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1 Abstract

The most commonly used neural network architectures with i.i.d. prior on their param-
eters are equivalent in the limit of infinite network width, to a Gaussian process (GP).
This correspondence allows exact Bayesian inference by evaluating the corresponding GP.
The GP kernel of an infinite-width network can be studied via the geometry it induces
on the data. This induction is possible because all NNGP kernels are symmetric positive
definite kernels and thus can be used to span function spaces on the data manifold on
which the original network was trained. We seek to establish this association through the
relationship between the integral operator of the kernels associated with networks and the
Laplace-Beltrami operator on manifolds. Indeed, the Laplace-Beltrami operator is a core
element whose eigenfunctions have a multiscale structure related to spatial discretization
schemes such as sparse grids and can retrieve the geometry of a Riemannian manifold.
We attempted to establish a direct connection between the neural network kernels and
the family of heat kernels which in turn can generate under some conditions the Laplace-
Beltrami operator, but it was unsuccessful. We also studied the eigenvalues and then
the orthogonal family of the integral operator of the kernel corresponding to a neural
network to find a transformation that could map this family to the basis generated by
the Laplace-Beltrami operator and thus define a construction: this work is still in pro-
cess because the mapping is not quite straightforward. And lastly, we studied one of the
actual state-of-the-art approaches that characterize function sets of Reproducing kernel
Hilbert space of Neural Tangent Kernel for a few neural network architectures. For the
application, we consider an NLP field by studying transformers. We deployed the NNGP
and NTK transformer kernels on an IMDb movie dataset for sentiment analysis.
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3 Introduction

One of the recent standard neural network architectures is the transformer, it is one of
the most promising seq2seq models that have emerged. Its main feature is the attention
mechanism, as opposed to previous models that were based on a recurrent neural network.
It appears that as neural networks become larger, the more powerful and easier they
become to analyze. In fact, in the infinite width limit, it is often possible to abstract away
all the parameters of the neural network and make surprisingly strong closed statements
about the behavior of the network. Currently, a major research direction in the field
of theoretical deep learning focuses on the behavior of NNs given an infinite number of
parameters in the system. It has been shown, and in particular for transformers, that
in the limit of infinite width size, the distribution on the neural network for any set of
data points becomes jointly Gaussian with a specific compositional covariance kernel:
the NNGP kernel. Furthermore, these neural networks are equivalent to kernel-based
regression using a family of new tangent neural kernels (NTKs). This proposes that a
deeper insight into NNGP and NTK can drive new approaches to neural network analysis.
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4 Definitions and notation

4.1 Heat kernel and Laplace-Beltrami operator

Let M be a Riemannian manifold embedded in Rn.

Definition 1 (Laplace-Beltrami operator) The intrinsic Laplace-Beltrami operator
is defined as:

∆ : Cn(M) → Cn(M)

u 7→ div(∇u).

Manifold learning is defining the underlying manifold from a given amount of collection
of measurements of a finite number of points on a manifold. Considerable consideration
within the field of manifold learning has been devoted to providing a robust estimate
of this Laplace-Beltrami operator on a manifold. When given data xi sampled from a
manifold M , such methods construct a graph whose individual weights are defined by
a kernel function k(xi, xj), thereafter approximating by the Laplacian of the graph, the
Laplacian operator.

More precisely, if we aim to embed a smooth manifold M ⊂ Rp so that at every
x ∈ M, the tangent space Tx(M) is defined, in one-dimension f : M → R. The tangent
space inherits a local orthonormal coordinate system because every point z ∈ M has a
unique closest point in Tx(M) within some neighborhood.

While the local coordinate system is not unique and computing the gradient vector
∇f(x) depends on the choice of this system, the norm ∥∇f(x)∥ is uniquely defined.

For any point z ∈ M, one can show that

|f(z) − f(x)| ≤ ∥∇f(x)∥∥z − x∥ + o(∥z − x∥)

Thus, to first order, ∥∇f∥ measures how far apart f maps nearby points.
A reasonable objective is to minimize

Φ̃lap (f) =
∫

M
∥∇f∥2 subject to ∥f∥ = 1,

since our goal is to find a map that best preserves locality on average.
Let ∆(f) = ∑

i
∂2f
∂z2

i
, where zi are the tangent space coordinates, denote the Laplace-

Beltrami operator on a manifold. It can be shown that

Φ̃lap (f) =
∫

M
∥∇f∥2 =

∫
M

∆(f)f

Thus, the function f minimizing Φ̃lap (f) must be an eigenfunction of the Laplace-
Beltrami operator ∆(f), or equivalently a member of the null space of the following
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functional:
L(f) =

∫
M

(∆(f))2

In particular, the normalized graph Laplacian L approximates the continuous Laplace-
Beltrami operator ∆.[1]

The Laplacian-based approach to manifold learning is also justified by the fact that the
Laplace-Beltrami operator encodes all geometric information of a Riemannian manifold.
A demonstration of this fact follows from the product formula of the Laplacian

∆(fh) = f∆h + h∆f − 2 grad f · grad h, [2]

where the dot-product above is actually the Riemannian inner product gx : TxM×
TxM → R

gx(grad f(x), grad h(x)) = (grad f · grad h)(x)

= 1
2(f(x)∆h(x) + h(x)∆f(x) − ∆(fh)(x)).[2]

Since the geometry of a Riemannian manifold is entirely determined by the Riemannian
metric, the above formulas show that the metric is entirely recoverable from the Laplacian.

The Laplacian operator captures the "geometry" in a broad sense. More concretely, the
idea is that the scattering on a manifold is governed by the semigroup generated by the
manifold’s Laplace-Beltrami operator; the spectral analysis of the scattering operator thus
provides information about the manifold that can be used to provide a lower-dimensional
parameterization for the data. For example, by simulating a random walk or diffusion
process on the manifold by taking small steps through the data set according to the
probabilities estimated from the distances between data points. [3]

The above technique’s reliance on capturing the manifold hinges on the observation
that the optimal embedding for the manifold is achieved by the Laplace-Beltrami operator.
And the central significance of that operator in the heat or diffusion equation indicates
that the heat kernel provides a reliable means of selecting the weights for the manifold.

Definition 2 (Heat kernel [4]) "A family {pt}t>0 of µ⊗µ-measurable functions pt(x, y)
on M × M is called a heat kernel if the following conditions are satisfied, for µ-almost all
x, y ∈ M and all s, t > 0 :

(i) Positivity: pt(x, y) ≥ 0.
(ii) Stochastic completeness:

∫
M

pt(x, y)dµ(y) ≡ 1

(iii) Symmetry: pt(x, y) = pt(y, x).
(iv) Semigroup property:
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ps+t(x, y) =
∫

M
ps(x, z)pt(z, y)dµ(z)

(v) Approximation of identity: for any u ∈ L2

∫
M

pt(x, y)u(y)dµ(y) L2
−→ u(x) as t → 0 + .”

4.2 Neural Network gaussian process (NNGP) & Neural Tan-
gent Kernel (NTK)

Definition 3 (Gaussian process [5]) "We say a random function f : X → Rm (with
fixed dimensional output) is a Gaussian process if for any finite subset

{
x1, . . . , xk

}
⊆

X, the random vector
(
f (x1) , . . . , f

(
xk

))
∈ Rm×k is distributed as a km-dimensional

Gaussian. If f has variable dimensional output (e.g. f is an RNN), such as when f(x) ∈
Rl(x) for some length function l : X → N3, then we say f is a Gaussian process if for any
finite subset

{
x1, . . . , xk

}
⊆ X, the random vector

(
f (x1) , . . . , f

(
xk

))
is distributed as a

(∑
i l (xi))-dimensional Gaussian."

The goal of a Gaussian process is to model an underlying distribution of X =
{
x1, . . . , xk

}
with Y =

{
y1, . . . , yk

}
as a multivariate normal distribution by treating each data entry

point as a random variable and taking the corresponding multivariate normal distribution
of dimension the number of entries. It is thus simply a matter of drawing samples from
the joint probability distribution PX,Y that spans the space of potential values of the
function for the one we want to predict.

NNGP A key result is that as the hidden layers of the neural network become in-
finitely large, the distribution of the features converges to a Gaussian process. Thus, the
distribution on the neural network for any set of data points becomes jointly Gaussian
with a particular compositional covariance kernel: the NNGP kernel. This result is im-
portant because this large-width bound is of practical interest, as neural networks of finite
width generally perform strictly better as the width of the layers increases [6]. The corre-
spondence between infinite-width neural networks and Gaussian processes for the specific
case of a fully connected architecture is well studied, but it has also been demonstrated in
[7] for standard neural networks containing standard layers such as convolution, pooling,
connection hopping, attention, batch normalization, and/or layer normalization.

NN-GP correspondence for an MLP [5] Consider an MLP with widths
{
nl

}
l
,

weight matrices
{
W l ∈ Rnl×nl−1

}
l
, and biases

{
bl ∈ Rnl

}
l
, where l ranges among the layer

numbers of the MLP. Its computation is given recursively as

h1(x) = W 1x + b1 and hl(x) = W lϕ
(
hl−1(x)

)
+ bl for l ≥ 2.
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At initialization time, suppose W l
αβ ∼ N

(
0, σ2

w/nl−1
)

for each α ∈
[
nl

]
, β ∈

[
nl−1

]
,

and bl
α ∼ N (0, σ2

b ). Consider two inputs x, x′. Conditioned on hl−1(x) and hl−1 (x′), iid
for each α,

(
hl(x)α, hl (x′)α

)
is distributed as

N

0,
σ2

w

nl−1


∥∥∥ϕ

(
hl−1(x)

)∥∥∥2
ϕ

(
hl−1(x)

)
· ϕ

(
hl−1 (x′)

)
ϕ

(
hl−1(x)

)
· ϕ

(
hl−1 (x′)

) ∥∥∥ϕ
(
hl−1 (x′)

)∥∥∥2

 + σ2
b .



If
(
hl−1(x)α, hl−1 (x′)α

)
is distributed as N

(
0, Σl−1

)
, iid for each α, then by a law of

large number argument, the covariance matrix above converges to a deterministic limit

Σl def= σ2
w E

(z,z′)∼N(0,Σl−1)

 ϕ(z)2 ϕ(z)ϕ (z′)

ϕ(z)ϕ (z′) ϕ (z′)2

 + σ2
b

as the width nl−1 → ∞, making
(
hl(x)α, hl (x′)α

)
Gaussian distributed as N

(
0, Σl

)
.

Iteratively applying this argument for each l yields the result for a deep MLP.

NTK [7][8][9] Given a parametrized function f(x; θ) with parameter θ and with
scalar output, one can expand f in θ around a base point θ0

f(x; θ) − f (x; θ0) ≈ ⟨∇θf (x; θ0) , θ − θ0⟩

for any input x, where ⟨,⟩ denotes the inner product. f(−; θ) − f (−; θ0) is a linear
model, where ∇θf (−; θ0) acts as a input features, and θ − θ0 acts as the weights. This
approximation only works near θ0. Considering f as a neural network, we can only train
it shortly by gradient descent and with the restriction of a small learning rate to use this
naive linearization. However, a breakthrough result is that if the widths of the network
tend to infinity, f can fit any data perfectly and the naive expansion remains an accurate
description of the learning dynamics. It could be that since the individual parameters
move less and less with increasing width, it makes sense to do a Taylor expansion near the
first parameter value. And the model itself is linear, so somehow a desperately complicated
optimization path of an MLP has reduced to a kernel gradient descent with a fixed kernel:
the NTK kernel, and in function space, this means that the predictions of the model
become the same as a kernel machine. More precisely, consider the L-hidden-layer MLP
f(x; θ) with width nl in layer l. The finite-width NTK Θ(x, x̄) def= ⟨∇θf(x; θ), ∇θf(x̄; θ)⟩
converges in probability

Θ p→
◦
Θ as n1, . . . , nL → ∞ in that sequence,

for some deterministic
◦
Θ, over the randomness induced by randomly initializing the
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parameters like ωl
αβ, bl

α ∼ N (0, 1), ∀α, β. Thus, even with the random parameters θ,
∇θf (x; θ0) , ∇θf (x̄; θ0) converges, in the infinite-width limit. Hence, the infinite-width
NTK captures an implicit prior driven by gradient descent and choices of architecture
and the initialization scheme. In particular, its spectrum provides information about the
type of functions that can be learned quickly or that can be generalized well.

4.3 Transformer Network

A transformer [10] follows an Encoder-Decoder model. On one hand, the "encoding"
consists of N encoders (N=6 in [10]) placed one after another: the encoder input is the
previous encoder output, with the input of the first encoder being the vector embedding
itself. The encoder is built up of two components: a feed-forward layer placed after a self-
attention layer. The key feature is the self-attention layer which retains the interrelation
of the words in the chosen representation of the sequence. Self-attention is the mechanism
of attention used for a single sequence, to identify the interrelation of the individual words
within the same sequence and to assign a relevant encoding to each of them. For instance,
in the sentence: *The child is eating a sandwich because he is hungry*, it is obvious to
a human being that *he* refers to *child* and not to *sandwich*. The process of self-
attention will therefore aim at noticing the link between *child* and *he*.

On the other hand, the decoding unit is built around N decoders placed one after the
other, with additional input coming from the last encoder. This means that the input of
each decoder is formed by the previously encoded words combined with the output of the
preceding decoder. Particularly, the latest decoder is directly interfaced with a "Linear
Neural Network + Softmax" unit. The purpose of this unit is to identify which vocabulary
words match the last encoder’s output.
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Figure 1: Transformer architecture [10]
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5 Infinitely wide Transformer networks and their Laplace
operators

5.1 Heat kernel family

One of the ideas that failed was to directly index the kernel corresponding to the neural
network architecture by its depth so that one family of kernels could be considered for each
architecture. Indeed, we sought to demonstrate all the properties of a heat kernel family
as described in 4.1 for each family generated by classical neural network architecture.
The selection of depth as the time indexation was inspired by the fact that the neural
ordinary differential equation (ODE) approach in classical machine learning parameter-
izes the network according to its depth. However, this idea was not conclusive because,
whereas some properties were verified (symmetry, semigroup properties), a fundamental
non-constructive property, that is, the positive condition, typically does not hold for an
NNGP or NTK kernel of a neural network.

5.2 Mapping to the Laplace-Beltrami operator

5.2.1 Spectra of the operator

A Hilbert-Schmidt kernel is a function k : Ω × Ω → C with a finite norm:
∫

Ω

∫
Ω

|k(x, y)|2dxdy < ∞;

this is true for all kernels corresponding to neural networks with standard architecture.
For each Hilbert-Schmidt kernel we can construct an associated Hilbert-Schmidt inte-

gral operator K : L2(Ω; C) → L2(Ω; C) given by

(Ku)(x) =
∫

Ω
k(x, y)u(y)dy

This operator is compact, and then the following assertions hold: [11]
(a) σ(K) = {0}∪̇ {λj | j ∈ J}, where J ∈ {∅,N, {1, . . . , n} | n ∈ N}
(b) σ(K)\{0} = σp(K)\{0}. For all λ ∈ σ(K)\{0} the range of λI − K is closed and

dim N(λI − K) = codim R(λI − K) < ∞.

(c) For all ε > 0 the set σ(K)\B(0, ε) is finite. Hence, λj → 0 as j → ∞ if J = N
As a result, the spectrum of the operator associated with the NNGP or NTK kernel

that we will refer to in this work as neural operator K of a standard architecture neural
network exhibits good behavior, and it is reasonable to expect a correspondence between
this operator and the Laplace-Beltrami operator or between the NNGP/NTK kernel and

10



the heat kernel.

5.2.2 Existence of orthogonal basis

The neural operator defined is bounded (because it is continuous), compact and self-
adjoint. Therefore, by applying the Hilbert–Schmidt theorem we obtain the existence of
a sequence of non-null real eigenvalues λi, i = 1, . . . , N , where N equal to the rank of K,
such that |λi| is monotonically non-increasing and, if N = +∞,

lim
i→+∞

λi = 0

Moreover, there exists an orthonormal set φi, i = 1, . . . , N , and the functions φi form
an orthonormal basis for the range of K and K can be written as

Ku =
N∑

i=1
λi ⟨φi, u⟩ φi for all u ∈ L2(Ω; C)

Regrettably, we need the neural operator range to be dense because it follows that the
linear subspace spanned by the eigenvectors will be dense in L2(Ω; C) and therefore the
set is a complete orthogonal basis; but this is not a trivial assumption.

5.2.3 Transformation of bases of L2(Ω; C)

What we would like to achieve is to create equivalence classes between 2 bases of L2 to
link the orthogonal base defined by the neural operator (when this base exists) and the
orthogonal base defined by the Laplace-Beltrami operator. Since this subject has hardly
any literature already available, we already have to give up working with orthogonal
bases in favor of working with frames that are more extensively studied due to the more
restrictive nature of the framework of the orthogonal base. The characterization of the
equivalence classes of L2(Ω; C) frames that was chosen is as follows [12].

Let I be a countable index set. A family of vectors F = {fi}i∈I in L2(Ω; C) is called
a (Hilbert) frame if there exist two real numbers 0 < A ≤ B < ∞ such that for any
x ∈ L2(Ω; C) we have:

A∥x∥2 ≤
∑
i∈I

|< x, fi >|2 ≤ B∥x∥2

The analysis operator associated with F is defined by

T : L2(Ω; C) → l2(I), T (x) = (< x, fi⟩
)

i∈I
,

That operator is bounded and its norm is ∥T∥ =
√

B and its range is closed.
Two frames G = {gi}i∈I and F = {fi}i∈I are said to be quadratically close if there

exists a positive number λ ≥ 0 such that:
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∥∥∥∥∥∑
i∈I

ci (gi − fi)
∥∥∥∥∥ ≤ λ

∥∥∥∥∥∑
i∈I

cifi

∥∥∥∥∥
for any c = (ci)i∈I ∈ l2(I).
We note c(G, F) the closeness bound of the frame G to the frame F and that bound

is the infimum of the aforementioned λ ’s.
If G is close to F with proximity bound less than 1, then F is also quadratically close

to G but with different proximity bound, so this relation is not equivalent because it is
not generally reflective. Consequently, it follows that

∥∥∥∥∥∑
i∈I

ci (gi − fi)
∥∥∥∥∥ ≤ λ

1 − λ

∥∥∥∥∥∑
i∈I

cigi

∥∥∥∥∥
To address the non-reflexivity of the close relation, we can assume two frames F =

{fi}i∈I and G = {gi}i∈I to be close if F is close to G and G is close to F . and in such
a way it is convenient to set the pre-distance between F and G, noted d0(F , G) as the
greatest value between these two proximity bounds:

d0(F , G) = max(c(F , G), c(G, F))

A problem is that d0 doesn’t satisfy the triangle inequality so one can define the
distance between F and G by:

d(F , G) = log
(
d0(F , G) + 1

)
As the relation of closeness is now an equivalence relation, we can partition the set of

all frames on L2(Ω; C), denoted F(L2(Ω; C)), into disjoint equivalent classes, indexed by
a set of indices A :

F(L2(Ω; C)) =
⋃

α∈A

Eα

with the following properties:

Eα ∩ Eβ = ∅, for α ̸= β

∀F , G ∈ Eα, d(F , G) < ∞ and ∀F ∈ Eα, G ∈ Eβ with α ̸= β, d(F , G) = ∞
This distance divides the set of frames into closed subspaces of the space of coefficients

l2(I) that are the equivalence classes.
The key result of [12] is that there exists a bounded and invertible operator on the

Hilbert space that maps one frame set into the other if and only if two frames are at
a finite distance (with the last distance defined) and this happens if and only if their
analysis operators have the same closed range in l2(I).
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The scope of the research for the presented work halted here as this was an uncon-
structive approach to transformation and the process of carrying it out appeared quite
challenging.

5.3 Reproducing Kernel Hilbert Space

A proper way to express a kernel is by the associated reproducing kernel Hilbert space
(RKHS) which reproduces a set of functions, and the resulting induced RKHS norm.
That set is determined by the eigenfunctions and eigenvalues of the respective kernel
under the uniform norm. The eigenvalue decay rate is of particular significance since it
determines the smoothness properties of the functions. Nevertheless, knowing that the
eigenvalues of two kernels decay at the same rate, is not sufficient in itself to state that
the RKHS structure is identical. Even across different depths for the same kernel, the
RKHS structure is not identical and produces different associated norms. As such, two
kernels whose eigenvalues decay at the same rate can, and likely will, yield an outcome
that is quite different when applied to the same regression problem.

In particular, one of the key results from which [13][14] derives is that of [15]. To
examine the RKHS, a standard practice is to decompose, for some measure τ , the integral
operator T given by Tf(x) =

∫
k(x, y)f(y)dτ(y) into its spectral components. The dot-

product kernels of the form k (x, x′) = κ
(
x⊤x′

)
depend only on the angle between x and x′

when inputs lie on the sphere Sd−1. Rotation-invariant kernels can be diagonalized using
spherical harmonics, leading to a link between the decay of eigenvalues and regularity.
Indeed, using Mercer’s theorem and for the particular case where τ is the uniform measure
on Sd−1, the RKHS H is given by

H =

f =
∑

k≥0,µk ̸=0

N(d,k)∑
j=1

ak,jYk,j(·) s.t. ∥f∥2
H :=

∑
k≥0,µk ̸=0

N(d,k)∑
j=1

a2
k,j

µk

< ∞

 .

In particular, if
µk = ωd−2

ωd−1

∫ 1

−1
κ(t)Pk(t)

(
1 − t2

)(d−3)/2
dt,

has a fast decay, then f ’s coefficient ak,j must also decay quickly with k for f to be in H,
and thus how we determine the regularity of f .

It was shown in [13][14], that the Laplace kernel and the respective neural tangent ker-
nels of the fully connected networks (FC-NTK) and the residual fully connected networks
with ReLU activation (ResNTK), for an input distributed uniformly over the hypersphere
Sd−1, have the same eigenfunctions (spherical harmonics) and their eigenvalues decrease
polynomially with frequency k as k−d. This implies that these three kernels have a close
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connection, which is not quite the goal we were aiming for since we intended to establish a
connection with a heat kernel rather than with the Laplace kernel but is still a strong and
notable result. Various researchers have indeed found that the Laplace kernel, defined
as kLap(x, z) = e−c∥x−z∥ for points x, z ∈ Sd−1 and constant c > 0 performs similarly to
neural networks when fitting data with gradient descent.

5.4 Transformer network: IMDb Movie Reviews

To determine the emotional tone of a text, sentiment analysis combines machine learning
and natural language processing. In the IMDb dataset, movie reviews were labeled with
positive and negative sentiment classifiers and the resulting dataset contained 50,000
reviews, which were split between positive (+1) and negative (-1) labels.

Our implementation was done in Neural Tangents [16][17][18][19][20] which is a high-
level neural network API for specifying complex, hierarchical, finite, and infinite width
neural networks using common building blocks like convolutions, pooling, residual connec-
tions, nonlinearities, but it is still a work in progress with some classical blocks that are
yet to be implemented. For this task, we only need the encoder layer of the transformer
network since our goal is to pass a sentence embedding vector to get a label output of
-1 or +1, unlike other NLP tasks such as translation which requires a decoder to output
back to a sentence. Although we always include at least one self-attention layer since it
represents the very core of a transformer, we modify the other layers used and thus the
resulting architecture, vis-à-vis the original paper, and within the limits of the layers avail-
able in the library. The embedding used is the classic GloVe, which is an unsupervised
learning algorithm for deriving vector representations of words that use global word-word
co-occurrence statistics.

All models were trained on 600 sentences and then evaluated on another set of 600
sentences for accuracy, with a maximum sentence length of 500. For more details on the
implementation, please refer to the attached code and be sure to run only one model at
a time. Understandably, the scores obtained from that small sample (roughly 1% of the
total database) are not competitive at all with the current state of the art.

Model 1: Convolutional layer + Layernorm layer + Self-attention layer + Dropout
layer + Normalization layer + Dropout layer + Normalization layer + Dense layer.

Model 2: Convolutional layer + Self-attention layer + Relu layer + Dropout layer +
Normalization layer + Self-attention layer + Relu layer + Dropout layer + Normalization
layer + Dense layer.

Model 3: Convolutional layer + Relu layer + Self-attention layer + Relu layer +
Normalization layer + Dense layer.
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Model 4: Convolutional layer + Relu layer + Self-attention layer + Relu layer + Self-
attention layer + Relu layer + Self-attention layer + Relu layer + Normalization layer +
Dense layer.

Table 1: Accuracy and loss for various attention encoder models
represented by their NNGP kernels

Model 1 Model 2 Model 3 Model 4

Network Accuracy 0.610 0.7 0.743 0.753

Network Loss 0.121 0.098 0.092 0.0935

Table 2: Accuracy and loss for various attention encoder models
represented by their NTK kernels

Model 1 Model 2 Model 3 Model 4

Network Accuracy 0.610 0.716 0.742 0.732

Network Loss 0.121 0.094 0.09 0.09

Besides the standard purpose of examining the accuracy of the model on a dataset, we
also investigate the trainability. Indeed, one of the long-lived goals of deep learning theory
is to describe the conditions under which certain neural network architectures will be
trainable, and this property analysis simplifies considerably within the limit of very wide
and very deep networks. It was found [21] that deep neural networks can exhibit a phase
transition as a function of the variance of their weights (σ2

w) and biases (σ2
b ). Consider

two normalized inputs to a neural network, x1 and x2 such that ∥x1∥ = ∥x2∥ = q0. The
cosine-angle between the inputs is c0 = cos θ12 = x1·x2

q0 .As the signal passes through layers
of the neural network, we can keep track of the norm ql and the cosine angle cl. In the
wide-network limit there are deterministic functions, called the Q-map and the C-map,
such that ql+1 = Q(ql) and cl+1 = C(ql, cl). In classical networks and depending on the
activation functions, both the Q-map and C-map have unique stable-fixed-points, q∗ and
c∗, such that q∗ = Q(q∗) and c∗ = C(q∗, c∗). For simplification, a typical choice is to
normalize the inputs so that q0 = q∗ and therefore restrict our study to the C-map. The
C-map always has a fixed point at c∗ = 1 since two identical inputs will remain identical
as they pass through the network and the phase boundary is defined as the point where
c∗ = 1 is marginally stable.

In practice, for an implemented attention layer, we see on the phase diagram that
σ2

b plays no role in the trainability when in equilibrium, whereas we have a very strict
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Figure 2: Phase diagram for an attention layer

requirement of having σ2
w = 1. And it’s rather interesting to note that indeed, in the

implementation in the google tangent library, they set the specification of σ2
b as optional

for this layer whereas the default value of σ2
w is 1.
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6 Conclusions

In section 5.1, we attempted to make a direct connection between neural network kernels
and the family of heat kernels, the latter being closely related to the Laplace-Beltrami
operator, but could not succeed because we lacked fundamental properties of heat kernels.
In Section 5.2, we found that the eigenvalues of the neural operator defined as an integral
kernel operator associated with a neural network kernel, behaved well; and subsequently,
that under the dense range assumption, we could derive an orthogonal family defined
by this neural operator. Afterward, we tried to find a transformation that could map
this orthogonal family to a basis generated by a heat kernel, this task is still pending
as the mapping is not yet straightforward. In section 5.3 we studied one of the current
states of the art approach that proves similar smoothness properties of functions in the
function sets of the reproducing kernel Hilbert space of the neuronal tangent kernel for two
standard architectures and the RKHS of the Laplace kernel. In section 5.4, we deploy the
NNGP and NTK Transformer kernels on an IMDb movie dataset for sentiment analysis
and perform a quick phase diagram analysis for the attention layer

Going back to section 5.3, we may be able to generalize such a SOTA approach in the
following two directions.

First, studying NNGP instead of NTK should be straightforward as there is a key
result of NTK that also holds for NNGP. Indeed in [15] the deep NTK decay result:
"For the neural tangent kernel κL

NT K of an L-layer ReLU network with L ≥ 3, we have
µk ∼ C(d, L)k−d, where C(d, L) is different depending on the parity of k and grows
quadratically with L" has the NNGP counterpart "For the random neuron kernel κL

RF

of an L-layer ReLU network with L ≥ 3, we have µk ∼ C(d, L)k−d−2, where C(d, L) is
different depending on the parity of k and grows linearly with L."

Second, by extending the result to other standard architectures, including the Trans-
former that interests us in this work. While it is almost trivial to find the eigenfunction of
a large choice of standard architectures, one only has to show that the corresponding ker-
nel is homogeneous of degree 1 and zonal to obtain that the eigenfunctions are spherical
harmonics; sadly it is not straightforward to compute the decay rate of the eigenvalues of
the kernels, and we can not underestimate the effort required to derive it.

In practice, it is clear that the manifold is essential, but the density of the measure-
ments also matters. For example, if there are regions with zero density, they will be
unrecoverable. Even with positive density everywhere, much more complex problems can
arise and we often need the manifold to be sampled very densely. This is where the diffu-
sion map algorithm proves excellent, as it removes the influence of sampling density. To
grasp the general implications of the success of this work, we can see that a more distant
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goal based on this report would be to mimic the diffusion map algorithm for infinitely
large neural networks and therefore to be able to extract an operator that matches a
specific architecture independently of the data we present to it on the manifold (but with
a required positive density); in other words, to factor out the density of the sampling
data. It was therefore a natural choice that the weapon of choice for our approach was
the Laplace-Beltrami operator since an important feature of the theory of diffusion maps
is that it recovers the Laplace-Beltrami operator when the data set approaches a Riemann
submodel.
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