer.
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Figure 3.14: Architecture of the discriminators DB, DA and DP. C denotes a convolution
layer. The number in the image indicates the number of output channels in the
layer. Each pixel in the output of the convolution layers indicates the result of
the discrimination of a 70 × 70 patch in the original input image. The output is
then averaged to produce the final result of the discriminator. The output of DB

and DP has 1 channel, while the output of DA has 2 channels.

Figure 3.15: Illustration of dilated convolution. Assume that the kernel size is 3 × 3 (blue)
and the stride of the convolution is 1. Left is a normal convolution. The receptive
field for this layer is 3 × 3. Right is a dilated convolution with a dilation rate of
2. Holes are inserted into the kernel, which means that some pixels are skipped
during the convolution, and this enlarges the input region that is covered. The
receptive field is 5 × 5 in this example.
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Figure 3.16: Architecture of the encoder E (2 columns on the left) and the decoder U (1
column on the right). C denotes a convolution layer, R denotes a residual
block, M denotes a max-pooling layer, D denotes a residual block with dilated
convolutions and T denotes a transposed convolution layer. The number indicates
the number of output channels. The max-pooling layers in the encoder halve the
spatial size, so the output of the encoder has a dimension of 32 × 32 × 512. The
transposed convolution layers in the decoder double the spatial size, so the size
of the output image is converted back to the original 256 × 256 × 1.
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variables from the encoder E and makes predictions for all the four classes. It should be noted
that the classifier does not include the softmax function as an output layer, so the output
values cannot be interpreted as probabilities.

Table 3.5 is a summary of the module architecture. The notation of the layers in the
table corresponds to the one in Figure 3.13, 3.14 and 3.16. More specifically, Ck denotes a
convolution layer, Tk denotes a transposed convolution layer, Rk denotes a residual block, Dk
denotes a residual block with dilated convolutions and M denotes a max-pooling layer. k is
the number of output channels in the layer. The output layers of some modules are omitted.
In this table, encoder E, decoder U and classifier C are listed as individual modules, whereas
in previous introductions (Table 3.4), they are addressed as part of the segmentation model
SB and the generator GB.

The hyperparameters of the model mainly follow the setting in [3]. Adam optimization

Table 3.5: Module architecture. The configurations of the modules in the SIFA framework are
listed in this table. The type of layers and the number of output channels are given.

Module Layers
GA C32, C64, C128, 9 × R128, T64, T32, C1
DB, DA, DP C64, C128, C256, C512, C1 or C2
E C16, R16, M, R32, M, 2 × R64, M, 2 × R128, 4 × R256, 2 × R512, 2 × D512,

2 × C512
U C128, 4 × R128, T64, T64, T32, C1
C C4

is adopted for optimizing the modules. Except for the module SB, all other modules have a
base learning rate of 0.0002. Module SB has a learning rate of 0.001. Learning rate scheduler
is also applied during training, which gradually decreases the learning rate according to the
chosen scheme. For module DB and DA, the fake images which should be distinguished are
picked from a pool. The size of the pool is set as 50, and the pool is continually updated
during training. The batch size is 4 due to the GPU memory limitation. The number of
training epochs is set based on the performance of the model on the validation dataset during
training. A direct evaluation of the performance is challenging, because the light microscopy
images do not have ground truth labels, with which a semantic segmentation model can
simply be evaluated using DSC or similar metrics. Therefore, the model performance is
monitored by tracking the cross-entropy loss and the Dice loss in Equation 3.15 as well as
visually comparing the quality of the generated light microscopy images. Although these
losses are obtained with the fake light microscopy images generated by the generator and the
domain gap still exists, they can verify whether the generator and the segmentation model
are working well or not and thus help to monitor the model performance.
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3.4 Experimental results

The model is trained for 26 epochs. Figure 3.17 shows the training loss and the validation
loss curves. This loss is the combination of the cross-entropy loss and the Dice loss, which
indicates how well the segmentation task is done with the fake light microscopy images
generated by the generator. Figure 3.18 shows the result images from the validation dataset.
It is observed that the predictions for the fake light microscopy images are better than the
predictions for the real light microscopy images. This implies that the images generated
by the generator are not close enough to the real images. Even though they look like light
microscopy images and the domain gap is narrowed, the difference is significant enough to
negatively affect the performance of the segmentation model.

The model is tested with the test dataset and the DSC values are in Table 3.6. Figure

Figure 3.17: Loss curves. The green curve is the training loss and the blue curve is the
validation loss. The horizontal axis shows the number of training epochs, and
the vertical axis shows the weighted sum of the cross-entropy loss and the Dice
loss. The red line indicates when the training is stopped.

3.19 shows some sample images that are representative and can reveal the inadequacy of the
model. The model tends to make false positive predictions for the arbuscules, as observed
in row 2 in the figure. One possible reason lies in the 3D model that provides the synthetic
images used for training. The 3D model of a colonized root section has a lot of arbuscules,
while the root sections in the light microscopy images do not necessarily contain many
arbuscules. When the generator generates fake light microscopy images, it mimics the style
of the real light microscopy image, which has a large background, so the arbuscules in the
synthetic images are converted into background patterns. The semantic segmentation model
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Figure 3.18: Result images from the validation dataset. Columns 1-4 are the segmentation task
using the synthetic images disguised as the light microscopy images. Columns 5-
6 are the segmentation task using the real light microscopy images. The real light
microscopy images do not have corresponding synthetic images, and the ground
truth label is not available. The root cortex, the vesicles and the arbuscules are
indicated by the green, blue and yellow colors respectively. Each row corresponds
to one example.
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receives images with background patterns, but they are labeled as arbuscules, because in the
original synthetic images, these regions are truly arbuscules. This results in false positive
predictions for the arbuscules. Furthermore, the arbuscules are hard to identify, as they exist
in different depths, and sometimes they blend into the background, which makes it difficult
for the model to distinguish between the background patterns and the arbuscules. Since the
model is encouraged to identify the minor classes as it is trained with weighted losses, it
falsely recognizes the background patterns as the arbuscules. This results in a low DSC value
for the arbuscules class, as shown in Table 3.6. The hyphae can be mistaken as root cortex,
which can be seen in row 1 in this figure. The different z-slices of the light microscopy image
result in different predictions. In row 3, the root cortex is not recognized by the model, while
in row 4 the prediction is fairly decent. The predictions at the edge of the image patch is
not ideal in some cases. In row 3, the model predicts that two arbuscules at the lower edge,
which are actually shadows in the background.

Figure 3.20 shows the prediction results of two different models. Both the baseline

Table 3.6: Comparison of two models. Dice similarity coefficient (DSC) on the test data are
reported. This table also includes the total number of trainable parameters and
the number of images used for training and validation. These images refer to
the original synthetic images or light microscopy images rather than the cropped
images patches.

Methods
DSC on test data

Parameters Images
Root cortex Vesicles Arbuscules Average

U-Net - 0.03 0.06 0.05 1362650 420
SIFA 0.31 0.25 0.07 0.21 40572522 31

model and the model developed in this work make predictions on the same image patch. In
comparison with the baseline model, the improvement is noticeable. Although mistakes can
still be seen, the prediction is overall reasonable. Local textures are more correctly identified
by the model. Row 3 shows an interesting case where both models fail to predict the images
patch. The prediction results from the two models are similar to each other. Irrelevant objects
are falsely predicted as arbuscules. The low accuracy of prediction for the arbuscules remains
a major problem of the model. In addition, Table 3.6 reports the test performance as well as
the number of trainable parameters and images of both models. The model developed in
this work is much larger than the baseline model. The baseline model uses more images for
training and validation, but these synthetic images are similar to each other and they are very
different from the light microscopy images, so they do not contribute much to improve the
model performance.

To further investigate the model, the predictions for different z-slices are compared. Light
microscopy images are taken with a z-stack, containing many z-slices. The z-slices are the
images taken at different depths, and they show the same root section. The test data come
from two different z-slices. In Figure 3.21, predictions are made for the two z-slices, and the
results are different. In row 2, the root cortex is not identified. In row 3, some arbuscules are
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Figure 3.19: Result images from the test dataset. Each row corresponds to one example. The
ground truth label is obtained by manual annotation. Rows 1-3 are image patches
cropped from the same light microscopy image, and the image patch in row 4
comes from the other light microscopy image, which basically shows the same
root section but with a different depth.
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Figure 3.20: Comparison of the two models. The three rows show the predictions of three
light microscopy image patches. Column 3 is the prediction made by the baseline
model. Column 4 is the predictions made by the model developed in this work,
which is trained with domain adaptation technique. It should be noted that the
baseline model does not include the root cortex class (green).
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missing. The model treats each z-slice individually, so the prediction results vary depending
on the z-slice. The set of predictions also reveals a problem with the model that hyphae,
which should be counted as a background object, is sometimes recognized as root cortex or
arbuscules.

When training the model, the normalization of the data is performed on each image patch,
so the same should be done for the test data. This results in different predictions for the same
object if it is captured in different image patches. Figure 3.22 show the predictions of the
same arbuscule. It is located differently in three image patches. In row 1-2, the arbuscule is
identified, while hyphae is misclassified as root cortex. In row 3, the whole area is identified
as arbuscules, and it is not a successful prediction. If the normalization is performed on the
complete light microscopy image, the prediction will be consistent. Although it is uncertain
how this will affect the overall model performance, the experiment is worthwhile and can be
done for future improvements.

Furthermore, a simple web application is designed to facilitate the use of the model. It
allows uploading local light microscopy images for prediction. Any arbitrary region of the
uploaded image can be selected, and a 256 × 256 image patch will be cropped based on the
center point of the selected region. This is shown in Figure 3.23. The model makes prediction
for the image patch. Both the image patch and its prediction are displayed on the page.
In addition, a toggle function is added, which allows the displayed image to be switched
between the image patch and the prediction, so it is easier to figure out what each pixel is
classified as, since the prediction result and the input image patch are shown in the same
location (see Figure 3.24).

3.5 Suggested improvements

Due to the time constraints in writing this thesis, the study of the factors affecting the training
and the performance of the model is not conducted in depth. More experiments can be done
in the future, and improvements in model performance are expected.

Hyperparameter tuning is an important step in training a model, as hyperparameter
settings have a significant impact on the training results. Random search and grid search are
two common methods for hyperparameter tuning. They can also be used in combination. For
example, a course random search is first performed, followed by a finer grid search, and the
grid search uses the range of values that yields the most promising results in the random
search. In this work, trials can be performed with the learning rate of the modules being set
differently in order to investigate how the learning rate affects the training. In addition, the
learning rate scheduler adjusts the learning rate during training according to the selected
method. Different learning rate schedulers may also be considered in future experiments.
Loss functions for updating the modules are composed of many terms, and different weights
are assigned to each term. These weights can be included in the set of hyperparameters
which are tuned during the training process.

Modifications can also be made to the dataset and its preprocessing. A different data
normalization other than the min-max normalization applied in this work can be considered,
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3 Light microscopy image segmentation

Figure 3.21: Comparison of the prediction results for different z-slices. Row 1-2 and row
3-4 are two examples showing the predictions for different z-slices at the same
location. The image patches in row 1 and 3 are taken from one z-slice, and the
image patches in row 2 and 4 are taken from the another z-slice.
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3 Light microscopy image segmentation

Figure 3.22: Comparison of the prediction results for different locations. The three image
patches come from one light microscopy image. The arbuscule (yellow) in the
patches are the same fungal object.
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3 Light microscopy image segmentation

Figure 3.23: A preview of the web application. Local light microscopy images can be uploaded
using the upload button. Regions of interest can be selected from this image.

Figure 3.24: The prediction result displayed by the web application. Altogether three images
are displayed. The first image is the selected image patch, the second image is
the prediction made by the model, and the third image can be switched between
the image patch and its prediction, depending on the selected option listed on
the right.
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3 Light microscopy image segmentation

such as the z-score normalization. The data normalization is now applied to image patches,
but it is also possible to apply the normalization to the whole image before cropping. The
synthetic images used for training comes from the same 3D model, which shows a root section
colonized by a large number of arbuscules and vesicles. The lack of variety is a disadvantage
because the dataset is biased. Therefore, the 3D model can be altered in order to obtain more
different training data.
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4 Conclusion

This work presents the approach for light microscopy image segmentation using a domain
adaptation framework SIFA. A 3D model of a colonized root section developed with the 3D
computer graphics software Blender and the light microscopy images provided by the Life
Science department at TUM are the source of the data for training (Section 3.1). Labeled
synthetic images are generated by the 3D model, while the real-world microscopy images
are unlabeled. The data preprocessing steps include cropping the images into small patches,
flipping and rotating the image patches as data augmentation and preforming a min-max
normalization on the image patches (Section 3.3.1). The SIFA framework combines the domain
adaptation and the semantic segmentation. In the end-to-end training, the synthetic images
are converted to fake light microscopy images, which are then fed into the segmentation
model. This enables the segmentation model to make predictions for the light microscopy
images (Section 3.3.3). The implementation of the SIFA framework in this work is written
in Python using the library PyTorch. Predictions and evaluation results are presented in
Section 3.4. Improvements have been achieved in comparison to the baseline model, which is
a U-Net trained with only the labeled synthetic images (Section 3.3.2). The predictions are
generally reasonable, and they can assist the plant biologists in locating the fungal structures
of interest. It can be concluded that the overall goal of this work, namely the development
of a semantic segmentation model capable of predicting light microscopy images utilizing
domain adaptation techniques, has been accomplished.

Compared with the baseline model U-Net, the semantic segmentation model in this work
can produce better results. The U-Net is trained with synthetic images, and it has good
performance if applied to synthetic images. However, the domain gap between the light
microscopy images and the synthetic images is so large that the U-Net can no longer extract
meaningful features. This results in the inability of the U-Net to make predictions for
the real-world light microscopy images. The SIFA framework in this work attempts to
address this problem from two aspects, namely appearance alignment and feature adaptation.
The synthetic images are converted to light microscopy images before being fed into the
segmentation model for training, and this is achieved by using GANs, where a generator
generates fake light microscopy images based on the given synthetic images. Moreover, the
encoder in the segmentation model is encouraged to extract domain-invariant features in
order to further reduce the domain gap. Additional discrimination tasks are introduced,
which force the encoder to extract aligned features from both domains so as to successfully
elude the discriminators. While improvements in light microscopy images segmentation are
indeed achieved in this work, flaws in the predictions are yet to be fixed. This is a difficult
task in general, as the reliability, robustness and explainability of deep learning models is
still an ongoing research, which is fundamental to how the network can be improved and
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generalized. Nevertheless, instinctive and qualitative explanations are possible, which can
lead to methods for developing models with better performance.

There are a number of directions in which the work can be further improved and developed.
Training data of higher quality can be acquired by extending the 3D model to a wider variety.
In real-world light microscopy images, the root section is not necessarily colonized by AMF,
while the current 3D model contains a large number of arbuscules and vesicles. Biased
training data can lead to suboptimal predictions of the segmentation model, which makes it
sensible to add synthetic images showing different forms of root to the dataset. Loss functions
can be changed, for example, by assigning weights to different classes in order to balance the
dataset. The fungal objects are the classes of interest, but they constitute only a small fraction
of the entire dataset. A carefully balanced training dataset should improve the performance
of the model. The light microscopy images are taken with a z-stack, which is a series of
images taken at different focal-planes. These z-slices are highly correlated with each other,
and may serve as an advanced data augmentation techniques. In this work, no distinction is
made between wild-type and mutant-type arbuscules, and the 3D model only renders one
type of arbuscules. This can be a focus for future work, as it is relevant for AMF-research.
The segmentation model accepts an image patch and makes predictions on it. It would be
helpful if an entire light microscopy image could be predicted, rather than merely one patch.
Therefore, a pipeline can be set up to automatically crop the light microscopy image for
semantic segmentation and resemble the predictions into a complete picture. In addition, the
pipeline may also include the processing of a TIFF file, which is a file containing multiple
images. The z-stack is stored in this form, which means that each z-slice should first be
separated from the file, because the segmentation model only accepts one light microscopy
image at a time. It would be convenient if the pipeline could produce predictions for all
z-slices or a chosen z-slice.
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