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Abstract

We use Auto-Encoders in the context of Manifold Learning to learn lower dimensional
embeddings of higher dimensional manifolds. Using different loss functions expresses di-
verse regularization approaches. In this thesis, we compare two auto-encoders that create
an approximately isometric embedding in the latent space. These methods are I-AE and
LOCA. We compare their mathematical background and results and establish use cases
for which we compare them. Our results show that LOCA has an advantage when burst
sampling is available and can find an isometric embedding that I-AE cannot. Furthermore,
when burst sampling is unavailable, LOCA gives close results to I-AE at the cost of two
additional hyper-parameters.
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Kurzfassung

Wir verwenden Auto-Encoder im Zusammenhang mit Manifold Learning, um
niedrigdimensionale Einbettungen von höherdimensionalen Mannigfaltigkeiten zu
lernen.Unterschiedliche Verlustfunktionen erlauben uns, unterschiedliche Regular-
isierungsansätze zu encodieren. In dieser Arbeit vergleichen wir zwei auto-encoder, die
Eingangsdaten annähernd isometrisch einbetten, um einen. Diese Verfahren sind I-AE und
LOCA. Wir vergleichen ihre mathematischen Hintergründe und Ergebnisse und ermitteln
Anwendungsfälle, für die wir sie vergleichen. Unsere Ergebnisse zeigen, dass LOCA einen
Vorteil hat, wenn Burst-Sampling verfügbar ist, und eine isometri-sche Einbettung finden
kann, die I-AE nicht finden kann. Darüber hinaus gibt LOCA, wenn Burst-Sampling nicht
verfügbar ist, Ergebnisse ähnlich zu denen von I-AE auf Kosten von zu I-AE auf Kosten
von zwei zusätzli-chen Hyperparametern.
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Part I.

Introduction and Background Theory
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1. Introduction

Many real-life problems ranging from human motion analysis to fraud detection or recom-
mender systems, represent complex phenomena expressed in high dimensional data that
boil down to a lower dimensional space. For instance, in computer vision, a picture of a
face in high-resolution pixels is at the end, only a combination of the particular position-
ing of our facial features, which lies in a much lower dimension than the picture itself. In
scientific computing, we can use different measures gathered from an object to uncover a
particular set of information: high-dimensional astrophysical data of stars can reveal their
composition. It is thus crucial to develop methods that can compress this type of informa-
tion since it would mean smaller amounts of data with, hopefully, the same knowledge.

Manifold learning encompasses many such models that cross various fields and have be-
come increasingly sophisticated throughout the last two decades. In this thesis, we study
two state-of-the-art models developed in different contexts.

On the one hand, Peterfreund et al. [ 26 ] introduce, in the context of scientific computing,
the Local Conformal Autoencoder for Standardized Data Coordinates (LOCA). This model
finds normalized coordinates in a lower space of high dimensional measurements. It uses
repeated sampling on the high dimensional manifold to find an isometric embedding in a
lower dimension using Auto-Encoder Neural Networks.

On the other hand, Gropp et al. [ 13 ] introduce Isometric Auto-Encoders (I-AE), which
like LOCA, uses auto-encoders to impose an isometry when finding a lower dimensional
embedding. Nevertheless, I-AE does not use burst sampling and defines the isometry dif-
ferently. It is thus interesting to compare these seemingly similar approaches and uncover
if we can use one model in the context of the other, which is our contribution. To this end,
we divide our thesis into, a first section  2 and a main part (Part  II ) that encompasses three
sections  3 ,  4 and  5 .

In section  2 , we detail the mathematical background used in this thesis and the different
historical approaches for manifold learning. In particular, we cover isometric manifold
learning methods. In section  3 , we lay down the methodology to approach our compar-
ison of LOCA and I-AE. In section  4 , we explain both I-AE and LOCA separately. First,
we detail their proofs for isometrical embeddings and explain how their mathematical ap-
proaches differ. Secondly, we introduce their contextual use cases and present a measure
of the isometry quality. In section  5 , we show the results of our implementations of the
empirical comparison framework we purpose in section  4 . Finally, in part  III , we discuss
our results and propose further continuations of our work.

2



2. Background Knowledge and Related Work

We divide this first section into three subsections. First, we present the mathematical
definition of manifolds. One algorithm discussed in the papers studied in this thesis es-
tablishes proof that the proposed methods learn isometric embeddings using geometrical
properties of the manifold; it is essential to establish the mathematical notions behind
Manifold Learning which stems from Differential Geometry. In the second section, we
discuss the first classical manifold learning methods. Methods like PCA that do not infer
an isometric embedding will not be discussed in depth. However, the methods we find
crucial to illustrate how the problem of uncovering isometric embedding was approached
in literature are discussed in more detail. It is essential to point out that the study of these
different models paved the way for the framework to establish a comparison between the
two studied models. We were inspired by how texts in literature compare former methods
to the methods they introduce, and we picked their line of thought when establishing our
comparison scheme. The third section introduces the concept of Deep Learning, Neural
Networks, and Auto- Encoders, which are the backbone model used to uncover isometric
embeddings in this thesis.

Manifold learning encloses a variety of techniques that seek to represent high-
dimensional data through a transformation from one higher-dimensional space M to an-
other lower dimensional space N . In the following section, we explain the notion of mani-
folds and how we can attempt to isometrically map them to Euclidean space in the context
of manifold learning. We start by defining the abstract notion of a manifold which is any
collection of points with a specific topology. We assume that this manifold represented in
high-dimensional space actually lies on a lower dimensional space.

A recurrent intuitive example of a manifold is how the sphere S2, a 2-dimensional man-
ifold, is embedded in a higher 3-dimensional space R3. Thus the 3-d data actually lies
in a 2-d manifold. Differential Geometry studies the geometry of smooth (infinitely dif-
ferentiable) manifolds like S

2 and gives important results on how to parametrize such
topological spaces.

In the following, we establish rigorously the mathematical background [ 15 ][ 28 ][ 17 ] for
manifold learning and the terms we used in the example of the sphere also illustrated in
figure  2.1 .
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2. Background Knowledge and Related Work

2.1. Mathematical Prerequisites

We have followed the outline of [  15 ] [ 28 ] and [ 17 ] to present the mathematical prerequi-
sites.

2.1.1. Manifolds in Differential Geometry

Definition 2.1 (Topological Space) A topological space T = (X,⌦) where X is a set and ⌦ a

collection of open subsets such that :

• ; 2 ⌦

• X 2 ⌦

• a finite intersection of sets from ⌦ is in ⌦.

• a finite or infinite union of sets in ⌦ is in ⌦

Definition 2.2 (Homeomorphism) A function � between two topological spaces is a homeomor-

phism if it is a continuous invertible function and admits a continuous inverse.

Definition 2.3 (Charts and local coordinates) Let M be a topological space and p 2 M.

A chart defined on M in p is the pair (�, U) where :

� : U(p) 7! Ũ

is a homeomorphism between U(p) an open set in M around pand Ũ an open set of Rd
.

A chart (�, U(p)) represents a local coordinate map of the point p and we can write : �(p) =
(p1, p2, .., pd).

Definition 2.4 (Smooth charts) Let (�1, U(p2)) and (�2, U(p1)) be two charts. If �1(U(p1) \
U(p2)) and phi2(U(p1) \ U(p2)) are open and the map �21 = phi2 � ��1

1 is a diffeomorphism

of order r (the map phi21 and its inverse are r-differentiable, which differentiable r times) then

equivalently r-differentiable compatible.

Two charts are smoothly compatible if they are they are infinitely-differentiable compatible.

Definition 2.5 (Atlas and Smooth Atlas) An atlas A defined on M is a collection of charts de-

fined M that cover M with countably many open subsets U(p) :

A = {(�, U(p) such that

[
U(p) = M}

The atlas is maximal smooth when every of its two charts are smoothly compatible.

The above definitions introduce the definition of a smooth manifold.
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2.1. Mathematical Prerequisites

Definition 2.6 (Smooth Manifold) A smooth manifold Mis the pair (M,A) where M is a set

and A is a maximal smooth atlas on M. When M has dimension d then M is an d-dimensional

smooth manifold.

Now, that the structure of a manifold is defined, we introduce the notion of transforma-
tions on manifolds. In fact, since in manifold learning we are looking for a transformation
of the manifold, it is important to understand how we can map a manifold to another and
how to characterize such transformations.

Definition 2.7 (Maps between Manifolds) A map � between two smooth manifolds M and N

is defined as � : M 7! N .

Definition 2.8 (Smooth real-valued function on a manifold) Let  : M 7! R. If for any

point p in M, the transition map  � ��1 : �(U) 7! R is smooth with (�, U(p)) the smooth chart

that contains p.

We note C1(R) the subspace of all such functions.

Definition 2.9 (Derivation) A derivation at a point p 2 M is any linear map D : C1(R) 7! R
that satisfies the product rule.

A derivation at a point p can be seen as a tangent vector at p to the manifold M with the
idea of tangent as we know it in Euclidean space.

Definition 2.10 (Tangent Space) The tangent space TpM is the set of all derivations in point p.

The tangent space can be seen as the tangent of a curve in 1-dimension. Similarly to the
line going through a 1-d curve, and tangent to it at a point p, is a linear approximation of
the curve at that point, the tangent space TpM is a linear approximation of the manifold
M at that point p. It is an affine translation of a Euclidean space to p tangent to M.

We have introduced the idea of locally approximating linearly a manifolds. This notion
is important as it gives a natural local coordinate system for the tangent spaces that they
inherit from Rd when the manifold is d-dimensional.

Thus to characterize a mapping between two manifolds, we can characterize it on the
tangent spaces, as it paramterizes the transformation on the basis. Therefore, we define
next, the notion of a differential of a map on a manifold.

Definition 2.11 (Differential of a smooth Map) The differential d�p of a smooth map

� : M 7! N is defined on Euclidean spaces to represent the linear map between the tangent spaces

of the manifolds.

d�p : TpM ! Tf(p)N

5



2. Background Knowledge and Related Work

Figure 2.1.: Illustration of how we can map locally the manifold using the tangent space
and the tangent to a 1-d curve is in the tangent space to the manifold around the curve.
This illustration is adapted from figure 1.3 in [ 28 ]

Definition 2.12 (Jacobian at a point on the manifold) The matrix notation of the differential

d�p is J�(p) the jacobian of � at point p expressed on the inherited local Euclidean coordinates.

J�(p) 2 Rs,d,

where M ⇢ Rd
and N ⇢ Rs

.

Definition 2.13 (Pullback and Pushforward) Let � be a smooth map � : M 7! N . Then its

differential d� is called pushforward. If � is an isomorphism then d��1
is called pullback.

Definition 2.14 (Diffeomorphism between manifolds) If � is an isomorphism then its dif-

ferential d�p at point p is an isomorphism.

We can link its differential to the differential of its inverse by

d��1
�(p) = d��1

p .
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2.1. Mathematical Prerequisites

Figure 2.2.: Illustration of tangent spaces and Riemannian metrics for a mapping
f : M ! N , reprinted from [ 14 ]. The matrices G and H correspond respectively to the
expression of the metric on M at x in the local coordinate system of the tangent space
TxM and the expression of the metric on N at f(x) in the local coordinate system of the
tangent space Tf(x)N . J is the jacobian of f in x. This illustration is essential in picturing
the local transformation of the metrics and how accessing such deformations can help
find f .

2.1.2. Isometry on Manifolds

The purpose of our thesis is to characterize a transformation between manifolds that pre-
serves distances on the manifolds which would impose that the transformation is an isom-
etry.
It is thus important to first introduce the concept of distance on a manifold, the defini-
tion of an isometry in general and how we would approach it on manifolds. In fact, on
Euclidean spaces the distances are the Euclidean distances that stem from the Euclidean
scalar product. A distance between two points in a Euclidean space is the length (norm
that stems from the usual scalar product) of the line that connects both points.

However, manifolds can be curved and we would need first the equivalent of a path and
the equivalent of a measure of the length of such a distance.

In the following, we define terms used throughout this thesis to call such curved shortest
paths and their lengths on the manifold.

Definition 2.15 (Geodesic) A geodesic is the shortest path between two points on the manifold.

7



2. Background Knowledge and Related Work

A manifold can have many geodesics.

We introduce a general definition of a metric that can vary from point to point and can
generalize the notion of metric to non-Euclidean spaces.

Definition 2.16 (Riemannian Metric) Let M be a smooth manifold. We equip M at each point

p, with an intrinsic positive-definite scalar product <,>p defined as:

gp =<,>p : TpM⇥ TpM 7! R.

This defines at each point a metric that locally coincides with the Euclidean scalar product as we

know it in the Euclidean space. Thus locally :

kx1 � x2k = gp(x1 � x2, x1 � x2) 8x1, x2 2 TpM.

Since gp is defined as a linear map on the tangent space at p, it can be written as a matrix Gp such

that : < x1, x2 >p= xT1 Gx2, where x1 and x2 are expressed in the local coordinates of TpMsuch

that Gi,j =< g(i)p , g(j)p > where i, j index the basis of local coordinates of TpM inherited from the

local Euclidean space. Since Gp represents a scalar product, it is positive definite.

Figure  2.2 illustrates the notions of tangent spaces as well as Riemannian metrics on two
different Riemannian manifolds and how we can relate both by a map f .

Definition 2.17 (Riemannian Manifold) A Riemannian Manifold is the pair (M, g) where M

is a smooth manifold and g is defined as the Riemannian metric on M at each point p 2 M.

Equipped with a metric that will allow the measure of distances, we specify the notion
of isometry. First, we define isometry as a general term. The notion of ”isometrically”
embedding a manifold into another space is different than the notion of an isometry.

Definition 2.18 (Isometry in general) Let dM an arbitrary distance measure on a smooth man-

ifold M. A map � : M ! N both of dimension d, is an isometry iff it is a bijective map such

that

dM(p1, p2) = dN (�(p1),�(p2)) 8p1, p2 2 M.

The definition of differentials defines equivalently the notion of isometry when � is differentiable.

Then if � is a diffeomorphism then its differential d�p is an orthogonal isomorphism for all p 2 M.

When the smooth map � is not a bijection, we still can extend the notion of isometry to
local isometry by defining it directly on the tangent space.

Definition 2.19 (Local Isometry) A map � : M 7! N is a local isometry iff its differential in p
is an orthogonal linear isomorphism in p.

8



2.1. Mathematical Prerequisites

Let J�(p) be the jacobian of �p at p, this is equivalent to saying that J� is invertible and :

J�(p)J�(p)
T = Id 8p 2 M.

Definition 2.20 (Riemannian Isometry) Let (M, g) and (N , h) be Riemannian manifolds, let

� : M 7! N a smooth map. � is an isometry iff � is a diffeomorphism that preserves the intrinsic

Riemannian metrics on each manifold.

g(x1, x2)p = h(dfp(x1), dfp(x2))f(p)8x1, x2 2 TpM, 8p 2 M. (2.1)

Equivalenty (� is an isomorphism), � is an isometry iff ��1
is a diffeomorphism such that :

h(y1, y2)f (p) = g(df�1
f(p)(y1), df

�1
f(p)(y2))f(p)8y1, y2 2 Tf (p)N , 8p 2 M. (2.2)

Definition 2.21 (Local Riemannian Isometry) Let (M, g) and (N , h) manifolds, f : M 7! N

a smooth map. f is an isometry iff f |Up : Up 7! Uf(p) is a diffeomorphism that preserves the

intrinsic Riemannian metrics on a neighborhood Up around p to a neighborhood on M.

The pure definition of isometry on a manifold as stated above can be restrictive. Even
for a local isometry, we would need an isomorphism. Such a definition is impractical when
we do not have all the information about the transformations and we want to infer them.
In fact, isometrically embedding a d-dimensional manifold M is restricted to actually find
an injective mappping that preserves the Riemannian metrics between the tangent spaces
of the manifold M and Rs with d  s.
Nash’s theorem [ 21 ][ 22 ] enunciates the existence of such an injection. We enunciate it
without giving the details of the range in which s lies as it is not of interest to us in this
thesis.

Theorem 2.22 (Nash’s theorem) Let N be a d-dimensional Riemannian manifold r-

differentiable, such that 3  r  1. Then there exists s = O(d3) such that there exists

� : N ! Rs

< x1, x2 >=< d�p(x1), d�p(x2) > 8x1, x2 2 TpN8p 2 N .

In the following, we suppose the manifold hypothesis. That is, given a set of data points

Y = yi : i 2 [1, N ] forN 2 N, yi 2 Rm,

the points in Y lie in a manifold M of lower dimension d though embedded in RD with
d  D.

In general, trying to learn M boils down to modeling the problem as follows : We sup-
pose the existence of a diffeomorphism

� : M 7! Rd.

9



2. Background Knowledge and Related Work

The main idea of manifold learning, though approached differently throughout liter-
ature involves finding an approximate to ��1. The objective is then to uncover � while
preserving a certain structure of the embedded manifold.

In the following section, we present a no-exhaustive history of manifold learning tech-
niques.

2.2. Classic Manifold Learning methods

We define terms that will be used throughout this section.

Definition 2.23 (Graph) A graph G is defined as a pair (V,E) where V = vii2C where C is finite

subset of . E = (vi, vj)ij2C,ij is a set of paired points in V . Elements of E are edges and elements

of V are vertices. A graph is connected if there exists a path between any two points in the graph.

Definition 2.24 (Adjacency and Degree Matrix of a graph)

Adjacency matrix A is defined on graph G = (V,E) as A = (aij)ij2C with aij = 1 if eij is an edge

in E and 0 otherwise.

The degree matrix D is the diagnoal matrix defined on graph G = (V,E) as D = (aij)ij2C with

dii the number of nodes that are connected to i.

Definition 2.25 (Graph Laplacian) Let matrix L be the laplacian matrix of the graph G.

L = D �A

where A is the adjacency matrix of the graph and D is the degree matrix of the graph.

Definition 2.26 (Hessian Matrix) Let f : Rn
7! R a real-valued function. The Hessian matrix

of f is defined as :

Hij = (
@2f

@xi@xj
)

Definition 2.27 (Hessian on a manifold) Let f : M 7! R. The Hessian of f in a point p of M

is defined on TpM as :

hf : TpM 7! Rd

is written can be written as a matrix and identified as the usual Hessian matrix on the Tangent

Space at point 0 which is image of p on the tangent space.

10



2.2. Classic Manifold Learning methods

2.2.1. Principal Component Analysis (PCA)

PCA [ 24 ] is introduced as a solution for finding the most ”be-fitting” line to regress N data
points in R. A principal component is the principal axis of the residual ellipsoı̈d which
centroı̈d is the points’ mean. For higher dimensional points, PCA projects them in the
direction of higher variances to find their lower dimensional representation. Those direc-
tions are calculated by an eigen-decomposition of the covariance matrix of the centered
data points and each direction is a principal component. [ 19 ] introduces a generalization
of PCA using kernels.

2.2.2. Kernel and eigenmap methods

Laplacian Eigenmaps (LE) [ 4 ] The Laplace Beltrami-operator is defined as the general-
ization of the Laplacian on manifolds. Recall that the Laplacian of a function on a point
translates how much the evaluation of the function at that points differs from the neigh-
boring points. Intuitively, if we perceive the points lying on the manifold as a graph, we
can apply the Graph Laplacian to learn the underlying manifold. In fact, if we can map
the manifold in a lower space such that the graph Laplacian is preserved, then we have
found a lower d-dimensional embedding that preserve local neighborhood structure. This
entails that we must first define neighborhood and construct a graph of the manifold.

Local Linear Embedding (LLE) [ 27 ] The idea of LLE is reflected simply in its name :
model the manifold as an aggregation of small linear affine spaces at each of its points.
The affine spaces are not perfectly tangent to the manifold. The intuition is that at each
point, the affine space is a best befitting linear space that describes the neighborhood of
that point. The manifold is, as introduced in LLE, is thus perceived as a collection of
”patches” defined at each point for the best local approximation.

The neighborhood of a point is defined as a ball of fixed radius r.
The affine spaces are then found by calculating w̃ij as the solution of a least square

constrained optimization problem. We thus find in higher dimensions, the weights that
represent locally the high dimensional points.

Once the weights are analytically calculated they are plugged into the loss function

loss = ⌃i kyi � f(yi)k
2 ,

where
f(y) = ⌃ijw̃ij ⇤ (yi � yj).

The minimization of the loss has an analytical closed form and yields a lower repre-
sentation of the data while preserving the local high dimensional neighborhood linearly
weighted structure. This solves the manifold learning problem as stated above.

11



2. Background Knowledge and Related Work

Hessian Eigenmaps (HE) HE learns the inverse of the transformation � by supposing
that the manifold is smooth and that � in a neighborhood of the manifold is smooth iso-
metric, thus smooth and locally isometric. It is based on characterizing the local Hessians
at the points on the manifold of a real-value function f that describes the local neighbor-
hoods. This function corresponds to the graph adjacency matrix. HE proceeds in a manner
close to LE, while replacing the Laplacian with the Hessian matrix and is based on the im-
portant following corollary defined in [ 10 ]

Corollary 2.28 (Local isometric function on smooth manifolds and hessian Matrix)
Hypothesis: �, as defined in the manifold problem, is locally isometric. We can find the transformed

coordinates of ỹ in the d-lower dimensional embedding by finding a suitable basis for the null space

of the Hessian Matrix.

The algorithm for estimating the Hessian matrix at each point and characterizing the
null space of H has the same steps as LE.

Isotropic Diffusion Maps (DM) For DM [ 8 ] also perceives the manifold as a graph. A
random walk is performed iteratively through the manifold. The probability transition
matrix P is initialized as the adjacency matrix on the graph G using a diffusion kernel
on the neighborhood as a similarity measure. The ensuing transition matrix P provides a
better characterization of the manifold structure at each new step t when the random walk
is iterated again. The transformation � is then found by an eigendecomposition of P .

Anisotropic Diffusion Maps (ADM) We remark that both LE and HE builds a similarity
distance on the manifold that approximates the Euclidean distance in the higher dimen-
sional space. For example, in LE, this ”low”-dimensional measure is the heat kernel K

K(y1, y2) = exp

 
�
ky1 � y2k

2

2�2

!
,

when y1 and y2 are two high dimensional points. The transformation that LE and HE try
to uncover is rooted in the high dimensional distance even though they approximate, as
mentioned, a good representation of the local neighborhood around the points. This can
still be considered a weak approximation of the embedding’s real, local distance measure.
AMD uses the same idea as DM but with a kernel approximating the Euclidean distance
between the inaccessible embedded x1 and x2 in a lower dimension. The kernel is defined
as

K(y1, y2) = exp

 
�
(
��d��1

y1 (y1 � y2)
��2 +

��d��1
y2 (y1 � y2)

��2)
4✏

!
.

d��1 at a point y is not calculated directly but approximated using an eigendecomposi-
tion of the covariance matrix of neighbors sampled around y.
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2.3. Isometric Manifold Learning methods

2.2.3. Multi-Dimensional Scaling (MDS)

MDS [ 12 ], maps the N data points

yi : i 2 [1, N ] for N 2 N, yi 2 RD,

for which pairwise distances dij = dM(yi, yj) are provided (D = (dij)), to the wanted
lower d-dimensional space while keeping the distances between the projections as close as
possible to the original points. The map provides a solution to the manifold problem, as
we stated above.

MDS envelopes various techniques with the same stemming idea but differ in the type
of transformation functions, the distances, and the scaling factor used.

The general idea is to minimize the following function loss (referred to as stress or strain
depending on the nature of the mapping)

loss =
⌃i,j(f(dMij)� dij)2

scaling
.

Intuitively, the idea of stress is introduced to model the problem as a graph structure
with connected nodes weighted by distances, and we want to transform the nodes so that
we impose minimal stress on the structure. Classical MDS uses linear transformations
and euclidian distance. Other variants use isotropic (constant) or anisotropic scaling
(adapted to the data). A strength of MDS is that it can be used as an intermediate step
when a dissimilarity or adjacency matrix is provided. MDS was in [ 7 ] used MDS for data
representation in hypermedia.

Closer to our focus in this thesis, we present an overview of isometric embedding tech-
niques in the literature.

2.3. Isometric Manifold Learning methods

The methods in subsections  2.2.2 extract the embedding to preserve a local or global
structure without explicitly imposing geometrical property conservation. The interactions
between neighborhoods in the presented non-linear methods were so far presented as
graphs. They minimize a particular loss to keep an inherent characteristic of the graph
(eigenvalues of functions defined on the graph or the stress on the structure) not the ge-
ometry on the manifold as it would be mathematically defined (uncover d-dimensional
embeddings that preserve the distance measures on the real d-dimensional manifold).

A more constraining way to uncover the manifold transformation is to suppose that � is
isometric or locally isometric. This explicit constraint is fruitful in better characterizing the
manifold, and learned low-dimensional points close to the manifold are retrieved as close
as that on the actual low-dimensional manifold.
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2. Background Knowledge and Related Work

In isometric methods, the isometry condition is explicitly formulated between the dis-
tances on the manifold and the distances of the retrieved manifold

dM(x1, x2) = dM̃(x̃1, x̃2),

where dM(x1, x2) is a particular distance measure on M between x1 and x2.

2.3.1. Generalized MDS

Introduced by Bronstein in 2006, Generalized MDS [ 6 ] generalizes MDS to use non-
Euclidean distances on manifolds and offers an optimized framework that finds the loss
by numerically approximating (no analytical expression used) the distorted metric on the
embedding. It was introduced as a framework for matching isometry-invariant shapes,
which matches shapes that were transformed in a manner that did not change intrinsic
distances on the manifold. It does not produce a perfect isometry since, in general, it is too
rigid to impose a perfect isometry. However, it does produce a ”decent” similarity mea-
sure that identifies shapes ”probes” coming from the same isometrically distorted ”model”
shape.

2.3.2. Isomap

Isomap assumes, additionally to the isometrical embedding, that the manifold is also a
convex region, which means that for every two points on the manifold, there is a straight
path that joins intermediate points in a convex way. In Isomap, the manifold is viewed
as a weighted graph, and the local distances calculated between points are the length of
geodesics on the graph. For a graph, a geodesic is the shortest path between two vertices.

Isomap finds a new adjacency matrix based on the geodesic distance as a similarity
measure. Recall that MDS can be used as a step to approximate the Euclidean distance
in a d-dimensional space based on a similarity matrix between objects. Isomap uses this
property to find the new embeddings that guarantee that the geodesic distances on the
manifold are the same as the distances calculated d-dimensional Euclidean space.

2.3.3. Preserving the metric on the Manifold

In [  25 ], the authors introduce a geometric framework that approximates the actual geo-
metric distance locally on the manifold. The manifold is considered Riemannian.

The authors give a mathematical guarantee that the proposed method extracts the Rie-
mannian metric on the embedding. This framework can be used to correct any embedding
that was not retrieved isometrically with a mathematical guarantee. We use the results of
this paper in our thesis to evaluate the quality of the isometry retrieved in both cases we
study.
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2.4. Auto-Encoders for manifold Learning

Megaman The authors propose a package Megaman available in Python that codes the
following results that will be used in this thesis:

1. Computing adjacency matrices using FLANN (Fast Library for Approximate Nearest
Neighbors)[ 20 ]

2. Computing the Riemannian metric and showing the distorted distances between the
real embedding and the learned embedding.

In [ 18 ], the same authors of [ 25 ] construct the algorithm that uses the geometric frame-
work to construct the isometric embeddings. The manifold is mapped to a graph with
weights are calculated using a kernel function K, builds Laplacian of the graph and upon
it builds the Riemannian metric matrix H . It imposes the isometry by calculating a loss
function that makes H converge to I , the identity matrix.

[ 14 ] builds a framework fro isometric embeddings close to [ 25 ] but that generalizes also
to non-Euclidean data.

2.4. Auto-Encoders for manifold Learning

2.4.1. Concept of Machine Learning

Machine Learning [  16 ] represents a family of methods that solves a set of problems with-
out having the rules of the solution coded explicitly. The rules are instead inferred by
minimizing a specific loss. It encompasses two large sets of problems: Supervised and
Unsupervised.

On the one hand, the task in Supervised-Learning is to find a function that, given N
points, maps them to their labels. The idea is to use the inherent data structure to learn the
patterns that differentiate or describe best the correct labeling of the data points.

On the other hand, the task in Unsupervised-Learning is to find, within the data struc-
ture, the similarity between data points. No labels are given to orient the learning towards
a specific solution. We can approach Manifold Learning as a machine learning problem
since we want to find an embedding that captures the structure of the data. In this the-
sis, Auto-Encoders, a specific type of Neural-Networks, were used to solve the problem of
learning an isometric embedding.

Neural Networks (NN) Neural Networks [ 5 ] can be represented as a global function f
that we want to learn to solve a particular problem.

They are stacked layers of connected nodes, which is more of a representation than the
definition of an actual graph as illustrated in figure  2.3 .

Each node represents an activation function, and the connections between the nodes
carry the weights of the inputs that will fire (activate) or not the node. Activation functions
that introduce non-linearity in the NN’s overall learned function, allowing more flexibility

15



2. Background Knowledge and Related Work

and complexity for the decision boundaries. A vanilla loss function determines the devi-
ation of the neural network’s outputs f(x) to the wanted outputs y. In general, it can be
any function of the network’s parameters and the input data.

To solve a specific task, one needs finding the correct architecture of NN and the right
parametrization of the connections between the nodes which optimizes the loss minimiza-
tion.

Figure 2.3.: Example of a neural network with an input in 3-d, an output in 2-d and 3
hidden layers with 4,6 and 4 neurons orderly.

2.4.2. Vanilla Auto-Encoders

An Auto-encoder [ 11 ] is a neural network that learns the input data fed to it. The global
function of the Auto-Encoder would be the identity since the purpose is to learn the inputs
and would not give further information on the data points. However, when a bottleneck
is introduced in the architecture of the NN as well as other constraints to the architecture,
it learns an expressive function that maps the inputs to a lower dimensional space and
then to a higher dimensional space as pictured in Figure  2.4 . This idea is the main purpose
of an Auto-Encoder.
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2.4. Auto-Encoders for manifold Learning

Figure 2.4.: Illustration of the auto-encoder structure. The latent space represents a
compression of the input data. The auto-encoder learns a reconstruction of the input.

Let
Y = yi : i 2 [1, N ] forN 2 N, yi 2 RD,

the N input points to the auto-encoder.
We note the functions of the auto-encoder as follows

•  is the general function the auto-encoder tries to learn

 : RD
! RD

y 7! ỹ.

•  e is the function of the encoder that maps the input to the lower dimensional Eu-
clidean space d < D

 e : RD
! Rd

y 7! x̃.

•  d is the function of the decoder that remaps the lower dimensional points to the
higher dimensional input space

 d : Rd
! RD

x̃ 7! ỹ.

Thus, the auto-encoder is the composition of the encoding and decoding functions

 =  d �  e.

Using d  D introduces the network bottleneck that permits uncovering a latent repre-
sentation of the input data. The embedding is learned by minimizing a loss function

Lrec( ) = k (y)� y)k2 .
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2.4.3. Regularized auto-encoders

Regularization methods are used to impose the extraction of a certain data structure which
enforces a certain characteristic of the learned embedding function  such as sparsity [ 23 ]
or robustness to noise [ 29 ].

In this thesis, isometry can be perceived as a regularization technique [ 13 ]. The loss
function is modified to account for the regularization term R as follows:

L( ) = Lrec( ) +R( )

Many authors during the last two years (LOCA and I-AE were published in 2020), have
used the papers we are interested in, for other applications. For instance, [ 3 ] applies the
strategy of isometric auto-encoders in I-AE to GANs where the input of the Generator is
the learned isometric embedding from the I-AE encoder.
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Part II.

Isometric Embedding of Manifolds
with Auto-Encoder Networks
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3. Methodology

As stated in section  1 , this thesis aims to compare two approaches to manifold learning
using auto-encoders. We frame our approach to this problem by referring to the main
challenging points the algorithms introduced in section  2 focused on when introducing
new approaches. We retain that the following points are the recurrent points we look for
when studying manifold learning method :

1. The capability of learning the embedding recovered by the algorithm

2. The power to generalize over more than the observed points and extend the embed-
ding in the non-observed domain

3. The robustness to noise on the manifold

4. The robustness to small data samples

5. The computation comlexity of the model

Based on the following points, we establish a line of comparison between both ap-
proaches. Furthermore, in comparing two objects, one must generally establish a com-
mon framework where both objects can be comparable and establish the points of align-
ment and the divergence between them. Thus, we establish experiments that compare the
methods to state their similarities and differences for sure of the abovementioned points.
Therefore, we formulate the following framework for our comparison

1. Idea and Mathematical approaches We explain separately the ideas and method-
ologies developed in both papers. We state the different hypotheses of the models
and establish a comparing conclusion on the mathematical guarantees both methods
offer.

2. Use Cases Based on the mathematical guarantees, both papers tackle the problem
differently. Therefore, each method must be used with its hypotheses for a fair com-
parison. First, we state the different use cases for which each paper was introduced.
Then, we implement them for each method in its spectrum of hypotheses. We also
adapt them so we can compare them when the guarantees of one are unavailable for
the other.

3. Implementation We briefly discuss the implementation of both methods. Although
LOCA is an open source project [ 1 ], I-AE is not. The source code was not available,

20



and we proceeded to implement I-AE. We will discuss the implementation proce-
dure’s details briefly. Furthermore, since use cases differ, the input is modified to
suit how [ 26 ] implements LOCA.

4. Isometry comparison The methods introduce further losses that approximate dif-
ferent entities. For a fair comparison, we use the Euclidean distances on the lower
dimensional manifold when the distribution is available. Otherwise, we use a Rie-
mannian metric retrieval method. We, thus, compare both methods congruently on
this common ground that [ 25 ] introduces within a solid mathematical background.

It is worth noting that the comparison in this context is a difficult task since I-AE and
LOCA define completely different isometries. In the next section, we detail each of the
steps mentioned in our methodology points.
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4. Comparison Framework

4.1. Mathematical problem setting

The purpose of LOCA and I-AE is to find the inverse of supposedly isometric trans-
formation from an observed embedding to a latent embedding. As stated in section  2 ,
by isometric, we mean ”isometrically” embedding the lower dimensional manifold in a
lower dimensional space.

Let (N , h) be a d-dimensional Riemannian manifold that we refer to as embedding,
(M, g) a D-dimensional Riemannian manifold that we refer to as the observed manifold,
such that d  D. (hand g are the Riemannian metrics defined on respectively N and M)
Let yi 2 RD, be N observed samples near the observed manifold M.

We suppose there is a map ⇢ that transformed the embedding N to the observed embed-
ding M :

To find perfectly ⇢�1 when the transformation is not apparent, we would still need in-
formation about ⇢ or the actual embedding itself, which we do not have. Furthermore,
imposing that ⇢ is an isometry is mathematically incorrect. The definition of isometry
needs to be an isomorphism between spaces with the same dimension, and we do not
always have d = D.

Thus, we find a strategy to approach ⇢�1 when ⇢ is invertible and ⇢�1
|M when ⇢ is sup-

posed to be smooth and injective.
For a unified framework between LOCA and I-AE, we decompose the transformation ⇢

as :
⇢ =  d � �

Where :

� : N ! Rs (4.1)
x 7! x̃ (4.2)

 d : Rs
! RD (4.3)

x̃ 7! y (4.4)
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4.1. Mathematical problem setting

For LOCA, � is an isometric embedding from the d-dimensional N into Rs with d 

s. For I-AE,  d is the isometric embedding from N and RD and � could be seen as an
isomorphism that is not necessarily defined between N and Rd (d = s); for no further
confusion, for I-AE, we write ⇢ =  d.
⇢|M is supposed to be invertible. Thus,  d must be invertible. For both LOCA and I-AE,
 e is chosen to be the pseudo-inverse of  d.

For both LOCA and I-AE, although the functions that are imposed to be isometric
embeddings are different, they both impose local Riemannian isometries on the tangent
space of Riemannian manifolds.

After establishing a common ground for LOCA and I-AE, we explain the strategies taken
to justify that the different isometries they propose are isometries and how the pseudo-
inverse is imposed.

4.1.1. LOCA’s approach

LOCA imposes � such that for
d�x : TxN ! Rs,

we have
gx(x1, x2) =< d�x(x1), d�(x2) >,

which can be written in matrix form as

J�(x)
TH�(x)J�(x) = Gx 8x 2 N ,

where H�(x) is the inherited metric on Rs. Furthermore, the Riemannian metric is sup-
posed to be constant over the manifold N , thus

Gx = Id 8x 2 N ,

H�(x) = Is.

Thus, imposing the Riemannian isometry boils down to imposing

J�(x)
TJ�(x) = Id. (4.5)

LOCA imposes this using a lemma that relates the covariance of samples on the trans-
formed tangent space to the Jacobian on the original lower dimensional manifold.
LOCA has access to these samples using a burst sampling strategy which consists in re-
peated sampling on the manifold on a small time window.
In fact, each yi is not observed once on the observed manifold, but each yi is sampled M
times. This translates into direct access to a distribution on the manifold.
LOCA characterizes the deformation of each burst as follows:
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4. Comparison Framework

Before the deformation, on the unknown manifold N lie N non-deformed samples which
we noted xi such that :

xi,m ⇠ N (xi,�
2Id).

We do not ave access to this information however we can relate to it using the learned
bursts. Then the samples that form a burst i we can approach are

x̃i,m = �(xi,m).

Figures  4.1 and  4.2 show a burst respectively before and after the transformation.

The intuition behind using bursts comes from the fact that we can parametrize the
tangent space TxNusing the local Rs basis.
Recall the idea of PCA, where we can have an idea about the occurred transformation by
exploiting the residual ellipsoid, which gives the axis on which we can project the data
according to the directions of highest variance.
Here, the idea is the same, on the local euclidean space Rs passing through �(x) = x̃,
the transformed residual ellipsoid by � gives us a parametrization of the transformed
manifold.
We can intuitively relate the variances on each transformed dimension of the samples to
the differential in the transformed space. Thus, at each point x̃i, the burst (which, as we
said, is equivalent to a residual ellipsoid) can parametrize locally the transformation �.

The authors of LOCA introduce this reasoning as a lemma under certain hypotheses

Lemma 4.1 (covariance of samples and differential on the tangent space) Let � be a

3-diffrentiable and injective map from Rd
to Rs

such that d  s. Let � 2 R⇤
+, and let X be a

random variable such that X ⇠ N(x,�2Id) with � small enough that J�(x) is constant on the

neighborhood B(x,�) and X̃ = �(X).Then

J�(x)J�(x)
T =

1

�2
Cov(X̃) +O(�2).
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4.1. Mathematical problem setting

Figure 4.1.: Example of a burst B in R2 that reflects the distribution on the embedding M

before deformation. The points are sampled using N((0.25, 0.75), 0.001 ⇤ I2)

Figure 4.2.: The burst B transformed using a non-linear function �. This shows the
deformation of the burst when observed on the manifold.
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As defined in equation  4.5 , if � is supposed to be an isomorphism then s = d. Then

J�(x)
TJ�(x) = J�(x)J�(x)

T .

LOCA thus rewrites the local isometry condition as

1

�2
Cov(X̃) = Id 8x̃ 2 Rd. (4.6)

Now, the objective is to find the mapping  d defined by equation  4.3 that injects the low
dimensional bursts x̃i,m to RD as close to yi,m as possible for every x̃i 2 Rd.
This condition is written as :

⇢(xi,m) =  d(x̃i,m) = ỹi,m,

⇢†(yi,m) =  e(yi,m),

which means to impose

8yi,m 2 M,  d �  e(yi,m)� yi,m = 0. (4.7)

This condition is easily enforced using auto-encoders by setting the reconstruction loss to

Lrec(✓ e , ✓ d
|Y ) =

1

NM

NX

n=1

MX

m=1

k d �  e(yn,m)� yn,mk
2 . (4.8)

To enforce the condition of isometry in equation 4.6 , LOCA sets a new loss that we note
Lwhite

Lwhite(✓ e , ✓ d
|Y ) =

1

N

NX

n=1

����
1

�2
Cov( d(Yi))

����
2

. (4.9)

LOCA optimizes ✓ e and ✓ d
, the parameters respectively of the encoder and decoder

using the algorithm in [ 26 ].
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4.1. Mathematical problem setting

Figure 4.3.: Illustration of how LOCA enforces the isometry and learns the embedding.
Using burst information, it links the actual embedding points x to the learned points x̃. It
then, finds a map  d and its pseudo-inverse  e that maps y to x̃. We optimize the
auto-encoder to uncover such transformations.  e and  d are respectively the encoder’s
and decoder’s functions while � represents the isometry as defined by LOCA.
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4.1.2. I-AE’s approach

Recall the definition of ⇢ in subsection  4.1 . For I-AE, the isometric embedding is  d. For
notation purpose we denote  d also as  (d).

The isometry condition for  (d) is written as

d (d)
x : TxN ! TxM,

where d (d)
x is the differential of  d in x. We have

8x1, x2 2 TxN , gx(x1, x2) =< d (d)
x (x1), d 

(d)
x (x2) >,

which can be written in matrix form as

J (d)(x)TH (d)(x)J (d)(x) = Gx 8x 2 N ,

where H (d)(x) is the inherited metric on RD. Furthermore, the Riemannian metric is sup-
posed to be constant over the manifold N , thus

Gx = Id 8x 2 N ,

H (d) = ID.

This results in

JT
 (d)J (d)(x) = Id. (4.10)

For LOCA, we supposed that s = d and the injective map � are locally an isomorphism.
In this case, the isometry is between a d-dimensional and a D-dimensional space. Thus
equation  4.10 would have been enough if we imposed also d = D. However, limiting the
cases to only d = D is not desirable as we are looking for a lower dimensional embedding
where we can have d < D.

In other words, for LOCA when s = d, it was equivalent to define the isometry as
preserving locally using the push-forward d� or the pullback d��1, since

J�(x)
TJ�(x) = J��1(�(x))TJ��1(�(x)) = Id.

For I-AE, since  d is not invertible, we also need to define the isometry in terms of the
pullback.

However, the injective map  d does not have a well-defined  �1
d ; thus, we define the

pullback as the pseudo-inverse of  d

� =  †
d. (4.11)
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Then  is an isometry if the equation  4.10 is verified, and the pseudo-inverse � verifies
the isometry condition defined by the pullback  2.2 as well

8x 2 N , 8y1, y2 2 T (x)M, h (x)(y1, y2) = g�� (x)(d�x(y1), d�x(y2)),

which can be written in matrix form as :

8y 2 RD, J�(y)
TG�(y)J�(y) = Hy,

where Hy is the inherited metric on RD.

Furthermore, the Riemannian metric is supposed to be constant over the manifold N ,
thus :

8x 2 N , G�� d(x)) = Id,

8x 2 N , H d(x) = ID,

This results in

8y 2 RD, J�(y)J�(y)
T = Id. (4.12)

To summarize, I-AE imposes an isometric embedding of N into RD by imposing the
three conditions  4.10 ,  4.12 and  4.11 .

I-AE uses an auto-encoder like LOCA to find  d and � which is  e. To impose  4.10 and
 4.12 , I-AE introduces respectively loss L(✓ d

) and L(✓�)).
To impose the condition  4.11 , I-AE uses the reconstruction loss as defined in  2 .

4.1.3. Comments on the mathematical approaches

We do not detail the expression of the losses as the idea of this mathematical framework
was to explain more the way I-AE and LOCA imposed the isometry.
It is clear that LOCA has the advantage of introducing a local isomorphism that is isometric
to the inaccessible manifold. This translates into a more powerful definition of isometry
and a better preserving of the local geometry as it accesses information about the latent
space that is not available in I-AE.
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Figure 4.4.: Illustration of how I-AE enforces the isometry and learns the embedding.
Minimizing the losses has the effect of projecting y on the tangent manifold of the learned
space where ỹ and learning an isometry (injective isometry and its inverse) that creates a
mapping between ỹ and x̃. The composition  of  e and  d creates a mapping between ỹ
and y.  e and  d are respectively the encoder’s and decoder’s functions.
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4.2. Use Cases

4.2. Use Cases

LOCA and I-AE have different approaches for isometric auto-encoders. While LOCA uses
bursts, I-AE does not. We can use LOCA for uncovering measurements from different
measurement devices. We can use I-AE in general manifold learning tasks. Thus, for a
fair comparison, we are interested in use cases developed for LOCA and applying them
for I-AE. Similarly, we are interested in applying a general use case where bursts are not
available to be fair to I-AE since it is not made for cases where burst sampling is available.

4.2.1. Manifold Learning for Dimensionality Reduction

Many datasets are made available for testing manifold learning in dimensionality reduc-
tion. We test both LOCA and I-AE on one dataset: Swiss Roll.

Figure 4.5.: Swiss Roll dataset represents the manifold M. Five thousand points yi is
sampled on the swiss roll manifold.

We choose this data set as it represents a smooth manifold and does not need the strategy
of burst sampling for a fair comparison between LOCA and I-AE, as mentioned in section
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 3 .
The manifold M on which lie the sampled points yi is a 2-dimensional manifold embedded
in R3. Thus the manifold learning task is to learn an isometric 2-d embedding of M.

4.2.2. Manifold Learning using burst sampling

In this case, the experiment uses the burst sampling method. N points x = (x1, x2) are
sampled uniformly on a 2-dimensional manifold to correspond to the unknown manifold
N such that

xi ⇠ U[0,1]2 .

To construct a burst around each ith point xi, M points xi,m are sampled such that

xi,m ⇠ N(xi,�
2I2).

We transform the manifold N using the following non-linear equation to give the points
y = ⇢(x) is given by

⇢(x) =

✓
x1 + x32
�x31 + x2

◆
.

Since the authors in [ 13 ] do not define I-AE for burst sampling, we need to modify
a modification the input. We discuss how we modify the burst input to suit the burst
sampling for I-AE in . We discuss the results in section  5 . We do not compare the quality
of the learned isometry, which we also explain in section  5 .
Thus we obtain bursts that are supposed to be sampled on the deformed manifold and
observed in R2.
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4.2. Use Cases

Figure 4.6.: Illustration of the real latent space N in which the points xi lie. Here N = 200
and M = 200. Each point represents a burst that we do not draw for simplicity.
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Figure 4.7.: Illustration of the transformed points yi that lie on the observed manifold M.

The figures  4.1 and  4.2 represent a burst around yi = (0.75, 0.25) respectively before and
after the transformation ⇢ was applied on the manifolds represented by figure  4.6 . The
transformation of figure  4.6 is illustrated in figure  4.7 .

4.3. Implementation

4.3.1. I-AE

We implement I-AE based on the authors’ paper [ 13 ]. We use TensorFlow which was also
used for LOCA.

Hyper-parameter tuning For each of the experiments where I-AE was used, the model
was hyper-tuned using the KerasHypertuner [ 2 ]. The parameters are optimized to find
the best overall loss the fastest.

• number of hidden layers : It references the number of hidden layers in the en-
coder and we mirror the architecture for the encoder. This value ranges in the set
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4.3. Implementation

{1, 2, 3, 4, 5}

• number of units per layer range in the set {32, 64, 128, 256}

• type of architecture : ”same”: we use the same number of units for each hidden
layer.

• activations for the hidden layers : softmax, relu, tanh or softplus. Each has its
limitations.

Adapting I-AE For the mushroom experiment that uses burst sampling, the input to the
encoder is a matrix

I 2 RN⇥M ,

with N the number of bursts and M the number of sampled points in each burst. M is the
same for each burst.
I-AE is fed this matrix just flattened. This makes sure we use the same information as in
LOCA. Nevertheless, since the algorithm of I-AE does not use the observed correlation
matrices, we cannot adopt this input further.
Thus I-AE is just fed I

I 2 RNM .

4.3.2. LOCA

We use the implementation of LOCA that is available in the open-source project [ 1 ].
Nevertheless, LOCA needs the presence of bursts as input. Let I be the input example

for LOCA. In order to use the Swiss Roll without knowledge of bursts (for a fair compar-
ison with I-AE), we need to add a heading function on top of LOCA that re-adapts the
input I as sampled bursts.
To do so, we follow the reasoning of the methods in section  2 . We define a burst around a
point yi near the observed manifold M as a neighborhood of yi and use k-NN to choose
such neighborhoods.
If theoretically, for LOCA, a burst represents M points uniformly sampled on the lower
manifold, here we do not have access to this lower manifold. We content ourselves in
defining the bursts on the higher dimensional manifold. Therefore, we select k = M
neighbors of the point yi and define the resulting neighborhoods as our observed bursts.
We do not have further information about the manifold. We do not want to learn a
distribution to select the right neighborhoods (using geodesics on the observed manifold
or a kernel method that relates to the covariance on the observed manifold), which would
defeat the purpose and incorporate the input to LOCA. As a result, we take the simplest
approach of k-NN for the neighborhood selection.

Thus in LOCA, we optimize additionally
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4. Comparison Framework

• k Number of neighbors in the k-NN algorithm

• � Standard deviation of the bursts, since the variance of the bursts is not known as
the points are not sampled using the bursts sampling strategy.

4.4. Isometry comparison

To compare the quality of the isometry, we choose two methods.

4.4.1. Euclidean local distances

When we use burst sampling, the distances on the latent manifold are accessible. Thus,
we can use the euclidean distances on the manifold to compare the quality of the isometry
imposed between LOCA and I-AE using the local euclidean distances.

4.4.2. Testing for finding the real metric

We use the results of the paper [ 25 ] and the package Megaman, introduced in section  2 , to
uncover the distortions between the real embedding and the learned metric.
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5. Computational Experiments

5.1. Experiment A : Mushroom Experiment

This section discusses the results of implementing the mushroom experiment discussed in
section ??. For implementing this experiment, we use the same type of architecture as in
LOCA (fully connected layers with non-linear activations). However, we hyper-tune the
number of units per layer and the number of layers to give more freedom to I-AE to find
the right transformation but still be comparable to the results given by LOCA.

5.1.1. I-AE

I-AE is hyper-tuned to find the best structure that minimizes the loss and converges the
fastest. We report the results of the experiment using the parameters in table  5.1 .

Table 5.1.: Best parameters retained after hyper-tuning

number of layers 1
number of units per layer 256
learning rate 0.00024698
�reg 100

We inspect each of the losses introduced by I-AE that individually reinforce one condi-
tion for imposing the isometry. We report their convergence in training. Furthermore, to
understand which transformation the auto-encoder learns, we visualize the learned em-
beddeding in R2 and the reconstructed manifold in R2 of the mushroom experiment.
Using I-AE yields the results reported in Figures  5.1 ,  5.2 and  5.3 .
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5. Computational Experiments

Figure 5.1.: The learned isometric
embedding of the unknown latent space N

into R2. It represents the predicted points x̃i,
which are the codes learned by the
auto-encoder I-AE

Figure 5.2.: The reconstructed mushroom
cloud that was input in figure  4.4.2 . The
points correspond to the predicted points ỹi
decoded from the learned embedding in
figure  5.1 .

Figure 5.3.: Illustration of the convergence of the losses (reported on linear scale) included
in the optimization of I-AE for the mushroom experiment. lrec, in green, refers to the
reconstruction loss lrec. liso, in red, refers to the reconstruction loss liso, which tracks how
”far” the auto-encoder is to finding an isometric embedding. lpiso, in blue, refers to the
isometry loss lpiso, which reinforces that the encoder is the pseudo-inverse of the decoder.
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5.2. Experiment B : Swiss Roll dataset

The losses converge empirically to 0 as the number of epochs grows. The lpiso and liso
drop fast to 0 as the auto-encoder overfits on the output. We are empirically sure that the
losses enforce the isometry conditions as introduced in section  4 .
For auto-encoders to learn something, there must be a bottleneck in encoding the input
space. However, along with an imposed inverse function for the decoder that does not
add information on encoding the unknown manifold isometrically, the auto-encoder
learns a rigid transformation of the observed manifold. The learned latent space in figure

 5.1 is a rotation of the observed manifold in figure  4.7 . We expected such result, as I-AE
imposes an isometry based on the observed distances and does not link it to the distances
on the unknown manifold using the extra information given by the distributions of the
bursts. Thus, despite the regularization in the form of isometry, the auto-encoder still
cannot uncover the real latent ”code”.

5.1.2. LOCA

This experiment’s results are available in [  1 ]. LOCA links the variance on the latent space
to the transformation made on the unknown manifold, which permits LOCA to be an auto-
encoder that can capture more than just a rigid transformation of the ambient space.
The authors of LOCA suggest calculating the deformation of local Euclidean distances
to compare the quality of the isometry. Since I-AE failed to uncover an isometry that is
informative, the distances would be the same as with an isometry, but it is irrelevant.
Thus, comparing the quality of the isometry uncovered with LOCA and I-AE would not
be correct.

5.2. Experiment B : Swiss Roll dataset

We compare LOCA and IAE’s performance on the swiss roll set. On the one hand, we use
the burst sampling method to generate the dataset, and on the other hand, we do not use
burst information but keep the center of the bursts only.

5.2.1. Using burst sampling

As described in the mushroom experiment, we sample N points x = (x1, x2) uniformly on
a 2-dimensional manifold to correspond to the unknown manifold N such that

xi ⇠ U[0,1]2 .

To construct a burst around each ith point xi, M points xi,m are sampled such that

xi,m ⇠ N(xi,�
2I2).
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5. Computational Experiments

We transform the manifold N using the following non-linear equation to give the points
y = ⇢(x) is given by

⇢(x) =

0

@
t1cos(t1)
21t2

t1sin(t1)

1

A ,

with

t = (1.5⇡(1 + 2x1), x2).

Here we use the same transformation as given in available data sets (sklearn). The
data set is re-generated instead of being used directly to access the actual embedding and
assess the quality of the isometry.

We only use a cut part of the manifold to accelerate our experiments. Thus we cut the
point of the Swill Roll to not engage more computational force into unfolding the swiss-roll
entirely.

Thus only a part of the manifold shaped similarly to an open cylinder is kept. It still
embodies the problem of short circuits at the close boundaries of the dataset and as well
as the difficulty of unfolding a 3-d manifold into a lower 2-d space which still corresponds
to our problem.

I-AE We train I-AE on the above data set, using 80% for training and 20% for testing. In
training, we use the parameters in table  5.2 . Figures  5.4 and  5.5 show the results of our
experiments.

Table 5.2.: Best parameters retained after hyper-tuning

number of layers 3
number of units per layer 256
learning rate 0.0003
�reg 100
batch size 64
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5.2. Experiment B : Swiss Roll dataset

(a) (b)

Figure 5.4.: The bursts generated on the real 2-d embedding N with �burst = 0.01. The
manifold is folded and cut to keep only a part that is faster to unfold but still exhibits the
same difficulty as the manifold learning problem. Here 5000 bursts are generated, each
having 200 points, and only keep 2000: a total of 400000 data points. In figure  5.4a , we
show the manifold with all the bursts. In figure  5.4b , we show the centers of the
deformed bursts and the three full bursts in red. The transformation makes the bursts
much more elongated along the first axis.
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5. Computational Experiments

Figure 5.5.: I-AE learns a rigid transformation of the 2-d embedding using a flattened
version of the burst information which amounts to 400000 data points. We show only the
centers of the bursts.

I-AE reconstructs as well the 3-d manifold in the right way. The losses lpiso, liso and lrec
empirically converge after 500 epochs.

LOCA We retain the parameters used for the architecture when training I-AE in order
to train LOCA. An additional needed parameter is �burst which is the standard devi-
ation of the bursts on the 2-d manifold. Figure  5.6 reports the results of hyper-tuning �burst.
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5.2. Experiment B : Swiss Roll dataset

(a) (b)

Figure 5.6.: Hyper-tuning � is done by running LOCA for over 3000 epochs until the
losses (reported on logarithmic scale) empirically do not exhibit very promising change.
This logic stems from the same logic used when manually hyper-tuning, a model which is
also the logic behind KerasHypertuner. We explore for 3000 epochs initially the most
promising hyper-parameters, which will be used for training for more epochs. We report
losses on a logarithmic scale. Figure  5.6a shows the evolution of lrec and  5.6b the
evolution of lwhite, both by the value of � along the number of epochs. The error in hue
color represents the variation in the losses’ values’ due to the use of different batches.
Although for generating the bursts, we used �burst = 0.01, we notice that the training is
not possible with such value. In fact, the losses diverge for low values of � as illustrated
in figure  5.6b . For the swiss roll dataset, the smaller the value of � (0.01, 0.001), the more
inconsistent the results are. Actually, the lrec losses do not converge to low values and the
lwhite diverge. Acceptable values of losses are obtained when � is 1 or 10.

A possible explanation is a difference in the architecture of the neural network. Since
the parameters of networks are not optimized in the same manner, this could affect the
capacity needed for learning the underlying manifold. However, to keep a comparative
framework. We use the same structure and optimize the used �bursts. Furthermore, in
more general use cases, � is unavailable, and we need to find it. Therefore, it is interesting
to see the influence of finding the embedding while hyper-tuning �’s value as well.
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5. Computational Experiments

Table 5.3.: Best parameters retained (same architecture used as in I-AE)

number of layers 3
number of units per layer 256
learning rate 0.0001
batch size 64
� 1

Using the parameters in table  5.3 , we train LOCA using the same training and testing
datasets used in training I-AE. Figures  5.7 ,  5.8 and  5.9 show the results of our experiments.

Figure 5.7.: We train the model for 12000 epochs (until having stable empirically
converging losses (reported on logarithmic scale)). Unlike I-AE, for this experiment, the
losses do not drop very close to 0. However, the results are acceptable as the losses
converge to values close to 0 (order of 0.01).
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5.2. Experiment B : Swiss Roll dataset

(a) (b)

Figure 5.8.: LOCA is the 2-d manifold. Figure  5.8a shows the true manifold from which
stems the training dataset. Only the centers of the bursts are shown, with three bursts
fully drawn. Figure  5.8b shows the learned 2-d manifold which is a rigid transformation
of the real 2-d manifold. LOCA retrieves the right distributions of the bursts.

Comparison of results In contrast to I-AE, LOCA learns the distribution of the real
manifold. In fact, as portrayed in  5.5 , I-AE learns an unfolding of the prolonged distri-
butions of the real embedding  5.8a . In addition to learning a lower representation of the
data, LOCA retrieves the original distributions by taking into account the variances of the
bursts as illustrated in figure  5.8b .

Since we have access to the distances between points on the actual embedding, we can
assess the quality of the learned isometry by assessing how the distances are kept empiri-
cally. The results are reported in figure  5.9 .
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5. Computational Experiments

Figure 5.9.: On the x-axis, we report the distances between points on the original 2-d
manifold (standardized by the maximum). On the y-axis, we report the distances
between the points on the learned embedding. A model that imposes an isometry
between the learned and real manifold would have an identity correspondence between
both distances. LOCA’s results fall well on the identity line. However, I-AE has a high
variance around the identity line. It struggles even more, to impose the isometry as the
standardized distances are close to 1. The higher the distances, the more the distribution
is close to a random distribution over the distances.

5.2.2. Without using burst sampling

In this experiment, we do not use the burst sampling to uncover a 2-d embedding of the
manifold illustrated in figure  5.15 .
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5.2. Experiment B : Swiss Roll dataset

Figure 5.10.: represents the manifold M for which the models I-AE and LOCA try to
uncover an embedding in 2-d without using the bursts sampling method.

I-AE This experiment represents more of the natural setting of I-AE. We try to explore
more the effect of finding the proper regularization coefficient �reg.
If hyper-tuned, optimizing the losses will cause the hyper-tuner to automatically choose
the smallest �reg since it directly minimizes the total loss as they are all positive entities as
reported in Figure  5.11 .
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5. Computational Experiments

Figure 5.11.: Losses’ convergence (reported on logarithmic scale) when �reg is also
hyper-tuned show that the hyper-tuner fixes �reg as low as possible. This makes
reinforcing the isometry impossible as �reg << 0, since lpiso and liso are practically
disregarded.

We fix �reg which we choose to range in {10�3, 10�2, 10�1, 1, 101, 102, 103}. For each of
the values of �reg, we investigate whether the isometry is reinforced as defined in section

 4 by visualizing the losses’ convergence and the learned embeddings.

Figures  5.12 , 5.13 and  5.14 show the evolution of lpiso, liso and lrec. The lpiso and liso are
multiplied by �reg and all losses are reported in logarithmic scale.
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5.2. Experiment B : Swiss Roll dataset

(a) (b)

Figure 5.12.: For small values of �reg, the I-AE behaves as a vanilla auto-encoder that
cannot unfold the swiss roll.

(a) (b)

Figure 5.13.: The higher the value of �reg, the more I-AE can unfold the swiss roll. lred is
not smooth, oscillates overall with a variance of 0.1 and slowly decreases to ✏ = 0.0001.
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5. Computational Experiments

(a) (b)

Figure 5.14.: I-AE unrolls perfectly the 3-d manifold when �reg 2 {102, 103}. The lrec, liso
and lpiso have the same trend. When multiplied by �reg, the losses have the same order of
value to impose the isometry.

I-AE can unfold the swiss roll when the isometry can be enforced by a strong enough
�reg. The isometry brings regularization to the architecture of the auto-encoder. Therefore,
contrary to a vanilla auto-encoder, it can unfold the swiss roll dataset.

The losses in I-AE are not very stable and can have sudden peaks to re-converge to 0,
and only a small number of epochs (order of (102) is necessary for empirical convergence.
The figures  5.12 , 5.13 and  5.14 result on using a dataset with 1000 points only. To compare
later to LOCA, which uses k-NN bursts, we also train I-AE on flattened k-NN bursts.
Figure  5.15 shows the results of I-AE trained on such a dataset while keeping the same
parameters used for a dataset without bursts. The manifold generated using N k-NN
bursts with k = 64 and N = 1000, which mounts to 64000 data points.
The results of these experiments will be used later to compare the isometry with LOCA
using the Megaman package.
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5.2. Experiment B : Swiss Roll dataset

(a) (b)

Figure 5.15.: While using k-NN bursts, I-AE can learn a 2-d embedding.
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LOCA

As described in  4 , we use k-NN bursts to unfold the swiss roll. In figures  5.16 and  5.17 , we
report the optimization process for LOCA.

Figure 5.16.: Losses are reported on logarithmic scale. lwhite diverges for values of �
higher than 10�1. No matter what value of k, the converge nature for lwhite is the same.
The hue used in the figure represents different learning rates {10�3, 10�4

}. The values of
lwhite when there is convergence are only O(10�1). Higher values of k have lower values
of lwhite and smoother losses, which means the more points in the neighborhood, the
more stable the calculations. Nevertheless, the neighborhood should not be too large.
Otherwise, the assumption that the manifold can be locally approximated on the burst as
a linear space fails. Although the assumptions for LOCA impose a value of � that is
small, the algorithm is still robust and calculates an empirically converging loss.

52



5.2. Experiment B : Swiss Roll dataset

Figure 5.17.: lrec and lwhite have the same tendencies. lrec diverges for low values of �.
The hue represents a different learning rate (same as for lwhite). lrec converges empirically
to 0 for � = 0.1. Values of high neighborhoods converge to lower values than lower k
values, although all oscillate relatively to the learning rate or k or both. Losses are
reported on logarithmic scale

We retain the best parameters mentioned in the table  5.4 .

Table 5.4.: Best parameters retained (same architecture used as in I-AE)

number of layers 3
number of units per layer 256
learning rate 0.0001
batch size 64
� 0.1
k 64

Comparing results We run LOCA on the swiss roll obtained with N bursts with k = 64
bursts and N = 1000 and obtain the results analyzed in Figure  5.18 .
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(a) (b)

Figure 5.18.: While using k-NN bursts, LOCA can learn a 2-d embedding. Nevertheless, it
distorts the manifold where the boundaries were close on the higher dimensional
manifold. Losses (reported on logarithmic scale) are unstable during training.

To compare the quality of the isometry that is induced respectively by LOCA and I-AE,
we use the package Megaman introduced in section  2 . We use the resulting embedding
from both I-AE and LOCA and extract the deformation on the learned manifold. The re-
sults are reported in form of deformation variance ellipses. The large the ellipse in on
axis the more the deformation is important in that particular direction. These results are
reported in  5.19 . Furthermore, for a better inspection of these variances, we report the dis-
tributions of the ellipses’ heights and widths that relate directly to the variance as their are
a linear transformation of the spectral decomposition of the covariance matrices extracted
by Megaman. We report these distributions in  5.20 .
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5.2. Experiment B : Swiss Roll dataset

(a) (b)

Figure 5.19.: Ellipses in red represent variance in one axis higher than 0.00015; otherwise,
the ellipses are blue.
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5. Computational Experiments

Figure 5.20.: Descriptive statistics of the distribution of the heights and widths of the
distortion ellipses. As reported on Figure  5.19 , the deformations for I-AE are negligible in
comparison to LOCA. The deformations for LOCA are more important on the borders
and even more on the lower half than I-AE. The embedding is slightly larger than the
upper half.

Comments on results Although Megaman helps quantify the deformation in learning
the manifold, it is worth noting that the mathematical theory behind it is close to that of
I-AE. Both have the same approach when defining isometry. The approach for I-AE to find
the suitable embedding uses auto-encoders, while Megaman calculates the Laplacian of
the manifold when seen as a connected graph.
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Part III.

Conclusion and Future Work
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In this chapter, we will review our approach to comparing two isometric embedding
models, I-AE and LOCA, and our results. We will further present future possibilities for
continuing this work.

In section  3 , we presented the framework we used to compare both models. In sec-
tion  4 , we first presented a common mathematical framework to establish the theories
behind both LOCA and I-AE. This part explained how isometry is defined theoretically.
We proceeded to find a common practical way to compare the results of implemented ex-
periments. We focused on use cases that are the natural settings for LOCA or I-AE. We
divided our experiments into two main experiments. In the first experiment (mushroom
experiment), we compare the power of both models to extract useful information on man-
ifolds in R2 having embedded information in R2 as well. The second experiment (swiss
roll dataset) involves finding an embedding of a manifold in R3 with a latent space in R2.
We use a more generic dataset that is famous for testing Manifold Learning algorithms.
Moreover, we used first the burst sampling method and second a standard setting where
only data points are provided with no further information about the distributions over the
neighborhoods of points.

In section  5 , we presented the results of the experiments as presented above. We have
found that for the mushroom experiment, LOCA has an advantage in the case where
we dispose of the burst sampling strategy. Furthermore, unlike I-AE and vanilla auto-
encoders, LOCA can extract useful information from the 2-d manifold and embed it again
in 2-d. In the first part of the swiss roll experiment, we found that LOCA, as expected and
when burst sampling is available, can find a mapping in R2 of a manifold embedded in R3.
I-AE can also do the same when the burst information is flattened as input. However, I-AE
does not incorporate information about bursts’ deformations. Thus, while for LOCA, we
retrieved the embedding as defined in R2 before the deformation, I-AE could only recuper-
ate an extended version of it as it cannot shrink back the elongated manifold. Furthermore,
we compared the quality of isometry on the manifold. We remark that LOCA, although
using a value of � that is different from the theoretical one, the model converges and keeps
the exact distances between the learned and embedded manifold.

I-AE, on the other hand, deforms points on close boundaries. This has two explanations:
on the one hand, the observed points are on an elongated 3-d manifold, and thus the
distances are more distorted as we move away from the axis around which we folded the
data. On the other hand, I-AE imposes the isometry between the observed manifold and
the latent variables; therefore, the distances are more distorted with I-AE.

In the second part of the swiss roll experiment, we did not use the burst information.
We uncovered, using I-AE, the 2-d elongated embedding. LOCA gave similar results with
the cost of hyper tuning additionally k, the number of neighbors in k-NN bursts, and �
the used variance of the burst when optimizing LOCA. We used Megaman to compare
the isometry quality and discovered that LOCA deforms the embedding slightly on closer
boundaries in 3-d.

We have only tackled two comparison points. As stated in section  3 , further comparison
angles such as the robustness to noise on the manifold and the robustness to small datasets
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can be explored. This needs first to define the concept of noise on a manifold and then
explore whether we can prove theoretically or empirically which of LOCA and I-AE is
indeed robust to noise. Furthermore, specific use cases, such as the MNIST [  9 ] data set
that uses other layers in the auto-encoder, would be interesting to explore to see if LOCA
can still produce interesting results when using convolutional layers [ 11 ]rather than linear
ones.
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