
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Data Engineering and Analytics

Semantic Image Manipulation Using
Objectwise Features

Bc. Pavel Jahoda

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Data Engineering and Analytics

Semantic Image Manipulation Using
Objectwise Features

Semantische Bildmanipulation mit
objektbezogenen Merkmalen

Author: Bc. Pavel Jahoda
Supervisor: M.Sc. Azade Farshad
Advisor: Prof. Dr. Nassir Navab
Submission Date: April 14th, 2023

I confirm that this master’s thesis in data engineering and analytics is my own work
and I have documented all sources and material used.

Munich, April 14th, 2023 Bc. Pavel Jahoda

Acknowledgments

It has been a pleasurable and stress-free experience working with Azade Farshad. A
great advisor who skillfully managed to find a balance between guidance and providing
independence. I want to thank Professor Nassir Navab for this opportunity.

I am very grateful to my family and friends for their love and support. My mom,
for always checking up on me. My dad, for always providing me with tangible and
informational support, especially for sharing my programming interest during my high-
school years. My brother for always sharing his interest in my hobbies. My long-term
friends Patrik Simonek, Blahoslav Rataj, Thi Phuong Vo, Amanda Robillard, and Matej
Skovran for always being there for me.

I am deeply indebted to Vanda Hendrychova, Ngan Vu, and Martin Svarc for their
emotional support when I fought cancer during the second semester of TUM.

I want to express my gratitude to Yixuan Liu, Cosima Raedler, Ezgi Köse, Xuanpu
Hong, and Borui Li who accompanied me in the library while I was working on my
thesis. Thanks to them, I was looking forward to visiting the library.

I also want to thank all the people that uplifted my spirit through fun activities, in-
cluding but not limited to, drone development at Horyzn, Chinese learning, bouldering,
and cooking.

Last but not least, I would like to thank my girlfriend Yuchen Chou for being there
for me, going to the library with me, and giving me fuel to work on my goals.

-Pavel

Abstract

The utilization of scene graphs for image manipulation represents a highly promising
direction in the field of computer vision. However, generating high-quality images
from scene graphs can be challenging due to the complexity of the scenes and the high
diversity of the objects in datasets such as Visual Genome. To address these challenges,
we present a novel Progressive Restoration framework for Scene Graph-based Image
Manipulation (PRISM). As a part of PRISM, we’ve developed and extensively evaluated
several novel approaches that individually improve the image manipulation capabilities
of the system. Our end-to-end framework leverages image reconstruction through a
progressive restoration process, providing additional context information that enables
more precise image manipulation. We took advantage of the outer part of the masked
to-be-manipulated area as they have a stronger correlation with the context of the scene,
and in our end-to-end framework, we designed a progressive denoising process for
image reconstruction that continuously decreases the size of the masked region in the
image. Moreover, our multi-task architecture simultaneously reconstructs the entire
image as well as selected image objects in detail, generating high-quality and detailed
images. Our model outperforms the state-of-the-art methods in the semantic image
manipulation task on the CLEVR and Visual Genome datasets. Our results demonstrate
the potential of our approach for enhancing the quality and precision of scene graph-
based image manipulation. Finally, we propose a new research avenue by showcasing
the benefits of incorporating progressive generation into diffusion processes.

vii

Contents

Acknowledgments v

Abstract vii

1. Introduction 1
1.1. Motivation and Problem Statement . 1
1.2. Thesis Outline . 2

2. Theoretical Background 5
2.1. Simplified Explanations . 5
2.2. Self-Supervised Learning . 6
2.3. Generative Models . 7

2.3.1. Generative Adversarial Networks 9
2.3.2. Diffusion Models . 11

2.4. Graph Convolutional Networks . 13
2.5. Scene Graphs . 14

3. Related Work 17
3.1. Image Manipulation using GANs . 17
3.2. Scene Graph Models . 19

3.2.1. Scene Graph Generation . 19
3.2.2. Image Generation Using Scene Graphs 20
3.2.3. Image Manipulation Using Scene Graphs 21

3.3. Graph Convolutional Networks models . 22
3.3.1. Disentangled Neural Networks . 23

3.4. Image Inpainting . 23
3.4.1. Progressive Image Generation Models 24

3.5. Diffusion Models . 25
3.5.1. DALLE 2 . 25

4. Method 29
4.1. Architecture Flow . 29
4.2. Methodology . 32

4.2.1. Image Manipulation Training Overview 32
4.2.2. Multi-task Learning . 35
4.2.3. Progressive Generation . 36
4.2.4. Progressive Multi-task Generation 36

ix

Contents

5. Experiments 39
5.1. Data . 39

5.1.1. CLEVR . 39
5.1.2. Visual Genome . 40

5.2. Evaluation Metrics . 41
5.2.1. Structural Similarity Index Measure 42
5.2.2. Learned Perceptual Image Patch Similarity 43
5.2.3. Fréchet Inception Distance . 44

5.3. Experimental Setup . 45
5.4. Quantitative Results . 45

5.4.1. Comparison to Previous State-of-the-art 45
5.4.2. Ablation study – Residual Connection 46
5.4.3. Two-headed Approach – Delayed Alternating Optimization 46
5.4.4. Two-headed Approach – Different Window-sizes 47
5.4.5. Image Manipulation Survey . 48
5.4.6. Progressive Diffusion . 49

5.5. Qualitative Results . 49
5.5.1. Image Reconstruction . 49
5.5.2. Image Manipulation . 50

6. Conclusion 55

A. Appendix 57
A.1. Architecture Details . 57
A.2. Additional Qualitative Results . 57

List of Figures 61

List of Tables 63

Bibliography 65

x

1. Introduction

1.1. Motivation and Problem Statement

As early as the 1960s, computer vision researchers experimented with the first methods
for image manipulation tasks such as image restoration and image enhacement [1]. Since
then, there has been rapid progress due to deep learning methods which have trans-
formed the computer vision research landscape [2, 3]. The progress of deep learning
methods has led to generative models [4, 5, 6, 7] capable of manipulating and generating
first semi-realistic images. Generative Adversarial Networks [6] or GANs for short
in particular have transformed the computer vision research landscape through their
potential to generate natural-looking images. With the GAN improvements in terms
of training stability [8, 9], aided by newly introduced losses that focus on high-level
differences between images [9, 10], GANs have become models of choice for image
generation and image manipulation tasks.

GANs have been used in several image alteration tasks such as semantic image ma-
nipulation [11, 12], image inpainting [13, 14], or image outpainting [15]. There are two
prevalent approaches to image manipulation tasks. First, an approach that generates
images according to user modification specification done directly on the image [16, 17,
18]. Second, an approach that first generates an intermediate feature representation of
the image, and then generates an image based on the user’s intermediate representation
modification of the image [12, 15, 19].

Until 2018, state-of-the-art methods focused on generating images from text descrip-
tions. Such representation comes with many disadvantages. Firstly, describing scenes
with a lot of objects in a way that captures all the relationships between the objects
requires long paragraphs of text. Furthermore, it is rather difficult to accurately describe
the positional relationship between objects with a high degree of precision. On the
other hand, segmentation maps, which offer a high level of precision, lack high-level
abstraction. Furthermore, manipulating images through segmentation maps requires
a high level of user input. Scene Graphs [20] are a prominent feature representation
that alleviates these shortcomings. Scene graphs are a structural representation of a
scene typically in an image via graphs where a node in the graph usually represents
an object. These nodes along with their corresponding attributes are encoded using
a feature vector encoding and are connected via edges which signify a relationship
or connection between the node objects. They encode spatial relationship information
between objects and provide attribute binding for objects [21]. For instance, <“food”,

1

1. Introduction

“on”, “ceramic plate”>, <“table”, “under”, “ceramic plate”> is an example of such a
scene graph. Having such a powerful representation allows the user to achieve a number
of abstract modifications while simultaneously having a level of control unachievable by
other approaches.

In this work, we address the problem of image manipulation from scene graphs, in
which a user can modify images by applying changes in the nodes or edges of the
semantic graph representation of the image. This work builds upon the work of Dhamo
et al. called Semantic Image Manipulation Using Scene Graphs [12], or SIMSG for short.
While many image manipulation works require image pairs of the before and after
image changes, SIMSG is trained by reconstructing partially masked input images so it
does not require the image-pair data. The work offers a complete solution for image
manipulation in low resolution. We propose a framework for Progressive Restoration for
Scene Graph-based Image Manipulation (PRISM). PRISM’s advancement over SIMSG
is manifold. First, we present a novel multi-task approach for image manipulation.
The multi-task approach is realized through a Generative Adversarial Network (GAN)
featuring a decoder comprised of two heads. One head focuses on generating a detailed
reconstruction of the masked image parts (which corresponds to the manipulated parts
during inference) while the other head focuses on holistic image reconstruction. Second,
we utilize a progressive restoration process for image reconstruction, which provides
additional context information that enables more precise image manipulation. We
analyze these techniques quantitatively in an image restoration task and qualitatively
through performing image manipulation. We combine these techniques into a novel
progressive multi-task image manipulation approach that significantly outperforms the
state-of-the-art methods, resulting in high-quality and detailed images that are more
faithful to the original scene graph. An example of the manipulated images generated by
PRISM and SIMSG can be seen in fig. 1.1. Finally, we explore a novel research direction
of incorporating progressive generation methods into diffusion processes.

1.2. Thesis Outline

The subsequent thesis text is divided into six chapters and has the following structure.

Chapter 2 First, we provide comprehensive theoretical background information. The
chapter gives the necessary knowledge required for an understanding of the different
parts of the proposed system. It gives an overview of self-supervised learning, followed
by an explanation of different generative models in section 2.3. This is finally followed
by a primer on Graph Convolutional Networks and Scene Graphs in section 2.4 and sec-
tion 2.5 respectively.

Chapter 3 In this chapter, we provide a survey of different subfields that were

2

1.2. Thesis Outline

Source SIMSG PRISM

Figure 1.1.: Our method demonstrates significant improvement in capturing image
details compared to SIMSG [12] as shown through two different image
manipulation tasks: object removal (top row), replacing man for an elephant
(bottom row).

introduced in the theoretical background chapter. In the chapter, we mainly focus on
state-of-the-art image manipulation and generation methods that make use of graph
convolutional networks. Especially we focus on methods that take advantage of an
intermediate scene graph representation of the manipulated images.

Chapter 4 This is followed by a description of the final proposed system as well as
all the methods we’ve implemented.

Chapter 5 We then provide quantitative and qualitative analysis of the proposed
system, including several ablation studies, and a discussion of these results.

Chapter 6 Finally, we give the conclusion and future directions derived from the
thesis.

3

2. Theoretical Background

This chapter provides the necessary definitions, theory, and comprehensive background
information for this work. In section 2.1 we will provide an explanation for important
terms used throughout the thesis. Then we will touch on self-supervised learning in sec-
tion 2.2. In section 2.3 called Generative Models, we will go over Normalizing Flows,
Variational Autoencoders (VAEs) before diving deeper into Generative Adversarial
Networks (GANs), and Diffusion Models. Afterward, we will discuss Graph Convo-
lutional Networks in section 2.4 before finally describing Scene Graph representation
in section 2.5.

2.1. Simplified Explanations

Image Inpainting is a process where missing parts of an image are filled in to present
a complete and realistic image. It is often performed as a reconstructing task where the
goal is to create a realistic image that resembles the original image that does not contain
any missing parts. In the image inpainting task, the missing regions of the image are
completely surrounded by non-missing (and non-damaged) parts.

Image Outpainting is a process where the outside of an image is continuously filled
to extend the image (into a realistic-looking image) with the image’s existing visual
elements taken into account. The difference between the inpainting and outpainting
task is depicted in fig. 2.1.

Variational Inference is a technique to approximate complex distributions. The goal
of variational inference is to approximate the complex probability distribution such
as image data with a simpler, tractable distribution by optimizing parameters of the
tractable distribution in a way that best approximates the complex distribution.

Expectation–Maximization (EM) Algorithm is an iterative approach that cycles be-
tween two modes to estimate the maximum likelihood of parameters in statistical
models, where the model depends on unobserved latent variables. The goal is to find
the model parameters such that the statistical model can capture/model some distribu-
tion. The first mode attempts to estimate the missing or latent variables and is called
the estimation-step or E-step. The second mode attempts to optimize the parameters of
the model to best explain the data and is called the maximization-step or M-step. It is
an optimization algorithm that is often used when dealing with complex distributions

5

2. Theoretical Background

(a) Image Inpainting (b) Image Outpainting

Figure 2.1.: Illustration of Image Inpainting (a) and Image Outpainting (b) as a restora-
tion task of the same original image

(non-differentiable functions).

Scene Graph G consist of non-empty set V called vertices (also called nodes) and set
E of two-element subset of V called edges. The two-element pair that makes up an edge
is used to indicate a connection (or a relationship) between two vertices. Graphs are
used to represent a relationship between pairs of objects. The objects represent items of
interest such as people, cities, or web pages, and we place an edge between a pair of
nodes if they are somehow related (for example, placing an edge between two nodes
that represent people that are connected on social media). We write G = (V, E).

Semantic Layout is a 2D image representation often used to guide image generation.
It consists of bounding boxes that indicate the shape and size of each object. The pixels
inside these bounding boxes are feature vectors that describe the objects’ visual and
semantic information.

2.2. Self-Supervised Learning

Neural network models benefit from labeled data to the point of outperforming humans
in numerous tasks such as emotion detection from facial images [22] or outperforming
domain experts in image classification [23]. Their success relies heavily on the availability
of large quantities of annotated data that is both time-consuming and expensive to
acquire. However, people do not always learn by having access to labeled data. For
instance, in language acquisition, a process that requires learning good representation,
people benefit from context or auxiliary data to extract useful information.

Self-supervised learning is a machine learning paradigm for learning feature repre-
sentation without having access to labeled data. Although there are several categories of
self-supervised learning, we will focus on a generative approach in which the goal is to

6

2.3. Generative Models

have a model recover original information from a modified input.
Dating back to a quote made by John Rupert Firth in 1957 – You shall know a word by

the company it keeps – self-supervised approaches have been used in multiple domains.
As the use of the quote suggests, self-supervised approaches have made a significant
contribution to the field of natural language processing [24, 25]. They have also been
used in speech recognition [26] and computer vision tasks such image classification [27]
and even in sub-tasks of autonomous driving [28].

In our context, a common supervised approach for image manipulation relies on
having access to pre-modification and after-modification image pairs. However, having
image pairs that would cover all the possible semantic image manipulation scenarios
would require large amounts of data. Collecting these image pairs is not only extremely
time-consuming but also expensive. Our work addresses these limitations and does not
require image pairs for training. Instead, similarly to Baevski et al. [26], we perform
input reconstruction by masking part of the input. This approach offers greater flexibility
in terms of data acquisition and allows for training on larger datasets and therefore
letting the model benefit from having to access more information. The specific approach
is described in section 4.2.1.

2.3. Generative Models

We are surrounded by large quantities of digital data. This data includes for example text
on social media, user behavioral history, and images on the internet. One of the main
goals of modern artificial intelligence research is to develop models that are capable
of analyzing and understanding such data. It can be argued that some of the main
intuitive aspects of data understanding are the ability to differentiate data, generate
them, and reason about them. They are not only capable of discriminating data across a
set of categories but they are also able to generate new samples. Generative models are
the best approaches for reaching the goal. This is further supported by OpenAI, who
claim that generative models might be substantially better at understanding intrinsically
the world [29]. In the following section, we will briefly discuss two approaches called
Variational Autoencoders [5] (VAEs) and Normalizing Flows before diving deeper into
Generative Adversarial Networks [6] (GANs) and Diffusion Models [7].

Normalizing Flows

Normalizing flows were popularized in 2015 in the context of variational inference by
Rezende and Mohamed [30]. That said, the framework was introduced five years before
by Tabak and Vanden-Eijnden [4] and in the same year already used for classification [31].
Normalizing flow is a generative process that attempts to model complex distribution
(image data) by learning how to transform simple distribution (e.g. uniform, Gaussian)
into a complex distribution. The transformation in Normalizing Flow is typically a

7

2. Theoretical Background

sequence of invertible functions. The process is built on the fact that if the transformation
can be arbitrarily complex, then it is possible to generate complex distribution from a
base distribution given reasonable assumptions about both distributions [32].

In essence, the training is done in the following way. We pick a family of transforma-
tions and then do a series of inverse transformations to map the training distribution into
the base distribution such that the likelihood is maximized. In the process, the model
learns the parameters of the selected transformation. During inference, we generate new
data by sampling from the base distribution and performing a series of transformations
with the learning parameters.

The biggest advantage of Normalizing Flows compared to VAEs and GANs is the
ability to infer the value of the latent variables that correspond to a datapoint as well
as the exact log-likelihood of the datapoint [33]. The tractability of the log-likelihood
makes the Normalizing Flow conceptually attractive. By tractability, we mean that the
distribution used in Normalizing flow to approximate the training data distribution is
in a closed-form expression and the probability of this distribution can be calculated in
polynomial time. Despite the attractiveness, Normalizing Flows are not as popular as
their VAE, GAN, and diffusion-based model counterparts. That is because there still
exists a performance gap between flow models and the state-of-the-art methods [34].

Variational Inference and Variational AutoEncoders

In generative processes, we are trying to model often complex intractable probability
distribution. For example distribution of images. Consider the following non-trivial
distribution depicted in fig. 2.2.

4 3 2 1 0 1 2 3
Figure 2.2.: An example of non-trivial distribution created as a mixture of Gaussian

distributions

Modeling p(x) of such distribution would be difficult, we can see that the distribution
is a mixture of Gaussian distributions, and therefore it is much easier to model the
conditional distribution p(x|z) with the latent variable z. In this case, p(x|z) is a simple
Gaussian distribution. Therefore we can see that p(x) =

∫
p(x, z)dz =

∫
p(x|z) · p(z)dz

and generating data from p(x) is matter of two steps. First, sampling latent variable
ẑ ∼ p(z) and subsequently using the sampled latent variable to sample from the
conditional distribution x̂ ∼ p(x|ẑ).

8

2.3. Generative Models

In Variational Inference techniques, the process is somewhat similar. We are given
some complex (intractable) probability distribution p (for example distribution of images)
and we will try to model the distribution by using a class of tractable distributions Q.
Our goal is then to find a q ∈ Q with their parameters that is most similar to p.

In Variational Inference, the distribution q is found as a lower bound approximation
to the p distribution by observing that:

log p(x) = Ez∼q(z)[log p(x)] (2.1)

= Ez∼q(z)[log p(x, z)− log q(z)] + KL(q(z)||p(z|x)) (2.2)

Since Kullback–Leibler divergence is non-negative we see that L(q)= Ez∼q(z)[log p(x, z)−
log q(z)] is a lower bound approximation to log p(x). Up until now, we’ve omitted that
the distribution p(x) depicted in the toy example in fig. 2.2 is not only represented by
the conditional distribution p(x|z) with the latent variable z but also by its parameters
θ (for example mean and variance of a Gaussian). So in fact, we are finding the best
lower bound approximation of pθ(x) as a maxqϕ maxθ L(qϕ, θ). This is done by using the
iterative expectation–maximization (EM) algorithm.

In Variational Autoencoders the process is done by a framework consisting of Encoder
and Decoder models. The Encoder learns the parameters of the latent distribution qϕ to
sample latent variables z while the Decoder learns to approximate the pθ distribution,
i.e., to generate new sample x̂. The flow of the process is depicted in fig. 2.3.

Figure 2.3.: Variational Autoencoder architecture

During inference, the process is as follows. If we want to draw samples from the whole
distribution of images p(x), we first sample latent variable ẑ ∼ q(z) ≈ p(z) = N (0, 1)
and then and then simply pass the latent variable to the Decoder, which generates a
new sample. If we want to generate a sample from a specific class, we could for instance
pass a sample x through the decoder to get the parameters ϕ and use them to generate
a new sample from the specific class.

2.3.1. Generative Adversarial Networks

Introduced in 2014 by Goodfellow et al., Generative Adversarial Networks, or GAN
for short is a framework for estimating generative models [6]. They are part of a

9

2. Theoretical Background

class of models called generative models that were explained earlier at the beginning
of section 2.3.

GANs have transformed the computer vision research landscape through their ability
to generate realistic images from scratch. GANs have also been among other things
used to transfer style between images [35], generate images from text [36, 37], image
in-painting [38, 39], image out-painting [15], image blending [40], and image editing [11,
17, 12]. The widespread adoption of GANs has been arguably achieved by establishing
a higher quality and generality compared to VAEs and Normalizing flows [41].

At the core of the framework are two competing models called Generator (G) and
Discriminator (D). The goal of model G is to capture the training data distribution, i.e.,
generate realistic images whereas the goal of model D is to discriminate whether an
image came from the training data or whether it was generated from model G. The
overview of the architecture is depicted in fig. 2.4.

La
te

nt
 R

an
do

m
Va

ria
bl

e

Real World
Images

Generator Sample

Discriminator

Sample

Real
/

Fake
Loss

Figure 2.4.: Overview of the Generative Adversarial Network framework

In a sense, the competing models are playing a two-player minimax game with
objective function V(G, D) defined as follows:

min
G

max
D

V(G, D) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[1 − log D(G(z))] (2.3)

Where x represents the training data distribution and z represents the latent random
variable. Informally, the first part of the equation Ex∼pdata(x)[log D(x)] optimizes model
D to recognize real images, while the second part Ez∼pz(z)[1 − log D(G(z))] teaches
model G to generate images that are indistinguishable from real images. Once we’ve
defined the objective function, the models are jointly optimized in alternating gradient
descent. In the current setting, the generator simply learns how to map from a latent
variable space z to the training distribution, but there is no easy way to generate images
from a specific class.

This is where Conditional Generative Adversarial Network (CGAN) comes into
play [42]. Informally, given a target class, the goal of model G is to generate realistic
images from the target class. In other words, the goal of the model G in the CGAN setup
is to generate data x̂ ∼ G(z|y) such that p(x̂) = p(x|y). This is achieved by modifying
the objective function depicted in eq. (2.3) as:

10

2.3. Generative Models

min
G

max
D

V(G, D) = Ex∼pdata(x)[log D(x|y)] + Ez∼pz(z)[1 − log D(G(z|y))] (2.4)

Deep Convolutional Generative Adversarial Networks - DCGANs

Year after the introduction of the GAN framework, Radford et al. introduced deep
convolutional architecture to GAN’s [8]. In the work, the authors improve previous
state-of-the-art by modifying the architecture of models D and G in several ways. First,
they up-sample the latent vector representation in the model G by using transposed (or
fractionally-strided) convolutions [43]. In the standard convolution setting, we place a
kernel (matrix of size S × S) on the upper leftmost S × S region of the input and perform
element-wise multiplication between the two matrices, and subsequently sum the result.
Afterward, we move the kernel by one (this is called stride 1) to the right and repeat
the process until we have reached the end of the row. Then we place the kernel one
row below (the leftmost region) and continue the process until we reach the end of the
input. Transposed convolutions can be thought of as a standard convolutions but with a
modified input feature map. One example of such modification can be enlarging the
input by adding zero-valued rows and columns to each of the four sides of the input
which is depicted in fig. 2.5.

Figure 2.5.: Transposed convolution with 1 stride, kernel size 2 × 2 in blue, input image
of size 2 × 2 in light blue surrounded by zeros depicted as white squares

Additionally, the authors down-sample a generator image with model D using strided
convolutions. In the strided convolution, the stride i.e., the size of the step kernel takes
after performing each convolution is larger than 1 which down-scales the image. Finally,
the authors removed fully connected hidden layers and used ReLu activation in model
G and LeakyReLu activation in model D. Nowadays, this deep and convolutional GAN
setting is currently used in most state-of-the-art approaches.

2.3.2. Diffusion Models

Informally, diffusion describes dynamic movement driven by the thermal motion of
molecules of a substance from an area of higher concentration to an area with lower

11

2. Theoretical Background

concentration. For example, a spray of perfume or room freshener that gets diffused
into the air. Diffusion models have been inspired by thermodynamics [7]. Although
introduced in 2015, diffusion models have started to rapidly gain popularity mainly
from 2021 [44]. It can be said that these generative models raised the bar to a new level
in the area of generative modeling. Especially in regard to the detail of generated images.

The diffusion framework consists of three different formulations of diffusion models:
denoising diffusion probabilistic models (DDPMs), noise conditioned score networks
(NCSNs), and stochastic differential equations (SDEs) [44]. In explaining the general
framework, we will focus on DPPM formulation popularized by the work of Ho et
al. [45]. The underlying principle of diffusion models is a Markov chain of diffusion
steps that slowly adds random noise to data and then learns to reverse the diffusion
process to construct desired data samples from the noise. In other words, they learn to
reverse a process that gradually degrades the training data structure by adding noise at
different scales. In the forward diffusion process we slowly in n consecutive steps add
noise to the training data until it becomes a normal N (0, I) distribution. On the hand
in the backward process, we reverse train a model that learns to revert the process and
in n consecutive steps approximately model the training distribution given the N (0, I)

distribution.

In the forward diffusion process, we first draw data from a training distribution
x0 ∼ q(x) and then we add Gaussian noise to the sample in T steps described in eq. (2.5):

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βt · I) q(x1:T|x0) =
T

∏
t=1

q(xt|xt−1) (2.5)

Where β ∈ (0, 1) and typically 0 < β0 < β1 < β2 < · · · < βT < 1. In practice, we set
T ≈ 1000 [45]. The advantage of this definition is that it allows us to get xt at any time
step directly in a closed form using the reparametrization trick as written in eq. (2.6):

xt =
√

αt · x0 + (1 − αt)ϵ, ϵ ∼ N (0, 1) (2.6)

Where αt = 1 − βt and αt = ∏t
s=0 αs.

In the backward process, we want to know the true distribution q(xt−1|xt), however,
this is intractable. Instead, we employ neural network pθ to learn to approximate these
conditional probabilities. If βt is small enough, the distribution q(xt−1|xt) also corre-
sponds to a Gaussian [46], so the goal of the neural network is to only learn the mean
and the variance parameters of the Gaussian. Similarly to the GANs, diffusion models
can also be extended to a conditional setting. For example to generate a color image
conditioned on its grayscale equivalent [41].

Diffusion Models have achieved state-of-the-art results in image generation, with
the most famous models being Google’s Imagen [47] and OpenAI’s DALLE [48] and
DALLE-2 [18] which will be explained later in the section 3.5.1. They are also challenging

12

2.4. Graph Convolutional Networks

GAN-based approaches in image inpainting [49, 50, 18] and outpainting tasks [18]. In
addition to generative tasks, the latent variable which has the same dimensionality as
the original data has been found to be useful in discriminative tasks such as image
generation, classification, and anomaly detection [44].

2.4. Graph Convolutional Networks

Graph Convolutional Network or GCN for short is a class of neural network that focuses
on data that can be represented in a graph. GCNs were introduced in 2016 by Kipf and
Welling [51] based on the spectral graph CNN work by Bruna et al. [52] (2014) which
was later extended in 2016 by Defferrard et al. [53].

GCN models have been used to analyze graph structures such as citation networks [54]
(where nodes typically represent publication and edges are directed from one document
toward another that it cites). They have been used in natural language processing to
classify document labels or to analyze the internal graph structure of a text such as a
syntactic dependency tree [55]. In computer vision, GCN models have been mainly used
in point cloud classification as well as to understand semantic relations between objects
in a visual scene through scene graph generation [56]. Scene graphs will be further
discussed in section 2.5.

Graph Neural Networks are based on an underlying concept of differentiable message
passing [57]. In the message-passing framework, each node is represented by a hidden
state - a vector of numbers (feature vector). In each step, each node aggregates hidden
states from all of its neighboring nodes. The aggregation can be thought of as a form
of message passing as the node receives messages (hidden states) from its neighbors.
The aggregation provides a node with contextual information about its neighborhood.
It must be a permutation invariant function such as a sum. Precisely the aggregation
step at time k for node v can be seen in eq. (2.7):

m(k)
v = ∑

u∈N(v)
M(h(k−1)

v , h(k−1)
u , evu) (2.7)

where M is an arbitrary learnable function. In the GCN setting, function M oftentimes
takes the form of matrix multiplication between the network weights and the hidden
states. For instance m(k)

v = ∑u∈N(v) W(k)
nodes · h(k−1)

u is a valid instantiation of the framework.
Afterwards, the aggregated message mv is used to update the hidden state of the node v
as depicted in eq. (2.8)

h(k)v = U(h(k−1)
v , m(k)

v) (2.8)

where function U can be for example instantiated as the ReLu activation function
h(k)v = ReLu(Q(k) · h(k−1)

v + m(k)
v). The instantiation and extension of the framework vary

significantly. Sometimes the edges also have a hidden representation which is updated
by aggregating the hidden representations of the nodes it connects.

13

2. Theoretical Background

The message-passing framework on a graph is analogous to the convolution operation
used in convolution neural networks on images. That is if you think of each pixel as a
node that’s connected to the 8 adjacent neighboring pixels the difference being that the
pixels in the image are ordered as opposed to the nodes in the graph. The generalization
of the graph convolution from the 2D image convolution is illustrated in fig. 2.6.

Figure 2.6.: A 3 × 3 image (left) can be considered as a special case of a graph (right)
where pixels are connected by adjacent pixels. Similar to 2D convolution,
one may perform graph convolutions by taking the weighted average of a
node’s neighborhood information

In the Graph Neural Network framework, each layer passes information to a node
from all of its neighbors. In other words, the hidden representation of each node is
recursively defined in terms of the hidden representation of its neighbors. This means
that after k GCN layers, the representation h(k)v of node v is based on information from
all nodes in its k-hop neighborhood. As the number of layers increases, the influence
of each node becomes proportional to the stationary distribution of the graph as a
Markov chain which leads to a potential problem where a set of nodes influence every
other node the same way regardless of their distance. This causes an over-smoothing
issue [58] (indistinguishable representations of nodes in different classes). Another
problem that comes from having too many layers is the bottleneck problem [59]. When
we are aggregating messages across a long path, there might be single a node that tries
to capture the exponentially growing information into fixed-size vectors. As a result,
GNNs can fail to propagate messages originating from distant nodes and perform poorly
on long-range interaction dependant tasks. Although there have been advancements [60]
in attempting to tackle these issues, it is important to note these common plights of
graph learning architectures.

2.5. Scene Graphs

Scene graphs are a structural representation of a scene typically in an image, video, or
point cloud data via graphs. A node in the graph usually represents a person, a place,
a thing, or a part of an object (for example arm of a person). Each node can also have
attributes that describe the state of the objects such as their shape, pose, color, and so

14

2.5. Scene Graphs

on. These nodes along with their corresponding attributes are encoded using a feature
vector encoding. The nodes in scene graphs are connected via edges which signify a
relationship or connection between the node objects. An example of such connection
can be an action (girl swinging a racket) or a position (person on top of a mountain). An
example scene graph with a corresponding image is depicted in fig. 2.7.

(a) An image

holding

Man

Chair

Ballon

sitting on

(b) Corresponding scene graph

Figure 2.7.: An image (a) with corresponding scene graph (b) where edges are depicted
in blue and nodes are depicted in white. The images were adopted from1

In 2015, Johnson et al. introduces scene graphs to improve image-based retrieval
from a text search query [20]. They argue that scene graphs provide semantically rich
representation that would is oftentimes equivalent to paragraphs-long text which is too
cumbersome to work with. In addition to being used for image retrieval [61], scene
graphs have been used to reason about 3D point cloud scenes [62], video reasoning [63],
video action recognition, image captioning and other relevant computer vision tasks [21].
In the context of image generation [64, 65] and manipulation [12, 15, 19], they place
especially important role they provide attribute binding to object instances and a sense
of direction and position. Therefore they can deal with complex scenes containing
multiple objects and desired layouts [21].

To be able to perform complex operations such as image generation from a scene
graph it is important to first describe the scene graph construction process. In short,
they are two lines of approaches. The first approach is a sequential process that has
many parts. First, the scene objects are detected (let’s assume there are n objects), then
these objects are described using visual features. Afterward, these visual features are
used to describe the n × n possible relationships. The visual features are subsequently
used for the classification of the n objects as well as the classification of the n × n edge
relationships. The other approach involves jointly detecting and recognizing the objects
and their relationships. Once the detection has been made, the scene graph generation
model is then typically trained by using cross-entropy classification loss on the n object
predictions and n × n relationship predictions [21].

1Image available at https://undraw.co/illustrations

15

https://undraw.co/illustrations

3. Related Work

This chapter provides a survey of different state-of-the-art methods related to image
manipulation. First, in section 3.1 we discuss methods that perform image manipulation
with GANs without intermediate representation. This is followed in section 3.2 by works
related to a scene graph representation, which includes an overview of methods for
scene graph generation and their subsequent use for image generation and manipulation.
In section 3.3 we introduce works that are related to processing the intermediate scene
graph representation through graph convolutional networks. We then discuss the sub-
field of image manipulation called image inpainting in section 3.4, which is finally
followed by a survey of the state-of-the-art diffusion methods in section 3.5.

3.1. Image Manipulation using GANs

Image manipulation involves the transformation or alteration of a photograph to get
the desired output according to the user’s specifications. Among state-of-the-art image
manipulation works, there are two main approaches. One line of work focuses on
extracting intermediate scene graph information from an image so that the user can
subsequently modify the graph which is finally used to produce the modified image [12,
15, 19]. The other line of work generates novel images according to the modification
specification that the user performs directly on the image [16, 17, 18]. The division of
approaches according to the intermediate representation can also be extended to whether
an image manipulation system also generates a semantic layout before generating the
final modified image. Hong et al. [66] show the benefits of generating the intermediate
layout representation in an ablation study and Johnson et al. [64] use it to generate
semantically meaningful images.

The majority of state-of-the-art image manipulation approaches use either GAN or
diffusion models to perform image generation. In the current section, we will first go
through some of the first GAN approaches for image manipulation. Namely, we will
discuss the contributions of Hong et al. [11] who manipulate images based on semantic
image maps and the contributions of the SESAME method [17] that only requires only
semantic information from the manipulated region. Then, we will explore methods
that condition the image generation on the intermediate layout representation [12,
15]. Afterward, we will go through Scene Graph state-of-the-art image manipulation
approaches [20, 64, 65, 21]. We will also explore advancements in graph convolutional
neural networks for processing the scene graph representation [67, 68, 19]. Then we

17

3. Related Work

will branch out and explore state-of-the-art approaches in related sub-fields that could
be relevant for image manipulation such as image inpainting [38, 14, 69] before finally
addressing diffusion model approaches [48, 70, 50].

Learning Hierarchical Semantic Image Manipulation through Structured
Representations

Many state-of-the-art image manipulation methods are guided by learned binary mask
representation of an object to be manipulated. The work of Hong et al. [11] is an example
of such a method. They train a model, called an Image generator, by masking a region
of interest they want to reconstruct and feed the masked image into the model that
then re-creates the original image [11]. In addition to the masked input RGB image,
the model is fed a corresponding learned semantic image. This approach is inspired by
Wang and Gupta who note that images consist of two separate characteristics: structure,
which encodes the underlying geometric representation of the image scene, and style,
which encodes the texture and illumination of the objects [16].

In addition to training the Image generator, Hong et al. also train a semantic image
generator called the Structure generator. The Structure generator is trained with the
same approach as the Image generator. The Structure generator is a two-output stream
convolutional neural network that produces the binary mask of the foreground object
in one stream and a semantic label map in the other stream. The architecture can be
seen in fig. 3.1. The foreground object binary mask is used to define a precise pixel-wise
boundary of the object and the final semantic labels are generated in accordance with
the binary mask. The approach of consecutively first generating a binary mask that
is used to guide semantic/RGB image generator can be seen in many state-of-the-art
methods and will be discussed further in later chapters.

Masked
Layout

Foreground branch

Background branch

Figure 3.1.: The Structure generator architecture proposed by Hong et al. [11]

18

3.2. Scene Graph Models

In inference time, both the semantic image as well as the RGB image of the image to be
modified are required. This makes the approach impractical for use in many real-world
scenarios as obtaining accurate semantic labels is a costly and time-consuming process.

SESAME: Semantic Editing of Scenes by Adding, Manipulating or Erasing Objects

SESAME is a method that enables users to perform free-form semantic editing of
images [17]. Inspired by layout-driven editing used by Hong et al., SESAME performs
image reconstruction (inpainting) of a masked bounding-box region. However, compared
to the method by Hong et al., it does not require semantic information of the whole
image, but only semantic information of the masked region. They improve image
manipulation the-state-of-art by incorporating many improvements from the computer
vision field. Such as using dilated convolutions [71], SPADE layers [72], multi-scale
discriminator [73] or perceptual loss function [10].

Incorporating the most recent advancement from computer vision into image ma-
nipulation systems remains a rich research endeavor. In the following text, we will
highlight some ideas from related literature that could be potentially used or seen as an
inspiration for creating a state-of-the-art image manipulation system.

3.2. Scene Graph Models

Scene graphs provide a semantically rich representation of images, describing an image
scene containing objects and relationships between them. They play an important role in
image generation and particularly in image manipulation, encoding spatial relationship
information between objects and providing attribute binding for objects. In this section,
we will give a literature review related to scene graphs. In section 3.2.1 and section 3.2.2
we provide an overview of state-of-the-art scene graph generation and scene graph
image generation methods respectively. This is followed by section 3.2.3 where we
describe the most significant image manipulation works that take advantage of the
benefits provided by having a scene graph as an intermediate representation of images.

3.2.1. Scene Graph Generation

Scene graph generation works either do produce a scene graph in a multi-step fashion
by for example first detecting the objects in the scene and then they reason about their
relationships or generate the scene graph directly [21]. Dai et al. first detect objects,
then extract visual features and spatial information such as the position and size of
these objects to perform classification of the relationship between the objects to generate
a scene graph. This is extended by the introduction of an edge-relationship embed-
ding module in LinkNet jointly learns the connections between all related objects [74].
LinkNet also introduces a global context encoding module and a geometrical layout
encoding module, which extracts global context information and spatial information
(such as relative position and scale) between object proposals from the entire image.

19

3. Related Work

Similarly, Xu et al. first use a regional proposal network to detect objects and then
reason about their relationship by using graph convolutional network [75]. On the other
hand, Liu et al. propose a fully convolutional scene graph generation framework that
detects objects and recognize the relationships between them simultaneously [76].

As opposed to the two main lines of work for scene graph generation, Garg et al.
develop a deep auto-regressive model that takes a seed object as input and gener-
ates a scene graph in a sequence of steps, each step generating an object node with
corresponding edges to the previously generated nodes[65]. They convert the graph
representation into a sequence representation and learn the probability distribution over
sequences. Learning to model the distribution not only allows for new scene graph
sample generation but also enables the detection of out-of-distribution anomaly samples.

Herzig et al. expand the original scene graph representation by in addition to having
edges corresponding to the relationship between two nodes, append the graph with
edges that correspond to the inverse relationship [77]. This canonical representation of
scene graphs has stronger invariance properties. This leads to improved robustness to
graph size and noise in comparison to existing methods. .

3.2.2. Image Generation Using Scene Graphs

Until 2018, state-of-the-art methods focused on generating images from text descrip-
tions. Describing scenes with many objects in a way that captures all the relational and
positional connections between objects requires long paragraphs of text and using these
texts by models is rather challenging. In 2018, Johnson et al. developed seminal work on
how to generate images using scene graph representation called Sg2Im [64]. Sg2Im is
an end-to-end method for generating images from scene graphs. In short, Sg2Im takes
scene graph representation as an input and processes it with a graph convolutional
network to generate a scene layout that is finally used to generate an image. The image
is generated from the layout representation using Cascade Refinement Network [78]
(CRN). The CRN is responsible for generating images that respect the object’s position
in the scene layout. It consists of a series of convolutional refinement modules with
an increasing spatial resolution that ensures that image generation is happening in a
coarse-to-fine manner. The Sg2Im [64] model is trained adversarially using a generator
and discriminator framework. Specifically, it uses two discriminators – one that focuses
on image patches containing individual objects and the other that focuses on the image
as a whole. The authors performed an ablation study that showed that each of the
intermediate steps is beneficial for image generation.

Although Sg2Im [64] is crucial work in the image generation field, it requires a com-
plete semantic segmentation map for training the model. This was improved by the
Layout2Im [79] work that uses coarse bounding-box layout representation. Layout2Im is
also an end-to-end method that disentangles each object representation into a category

20

3.2. Scene Graph Models

part and an appearance part. Another limitation of Sg2Im is the fact it cannot deal with
an incrementally additive scene description provided by the user. Mittal et al. extend the
Sg2Im architecture [80]. They implement an approach for dealing with incremental scene
graph expansion that ensures that the image generated in the current step preserves
the visual context from the previous step. Namely, they use a recurrent architecture
that passes the RGB image channels generated in the previous step to the CRN [78]
generator network in a current time step. This can be viewed as a form of progressive
image generation which will be described in section 3.4.1. Another way Sg2Im [64] was
improved was by not only using the scene layout for the generation by CRN [78] but
also a context from the scene graph itself [81]. Specifically, Tripathi et al. pooled scene
graph feature representation and processed it by a fully connected layer before feeding
it alongside the scene layout to the generator. The authors argue, that the context not
only encourages the images to respect the scene graph relationships but also prevents
mode collapse during the GAN training.

A different approach to improve state-of-the-art was introduced by pasteGAN [82].
PasteGAN is a semi-parametric method that generates images by generating individual
image patches containing objects before using an Image Fuser module that uses an
attention mechanism to combine these patches. Specifically, the Image Fuser uses a
per-pixel attention mechanism that captures the extent to which the fuser attends the
individual image patch at every pixel. In contrast to all the methods mentioned before,
Farshad et al. focus on meta-learning few-shot image generation [83]. The goal of
the approach is to come up with a model trained on a variety of images that quickly
adapts to a specific task with just a few training samples. They do this by forming
subsets of the training set based on certain criteria and subsequently tackle the prob-
lem of how well will each model perform on image generation tasks for a certain sub-set.

Image generation is an active field of research and scene graph representation provides
control over the process that methods that do not use such intermediate representation
lack. Although many limitations have been addressed by the presented methods,
generating high-resolution high-fidelity images remains an open-ended challenge.

3.2.3. Image Manipulation Using Scene Graphs

Image manipulation is a sub-field of image generation that transforms images according
to user specifications. Many of the techniques introduced in image generation are then
also used for image manipulation. In this subsection, we will discuss state-of-the-art
works in image manipulation that leverage scene graph representation. Namely, we
focus on seminal scene graph image manipulation work by Dhamo et al. [12] that offers
a complete solution to the problem in low dimensional setting trained by performing
image reconstruction and work by Yang et al. [15] that employs the image reconstruction
principle along with a self-attention mechanism to the image outpainting task.

21

3. Related Work

Semantic Image Manipulation Using Scene Graphs

This thesis builds upon the work of Dhamo et al. called Semantic Image Manipulation
Using Scene Graphs [12], or SIMSG for short. The SIMSG was the first work that used
an intermediate scene graph image representation before performing semantic image
manipulation.

The SIMSG system architecture is partly inspired by Sg2Im [64] and consists of
several modules. During inference, first, the scene graph representing the query image
is generated using Factorizable Net [84]. A user can then subsequently modify the
scene graph to achieve any of the available semantic operations: object addition, object
removal, repositioning of an object, or a change of relationship between the objects. On
top of the node embedding representation obtained by the F-Net, each node embedding
is appended by a feature vector obtained by feeding the corresponding image object
region into a pre-trained VGG network [85]. The scene graph representation is then fed
into a graph convolutional network-based solution called Spatio-semantic Scene Graph
Network (SGN). Alongside improved feature embeddings, SGN predicts bounding
boxes for the desired position of the objects. This is then used to generate a scene
layout. Subsequently, the scene layout is fed into a SPADE [72] decoder that generates
the desired output image. The authors trained the pipeline by image reconstruction
described earlier in section 4.2.1. The image reconstruction setting is convenient, as it
does not require image pairs of “before” and “after” manipulation ground-truth images.

Scene Graph Expansion for Semantics-Guided Image Outpainting

Inspired by the recent employment of transformers for scene graph generation [86], Yang
et al. incorporate an attention mechanism for an image outpanting task using scene
graph [15]. Similarly to SIMSG [12], they train the model by doing restoration (masking
the outer parts of an image and then restoring the masked part). Likewise, they extract
scene graph representation from an image, process it, then generate a layout that is used
to generate the final image. However, their main contribution lies in processing the scene
graph representation. They employ a transformer self-attention mechanism to process
the scene graph. Specifically, they apply self-attention across nodes under the guidance
of corresponding edges and attention across edges conditioned on the sharing node. In
addition to scene graph processing, Yang et al. were inspired by recent advancements
in scene graph representation [77]. In addition to having edge features representation
relationship between nodes, they append the graph with edges corresponding to the
inverse relationship. Adding both of these improvements allow them to achieve state-of-
the-art results in layout generation as well as in image outpainting task.

3.3. Graph Convolutional Networks models

Images often depict a scene with multiple objects and corresponding relationships
between these objects. Such images can be represented as a scene graph described in sec-

22

3.4. Image Inpainting

tion 2.5. Graph Convolutional Networks (GCN) enable extracting feature representation
of scene graphs for subsequent operations such as image manipulation. In this section,
we will describe advancements in processing scene graphs that are useful for subsequent
semantic image manipulation.

3.3.1. Disentangled Neural Networks

The structure of real-world graphs is typically based on the interaction of many latent
factors. As a result, within a real-world graph structure, there could be several nodes
with similar feature representations belonging. In 2019, Ma et al. noticed that state-of-the-
art graph convolutional networks fail to take into account this group entanglement while
doing message updates [67]. They proposed a novel neighborhood routing mechanism
that identifies and takes into account the latent factor entanglement.

Specifically, the disentangled convolutional neural network [67] (DisenGCN) updates
each node u representation xu such that the new representation is composed of the
concatenation of K latent factor components (xu_new = [c1, c2, . . . , cK]). Each of these K
components represents a neighborhood of nodes connected by the latent factor. For each
node u, DisenGCN divides all the neighboring nodes of u into K clusters and uses the
center of each cluster as the cluster representation c. With the introduction of the routing
mechanism, DisenGCN achieved state-of-the-art results in semi-supervised classification
on numerous citation datasets. Performance of which was improved one year later with
the introduction of FactorGCN [68] by Yang et al., which decomposes the graph into
several interpretable factor graphs.

In 2022, Farshad et al. incorporate the disentanglement approach into a GNN that
learns scene graph representation for image manipulation tasks [19]. The authors present
DisPositioNet [19] that extends the SIMSG [12] work described in section 3.2.3. The
DisPositioNet disentangles the image object nodes into several latent factors that are
subsequently used by two separate encoders to encode each object’s pose and appearance.
In contrast to the previous disentangled graph neural network works, DisPositioNet
also considers the edge features in the disentangled feature extraction process. As a
result, DisPositioNet is able to outperform SIMSG in an image reconstruction task on
the COCO [87] dataset and in an image manipulation task on Visual Genome [88] (VG)
dataset.

3.4. Image Inpainting

In the image manipulation task, one of the possibilities is to train the manipulation
model through the image restoration task. Image inpainting is a restoration task in
which we are trying to restore a continuous corrupted region inside the image. The
technique can also be used for removing objects. In computer vision, the term has been
used since 2000 by the analogy of the process used in art restoration [89]. Elharrouss et al.

23

3. Related Work

categorize image inpainting approaches into three different categories: sequential-based
approaches, CNN-based approaches, and GAN-based approaches [90].

One of the sequential-based approaches is the patch-based approach. Patch-based
methods fill the missing region patch-by-patch by searching for suitable replacement
patches in the undamaged part of the image and copying them to corresponding loca-
tions. The sequential-based methods succeed in some parts of image inpainting like
filling texture details with promising results, however, the problem of capturing the
global structure still poses an unresolved challenge. To tackle this issue, many CNN-
based approaches have been proposed. Most of these approaches use a decoder-encoder
approach with an adopted U-Net [91] style architecture to obtain fine details as well as
to capture global structure.

GAN-based approaches are another popular line of work that can capture global
structure. Pathak et al. show a significant improvement for image inpainting when
combining a standard pixel-wise loss with an adversarial loss [13]. An example of
GAN-based approaches would be a work by Dhamo et al. [14]. The authors tackle the
issue of inpainting color and depth of an area occluded by an object. In other words,
the goal is to obtain Layered Depth Image representation [92]. The authors train a
CNN-based network to jointly predict a conventional depth map and a foreground mask.
Then they use the mask so that only the visible background regions of the RGB-D image
are fed into a GAN with architecture based on the work of Isola et al. [93].

3.4.1. Progressive Image Generation Models

Recently, we’ve seen a surge of state-of-the-art image inpainting systems based on
progressive image generation, where they restore the corrupted region in multiple steps.
Zhang et al. progressively restore the image by first generating the outer border parts
before restoring the center of the missing region [69]. They argue that generating the
outer part (the border sub-region) is easier to generate because it borders image parts
that provide informational context for image generation. They achieve this by having
four progressively smaller predefined handcrafted masks that are used to mask the
uncorrupted image. The model after being fed an image with the largest mask attempts
to generate an image corresponding to the image with the second largest mask, and so
on. The process is depicted in fig. 3.2.

While it is intuitive to generate the outer regions first, the handcrafted approach of
Zhang et al. cannot deal with irregular masks. In addition, the distance from the middle
of the missing region cannot encapsulate all the information describing the difficulty of
generating a particular pixel. To solve these issues, Guo et al. propose a full-resolution
residual network [94] (FRRN) that learns to progressively update each pixel of the mask
individually. This approach not enables higher flexibility but also outperforms the work
of Zhang et al. in image inpainting restoration tasks.

24

3.5. Diffusion Models

Figure 3.2.: Progressive image inpainting restoration process (from left to right). Blue
regions represent ground-truth image pixels, white regions represent masked
pixels, and black regions represent generated pixels. The leftmost image is
fed into a model that generates the middle image, which is then fed into the
model that generates the final restored image on the right.

3.5. Diffusion Models

Diffusion-based approaches raised the bar for image generation generative models by
their ability to produce high-quality images with a very high level of detail. In this
section, we focus on a selection of diffusion-based seminal works. Namely, we introduce
the first two versions of DALLE [48, 18] with its underlying technique called CLIP [70]
that has alongside GLIDE [50] that has significantly improved diffusion landscape in
terms of the quality of the generated images.

3.5.1. DALLE 2

The work introduced by OpenAI called DALLE [48] with its successor DALLE-2 [18] has
been getting significant attention for its ability to generate images and to perform image
manipulation with an exceptional level of detail. The diffusion-based system allows
users to not only generate novel images from a text but to perform image inpainting
as well as image outpainting. The system is built on two technologies: diffusion and
CLIP [70].

CLIP learns task-agnostic multi-modal embedding that can be used for several visual
and natural language processing tasks. It builds on a critical insight to leverage natural
language as a flexible prediction space to enable generalization and transfer. The main
source of inspiration is the work of Li et al. [95] who used natural language supervision
to allow zero-shot transfer to perform classification on datasets such as the ImageNet [96].
They achieved this by training CNN to assign a likelihood p(w|I) to each possible phrase
(n-gram) w given an image I. In other words, they taught the model to predict a wide
set of visual concepts given text and then used the model to perform a different task
(classification) in a zero-shot fashion.

Like Li et al., CLIP [70] uses text-to-image pairs on the internet to create very general
embedding. Specifically, they used more than 400 million text-to-image pairs collected

25

3. Related Work

from the internet to learn state-of-the-art image representation. They trained the system
to predict which out of a set of 32768 randomly sampled text snippets a query image
belongs to. At its core, the system consists of encoders. One encodes the query image
and the other encodes a text embedding. The system is then trained to generate similar
embeddings for matching pairs and dissimilar embeddings (for example in terms of
cosine similarity) for non-matching pairs. Intuitively the system learns visual concepts
and associates them with their corresponding names. In addition to being robust and
usable for a number of different visual tasks, CLIP matches the performance of the
original ResNet [97] on ImageNet without using any of the original labeled samples.

DALLE-2 [18] uses a two-stage process to generate images. Given a text caption of an
image, DALLE-2 first uses a model that generates the corresponding image CLIP [70]
embedding of the text. Then, subsequently, it uses a diffusion model that restores the
original image. Specifically, the diffusion model receives the CLIP embedding as well
as a corrupted version (using the diffusion process of Gaussian noise addition) of the
image during each training step. According to the authors, there are several benefits
of the two-stage process. The CLIP encoder that generates the image encoding from
a text, learns high-level features of the image. These CLIP embeddings can be used
to perform a multitude of high-level operations in the high-level embedding concept
vector space introduced by word2vec authors Mikolov et al. [24]. The word2vec authors
show an example where the resulting vector embedding of arithmetic operation “king”
− “man” + “woman” is similar to the vector embedding of “queen”. Since CLIP
captures embeddings for both text and images, it enables to conduct concept space
operations using both image and text embeddings. To for example perform a gradual
transformation of an image style.

There are however downsides to using CLIP [70] embedding. First, CLIP embedding
does not preserve information about which attributes correspond to which image
objects (attribute binding). Second, CLIP embedding does not preserve the relative
position information of the objects. Images generated using DALLE-2 showcasing these
limitations can be seen in fig. 3.3. Both of these issues are not present when using a
scene graph representation of an image.

GLIDE

In 2021, Dhariwal and Nichol showed that having a classifier trained on diffusion-
corrupted data and subsequently taking the gradient of the classifier with respect to
its input to guide the diffusion can help produce high-fidelity images [98]. Later that
year it has been shown that the diffusion model can leverage its knowledge to guide a
so-called classifier-free diffusion generation [99]. As a result, Nichol et al. introduced
GLIDE [50] which leverages classifier-free guidance to generate high-fidelity images.
The scaled-down model of GLIDE which uses fewer parameters than the first version of
DALLE [48] and does not need the CLIP [70] embeddings outperforms the first version
of DALLE in image generation (judged by human evaluators as well as quantitatively

26

3.5. Diffusion Models

(a) (b)

Figure 3.3.: Result of DALLE-2 image generation given a query “a white cube on top of
a blue cube”. Showcasing object attribute-binding issues (a) and inability to
reason about position (b)

by FID [100] score). Despite this, GLIDE, which could just as well be called DALLE 1.5,
suffers from all the limitations of the DALLE systems.

27

4. Method

In this chapter, we will give a detailed description of the system. The architecture of our
system, which is depicted in fig. 4.1, is based on the SIMSG [12] architecture for which
we’ve provided an overview in section 3.2.3. Here, we will detail the system architecture,
describe each component of the system, and subsequently discuss all additions and
improvements of the system over SIMSG.

VGG

Layout
In

Sky

Plane

F-Net SGN

Figure 4.1.: An overview of PRISM. We propose a progressive multi-task model for
semantic image manipulation. During training, the system takes masked
input (on the left), uses a multi-step decoder to create a layout representation,
and then through a series of SPADE [72] ResNet blocks progressively fills in
the border regions of masked input by replacing the mask with generated
image pixels. In this way, the model progressively reconstructs the entire
original image (top-right) and detailed reconstruction of the masked object
(bottom-right).

4.1. Architecture Flow

We are given a dataset D = (I,G) of input images I ∈ RW×H×c, and their corresponding
scene graphs G = (V, E) where V and E are the vertices and edges in the scene graphs.
The network is denoted by θ, where it has two outputs I′, I′obj = θ(I,G). The scene graph
G is predicted using a pre-trained scene graph generation model. Each scene graph Gi
consists of a set of triplets (oij, pij, sij) where o, p, s are the object, predicate and subject

29

4. Method

and j ∈ J, where J is the total number of triplets in the given scene graph.

In the training process, the model is trained through a reconstruction process where
the input image I and scene graph nodes are randomly masked and the masked area is
reconstructed by the model from the extracted scene graph features. We denote masked
image IM. The reconstructed object and image are denoted by I′, I′obj respectively. At the
inference time, the modification type is defined based on the masking performed on the
input image and graph.

Image to Scene Graph

In the first part of the training/inference pipeline, we first preprocess the images and
then feed them into a Factorizable Net [84] that extracts a scene graph representation
of the images. We normalize each image per channel with the per-channel mean and
variance of all the images in the ImageNet dataset [96]. Specifically, the output image is
defined in eq. (4.1):

Inorm =
Ic − Ψ̄c

σΨc

(4.1)

, where I represents the input image, c represent an image channel, Ψ corresponds
to the ImageNet [96] distribution of images, and Inorm represents the input image after
normalization.

Afterward, we resize the images into a uniform size of H × W × c pixels, where
H = W. Subsequently, the processed images are fed into a state-of-the-art scene graph
prediction network called Factorizable Net [84]. Factorizable Net first uses a Region
Proposal Network [101] to make object region proposals. It then uses a bottom-up
approach where these region proposals are clustered into subgraph scene predictions.
Messages are then passed between subgraphs to maintain spatial information and to
refine the feature representation of the subgraphs. Finally, objects are predicted from
the object features, and predicates are inferred based on the object features and the
subgraph features.

Scene Graph Representation

Scene graphs are a structural representation of a scene consisting of a set of nodes
typically corresponding to objects and a set of edges that describe the relationship
between the objects. In our work, a node feature vector representation consists of three
parts. It consists of the following: (1) the object’s features obtained from the Factorizable
Net [84] described in section 4.1, (2) the object’s bounding box, and (3) a visual feature
encoding of the object obtained from the pre-trained convolutional neural network.

30

4.1. Architecture Flow

Scene Graph Processing

Once we have the scene graph representation, we further process it by a graph convolu-
tional network called Spatio-semantic Scene Graph Network (SGN) that allows feature
representation information to flow through the graph. The edges are update is given
in eq. (4.2) as:

(α
(t+1)
ij , ρ

(t+1)
ij , β

(t+1)
ij) = τedges(v

(t)
i , ρ

(t)
ij , v(t)j) (4.2)

where v(i 0) corresponds to the i-th node feature vector before scene graph processing,
τedges transformation is a implemented as a multilayer perceptron. The node update
depicted in eq. (4.2) is computed as an average of the edge update result:

v(t+1)
j = τnodes(

1
Ni

(∑ α
(t+1)
ij + ∑ β

(t+1)
ki)) (4.3)

where Ni is the number neighbors of the i-th node and transformation τnodes is
implemented as a multilayer perceptron. As a part of each object feature representation,
SGN produces a bounding box prediction for each object. This is subsequently used to
produce a scene layout.

Layout Generation

The processed scene graph representation is then used to produce a 2D scene repre-
sentation called scene layout. In the scene layout, each pixel is a summation of the
node features belonging to objects whose bounding box contains the pixel. The pixels
that do not belong to any object’s bounding box have a value of zero. This 2D spatial
arrangement of features is then appended by low-level visual features of the query
image obtained by passing the query image through a convolutional neural network.

Layout to Modified Image

Finally, the layout is decoded into an image by a decoder based on the SPADE [72]
architecture. Introduced in 2019, SPADE is a methodology for improving the training
of generative adversarial networks. In our work, the SPADE decoder consists of mul-
tiple residual spade blocks which focus on the normalization in the image generation
process. In contrast to Batch Normalization [102], which is unconditional and isn’t
spatially sensitive, the original SPADE architecture conditions the normalization on the
segmentation map. In Batch Normalization, several learned affine layers are applied
after the normalization step. In SPADE, these layers are learned as the output of con-
volution on the semantic segmentation map. Such a conditional approach makes the
affine layer spatially adaptive. In our work, instead of using semantic segmentation, the
generation is conditioned on the RGB input image as well as the predicted scene layout.
During training, the query RGB image corresponds to a masked image. To be specific,
we first pass the RGB image through a single layer of 2D convolution. Then, in each

31

4. Method

residual SPADE block of the decoder, the shallow feature representation of the masked
RGB image is fed alongside the predicted semantic scene layout and the output of the
previous residual SPADE block as the input. In the first layer, Gaussian noise is used as
an input instead of the output from the previous layer. The architecture of the SPADE
decoder is depicted in fig. 4.2. For a detailed description of the decoder, see table A.1.

SPA
D

E (1024), U
psam

ple (2)

SPA
D

E (512), U
psam

ple (2)

SPA
D

E (256), U
psam

ple (2)

SPA
D

E (128), U
psam

ple (2)

SPA
D

E (64), U
psam

ple (2)

3x3 C
onv, LeakyR

eLU

Figure 4.2.: Architecture of the SPADE decoder, which through 5 SPADE residual blocks
upscales a 4 × 4 Gaussian noise conditioned on the scene layout and the
input image into a 64 × 64 generated output image

4.2. Methodology

We perform training of the image manipulation system by image restoration which
is described in detail in section 4.2.1. During training, we mask the visual feature
encoding part of an object’s node representation with a probability pρ. Afterward, we
mask corresponding regions in the input image with Gaussian noise. Additionally, we
independently mask the object’s bounding boxes with probability pb. As a result, the
SGN performs a form of image reconstruction as it attempts to predict the bounding
boxes of each object. Therefore the system performs two types of reconstruction – visual
and spatial.

4.2.1. Image Manipulation Training Overview

There are two line approaches with respect to the training data used for training semantic
image manipulation models. The first approach, which is resource costly involves having
an image pair of an image before modification and an image after modification. The

32

4.2. Methodology

model is simply fed an image before modification and attempts to generate the desired
modification according to the ground-truth after-modification image. In our work, we
do not require such image pairs. Instead, we train the model using a single image and
performing image reconstruction. In the following text, we will describe how to train a
model to perform specific desired image manipulations using image reconstruction.
Addition If the goal is to generate a new object in the image then the approach is
as follows. First, we take an image that already contains the object. Then, we mask
the region of the image that contains the object. The masked image is then fed into a
generative model (for example GAN) that attempts to generate a realistic image that
resembles the original unmasked image that includes the object. Finally, once the model
is trained, the model can take an image and generate a new image that contains the
additional object, such as a car, person, and so on.
Deletion To train a model capable of deleting objects. We take an image, select a region
that contains a background, mask the region, and subsequently feed it into a model (for
example GAN) that re-creates the original unmasked image. In inference time, when we
want to delete an object from an image, we mask the region of the object and feed it into
the trained model which then generates a novel image without the undesired object.
Replace The replacement functionality is trained exactly as the addition. In the inference,
we mask the region of the to-be-replaced object and condition the restoration generation
process with the desired object class.
Reposition If the new location of the to-be-re-positioned object is not overlapping with
the current location, we could perform two operations - deletion of the object in the
current location and addition of the object in the new location. In the scene graph
settings, in addition to learning the desired layout, repositioning objects could require
us to learn the change of relationships between the objects. For example, in the current
setting, the objects are on top of each other, while in the new setting, the objects are next
to each other.

Training losses

We employ several losses used for training state-of-the-art generative adversarial net-
works. For the generator, we use mean absolute error (L1 loss) between the generated
and ground-truth images depicted in eq. (4.4).

Lrec = ∥I′ − I∥ (4.4)

We use mean squared error (L2 loss) between predicted bounding boxes of objects
and ground-truth depicted in eq. (4.5).

Lbbox = ∥β(I)− b∥2 (4.5)

, where b is the ground truth bounding box information. We also employ Perceptual
Loss [10], Feature Matching Loss [9, 103], and Hinge Loss the objective main objective
function of the generative adversarial network. Finally, we use an auxiliary classification

33

4. Method

loss [104] that performs the classification of the individual reconstructed objects. The
overall training loss function is depicted in eq. (4.6). The system is trained using a
multi-scale discriminator [73].

Ltotal = LGAN,img + LGAN,obj + Lbbox

+Lrec + Laux,obj
(4.6)

Perceptual Loss is used to compare the high-level differences between two images.
Used for learning style transfer between images [10], Perceptual Loss is also a powerful
tool for image restoration and image generation. It works by feeding two images into a
VGG [85] network that was pre-trained on ImageNet classification and comparing the
intermediate feature representation of these images from multiple layers of the VGG
network. The loss is depicted in eq. (4.7):

Lperceptual(G) = E(z,I)

T

∑
i=1

1
Ni

∥ϕ(i)(I)− ϕ(i)(G(IM, z))∥2
2 (4.7)

where G is the generator, ϕ(i) is i-th layer representation of the pre-trained VGG [85]
network, T is the number of layers of the VGG network, Ni denotes the number of
elements of each layer, and G(IM, z) is the corresponding generated image from a latent
variable z conditioned on the masked input image.

Similar to Perceptual Loss, Feature matching Loss works by feeding a real image and
a corresponding generated image into a discriminator. Then extracting an intermediate
feature representation of these images from multiple layers of the discriminator and
making them match. The loss, which stabilizes the training, is depicted in eq. (4.8):

LFM(G, D) = E(z,I)

T

∑
i=1

1
Ni

∥D(i)(I)− D(i)(G(IM, z))∥1 (4.8)

where G is the generator, D is the discriminator, T is the number of layers of the
discriminator, Ni denotes the number of elements of each layer,and G(IM, z) is the
corresponding generated image from a latent variable z conditioned on the masked
input image.

We’ve also experimented with Total Variational Loss [105]. The total variational loss
is the sum of the absolute differences for neighboring pixel-values of an image as shown
in eq. (4.9). The goal of the loss is to encourage a spatial smoothness of generated
images.

Ltv =
1

H · W ∑ ∑(I′i,j − I′i−1,j)
2 + (I′i,j − I′i,j−1)

2 (4.9)

where Ii,j represents the value of the pixel at i-th row and j-th column. However,
using total variational loss proved to be to no avail. Possibly due to the relatively small
size of the generated images.

34

4.2. Methodology

4.2.2. Multi-task Learning

Multi-task learning is an inductive transfer mechanism that improves generalization by
leveraging the domain-specific information contained in the training signals of related
tasks [106]. It is inspired by how creatures, such as humans, learn. When we learn new
tasks, we usually take advantage of the knowledge we have gained by learning related
tasks. Similarly, in machine learning, the idea is that learning tasks jointly improve
performance over learning tasks individually. In computer vision, multi-task learning
has been used in many different areas. Not only working with images but with videos
as well. It has for example been used for object categorization, image segmentation,
visual tracking, and even scene classification [107]. Although the multi-task approach
has been used for a related task of image reconstruction, the authors were unable to out-
perform the state-of-the-art single-task approaches [108]. To the best of our knowledge,
the multi-task approach has not been used for the problem of image manipulation or
within-the-scene graph settings.

Our goal is not only to improve the image manipulation capabilities of the original
SIMSG [12] system but to also allow for the system to work in higher resolution.
Therefore our multi-task learning setting reflects these goals. In short, we’ve modified
the decoder into a two-headed architecture. With the first head, the decoder tries
to reconstruct the original entire image. In the second head, the decoder focuses on
reconstructing only a single image region containing a previously masked object. The
architecture can be seen depicted in fig. 4.3. Generating the magnified object allows the
network to gain additional fine detail information about the objects it tries to reconstruct.

Encoder

Masked
Input Image

Figure 4.3.: Architecture of the multi-task two-headed approach. During training, the
system takes masked input (on the left), uses a multi-step decoder to create a
layout representation, and then through a series of SPADE [72] ResNet blocks
reconstructs the entire original image (top-right) and detailed reconstruction
of the masked object (bottom-right). The RGB image was taken by Andres
Victorero1on Pexels2

35

4. Method

4.2.3. Progressive Generation

In section 3.4.1, we’ve seen that it’s beneficial to do image reconstruction in multiple
steps. For example, by first restoring the borders of the to-be-restored regions and sub-
sequently using information from the generated borders to generate the inner regions.
The state-of-the-art approaches for progressive image reconstruction are divided into
two main lines of work. In the first line of work, the progressive generation (masking) is
handcrafted, whereas, in the second line of work, it is learned. We’ve implemented both
approaches. Specifically, we’ve implemented a variation of the handcrafted approach
introduced by Zhang et al. [69] and the automatic system called full-resolution residual
network developed by Guo et al. [94].

In our system, an encoder first generates an intermediate layout representation which
is then given alongside a masked image feature representation to the decoder that
generates the resulting predicted image. In the variation of the handcrafted approach,
we first generate an image prediction by the decoder and use this prediction to update
the masked image feature representation that is again passed to the decoder alongside
the layout. We obtain masked image feature representation by taking the original image
that has the bounding boxes of the object bounding boxes on which we perform image
reconstruction masked by Gaussian noise. This masked image is then fed into a shallow
one-layer convolutional neural network that gives us a low-level feature representation.
In the first pass, we pass the fully masked image into the convolutional neural network,
whereas in the second pass, we replace the outer borders of the image with pixels of the
predicted image of the first pass through the decoder. Specifically, we replace a border
region with the thickness of 1 / 4 of the size of the image. This can be seen depicted
in fig. 4.4.

4.2.4. Progressive Multi-task Generation

The confluence of methodologies described in section 4.2.2 and section 4.2.3 presented
an instinctive trajectory to pursue. Specifically, in the first head that reconstructs the
entire image, we progressively mask the object regions as described in section 4.2.3. On
the other hand, the second head, which reconstructs only a single object region, attempts
to reconstruct a border region with the thickness of 1 / 4 of the size of the image in the
first pass and the entire object region in the second pass.

Progressive Diffusion Inspired by the successes of GANs in progressive image recon-
struction, we’ve leveraged these principles in diffusion models. As described in sec-

1Profile available at https://www.pexels.com/@andres-victorero-2102935/
2Image available at https://www.pexels.com/photo/blue-and-white-toy-dolphin-floating-on-water-

3730754/
3Profile available at https://www.pexels.com/@drone-trotter-2765040/
4Image available at https://www.pexels.com/photo/white-yacht-in-azure-sea-5640310/

36

https://www.pexels.com/@andres-victorero-2102935/
https://www.pexels.com/photo/blue-and-white-toy-dolphin-floating-on-water-3730754/
https://www.pexels.com/photo/blue-and-white-toy-dolphin-floating-on-water-3730754/
https://www.pexels.com/@drone-trotter-2765040/
https://www.pexels.com/photo/white-yacht-in-azure-sea-5640310/

4.2. Methodology

Decoder

CNN

Masked
Image

Layout

Progressively
Masked Image

Generated
Image

Decoder

CNN

Figure 4.4.: Architecture of the handcrafted progressive generation approach. The sys-
tem progressively fills in the border regions of masked input by replacing
the mask with generated image pixels. The RGB image was taken by Drone
Trotter3on Pexels4

tion 2.3.2, diffusion models work by learning how to reverse a diffusion process that
slowly adds random noise to data. Similarly to image reconstruction, the reversal
diffusion process is applied to the entire image. As in progressive image reconstruction,
we believe that reversing the diffusion process in certain regions of the image could
be more challenging in others. Specifically, we assume reversing the process in the
center of the image, where the objects are typically located could pose a bigger challenge
without additional information. Therefore, we progressively mask the image during the
denoising steps to first let the system focus on reversing the diffusion process in the
borders of the image. The approach is depicted in fig. 4.5.

(a) t = 0 (b) t = 333 (c) t = 666 (d) t = 1000

Figure 4.5.: Visual Genome sample generation through progression diffusion process
visualized at different diffusion timesteps

37

5. Experiments

5.1. Data

In this section, we will describe and analyze image datasets for visual understanding
and reasoning called CLEVR [109] and Visual Genome [88]. As opposed to VG, which
contains real-life images, CLEVR is a synthetic dataset with a limited complexity of the
depicted scenes. Compared to VG, CLEVR has a lower variety of object classes, types
of relationships as well as the average number of objects present in an image. Both of
these datasets provided annotated scene graph annotation for each image, making these
datasets suitable for image manipulation tasks. An example of images from both of
these datasets can be seen in fig. 5.1

Figure 5.1.: Sample images from Visual Genome (top row) and CLEVR (bottom row)
datasets

5.1.1. CLEVR

Introduced in 2017, CLEVR [109] is a diagnostic dataset for compositional language and
elementary visual reasoning. CLEVR is a dataset that contains 100k images depicting
scenes with objects of three different shapes (cube, sphere, and cylinder) with various
attributes (size, material). Each image has a 128 × 128 dimension with three RGB
channels. In our work, we use a sub-set of 21310 images, each containing 3 to 7 objects.
The analysis of the objects in terms of their shapes and attributes can be seen in fig. 5.2.
Furthermore, we calculate the size of each object in the dataset as size = width · height
and depict the resulting distribution in fig. 5.3.

39

5. Experiments

Figure 5.2.: Heatmap analyzing the number of object types in the CLEVR dataset by
shape and material

Each image has also a corresponding scene graph annotation. The relationship in
the scene graph describes the spatial relationship between two objects. Namely, “left”,
“right”, “behind”, and “in front”. The synthetic nature of the CLEVR [109] framework
allows us to generate before and after modification image pairs. However, for training,
we do not use the image pairs but rather perform image reconstruction as described
in section 4.2.1.

The dataset is primarily used as a benchmark for visual reasoning, therefore it contains
a set of questions and answers about the scenes. An example question might be “Are
there an equal number of large things and metal spheres?”. However, in our work, we
only use the images with their corresponding scene graph representation, bounding
boxes, object classes, and object attributes. The limited number of possible shapes
simplifies recognition and makes this dataset an ideal benchmark for prototyping new
image manipulation approaches. For a detailed description of the dataset, please refer
to dataset publication [109].

5.1.2. Visual Genome

Visual Genome [88] or VG for short is a dataset containing images and descriptions
that outline the objects, attributes, and relationships within the images through a scene
graph annotation. Compared to CLEVR [109], VG is a much more complex dataset
consisting of 108k images where each image has an average of 35 objects, 26 attributes,
and 21 pairwise relationships between objects. Compared to the very limited number
of categories in CLEVR, VG contains more than 33k different object categories, more
than 68k attribute categories, and more than 42k relationship categories. The diversity
of VG, especially in terms of the number of object classes, surpasses all other datasets
including MS-COCO [110] that uses the same images. VG is the largest dataset in terms
of the number of relationships. However, inspired by Johnson et al. [64] we’ve avoided
working with object and relationship types that are occurring less than 2000 and 500
times respectively. Furthermore, we only work with images that contain 3 to 30 objects.
This leaves us with 45 relationships and 178 object types.

40

5.2. Evaluation Metrics

Figure 5.3.: Histogram of object sizes in the CLEVR dataset, where the size is calculated
as size = width · height

Compared to CLEVR [109], which has only positional relationships, VG [88] has a va-
riety of different relationships. These include actions, spatial, comparative relationships,
and verbs (“wears”). The distribution of the most common relationships can be seen
in fig. 5.4

The authors not only provide scene graph annotation for the entire image but also
provide a description and a scene graph for 42 for different regions of the images. In
our work, we only utilize the scene graph representing the entire image scene. We split
the data into 80% train, 10% validation, and 10% test sets. Such data split corresponds
to 62565 train, 5506 validation, and 5088 test images with an average of ten objects and
five relationships per image.

Overall, VG [88] provides a multi-layered understanding of pictures and it is an ideal
dataset for developing models with a broader understanding of our visual world. The
diversity of the dataset makes it a challenging benchmark for our image manipulation
system. For a detailed description of the dataset, please refer to dataset publication [88].

5.2. Evaluation Metrics

We’ve evaluated our models with multiple metrics used for the assessment of image
generation models. Namely, we’ve used Mean Absolute Error (MAE) between generated
and ground-truth images, Structural Similarity Index Measure [111] (SSIM), Learned
Perceptual Image Patch Similarity [112] (LPIPS), and Fréchet Inception Distance [100]

41

5. Experiments

Figure 5.4.: The top 15 most common relationships in the Visual Genome dataset

(FID).

Mean Absolute Error

Mean Absolute Error or MAE for short is still one of the most commonly used evaluation
metrics mainly for its ease of implementation and understanding. To calculate the MAE
of a generated and ground-truth image of size H × W × 3 we define MAE in eq. (5.1):

MAE =
1

H · W · 3

H

∑
i=1

W

∑
j=1

3

∑
k=1

|I′ijk − Iijk| (5.1)

where I′ corresponds to the generated image and I to the ground-truth image.

5.2.1. Structural Similarity Index Measure

Introduced in 2004, SSIM is a popular metric that attempts to compare structural differ-
ences between the generated and ground-truth images, rather than looking at each pixel
individually. The assessment is based on structural information that tries to mimic how
people extract structural information from a scene [111].

The authors claim that for image quality assessment, it is useful to compute structural
statistics locally rather than globally. Therefore, they use a Gaussian window of size
N × N which moves pixel-by-pixel over the entire image and computes the SSIM [111]

42

5.2. Evaluation Metrics

for each N × N patch and subsequently takes the average of the calculated SSIM values.
In our work, we set N = 3

The SSIM [111] is composed of three structural features. Namely, luminance, contrast,
and structure. The luminance is represented as the Gaussian weighted average of

the pixel over the window. It is defined as µx =
1

N · N ∑N
i=1 ∑N

j=1 wij · Iij, where Iij

are the pixels values of i-th row and j-th column of the window and the wij are the
corresponding gaussian weights. We defined contrast as weighted standard deviation
σI and structure as (I − µI)/σI . The higher the SSIM, the better. In essence, we derive
SSIM as:

SSIM(I, I′) = Luminance function + Contrast function + Structure function (5.2)

= [l(I, I′)]α + [c(I, I′)]β + [s(I, I′)]γ (5.3)

=
2 · µI · µI′ + C1

µ2
I + µ2

I′ + C1
+

2 · σI · σI′ + C2

σ2
I + σ2

I′ + C2
+

σI I′ + C3

σI · σI′ + C3
(5.4)

=
(2 · µI · µI′ + C1) · (2 · σI I′ + C2)

(µ2
I + µ2

I′ + C1) · (σ2
I + σ2

I′ + C2)
(5.5)

where C is a constant influenced by the dynamic range for pixel values. This holds
if we assume α = β = γ = 1 and C3 = C2/2. In our work, we’ve set C1 = 0.012 and
C2 = 0.032.

5.2.2. Learned Perceptual Image Patch Similarity

Despite the advancements SSIM [111] brought to the image quality assessment over
MAE, SSIM is still a relatively shallow function that fails to capture all the nuances
of human perception. In recent years, we’ve seen a surge of training losses based on
feature representation of images obtained from deep models such as Feature Matching
Loss [9] and Perceptual Loss [10]. In 2018, Zhang et al. set out to assess the quality
of these deep features as a perceptual metric [112]. They used a collection of images
from multiple different datasets, took an image, and then performed two degrees
of distortion. The task was to then answer which of these two images is closer to
the original image. The authors found out that on both traditional and CNN-based
distortions, deep feature-based assessments outperformed shallow metrics such as SSIM.

Besides assessing the quality of deep embeddings of images for image quality assess-
ment, the authors proposed their own architecture. They obtain the deep features of two
images from the penultimate layer of the pre-trained neural network model. However,
instead of computing differences between the two embeddings directly, they added a
small linear model that computes the similarity of the images based on the embeddings.
This constitutes a “perceptual calibration” of a few parameters in an existing feature

43

5. Experiments

space. The system outputs a value in the [0, 1] range. The lower the value, the better.

In our work, we’ve used AlexNet [113] pre-trained on ImageNet for an image classifi-
cation task as the image feature extractor. We’ve pre-trained linear model provided by
Zhang et al. [112]1.

5.2.3. Fréchet Inception Distance

Fréchet Inception Distance [100] or FID for short is a metric for the evaluation of the
performance of GANs. It tries to capture the quality and variety of generated images by
estimating the similarity to the real image samples. It was introduced as a successor to
the popular Inception score metric.

Inception score attempts to capture two properties of the image generation [9]. To
measure the quality of generated images as well as the variety of generated images.
Given a generated image of an object class o, the pre-trained Inception classifier should
have the output classification probability as close as possible to 1. On the other hand,
given a set of generated images, the marginal probability of pre-trained Inception clas-
sifier probability output should be as close to uniform distribution as possible. The
authors capture both properties with the Inception score by computing KL divergence
between the individual (label) distribution and the marginal distribution. The more
these distributions differ, the better. The score has however several disadvantages such
as being limited by what the Inception classifier can detect or being sensitive to small
changes in network weights [114].

FID [100] is an improvement over the Inception score as it uses statistics of real-world
samples. It compares the distribution of the generated and real-world samples. Like
the Inception score, the FID score uses the Inception model. Specifically, it first runs
an image through the Inception model and extracts the last layer features before the
output classification layer. It collects these features for both sets of real and generated
images. Then, it summarises these features as a multivariate Gaussian by calculating the
mean and covariance of the sets. The distance between these two distributions is then
calculated using the Frechet distance [115], also called the Wasserstein-2 distance [116]
depicted in eq. (5.6). The closer the distance, the better.

FID = ∥µF(I′) − µF(x)∥2
2 + tr(ΣF(I′) + ΣF(I) − 2 · (ΣF(I′) · ΣF(I))

1/2) (5.6)

where µF(I′) corresponds to the mean of features from generated images, µF(I) to the
mean of features from ground-truth images, ΣF(I′) to the covariance matrix of generated
features, and ΣF(I) to the covariance matrix of ground-truth features. In our work, we’ve
used Pytorch implementation by Maximilian Seitzer [117].

1Available at https://github.com/richzhang/PerceptualSimilarity

44

https://github.com/richzhang/PerceptualSimilarity

5.3. Experimental Setup

5.3. Experimental Setup

The training of the system was done by reconstructing 32 images per batch. We used a
loss weight of 1 for the L1 pixel loss and the Hinge Loss, a weight of 5 for the Perceptual
Loss and Feature Matching Loss, a weight of 50 for the bounding box L2 Loss, and a
weight of 0.1 for the auxiliary classification loss [104]. For the CLEVR [109] dataset, we
typically performed 100 thousand iterations to fully train the system. For the VG [88]
dataset, we allowed for up to 300 thousand iterations, with early stopping typically done
at around 100 − 150 thousand iterations. This typically meant that training the system
on the CLEVR dataset took around 4 − 6 days while training the system on the VG
dataset took about 6 − 9 days depending on the trained architecture. All experiments
were performed with images normalized to a uniform 64 × 64 dimension.

Training Hardware

All the training alongside the subsequent experiments was performed on hardware
provided by an affiliate member of the Technical University of Munich – Leibniz
Supercomputing Centre (LRZ). The training was done on an NVIDIA DGX-1, which is
an integrated system for deep learning containing NVIDIA Tesla V100 GPUs that have
16 GB of RAM per GPU. In addition, we used the DGX A100 system, which contains
NVIDIA A100 GPUs that have 80 GB of RAM per GPU.

5.4. Quantitative Results

This section focuses on the quantitative results of the image reconstruction experiments
obtained from the two publicly available datasets CLEVR [109] and Visual Genome [88].

5.4.1. Comparison to Previous State-of-the-art

As we can see in table 5.1, both the two-headed approach and the progressive approach
of the PRISM system significantly outperform the baseline SIMSG [12] architecture
in all metrics on the CLEVR dataset. They outperform the baseline approach by a
significant margin in both metrics that capture pixel differences (MAE) as well as in
metrics that capture high-level image differences (LPIPS [112], FID [100]). Furthermore,
the experiment results show a boost in performance in terms of image reconstruction
when combining the two architectures.

The findings are further supported by results on a more challenging VG dataset,
which can be seen depicted in table 5.2. PRISM outperforms the previous state-of-the-art
methods [80, 64, 12] by a significant margin and outperforms SIMSG [12] in all image
restoration metrics.

In table 5.3 we can see that all versions of PRISM significantly outperform the
SIMSG [12] baseline in the image restoration task.

45

5. Experiments

Method MAE ↓ SSIM ↑ LPIPS ↓ FID ↓
SIMSG [12] 5.048 0.982 0.015 3.575
PRISM + M (Ours) 4.273 0.985 0.011 2.629
PRISM + P (Ours) 4.454 0.987 0.008 2.757
PRISM + PM (Ours) 4.101 0.986 0.010 2.634

Table 5.1.: Image reconstruction results on the CLEVR dataset compared to the SOTA. P:
Progressive, M: Multi-task

MAE ↓ SSIM ↑ LPIPS ↓ FID ↓
ISG [80] 46.44 0.281 0.32 58.73
Cond SG2Im [64] 14.25 0.844 0.081 13.40
SIMSG [12] 10.812 0.861 0.065 6.544
PRISM + PM (Ours) 9.908 0.864 0.064 5.988

Table 5.2.: Image reconstruction results on the VG compared to the SOTA. P: Progressive,
M: Multi-task

5.4.2. Ablation study – Residual Connection

As we can see in fig. 4.3, the second head, which generates a detailed reconstruction of
the masked input, sends the feature representation of the object as an input to the first
head which generates the entire image. Intuitively, this allows for an easier propagation
of the object’s visual detail information between the heads. We’ve done an ablation
study measuring the effects of utilizing the connection which can be seen in fig. 5.5. As
we can see, the results obtained from the two publicly available datasets confirm the
benefits of having such a connection between the heads.

5.4.3. Two-headed Approach – Delayed Alternating Optimization

We’ve experimented with delaying the alternating optimization for the training of
the two-headed architecture. Since pre-training is a common practice in computer

Connection MAE ↓ SSIM ↑ LPIPS ↓ FID ↓
CLEVR

- 4.888 0.985 0.011 2.702
✓ 4.273 0.985 0.011 2.629

Visual Genome
- 9.9 0.856 0.076 7.728
✓ 9.677 0.863 0.062 6.766

Figure 5.5.: Ablation study between multi-task approach with and without connection
between the heads on the CLEVR and VG datasets.

46

5.4. Quantitative Results

Method MAE ↓ SSIM ↑ LPIPS ↓ FID ↓
PRISM + M (Ours) 9.802 0.866 0.065 6.302
PRISM + P (Ours) 9.677 0.863 0.062 6.766
PRISM + PM (Ours) 9.908 0.864 0.064 5.988

Table 5.3.: Ablation study of different components on the VG. P: Progressive, M: Multi-
task

vision, we’ve experimented with pre-training the first head of the two-headed approach,
essentially mimicking the original SIMSG training, before starting the join optimization.
We’ve experimented with starting the multi-task approach after 10 and 20 thousand
epochs. However, saw no benefits over starting directly with the joint optimization.
These results support the finding of Zoph et al. who argue that the joint-training is more
adaptive and beneficial compared to pre-training [118].

5.4.4. Two-headed Approach – Different Window-sizes

As described earlier in section 4.2.2, in the two-headed approach one head reconstructs
the entire image while the second head focuses on reconstructing a single object. To be
specific, we want the second head to reconstruct a masked object region of size l × l,
l = w if w >= h otherwise l = h, where h and w represent the height and width of the
object to be reconstructed respectively. In this experiment, we’ve investigated the effects
of different window sizes (i.e. l = l · δ) on the ability of the first head to reconstruct the
entire image. As we can see from table 5.4, having the smallest window proved to be
the most beneficial. These results are intuitive as the smallest window corresponds to
the highest level of detail reconstructed by the second head and thus offers the most
additional information. What’s surprising are the results obtained with δ = 1.5, these
results can be explained by an implementation detail that backtracks to δ = 1.0 if the
cropped window extended beyond the image borders, which happens more often with
increasing the window size.

δ MAE ↓ SSIM ↑ LPIPS ↓ FID ↓
1.0 4.068 0.987 0.010 2.506
1.1 4.273 0.986 0.010 2.629
1.2 4.699 0.984 0.011 3.274
1.3 4.413 0.985 0.016 2.842
1.5 3.925 0.987 0.011 2.592

Table 5.4.: Effects of different window-sizes of the second head of the two-headed
approach evaluated on CLEVR dataset

47

5. Experiments

5.4.5. Image Manipulation Survey

To quantitatively evaluate the image manipulation capabilities of PRISM compared to
SIMSG [12], we’ve created an online survey 2. The assessment is made up of 10 questions.
Each question consists of an original unmodified image, a description of the desired
image manipulation, and an image pair generated by PRISM and SIMSG according to
the desired manipulation task. For the evaluation, people were asked to pick which
image of the pair looked more realistic and in accordance with the manipulation task
specification. The survey contains all the image manipulation modes: “object deletion”,
“object replacement”, and “object repositioning” (change of relationship). The survey is
done in a single-blind study format, in which the survey participants are unaware of
which image of the pair belongs to which manipulation method. The order of generated
images in the image pair was selected at random for each image pair.

Figure 5.6.: A bar chart depicting how often survey respondents selected PRISM (blue)
and SIMSG (black) as generating more realistic and accurate images accord-
ing to the image manipulation specification per each question image-pair

The survey was completed by 42 participants. Each volunteer filled out the form
only once. The results are shown in fig. 5.6 as a bar chart of the number of times each

2Available at bit.ly/jahoda_image_manipulation

48

https://docs.google.com/forms/d/e/1FAIpQLSfH4k73zWvQTrt9SJucTTYkWczbobtmG-Tg0AaQ0qCuPZCx9w/viewform?usp=sf_link

5.5. Qualitative Results

system was selected as the one producing more realistic images per each image pair.
The images generated by PRISM were considered more realistic in 70% image-pair cases
than their SIMSG [12] counterparts. Furthermore, PRISM-generated images were picked
on average in 69.9% of the selections made by the participants of the study. Out of all
the survey respondents, 90.5% preferred images generated by PRISM (i.e. they selected
images generated by PRISM in more than 50% of the cases) and 0% preferred images
generated by SIMSG. These results further indicate that PRISM achieves superior image
quality in the image manipulation task.

5.4.6. Progressive Diffusion

As discussed in section 4.2.4 we progressively mask the generated image during the
diffusion process. Specifically, we mask a square region of a width equal to w =

wtotal · t/(ttotal · 2), where t is the current timestamp, ttotal is a total number of diffusion
steps and wtotal is the total width of the entire image. We do the progressive masking
50% of the time and the rest of the time apply the standard diffusion process. We
performed an image generation experiment in which two models, the baseline diffusion
model, and the progressive diffusion model, were trained to generate images according
to the CLEVR dataset training subset. Specifically, we’ve modified an open-source
implementation 3 of the work by Ho et al. [45]. Afterward, both models were asked to
generate Ntest number of samples, where Ntest is equal to the number of testing samples
in the CLEVR dataset. Finally, the generated sets were compared with the ground-truth
testing set to calculate the FID score described in section 5.2.3. The progressive diffusion
model achieved a significantly lower FID score of 39.516 compared to the baseline
diffusion model which achieved FID equal to 65.023. These early experiment results
suggest a potential avenue for future research.

5.5. Qualitative Results

This section depicts and compares the generation quality of PRISM and its variants
compared to SIMSG [12] by showcasing examples of image restoration and image
manipulation on the CLEVR [109] and Visual Genome [88] datasets.

5.5.1. Image Reconstruction

In addition to generating an entire image, the two-headed approach also reconstructs a
single image region containing a previously masked object. Generating this zoomed-in
detailed reconstruction of the masked object helps the network obtain information
about small objects that would otherwise be lost. We can see an example of a ground
truth image from a CLEVR [109] dataset together with the output from both heads
of the two-headed network in fig. 5.7. We can observe that due to the guidance of

3Available at https://github.com/lucidrains/denoising-diffusion-pytorch

49

https://github.com/lucidrains/denoising-diffusion-pytorch

5. Experiments

the detail-capturing second head, the first head was able to accurately reconstruct the
ground-truth image, completely matching the shape, color, texture, and details (such as
shadow) of the reconstructed object.

Ground Truth First Head Second Head

Figure 5.7.: An example of a ground-truth CLEVR image sample (left), entire image
reconstruction prediction from the first head of the two-headed approach
(middle), and a detailed reconstruction of the previously masked image by
the second head (right)

Furthermore, image reconstruction from both the two-headed and the SIMSG ap-
proach is depicted in fig. 5.8. We can see that both approaches were for the most
part successful in generating the correct shape and color of the reconstructed objects.
However, the SIMSG approach sometimes fails to capture the fine details of the object’s
texture. The two-headed approach is significantly more successful in capturing these
details.

5.5.2. Image Manipulation

In fig. 5.9 we see an example of all four image manipulation modes (removal, addition,
replacement, and repositioning) realized by both SIMSG and PRISM. We can see that
similarly to image restoration, both methods were for the most part successful in
generating the correct shape and color of the generated objects when performing
image manipulation. And again PRISM exhibits better detail-capturing capabilities of
the manipulated objects compared to SIMSG on the CLEVR dataset. These findings
are further supported by a qualitative study performed on the VG dataset depicted
in fig. 5.10. The generated images demonstrate that PRISM exhibits superior performance
in capturing the underlying structure of the image compared to SIMSG. In addition, these
images show that PRISM outperforms SIMSG in completing the desired manipulation
task, further establishing its robustness. For more image manipulation examples,
see appendix A.2 in the appendix.

50

5.5. Qualitative Results

Ground Truth Baseline Two-heads

Figure 5.8.: Qualitative comparison between baseline and two-headed image reconstruc-
tion on the CLEVR dataset

51

5. Experiments

Object Removal

Object Addition

Object Replacement

Relationship Change

Target SIMSG PRISMSource

Figure 5.9.: Qualitative comparison between SIMSG [12] and PRISM in terms of all four
image manipulation modes (removal, addition, replacement, and reposition)
on the CLEVR [109] dataset. Since CLEVR images are generated in a
controlled environment, we have access to the target images in addition to
the source images and therefore, a direct comparison becomes possible after
the change.

52

5.5. Qualitative Results

Object Replacement sand field

Object Removal

Relationship Change fence "near" railing "in front of"

Object Removal

Object Replacement woman person

Relationship Change person "riding" wave "beside"

Object Replacement sand ocean

Source SIMSG PRISM Source SIMSG PRISM

Object Removal

Figure 5.10.: Qualitative comparison between SIMSG [12] and PRISM in terms of object
removal, replacement, and relationship change on the VG [88] dataset.
Our model achieves better image manipulation performance compared to
SIMSG in different manipulation modes.

53

6. Conclusion

Our proposed multi-task semantic image manipulation framework called PRISM is a
novel approach that utilizes a two-headed generator and progressive image inpainting
techniques to improve the quality of manipulated images. Through rigorous experimen-
tation on two public benchmarks, our method has demonstrated superior performance
compared to previous works in both image reconstruction and image manipulation
tasks. These results were further supported by human evaluation survey, where 90.5%
of survey respondents preferred images generated by PRISM compared to the previous
state-of-the-art methods. The effectiveness of our method highlights the significant
potential of these techniques for future research in the field of semantic image manipu-
lation. Improved image manipulation techniques can have far-reaching applications in
diverse fields such as image editing, computer graphics, and computer vision.

Moreover, we’ve modified the progressive approach for diffusion processes and
showed that diffusion benefits from using these techniques for image generation. Ex-
ploring progressive and multi-task approaches in combination with diffusion processes
for image manipulation remains a rich research endeavor and will be explored further
in future work. Overall, the thesis presents a significant step forward in the field of
semantic image manipulation and opens new avenues for future research.

55

A. Appendix

A.1. Architecture Details

A.2. Additional Qualitative Results

57

A. Appendix

Name Type In Ch. Out Ch. Filter Stride Pad. Output Param
Inp_img DataLayer - 4 - - - 64 × 64 -
conv_inp Convolution 4 32 3 × 3 1 0 64 × 64 160
Scale_I Interpolate 32 32 - - - 4 × 4 -
Layout DataLayer - 384 - - - 64 × 64 -
Scale_L Interpolate 384 384 - - - 4 × 4 -
Noise DataLayer - 1 - - - 4 × 4 -

SBlk_0_0 SPADE 384 1 - - - 4 × 4 444K
SBlk_0_1 SPADE 384 1 - - - 4 × 4 444K
SBlk_0_s SPADE 384 1 - - - 4 × 4 444K
SBlk_0_n0 Convolution 33 1 3 1 1 4 × 4 298
SBlk_0_n1 Convolution 1 1024 3 1 1 4 × 4 10K
SBlk_0_ns Convolution 1 1024 1 1 0 4 × 4 1K
SBlk_1_0 SPADE 384 1024 - - - 8 × 8 2M
SBlk_1_1 SPADE 384 512 - - - 8 × 8 1M
SBlk_1_s SPADE 384 1024 - - - 8 × 8 2M
SBlk_1_n0 Convolution 1056 512 3 1 1 8 × 8 5M
SBlk_1_n1 Convolution 512 512 3 1 1 8 × 8 2M
SBlk_1_ns Convolution 1024 512 1 1 0 8 × 8 500K
SBlk_2_0 SPADE 384 512 - - - 16 × 16 2M
SBlk_2_1 SPADE 384 256 - - - 16 × 16 1M
SBlk_2_s SPADE 384 512 - - - 16 × 16 2M
SBlk_2_n0 Convolution 544 256 3 1 1 16 × 16 1M
SBlk_2_n1 Convolution 256 256 3 1 1 16 × 16 590K
SBlk_2_ns Convolution 512 256 1 1 0 16 × 16 131K
SBlk_3_0 SPADE 384 256 - - - 32 × 32 1M
SBlk_3_1 SPADE 384 128 - - - 32 × 32 737K
SBlk_3_s SPADE 384 256 - - - 32 × 32 1M
SBlk_3_n0 Convolution 288 128 3 1 1 32 × 32 331K
SBlk_3_n1 Convolution 128 128 3 1 1 32 × 32 147K
SBlk_3_ns Convolution 256 128 1 1 0 32 × 32 33K
SBlk_4_0 SPADE 384 128 - - - 64 × 64 737K
SBlk_4_1 SPADE 384 64 - - - 64 × 64 590K
SBlk_4_s SPADE 384 128 - - - 64 × 64 737K
SBlk_4_n0 Convolution 160 64 3 1 1 64 × 64 92K
SBlk_4_n1 Convolution 64 64 3 1 1 64 × 64 37K
SBlk_4_ns Convolution 128 64 1 1 0 64 × 64 8K

out_conv Convolution 64 64 3 × 3 1 1 64 × 64 37K
out_conv LeakyReLu - - - - - 64 × 64 -0.2
out_conv Convolution 64 3 1 × 1 1 0 64 × 64 195
out_conv2 Convolution 67 64 3 × 3 1 1 64 × 64 39K
out_conv2 LeakyReLu - - - - - 64 × 64 -0.2
out_conv2 Convolution 64 3 1 × 1 1 0 64 × 64 195

Table A.1.: Detailed description of the decoder architecture parameters. Param: de-
scribes either the number of parameters of the layer or a function parameter
depending on the type of the layer, SBlk: Spade Resnet block, Ch.: Channel,
Pad.: Padding

58

A.2. Additional Qualitative Results

Object Removal

Object Replacement ocean sand

Object Removal

Source SIMSG PRISM

Figure A.1.: Qualitative comparison between SIMSG [12] and PRISM on VG [88] dataset

59

A. Appendix

Object Replacement person elephant

Relationship Change man "riding" bike "next to"

Relationship Change tree "near" grass "on"

Source SIMSG PRISM

Figure A.2.: Qualitative comparison between SIMSG [12] and PRISM on VG [88] dataset

60

List of Figures

1.1. Highlight of PRISM image manipulation capabilities 3

2.1. Image Inpainting compared to Image Outpainting 6
2.2. Gaussian mixture distribution . 8
2.3. Variational Autoencoder architecture . 9
2.4. GAN architecture overview . 10
2.5. Transposed convolution . 11
2.6. Generalization of 2D convolution to graph convolution 14
2.7. An example scene graph with the corresponding image 15

3.1. Architecture of structure generator by Hong et al. 18
3.2. Progressive image generation process . 25
3.3. Images generated by DALLE-2 showcasing its limitations 27

4.1. An overview of the PRISM architecture . 29
4.2. SPADE decoder . 32
4.3. Architecture of the multi-task two-headed approach 35
4.4. Architecture of the handcrafted progressive generation 37
4.5. Example of progressive diffusion generation process 37

5.1. Sample images from CLEVR and VG datasets 39
5.2. CLEVR object type count heatmap . 40
5.3. CLEVR object size distribution . 41
5.4. Most common relationships in VG dataset 42
5.5. Ablation study between multi-task approach with and without connection 46
5.6. Human evaluation of PRISM and SIMSG 48
5.7. Ground-truth CLEVR image sample alongside the predicted output of

two-headed approach . 50
5.8. Comparison between baseline and two-headed image reconstruction . . . 51
5.9. Image manipulation comparison between SIMSG and PRISM 52
5.10. Image manipulation comparison between SIMSG and PRISM 53

A.1. Qualitative comparison between SIMSG and PRISM on VG dataset 59
A.2. Qualitative comparison between SIMSG and PRISM on VG dataset 60

61

List of Tables

5.1. Image reconstruction comparison between main approaches on CLEVR . 46
5.2. Image reconstruction comparison between main approaches on VG . . . 46
5.3. Ablation study on VG . 47
5.4. Effects of different window sizes in the two-headed approach 47

A.1. Detailed description of the decoder architecture 58

63

Bibliography

[1] A. Rosenfeld. “Picture Processing by Computer”. In: ACM Comput. Surv. 1.3
(July 1969), pp. 147–176. issn: 0360-0300. doi: 10.1145/356551.356554. url:
https://doi.org/10.1145/356551.356554.

[2] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. In: Nature 521.7553 (May
2015), pp. 436–444. doi: 10.1038/nature14539. url: https://doi.org/10.1038/
nature14539.

[3] Y. Bengio. “Learning Deep Architectures for AI”. In: Found. Trends Mach. Learn.
2.1 (Jan. 2009), pp. 1–127. issn: 1935-8237. doi: 10.1561/2200000006. url: https:
//doi.org/10.1561/2200000006.

[4] E. G. Tabak and E. Vanden-Eijnden. “Density estimation by dual ascent of the
log-likelihood”. In: Communications in Mathematical Sciences 8.1 (2010), pp. 217–
233. doi: 10.4310/cms.2010.v8.n1.a11. url: https://doi.org/10.4310/cms.
2010.v8.n1.a11.

[5] D. P. Kingma and M. Welling. “Auto-Encoding Variational Bayes”. In: 2nd Inter-
national Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Conference Track Proceedings. Ed. by Y. Bengio and Y. LeCun. 2014.
url: http://arxiv.org/abs/1312.6114.

[6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio. “Generative adversarial networks”. In: Communications
of the ACM 63.11 (2020), pp. 139–144.

[7] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. “Deep Unsu-
pervised Learning using Nonequilibrium Thermodynamics”. In: Proceedings of
the 32nd International Conference on Machine Learning. Ed. by F. Bach and D. Blei.
Vol. 37. Proceedings of Machine Learning Research. Lille, France: PMLR, July
2015, pp. 2256–2265.

[8] A. Radford, L. Metz, and S. Chintala. Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Networks. 2015. eprint: arXiv:1511.
06434.

[9] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. “Im-
proved techniques for training gans”. In: Advances in neural information processing
systems 29 (2016).

[10] J. Johnson, A. Alahi, and L. Fei-Fei. “Perceptual losses for real-time style transfer
and super-resolution”. In: European conference on computer vision. Springer. 2016,
pp. 694–711.

65

https://doi.org/10.1145/356551.356554
https://doi.org/10.1145/356551.356554
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1561/2200000006
https://doi.org/10.1561/2200000006
https://doi.org/10.1561/2200000006
https://doi.org/10.4310/cms.2010.v8.n1.a11
https://doi.org/10.4310/cms.2010.v8.n1.a11
https://doi.org/10.4310/cms.2010.v8.n1.a11
http://arxiv.org/abs/1312.6114
arXiv:1511.06434
arXiv:1511.06434

Bibliography

[11] S. Hong, X. Yan, T. S. Huang, and H. Lee. “Learning Hierarchical Semantic Image
Manipulation through Structured Representations”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett. Vol. 31. Curran Associates, Inc., 2018. url: https:
//proceedings.neurips.cc/paper/2018/file/602d1305678a8d5fdb372271e980da6a-
Paper.pdf.

[12] H. Dhamo, A. Farshad, I. Laina, N. Navab, G. D. Hager, F. Tombari, and C.
Rupprecht. “Semantic Image Manipulation Using Scene Graphs”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
June 2020.

[13] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. “Context
encoders: Feature learning by inpainting”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 2536–2544.

[14] H. Dhamo, K. Tateno, I. Laina, N. Navab, and F. Tombari. “Peeking behind objects:
Layered depth prediction from a single image”. In: Pattern Recognition Letters 125
(2019), pp. 333–340.

[15] C.-A. Yang, C.-Y. Tan, W.-C. Fan, C.-F. Yang, M.-L. Wu, and Y.-C. F. Wang. “Scene
Graph Expansion for Semantics-Guided Image Outpainting”. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June
2022, pp. 15617–15626.

[16] X. Wang and A. Gupta. “Generative Image Modeling Using Style and Structure
Adversarial Networks”. In: Computer Vision – ECCV 2016. Springer International
Publishing, 2016, pp. 318–335. doi: 10.1007/978- 3- 319- 46493- 0_20. url:
https://doi.org/10.1007/978-3-319-46493-0_20.

[17] E. Ntavelis, A. Romero, I. Kastanis, L. V. Gool, and R. Timofte. “SESAME: Seman-
tic Editing of Scenes by Adding, Manipulating or Erasing Objects”. In: Computer
Vision – ECCV 2020. Springer International Publishing, 2020, pp. 394–411. doi:
10.1007/978-3-030-58542-6_24. url: https://doi.org/10.1007/978-3-030-
58542-6_24.

[18] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. “Hierarchical text-
conditional image generation with clip latents”. In: arXiv preprint arXiv:2204.06125
(2022).

[19] A. Farshad, Y. Yeganeh, H. Dhamo, F. Tombari, and N. Navab. DisPositioNet:
Disentangled Pose and Identity in Semantic Image Manipulation. 2022. doi: 10.48550/
ARXIV.2211.05499. url: https://arxiv.org/abs/2211.05499.

[20] J. Johnson, R. Krishna, M. Stark, L.-J. Li, D. Shamma, M. Bernstein, and L. Fei-Fei.
“Image retrieval using scene graphs”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2015, pp. 3668–3678.

66

https://proceedings.neurips.cc/paper/2018/file/602d1305678a8d5fdb372271e980da6a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/602d1305678a8d5fdb372271e980da6a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/602d1305678a8d5fdb372271e980da6a-Paper.pdf
https://doi.org/10.1007/978-3-319-46493-0_20
https://doi.org/10.1007/978-3-319-46493-0_20
https://doi.org/10.1007/978-3-030-58542-6_24
https://doi.org/10.1007/978-3-030-58542-6_24
https://doi.org/10.1007/978-3-030-58542-6_24
https://doi.org/10.48550/ARXIV.2211.05499
https://doi.org/10.48550/ARXIV.2211.05499
https://arxiv.org/abs/2211.05499

Bibliography

[21] X. Chang, P. Ren, P. Xu, Z. Li, X. Chen, and A. G. Hauptmann. “A Comprehensive
Survey of Scene Graphs: Generation and Application”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence (2021), pp. 1–1. doi: 10.1109/TPAMI.2021.
3137605.

[22] P. Jahoda, A. Vobecky, J. Cech, and J. Matas. “Detecting Decision Ambiguity from
Facial Images”. In: 2018 13th IEEE International Conference on Automatic Face &
Gesture Recognition (FG 2018). 2018, pp. 499–503. doi: 10.1109/FG.2018.00080.

[23] M. Sulc, L. Picek, and J. Matas. “Plant Recognition by Inception Networks with
Test-time Class Prior Estimation.” In: CLEF (Working Notes). 2018.

[24] T. Mikolov, K. Chen, G. Corrado, and J. Dean. “Efficient Estimation of Word
Representations in Vector Space”. In: Proceedings of Workshop at ICLR 2013 (Jan.
2013).

[25] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. In: Proceedings of the 2019
Conference of the North. Association for Computational Linguistics, 2019. doi:
10.18653/v1/n19-1423. url: https://doi.org/10.18653/v1/n19-1423.

[26] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli. “wav2vec 2.0: A framework
for self-supervised learning of speech representations”. In: Advances in Neural
Information Processing Systems 33 (2020), pp. 12449–12460.

[27] P. Bachman, R. D. Hjelm, and W. Buchwalter. “Learning representations by
maximizing mutual information across views”. In: Advances in neural information
processing systems 32 (2019).

[28] D. Stavens and S. Thrun. “A Self-Supervised Terrain Roughness Estimator for
Off-Road Autonomous Driving”. In: (June 2012).

[29] A. Karpathy, P. Abbeel, G. Brockman, R. Duan, V. Cheung, P. Chen, I. Goodfellow,
D. Kingma, J. Ho, R. Houthooft, T. Salimans, J. Schulman, I. Sutskever, and W.
Zaremba. Generative Models. 2016. url: https://openai.com/blog/generative-
models/.

[30] D. Rezende and S. Mohamed. “Variational Inference with Normalizing Flows”.
In: Proceedings of the 32nd International Conference on Machine Learning. Ed. by
F. Bach and D. Blei. Vol. 37. Proceedings of Machine Learning Research. Lille,
France: PMLR, July 2015, pp. 1530–1538. url: https://proceedings.mlr.press/
v37/rezende15.html.

[31] J. P. Agnelli, M. Cadeiras, E. G. Tabak, C. V. Turner, and E. Vanden-Eijnden.
“Clustering and Classification through Normalizing Flows in Feature Space”. In:
Multiscale Modeling and Simulation 8.5 (Jan. 2010), pp. 1784–1802. doi: 10.1137/
100783522. url: https://doi.org/10.1137/100783522.

[32] I. Kobyzev, S. J. Prince, and M. A. Brubaker. “Normalizing Flows: An Introduction
and Review of Current Methods”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 43.11 (Nov. 2021), pp. 3964–3979. doi: 10.1109/tpami.2020.
2992934. url: https://doi.org/10.1109/tpami.2020.2992934.

67

https://doi.org/10.1109/TPAMI.2021.3137605
https://doi.org/10.1109/TPAMI.2021.3137605
https://doi.org/10.1109/FG.2018.00080
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://openai.com/blog/generative-models/
https://openai.com/blog/generative-models/
https://proceedings.mlr.press/v37/rezende15.html
https://proceedings.mlr.press/v37/rezende15.html
https://doi.org/10.1137/100783522
https://doi.org/10.1137/100783522
https://doi.org/10.1137/100783522
https://doi.org/10.1109/tpami.2020.2992934
https://doi.org/10.1109/tpami.2020.2992934
https://doi.org/10.1109/tpami.2020.2992934

Bibliography

[33] D. P. Kingma and P. Dhariwal. “Glow: Generative Flow with Invertible 1x1
Convolutions”. In: Advances in Neural Information Processing Systems. Ed. by S.
Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett.
Vol. 31. Curran Associates, Inc., 2018. url: https://proceedings.neurips.cc/
paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf.

[34] J. Ho, X. Chen, A. Srinivas, Y. Duan, and P. Abbeel. “Flow++: Improving Flow-
Based Generative Models with Variational Dequantization and Architecture
Design”. In: Proceedings of the 36th International Conference on Machine Learning.
Ed. by K. Chaudhuri and R. Salakhutdinov. Vol. 97. Proceedings of Machine
Learning Research. PMLR, June 2019, pp. 2722–2730.

[35] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. “Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks”. In: Computer Vision (ICCV), 2017
IEEE International Conference on. 2017.

[36] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. “Generative
Adversarial Text to Image Synthesis”. In: Proceedings of The 33rd International
Conference on Machine Learning. Ed. by M. F. Balcan and K. Q. Weinberger. Vol. 48.
Proceedings of Machine Learning Research. New York, New York, USA: PMLR,
June 2016, pp. 1060–1069. url: https://proceedings.mlr.press/v48/reed16.
html.

[37] S. E. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, and H. Lee. “Learning What
and Where to Draw”. In: Advances in Neural Information Processing Systems. Ed. by
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett. Vol. 29. Curran
Associates, Inc., 2016. url: https://proceedings.neurips.cc/paper/2016/
file/a8f15eda80c50adb0e71943adc8015cf-Paper.pdf.

[38] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. Efros. “Context Encoders:
Feature Learning by Inpainting”. In: Computer Vision and Pattern Recognition
(CVPR). 2016.

[39] E. Denton, S. Gross, and R. Fergus. Semi-Supervised Learning with Context-Conditional
Generative Adversarial Networks. 2016. doi: 10.48550/ARXIV.1611.06430. url:
https://arxiv.org/abs/1611.06430.

[40] H. Wu, S. Zheng, J. Zhang, and K. Huang. “GP-GAN”. In: Proceedings of the
27th ACM International Conference on Multimedia. ACM, Oct. 2019. doi: 10.1145/
3343031.3350944. url: https://doi.org/10.1145/3343031.3350944.

[41] C. Saharia, W. Chan, H. Chang, C. Lee, J. Ho, T. Salimans, D. Fleet, and M.
Norouzi. “Palette: Image-to-Image Diffusion Models”. In: Special Interest Group
on Computer Graphics and Interactive Techniques Conference Proceedings. ACM, Aug.
2022. doi: 10.1145/3528233.3530757. url: https://doi.org/10.1145/3528233.
3530757.

[42] M. Mirza and S. Osindero. Conditional Generative Adversarial Nets. 2014. eprint:
arXiv:1411.1784.

68

https://proceedings.neurips.cc/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf
https://proceedings.mlr.press/v48/reed16.html
https://proceedings.mlr.press/v48/reed16.html
https://proceedings.neurips.cc/paper/2016/file/a8f15eda80c50adb0e71943adc8015cf-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/a8f15eda80c50adb0e71943adc8015cf-Paper.pdf
https://doi.org/10.48550/ARXIV.1611.06430
https://arxiv.org/abs/1611.06430
https://doi.org/10.1145/3343031.3350944
https://doi.org/10.1145/3343031.3350944
https://doi.org/10.1145/3343031.3350944
https://doi.org/10.1145/3528233.3530757
https://doi.org/10.1145/3528233.3530757
https://doi.org/10.1145/3528233.3530757
arXiv:1411.1784

Bibliography

[43] M. D. Zeiler, G. W. Taylor, and R. Fergus. “Adaptive deconvolutional networks
for mid and high level feature learning”. In: 2011 International Conference on
Computer Vision. IEEE, Nov. 2011. doi: 10.1109/iccv.2011.6126474. url: https:
//doi.org/10.1109/iccv.2011.6126474.

[44] F.-A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah. “Diffusion models in
vision: A survey”. In: arXiv preprint arXiv:2209.04747 (2022).

[45] J. Ho, A. Jain, and P. Abbeel. “Denoising Diffusion Probabilistic Models”. In:
Advances in Neural Information Processing Systems. Ed. by H. Larochelle, M. Ran-
zato, R. Hadsell, M. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc., 2020,
pp. 6840–6851. url: https://proceedings.neurips.cc/paper/2020/file/
4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

[46] W. Feller. “On the theory of stochastic processes, with particular reference to
applications”. In: Berkeley Symposium on Mathematical Statistics and Probability.
1949.

[47] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. K. S. Ghasemipour,
B. K. Ayan, S. S. Mahdavi, R. G. Lopes, et al. “Photorealistic Text-to-Image
Diffusion Models with Deep Language Understanding”. In: Advances in Neural
Information Processing Systems. 2022.

[48] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I.
Sutskever. “Zero-shot text-to-image generation”. In: International Conference on
Machine Learning. PMLR. 2021, pp. 8821–8831.

[49] A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and L. Van Gool. “Re-
Paint: Inpainting Using Denoising Diffusion Probabilistic Models”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
June 2022, pp. 11461–11471.

[50] A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, I. Sutskever,
and M. Chen. “Glide: Towards photorealistic image generation and editing with
text-guided diffusion models”. In: International Conference on Machine Learning.
2022.

[51] T. N. Kipf and M. Welling. “Semi-Supervised Classification with Graph Convo-
lutional Networks”. In: International Conference on Learning Representations. 2017.
url: https://openreview.net/forum?id=SJU4ayYgl.

[52] J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun. “Spectral Networks and Lo-
cally Connected Networks on Graphs”. In: International Conference on Learning
Representations. 2014.

[53] M. Defferrard, X. Bresson, and P. Vandergheynst. “Convolutional Neural Net-
works on Graphs with Fast Localized Spectral Filtering”. In: Advances in Neural
Information Processing Systems. Ed. by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett. Vol. 29. Curran Associates, Inc., 2016. url: https://proceedings.

69

https://doi.org/10.1109/iccv.2011.6126474
https://doi.org/10.1109/iccv.2011.6126474
https://doi.org/10.1109/iccv.2011.6126474
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://openreview.net/forum?id=SJU4ayYgl
https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf

Bibliography

neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65- Paper.
pdf.

[54] T. N. Kipf and M. Welling. “Semi-Supervised Classification with Graph Convo-
lutional Networks”. In: 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenRe-
view.net, 2017. url: https://openreview.net/forum?id=SJU4ayYgl.

[55] D. Marcheggiani and I. Titov. “Encoding Sentences with Graph Convolutional
Networks for Semantic Role Labeling”. In: Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, 2017. doi: 10.18653/v1/d17- 1159. url: https://doi.org/10.
18653/v1/d17-1159.

[56] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. “A Comprehensive
Survey on Graph Neural Networks”. In: IEEE Transactions on Neural Networks and
Learning Systems 32.1 (2021), pp. 4–24. doi: 10.1109/TNNLS.2020.2978386.

[57] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. “Neural
Message Passing for Quantum Chemistry”. In: ICML’17. Sydney, NSW, Australia:
JMLR.org, 2017, pp. 1263–1272.

[58] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun. “Measuring and Relieving
the Over-Smoothing Problem for Graph Neural Networks from the Topological
View”. In: Proceedings of the AAAI Conference on Artificial Intelligence 34.04 (Apr.
2020), pp. 3438–3445. doi: 10.1609/aaai.v34i04.5747. url: https://doi.org/
10.1609/aaai.v34i04.5747.

[59] U. Alon and E. Yahav. “On the Bottleneck of Graph Neural Networks and its
Practical Implications”. In: International Conference on Learning Representations.
2021. url: https://openreview.net/forum?id=i80OPhOCVH2.

[60] J. Gasteiger, A. Bojchevski, and S. Günnemann. “Combining Neural Networks
with Personalized PageRank for Classification on Graphs”. In: International Con-
ference on Learning Representations. 2019. url: https://openreview.net/forum?
id=H1gL-2A9Ym.

[61] S. Schuster, R. Krishna, A. Chang, L. Fei-Fei, and C. D. Manning. “Generating
semantically precise scene graphs from textual descriptions for improved image
retrieval”. In: Proceedings of the fourth workshop on vision and language. 2015, pp. 70–
80.

[62] J. Wald, H. Dhamo, N. Navab, and F. Tombari. “Learning 3D Semantic Scene
Graphs From 3D Indoor Reconstructions”. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). June 2020.

[63] R. Wang, Z. Wei, P. Li, Q. Zhang, and X. Huang. “Storytelling from an Image
Stream Using Scene Graphs”. In: Proceedings of the AAAI Conference on Artificial
Intelligence 34.05 (Apr. 2020), pp. 9185–9192. doi: 10.1609/aaai.v34i05.6455.
url: https://doi.org/10.1609/aaai.v34i05.6455.

70

https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.18653/v1/d17-1159
https://doi.org/10.18653/v1/d17-1159
https://doi.org/10.18653/v1/d17-1159
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1609/aaai.v34i04.5747
https://doi.org/10.1609/aaai.v34i04.5747
https://doi.org/10.1609/aaai.v34i04.5747
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=H1gL-2A9Ym
https://openreview.net/forum?id=H1gL-2A9Ym
https://doi.org/10.1609/aaai.v34i05.6455
https://doi.org/10.1609/aaai.v34i05.6455

Bibliography

[64] J. Johnson, A. Gupta, and L. Fei-Fei. “Image generation from scene graphs”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. 2018,
pp. 1219–1228.

[65] S. Garg, H. Dhamo, A. Farshad, S. Musatian, N. Navab, and F. Tombari. “Uncon-
ditional Scene Graph Generation”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). Oct. 2021, pp. 16362–16371.

[66] S. Hong, D. Yang, J. Choi, and H. Lee. “Inferring semantic layout for hierarchical
text-to-image synthesis”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2018, pp. 7986–7994.

[67] J. Ma, P. Cui, K. Kuang, X. Wang, and W. Zhu. “Disentangled graph convolutional
networks”. In: International conference on machine learning. PMLR. 2019, pp. 4212–
4221.

[68] Y. Yang, Z. Feng, M. Song, and X. Wang. “Factorizable Graph Convolutional Net-
works”. In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc.,
2020, pp. 20286–20296. url: https://proceedings.neurips.cc/paper/2020/
file/ea3502c3594588f0e9d5142f99c66627-Paper.pdf.

[69] H. Zhang, Z. Hu, C. Luo, W. Zuo, and M. Wang. “Semantic image inpainting with
progressive generative networks”. In: Proceedings of the 26th ACM international
conference on Multimedia. 2018, pp. 1939–1947.

[70] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, et al. “Learning transferable visual models from
natural language supervision”. In: International Conference on Machine Learning.
PMLR. 2021, pp. 8748–8763.

[71] F. Yu and V. Koltun. “Multi-Scale Context Aggregation by Dilated Convolutions”.
In: 4th International Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings. Ed. by Y. Bengio and Y.
LeCun. 2016. url: http://arxiv.org/abs/1511.07122.

[72] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu. “Semantic Image Synthesis With
Spatially-Adaptive Normalization”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). June 2019.

[73] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro. “High-
resolution image synthesis and semantic manipulation with conditional gans”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018,
pp. 8798–8807.

[74] S. Woo, D. Kim, D. Cho, and I. S. Kweon. “LinkNet: Relational Embedding for
Scene Graph”. In: Advances in Neural Information Processing Systems. Ed. by S.
Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett.
Vol. 31. Curran Associates, Inc., 2018. url: https://proceedings.neurips.cc/
paper/2018/file/58238e9ae2dd305d79c2ebc8c1883422-Paper.pdf.

71

https://proceedings.neurips.cc/paper/2020/file/ea3502c3594588f0e9d5142f99c66627-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ea3502c3594588f0e9d5142f99c66627-Paper.pdf
http://arxiv.org/abs/1511.07122
https://proceedings.neurips.cc/paper/2018/file/58238e9ae2dd305d79c2ebc8c1883422-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/58238e9ae2dd305d79c2ebc8c1883422-Paper.pdf

Bibliography

[75] D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei. “Scene Graph Generation by Iterative
Message Passing”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). July 2017.

[76] H. Liu, N. Yan, M. Mortazavi, and B. Bhanu. “Fully Convolutional Scene Graph
Generation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). June 2021, pp. 11546–11556.

[77] R. Herzig, A. Bar, H. Xu, G. Chechik, T. Darrell, and A. Globerson. “Learning
canonical representations for scene graph to image generation”. In: European
Conference on Computer Vision. Springer. 2020, pp. 210–227.

[78] Q. Chen and V. Koltun. “Photographic image synthesis with cascaded refinement
networks”. In: Proceedings of the IEEE international conference on computer vision.
2017, pp. 1511–1520.

[79] B. Zhao, L. Meng, W. Yin, and L. Sigal. “Image generation from layout”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019, pp. 8584–8593.

[80] G. Mittal, S. Agrawal, A. Agarwal, S. Mehta, and T. Marwah. “Interactive Image
Generation Using Scene Graphs”. In: CoRR abs/1905.03743 (2019). url: http:
//arxiv.org/abs/1905.03743.

[81] S. Tripathi, A. Bhiwandiwalla, A. Bastidas, and H. Tang. “Using scene graph
context to improve image generation”. In: arXiv preprint arXiv:1901.03762 (2019).

[82] Y. Li, T. Ma, Y. Bai, N. Duan, S. Wei, and X. Wang. “Pastegan: A semi-parametric
method to generate image from scene graph”. In: Advances in Neural Information
Processing Systems 32 (2019).

[83] A. Farshad, S. Musatian, H. Dhamo, and N. Navab. “MIGS: Meta Image Genera-
tion from Scene Graphs”. In: BMVC. 2021.

[84] Y. Li, W. Ouyang, B. Zhou, J. Shi, C. Zhang, and X. Wang. “Factorizable Net: An
Efficient Subgraph-based Framework for Scene Graph Generation”. In: Proceedings
of the European Conference on Computer Vision (ECCV). Sept. 2018.

[85] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-
Scale Image Recognition”. In: arXiv 1409.1556 (Sept. 2014).

[86] Y. Cong, W. Liao, H. Ackermann, B. Rosenhahn, and M. Y. Yang. “Spatial-
temporal transformer for dynamic scene graph generation”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2021, pp. 16372–16382.

[87] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick. “Microsoft coco: Common objects in context”. In: European conference
on computer vision. Springer. 2014, pp. 740–755.

72

http://arxiv.org/abs/1905.03743
http://arxiv.org/abs/1905.03743

Bibliography

[88] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis,
L.-J. Li, D. A. Shamma, et al. “Visual genome: Connecting language and vision
using crowdsourced dense image annotations”. In: International journal of computer
vision 123.1 (2017), pp. 32–73.

[89] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. “Image inpainting”. In: Pro-
ceedings of the 27th annual conference on Computer graphics and interactive techniques.
2000, pp. 417–424.

[90] O. Elharrouss, N. Almaadeed, S. Al-Maadeed, and Y. Akbari. “Image Inpainting:
A Review”. In: Neural Processing Letters 51.2 (Dec. 2019), pp. 2007–2028. doi:
10.1007/s11063-019-10163-0. url: https://doi.org/10.1007/s11063-019-
10163-0.

[91] O. Ronneberger, P. Fischer, and T. Brox. “U-net: Convolutional networks for
biomedical image segmentation”. In: International Conference on Medical image
computing and computer-assisted intervention. Springer. 2015, pp. 234–241.

[92] J. Shade, S. Gortler, L.-w. He, and R. Szeliski. “Layered depth images”. In: Pro-
ceedings of the 25th annual conference on Computer graphics and interactive techniques.
1998, pp. 231–242.

[93] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. “Image-to-image translation with
conditional adversarial networks”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017, pp. 1125–1134.

[94] Z. Guo, Z. Chen, T. Yu, J. Chen, and S. Liu. “Progressive image inpainting with
full-resolution residual network”. In: Proceedings of the 27th acm international
conference on multimedia. 2019, pp. 2496–2504.

[95] A. Li, A. Jabri, A. Joulin, and L. Van Der Maaten. “Learning visual n-grams from
web data”. In: Proceedings of the IEEE International Conference on Computer Vision.
2017, pp. 4183–4192.

[96] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “Imagenet: A large-
scale hierarchical image database”. In: 2009 IEEE conference on computer vision and
pattern recognition. Ieee. 2009, pp. 248–255.

[97] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recogni-
tion”. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778.

[98] P. Dhariwal and A. Nichol. “Diffusion Models Beat GANs on Image Synthesis”.
In: Advances in Neural Information Processing Systems. Ed. by M. Ranzato, A.
Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan. Vol. 34. Curran Associates,
Inc., 2021, pp. 8780–8794. url: https://proceedings.neurips.cc/paper/2021/
file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf.

[99] J. Ho and T. Salimans. “Classifier-Free Diffusion Guidance”. In: NeurIPS 2021
Workshop on Deep Generative Models and Downstream Applications. 2021. url: https:
//openreview.net/forum?id=qw8AKxfYbI.

73

https://doi.org/10.1007/s11063-019-10163-0
https://doi.org/10.1007/s11063-019-10163-0
https://doi.org/10.1007/s11063-019-10163-0
https://proceedings.neurips.cc/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf
https://openreview.net/forum?id=qw8AKxfYbI
https://openreview.net/forum?id=qw8AKxfYbI

Bibliography

[100] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. “Gans
trained by a two time-scale update rule converge to a local nash equilibrium”. In:
Advances in neural information processing systems 30 (2017).

[101] S. Ren, K. He, R. Girshick, and J. Sun. “Faster r-cnn: Towards real-time object
detection with region proposal networks”. In: Advances in neural information
processing systems 28 (2015).

[102] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep network training
by reducing internal covariate shift”. In: International conference on machine learning.
PMLR. 2015, pp. 448–456.

[103] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro. “High-
resolution image synthesis and semantic manipulation with conditional gans”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018,
pp. 8798–8807.

[104] A. Odena, C. Olah, and J. Shlens. “Conditional image synthesis with auxil-
iary classifier gans”. In: International conference on machine learning. PMLR. 2017,
pp. 2642–2651.

[105] L. I. Rudin, S. Osher, and E. Fatemi. “Nonlinear total variation based noise
removal algorithms”. In: Physica D: nonlinear phenomena 60.1-4 (1992), pp. 259–
268.

[106] R. Caruana. “Multitask learning”. In: Machine learning 28.1 (1997), pp. 41–75.

[107] Y. Zhang and Q. Yang. “An overview of multi-task learning”. In: National Science
Review 5.1 (2018), pp. 30–43.

[108] T. Martyniuk. “Multi-task learning for image restoration”. MA thesis. Ukraine:
Ukrainian Catholic University, 2019.

[109] J. Johnson, B. Hariharan, L. Van Der Maaten, L. Fei-Fei, C. Lawrence Zitnick,
and R. Girshick. “Clevr: A diagnostic dataset for compositional language and
elementary visual reasoning”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017, pp. 2901–2910.

[110] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick. “Microsoft coco: Common objects in context”. In: European conference
on computer vision. Springer. 2014, pp. 740–755.

[111] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. “Image quality assess-
ment: from error visibility to structural similarity”. In: IEEE transactions on image
processing 13.4 (2004), pp. 600–612.

[112] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. “The Unreasonable
Effectiveness of Deep Features as a Perceptual Metric”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). June 2018.

74

Bibliography

[113] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Communications of the ACM 60.6 (2017),
pp. 84–90.

[114] S. Barratt and R. Sharma. “A note on the inception score”. In: arXiv preprint
arXiv:1801.01973 (2018).

[115] M. Fréchet. “Sur la distance de deux lois de probabilité”. In: Comptes Rendus
Hebdomadaires des Seances de L Academie des Sciences 244.6 (1957), pp. 689–692.

[116] L. N. Vaserstein. “Markov processes over denumerable products of spaces, de-
scribing large systems of automata”. In: Problemy Peredachi Informatsii 5.3 (1969),
pp. 64–72.

[117] M. Seitzer. pytorch-fid: FID Score for PyTorch. https://github.com/mseitzer/
pytorch-fid. Version 0.2.1. Aug. 2020.

[118] B. Zoph, G. Ghiasi, T.-Y. Lin, Y. Cui, H. Liu, E. D. Cubuk, and Q. Le. “Rethinking
pre-training and self-training”. In: Advances in neural information processing systems
33 (2020), pp. 3833–3845.

75

https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid

	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Thesis Outline

	Theoretical Background
	Simplified Explanations
	Self-Supervised Learning
	Generative Models
	Generative Adversarial Networks
	Diffusion Models

	Graph Convolutional Networks
	Scene Graphs

	Related Work
	Image Manipulation using GANs
	Scene Graph Models
	Scene Graph Generation
	Image Generation Using Scene Graphs
	Image Manipulation Using Scene Graphs

	Graph Convolutional Networks models
	Disentangled Neural Networks

	Image Inpainting
	Progressive Image Generation Models

	Diffusion Models
	DALLE 2

	Method
	Architecture Flow
	Methodology
	Image Manipulation Training Overview
	Multi-task Learning
	Progressive Generation
	Progressive Multi-task Generation

	Experiments
	Data
	CLEVR
	Visual Genome

	Evaluation Metrics
	Structural Similarity Index Measure
	Learned Perceptual Image Patch Similarity
	Fréchet Inception Distance

	Experimental Setup
	Quantitative Results
	Comparison to Previous State-of-the-art
	Ablation study – Residual Connection
	Two-headed Approach – Delayed Alternating Optimization
	Two-headed Approach – Different Window-sizes
	Image Manipulation Survey
	Progressive Diffusion

	Qualitative Results
	Image Reconstruction
	Image Manipulation

	Conclusion
	Appendix
	Architecture Details
	Additional Qualitative Results

	List of Figures
	List of Tables
	Bibliography

