
Technische Universität München
TUM Campus Straubing für Biotechnologie und Nachhaltigkeit

Algorithms for Municipal Flood
Mitigation, Related Interdiction

Problems, and Knapsack Problems
Jan Boeckmann

Vollständiger Abdruck der vomTUMCampus Straubing für Biotechnologie undNachhaltigkeit

der Technischen Universität München zur Erlangung eines Doktors der Naturwissenschaften

(Dr. rer. nat.) genehmigten Dissertation.

Vorsitz: Prof. Dr. Alexander Hübner

Prüfer:innen der Dissertation:

1. Prof. Dr. Clemens Thielen

2. Prof. Dr. Andreas Wiese

Die Dissertation wurde am 30.05.2023 bei der Technischen Universität München eingereicht

und durch den TUM Campus Straubing für Biotechnologie und Nachhaltigkeit am 06.10.2023

angenommen.

Abstract

Kenia 2020, Central Europe 2021, Pakistan 2022 – as a consequence of climate change, pluvial
flash flood disasters have been increasing both in their intensity and their frequency and will
continue to do so within the next years. A significant number of regions with mostly stable
weather conditions until the 21st century have meanwhile witnessed exceptional pluvial flash
flood disasters. Therefore, the design of flood mitigation concepts has become one of the most
critical topics in settlement development, even for small municipalities. Although the design of
mitigation concepts involves a complex decision problem, only simulations are typically used
as a digital decision support.

This work starts with presenting the results of the project AKUT – an acronym for the Ger-
man translation of “Incentive Systems for Municipal Flood Prevention” – where a decision
support tool was developed that computes best-possible combinations of precautionary mea-
sures for pluvial flash floods subject to a budget constraint and taking the cooperation of local
residents into account. The emerging software hasmeanwhile been used by over 30 institutions
such as municipalities, engineering offices, and academic research groups.
Afterwards, the closely related network flow interdiction problem is investigated and an

approximation algorithm is presented. This problem is known to be hard to approximate and
the presented algorithm is the first whose approximation ratio does not depend on the size of
the input graph. Further, on the class of simple graphs, the approximation ratio dominates the
one of the previously best known approximation algorithm.
Subsequently, the complexity of several versions of the shortest path interdiction problem

is investigated on temporal graphs, which have lately attracted the interest of the research
community due to their high applicability to real-world problems. Four different notions of
the term “shortest” in the temporal setting are introduced and the corresponding shortest path
interdiction problems are investigated. Although the shortest path interdiction problem isNP-
hard on static graphs, it is found that two of the four versions are polynomial-time solvable
while the other two are NP-hard. On extension-parallel temporal graphs, however, the two
hard versions are also polynomial-time solvable. Further, the complexities for three extensions
of the problem are assessed.
Finally, a highly generalized version of the well-studied knapsack problem, where weights

and profits are non-linear and the operator in the objective function can be a sum or a prod-
uct, is studied and an approximation algorithm is presented. This algorithm is levered to the
multi-objective version of the problem and the approximation algorithm for themulti-objective
problem is applied to obtain further approximation algorithms for the recently introduced 0-1
time-bomb knapsack problem and some min-max and max-min versions motivated from the
field of robust optimization.

Acknowledgements

First of all, I want to thank Clemens Thielen for his unconditional support and his strong
commitment as a supervisor. By his extraordinary guidance and his ability to give feedback on
an exceptionally fine level I could enrich my abilities both on a technical and a personal level.
This work would not have been possible without his suggestions and improvements.

Also, I want to thank thewhole Optimization Research Group Kaiserslautern for their unique
sense of humor, the competitive games at the table soccer, and their social events. The working
atmosphere was the most enjoyable I ever experienced. Special thanks go to Oliver Bachtler
for his advice when I needed some and with whom sharing an office left nothing to ask for and
to Luca Schäfer, Marco Natale, and Till Heller for our sports sessions and our online-meetings
during the pandemic.
Further, I want to thank the whole AKUT project team for their commitment and our fruitful

discussions and workshops. Special thanks go to Mirjam Lawens, who put extensive work into
the software and its management and with whom I had numerous, sometimes more sometimes
less sophisticated but always enjoyable discussions. Also, I want to thank FlorianMeier for tak-
ing on the technical support for the software AKUT after my time at TUM Campus Straubing
and for his pleasant and goal-oriented way of working.
I thank Ulrich Pferschy for being my mentor as a PhD candidate and for our mutual research

stays where I met him as a very agreeable and supportive person.
Further, I want to thank Alexandra Hering and Marina Zapilko for their efforts in protecting

me from administrative work. A huge thank goes to the whole first floor of Essigberg for their
company during lunch breaks and at the Gäubodenvolksfest.
I would like to thank my housemates for their mental support during the pandemic, for the

evenings spent in the kitchen, and for their support in organizing triathlons in front of the door
when regular racing was not possible.
I would especially like to thank the afforementioned Luca Schäfer, Marco Natale, Till Heller,

Oliver Bachtler, FlorianMeier, as well as Arne Herzel, Johannes Kager, and Rüdiger Boeckmann
for proofreading parts of this thesis.
Very special thanks go to Lena Riesenegger for her mental support both as a colleague and

as a friend and partner in Straubing. Finally, the greatest thanks are dedicated to my family for
their support, which ultimately paved this path for me.

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Outline . 2
1.3. Contributions and Credits . 3

2. Preliminaries 5
2.1. Optimization Problems . 5
2.2. Complexity . 6
2.3. Graphs and Networks . 8
2.4. Multicriteria Optimization . 10
2.5. Approximation Algorithms . 11

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation 13
3.1. Introduction . 13

3.1.1. Previous Work . 14
3.1.2. The Project AKUT . 15

3.2. Problem Description and Input Data . 16
3.3. Mathematical Modeling . 18

3.3.1. Graph-Based Model . 19
3.3.2. Mixed-Integer Programming Formulation and Presolve Techniques . . 33

3.4. Validity of the Mixed-Integer-Programming Formulation 43
3.4.1. Assumptions and Structural Results . 43
3.4.2. Existence of x . 47
3.4.3. Equality of Water Levels . 51

3.5. Computational Results . 76
3.5.1. Comparison with Established Simulation Software 76
3.5.2. Running Time and Performance . 77

3.6. Conclusion . 80

4. A pB ` 1q-Approximation for Network Flow Interdiction with Unit Removal
Costs 81
4.1. Introduction . 81

4.1.1. Previous Work . 82

i

Contents

4.1.2. Our Contribution . 82
4.2. Problem Definition and Structural Results . 83

4.2.1. Structural Results . 84
4.3. A pB ` 1q-Approximation for NFI . 88

4.3.1. Approximating NFI on Gpl‹, ūq . 92
4.4. Further Reducing the Approximation Ratio . 98
4.5. Conclusion . 99

5. Complexity of the Temporal Shortest Path Interdiction Problem 101
5.1. Introduction . 101

5.1.1. Previous Work . 102
5.1.2. Our Contribution . 104

5.2. Problem Definition . 104
5.3. Polynomial-Time Algorithms and Complexity Results 106

5.3.1. Temporal Latest Start Interdiction . 106
5.3.2. Temporal Earliest Arrival Interdiction 107
5.3.3. Temporal Shortest Duration Interdiction and Temporal Shortest Traver-

sal Interdiction . 109
5.4. Extensions . 116

5.4.1. Negative Traversal Times . 116
5.4.2. Continuous Time Availability of Arcs 117
5.4.3. Waiting Time Constraints . 119

5.5. Conclusion . 121

6. Approximating Nonlinear Sum and Product Knapsack Problems 123
6.1. Introduction . 123

6.1.1. Previous Work . 125
6.1.2. Our Contribution . 125

6.2. Problem Definition . 126
6.2.1. Single-Objective Problems . 126
6.2.2. Multi-Objective Problems . 127

6.3. A Single-Objective FPTAS . 128
6.4. Extension to Multiple Objectives . 131
6.5. Applications . 134

6.5.1. An FPTAS for the 0-1 Time-Bomb Knapsack Problem 134
6.5.2. Minimization Knapsack Problems . 136
6.5.3. Extension of the Minimization Version to Multiple Objectives 137
6.5.4. Max-Min Versions of the Nonlinear Knapsack Problem 138

6.6. Conclusion . 139

7. Conclusion 141

A. Appendix 1

ii

Contents

B. List of Figures 9

C. List of Tables 11

Bibliography 13

iii

1 Introduction

In this introductory chapter, we provide a motivation for the problems studied in this thesis as
well as a brief outline of the content and a list of publications this thesis is based on.

1.1 Motivation

Flash floods have been increasingly affecting the worldwide news in the last years [FS21;
Gua22; New20] and scientists agree that dangerous weather events in general and particu-
larly heavy rainfall events are becoming more frequent and severe as a consequence of climate
change [Ble+18; IPC21; RS17]. While there is clear evidence of the efficacy of precautionary
measures [Kre+05], the design of flood mitigation concepts in Germany is typically based on
simulations rather than using optimization methods [Ger16], clearly lacking the consideration
of site-specific interplay of actions. This is also pointed out in [Tas21; WKG14] for the design
of flood mitigation concepts and the sparse literature on the topic indicates that optimization
techniques are globally rarely used in the design of precautionary measures for pluvial flash
floods. Regarding the urgency of the problem of adapting to heavier rain events and their
tremendous potential for damage, the potential of using optimization techniques in the design
of mitigation concepts is evident.

Since the quality of mitigation concepts is usually assessed by simulating flows on a digital
terrain model, which could be interpreted as a directed graph, it is a natural question by how
much the maximum inflow into a node can be reduced by removing a limited number of arcs
from the graph, which intuitively corresponds to, e.g., building a ditch or embankment. This
problem is known as the network flow interdiction problem and has been extensively studied
in the literature [Bur+03; CZ17; Woo93]. Apart from its already mentioned applicability to
flood mitigation, other applications include highway transportation [Dur66] and the combat
of criminal drug smuggling networks [MRS12].
Various versions of interdiction problems on static graphs have been studied in the litera-

ture. However, the assumption that the graph does not change over time is quite restrictive
when approaching real-world problems. Temporal graphs – a more general concept of graphs
that allows for a temporal presence of connections – have recently been attracting the re-
search community. Despite their great applicability to real world problems, the literature on
interdiction problems on temporal graphs is surprisingly sparse leaving interesting problems
to investigate.

1

1. Introduction

Finally, one of the most essential problems in combinatorial optimization is the knapsack
problem, where items have to be packed into a knapsack such that their total weight does not
exceed the knapsack capacity while maximizing the total profit of the packed items. Despite
its quite restrictive assumption of separable profit and weight functions, there is a consid-
erable amount of real-world applications of the problem and new versions are still investi-
gated [MPS22]. While there exist approximation algorithms for most studied versions of the
knapsack problem, an approximation algorithm that works for the vast majority of knapsack
problems marks an important gap in the literature.

1.2 Outline

This thesis consists of seven chapters including this introductory chapter, in which a motiva-
tion and overview of the content is provided.
In Chapter 2, although the reader is assumed to have basic mathematical knowledge, essen-

tial concepts of discrete optimization, complexity theory, graphs and networks, multicriteria
optimization, and approximation algorithms are presented.
A mixed-integer programming approach to finding best-possible combinations of precau-

tionary measures for pluvial flash floods and a corresponding web application are discussed in
Chapter 3. We start by formally introducing the problem and presenting the input data, which
are available to German municipalities free of charge. Next, we present a combinatorial algo-
rithm, which, given a set of precautionary measures, computes the water levels in a rain event,
and a mixed-integer programming formulation of the problem of finding an optimal combina-
tion of such measures subject to a budget constraint and the cooperation of local residents. The
work is continued by proving that the presented mixed-integer programming formulation is
indeed a valid formulation of the problem and computational results are presented, where the
results are validated by comparing them to the results of state-of-the-art simulation software
and the most important drivers for the quality of the obtained solution and the running time
of the algorithm are pointed out.
In Chapter 4, an approximation algorithm for the special case of the network flow interdic-

tion problem, where a limited number of arcs are to be removed from a network such that the
value of a maximum s-t-flow in the resulting network is minimized, is presented. To the best
of our knowledge, this is the first approximation algorithm for any version of the network flow
interdiction problem whose approximation ratio does not depend on the size of the network
and, on simple graphs, its approximation ratio dominates the one of the previously best known
approximation algorithm.
Afterwards, a complexity analysis of several versions of the shortest path interdiction prob-

lem on temporal graphs is presented in Chapter 5. We start by introducing four definitions of
the term “shortest” on temporal graphs and investigate the complexity of the four resulting
versions of the shortest path interdiction problem. Interestingly, although the shortest path in-
terdiction problem is NP-hard on static graphs, two of the four versions are polynomial time
solvable while the other two areNP-hard on temporal graphs. On extension-parallel temporal
graphs, however, the two hard versions are polynomial-time solvable. Subsequently, we show
how our results generalize if negative traversal times are allowed. We then continue by intro-

2

1.3. Contributions and Credits

ducing a more general class of temporal graphs which allows for continuous time availability
of arcs and show that even deciding whether two nodes can be separated by removing a fixed
number of arcs isNP-hard. Finally, we show that our previous complexity results remain valid
if we additionally impose a constraint on the maximal waiting time in a node.
Next, we present a fully polynomial-time approximation scheme (FPTAS) for a highly gener-

alized version of the knapsack problem in Chapter 6, where profits and weights are non-linear
and the operator in the objective function can be a sum or a product. The generality of this
version allows to apply this algorithm to almost all versions of the knapsack problem in the
literature. We then extend the idea of the FPTAS to the multiobjective case to obtain a multi-
objective fully polynomial-time approximation scheme (MFPTAS) and further show how the
algorithms can be modified to obtain an FPTAS or MFPTAS for the minimization knapsack
problem. Finally, we use the proposed algorithms to obtain the first FPTAS for the recently-
introduced 0-1 time-bomb knapsack problem and for some max-min or min-max versions mo-
tivated by the field of robust optimization.
Although Chapters 3-6 are concluded individually, we summarize the content of the thesis

and conclude this work from a more holistic viewpoint in Chapter 7.

1.3 Contributions and Credits

All results in this thesis have been jointly developed under the supervision of Prof. Dr. Clemens
Thielen and most of the results have been published in journal articles or conference proceed-
ings.
A manuscript with the contents of Chapter 3 is currently in the revision process:

J. Boeckmann and C. Thielen. New ways in municipal flood mitigation: A mixed-integer
programming approach and its practical application. Under revision at Operations Re-
search Forum. 2023

Chapter 4 is based on the publication

J. Boeckmann and C. Thielen. “A (B+1)-approximation for network flow interdiction
with unit costs”. In: Discrete Applied Mathematics (2021), 1–13. doi: 10.1016/j.dam.
2021.07.008,

which itself is a generalized version of the following previous publication:

J. Boeckmann and C. Thielen. “An Approximation Algorithm for Network Flow Inter-
diction with Unit Costs and Two Capacities”. In: Proceedings of the 18th Cologne-Twente
Workshop on Graphs and Combinatorial Optimization (CTW). 2020, 157–169. doi: 10.
1007/978-3-030-63072-0_13

The content of Chapter 5 is accepted for publication in the proceedings of the Second Sym-
posium on Algorithmic Foundations of Dynamic Networks (SAND 2023).

J. Boeckmann, C. Thielen, and A. Wittmann. Complexity of the Temporal Shortest Path
Interdiction Problem. Accepted for the Proceedings of the 2nd Symposium onAlgorithmic
Foundations of Dynamic Networks (SAND 2023). 2023

3

https://doi.org/10.1016/j.dam.2021.07.008
https://doi.org/10.1016/j.dam.2021.07.008
https://doi.org/10.1007/978-3-030-63072-0_13
https://doi.org/10.1007/978-3-030-63072-0_13

1. Introduction

Finally, Chapter 6 is based on the following journal article:

J. Boeckmann, C. Thielen, and U. Pferschy. “Approximating single-and multi-objective
nonlinear sum and product knapsack problems”. In: Discrete Optimization 48 (2023),
100771. doi: 10.1016/j.disopt.2023.100771

Theworks of Chapters 3 and 4 have been partially supported by the German FederalMinistry
for the Environment, Nature Conservation andNuclear Safety (BMU)within the project “AKUT
– Incentive Systems for Municipal Flood Prevention” (grant number 67DAS156C).

4

https://doi.org/10.1016/j.disopt.2023.100771

2 Preliminaries

In this chapter, we present the most important definitions and concepts that are used through-
out this thesis. However, since the knowledge of basic mathematical concepts in discrete op-
timization is assumed, we refrain from introducing the concepts in detail and refer to suitable
literature at the beginning of each section instead.

2.1 Optimization Problems

Optimization problems are encountered in various forms and complexities in everyday life.
Whether you run a company and try to operate yourmachines such that the profit is maximized
(which might be a very challenging task), or you simply try to find the best bus that gets you to
work on time, you have encountered an optimization problem. In this section, we present some
important classes of optimization problems. For a more detailed overview, we refer to [PR14;
Sch98].

Linear programs Given a setX of feasible solutions, the aim in an instance of an optimization
problem is to find the solution that maximizes or minimizes the objective function α : X Ñ R.
The optimization problem is written as

max or min αpxq

subject to (s.t.) x P X .

An optimization problem is given by the set of its instances. A particularly important class of
optimization problems are linear optimization problems or linear programs (LPs), which are the
optimization problems whose instances can be expressed of the form

max or min cTx
s.t. Ax ď b

x P Rn,

where c P Rn, b P Rm, and A P Rmˆn. Numerous real-world optimization problems can be
expressed as linear programs and there exist highly efficient algorithms that solve extremely
large instances within seconds on a regular computer. A well-studied LP is the continuous
knapsack problem, where one is given a knapsack capacity C P R and a set of items, each

5

2. Preliminaries

assigned a weight wi P R and a profit pi P R. The aim in the continuous knapsack problem
is to (possibly partially) pack items into the knapsack such that the total weight of (partially)
packed items does not exceed the knapsack capacity and the sum of the profits of (partially)
packed items is maximized. The problem can be expressed as

max
n
ÿ

i“1

pi ¨ xi

s.t.
n
ÿ

i“1

wi ¨ xi ď C

0 ď xi ď 1 @i P t1, . . . , nu

x P Rn.

Mixed integer programs The continuous knapsack problem, however, becomes significantly
more difficult as soon as we do not allow the items to be packed partially anymore, i.e., if the xi
can be either zero or one. This yields the well-studied 0-1 knapsack problem, which is revised
in further detail in Chapter 6. By imposing an additional integrality constraint on some, or
possibly all, of the variables of an LP, we obtain the class ofmixed integer optimization problems
ormixed integer programs (MIPs), often also referred to asmixed integer linear programs. These
problems are significantly harder to solve in general and some specific ones have challenged
researchers for decades.
All problems in this work belong to the class of mixed-integer programs, which are, in gen-

eral, hard to solve. Even small instances with just a few hundred variables can often not be
solved to optimality by the most refined state-of-the-art solvers in reasonable time.

2.2 Complexity

In this section, we provide an overview of the most important concepts of complexity theory.
The overview is based on [GJ79], which is recommended for a more detailed explanation.

Encoding schemes An alphabet Σ is a non-empty finite set of symbols and Σ˚ is the set of
all finite strings of symbols in Σ. A set L Ď Σ˚ is called a language over the alphabet Σ. For
each s P L, we denote by |s| the encoding length of s, i.e. the number of symbols in the string s.
An encoding scheme is a function that maps numbers or problem instances to strings over the
alphabet Σ.
In this thesis, we assume that Σ “ t0, 1u and speak of bits instead of symbols. Further, we

assume a “reasonable” encoding of the numbers and instances (see also [GJ79]), which means
that an integer n P Z is encoded binary with encoding length rlog2pnqs ` 1 bits (rlog2pnqs

for the absolute value and one for the sign). Further a rational number p{q P Q is encoded
by encoding the two integers p and q. This motivates the convention that log denotes the
logarithm to the base two. As a final remark, we will refrain from encoding irrational numbers,
since they cannot be encoded in finite encoding length without rounding appropriately. For the
interested reader, a different kind of complexity theory that also allows for irrational numbers
is presented in [Blu+98].

6

2.2. Complexity

Asymptotic analysis The running time of an algorithm on an input instance is the number
of execution steps the algorithm needs on the instance until it terminates. For a more detailed
way of expressing the running time of an algorithm, we refer to [Aus+12]. In the analysis of
algorithms, one is typically interested in the running time of the algorithm compared to the
encoding length (often also called size) of the input. However, since particularly running times
for large problem instances are of interest, it is common to express the running time of an
algorithm in theO-notation, which only accounts for the most dominant terms of the running
time as the size of the input tends to infinity. Formally, given n1, n2 P N0, X Ď Zn1 ˆ Rn2 ,
and two functions f, g : X Ñ R, we say that fpxq P Opgpxqq if there exist constants b, c ą 0
and some x̄ P X such that fpxq ď c ¨ gpxq ` b for all x ě x̄ (which means that xi ě x̄i for
all i P t1, . . . , n1 ` n2u). In Chapter 6 of this thesis, we analyze an algorithm, whose running
time depends on 1{ε for some variable ε ą 0. For convenience, we introduce the convention
that, whenever a variable denoted by ε appears in the argument of the O-notation, it tends to
zero from above. We say that an algorithm has polynomial running time or is a polynomial-time
algorithm if, for each instance, there exists a polynomial g such that the running time of the
algorithm on the instance is in Opgpxqq, where x is the encoding length of the instance.

Decision problems A problem P is called a decision problem if its set of instances can be
partitioned into a set YP of yes-instances and a setNP of no-instances and the task is to decide
to which of the two sets a given problem instance belongs. An algorithm solves a decision
problem if it halts and assigns each given instance correctly. What makes decision problems
so important in combinatorial optimization is the fact that every optimization problem has an
associated decision problem by asking whether, given a value K P R, there exists a solution
with objective valueK or better. Solving the optimization problem to optimality clearly solves
the associated decision problem for any givenK . Reversely, if the associated decision problem
can be solved efficiently, one can solve the optimization problem by applying a binary search
onK .

Complexity classes While there exists a variety of complexity classes, we define the twomost
important classes in complexity theory, which are P andNP . The class P consists of the deci-
sion problems for which there exists a deterministic polynomial-time algorithm. The classNP
consists of the decision problems for which there exists a non-deterministic polynomial-time
algorithm, i.e., for each yes-instance, there exists a certificate swhose encoding length is poly-
nomial in the encoding length of the problem instance and a polynomial-time algorithm that
verifies the yes-instance.
While it is clear that P Ď NP , the question whether P ‰ NP , which is assumed by the

research community, is one of the yet unsolved famous millennium problems and, therefore,
one of the most challenging open problems in mathematics and computer science.

Reducibility and Hardness A decision problem P1 is called (polynomial-time) reducible to
a decision problem P2 if there exists a polynomial-time algorithm that transforms any in-
stance x1 of P1 into an instance x2 of P2 such that x1 is a yes-instance of P1 if and only
if x2 is a yes-instance of P2. In this case, we write P19P2. Informally speaking, this means
that, if P2 can be solved in polynomial time, so can P1.

7

2. Preliminaries

A decision problem P P NP is called NP-complete if P 19P for all P 1 P NP , which
means that, if anNP-complete problem was solvable in polynomial time, all problems inNP
could be solved in polynomial time, which then would imply that P “ NP . The proof of the
existence of an NP-complete problem, which is also known as Cook’s Theorem, is one of the
most celebrated results and most important milestones (if not the most important milestone)
in complexity theory. Finally, an optimization problem is called NP-hard if its associated
decision problem isNP-complete. A problem is said to be stronglyNP-complete (NP-hard) if
it isNP-complete (NP-hard) when the input is unary encoded instead of binary. If it should be
expressed that a problem isNP-complete but not stronglyNP-complete, we call the problem
weakly NP-complete.

2.3 Graphs and Networks

Many problems in the field of discrete optimization are motivated from real-world problems,
often involving geographic information. Graphs and networks are a highly vivid way of ex-
pressing these problems and are used extensively throughout this thesis. For a more detailed
overview, we refer to [AMO93; Die97].

Basic concepts A directed graph H “ pV,Rq consists of a nonempty, finite set V of vertices
or nodes and a finite, possibly empty set R of arcs. Each arc r P R has a start node denoted
by αprq P V and an end node denoted by ωprq P V . Similarly, an undirected graphH “ pV,Eq

consists of a nonempty, finite set V of vertices or nodes and a finite, possibly empty set E
of edges, where each edge is a pair of nodes. Since most graphs in this thesis are directed,
we restrict the provided overview to directed graphs, while the most definitions and concepts
carry over similarly to undirected graphs. Further, if the context is clear, we omit the “directed”
or “undirected” when referring to a graph. Within this thesis, we usually denote a graph by G
if it is the input graph of a problem. When we explicitly want results to hold for a larger class
of graphs, the graph is denoted by H .

For the remainder of this section, let H “ pV,Rq be a directed graph. Whenever the graph
is clear from the context, we denote by n its number of nodes and bym its number of arcs (or
edges in the undirected case). Two arcs r1, r2 P R are called parallel if αpr1q “ αpr2q and
ωpr1q “ ωpr2q and an arc r P R is called a self-loop if αprq “ ωprq.

Adjacency and Incidence A node v P V and an arc r P R are called incident if v P

tαprq, ωprqu. Two nodes u ‰ v are called adjacent if there exists an arc r P R that is inci-
dent to both u and v. Further, two arcs r1, r2 P R are called incident if there exists a node
to which both arcs are incident. For a node v P V , we denote by δ´

Hpvq the set of its in-
coming arcs, i.e., δ´

Hpvq :“ tr P R |ωprq “ vu and by δ`
Hpvq the set of its outgoing arcs,

i.e., δ`
Hpvq :“ tr P R |αprq “ vu. Further, the set of incident arcs of v are denoted by

δHpvq :“ δ´
Hpvq Y δ`

Hpvq. Whenever the graph is clear from the context, we omit theH in the
index. For a subset V 1 Ď V of nodes, we define δ´

HpV 1q :“ tr P R |ωprq P V 1 and αprq R V 1u

and analogously δ`
HpV 1q :“ tr P R |αprq P V 1 and ωprq R V 1u.

Paths A common task in graph-related problems is to navigate trough a graph cost-efficiently,
which motivates the following definitions. A (directed) path P “ pr1, . . . , rkq is a finite se-

8

2.3. Graphs and Networks

quence of arcs such that, for each i P t1, . . . , k ´ 1u, it holds that ωpriq “ αpri`1q, i.e., the
end node of each arc is the start node of the next arc in the path. We call αpr1q the start
node of the path and ωprkq the end node of the path. The trace of P is defined as tracepP q :“
pαpr1q, . . . , αprkq, ωprkqq, i.e., the sequence consisting of the nodes that are visited by the path.
An undirected path P “ pv1, r1, v2, . . . , vk, rk, vk`1q is a finite sequence with v1, . . . , vk`1 P V
and r1, . . . , rk P R such that, for each i P t1, . . . , ku, the arc ri connects vi and vi`1, or, in-
tuitively speaking, an undirected path is a path that ignores the direction of the arcs. The
sequence pv1, . . . , vk`1q is then called the trace of the undirected path. Whenever we speak of
a path, we mean a directed path.
In the following, let P “ pr1, . . . , rkq be a path and pv1, . . . , vk`1q be its trace. For two

nodes s, t P V , the path P is called an s-t-path if αpr1q “ s and ωprkq “ t, i.e., if it starts in s
and ends in t. The path P is called elementary if, for any two nodes vi and vj in the trace of P ,
it holds that vi “ vj implies that i, j P t1, k ` 1u. If v1 “ vk`1, the path P is called a cycle.
Let u, v P V be two nodes. We call u a parent of v if there exists an arc from u to v and,

reversely, call v a child of u in this case. Further, u is called a predecessor of v if there exists
a path from u to v and, reversely, v is called a successor of u in this case. A node without
children is called leaf and a node without parents is called root. A graph, in which two nodes
are connected by exactly one undirected path is called a tree.
A binary tree is defined recursively as follows:

• The graph consisting of a single node is a binary tree.
• For two binary trees T1 and T2, the graph consisting of T1, T2, and a node v that has an
arc to each of the root nodes of T1 and T2 is a binary tree.

Note that, by construction, each binary tree has one unique root node. A node of a binary tree
that is not a leaf is called an inner node.
Graph properties A directed graph without self-loops and parallel arcs is called simple. A
graph is called connected if, for each pair u, v P V of nodes, there exists a path from u to v and
a graph is called weakly connected if, for each pair u, v P V of nodes, there exists an undirected
path from u to v. Further, a graph which does not have a cycle is called acyclic. A topological
sorting of the nodes is a bijection σ : V Ñ t1, . . . , nu such that, for each arc r P R, it holds
that σpαprqq ă σpωprqq. It is well known that a graph admits a topological sorting if and only
if it is acyclic.
Subgraphs Solving graph-related optimization problems efficiently often requires solving sub-
problems on specific parts of the graph. This motivates the introduction of so-called subgraphs.
A graphH 1 “ pV 1, R1q is a subgraph ofH “ pV,Rq if V 1 Ď V andR1 Ď R. For a subset V̄ Ď V
of nodes, the graph H ´ V̄ is defined as the graph obtained from H by removing the nodes
in V̄ and all their incident arcs. Analogously, for a subset R̄ Ď R of arcs, the graph H ´ R̄ is
defined as the graph obtained from H by removing the arcs in R̄. For a subset V 1 Ď V , we
define the subgraph of H induced by V 1 by the subgraph of H that contains exactly the nodes
in V 1 and the arcs that are not incident to nodes in V zV 1 and denote it by H|V 1 . Similarly,
for a subset R1 Ď R of arcs, we define the subgraph of H induced by R1 by the subgraph of H
that contains exactly the arcs in R1 and their incident nodes and denote it byH|R1 . A (weakly)
connected component of H is an inclusionwise-maximal (weakly) connected subgraph of H .

9

2. Preliminaries

Networks and flows When distributing goods on a graph, it is often a reasonable assumption
that the amount of goods that is sent over an arc is limited. A network H “ pV,R, uq is a
directed graph extended by a capacity function u : R Ñ Rě0. The capacity of a set R̄ Ď

R of arcs is defined as uHpR̄q :“
ř

rPR̄ uprq. Given a demand function b : V Ñ R with
ř

vPV bpvq “ 0, a flow satisfying the demand is a function f : R Ñ Rě0 that satisfies bpvq “
ř

rPδ´pvq fprq ´
ř

rPδ`pvq fprq for each v P V and fprq ď uprq for each r P R. For two nodes
s ‰ t, an s-t-flow is a flow that satisfies a demand function b that is of the form bpvq “ 0 for
all v P V zts, tu, bpsq “ ´val, and bptq “ val for some val P Rě0, which is called the value of
the s-t-flow. If the nodes s and t are clear from the context, we simply speak of a flow.

A maximum s-t-flow is an s-t-flow of maximum value. An s-t-cut, or cut if s and t are clear
from the context, is a partition V “ S 9Y T of the nodes of H such that s P S and t P T and
we say that the arcs in δ`pSq are in the cut C “ pS, T q. For an arc r being in a cut C , we
slightly abuse notation and write r P C . The capacity of a cut C “ pS, T q in H is defined
as capHpCq :“

ř

rPC uprq, and a minimum cut in H is a cut of minimum capacity in H . The
celebrated max-flow min-cut theorem states that the value of a maximum flow is equal to the
capacity of a minimum cut in H .

2.4 Multicriteria Optimization

In some optimization problems, there are multiple, possibly conflicting, criteria contributing
to the quality of a solution. Take the example of buying a new car. On the one hand, you
want the car to be cheap, but on the other hand, you also want your car to be fuel-efficient (or
power-efficient if it is electric). We briefly introduce the concept of multicriteria optimization
and refer to [Ehr05] for a more fundamental description.

Pareto orders For two vectors y, y1 P Rp for some p ě 2, we define the Pareto order as follows:

y ďP y1 :ðñ yi ď y1
i for all i P t1, . . . , pu and yj ă y1

j for some j P t1, . . . , pu

Given a set Y Ď Rp, a vector y P Y is called non-dominated with respect to maximization
(minimization) if there does not exist another vector y1 P Y with y ďP y1 (y1 ďP y).

Multi-objective problems An instance of a multi-objective optimization problem consists of
a set X of feasible solutions, an objective function f : X Ñ Rp, where we refer to the i-th
component of f by f i, and an optimization sense max or min. A multi-objective optimization
problem is given by the set of its instances. The image Y :“ fpX q of f is called the image set.
The aim in an instance of a multi-objective optimization problem is to find a subsetX Ď X of
solutions, called an efficient set such that its image Y :“ fpXq under f is the set of all non-
dominated points inY with respect to the optimization sense. A solution x, for which y “ fpxq

is non-dominated inY is called efficient. To distinguish between themultiple criteria and a one-
dimensional objective function as introduced in Section 2.1, we refer to problems of the latter
type as single-objective problems.

10

2.5. Approximation Algorithms

2.5 Approximation Algorithms

As we have seen in Section 2.2, there exist optimization problems that, unless P “ NP ,
cannot be solved to optimality in polynomial time. Some of those problems, however, ad-
mit polynomial-time algorithms that return a solution whose objective value is guaranteed to
deviate no more than a certain multiplicative factor from the objective value of an optimal
solution. Such algorithms are called approximation algorithms. For a detailed overview on
approximation algorithms, the reader is referred to [Vaz01; WS11] for the single-objective case
and to [HRT21] for the multi-objective case. Whenever we refer to approximation algorithms
throughout this thesis, we implicitly assume that all feasible solutions have a non-negative
objective value.

Single-objective approximations Let P be a single-objective maximization (minimization)
problem and let α ě 1. An algorithm ALG for P that computes a feasible solution with objec-
tive value at least 1{α (at most α) times the optimal objective value in polynomial time for every
instance is called an α-approximation algorithm. The value α is then called the approximation
ratio of the algorithm.
A polynomial-time approximation scheme (PTAS) is a family pALGεqεą0 of algorithms such

that, for each ε ą 0, the algorithm ALGε is a p1 ` εq-approximation algorithm. A PTAS
pALGεqεą0 is called a fully polynomial-time approximation scheme (FPTAS) if the running time
of ALGε is additionally polynomial in 1{ε and the encoding length of the problem instance for
all ε ą 0.

Multi-objective approximations A similar concept can be introduced for multi-objective
problems. It is worth mentioning that the number of non-dominated points may be super-
polynomially large for most discrete multi-objective optimization problems. Hence, even if
P “ NP , one cannot compute an efficient set for these problems in polynomial time, which
is another motivation to introduce multi-objective approximations. To this end, let α ě 1 and
let P be a multi-objective problem with feasible setX , objective function f : X Ñ Rp, and im-
age set Y “ fpX q. A feasible solution x P X α-approximates another feasible solution x1 P X
(or, equivalently, the feasible point y “ fpxq α-approximates the feasible point y1 “ fpx1q) if

f ipxq ě 1{α ¨ f ipx1q for all i P t1, . . . , pu if the optimization sense is maximize, or
f ipxq ď α ¨ f ipx1q for all i P t1, . . . , pu if the optimization sense is minimize.

A set X Ď X of feasible solutions is called an α-approximate Pareto set if, for every feasible
solution x1 P X , there exists a solution x P X that α-approximates x1.

An α-approximation algorithm for P is an algorithm ALG that computes an α-approximate
Pareto set in polynomial time for every instance.
Moreover, a multi-objective polynomial-time approximation scheme (MPTAS) for the prob-

lem P is a family pALGεqεą0 of algorithms such that, for each ε ą 0, the algorithm ALGε is a
p1 ` εq-approximation algorithm. An MPTAS pALGεqεą0 for P is called a multi-objective fully
polynomial-time approximation scheme (MFPTAS) if the running time of ALGε is additionally
polynomial in 1{ε and the encoding length of the problem instance for all ε ą 0.

11

3 AMixed-Integer ProgrammingApproach

to Municipal Flood Mitigation

Abstract Adapting to the consequences of climate change is one of the central challenges
faced by humanity in the next decades. One of these consequences are intense
heavy rain events, which can cause severe damage to buildings due to flood-
ing. In this chapter, we present the first use of optimization techniques that
scales well enough to be applicable for supporting decision making in planning
precautionary measures for realistic pluvial flash flood scenarios. Our mixed-
integer programming model has been implemented as an innovative decision
support tool in the form of a web application, which has already been used by
more than 30 engineering offices, municipalities, universities, and other insti-
tutions. The model aims to minimize the damage caused in the case of a heavy
rain event by taking best-possible actions subject to a limited budget and con-
straints on the cooperation of residents. We further present an efficient, graph-
based representation and preprocessing of the surface terrain, a combinatorial
algorithm for computing an initial solution of the mixed-integer program, and
computational results obtained on real-word data from different municipalities.

3.1 Introduction

Scientists agree that heavy rain events will increase both in their intensity and their frequency
within the next years [Ble+18; IPC21; RS17]. Adapting these rain events or, more generally, to
the consequences of climate change is assuredly one of the central challenges faced by human-
ity in the next decades.

The flash flood from 14 to 15 July 2021 in Germany, Luxembourg, and Belgium at the latest
has caused a special public interest in adapting to such events. This event claimed more than
180 lives [FS21] and caused tremendous damage, which has been been estimated at a total of
32 billion euros [Moh+23].
Typically, flood mitigation concepts are created based on simulations rather than using op-

timization methods [Ger16]. Prioritization of actions is then often conducted by a simple point

13

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

scheme [Sie18]. This method, like any other purely simulation-based method, lacks the con-
sideration of site-specific interplay of actions, which motivates using optimization methods in
the context of flood mitigation.

3.1.1 Previous Work

Although there is clear evidence of the efficacy of precautionary measures [Kre+05], the lit-
erature on the use of optimization techniques in order to design flood mitigation concepts is
surprisingly limited, which is also pointed out in [Tas21; WKG14]. The closest related study
to this work is [Tas21], where the “Optimal Flood Mitigation Problem”, in which the aim is
to optimize the positioning of a single type of precautionary measure (embankments) to pro-
tect critical assets in the case of a flood scenario, is introduced. Further, two time-indexed
mixed-integer programming formulations that over- and underestimate the water flows during
a flooding scenario are presented. Here, the over- and underestimation is caused by the lin-
earization of nonlinear constraints. Due to the time-indexed formulation, however, the MIPs
do not tractably scale to realistic scenarios (as noted in the abstract of [Tas21]).

The problem of designing mitigation concepts for coastal floods in the Netherlands is an
impressive example of the potential of using optimization techniques in flood mitigation. A
mixed-integer programming formulation for a cost-efficient design of dike heights is presented
in [Bre+12; ZVH18]. Further, a greedy search algorithm to compute a combination of reinforce-
ment measures for dike segments, which is 42% cheaper than the combination obtained from
the common approach, is implemented in [Kle+21].
Moreover, a genetic algorithm is used to compute efficient mitigation concepts for fluvial

(river-caused) flash floods on the Thames Estuary (London, England) in a multi-objective set-
ting [WKG14]. Apart from the measures themselves, they also compute a threshold value for
the timing to make an intervention given the uncertainty of the development of climate change
and its impact on fluvial flash floods.
Another approach to the design of flood mitigation concepts can be found in [Hua+18],

where a simulated annealing algorithm is used to determine an allocation of low-impact actions
such as porous pavements, green roofs, etc. to districts in a megacity. Moreover, a particle
swarm optimization algorithm is used in [Ngo+16] to determine an optimal pumping schedule
and optimal weir crest heights for detention reservoirs to minimize downstream flood damage.
An often neglected but crucial factor in creating successful flood mitigation concepts is tak-

ing the cooperation of residents into account since, in many cases, the most efficient precau-
tionary measures are located on private properties. Indeed, the potential of incentives in flood
prevention has already been established as promising [JKS08; MHJ18; PBA14]. In practice,
however, plans are often made before involving critical private actors. A holistic review on
using market-based instruments for flood risk management is provided in [Fil14].
Beside these approaches for flood mitigation, a wide variety of optimization techniques are

used in post-disaster flood management. The design of evacuation plans including shelter
location planning and helicopter assignment in a multi-objective robust setting is investigated
in [KP21] and real-time operation procedures that specify reservoir releases during a flood
are examined in [CM15; WH08]. For a more extensive review of optimization and machine
learning approaches in post-disaster flood management, we refer to [Mun+21].

14

3.1. Introduction

Other applications of optimization techniques in water management involve the design of
sewage water systems [Sch+14], a real-time release schedule for reservoirs during a
flood [WH08], and the geometrical design of retention basins [Nem+22].

3.1.2 The Project AKUT

The work presented in this chapter has been performed within the project AKUT – an acronym
for the German translation of “Incentive Systems for Municipal Flood Prevention” – which
has been funded by the German Federal Ministry for the Environment, Nature Conservation,
and Nuclear Safety from January 2019 to March 2021. Within the project, a mixed-integer
programming approach has been developed to find an optimal combination of precautionary
measures to be taken such that the resulting damage on buildings isminimizedwhile respecting
a given budget and constraints on the cooperation of the residents. The resulting MIP has been
implemented in a web application (also referred to as AKUT) using the Flask framework and
Python 3.8. The application is available for municipalities free of charge (so far only in German
language).
The project team included a municipality providing us with real-world data and the en-

gineering office “igr GmbH” validating our results by comparing them to results of state-of-
the-art simulations. Further, the Professorship of Water Resource Management and Sanitary
Environmental Engineering at Mainz University of Applied Sciences formulated and developed
the engineering methodology for the model while we formulated the mathematical model and
implemented the web application.
We present a novel mixed-integer programming approach for computing optimized flood

mitigation concepts that minimize the damage to buildings due to pluvial flash floods. To the
best of our knowledge, this approach marks the first usage of optimization techniques in the
context of planning precautionarymeasures for pluvial floodmitigation that scales well enough
to be applied to real-world instances. Our model allows for different types of precautionary
measures (basins, ditches, and embankments) that lead to elevations or depressions of the ter-
rain surface. Moreover, the model takes constraints on the cooperation of the residents into
account. One of the central challenges to make this approach work for realistic scenarios is
modeling the terrain surface efficiently while still maintaining a realistic representation. We
tackle this challenge via an efficient graph-based approach together with suitable preprocess-
ing methods. Moreover, we present a combinatorial algorithm that is able to quickly compute
an initial feasible solution of the presented MIP.

Our approach is implemented as an innovative decision support tool in the form of a web
application, which has already been used in practice by more than 30 engineering offices, mu-
nicipalities, universities, and other institutions from all over Germany. We compare the results
obtained from our model on real-world instances from different municipalities to results ob-
tained from established simulation software, and investigate the main drivers for the running
time and the quality of the obtained solutions. The novelty of our approach in comparison to
a selection of the previously presented existing literature is summarized in Table 3.1.

15

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

Reference pre-/post-disaster optimization pluvial scalable incentivation
[Tas21] pre
[WKG14] pre

[Bre+12; ZVH18] pre
[CM15; WH08] post

[KP21] post
[PBA14] pre
This work pre

Table 3.1.: Comparison of our work to existing literature. A tick in the column “optimization”
indicates that optimization algorithms are used and a tick in the column “pluvial”
represents that the paper considers a pluvial flood scenario (as opposed to a fluvial
or coastal flood scenario). A tick in the column “scalable” indicates that the devel-
oped method scales well enough to be applied to realistic scenarios. Finally, a tick
in the column “incentivation” means that incentives or cooperation of residents is
considered.

3.2 Problem Description and Input Data

In this section, we define the underlying problem and describe the input data on which our
approach is based.

In short, given a set of possible locations for retention basins (simply called basins in the
following), ditches, and embankments, the goal in the problem is to determine a subset of
these precautionary measures, usually called actions in the following, to take such that the
resulting damage to buildings is minimized while respecting a given budget and constraints on
the cooperation of residents.

The terrain surface is given as a digital terrain model (DTM), which is an established stan-
dard in engineering [Ger16]. A DTM contains 2D coordinates in UTM format on a given grid
together with their corresponding geodesic height, which is similar to the elevation above sea
level. In our case, a grid size of one meter is used.
Each of the data points in the DTM then determines the geodesic height of the one by one

meter square centered at the 2D coordinate. This square is called the shape of a coordinate, and
two 2D coordinates are called adjacent if their distance is one meter, i.e., if one coordinate is
one meter to the north, south, west, or east of the other. These data are available for all German
municipalities and, hence, suitable for applying our model in practice.

To estimate the damage that occurs due to flooding in the case of a rain event, information
about the buildings’ locations is required. To this end, the shape of a building is defined as
the polygon derived from its outline. The outlines of the buildings are obtained from ALKIS1,
which is a digital land information system. Similar to the data for the DTM, these data are
available to all German municipalities.
1German acronym for “official real estate cadastre information system”

16

3.2. Problem Description and Input Data

In general, we say that two shapes intersect if their geometric intersection has a strictly
positive area. To link the positions of the buildings to the DTM coordinates, we say that a
building is on a coordinate, if the shape of the building and the shape of the coordinate intersect.
Conversely, we say that a coordinate intersects with a building in this case.

The definition of damage caused to buildings is based on the advisory leaflet
DWA-M 119 [Ger16] published by the German Association for Water, Wastewater and Waste
(DWA) in 2016. The DWA is a politically and economically independent organization that
supports safe and sustainable water management and prepares the DWA set of rules, which
includes a large number of standards and advisory leaflets. Within the advisory leaflet DWA-
M 119, they identify two main factors for the damage caused to a building in case of a flash
flood.
The first main factor is the maximum water level that occurs at a building. Here, the maxi-

mumwater level at a building is defined as the maximum over all water levels at the coordinates
intersecting with the building. The hazard class, which represents the maximum water level
at a building, is a categorical measure attaining the values zero to four. It is derived from the
maximum water level at a building by the following rules:2

• Zero: The maximum water level at a building is 0cm, i.e., none of the coordinates inter-
secting with the building has a strictly positive water level.

• One: The maximum water level at the building is strictly larger than 0cm and less than
or equal to 10cm.

• Two: The maximumwater level at the building is strictly larger than 10cm and less than
or equal to 30cm.

• Three: The maximum water level at the building is strictly larger than 30cm and less
than or equal to 50cm.

• Four: The maximum water level at the building is strictly larger than 50cm.

The second main factor describes the (quite intuitive) fact that not every building suffers
an equal amount of damage at a given water level. As an example, it is by far less severe if
a garage is affected by the rain event compared to the case where a hospital is affected. To
take this into account, the damage at a building does not only depend on the water level at
the building (represented by its hazard class), but also on its damage class. The damage class is
a categorical measure of the damage occurring at a building and can attain the values one to
four, where one corresponds to the lowest damage class (the garage in our example), i.e., the
least amount of damage, and four corresponds to the highest damage class (the hospital in our
example). The data from ALKIS, aside from just the shape of the building, provide additional
information about the buildings like their usage, which allows to preset the damage class for
some of the buildings automatically. For the remaining buildings, the damage class has to be
specified manually.
The combination of the hazard class and the damage class yields the need for protection of

a building, which is rated using a point system with a scale from zero to seven. For buildings
2See advisory leaflet DWA-M 119 [Ger16].

17

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

with hazard class zero, i.e., none of the coordinates intersecting with the building have a strictly
positive water level, the need for protection is also zero. Every other building has a strictly
positive need for protection, which is obtained by taking the sum of the hazard- and danger
class minus one. The objective of the problem is to minimize the sum of all buildings’ needs
for protection.

In order to protect the buildings, a set of potential basins, ditches, and embankments is given,
which together make up the possible actions. Each possible action is given by the polygon of
its location, its construction costs, and its depth (in the case of a basin or ditch) or height (in
the case of an embankment). The polygon of an action’s location is called its shape.

Similar to the buildings, we say that an action is on a coordinate if its shape intersects with
the shape of the coordinate. In this case, we also say that the coordinate intersects with the
action. If an action is taken, i.e., a basin, ditch, or embankment is built, the geodesic height of
all coordinates intersecting with the action is decreased by the action’s depth or increased by
its height. The change in geodesic height affects the flow of the water on the terrain surface
and, hence, can protect buildings. The overall cost for taking actions is bounded from above
by a given budget.

Taking an action sometimes requires the consent of the owners of the properties on which
the action is located. The owners of the properties are called actors in the following. The
outlines of the properties are also obtained from ALKIS. As before, the shape of a property
is defined as the polygon derived from its outline. An action is on a property if their shapes
intersect. Convincing actors to cooperate might be more or less hard. To guarantee that the
recommended combination of actions can realistically be implemented, the number of hard-
to-convince actors on whose properties actions are to be taken is bounded from above. To this
end, an extended traffic light rating system with the following characterizations is used:

• Green: The actor is willing to cooperate.

• Yellow: The actor needs minor incentives to cooperate.

• Red: The actor needs major incentives to cooperate.

• Black: The actor does not cooperate at all.

For simplicity, we also refer to green, yellow, red, and black properties in the following. The
willingness to cooperate has to be assigned manually by the user for each property.

3.3 Mathematical Modeling

We now present a graph-based model for the problem described in Section 3.2 as well as an ap-
proach for reducing the size of the underlying graph. Afterwards, we derive our mixed-integer
programming formulation that is used for solving the graph-based model and we describe valid
inequalities and presolve techniques that are used to improve performance.

18

3.3. Mathematical Modeling

3.3.1 Graph-Based Model

In this section, we derive a graph-basedmodel for the problem introduced in Section 3.2. To this
end, we start by presenting how a graph can be constructed from the input data and proceed
by presenting an efficient algorithm to compute the water levels for a given combination of
selected actions. Finally, we show how the graph size can be reduced while maintaining a
realistic representation of the real-world instance.

3.3.1.1 Construction of the Graph

In this section, we construct the directed graph Gor “ pVor, Rorq, which we call the original
graph, from the DTM.

For the construction of Gor “ pVor, Rorq, recall that the DTM contains data about the
geodesic height for coordinates on a one meter grid. The set Vor of nodes is constructed by
associating one node with each of these coordinates, i.e., there is a one to one correspondence
between the coordinates in the DTM and the nodes in the graph. To keep track of this corre-
spondence, each node gets the coordinate as an additional attribute.

The geodesic height of a node is defined as the geodesic height of its corresponding coordinate
and is stored as an attribute of the node in the graph. We then index the nodes in Vor “

tv1, . . . , vnu in non-decreasing order of geodesic heights, where ties are broken arbitrarily.
Further, we define the shape of a node v P Vor as the shape of its corresponding coordinate,
i.e., in this case, the one meter square with its center at the corresponding coordinate. The
definitions of whether a building, action, or property intersects with (the shape of) a node are
analogous to the ones for coordinates provided in the previous section. Finally, each node v P

Vor is assigned an area, which we denote by areapvq. In the case of the original graph, the
area is one square meter for each node. This changes for the graphs that are constructed in
Section 3.3.1.3, however.

For any two nodes whose corresponding coordinates are adjacent on the grid, there is an arc
in Ror between the nodes, which is oriented from the node with the higher index to the node
with the lower index. This means that arcs are directed from the node with larger geodesic
height (the higher node) to the node with lower geodesic height (the lower node) whenever the
two nodes do not have the same geodesic height. Note that, if all nodes in Vor have pairwise
distinct geodesic heights, this makes the original graph Gor “ pVor, Rorq acyclic since the
geodesic heights induce a topological sorting (both in the mathematical and literal sense) in
this case. An example of the original graph is provided in Figure 3.1.

To model the runoff behavior of the precipitation water, we compute flows on the graph,
which are determined by the nodes’ geodesic heights. To this end, for an arc r P Ror, we
define its slope as the absolute difference of its incident nodes’ geodesic heights and denote
it by slopeprq. When distributing the outflow of a node v P Vor among its downhill arcs, we
want to ensure that a higher slope causes more water flow on an arc. This is modeled by
the ratios of the arcs, which are introduced next and are based on the concept of processing

19

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

networks [HKT17; Koe83], in which flow is distributed proportionally among the outgoing arcs
of a node according to fixed ratios.

To compute the ratio of an arc r P Ror, which we denote by ratioprq, we distinguish two
cases. If the sum of the slopes of all outgoing arcs of the node αprq is nonzero, we define the
ratio of r by ratioprq :“ slopeprq{

ř

r̂Pδ`pαprqq
slopepr̂q. If the sum in the denominator is zero, i.e., if

all successors of αprq have the same geodesic height as αprq, the ratio of r is defined as one
divided by the number of successors, i.e., as ratioprq :“ 1{|δ`pαprqq|.
In some situations, however, actions that are taken lead to water flowing in the opposite

direction of an arc r P Ror, which means that the original graph does not suffice for our
model. A simple example for such a situation is illustrated in Figure 3.2. To this end, for an arc
r P Ror, we denote the inverse arc by

Ð
r . The extended original graph Gex

or “ pVor, R
ex
orq is then

constructed by adding the inverse arc Ð
r for each r P Ror to the original graph and setting the

ratio of the arc Ð
r to the ratio of r. Note that this does not change the node set Vor.

10
v1

11
v3

12
v6

11
v4

11
v5

12
v7

10
v2

12
v8

13
v9

10
v1

11
v3

12
v6

11
v4

11
v5

12
v7

10
v2

12
v8

13
v9

Figure 3.1.: An example of the original graph Gor “ pVor, Rorq on the left, and an example of
the extended original graph Gex

or “ pVor, R
ex
orq on the right. The number in each

node corresponds to its geodesic height, also indicated by the node’s color The
nodes are indexed in non-decreasing order of geodesic height, where ties are broken
arbitrarily as, e.g., for v4 and v5. The arcs in the original graph are directed such
that they start at the node with the higher index.

3.3.1.2 Description of the Graph-Based Model

The goal in our problem is to provide best-possible protection for the buildings by taking a
combination of actions respecting a given budget and the cooperation of the actors. In this
section, we formulate the corresponding optimization problem formally by using the extended
original graph introduced in the previous section.
The input of our graph-based model consists of:

• The original graphGor “ pVor, Rorq and the extended original graphGex
or “ pVor, R

ex
orq

• The set B of buildings, each of which is given by its shape and its damage class

20

3.3. Mathematical Modeling

u v u v

Figure 3.2.: The instance consists of two nodes u and v, where v is the higher of the two nodes.
This means that water flows from v to u, which is illustrated on the left-hand side. If
a basin with depth strictly larger than the absolute difference of the nodes’ geodesic
heights is built on v, the resulting geodesic height of v after building the basin is less
than the geodesic height of u. Therefore, the water flows in the opposite direction
after building the basin, which is illustrated on the right-hand side.

• The set A of possible actions, each of which is given by its shape, its construction costs,
and its depth/height

• The set P of properties, each of which is given by its shape and the willingness to coop-
erate of the corresponding actor

• A budget, also denoted by budget, which represents an upper bound on the total cost for
taking actions

• Themaximum combined number of yellow and red properties, which is denoted by
maxAllowedYellow ` maxAllowedRed, on which actions can be taken

• The maximum number of red properties maxAllowedRed on which actions can be
taken

• The rain per square meter (sqm) denoted by rain

A feasible solution is a set of actions whose total cost does not exceed the given budget and
where neither the combined number of yellow and red properties on which actions are taken
nor the number of red properties on which actions are taken exceeds the allowed maximum.
The objective is to minimize the sum of all buildings’ needs for protection, which is computed
from a given feasible solution as described in the following.

The decision on which actions are to be taken changes the geodesic heights of the nodes
intersectingwith these actions, whichmay in turn change the flows in the graph. The change of
the geodesic height is straightforward if there is at most one action taken on a node. However,
if there are several actions with different depths/heights taken on one node, like for example a
ditch leading into a deeper basin, we need a more sophisticated rule, which is given as follows:

(GH1) If at least one action decreasing the geodesic height (i.e., a basin or a ditch) is built on a
node v P Vor, then the geodesic height of v is set to the node’s original geodesic height
minus the maximum depth of any of the basins or ditches built on v.

21

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

(GH2) If no actions decreasing the geodesic height are built on a node v P Vor (i.e., neither
basins nor ditches are built on v) but an embankment is, then the geodesic height of v
is set to the node’s original geodesic height plus the maximum height of any of the
embankments built on v.

Once the selection of the taken actions has been made, the resulting geodesic heights (after
taking the actions) determine the flows between the nodes, which then allows us to compute
the water levels. Before we describe how the flows are computed, we describe the connection
between the flows and the water levels. To this end, we define the excess of a node v P Vor as
the amount of water accumulating at v, i.e., as the initial water from the rainfall plus the node’s
inflow minus its outflow. The water level at v is defined as the excess of v divided by the node’s
area.
We next describe how the water levels are computed. An efficient implementation of a com-

binatorial algorithm for this computation is provided as Algorithm 3, which uses Algorithms 1
and 2 as subroutines for computing the flows in the graph and joining nodes, respectively. To
this end, let G “ pV,Rq be the input graph of the problem, i.e., the graph Gor. It is important
to note that the presented algorithm also works for the graphs that are constructed later in
Section 3.3.1.3. For a subset D Ď A of actions, we define GD “ pV D, RDq as the graph that
is obtained from G when adjusting the geodesic heights as described in (GH1) and (GH2) and
changing arc directions where necessary. This graph then represents the input to Algorithm 3
when computing the water levels in the scenario where exactly the actions in D are taken.
Throughout the computation, we keep track of both the water levels and the excesses of all
nodes in V . Initially, a copy G̃1 “ pṼ1, R̃1q of the input graph is saved. This graph is modified
in each iteration of the algorithm and we denote the graph at the beginning of the t-th iteration
of the algorithm by G̃t “ pṼt, R̃tq.

To compute the flows in each iteration, Algorithm 1 is called as a subroutine, which gets the
graph G̃t “ pṼt, R̃tq in the current iteration as an input. Initially, each node v P Ṽt receives
its initial water to be distributed wtbdpvq from the rainfall, which is computed by multiplying
the given rain per square meter (sqm) with the node’s area. This water may then flow over
the node’s outgoing arcs. To compute the flows, the water to be distributed is distributed
proportionally to the ratios of the outgoing arcs if v is not a leaf. This is done by starting
at the highest root node in the graph and dispensing all its water to its children according
to the ratios of the corresponding arcs. The water to be distributed at its children is updated
accordingly. Then, this root node is removed from the graph and the process is repeated with
the next highest root node in the graph until all nodes have been processed.
With the flows that are computed usingAlgorithm 1 in the first iteration or its later-described

more efficient version using the update method in the following iterations, we compute in each
iteration t of Algorithm 3 for each leaf the proportion pt of the total rain event that is needed
to fill up the water level at the leaf to the geodesic height of its parent with lowest geodesic
height breaking ties by the indexing of the nodes, which we call the lowest parent. The leaf for
which the least such proportion is needed is called the first flooded leaf.3 For a node v P V , we
denote its lowest parent in G̃t by lpG̃t

pvq. If the graph is clear from the context, we omit the
graph in the index.
3In case that several leaves have the least proportion, any of them can be designated as the first flooded leaf.

22

3.3. Mathematical Modeling

Algorithm 1: COMPUTE-FLOWS
1 Procedure computeFlows(G̃t “ pṼt, R̃tq)
2 Initialize fprq “ 0 for all r P R̃t

3 Initialize wtbdpvq “ rain ¨ areapvq for all v P Ṽt

4 Save a copy G1 “ pV 1, R1q of the input graph G̃t “ pṼt, R̃tq

5 while V 1 ‰ H do
6 Choose v P V 1 as a root node with largest geodesic height among all roots in G1

7 if v is not a leaf in G1 then
8 Distribute the whole water to be distributed of v among its outgoing arcs

proportionally to their ratios and save the flow on r in fprq for each
r P δ`

G1pvq

9 for r P δ`
G1pvq do

10 wtbdpωprqq “ wtbdpωprqq ` fprq

11 Remove v from V 1

12 return f “ pfprqqrPR̃t

Algorithm 2: JOIN-NODES
1 Procedure joinNodes(u, v)
2 Save a copy G̃t`1 “ pṼt`1, R̃t`1q of G̃t “ pṼt, R̃tq

3 Remove all arcs that have starting node v and terminal node u from R̃t`1

4 for r P δ´

G̃t`1
puq with αprq ‰ v do

5 Set ωprq “ v in G̃t`1

6 represt`1pvq “ represtpvq Y represtpuq

7 areat`1pvq “ areatpvq ` areatpuq

8 Remove u from Ṽt`1

9 for v1 P Ṽt`1ztvu do
10 represt`1pv1q “ represtpv1q

11 areat`1pv1q “ areatpv1q

23

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

Algorithm 3: COMPUTE-WATER-LEVELS
1 Procedure computeWaterLevels(G “ pV,Rq)
2 Initialize t “ 1 and sp0 “ 0

3 Save a copy G̃1 “ pṼ1, R̃1q of the input graph
4 for v P V do
5 repres1pvq “ tvu

6 area1pvq “ areapvq

7 excess0pvq “ 0

8 while spt ă 1 do
9 For each leaf u P Ṽt, compute its incoming water over the whole rain event

given that the graph remains unchanged as

iwrtpuq “ areatpuq ¨ rain `
ÿ

rPδ´

G̃t
puq

ftprq,

where the flows pftprqqrPR̃t
are the flows computed by Algorithm 1 in the first

iteration t “ 1 or its modified version using the update method in all later
iterations t ą 1

10 For each leaf u P Ṽt, compute the proportion ptpuq of the rain event that is
needed to fill up the water level at the leaf to the absolute difference of its own
geodesic height and the geodesic height of its lowest parent lppuq, i.e., such
that excesst´1puq ` iwrtpuq ¨ ptpuq “

`

ghplpG̃t
puqq ´ ghpuq

˘

¨ areatpuq

11 Denote by û a leaf whose corresponding proportion pt :“ ptpûq is the lowest
among the computed proportions where ties are broken arbitrarily, and by v̂
its lowest parent

12 if spt´1 ` pt ě 1 then
13 pt “ 1 ´ spt´1 and spt “ 1
14 else
15 spt “ spt´1 ` pt
16 For each leaf node u P Ṽ , set excesstpuq “ excesst´1puq ` pt ¨ iwrpuq

17 if spt ‰ 1 then
18 Call joinNodes(û, v̂)
19 t “ t ` 1

20 for ṽ P Ṽt do
21 for v P represtpṽq do
22 wlpvq “ excesstpṽq{areatpṽq ` ghpṽq ´ ghpvq

23 return wl “ pwlpvqqvPV

24

3.3. Mathematical Modeling

w v u

(a) The water at node v is distributed to both its
children u andw. Neither of the childrens’ wa-
ter levels is equal to absolute difference of their
geodesic height and the geodesic height of v,
so the water at v flows from v to the nodes u
and w.

w v u

(b) The water level at node u is equal to the ab-
solute difference of the geodesic heights of u
and v, which means that the nodes u and v are
joined and afterwards represented by v. As the
water level at w is still less than the absolute
difference of the geodesic heights of w and v,
all water at v now flows to w.

Figure 3.3.: An illustration of the flows and joining two nodes during Algorithm 3.

The first flooded leaf is then joined into its lowest parent by using Algorithm 2. The excesses
until then are saved, and, from there on, the water is increased until either (1) the water level at
the next leaf reaches the absolute difference of its own geodesic height and the geodesic height
of its lowest parent in the graph G̃t of the current iteration of the algorithm, or (2) the sum of
the proportions until iteration t, which we denote by spt,4 equals or exceeds one, i.e., we have
simulated the whole rain event.
Throughout this process, for each node v, we store the nodes in the input graph that are rep-

resented by v in the current iteration t in a set represtpvq, which is updated within Algorithm 2.
The behavior of the flows as well as joining two nodes during the algorithm is illustrated in
Figure 3.3.
It is worth noting that, when u is removed from Ṽt`1 in line 8 of Algorithm 2, u has no

incident arcs. It has no outgoing arcs because the algorithm is only called for u being a leaf
in G̃t, and the incoming arcs are removed from the graph in line 3 or redirected in the for loop
starting in line 4. It is further worth noting that subsequent calls of this routine, as it is done
in Algorithm 3, can lead to parallel arcs in the graph.
After the whole rain event has been simulated in Algorithm 3, we recompute the water levels

of all nodes in the input graph using the sets represtpvq for v P V , which is done by setting
the water level at each node v that has been removed from the graph during the algorithm
to excessT pṽq{areaT pṽq ` ghpṽq ´ ghpvq, where ṽ is the unique node such that v P represT pṽq

with T denoting the number of iterations of the algorithm.5 The maximum water level at each
of the buildings and, hence, its resulting hazard class, obtained as described in Section 3.2,
follow immediately. The combination of the buildings’ hazard and damage classes yield the
corresponding needs for protections whose sum is to be minimized.
4sp: sum of proportions
5The existence and uniqueness of ṽ is shown in Lemma and Definition 3.21.

25

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

Implementing the described procedure for computing thewater levels efficiently is important
for obtaining feasible running times of our overall approach on real-world instances. In fact,
this procedure is used both when reducing the graph size as described in the following section
and for obtaining a feasible initial solution of our MIP as discussed in Section 3.5.2. Since the
subroutine of computing the flows makes up a large part of the running time of the whole
algorithm, an efficient implementation of this subroutine is particularly important.
Computing the flows from scratch for the whole graph in each iteration is highly inefficient

and causes significant overhead. Instead, if one is provided the flows from the previous iteration
and the nodes u, v P Ṽt that have just been joined in the previous iteration t using Algorithm 2,
the flows can be updated more efficiently. It is easy to see that the excess of nodes that are
neither v nor one of its successors remain unchanged. Further, it is also easy to see that wtbdpvq

increases exactly by areapuq ¨ rain `
ř

rPδ´puq fprq. This additional water is then distributed
along the subgraph that is induced by v and its successors, and the new flows are added to
the flows that have been computed in the previous iteration. In fact, updating the flows in
this way decreases the average running time of Algorithm 3 by more than 90% compared to
recomputing the flows from scratch in each iteration.
Further, the extraction of the first flooded leaf is implemented using a Fibonacci heap, which

results in a speedup of about 25% on average as opposed to extracting it using a simple sorted-
array implementation. Using the efficient implementation, Algorithm 3 runs fast enough to
account for a negligible amount of the total running time.

Finally, we would like to point out that the iteration indices in Algorithm 3 are chosen such
that all variables concerning the flows, i.e., the flows ft themselves, the graph G̃t, the area areat,
and the sets represt, are initialized with one, and all variables concerning the excesses of the
nodes, i.e., the excesses excesst themselves, the proportions p̂t, and the sum of proportions spt,
are initialized with zero. This enforces that, in each iteration t of the algorithm, the flows ft
are the flows on the graph G̃t and the variables pexcesstpvqqvPṼt

store the excesses after the
flows have been distributed along the graph.

3.3.1.3 Reducing the Graph Size

The size of the original graph Gor “ pVor, Rorq or the extended graph Gex
or “ pVor, R

ex
orq is

the main determinant for the size of a problem instance. In this section, we describe how the
graph size can be reduced while still maintaining a realistic model of the problem described in
Section 3.2.
It is worth noting that the sizes of both the original graph and the extended graph are linear

in the cardinality of the node set Vor, which we therefore use as a natural measure of the size
of these graphs. The aim of this section is to derive the reduced graph Gred “ pVred, Rredq from
the original graph. In fact, applying our MIP presented in the next section based on the original
graph only works for unrealistically small instances. Hence, reducing the size of the graph is
actually crucial in order to obtain a model that is applicable in practice. As a quick outline of
this section, we provide a short summary of the ideas of our graph size reduction techniques:

26

3.3. Mathematical Modeling

1) Instead of a fixed grid size of one meter, we use a dynamic grid size, which means that
certain parts of the terrain surface are modeled using coarser 25m or 5m grids.

2) We remove nodes that do not cause flow into critical locations.
3) We contract all nodes in non-critical locations that dispense water to critical loca-

tions into one source node.
4) We contract adjacent nodes of similar geodesic heights.

Before we apply these ideas, we introduce some further definitions. To model the terrain
surface using a grid size of 25m, we construct the graph G25 “ pV25, R25q from those coor-
dinates in the DTM where both UTM coordinates are integer multiples of 25m. This works
completely analogously to the construction of the original graph. The only difference is that
the shape of a node in V25 is no longer a square with an edge length of one meter, but now a
square with an edge length of 25 meters. Consequently, each node’s area in G25 amounts to
625sqm. Also note that, for example, a building is on a node v P V25 if its shape intersects with
the shape of v, which in G25 is a square with an edge length of 25 meters.
In the same fashion, we construct the graph G5 “ pV5, R5q from those coordinates in

the DTM where both UTM coordinates are multiples of 5m. It is important that, although the
nodes in V25, V5, and Vor stem from the same coordinates, the sets are disjoint as the attributes
of the nodes (e.g., their areas) differ.
To obtain more information about the graphsG25,G5, andGor, we first assess for each node

whether there are a buildings or possible actions on it. This means that, for each node v P V̂ ,
where V̂ is one of the sets V25, V5, or Vor, we store a set of buildings on the node, which we
denote by Bpvq, and a set of possible actions on the node, which we denote by Apvq.
A straightforward algorithm to obtain the sets Bpvq of buildings and Apvq of actions for

all nodes v P V is to loop over the nodes and, within this loop, iterate over all buildings and
actions and check if the shape of the node and the shape of the building or action intersect.
However, this has a horrendous running time and can be done way more efficiently using the
connectivity of the shapes of buildings and actions.

For simplicity, we only present the algorithm to compute the set Bpvq for all nodes v P V .
The computation of the sets Apvq works similarly. For each building, we initialize a queue q
containing a single node v1 P V whose shape contains the coordinate of some vertex of the
building’s shape. Note that the coordinate of such a node can easily be computed by rounding
both components of the vertex’s coordinate to the next multiple of 1, 5, or 25 depending on
which of the node sets the algorithm is called for.
While the queue is not empty, we take a node v from the queue and check whether it in-

tersects with the building. If this is the case, we add the building to Bpvq and add the nodes
north, south, west, and east of v that have not yet been processed for this building to the
queue. The pseudocode is provided in Algorithm 4, which takes the set B of buildings and a
node set V̂ P V25, V5, Vor as its two arguments.

1) Using a dynamic grid size: We construct a graph with a dynamic grid size, which we
denote by Gdg “ pVdg, Rdgq. To this end, we first construct the node set Vdg and then the arc
set Rdg. To construct the node set, we initialize Vdg as a copy of V25, then resolve each node

27

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

Algorithm 4: COMPUTE-BUILDINGS-ON-NODES
1 Procedure computeBuildingsOnNodes(B, V̂)
2 Initialize Bpvq “ H for all v P V̂
3 for β P B do
4 Compute v1 P V̂ containing an arbitrary vertex of the building’s shape
5 Initialize q “ rv1s and visited “ H

6 while q is nonempty do
7 v “ q.poppq

8 if β is on v and v R visited then
9 Add the nodes north, south, west, and east of v that are not in visited to q

10 Add β to Bpvq

11 Add v to visited
12 return Bpvq for all v P V̂

that intersects with a building or an action at a 5m grid size, and finally resolve each node that
has been resolved at a 5m grid size and that intersects with a ditch or an embankment at a grid
size of 1m. This procedure is described in Algorithm 5, where two shapes intersect if the area
of their intersection is strictly positive. To keep track of the resolution at the single nodes, the
resolution respvq is stored for each node v P Vdg.

Algorithm 5: CONSTRUCT-NODES
1 Procedure constructNodes(V25, V5, Vor)
2 Initialize Vdg “ V25, queue “ H, and respvq “ 25 for all v P Vdg
3 for v P V25 do
4 if v intersects with a building or an action then
5 Replace v in Vdg by the nodes in V v

5 Ď V5, where V v
5 is the set of nodes

in V25 whose shapes intersect with the shape of v (i.e., resolve this the
node v at a 5m grid size). For each v1 P V v

5 , set respv1q :“ 5.
6 Insert all newly added nodes into the queue
7 for v P queue do
8 if there is a ditch or embankment on v then
9 Replace v in Vdg by the nodes in V v

or Ď Vor, where V v
or is the set of nodes

in Vor whose shapes intersect with the shape of v (i.e., resolve the node v at
a 1m grid size). For each v1 P V v

or, set respv1q :“ 1.
10 return Vdg

The set of arcs Rdg is then constructed by adding an arc between two nodes in Vdg if and
only if they are adjacent on the dynamic grid (i.e., their shapes have a common edge). The arc is
again directed from the node with the higher index to the node with the lower index according
to the ordering of the corresponding nodes with the same coordinates in Vor (i.e., from the
higher node to the lower node whenever the two nodes do not have the same geodesic height).

28

3.3. Mathematical Modeling

Figure 3.4.: A screenshot from our web application on the left-hand side, where the dynamic
grid size is visualized and the nodes intersecting with a building are colored yellow.
The corresponding part of the graph Gdg “ pVdg, Rdgq is visualized on the right-
hand side.

To compute the ratios, we also have to take the resolutions of the nodes into account. This
stems from the fact that, with the dynamic grid size, the length of the common edge of two
adjacent nodes’ shapes can be 1meter, 5meters, or 25meters. The ratio of an arc r P Rdg, hence,
depends on the slopes of the outgoing arcs of αprq and on the proportion of the boundary of
the shape of αprq that the shapes of αprq and ωprq have in common. The ratio of r is computed
as

ratioprq :“
`

slopeprq{
ř

r̂Pδ`pαprqq
slopepr̂q

˘

¨ correctionprq,

where

correctionprq :“

#

1 if respαprqq ď respωprqq

respωprqq{respαprqq else.

An example of shapes of nodes and the corresponding graph Gdg “ pVdg, Rdgq is provided
in Figure 3.4.

Modeling all buildings at a grid size of five meters is still overly exact. Buildings at which no
(or only negligible) water levels are to be expected can still be modeled at a grid size of 25m.
To assess a good grid size, we compute the water levels on the graphs Gdg “ pVdg, Rdgq and
G25 “ pV25, R25q using Algorithm 3, which has been presented previously.
We call a node v P V25 threatened, if it has a strictly positive water level in the computation

on G25 “ pV25, R25q or if any node in Vdg whose shape intersects with the shape of v has a
water level greater than or equal to one centimeter in the computation on Gdg “ pVdg, Rdgq.
For each non-threatened node v P V25 that only intersects with buildings and not with

actions, we rescale its resolution in Gdg “ pVdg, Rdgq back to 25 meters, i.e., we contract all
nodes in Vdg whose shapes intersect with the shape of v into v. Afterwards, we recompute the
arc set Rdg and the ratios with the updated node set Vdg as we have done before, which yields
the final version of Gdg “ pVdg, Rdgq.

29

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

The reduction in the overall number of nodes achieved by this step highly depends on the
number of nodes in Vor that do not intersect with any buildings or actions, as the number of
these nodes is reduced by the highest factor of 625. In the instances presented in Section 3.5,
the overall number of nodes is usually reduced by a factor of about 500.

2) Removing nodes not causing flow into critical locations: Our next goal is to remove
nodes from the graph that do not cause any flow into critical locations. To this end, we define
four new properties for nodes. A node v P Vdg is called . . .

• critical if its shape intersects with a building or an action.
• relevant if it is critical, its resolution is not 25m, or it is a successor of a critical node
in Gdg “ pVdg, Rdgq. Apart from critical nodes, relevant nodes are either nodes where
water may accumulate and then cause critical nodes to be flooded due to back pressure,
or nodes that are needed to complete the grid without gaps.

• water-dispensing if it is not relevant, but it is a predecessor of a relevant node in the
graph Gdg “ pVdg, Rdgq. Water accumulating on such nodes does not cause flooding of
relevant nodes due to back pressure. These nodes are, however, still interesting as they
dispense water to relevant nodes.

• irrelevant if it is neither of the above. Irrelevant nodes do not contribute in any way to
the flooding of relevant nodes.

As an example, think of a municipality at the foot of a mountain. Here, the nodes at coordi-
nates within the municipality are the relevant nodes, the nodes at coordinates on the side of the
mountain facing the municipality are the water-dispensing nodes, and the nodes at coordinates
on sides of the mountain not facing the municipality are the irrelevant nodes.
The first step of the node removal consists of removing all irrelevant nodes from Vdg. It is

worth noting that this may cause the graph to be no longer weakly connected. In practice
though, this only happens if buildings are spread far apart, which is seldom the case. Apart
from this, our model still works if the graph is not weakly connected. We denote the graph
obtained by this method by Gri “ pVri, Rriq.6

The reduction in the overall number of nodes achieved by this step highly depends on the
number of irrelevant nodes, which in turn depends on the choice of the input DTM. Barely any
nodes are irrelevant in cases where the region covered by the DTM is chosen relatively tight
around the build-up region to be protected, whereas a lot of nodes are irrelevant if the region
covered by the DTM is chosen relatively large. However, since the region covered by the DTM
is composed of one by one kilometer rectangles andmust always be chosen large enough so that
no potentially relevant or water-dispensing nodes are omitted, a certain number of irrelevant
nodes is usually unavoidable, so the removal of irrelevant nodes represents an important step
in reducing the overall number of nodes.

3) Contracting nodes in non-critical locations: In the next step, we deal with the water-
dispensing nodes. By construction, flow through these nodes is not affected by the decision
on which actions are taken. To reduce the graph size, we contract all water-dispensing nodes
6ri: remove irrelevant.

30

3.3. Mathematical Modeling

into a single node s, which we call the source node. The obtained graph is denoted by Gwd “

pVwd, Rwdq.7 Note that this contraction also changes the arc set. The arcs that are incident to s
arise from arcs in Gri that are directed from a water-dispensing node to a relevant node. In
particular, this means that the in-degree of s is zero. Further, this construction might lead to
parallel arcs. To keep the graph as small as possible, parallel arcs starting in s are contracted
into a single arc.
The area of the source node is set to the sum of the areas of all water-dispensing nodes. To

compute the ratios of the arcs that are incident to s, we first compute the flows in the graphGri
using Algorithm 1 and denote the resulting flow on r P Rri by fprq. The ratio of an arc r P Rwd
starting in s is then set to the sum of the inflow into ωprq from water-dispensing nodes divided
by the total inflow from water-dispensing into relevant nodes in Gri:

ratioprq :“
ÿ

r̂PRri:
αpr̂q is water-dispensing

and ωpr̂q“ωprq

fpr̂q

N

ÿ

r̃PRri:
αpr̃q is water-dispensing
and ωpr̃q is relevant

fpr̃q

For completeness, we set the geodesic height of s to the largest geodesic height in the graph
before contraction plus one meter. This ensures that the source node is never flooded unless
an unrealistically large amount of rain per sqm is used.

4) Contracting adjacent nodes of similar geodesic heights: As a last step, we contract
adjacent nodes into a new node if they have the same geodesic height up to a given threshold
and the same combination of actions and buildings on them, which yields the desired reduced
graphGred “ pVred, Rredq. The exact procedure for computingGred is presented in Algorithm 6,
which will be explained in the following paragraphs. The corresponding reduction step has
two benefits. First, it further reduces the number of nodes. Second, and far more beneficially,
it greatly improves the numerical stability of the MIP. Indeed, numerical issues caused the MIP
to be infeasible before we introduced this procedure. The improved numerical stability stems
from the fact that, after the procedure, all nodes in the resulting reduced graph Gred have
pairwise distinct geodesic heights, and there are only few adjacent nodes that have similar
geodesic heights.
Algorithm 6 is divided into four parts. In the first part, we contract adjacent nodes that

intersect with the same set of buildings and actions and have a similar geodesic height into a
new node representing the contracted nodes. The shape of such a new node is defined as the
union of the shapes of the contracted nodes, and the boundary of such a node is the boundary
of its shape. The geodesic height of the new node is then set to the area-weighted average over
the geodesic heights of the nodes that have been contracted into the new node v P Vred, i.e., it
is set as follows:

ghpvq :“
ÿ

v1PVwd:
v1 is contracted into v

ghpv1q ¨ areapv1q

N

ÿ

v1PVwd:
v1 is contracted into v

areapv1q

7wd: water dispensing

31

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

Algorithm 6: CONTRACT-COMPONENTS
1 Procedure contractComponents(Gwd “ pVwd, Rwdq, threshold, ε)
2 Initialize Gred “ pVred, Rredq as a copy of Gwd “ pVwd, Rwdq

3 For each node v P Vred, compute its geodesic height rounded to a multiple of the threshold
and store it in rghpvq

4 Initialize original_nodespvq “ tvu for all v P Vred
5 # Contract nodes
6 while There are adjactent nodes u, v P Vred with rghpvq “ rghpuq and the buildings and

actions on both nodes are the same do
7 Contract u, v into v̂ and set

original_nodespv̂q “ original_nodespuq Y original_nodespvq

8 for v P Vred do
9 Set ghpvq :“

ř

v1
Poriginal_nodespvq

ghpv1
q¨areapv1

q{
ř

v1
Poriginal_nodespvq

areapv1
q

10 # Enforce pairwise distinct geodesic heights
11 while There are two nodes u, v P Vred with ghpuq “ ghpvq do
12 if ghpuq “ minv1PVred ghpv1q then
13 Set ghpvq “ ghpvq ´ ε
14 else
15 Let v1 P Vred with ghpv1q maximal such that ghpv1q ă ghpvq

16 Set ghpvq “ ghpvq ´ mintε, 1
2 ¨ pghpvq ´ ghpv1qqu

17 # Remove uphill arcs
18 for r P Rred do
19 if ghpαprqq ă ghpωprqq then
20 Remove r from Rred and add Ð

r to Rred if it does not already exist
21 # Recompute ratios
22 for v P Vred do
23 sum_of_slopespvq “

ř

rPδ`
Gred

pvq
slopeprq

24 Compute the length of the boundary of v in meters and store the value in
length_of_boundarypvq

25 for r P δ`
Gred

pvq do
26 Compute the length of the intersection of the boundaries of v and ωprq and store

the value in common_boundaryprq

27 ratioprq “

pslopeprq ¨ common_boundaryprqq
L

psum_of_slopespvq ¨ length_of_boundarypvqq

28 # Remove s
29 for r P δ`

Gred
psq do

30 areapωprqq “ areapωprqq ` areapsq ¨ ratioprq
L
ř

r1Pδ`
Gred

psq
ratiopr1q

31 Remove s and all its incident arcs from Gred
32 return Gred

32

3.3. Mathematical Modeling

In practice, this procedure usually leads to all nodes in Vred having pairwise distinct geodesic
heights. However, if this is not the case, we add a slight noise to the geodesic heights of each
pair of nodes that have the same geodesic height. This is important in order to guarantee
that the MIP produces a feasible solution of the problem. It is worth noting that DTMs are
usually only exact up to some centimeters and, hence adding this noise is within the measuring
tolerance.
In the second part, we remove uphill arcs r P Rred that might arise during this procedure and
add the corresponding reversed arcs if they do not already exist.
In the third part, we recompute the ratios of the newly obtained arcs. This time, for a node

v P Vred, the ratio of an arc r P δ`
Gred

pvq is set proportionally to the slopes of the arcs leaving v
and to the length of the intersection of the boundaries of v and ωprq.
In the final part, we remove the node s and instead increase the area of nodes that are adjacent

to s. This only decreases the size of the graph by a single node, but, again, greatly improves
the numerical stability of the MIP.
Finding a good value for the threshold is critical here. An overly high value leads to unre-

alistic results, whereas an overly low value decreases the performance gain obtained from the
contraction. From our experience on numerous real-world instances from the project AKUT,
depending on the terrain surface, we recommend choosing a value between 5cm and 15cm. On
hilly surfaces, the value can preferably be set a bit higher, whereas on smooth surfaces, it is
better to stick to low values.
The reduction in the overall number of nodes achieved in this last step mainly depends on

the threshold parameter and the hilliness of the modeled region. The higher the threshold
parameter and the flatter the region, the greater the reduction in the number of nodes.

For three representative regions, which are revisited later in Section 3.5.2, an overview of
the reduction in the overall number of nodes from Gor to Gred is provided in Table 3.2.

Region |Vor| |Vred| Factor
Hilly Region 12,239,475 4719 2594
Flat Region 1 2,523,799 6613 382
Flat Region 2 1,789,498 3778 474

Table 3.2.: Reduction in the total number of nodes achieved for three representative regions,
where the factor provided in the third column is obtained as |Vor|{|Vred|.

The extended reduced graph Gex
red “ pV ex

red, R
ex
redq is constructed from the reduced graph

Gred “ pVred, Rredq returned by Algorithm 6 in the same manner as we constructed it for
the original graph, i.e., for each arc r P Rred, we add a copy of r in reverse direction.

3.3.2 Mixed-Integer Programming Formulation and Presolve Techniques

In this section, we present our mixed-integer programming formulation of the problem defined
in Section 3.3.1 as well as several intuitive valid inequalities that improve the performance.
The constraints are formulated verbally, while the mathematical formulation can be found in

33

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

Appendix A.1. Afterwards, we further describe methods to preset some of the variables, which
is important to obtain feasible running times.

3.3.2.1 Mixed-Integer Programming Formulation

Before stating the mixed-integer programming formulation, we provide complete lists of the
sets, parameters, and variables for better readability. The MIP takes, among other input data, a
graph and its extended graph as an input. Any of the graphs that are presented in the previous
section can be used, but, as already mentioned, we highly recommend using the reduced graph
(and the corresponding extended reduced graph) here as all other graphs make the model too
large or numerically unstable to be applied to realistic instances. The graph used in the MIP is
denoted byG “ pV,Rq and the corresponding extended graph byGex “ pV,Rexq. Throughout
this section, we assume that the nodes in V have pairwise distinct geodesic heights, which is
the case if G “ Gred.

Sets:
V node set of the graph
R arc set of the graph
Rex arc set of the extended graph
B set of buildings
B set of possible retention basins
D set of possible ditches
E set of possible embankments
A set of all possible actions, where A “ B Y D Y E
P set of properties
Pyellow Ď P set of properties where the corresponding actor needs minor incentives to

cooperate
Pred Ď P set of properties where the corresponding actor needs major incentives to

cooperate
Pblack Ď P set of properties where the corresponding actor does not cooperate at all
The sets corresponding to possible actions are denoted by calligraphic letters. We further

introduce the set Bpvq Ď B for each v P V as the set of basins on v. The sets Dpvq and
Epvq are defined analogously, and we let V pβq denote the set of all nodes intersecting with
building β P B.

Parameters:
rain total rain per sqm in m
budget budget for the total cost of taken actions
GHpvq original geodesic height of node v P V
areapvq area of node v P V in sqm
ratioprq ratio of outflow of node αprq allocated to arc r P Rex

depthpaq depth of basin or ditch a P B Y D in m
heightpeq height of embankment e P E in m
costpaq cost of action a P A

34

3.3. Mathematical Modeling

thresholdWLpkq threshold water level in m for hazard class k P t0, 1, 2, 3u

damagepk, βq damage in the objective function if building β P B belongs to hazard
class k P t1, 2, 3, 4u

maxAllowedYellow maximum number of properties needing minor incentives to cooper-
ate that actions can be built on

maxAllowedRed maximum number of properties needing major incentives to cooper-
ate that actions can be built on

Variables:

fprq total flow on arc r P Rex in m3

excesspvq excess of node v P V in m3

wlpvq water level at node v P V in m
floodedpvq 1 if wlpvq ą 0 at node v P V , 0 otherwise
activeprq 1 if there is flow along arc r P Rex, 0 otherwise
fullprq 1 if wlpαprqq ą 0 for r P R, 0 otherwise
decBasinpbq 1 if basin b P B is built, 0 otherwise
decDitchpdq 1 if ditch d P D is built, 0 otherwise
decEmbpeq 1 if embankment e P E is built, 0 otherwise
ghpvq geodesic height of node v P V after actions have been built in m
downpvq 1 if a ditch or basin is built on v P V , 0 otherwise
max_incpvq maximum increase of height through building embankments on v P V in m
max_decpvq maximum decrease of height through building ditches or basins on v P V

in m
aux_fdprq binary auxiliary variable for the flow distribution over arc r P Rex: 1 if arc is

active and not full, 0 otherwise
odprq 1 if node αprq is higher than node ωprq after building the actions for r P R,

0 otherwise
auxO1F1prq binary auxiliary variable for r P R: 1 if odprq “ 1 and fullprq “ 1, 0 other-

wise
auxO1F0prq binary auxiliary variable for r P R: 1 if odprq “ 1 and fullprq “ 0, 0 other-

wise
auxO0F1prq binary auxiliary variable for r P R: 1 if odprq “ 0 and fullprq “ 1, 0 other-

wise
auxO0F0prq binary auxiliary variable for r P R: 1 if odprq “ 0 and fullprq “ 0, 0 other-

wise
max_wlpβq maximum water level at any node intersecting with building β P B in m
hcpk, βq 1 if building β P B belongs to hazard class k P t0, . . . , 4u, 0 otherwise
actionppq 1 if an action is taken on property p P P , 0 otherwise
hdbpbq depth of basin b P B in m if basin b is built, 0 otherwise
hddpdq depth of ditch d P D in m if ditch d is built, 0 otherwise
hdepeq height of embankment e P E in m if it is built, 0 otherwise

Objective function:

The only term in the objective function is the damage occurring at the buildings, which depends

35

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

on their hazard class and their damage class.8 Thus, the objective function to be minimized is
given as

ÿ

βPB

4
ÿ

k“1

damagepk, βq ¨ hcpk, βq.

Constraints:
To enhance readability, we use the max operator within our formulation. This operator takes
a set of variables and / or parameters as an argument and returns the maximum among their
values. Note that the operator can alternatively be implemented using bigM constraints. This,
however, may lead to numerical instability if finding a suitable value M is difficult. We there-
fore use themax operator, which is pre-implemented in most modern mixed-integer program-
ming solvers.
Furthermore, we make use of indicator constraints. An indicator constraint is of the form

bin “ val ùñ aTx ď b

and states that the constraint aTx ď bmust be satisfied if the binary variable bin has value val P

t0, 1u. An indicator constraint can also be implemented using a big M constraint. It is, how-
ever, well-known that indicator constraints have many advantages compared to bigM formu-
lations [Bon+15]. Indicator constraints are, like the max operator, pre-implemented in many
modern mixed-integer programming solvers.
The formulation of some constraints requires using strict inequalities, which is not possible

theoretically in aMIP. In practice, however, values are encoded as floatswith a bounded number
of decimal places. Therefore, a strict inequality x ă y can be formulated as x ď y´ ε for some
small ε ą 0.

Water levels at nodes: To determine the water levels, we first compute the excess of each
node v P V :

(1) The excess of node v P V is the inflow minus the outflow plus the rain volume on the
node.

The excess of a node v P V immediately yields the water level at the node:

(2) The water level at node v P V is the excess of node v divided by its area.

Geodesic heights of nodes: In contrast to most traditional flow problems, we do not aim to
optimize the flow in the graph, but the terrain surface determining the flows. The following
constraints therefore set the geodesic height variable ghpvq for each node v P V . First, to
distinguish the two cases (GH1) and (GH2) from Section 3.3.1.2, the variable downpvq is set to
one in case (GH1), i.e., if a basin or ditch is built on the node, and to zero otherwise:

(3) If a basin b P B is built on node v P V , the variable downpvq is set to one.
8Since buildings of hazard class 0 do not contribute to the objective function, we only have to sum k from 1 to 4.

36

3.3. Mathematical Modeling

(4) If a ditch d P D is built on node v P V , the variable downpvq is set to one.

(5) If neither ditches nor basins are built on node v P V , the variable downpvq is set to zero.

Next, the variables hdbpbq, hddpdq, and hdepeq for b P B, d P D, and e P E that determine
the height differences that result from taking actions are set:

(6) The variable hdbpbq is set to depthpbq if basin b P B is built (i.e., if decBasinpbq “ 1), and
to zero otherwise.

(7) The variable hddpdq is set to depthpdq if ditch b P B is built (i.e., if decDitchpdq “ 1), and
to zero otherwise.

(8) The variable hdepeq is set to heightpeq if embankment e P E is built (i.e., if decEmbpeq “

1), and to zero otherwise.

To enable setting the geodesic height variables as described in the case distinction, the max-
imum depth of any of the basins or ditches built on v in case (GH1) and the maximum height
of any of the embankments built on v in case (GH2) is now computed:

(9) The maximum decrease max_decpvq of the geodesic height at node v P V is set to the
maximum of the height differences that result from building basins or ditches on v and 0.

(10) The maximum increase of the geodesic height max_incpvq at node v P V is set to the
maximum of the height differences that result from building embankments on v and 0.

Finally, the geodesic height variable ghpvq is set for each node v P V :

(11) The geodesic height ghpvq of node v P V is greater than or equal to the original geodesic
height of v minus the maximum decrease caused by basins and ditches.

(12) The geodesic height ghpvq of node v P V is less than or equal to the original geodesic
height of v plus the maximum increase caused by embankments.

(13) If a basin or ditch is built on node v P V (i.e., downpvq “ 1), the geodesic height ghpvq

of v is less than or equal to the original geodesic height of vminus themaximum decrease
caused by basins and ditches and, hence, in combination with Constraint (11), equal to
the original geodesic height of v minus the maximum decrease caused by basins and
ditches. This is modeled using a big M constraint where Mpvq :“ maxptdepthpbq|b P

Bpvqu Y tdepthpdq|d P Dpvqu Y t0uq ` maxptheightpeq|e P Epvqu Y t0uq.

(14) If no basin or ditch is built on node v P V (i.e., downpvq “ 0), the geodesic height ghpvq

of v is greater than or equal to the original geodesic height of v plus the maximum
increase caused by embankments and, hence, in combination with Constraint (12), equal
to the original geodesic height of v plus the maximum increase caused by embankments.
This is again modeled using a big M constraint with the same Mpvq as in the previous
constraint.

37

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

Arc directions: There might be arcs in the input graph where, after taking actions and thereby
changing the geodesic heights of nodes, the start node has a lower geodesic height than the
end node, so the direction of the arc has to be reversed. If this is not the case for an arc r P R,
the arc is said to have original direction and the variable odprq is set to one by using indicator
constraints:

(15) If arc r P R has original direction, the variable odprq is set to one.

(16) Otherwise, the variable odprq is set to zero.

Full arcs: The following constraints deal with the behavior of the flows on the arcs in the
extended graph Gex “ pV,Rexq. To this end, we introduce the following terminology: An
arc r P R is called full if the water level at the lower of the two nodes αprq and ωprq is
greater than or equal to the absolute difference of their geodesic heights. For its inverse arc
Ð
r P RexzR, we say that this arc is full if and only if r is full.9 Note that this definition refers to
the geodesic heights after taking actions, where it is possible that αprq has a smaller geodesic
height than ωprq. To connect the variables fullprq to the water levels, some binary auxiliary
variables incorporating the original direction variables are first introduced:

(17) The variable auxO1F1prq for arc r P R is set to one if and only if odprq “ 1 and
fullprq “ 1.

(18) The variable auxO1F0prq for arc r P R is set to one if and only if odprq “ 1 and
fullprq “ 0.

(19) The variable auxO0F1prq for arc r P R is set to one if and only if odprq “ 0 and
fullprq “ 1.

(20) The variable auxO0F0prq for arc r P R is set to one if and only if odprq “ 0 and
fullprq “ 0.

The following constraints connect the variables fullprq to the water levels using the auxiliary
variables:

(21) If arc r P R has original direction and is full, the water level at ωprq must be greater than
or equal to the absolute difference of the geodesic heights of αprq and ωprq.

(22) If arc r P R has original direction and is not full, the water level at ωprq must be less
than the absolute difference of the geodesic heights of αprq and ωprq.

(23) If arc r P R does not have original direction and is full, the water level at αprq must be
greater than or equal to the absolute difference of the geodesic heights of αprq and ωprq.

9Nodes in Gred have pairwise distinct geodesic heights, so the lower node is always well-defined. In practice, the
geodesic heights after taking actions are also pairwise distinct. If this is not the case, one can decrease the depth
of height of the action that causes the issue by a small value similarly to how pairwise distinct geodesic heights
of nodes are enforced in Gred.

38

3.3. Mathematical Modeling

(24) If arc r P R does not have original direction and is not full, the water level at αprq must
be less than the absolute difference of the geodesic heights of αprq and ωprq.

Flooded nodes: A node v P V is called flooded if its water level wlpvq is strictly positive,
and non-flooded otherwise. The following indicator constraints set the variables floodedpvq

for v P V indicating which nodes are flooded:

(25) If the water level wlpvq at node v P V is strictly positive, the variable floodedpvq is set
to one.

(26) If the water level wlpvq at node v is zero, the variable floodedpvq is set to zero.

Active arcs: The net flow between two adjacent nodes in the extended graph can be in either
one or the other direction. An arc r P Rex is called active if the flow on r is strictly positive.
The following constraints set the variables activeprq for r P Rex that indicate active arcs:

(27) For arc r P R and its inverse arc Ð
r P Rex, at most one of the variables activeprq and

active
`Ð
r
˘

can be equal to one.

(28) If an arc r P Rex is not active, the flow on the arc must be zero.

Flow on arcs that are not full: The outflow of a node v P V is to be distributed according
to the ratios of its outgoing arcs in the extended graph Gex “ pV,Rexq that are active and not
full. The following constraints set the auxiliary variables aux_fdprq and aux_fd

`Ð
r
˘

for r P R
that indicate arcs that are both active and full:

(29) For arc r P R, the auxiliary variable aux_fdprq is set to one if and only if the arc is active
and not full.

(30) For arc r P R, the auxiliary variable aux_fd
`Ð
r
˘

for the inverse arc is set to one if and
only if Ð

r is active and not full.10

The outflow of each node v P V is now distributed among its outgoing arcs in the extended
graph that are active and not full:

(31) For node v P V and each pair of arcs r1, r2 P δ`
Gexpvq, if both arcs are active and not full,

the flow is distributed proportionally to the ratios ratiopr1q and ratiopr2q.

For each arc r P R that is not full, the water level at the higher of the two nodes αprq

and ωprq must be zero.

(32) For each arc r P R that is not full and has original direction, the water level at αprq is
set to zero.

(33) For each arc r P R that is not full and does not have original direction, the water level
at ωprq is set to zero.

10Recall that Ð
r is full if and only if r is full.

39

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

For a non-full arc r P R, water can only flow in downhill direction:

(34) For each arc r P R that is not full and has original direction, the arc Ð
r is not active.

(35) For each arc r P R that is not full and does not have original direction, the arc r is not
active.

Flow on full arcs: As the flow is immediately connected to the water levels by Constraints (1)
and (2), the flow on each full arc r P R can be set indirectly by connecting the water levels at
its start node and its end node:

(36) For each full arc r P R, the sum of the geodesic height and the water level must be equal
in αprq and ωprq.

Maximum water levels at buildings:

(37) For each building β P B, the maximum water level variable max_wlpβq is set to the
maximum of the water levels at nodes intersecting with the building.

Note that, strictly speaking, the maximum is not taken here, but the maximum water level
at the building is only bounded from below by each water level at an intersecting node. The
objective function then aims to minimize the maximumwater levels at the buildings to achieve
equality.

Hazard classes of buildings:

(38) Each building β P B belongs to exactly one hazard class.

(39) If building β P B belongs to hazard class k P t0, . . . , 4u, its maximum water level must
be less than or equal to the upper threshold of this hazard class.

Again, the maximum water levels are only bounded from above as a higher hazard class
leads to a higher penalty in the objective function.

Budget constraint:

(40) The total cost for building basins, ditches, and embankments must not exceed the given
budget.

Incentives for actors: The following constraints enforce the given upper bounds on the in-
centives required for cooperation of actors and ensure that no actions are taken on properties
of actors that do not cooperate at all. This is done by means of the variables actionppq for p P P
that indicate properties on which at least one action is taken:

(41) Actions are taken on at most maxAllowedYellow`maxAllowedRed yellow and red prop-
erties in total.

(42) Actions are taken on at most maxAllowedRed red properties.

(43) No actions are taken on black properties.

40

3.3. Mathematical Modeling

(44) The variable actionppq for property p P P is set to one if at least one action is taken on
property p.

It is worth noting that it is not trivial to see that the MIP is indeed a correct formulation of
the problem defined in Section 3.3.1. However, we show this in Section 3.4 by proving that (1)
for every set D Ď A that satisfies Constraints (40)-(44), there exists a feasible solution taking
exactly the actions inD, and that (2) any feasible solution of the MIP taking exactly the actions
in D Ď A leads to the same water levels at the nodes as the result of Algorithm 3 applied
onGD , which is the graph that results from taking the actions inD and adjusting the geodesic
heights and arc directions accordingly as described in Section 3.2.

Valid inequalities:
We finish the description of the MIP by presenting three intuitive sets of valid inequalities that
improve the solution times of the model:

(45) For each pair of consecutive original-direction (i.e., downhill) arcs r1, r2 P R with
ωpr1q “ αpr2q, the first arc r1 can only be full if the second arc r2 is full as well.

(46) If node v P V is flooded, then each arc r P δ`
Gexpvq with ghpvq ą ghpωprqq must be full

(otherwise, water could still flow in downhill direction from v).

(47) If node v P V is not flooded, then no arc r P δ´
Gexpvq with ghpvq ă ghpαprqq can be full.

3.3.2.2 Presolve Techniques

We close this chapter by presenting two methods to preset some of the variables. Through our
analysis, we found that the variables floodedpvq for v P V are the major bottleneck of the MIP.
It is therefore natural to investigate which nodes must always be flooded and which nodes can
never be flooded in a feasible solution in order to preset some of these variables to one or zero,
respectively.

We start by presetting variables for nodes that must always be flooded. To this end, we
consider the leaves of the graphG “ pV,Rq. If there is no possible embankment on a leaf l P V
and no possible ditches or basins on any of the nodes in δ´plq, the leaf will also be a leaf after
taking actions – independent of which actions are selected. This means that l is flooded in any
feasible solution since at least the initial water from the rain event will build up a water level
strictly larger than zero at l. For all such leaves, we can, therefore, preset the variable floodedplq
to one.
Identifying nodes v P V for which the variable floodedpvq can be preset to zero (i.e., nodes

that can never be flooded in any feasible solution) is more involved. The idea here is that, if
no possible action is located on v, the water levels at all successors of v must be equal to the
absolute difference of their geodesic height and the geodesic height of v in order for v to be
flooded. Thus, if the total amount of rain on the whole area does not suffice for raising the
water level at each successor to the absolute difference of the geodesic height of the successor
and the geodesic height of v, then v can never be flooded in any feasible solution.

41

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

In order to find such non-flooded nodes, we start by computing the maximum possible
geodesic height of each node than can be obtained after taking actions,11 and then construct a
new graph Gnf “ pVnf, Rnfq

12 where each node is assigned its corresponding maximum pos-
sible geodesic height and where arcs are directed in downhill direction with respect to these
geodesic heights. For each node on which no actions are located, we compute the set of its
successors in Gnf.13

If the amount of rain that is needed to raise the water level at each of these successors to the
absolute difference of the geodesic height of the successor and the geodesic height of v exceeds
the total rain volume on the whole area, node v can never be flooded in any feasible solution.
If this is not the case, we can apply the same idea using a larger set of nodes instead of the
successors of v. To this end, we consider the undirected version of Gnf and remove all nodes
that have strictly larger geodesic height than v. We then compute all nodes different from v
that are in the same connected component as v in the remaining undirected graph. It is clear
that the set of these nodes is a superset of the set of successors of v in Gnf and we can apply
the same reasoning as before to this larger set of nodes.
The pseudocode of the corresponding algorithm is presented as Algorithm 7. Note that one

could of course use the larger set of nodes right away, but this would cause a non-negligible
overhead in computational effort.

Algorithm 7: PRESOLVE-NON-FLOODED
1 Procedure presolveNonFloodedNodes(G)
2 Compute the maximal geodesic height for each node v P V and obtain Vnf.
3 Construct the graph Gnf “ pVnf, Rnfq by adding downhill arcs
4 Initialize presolve_non_flooded “ H

5 for v P Vnf do
6 volume_needed “ 0
7 if v ‰ s and Apvq “ H then
8 for v1 P successorspvq do
9 volume_needed “ volume_needed ` areav1 ¨ pghpvq ´ ghv1q

10 if volume_needed ą total rain volume then
11 Add v to presolve_non_flooded
12 else
13 Take a copy of the undriected version of Gnf and remove all nodes with

geodesic height larger than GHpvq

14 volume_needed “ 0
15 for each v1 in the connected component of v after removal with v1 ‰ v do
16 volume_needed “ volume_needed ` areav1 ¨ pghpvq ´ ghv1q

17 if volume_needed ą total rain volume then
18 Add v to presolve_non_flooded
19 return presolve_non_flooded

11Recall that building embankments can increase the geodesic heights of nodes.
12nf: non-flooded
13Note that nodes on which no actions are located have the same geodesic height in G and in Gnf.

42

3.4. Validity of the Mixed-Integer-Programming Formulation

3.4 Validity of the Mixed-Integer-Programming Formulation

In this section, we prove that the MIP is a valid formulation of the problem described in Sec-
tion 3.3.1. To formally define the statement we want to prove, we call a subset D Ď A of
actions such that building exactly the actions inD fulfills the budget Constraint (40) and does
not violate any bounds on the incentives in Constraints (41)–(44) a feasible set of actions. The
section is subdivided into two parts. In the first part, we show that there exists a solution x of
the MIP for each feasible set D of actions. In the second part, we show that each solution x
of the MIP that takes exactly the actions in a feasible set D of actions yields the same water
levels as the result y of Algorithm 3 applied on GD . In particular, the statement of the second
part implies that the objective value of a solution of the MIP only depends on the taken actions.
While the two proofs follow a similar idea, the proof in the first part is significantly shorter
and provides an intuition for the proof in the second part.

3.4.1 Assumptions and Structural Results

Due to the similarity of the two proofs, we first present the required assumptions and some
structural results that apply for both proofs.
For both proofs, we make the following assumptions:

(A1) The graphG and, hence, also the graphGD are weakly connected. This is the case in all
realistic instances and, moreover, can be assumed without loss of generality because the
arguments in the proofs can be applied to each weakly connected component individu-
ally in case that there are multiple weakly connected components.

(A2) The highest node in the graph G is non-flooded in any solution x of the MIP and any
result y from Algorithm 3 with input graph GD for a feasible set D of actions. This
assumption is satisfied in all real-world problem instances since rain events that flood
each single node are unrealistic, and damage on buildings could not be mitigated by any
realistic actions anyway in such cases.

(A3) The geodesic heights of nodes inGD are pairwise distinct, which is true ifG “ Gred and
D “ H. In the case that G “ Gred and D ‰ H, pairwise distinct geodesic heights of
the nodes in GD can be enforced by adding a slight noise to the heights or depths of the
actions in a similar manner as in Algorithm 6.

It is important to note that Assumption (A3) is indeed required to ensure that, given a set of
taken actions, the water levels in all solutions taking these actions are unique. This is corrob-
orated in the following example.

Example 3.1 Let G “ pV,Rq with V “ tv1, . . . , v5u with ghpv1q “ ghpv2q “ 0m,
ghpv3q “ 9m, and ghpv4q “ ghpv5q “ 10m. Each node has an area of 1sqm. Node v5 is
adjacent to v2 and v3 and node v4 is adjacent to v1 and v3. The set A of possible actions is
empty and the total rain per sqm is 2m. Since the water level at v3 is 1m in each feasible solu-
tion, its remaining initial water of 1m3 can be arbitrarily distributed among its incident arcs.

43

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

v1 v4 v3 v5 v2

(a) In solution xp1q, the remaining intitial water
from v3 is sent to v4 and from there to v1,
which yields wlpv1q “ 5m and wlpv2q “ 4m.

v1 v4 v3 v5 v2

(b) In solution xp2q, the remaining intitial water
from v3 is sent to v5 and from there to v2,
which yields wlpv1q “ 4m and wlpv2q “ 5m.

Figure 3.5.: An illustration of the two solutions in Example 3.1

By sending the whole water to v4 or v5, we obtain two solutions xp1q and xp2q which have
different water levels in the nodes v1 and v2. The two solutions are illustrated in Figure 3.5.

As some variables are denoted the same in the MIP and in Algorithm 3, for a solution x of
the MIP and the result y of Algorithm 3, we write, e.g., x.wl and y.wl, respectively, in case of
the water levels, to distinguish between them whenever the distinction is not clear from the
context.
Next, we argue that it suffices for both proofs to show the statement for D “ H, which is

clearly a set of feasible actions. To this end, let D be a feasible set of actions and let x be a
solution that takes exactly the actions in D . We observe that Constraints (3)–(14) imply that,
for each v P V , it holds that x.ghpvq is the geodesic height of v in GD . We therefore omit
the “x.” for the geodesic height in the following. Also note that taking actions only directly
affects the geodesic heights in x, but the flows and, hence, the water levels are only affected
indirectly from taking actions via their dependence on the geodesic heights inGD . Further, the
variables odprq for r P R only act as a case distinction to activate or deactivate constraints in
the MIP. Hence, a solution xD of the MIP with input graph GD where no actions can be taken
can immediately be constructed from x and vice versa. Since the two solutions yield the same
water levels, it suffices to show the statements for the case whereD “ H and, thus, GD “ G,
i.e., for the case where no actions are taken.
We continue by presenting definitions that are required for both proofs and point out struc-

tural results that are mainly shown during the second proof in Section 3.4.3. To this end, in the
following, we let x be a solution of the MIP taking no actions at all and let y be the result of
Algorithm 3 with input graph G.
Inclusionwise-maximum weakly connected subgraphs of flooded nodes play an important

role in both proofs and, hence, deserve an own definition.

Definition 3.2 Given x or y, each weakly connected component of the subgraph of G that
is induced by the set of flooded nodes is called a sink. The set of all sinks is denoted by Spxq

and Spyq for x and y, respectively.

44

3.4. Validity of the Mixed-Integer-Programming Formulation

If a node is flooded, then all its successors must be flooded as well, which immediately im-
poses a certain structure of sinks. We introduce the even stronger notion of pre-sinks. This
idea has already been used in Algorithm 7 in line 13 without formally introducing the notion
when presetting nodes to be non-flooded.

Definition 3.3 For v P V , the weakly connected component containing v in the induced sub-
graph Gďv :“ G|tv1PV :ghpv1qďghpvqu is called the pre-sink induced by v and is denoted by PSpvq.

In the following, we slightly abuse notation by identifying a sink or pre-sink with the set of
its nodes as long as this does not lead to any confusion.
It is shown in Section 3.4.3.1 that, for both x and y, each sink is a pre-sink, which motivates

the investigation of the structure of pre-sinks in further detail. One important property is that
two pre-sinks are either disjoint or one of them is a subgraph of the other, which is formally
shown in the following lemma.

Lemma 3.4 Let u, v P V with ghpuq ą ghpvq. Then it either holds that PSpvq X PSpuq “ H

or it holds that PSpvq Ĺ PSpuq.

Proof. Let C be the set of nodes of the weakly connected component in Gďu that contains v.
Then it immediately follows that PSpvq Ď C . If it holds that PSpvq X PSpuq ‰ H, it also holds
that C X PSpuq ‰ H. It follows that PSpvq Ď C “ PSpuq. Since ghpuq ą ghpvq, it holds that
u R PSpvq, which completes the proof.

As a side remark, the statement of Lemma 3.4 induces that the set tPSpuq |u P V u is laminar.
Another useful result is that, when removing the highest node and all its incident arcs in a pre-
sink, each weakly connected component of the obtained graph is again a pre-sink. This is
shown in the following lemma and definition.

Lemma and Definition 3.5 Let v P V . Then all weakly connected components ofG|PSpvqztvu

are pre-sinks. We call a node u inducing such a pre-sink a follow-up node of v and denote the
set of all follow-up nodes of v by FUNpvq.

Proof. Let C be a weakly connected component of G|PSpvqztvu and let u be the highest node
in C . We show that C “ PSpuq.

Let w P C . As C is weakly connected and u is the highest node in C , there exists an
undirected path with trace pu, ũ1, . . . , ũk, wq where all intermediate nodes are in C as well.
This means that w P PSpuq.
Let w P PSpuq. This means there exists an undirected path P with trace pu, ũ1, . . . , ũk, wq

of nodes in PSpuq. As u P PSpvq, it holds that PSpuq Ĺ PSpvq due to Lemma 3.4, which
implies that ũi P PSpvq for all i P t1, . . . , ku. Further, as ũi P PSpuq, it holds that ũi ‰ v
for all i P t1, . . . , ku. This implies P is an undirected path in G|PSpvqztvu, which means that
w P C .

A central idea in the proofs of Sections 3.4.2 and 3.4.3 is to assess whether a pre-sink is indeed
a sink. To this end, we need a measure for the volume of water a pre-sink can store, which is
given in the following definition.

45

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

Definition 3.6 Let v P V . If v is not the highest node in G, the lowest parent of the pre-
sink PSpvq, which is denoted by lppPSpvqq, is defined as the node with minimum geodesic
height in δ´

GpPSpvqq.14 If v is the highest node in G, we set lppPSpvqq :“ v to avoid notation
issues. Further, the threshold of the pre-sink PSpvq is defined as

thrpPSpvqq :“
ÿ

uPPSpvq

pghpvq ´ ghpuqq ¨ areapuq

and the capacity of the pre-sink PSpvq is defined as

cappPSpvqq :“
ÿ

uPPSpvq

pghplppPSpvqqq ´ ghpuqq ¨ areapuq.

As an intuition, the threshold of a pre-sink is the maximum amount of water the pre-sink
can hold before all nodes of the pre-sink become flooded, and the capacity is the maximum
amount of water the pre-sink can hold before its water level has reached the geodesic height
of its lowest parent. These values become particularly important in a later stage of the proof
where they are used to characterize whether the highest node in a pre-sink is flooded and how
the flows between the pre-sink and its lowest parent behave.

The construction of the nodes in FUNpvq for some v P V in the proof of Lemma and Defi-
nition 3.5 and the definition of the lowest parent of a pre-sink immediately yield an important
property of v and its follow-up nodes.

Corollary 3.7 Let v P V and u P FUNpvq, then v “ lppPSpuqq.

It is shown in Section 3.4.3.2 that all nodes in a pre-sink are flooded if and only if the amount
of rain on the pre-sink plus the inflow from uphill nodes, which is exactly the positive contri-
bution to the excess of the node, exceeds the pre-sink’s threshold. This motivates the following
definition.

Definition 3.8 Let v P V . The positive contribution to the excess of the pre-sink PSpvq in x is
defined as

x.pcepPSpvqq :“
ÿ

rPδ´

Gex pPSpvqq

x.fprq `
ÿ

uPPSpvq

rain ¨ areapuq.

If a pre-sink is indeed a sink, the flows on arcs between the pre-sink and its lowest parent
play an important role, which is why we split the positive contribution to the excess into two
parts.

Definition 3.9 Let v P V . We define the positive contribution to the excess from non-lowest
parents of pre-sink PSpvq as

14Note that the lowest parent exists in this case as G is assumed to be weakly connected. In general, it does not
hold that lppPSpvqq “ lppvq.

46

3.4. Validity of the Mixed-Integer-Programming Formulation

x.pcenlppPSpvqq :“
ÿ

rPδ´

Gex pPSpvqq:

αprq‰lppPSpvqq

x.fprq `
ÿ

uPPSpvq

rain ¨ areapuq

and the positive contribution to the excess from the lowest parent of pre-sink PSpvq as

x.pcelppPSpvqq :“
ÿ

rPδ´

Gex pPSpvqq:

αprq“lppPSpvqq

x.fprq.

Similar definitions for y, which we do not need for the proof of the existence of x, are pro-
vided in Sections 3.4.3.2 and 3.4.3.3.
It is shown in Section 3.4.3.3 that the behaviour of the flows between a pre-sink PSpvq and

its lowest parent depend on whether x.pcenlppPSpvqq exceeds the capacity of the pre-sink or
not.
Before we start with the proof of the existence of x, we introduce one more definition, which

simplifies notation when distributing water from a node to the pre-sinks induced by its follow-
up nodes.

Definition 3.10 Let v P V and let u P FUNpvq. The total ratio of the lowest parent is defined
by

ratiolppPSpuqq :“
ÿ

rPδ´
GpPSpuqq:
αprq“v

ratioprq.

3.4.2 Existence of x

We start by showing that, for each feasible setD of actions, there exists a solution x of the MIP
that takes exactly the actions in D. As argued previously, it suffices to show the claim for
D “ H.
The proof is constructive and the idea is to firstly construct the water levels and the flows on

the arcs that are incident to a non-flooded node and then to construct the flows on the other
arcs. All other values of the non-trivial variables follow immediately from the flows and the
water levels. Whenever we construct a positive flow on any arc r P Rex, we also set the flow
on its reversed arc Ð

r to zero. This ensures that the constructed solution fulfills Constraint (27).
We start by constructing the water levels and the flows on the arcs that are incident to a

non-flooded node. Initially, we mark all nodes as unprocessed and process the nodes in G
in order of decreasing geodesic height, hence, starting with the highest node v1 P V in the
graph. During the process, it is always ensured that the currently processed node v1 is non-
flooded. For the highest node in the graph, this is ensured by Assumption (A2). We, hence, set
x.wlpv1q :“ 0. Next, note that, for any node u P FUNpv1q, it is always ensured that the flows
on arcs that contribute to x.pcenlppPSpuqq have already been constructed since we process the

47

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

nodes in a top-down manner. If it holds that x.pcenlppPSpuqq ą cappPSpuqq, we choose one
arc r P δ`

GexpPSpuqq X δ´
Gexpv1q and set the flow on this arc to x.fprq :“ x.pcenlppPSpuqq ´

cappPSpuqq “: bfpPSpuqq.15 The flows on all other arcs between v1 and nodes in PSpuq in Gex

are set to zero.
After this is done for all follow-up nodes of v1, we proceed by distributing the water among

the other outgoing arcs of v1. To this end, we define bfFUNpv1q as the set consisting of the
follow-up nodes u P FUNpv1q for which it holds that x.pcenlppPSpuqq ą cappPSpuqq and the
set nbfFUNpv1q :“ FUNpv1qzbfFUNpv1q. We now choose nfadpv1q16 such that:

ÿ

uPnbfFUNpv1q

min
␣

nfadpv1q ¨ ratiolppPSpuqq, cappPSpuqq ´ pcenlppPSpuqq
(

“
ÿ

rPδ´
Gpv1q

x.fprq ` rain ¨ areapv1q `
ÿ

uPbfFUNpv1q

bfpPSpuqq

Note that such a value for nfadpv1q exists since the term on the left-hand side is contin-
uous and monotonically increasing in nfadpv1q and it is ensured during the algorithm that
x.pcepPSpv1qq ď thrpPSpv1qq. In the first iteration, this again holds due to Assumption (A2). It
is further worth noting that, if the minimum attains the value cappPSpuqq ´ pcenlppPSpuqq for
some follow-up node u P FUNpv1q, then the amount of water in the pre-sink PSpuq is exactly
the pre-sink’s capacity. This immediately yields that PSpuq is a sink and that all arcs from v1 to
nodes in PSpuq are full. In the other case, that is if the minimum attains a value strictly smaller
than cappPSpuqq ´ pcenlppPSpuqq, all arcs from v1 to nodes in PSpuq are non-full.
For each node u P nbfFUNpv1q, we distribute mintnfadpv1q ¨ ratiolppPSpuq, cappPSpuqq

´pcenlppPSpuqqu units of flow along the arcs from v1 to nodes in PSpuq proportional to their
ratios.
Note that, for each u P FUNpv1q, the flows on the arcs contributing to x.pcepPSpuqq have

now been constructed. If it holds that x.pcepPSpuqq ą thrpPSpuqq, we set

x.wlpuq :“

ÿ

vPPSpuq

rain ¨ areapvq `
ÿ

rPδ´

Gex pPSpuqq

x.fprq ´
ÿ

rPδ`

Gex pPSpuqq

x.fprq ´ thrpPSpuqq

ÿ

vPPSpuq

areapvq

and for each w P PSpuqztuu, we then set x.wlpwq :“ x.wlpuq ` ghpuq ´ ghpwq. Further, we
mark all nodes in PSpuq as processed in this case.
The described method is then continued by processing the (unique) unprocessed node with

largest geodesic height, until all nodes are processed.
Since, after all nodes in the graph have been processed, the water levels are constructed for

all nodes in V , we set the excess at each node v P V to x.excesspvq :“ x.wlpvq ¨ areapvq. We
complete the construction by presenting a method to construct the flows on arcs between two
flooded nodes. To this end, we introduce the feasible flow problem (FFP):

15The notation “bf” stands for backfloat and will be introduced in more detail in Section 3.4.3.3.
16The notation “nfad” stands for non-full arc distribution.

48

3.4. Validity of the Mixed-Integer-Programming Formulation

Instance: A directed graph H “ pVH , RHq and demands b : VH Ñ Q with
ř

vPVH
bpvq “ 0

Task: Find a flow f : RH Ñ Qě0 that satisfies the demand.

Feasible Flow Problem (FFP)

As pointed out in [AMO93], this problem can be transformed into a maximum flow problem
and, therefore, can be solved efficiently. Also note that, due to the structure ofGex, there exists
a solution of FFP for any subgraph of Gex that is induced by a connected set of nodes. Further,
each such solution can be transformed such that, for any arc r P R that also is in the input
graph of FFP, it holds that the flow on r or its reversed arc Ð

r is zero. In the following, when
we speak about a solution of FFP, we implicitly assume that the flows in the solution fulfill this
property.
Let S P Spxq be a sink and let u P V such that S “ PSpuq. The existence of such a node u

follows immediately from the construction of the water levels. The flows on arcs in the sink
are constructed by solving an instance of FFP where the input graph is the subgraph of Gex

induced by the set of nodes in the sink and the demand function is given by

bpvq :“ x.excesspvq ´ rain ¨ areapvq ´
ÿ

rPδ´

Gex pSq:

ωprq“v

x.fprq `
ÿ

rPδ`

Gex pSq:

αprq“v

x.fprq

for each v P S. We show that these demands fulfill
ř

vPS bpvq “ 0:

ÿ

vPS

bpvq “
ÿ

vPS

»

—

—

—

–

x.excesspvq ´ rain ¨ areapvq ´
ÿ

rPδ´

Gex pSq:

ωprq“v

x.fprq `
ÿ

rPδ`

Gex pSq:

αprq“v

x.fprq

fi

ffi

ffi

ffi

fl

“
ÿ

vPS

rx.excesspvqs ´
ÿ

vPS

rain ¨ areapvq ´
ÿ

rPδ´

Gex pSq

x.fprq `
ÿ

rPδ`

Gex pSq

x.fprq

“
ÿ

vPS

rx.wlpvq ¨ areapvqs ´
ÿ

vPS

rain ¨ areapvq ´
ÿ

rPδ´

Gex pSq

x.fprq `
ÿ

rPδ`

Gex pSq

x.fprq

“
ÿ

vPS

rpx.wlpuq ` ghpuq ´ ghpvqq ¨ areapvqs

´
ÿ

vPS

rain ¨ areapvq ´
ÿ

rPδ´

Gex pSq

x.fprq `
ÿ

rPδ`

Gex pSq

x.fprq

“
ÿ

vPS

rx.wlpuq ¨ areapvqs ` thrpSq

´
ÿ

vPS

rain ¨ areapvq ´
ÿ

rPδ´

Gex pSq

x.fprq `
ÿ

rPδ`

Gex pSq

x.fprq

49

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

Plugging in the constructed water level x.wlpuq yields that
ř

vPS bpvq “ 0. Hence, there exists
a solution of the constructed instance of FFP, whose resulting flows on the subgraph are used
to complete the construction of the flows in x.
We refrain from presenting the construction of the other variables of x since this is straight-

forward. It remains to show that the constructed solution x is indeed feasible. To this end, we
only present the proofs for the fulfillment of Constraints (1) and (31) since the other constraints
are clearly fulfilled by x.
To show the fulfillment of Constraint (1), let v P V . If v is in a sink, the constraint is fulfilled

by the design of the demands in the instance of FFP that has been solved for the sink. If v is
not in a sink, i.e., it is non-flooded, the whole amount of water that contributes with a positive
sign to x.excesspvq in the constraint is distributed among the outgoing arcs of v by the choice
of nfadpvq in the construction, which implies that Constraint (1) is also fulfilled in this case.
To show the fulfillment of Constraint (31), let v P V and r1, r2 P δ`

Gexpvq. Recall that an arc
is active if there is a positive flow on the arc. If v is flooded, by construction of the solution, the
arcs r1 and r2 are each either full or not active. Hence, the constraint is not active in this case
and therefore fulfilled automatically. If v is non-flooded, we have to distinguish three cases.
Case 1: Both arcs r1 and r2 are non-full and active.
Since both arcs are non-full and active and since v is non-flooded, both arcs must be downhill.
Let up1q be the unique node in FUNpvq such that ωpr1q P PSpup1qq and up2q be the unique node
in FUNpvq such that ωpr2q P PSpup2qq. Since both arcs are non-full, it holds that nfadpvq ¨

ratiolppPSpupiqqq ă cappPSpuqq ´ pcenlppPSpuqq for each i P t1, 2u. Hence, for i P t1, 2u, the
flow on ri is

x.fpriq “ nfadpvq ¨ ratiolppPSpupiqqq ¨ ratiopriq{ratiolppPSpupiqqq “ nfadpvq ¨ ratiopriq.

This proves that the flows are distributed proportionally on the arcs r1 and r2 according to the
ratios and that Constraint (31) is fulfilled.
Case 2: Only one of the arcs is non-full and active.
Without loss of generality, let r1 be non-full and active. In this case, it remains to show that
x.fpr2q ď ratiopr2q{ratiopr1q ¨ x.fpr1q. If r2 is not active, it holds that fpr2q “ 0 and, hence, the
required inequality holds.
If r2 is active, it must be full. As before, let up2q be the unique node in FUNpvq such that

ωpr2q P PSpup2qq. Since r2 is full, it holds that nfadpvq ¨ ratiolppPSpupiqqq ě cappPSpuqq ´

pcenlppPSpuqq and the flow on r2 is

x.fpr2q “ pcappPSpuqq ´ pcenlppPSpuqqq ¨
ratiopr2q

ratiolppPSpup2qqq

ď nfadpvq ¨ ratiolppPSpup2qqq ¨
ratiopr2q

ratiolppPSpup2qqq

“ nfadpvq ¨ ratiopr2q.

By the same argument as in the first case for r1, the desired inequality is shown.

50

3.4. Validity of the Mixed-Integer-Programming Formulation

Case 3: None of the arcs is non-full and active.
In this case, there is nothing to show since Constraint (31) is not active and, hence, fulfilled
automatically.

All in all, this yields the desired theorem.

Theorem 3.12 Let D Ď A be a feasible set of actions, then there exists a feasible solution of
the MIP that takes exactly the actions in D.

3.4.3 Equality of Water Levels

The aim of the second proof is to show that each solution x of the MIP that takes exactly the
actions in a feasible setD of actions yields the same water levels as the result y of Algorithm 3
applied onGD . As the value of the objective is determined by the water levels, this in particular
means that the objective value of a solution of the MIP only depends on the taken actions.
As argued in Section 3.4.1, it suffices to show the claim forD “ H. Hence, in the following,

we let x be an arbitrary but fixed feasible solution of the MIP that takes no actions at all and
we let y be the result of Algorithm 3 with input graph G. The existence of x has previously
been shown in Section 3.4.2.
It is worth noting that, although we prove that the water levels in any feasible solution x of

the MIP taking a given set D of actions coincide with those of the corresponding result y of
Algorithm 3 applied onGD , the flows in different solutions of the MIP taking the same actions
can still differ. The reason is that, if a cycle of flooded nodes of length at least three exists
in Gex, an arbitrary amount of flow might be sent over this cycle, which conserves feasibility
but causes the flows to be different in the two obtained solutions even when the same actions
are taken.

3.4.3.1 Characterization of Flooded Subgraphs

As already announced in Section 3.4.1, in this section, we prove that, for both x and y, every
sink is a pre-sink. To this end, the reader is advised to revisit Definitions 3.2 and 3.3.

Characterization of Flooded Subgraphs for x

We start by proving the desired connection between sinks and pre-sinks for the feasible solu-
tion x of the MIP. Throughout this section, we omit the “x.” when referring to variables, so,
e.g., the water level at a node v is denoted by wlpvq instead of x.wlpvq.
First, two properties of the water levels of adjacent nodes are observed.

Observation 3.13 Let r P R with αprq “ u, ωprq “ v. If wlpuq ą 0, then wlpvq ` ghpvq “

wlpuq ` ghpuq.

Proof. Constraints (46.1) and (46.2) imply that r is full. Constraint (36) then yields wlpvq `

ghpvq “ wlpuq ` ghpuq.

51

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

Observation 3.14 Let r P R with αprq “ u, ωprq “ v. If wlpvq ą ghpuq ´ ghpvq, then
wlpvq ` ghpvq “ wlpuq ` ghpuq.

Proof. Constraint (22) forces fullprq “ 1 as wlpvq ą ghpuq ´ ghpvq. As before, Constraint (36)
then yields wlpvq ` ghpvq “ wlpuq ` ghpuq.

The two observations are used to prove the following important proposition:

Proposition 3.15 Let v P V . If ghpv1q `wlpv1q ą ghpvq for some v1 P PSpvq, then every node
v̂ P PSpvq is flooded with ghpv̂q ` wlpv̂q “ ghpv1q ` wlpv1q.

Proof. Let v1 P PSpvq with ghpv1q ` wlpv1q ą ghpvq and let v̂ be an arbitrary node in PSpvq.
Then, since the pre-sink isweakly connected, there exists an undirected pathP with tracepP q “

pv1, ṽ1, . . . , ṽk, v̂q in Gďv . In particular, it holds that ghpṽiq ď ghpvq for all i P t1, . . . , ku. Ap-
plying Observations 3.13 and 3.14 inductively on the path yields

wlpṽiq “ wlpv1q ` ghpv1q ´ ghpṽiq ą 0 for all i P t1, . . . , ku, and
wlpv̂q “ wlpv1q ` ghpv1q ´ ghpv̂q ą 0,

which proves the claim.

Using Proposition 3.15, we prove the desired connection between sinks and pre-sinks for x:

Proposition 3.16 Let S P Spxq and let v P S be the node with largest geodesic height among
all nodes in S. Then S “ PSpvq.

Proof. By definition of PSpvq, it holds that v P PSpvq. Moreover, it is easy to see that PSpvq Ď S
by applying Proposition 3.15 for v1 “ v. Hence, it only remains to show that S Ď PSpvq. To
this end, let v1 P S be an arbitrary node. By the definition of a sink, S is weakly connected,
which means that there exists an undirected path P in G only containing nodes in S with
tracepP q “ pv, ṽ1, . . . , ṽk, v

1q and ghpṽiq ď ghpvq for all i P t1, . . . , ku. This means that P is
also an undirected path inGďv and, hence, that v1 is in the same connected component ofGďv

as v. Therefore, we obtain that v1 P PSpvq.

The proofs of Propositions 3.15 and 3.16 also yield the following helpful property about the
water levels at nodes within the same sink:

Corollary 3.17 Let S P Spxq and u, v P S. Then wlpvq ` ghpvq “ wlpuq ` ghpuq.

When investigating the water levels in x, it therefore suffices to know the water level at one
node per sink.

Characterization of Flooded Subgraphs for y

We now prove the desired connection between sinks and pre-sinks for the result y of Algo-
rithm 3. Throughout this section, we again omit the “y.” when referring to variables, so, e.g.,
the water level at a node v is denoted by wlpvq instead of y.wlpvq. Although the proof is a

52

3.4. Validity of the Mixed-Integer-Programming Formulation

bit more involved, the basic idea is similar to the proof of Proposition 3.16. Before we show
two observations similar to Observations 3.13 and 3.14, we introduce some notation and obtain
further structural results.

Notation 3.18 The total number of iterations of the while-loop in Algorithm 3 is denoted
by T . Further, we write G “ pV ,Rq :“ pṼT , R̃T q and represpvq :“ represT pvq for v P V .

Further, let t P t1, . . . , T ´ 1u and let v P V such that v is the first flooded leaf in iteration t.
We then say that v leaves the graph in iteration t. Given a node v R V , we denote the unique
iteration in which v leaves the graph by tv . In the following, we present some structural results
about the sets represtpvq for t P t1, . . . , T u and v P V . To this end, we introduce a definition
for the water levels after some iteration t.

Definition 3.19 Let t P t1, . . . , T u and v P V . Thewater level of v after iteration t is defined as
the water level that is obtained if the while loop in line 8 of Algorithm 3 is exited after the t-th
iteration and is denoted byĂwltpvq.

Note that it holds that ĂwlT pvq “ wlpvq for all v P V . We start with an observation of the
water levels after an iteration t.

Observation 3.20 Let t P t1, . . . , T u and v P Ṽt. For two nodes u1, u2 P represtpvq, it holds
that ghpu1q ` Ăwltpu1q “ ghpu2q ` Ăwltpu2q

Proof. This follows immediately from lines 20 to 22 of the algorithm.

As shown in the previous observation, the water level at a node v R V is determined by the
water level of a node v̄ P V with v P represpv̄q. We now introduce a suitable notion for this
node and show that it is uniquely defined.

Lemma and Definition 3.21 For each t P t1, . . . , T u and each node v P V , there exists
exactly one node ṽ P Ṽt such that v P represtpṽq. For a node v P V , we call the (unique) node
v̄ P V such that v P represpv̄q the highest representative of v and write v̄ “ hrpvq.

Proof. For t “ 1 the claim is clear as repres1pvq “ tvu for all v P V . In each iteration t P

t1, . . . , T ´ 1u of the algorithm, one node u leaves the graph and is joined with its lowest
parent v. All nodes in represtpuq are then in represt`1pvq in the next iteration and all other
sets represtpv1q for v1 P Ṽtztvu remain unchanged. Hence, the property is conserved in each
iteration of the algorithm, which proves the claim.

Note that the set represtvpvq is not deleted when a node v P V leaves the graph, which
means a node v P V can be in several sets represpv1q for v1 P V , but only for one of them,
it holds that v1 P V . Also note that, as soon as a node v P V joins a set represtpuq for some
other node u P V in some iteration t P t1, . . . , T ´ 1u, the node never leaves this set again,
which implies that v P represpuq in this case. Moreover, the previous proof yields the following
observation:

53

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

Observation 3.22 Let v P V . Then v P V if and only if v “ hrpvq.

We proceed by proving some further structural results in order to obtain the analogous state-
ments to Observations 3.13 and 3.14 in the context of y.

Lemma 3.23 Let t P t1, . . . , T u and r P R with αprq “ u and ωprq “ v. If u R Ṽt, then it
holds that v P represtpuq.

Proof. We start by showing that also v R Ṽt. Suppose for the sake of a contradiction that v P Ṽt.
Then the child v of u never leaves the graph until iteration t, which implies that u is never a
leaf until iteration t. Consequently, u cannot be removed until iteration t and, thus, u P Ṽt,
which contradicts the assumption that u R Ṽt.

Since v R Ṽt, there exists an iteration tv ă t where v leaves the graph, i.e., joinNodes(v, ṽ1)
is called for the lowest parent ṽ1 :“ lpG̃tv

pvq of v in the graph of iteration tv . Thus, we have
v P represtv`1pṽ1q in the following iteration, which also implies that v P represtpṽ1q.
If ṽ1 “ u, we are done. Otherwise, since ṽ1 is the lowest parent of v in G̃tv , it holds that

ghpuq ą ghpṽ1q and there exists an arc r1 P R̃tv`1 from u to ṽ1. In the same way as for v,
it then follows that ṽ1 R Ṽt and that ṽ1 must, hence, be joined into another node ṽ2 P V in
some iteration tṽ1 ă t, which implies that v P represtpṽ2q. Applying this argument iteratively
induces a sequence of nodes with strictly increasing geodesic heights until eventually ṽk “ u
for some k P N. Thus, it holds that v P represtpuq.

The proof of the next lemma is highly similar to the proof of Lemma 3.23.

Lemma 3.24 Let t P t1, . . . , T u and r P R with αprq “ u and ωprq “ v. If Ăwltpuq ą 0, then
v P represtpuq.

Proof. If u R Ṽt, the claim follows directly from Lemma 3.23. Therefore, let u P Ṽt. As it holds
thatĂwltpuq ą 0, the node umust be a leaf in G̃t, which implies that v R Ṽt. Hence, there exists
an iteration tv ă twhere v leaves the graph, i.e., joinNodes(v, ṽ1) is called for ṽ1 :“ lpGtv

pvq.
As in the proof of Lemma 3.23, this implies that v P represtpṽ1q.
If ṽ1 “ u, we are done. In the other case, we construct a sequence pṽ1, . . . , ṽk “ uq of nodes

with strictly increasing geodesic heights analogously to the proof of Lemma 3.23, while ṽi R Ṽt

for all i P t1, . . . , k ´ 1u follows since, otherwise, u would not be a leaf in G̃t.

One further structural result is required, which can be interpreted as the transitivity of the
representatives.

Observation 3.25 Let u, v, w P V such that u P represpvq and v P represpwq. Then u P

represpwq.

Proof. Let u join represpvq in iteration t̂u ě tu, and let v join represpwq in iteration t̂v ě tv .
Since represpvq remains unchanged after v leaves the graph, it must hold that t̂u ă tv ď t̂v .
Moreover, in all iterations t ą t̂u, the nodes u and v are always in the same set represtpṽq

for ṽ P Ṽt. Thus, when v joins represpwq in iteration t̂v ą t̂u, so does u, which proves the
claim.

54

3.4. Validity of the Mixed-Integer-Programming Formulation

The technical results above allow proving the following observation, which is the analogue
of Observation 3.13 in the context of y:

Observation 3.26 Let r P R with αprq “ u and ωprq “ v. If wlpuq ą 0 then hrpuq “ hrpvq

and wlpuq ` ghpuq “ wlpvq ` ghpvq.

Proof. Lemma 3.24 applied for t “ T implies that v P represpuq. From Observation 3.25, we
obtain that v P represphrpuqq and, hence, that hrpuq “ hrpvq. Observation 3.20 applied for
t “ T then implies that wlpuq ` ghpuq “ wlpvq ` ghpvq.

To prove the analogue of Observation 3.14, we need one more structural result:

Lemma 3.27 Let t P t1, . . . , T u and r P R with αprq “ u and ωprq “ v. If Ăwltpvq ą

ghpuq ´ ghpvq, then v P represtpuq.

Proof. We start by proving that v R Ṽt. For the sake of a contradiction, suppose that v P Ṽt. Due
to Lemma 3.23, it must then hold that u P Ṽt as, otherwise, this would imply that v P represtpuq

and, hence, that v R Ṽt. Therefore, the arc r is never removed or changed until iteration t, so
r P R̃t1 for all t1 P t1, . . . , tu. As Ăwltpvq ą ghpuq ´ ghpvq and v P Ṽt, the node v must be a
leaf in G̃t. Let ṽ “ lpG̃t

pvq. It must hold that Ăwltpvq ď ghpṽq ´ ghpvq as, otherwise, v would
have been joined into its lowest parent until iteration t. As u is a parent of v in each iteration
t1 ď t, it must hold that ghpṽq ď ghpuq. This implies that Ăwltpvq ď ghpuq ´ ghpvq, which is a
contradiction toĂwltpvq ą ghpuq ´ ghpvq. Thus, it holds that v R Ṽt.

As v R Ṽt, there exists an iteration tv ă t where v leaves the graph, i.e., joinNodes(v, ṽ1)
is called for ṽ1 :“ lpG̃tv

pvq. Hence, it holds that v P represtpṽ1q. If ṽ1 “ u, we are done. Oth-
erwise, we construct a sequence pṽ1, . . . , ṽk “ uq of nodes with strictly increasing geodesic
heights analogously to the proof of Lemma 3.23, while ṽi R Ṽt for all i P t1, . . . , k ´ 1u fol-
lows since, otherwise, it holds that v P represtpṽiq and Observation 3.20 implies thatĂwltpṽiq “

Ăwltpvq ` ghpvq ´ ghpṽiq ą ghpuq ´ ghpṽiq. The desired contradiction is then obtained analo-
gously to the argumentation above.

Observation 3.28 Let r P R with αprq “ u and ωprq “ v. If wlpvq ą ghpuq ´ ghpvq, then it
holds that hrpuq “ hrpvq and wlpuq ` ghpuq “ wlpvq ` ghpvq.

Proof. Lemma 3.27 applied for t “ T implies that v P represpuq. From Observation 3.25, we
obtain that v P represphrpuqq and, hence, that hrpuq “ hrpvq. Observation 3.20 applied for
t “ T then implies that wlpuq ` ghpuq “ wlpvq ` ghpvq.

We now use Observations 3.26 and 3.28 to prove the analogue of Proposition 3.15:

Proposition 3.29 Let v P V . If ghpv1q ` wlpv1q ą ghpvq for some v1 P PSpvq, then every
node v̂ P PSpvq is flooded with ghpv̂q ` wlpv̂q “ ghpv1q ` wlpv1q.

Proof. The proof is completely analogous to the proof of Proposition 3.15 except for using
Observations 3.26 and 3.28 instead of Observations 3.13 and 3.14

55

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

Proposition 3.29 finally allows us to prove the desired connection between sinks and pre-
sinks for y:

Proposition 3.30 Let S P Spyq and let v P S be the node with highest geodesic height among
all nodes in S. Then S “ PSpvq.

Proof. The proof is completely analogous to the proof of Proposition 3.16, but uses Proposi-
tion 3.29 instead of Proposition 3.15.

Similar to the case of Proposition 3.16, the proof of Proposition 3.30 also yields the following
useful corollary:

Corollary 3.31 Let S P Spyq and u, v P S. Then wlpvq ` ghpvq “ wlpuq ` ghpuq.

3.4.3.2 Characterization of Flooded Pre-Sinks

Using Propositions 3.16 and 3.30 together with Corollaries 3.17 and 3.31, it remains to show that
Spxq “ Spyq and that, for each node v P V with PSpvq P Spxq, it holds that x.wlpvq “ y.wlpvq.
To this end, we provide a characterization, for both of x and y, when all nodes in a pre-sink
are flooded, in which case the corresponding pre-sink will also be called flooded. To this end,
the reader is advised to recall the terms threshold of a pre-sink provided in Definition 3.6 and
positive contribution to the excess of a pre-sink provided in Definition 3.8.

The aim in this section is to show that a pre-sink is flooded if and only if the amount of rain
on the pre-sink plus the inflow from uphill nodes, which is exactly the positive contribution to
the excess of the pre-sink, exceeds its threshold.

Before we prove this characterization separately for x and y, we show a simpler characteri-
zation of when a pre-sink is flooded.

Observation 3.32 Let v P V . Then all nodes in PSpvq are flooded if and only if v is flooded.

Proof. The forward direction is clear. For the backward direction, let v be flooded. This means
that v P S for some S P Spxq. Due to Proposition 3.15, there exists a node u P V such that
S “ PSpuq. If u “ v, this proves the claim. In the other case, it must hold that ghpuq ą ghpvq.
Since v P S “ PSpuq, it holds that PSpvq Ĺ PSpuq “ S due to Lemma 3.4, which proves the
claim. The proof for S P Spyq is along the same lines except for using Proposition 3.29 instead
of Proposition 3.15.

Characterization of Flooded Pre-Sinks in x

We again start by presenting the characterization for x and omit the “x.” when referring to
variables whenever this does not lead to any confusion.
To this end, we start by proving that any water that enters a non-flooded pre-sink remains in

this pre-sink. To this end, we define the excess of a pre-sink PSpvq for v P V as excesspPSpvqq :“
ř

v1PPSpvq excesspv1q.

56

3.4. Validity of the Mixed-Integer-Programming Formulation

Lemma 3.33 Let v P V be non-flooded. Then, it holds that

pcepPSpvqq “
ÿ

v1PPSpvq

excesspv1q “ excesspPSpvqq.

Proof. The latter equality is clear by definition. To prove the former equality, we reformulate
the excess of the pre-sink according to Constraint (1):

ÿ

v1PPSpvq

excesspv1q “
ÿ

v1PPSpvq

»

–

ÿ

rPδ´

Gex pv1q

fprq ´
ÿ

rPδ`

Gex pv1q

fprq

fi

fl `
ÿ

v1PPSpvq

rain ¨ areapv1q

We investigate the first sum and observe:

1. The flow on any arc r P Rex with αprq, ωprq P PSpvq appears exactly once in each of the
two inner sums. Therefore, the flow on this arc does not contribute to the overall value
of the outer sum.

2. The flow on any arc r P δ´
GexpPSpvqq appears exactly once in the first inner sum.

3. We claim that any arc r P δ`
GexpPSpvqq has fprq “ 0. This holds since ghpωprqq ą ghpvq

(otherwise, ωprq P PSpvq) and ghpαprqq ` wlpαprqq ď ghpvq since, otherwise, v would
be flooded due to Proposition 3.15. Constraints (21) and (23) then force fullprq to be zero
and, hence, fprq “ 0.

4. Any other arc does not appear in the sum at all.

Therefore, we obtain that
ÿ

v1PPSpvq

excesspv1q “
ÿ

rPδ´

Gex pPSpvqq

fprq `
ÿ

v1PPSpvq

rain ¨ areapv1q “ pcepPSpvqq.

Using this lemma, we prove the first direction of the desired characterization of flooded
pre-sinks:

Lemma 3.34 Let v P V . If pcepPSpvqq ą thrpPSpvqq, then PSpvq is flooded.

Proof. Due to Observation 3.32, it suffices to show that v is flooded. For the sake of a contra-
diction, suppose that v is non-flooded. It holds that

ÿ

v1PPSpvq

pghpvq ´ ghpv1qq ¨ areapv1q “ thrpPSpvqq ă pcepPSpvqq

Lemma 3.33
“

ÿ

v1PPSpvq

excesspv1q “
ÿ

v1PPSpvq

wlpv1q ¨ areapv1q.

57

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

In order to satisfy the above inequality, a node v̂ P PSpvq with wlpv̂q ą ghpvq ´ ghpv̂q must
exist. Proposition 3.15 then implies that wlpvq ą 0, which yields the desired contradiction.

Before proving the other direction, we firstly observe that, for every node v P V , it holds that
pcepPSpvqq ě excesspPSpvqq since, by definition, pcepPSpvqq contains all positive summands
from the definition of excesspPSpvqq. This observation allows proving the other direction.

Lemma 3.35 Let v P V . If pcepPSpvqq ď thrpPSpvqq, then PSpvq is not flooded.

Proof. Again, due to Observation 3.32, it suffices to show that v is not flooded. Similar to the
proof of Lemma 3.34, it holds that

ÿ

v1PPSpvq

pghpvq ´ ghpv1qq ¨ areapv1q “ thrpPSpvqq

ě pcepPSpvqq

ě
ÿ

v1PPSpvq

excesspv1q

“
ÿ

v1PPSpvq

wlpv1q ¨ areapv1q.

For the sake of a contradiction, suppose that wlpvq ą 0. Applying Proposition 3.15 for every
v1 P PSpvq yields that wlpv1q ą ghpvq´ghpv1q, which is a contradiction to the above inequality.

Lemmas 3.34 and 3.35 are summarized in the following proposition.

Proposition 3.36 Let v P V . Then PSpvq is flooded in x if and only if it holds that
x.pcepPSpvqq ą thrpPSpvqq.

Characterization of Flooded Pre-Sinks in y

We now present the analogous characterization for y and omit the “y.” when referring to vari-
ables whenever this does not lead to any confusion. The proof, however, is remarkably more
technical than the one for x. A major part of the proof involves showing that, for each v P V ,
it holds that y.excesspPSpvqq “

ř

v1PPSpvq y.wlpv1q ¨ areapv1q, which is the first milestone of this
section.
While this statement seems obvious at first glance, note that the excess of a node v P V

starts building up over the whole area of nodes in represpvq as soon as v becomes a leaf during
the algorithm and ends building up as soon as the node leaves the graph or the algorithm
terminates. Hence, the excess of v corresponds to the volume of the geometrical body, whose
base area is the union of the shapes of the nodes in represpvq and whose height is either the
height difference of v to the next highest node in the sink, or the difference of the water level
at v and the geodesic height of v if v is the highest node in the sink. This is illustrated in
Figure 3.6, which can also be seen as an informal argument for the correctness of the claim.

58

3.4. Validity of the Mixed-Integer-Programming Formulation

v5 v3 v1 v2 v4

x
.e
xc
es
sp
v 1

q

v5 v3 v1 v2 v4

y.excesspv2q

Figure 3.6.: An illustration of the excesses in the solution x on the left hand side and y on the
right hand side.

We start by proving that, when the end node of an arc r P R is changed during the
joinNodes-routine, its original end node is in the pre-sink of the new end node. To this end,
we first introduce a notation that keeps track of changes of arcs during the algorithm.

Definition 3.37 For t P t1, . . . , T u and r P R̃t, we call the unique arc r1 P R that r stems
from the original arc of r and denote it by oaprq. Conversely, we call r the changed arc of r1 at
iteration t and write catpr1q “ r.

Note that catprq is not necessarily defined for each arc r P R in each iteration t P t1, . . . , T u.
We now prove the aforementioned observation.

Observation 3.38 Let r P R and t P t1, . . . , T u such that catprq is defined. Then ωprq P

PSpωpcatprqqq.

Proof. For the sake of a contradiction, suppose that there exist r P R and t P t1, . . . , T u such
that catprq is defined and ωprq R PSpωpcatprqqq. Without loss of generality, we may assume
that r is chosen such that αprq has minimal geodesic height among all arcs with this property
and that ωprq P PSpωpcat´1prqqq.17

To enhance readability, we name the nodes as follows. The start node of the arcs r, catprq,
and cat´1prq is called u.18 The end nodes of r, catprq, and cat´1prq are called v, w, and w1,
respectively.
The second assumption implies that joinNodes(w1, w) has been called in iteration t ´ 1.

Hence, there exists an arc r̂ P R̃t´1 from w to w1. Further, it holds that αpoapr̂qq “ w. Due
to the first assumption, the claim of the observation holds true for oapr̂q, which implies that
ωpoapr̂qq P PSpωpcatpoapr̂qqqq “ PSpωpr̂qq “ PSpw1q for all t P t1, . . . , T u. By definition of
a pre-sink, it also holds that ωpoapr̂qq P PSpαpoapr̂qqq “ PSpwq. It, therefore, must hold that
ωpoapr̂qq P PSpw1q X PSpwq and Lemma 3.4 implies that PSpw1q Ď PSpwq. As v P PSpw1q, it
17Note that t ě 2 as R̃1 “ R.
18Note that the start node of an arc is never changed in Algorithm 2, so it holds that αprq “ αpcatprqq “

αpcat´1prqq.

59

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

then also holds that ωprq “ v P PSpw1q Ď PSpwq “ PSpωpcatprqqq, which yields the desired
contradiction.

This observation can be utilized to obtain a useful result about the nodes in the sets represpvq

for v P V at the end of the algorithm.

Lemma 3.39 Let v P V and t P t1, . . . , T u. Then represtpvq Ď PSpvq.

Proof. We prove this by induction over the iterations. In the first iteration, the claim clearly
holds true since repres1pvq “ tvu Ď PSpvq for all v P V . Now let the claim hold in some
iteration t P t1, . . . , T ´ 1u, i.e., represtpvq Ď PSpvq for all v P V . Let u,w P V such that
joinNodes(u,w) is called in iteration t. For any node v ‰ w, the set represtpvq remains
unchanged in iteration t, so the claim still holds in the next iteration t ` 1. Due to the update
rule in the joinNodes-routine, it remains to show that represtpuq Ď PSpwq. From the induction
hypothesis, we already know that represtpuq Ď PSpuq. Further, we know that ghpuq ă ghpwq.
Using Lemma 3.4, it suffices to show that PSpuq X PSpwq ‰ H. Since joinNodes(u,w) is
called in iteration t, there must be an arc r P R̃t with αprq “ w and ωprq “ u. Using
Observation 3.38, we get that ωpoaprqq P PSpuq. By definition of a pre-sink, it also holds that
ωpoaprqq P PSpαprqq “ PSpwq. Hence, it holds that PSpuq X PSpwq ‰ H, which completes the
proof.

If v has already left the graph in some iteration t, we can even show a stronger statement.

Lemma 3.40 Let t P t1, . . . , T u and v P V zṼt. Then represtpvq “ PSpvq.

Proof. We already showed represtpvq Ď PSpvq in Lemma 3.39. For the other direction, let
w P PSpvq. This means there exists an undirected path with trace pv, w̃1, . . . , w̃k, wq of nodes
in PSpvq. As v R Ṽt, it holds that Ăwltpvq ą 0. Applying Lemmas 3.24 and 3.27 inductively on
the path yields w P represtpvq, which proves the claim.

The proof immediately shows another result.

Corollary 3.41 If v P V is a leaf in G̃t for some t P t1, . . . , T u, then represtpvq “ PSpvq.

We use this statement to show that, whenever two nodes are joined, the higher one is the
lowest parent of the pre-sink induced by the lower one.

Observation 3.42 Let joinNodes(u, v) be called during the algorithm. Then it holds that
v “ lppPSpuqq.

Proof. We first prove that v is a parent of PSpuq. Let joinNodes(u, v) be called in iteration t.
This means that there exists an arc r P R̃t with αprq “ v and ωprq “ u. Due to Observa-
tion 3.38, it holds that ωpoaprqq P PSpuq. As the source node of an arc is never changed, it
further holds that αpoaprqq “ v, which means that v is a parent of PSpuq.
We conclude the proof by showing that v is the lowest parent of PSpuq. As joinNodes(u, v)

is called in iteration t, it holds that u R V . Lemma 3.40 then implies that represpuq “ PSpuq.

60

3.4. Validity of the Mixed-Integer-Programming Formulation

This means that, for every arc r P δ´
GpPSpuqq, if catprq exists, it holds that ωpcatprqq “ u. As v

is by choice of the algorithm the lowest parent of u in G̃t, it also is the lowest parent of PSpuq

in G, which proves the claim.

A further consequence of Lemma 3.40 is stated in the following corollary.

Corollary 3.43 Let v P V zV . Then excesspvq “
ř

v1PPSpvqpghplppPSpvqqq ´ ghpvqq ¨ areapv1q.

Proof. Due to Lemma 3.40, it holds that represpvq “ PSpvq. As v R V , the node v must leave
the graph in some iteration tv . In order for the node to leave the graph, it must become the
first flooded leaf, which only happens if

excesspvq{areatvpvq “ ghplppPSpvqqq ´ ghpvq.

Rearranging and plugging in areatvpvq “
ř

v1PPSpvq areapv1q yields the desired result.

We next investigate the structure of the sets represpvq for v P V in more detail. For the
following proofs, we advise the reader to recall the definition of a follow-up node provided in
Lemma and Definition 3.5 and the result of Corollary 3.7, which are used to show an advanced
structural result about the sets represpvq for v P V .

Corollary 3.44 Let v P V and t P t1, . . . , T u. Then there exists a set U Ď FUNpvq such that
represtpvq “ tvu Y

ď

uPU

PSpuq.

Proof. Let u P FUNpvq. If u P represtpvq, then this implies that u R Ṽt. Lemma 3.40 implies that
represtpuq “ PSpuq. As u P represtpvq, all other nodes in represtpuq must also be in represtpvq,
which yields PSpuq Ď represtpvq.

If u R represtpvq, then Observation 3.42 together with Corollary 3.7 implies that u P Ṽt. This
means that v cannot become the lowest parent of any of the nodes in PSpuq, which implies that
no node in PSpuq is in represtpvq.

We use Corollaries 3.43 and 3.44 to prove the next result.

Lemma 3.45 Let v P V and u P FUNpvq such that u P represpvq. Then

excesspPSpuqq “
ÿ

v1PPSpuq

pghpvq ´ ghpv1qq ¨ areapv1q “ cappPSpuqq.

Proof. As u P represpvq, it also holds that PSpuq Ď represpvq due to Corollary 3.44. This then
implies that each node w P PSpuq must leave the graph in some iteration, i.e., w R V , which
allows us to apply Corollary 3.43 and Lemma 3.40 for each node in PSpuq:

excesspPSpuqq “
ÿ

v1PPSpuq

excesspv1q

61

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

Cor. 3.43
“

ÿ

v1PPSpuq

ÿ

ṽPPSpv1q

pghplppPSpv1qqq ´ ghpv1qq ¨ areapṽq

Lemma 3.40
“

ÿ

v1PPSpuq

ÿ

ṽPreprespv1q

pghplppPSpv1qqq ´ ghpv1qq ¨ areapṽq

Let v1, . . . , vk P PSpuq be the nodes in order of ascending geodesic heights such that v1 P

represpviq for all i P t1, . . . , ku. This implies that v1 “ v1 and vk “ u. Further, Observation 3.42
implies that vi`1 “ lppPSpviqq for all i P t1, . . . , k ´ 1u. The terms in the above sum involving
areapv1q can then be written as:

rpghplppPSpuqqq ´ ghpuqq ` pghpuq ´ ghpvk´1qq ` ¨ ¨ ¨ ` pghpv2q ´ ghpv1qqs ¨ areapv1q

“pghpvq ´ ghpv1qq ¨ areapv1q

Inserting this into the sum above yields the desired result.

A similar idea is used to prove the following lemma.

Lemma 3.46 Let v P V zV . Then it holds that

excesspPSpvqq “
ÿ

v1PPSpvq

pghplppPSpvqqq ´ ghpv1qq ¨ areapv1q.

Proof. As v R V , it must hold that represpvq “ PSpvq due to Lemma 3.40. This means that, for
every w P PSpvq, it must hold that w R V . The rest of the proof is then along the same lines as
the proof of Lemma 3.45

We now prove that, for v P V , the excess is obtained by summing up the product of the
water level and the area over all nodes in PSpvq.

Proposition 3.47 Let v P V . Then it holds that

excesspPSpvqq “
ÿ

v1PPSpvq

wlpv1q ¨ areapv1q.

Proof. For a non-flooded node v1 P V , it is clear that excesspv1q “ 0. Due to Proposition 3.30
and Lemma 3.4, any sink S P Spyq is either contained in PSpvq or disjoint from PSpvq. Let
S1, . . . , Sk P Spyq be the sinks contained in PSpvq and let up1q, . . . , upkq P V be the nodes
inducing their corresponding pre-sinks, respectively. Then, we can write the excess as

excesspPSpvqq “

k
ÿ

i“1

excesspPSpupiqqq (△)

We fix some i P t1, . . . , ku and distinguish two cases: upiq P V and upiq R V .

62

3.4. Validity of the Mixed-Integer-Programming Formulation

Case 1: upiq P V . As upiq is in a sink, it must hold that wlpupiqq ą 0, which means that upiq is a
leaf inG. Corollary 3.41 then yields that represpupiqq “ PSpupiqq. For any node u1 P FUNpupiqq,
Lemma 3.45 yields

excesspPSpu1qq “
ÿ

v1PPSpu1q

pghpupiqq ´ ghpv1qq ¨ areapv1q.

Further, as represpupiqq “ PSpupiqq, we get that

excesspupiqq “
ÿ

v1PPSpupiqq

areapv1q ¨ wlpupiqq.

This yields

excesspPSpupiqqq “
ÿ

u1PFUNpupiqq

ÿ

v1PPSpu1q

pghpupiqq ´ ghpv1qq ¨ areapv1q

`
ÿ

v1PPSpupiqq

areapv1q ¨ wlpupiqq

“
ÿ

v1PPSpupiqq

pwlpupiqq ` ghpupiqq ´ ghpv1qq ¨ areapv1q

Prop. 3.29
“

ÿ

v1PPSpupiqq

wlpv1q ¨ areapv1q.

Case 2: upiq R V . In this case, Lemma 3.46 yields that

excesspPSpupiqqq “
ÿ

v1PPSpupiqq

pghplppPSpupiqqqq ´ ghpv1qq ¨ areapv1q.

Let ũ “ lppPSpupiqqq. As ũ R PSpupiqq “ Si, it must hold that wlpũq “ 0 and, hence, that ũ P V .
As upiq R V , it must hold that upiq P represpũq. Observation 3.20 applied for t “ T then implies
that, for each v1 P PSpupiqq, it holds that

ghplppPSpupiqqqq ´ ghpv1q “ wlpv1q,

which then implies

excesspPSpupiqqq “
ÿ

v1PPSpupiqq

wlpv1q ¨ areapv1q,

which is the same result as in the previous case.
Resubstituting this into (△) yields

excesspPSpvqq “
ÿ

v1PPSpvq

wlpv1q ¨ areapv1q.

63

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

Now that we have reached this milestone, we next prove the analogue of Proposition 3.36
for y. To this end, we firstly define the positive contribution to the excess for y.

Definition 3.48 Let v P V and t P t1, . . . , T u. We define the positive contribution to the excess
of pre-sink PSpvq in iteration t as

y.pcetpPSpvqq :“
ÿ

rPδ´
GpPSpvqq:

catprq exists

ftpcatprqq `
ÿ

v1PPSpvq

areapv1q ¨ rain ¨ pt

and the positive contribution to the excess of pre-sink PSpvq until iteration t as

y.pceďtpPSpvqq :“
t
ÿ

t1“1

y.pcet1pPSpvqq.

As a short-hand notation, we define y.pcepPSpvqq :“ y.pceďT pPSpvqq. Further, for an iteration
t P t1, . . . , T u, the change of excess in t is defined as∆excesstpvq :“ excesstpvq´excesst´1pvq,
where excess0pvq “ 0 for all v P V .

We start by proving a structural result, whose statement is similar to the one of Observa-
tion 3.38.

Lemma 3.49 Let t P t1, . . . , T u and v P Ṽt. Further let r P R such that αprq R PSpvq and
ωprq P PSpvq. Then cat1prq exists for every t1 ď t and ωpcat1prqq P PSpvq.

Proof. We start by proving that cat1prq exists for every t1 ď t. Suppose for the sake of a contra-
diction that this is not the case. Then there exists a last iteration t̂ ď t, in which cat̂prq exists.
This means that joinNodes(ωpcat̂prqq, αprq) is called in iteration t̂. As αprq R PSpvq, it must
hold that ghpαprqq ą ghpvq. Further, as αprq is a parent of PSpvq, it holds that v P PSpαprqq.
As ωpcat̂prqq P represtpαprqq, it also holds that v P represtpαprqq due to Corollary 3.44. This,
however, implies that v R Ṽt, which is a contradiction. The proof of the second claim is along
the same lines as the proof of Observation 3.38 and is omitted here.

The lemma above allows proving that, as long as a node v P V has not left the graph, the
change of the excess of its induced pre-sink in an interation t is exactly the positive contribution
to the excess of the pre-sink in iteration t.

Lemma3.50 Let t P t1, . . . , T u and v P Ṽt. Then it holds that pcetpPSpvqq “ ∆excesstpPSpvqq.

Proof. Firstly, note that any water that enters a node v1 P PSpvq or that arises from the rain
on v1 is sent over the outgoing arcs of v1 in G̃t if there are any. Observation 3.38 guarantees
that the child of such an arc is itself in PSpv1q and, hence, in PSpvq. Therefore, the water that
arrives at the leaves of G̃t is exactly the inflow into the pre-sink plus the rain on the pre-sink.

The rain on the pre-sink in iteration t is exactly
ř

v1PPSpvq areapv1q ¨ rain ¨ p̂t and the inflow
into the pre-sink is the flow on the arcs in δ´

G̃t
pPSpvqq “ tr P δ´

GpPSpvqq | catprq existsu due to
Lemma 3.49 and Observation 3.38, which proves the claim.

64

3.4. Validity of the Mixed-Integer-Programming Formulation

There are two useful corollaries that immediately follow from this.

Corollary 3.51 Let v P V and t P t1, . . . , T u such that v P Ṽt. Then it holds that
pceďtpPSpvqq “ excesstpPSpvqq.

Proof. Sum over the iterations from one to t and use Lemma 3.50.

Corollary 3.52 Let v P V . Then it holds that pcepPSpvqq ě excesspPSpvqq.

We can now prove the first direction of the characterization when a pre-sink is flooded.

Lemma 3.53 Let v P V . If pcepPSpvqq ą thrpPSpvqq, then PSpvq is flooded.

Proof. Due to Observation 3.32, it suffices to show that v is flooded. For the sake of a contra-
diction, suppose that v is not flooded. In particular, this means that v P V . Corollary 3.51 then
implies that

ÿ

v1PPSpvq

pghpvq ´ ghpv1qq ¨ areapv1q “ thrpPSpvqq ă pcepPSpvqq “ excesspPSpvqq

Prop. 3.47
“

ÿ

v1PPSpvq

wlpv1q ¨ areapv1q.

This means that there exists a node v1 P PSpvq with wlpv1q ą pghpvq ´ ghpv1qq. Then Proposi-
tion 3.29 implies that wlpvq ą 0, which yields the desired contradiction.

Next, the other direction is shown.

Lemma 3.54 Let v P V . If pcepPSpvqq ď thrpPSpvqq, then PSpvq is not flooded.

Proof. Due to Observation 3.32, it suffices to show that v is not flooded. For the sake of a
contradiction, suppose that v is flooded. We distinguish two cases:

Case 1: v R V

Due to Lemma 3.46, it holds that

excesspPSpvqq “
ÿ

v1PPSpvq

pghplppPSpvqqq ´ ghpv1qq ¨ areapv1q.

Corollary 3.52 then implies that
ÿ

v1PPSpvq

pghpvq ´ ghpv1qq ¨ areapv1q “ thrpPSpvqq ě pcepPSpvqq ě excesspPSpvqq

“
ÿ

v1PPSpvq

pghplppPSpvqqq ´ ghpv1qq ¨ areapv1q.

This, however, is a contradiction to ghpvq ă ghplppPSpvqqq.

65

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

Case 2: v P V

Proposition 3.47 yields

excesspPSpvqq “
ÿ

v1PPSpvq

wlpv1q ¨ areapv1q.

Using Corollary 3.52, we get that
ÿ

v1PPSpvq

pghpvq ´ ghpv1qq ¨ areapv1q “ thrpPSpvqq ě pcepPSpvqq ě excesspPSpvqq

“
ÿ

v1PPSpvq

wlpv1q ¨ areapv1q.

Proposition 3.29, however, states that ghpv1q ` wlpv1q “ ghpvq ` wlpvq ą ghpvq for each
v1 P PSpvq, which is a contradiction.

As a result, we obtain the desired characterization of flooded pre-sinks for y:

Proposition 3.55 Let v P V . Then PSpvq is flooded in y if and only if it holds y.pcepPSpvqq ą

thrpPSpvqq.

3.4.3.3 Characterization of Inflows and Outflows of Pre-Sinks

Propositions 3.36 and 3.55 imply that, if x.pcepPSpvqq “ y.pcepPSpvqq for a node v P V ,
then PSpvq is flooded in x if and only if it is flooded in y. The fact that the positive contri-
bution to the excess depends on the flows in the graph motivates to investigate the flows in
more detail. In this section, we present a characterization of the inflows and outflows of pre-
sinks.

Characterization of Infows and Outflows of Pre-Sinks for x

We start by presenting the characterization for x and omit the “x.” when referring to variables
whenever this does not lead to any confusion.

Definition 3.56 Let S P Spxq. The sink S is called filled to capacity (ftc) if x.excesspSq “

cappSq, and it is called backfloating if
ÿ

rPRex:
αprqPS,

ωprq“lppSq

x.fprq ą
ÿ

rPRex:
αprq“lppSq,

ωprqPS

x.fprq.

In this case, the sink’s backfloat is defined as

x.bfpSq :“
ÿ

rPRex:
αprqPS,

ωprq“lppSq

x.fprq ´
ÿ

rPRex:
αprq“lppSq,

ωprqPS

x.fprq.

66

3.4. Validity of the Mixed-Integer-Programming Formulation

The following lemma provides an alternative characterization of a pre-sink being ftc.

Lemma 3.57 Let S P Spxq. Then S is ftc if and only if wlpvq ` ghpvq “ ghplppSqq for all
v P S.

Proof. Let S P Spxq be ftc. Using Constraint (2) together with the definition of cappSq, this is
equivalent to

ÿ

vPS

wlpvq ¨ areapvq “
ÿ

vPS

pghplppSq ´ ghpvqq ¨ areapvq.

Proposition 3.15 further implies that wlpvq ď ghplppSq ´ ghpvq for all v P S since otherwise
wlplppSqq ą 0, which is a contradiction to the structure of a sink. This means that the above
equation holds if and only if wlpvq ` ghpvq “ ghplppSqq for all v P S.

Corollary 3.58 Let S P Spxq be non-ftc. Then wlpvq ` ghpvq ă ghplppSqq for all v P S.

Proof. Use Lemma 3.57 and Corollary 3.17.

These two statements allow investigating the flows on arcs leading into a sink in more detail.

Corollary 3.59 Let S P Spxq be ftc. Then every arc r P δ´
GpSq X δ`

GplppSqq is full and every
arc r P δ´

GpSqzδ`
GplppSqq is not full.

Proof. Due to Lemma 3.57, it holds that wlpvq ` ghpvq “ ghplppSqq for all v P S. Let
now r P δ´

GpSq X δ`
GplppSqq, then r is full due to Constraints (22) and (24). For an arc

r P δ´
GpSqzδ`

GplppSqq, it must hold that ghpαprqqq ą ghplppSqq “ wlpvq ` ghpvq. Hence,
Constraint (36) implies that r is not full.

Corollary 3.60 Let S P Spxq be non-ftc. Then no arc r P δ´
GpSq is full.

Proof. Use Corollary 3.58 and Constraint (36).

Next, we provide a characterization of a sink being backfloating. The idea is that, if the
rain on the sink plus the flow on incoming arcs from nodes that are not the lowest parent
of the sink is larger than the sink’s capacity, then the sink is backfloating. At this point, we
advise the reader to recall the definitions of x.pcelppPSpvqq and x.pcenlppPSpvqq provided in
Definition 3.9. We firstly observe the following:

Observation 3.61 Let S P Spxq be backfloating, then it is also ftc.

Proof. Suppose S is not ftc. Then, due to Corollary 3.60, all incoming arcs into S are not full,
which means that

ÿ

rPRex:
αprqPS,

ωprq“lppSq

x.fprq “ 0.

Hence, S cannot be backfloating.

67

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

We start proving the first direction of our characterization.

Lemma 3.62 Let S P Spxq be backfloating. Then it holds that x.pcenlppSq ą cappSq and
x.bfpSq “ x.pcenlppSq ´ cappSq.

Proof. Due to Observation 3.61, it holds that S is ftc. Further, Corollary 3.59 implies that every
arc r P δ´

GpSq X δ`
GplppSqq is full and every arc r P δ´

GpSqzδ`
GplppSqq is not full, which implies

that:

cappSq “ excesspSq

“
ÿ

v1PS

»

–

ÿ

rPδ´

Gex pv1q

x.fprq ´
ÿ

rPδ`

Gex pv1q

x.fprq

fi

fl `
ÿ

v1PS

rain ¨ areapv1q

“
ÿ

rPδ´

Gex pSq

x.fprq `
ÿ

v1PS

rain ¨ areapv1q ´
ÿ

rPδ`

Gex pSq

x.fprq

Cor. 3.59
“

ÿ

rPδ´

Gex pSq:

αprq‰lppSq

x.fprq `
ÿ

v1PPSpvq

rain ¨ areapv1q `
ÿ

rPδ´

Gex pSq:

αprq“lppSq

x.fprq ´
ÿ

rPδ`

Gex pSq:

ωprq“lppSq

x.fprq

“ x.pcenlppSq `
ÿ

rPδ´

Gex pSq:

αprq“lppSq

x.fprq ´
ÿ

rPδ`

Gex pSq:

ωprq“lppSq

x.fprq

Using that
ÿ

rPδ´

Gex pSq:

αprq“lppSq

x.fprq ´
ÿ

rPδ`

Gex pSq:

ωprq“lppSq

x.fprq ă 0,

it follows that cappSq ă pcenlppSq and that cappSq “ pcenlppSq ` bfpSq, which concludes
the proof.

The following corollary is a direct consequence of this proof:

Corollary 3.63 Let S P Spxq be ftc. Then it holds that
ÿ

rPδ´

Gex pSq:

αprq“lppSq

x.fprq ´
ÿ

rPδ`

Gex pSq:

ωprq“lppSq

x.fprq “ cappSq ´ x.pcenlppSq.

Next, the opposite direction is shown.

Lemma3.64 LetS P Spxqwithx.pcenlppSq ą cappSq. ThenS is backfloatingwithx.bfpSq “

x.pcenlppSq ´ cappSq.

Proof. We first prove that S is ftc. Suppose this was not the case, then, by Corollary 3.60, no
arc in δ´

GpSq is full. Hence, it holds that

68

3.4. Validity of the Mixed-Integer-Programming Formulation

excesspSq “
ÿ

v1PS

»

–

ÿ

rPδ´

Gex pv1q

x.fprq ´
ÿ

rPδ`

Gex pv1q

x.fprq

fi

fl `
ÿ

v1PS

rain ¨ areapv1q

“
ÿ

rPδ´

Gex pSq

x.fprq `
ÿ

v1PS

rain ¨ areapv1q ´
ÿ

rPδ`

Gex pSq

x.fprq

looooooomooooooon

“0

“x.pcenlppSq ` x.pcelppSq ą cappSq,

which is a contradiction. By the same arguments as in the proof of Lemma 3.62, the desired
result is obtained.

The two lemmas are summarized in the following proposition:

Proposition 3.65 Let S P Spxq. Then S is backfloating if and only if x.pcenlppSq ą cappSq.
In this case, it holds that x.bfpSq “ x.pcenlppSq ´ cappSq.

Characterization of Infows and Outflows of Pre-Sinks for y

We proceed by presenting an analogue characterization for y and omit the “y.” when referring
to variables whenever this does not lead to any confusion.

Definition 3.66 Let S P Spyq. We call S filled to capacity (ftc) if y.excesspSq “ cappSq.
Further, let v P V such that S “ PSpvq and v R V . We then call S backfloating if

ÿ

tątv

ÿ

rPδ´
GpPSpvqq:

catprq exists,
αprq‰lppPSpvqq

y.ftpcatprqq `
ÿ

v1PPSpvq

areapv1q ¨ rain ¨ p1 ´ sptvq

ą

T
ÿ

t“1

ÿ

rPδ´
GpPSpvqq:

catprq exists,
αprq“lppPSpvqq

y.ftpcatprqq.

In this case, the sink’s backfloat is defined by

bfpSq :“
ÿ

tątv

ÿ

rPδ´
GpPSpvqq:

catprq exists,
αprq‰lppPSpvqq

y.ftpcatprqq `
ÿ

v1PPSpvq

areapv1q ¨ rain ¨ p1 ´ sptvq

´

T
ÿ

t“1

ÿ

rPδ´
GpPSpvqq:

catprq exists,
αprq“lppPSpvqq

y.ftpcatprqq.

69

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

In contrast to the MIP, only one direction of the characterization of a sink being ftc is needed
for proving the analogous statement of Proposition 3.65. It is worth noting that the other
direction holds as well.
We start by proving the analogous statement to Corollary 3.58 for y.

Lemma 3.67 Let S P Spyq be non-ftc. Then, for all v P S, it holds that wlpvq ` ghpvq ă

ghplppSqq.

Proof. Clearly, it cannot hold for any v1 P S that wlpv1q ` ghpv1q ą ghplppSqq as, in this case,
Proposition 3.29 implies that wlplppSqq ą 0 and, hence, that lppSq P S, which is a contradiction
to the structure of a sink. So suppose that wlpṽq ` ghpṽq “ ghplppSqq holds for some ṽ P S.
Again, Proposition 3.29 implies that wlpv1q`ghpv1q “ ghplppSqq holds for all v1 P S. Let v P V
such that S “ PSpvq. We then distinguish two cases.

Case 1: v P V

We apply Proposition 3.47 and obtain

excesspSq “
ÿ

v1PS

wlpv1q ¨ areapv1q

“
ÿ

v1PS

pghplppSqq ´ ghpv1qq ¨ areapv1q

“ cappSq,

which is a contradiction to S being non-ftc.

Case 2: v R V

We apply Lemma 3.46 and obtain

excesspSq “
ÿ

v1PS

pghplppSqq ´ ghpv1qq ¨ areapv1q “ cappSq,

which, again, is a contradiction to S being non-ftc.

This allows proving the following observation.

Observation 3.68 Let S P Spyq be backfloating, then it is also ftc.

Proof. Suppose this is not the case, then Lemma 3.67 implies that, for all v1 P S, it holds that
wlpv1q ` ghpv1q ă ghplppSqq. In particular, for v P V such that S “ PSpvq, this means that
v P V , which means that S is not backfloating.

We divide the positive contribution to the excess in a similar manner as for x.

Definition 3.69 Let v P V and t P t1, . . . , T u. We define the positive contribution to the excess
from non-lowest parents of pre-sink PSpvq until iteration t as

70

3.4. Validity of the Mixed-Integer-Programming Formulation

y.pcenlptpPSpvqq :“
t
ÿ

t1“1

ÿ

rPδ´
GpPSpvqq:

cat1 prq exists,
αprq‰lppPSpvqq

y.ft1pcatprqq `
ÿ

v1PPSpvq

areapv1q ¨ rain ¨ spt

and the positive contribution to the excess from the lowest parent of pre-sink PSpvq until iteration t
as

y.pcelptpPSpvqq :“
t
ÿ

t1“1

ÿ

rPδ´
GpPSpvqq:

cat1 prq exists,
αprq“lppPSpvqq

y.ft1pcatprqq.

Further, we introduce the notations pcenlppPSpvqq :“ pcenlpT pPSpvqq and pcelppPSpvqq :“
pcelpT pPSpvqq.

Using Observation 3.68, we prove the first direction of our characterization of a sink being
backfloating.

Lemma 3.70 Let S P Spyq be backfloating. Then it holds that pcenlppSq ą cappSq and that
bfpSq “ pcenlppSq ´ cappSq.

Proof. Let v P V such that S “ PSpvq. As S is backfloating, it must hold that v R V and, due
to Observation 3.68, it must also hold that cappSq “ excesspSq. We then argue that

cappSq “ excesspSq

Cor. 3.51
“ pceďtv

pSq

“ pcenlptvpSq ` pcelptvpSq

“
ÿ

t1ďtv

ÿ

rPδ´
GpSq:

cat1 prq exists,
αprq‰lppSq

ft1pcatprqq `
ÿ

v1PS

areapv1q ¨ rain ¨ sptv

`
ÿ

t1ďtv

ÿ

rPδ´
GpSq:

cat1 prq exists,
αprq“lppSq

ft1pcatprqq `
ÿ

t1ątv

ÿ

rPδ´
GpSq:

cat1 prq exists,
αprq“lppSq

ft1pcatprqq

looooooooooooooomooooooooooooooon

“0

“
ÿ

t1ďtv

ÿ

rPδ´
GpSq:

cat1 prq exists,
αprq‰lppSq

ft1pcatprqq `
ÿ

v1PS

areapv1q ¨ rain ¨ sptv ` pcelppSq

71

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

“ pcenlppSq ´
ÿ

tątv

ÿ

rPδ´
GpSq:

catprq exists,
αprq‰lppSq

ftpcatprqq ´
ÿ

v1PS

areapv1q ¨ rain ¨ p1 ´ sptvq ` pcelppSq.

Using that S is backfloating, by definition, it follows that
ÿ

tątv

ÿ

rPδ´
GpSq:

catprq exists,
αprq‰lppSq

ftpcatprqq `
ÿ

v1PS

areapv1q ¨ rain ¨ p1 ´ sptvq ą pcelppSq,

which means that cappSq ă pcelppSq. Further, plugging in the formula for bfpSq into the
above equation yields bfpSq “ pcenlppSq ´ cappSq.

Next, the other direction is shown.

Lemma 3.71 Let S P Spyq with pcenlppSq ą cappSq. Then it holds that S is backfloating and
that bfpSq “ pcenlppSq ´ cappSq.

Proof. Let v P V such that S “ PSpvq. We first show that S is ftc. Suppose the contrary, then
it holds that v P V . Hence, applying Corollary 3.51 yields

cappSq ą excesspSq “ pcepSq “ pcenlppSq ` pcelppSq ě pcenlppSq,

which is a contradiction. Executing the same proof as for Lemma 3.70 yields the desired result.

The two previous lemmas are summarized in the following proposition.

Proposition 3.72 Let S P Spyq. Then S is backfloating if and only if y.pcenlppSq ą cappSq.
In this case, it holds that y.bfpSq “ y.pcenlppSq ´ cappSq.

A further direct consequence of the proof is the following statement.

Corollary 3.73 Let S P Spyq be ftc. Then it holds that

cappSq “ y.pcenlppSq ´
ÿ

tątv

ÿ

rPδ´
GpSq:

catprq exists,
αprq‰lppPSpvqq

y.ftpcatprqq

´
ÿ

v1PS

areapv1q ¨ rain ¨ p1 ´ sptvq ` y.pcelppSq.

3.4.3.4 Proof of Equal Water Levels in x and y

We now use the results obtained about the water levels and flows in pre-sinks to show that
x.wlpvq “ y.wlpvq for all v P V . The idea of the proof is to show, from the highest node to the
lowest node, that the water levels are the same in x and y and that this also holds for the flows

72

3.4. Validity of the Mixed-Integer-Programming Formulation

on all outgoing arcs that are not full in x. The overall flows over an arc r P R in y are defined
by y.fprq :“

ř

tPt1,...,T u:
catprq exists

y.ftpcaprqq. We formalize the above-mentioned property of a node

in the following definition:

Definition 3.74 A node v P V is called explored above if v is non-flooded in x and y and all
v1 P V with ghpv1q ą ghpvq fulfill the following properties:

1. x.wlpv1q “ y.wlpv1q

2. For each arc r P δ`
Gpv1q that is not full in x, it holds that x.fprq “ y.fprq.

It is now shown that, if a node v P V is explored above, each sink S that is induced by a
follow-up node of v is backfloating in x if and only if it is in y.

Lemma 3.75 Let v P V be explored above. Then for each u P FUNpvq, it holds that PSpuq

is a backfloating sink in x if and only if it is in y. If it is backfloating, it further holds that
x.bfpPSpuqq “ y.bfpPSpuqq.

Proof. Due to Propositions 3.36 and 3.55 and Propositions 3.65 and 3.72, it suffices to show that
x.pcenlppPSpuqq “ y.pcenlppPSpuqq. As v is not flooded, it holds that every arc r P δ´

GpPSpuqq

with αprq ‰ v is not full in x. Then, due to Property 2 of v being explored above, it holds that
x.pcenlppPSpuqq “ y.pcenlppPSpuqq, which proves the claim.

The lemma in particular shows that, if a pre-sink induced by a follow-up node u is a back-
floating sink, the water levels of all nodes in PSpuq are the same in x and y. We next investigate
the follow-up nodes whose induced pre-sinks are not ftc sinks (i.e., either not a sink or non-ftc).
To this end, the reader is advised to recall the definition of the total ratio of the lowest parent of
a pre-sink provided in Definition 3.10. We observe an important property of the total ratio of
the lowest parent.

Observation 3.76 Let v P V and z P tx, yu. Further, let up1q, up2q P FUNpvq such that PSpup1qq

and PSpup2qq are not ftc sinks in z. Then it holds:

z.pcelppPSpup1qqq

z.pcelppPSpup2qqq
“

ratiolppPSpup1qqq

ratiolppPSpup2qqq

Proof. For z “ x, this is clear since all arcs in δ´
GpPSpup1qqq and δ´

GpPSpup2qqq are not full.
The claim is then clear from Constraint (31). For z “ y, the claim is also clear as all arcs
in δ´

GpPSpup1qqq and δ´
GpPSpup2qqq are never removed from the graph (otherwise, PSpup1qq

or PSpup2qq would be ftc).

The two previous observations show that the following is well-defined:

Definition 3.77 Let z P tx, yu and v P V be non-flooded with z.pcepPSpvqq ă thrpvq. Fur-
ther let u P FUNpvq such that PSpuq is not an ftc sink in z. Then we define the non-full arc
distribution of v as

73

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

z.nfadpvq :“
z.pcelppPSpuqq

ratiolppPSpuqq
.

We next show that x.nfadpvq “ y.nfadpvq for each non-flooded and explored-above node
v P V with z.pcepPSpvqq ă thrpvq. To prove this, an additional lemma is required.

Lemma 3.78 Let z P tx, yu and v P V be non-flooded with z.pcepPSpvqq ă thrpvq. Further let
u P FUNpvq. If it further holds that z.nfadpvq¨ratiolppPSpuqq ě cappPSpuqq´z.pcenlppPSpuqq,
then PSpuq is an ftc sink in z.

Proof. By definition, it holds that

z.pcelppPSpuqq “ z.nfadpvq ¨ ratiolppPSpuqq ě cappPSpuqq ´ z.pcenlppPSpuqq,

which means that z.excesspPSpuqq ě cappPSpuqq (due to Lemma 3.33 in the case of z “

x and Corollary 3.51 in the case of z “ y). As v is non-flooded, it must also hold that
z.excesspPSpuqq ď cappPSpuqq, which means that equality holds and PSpuq is an ftc sink.

We proceed by showing that x.nfadpvq “ y.nfadpvq for each explored-above node v P V for
which it holds that z.pcepPSpvqq ă thrpPSpvqq.

Lemma 3.79 Let z P tx, yu and v P V be explored above with z.pcepPSpvqq ă thrpPSpvqq.
Then it holds that x.nfadpvq “ y.nfadpvq.

Proof. As v is explored above, the node is non-flooded in both solutions (and in particular, it
holds that v P V). Hence, it holds that

x.excesspPSpvqq “ x.pcepPSpvqq “ y.pcepPSpvqq “ y.excesspPSpvqq (▽)

due to Lemma 3.33 and Corollary 3.51.
For the sake of a contradiction, suppose that x.nfadpvq ‰ y.nfadpvq. It is firstly assumed

that x.nfadpvq ą y.nfadpvq. The proof of the other case is along the same lines.
For all u P FUNpvq for which PSpuq is an ftc sink in y, Lemma 3.78 shows that PSpuq is

also an ftc sink in x. In particular, this means that x.excesspPSpuqq “ y.excesspPSpuqq. For all
u P FUNpvq, for which PSpuq is not an ftc sink in y, we distinguish two cases.
Case 1: PSpuq is an ftc sink in x.
Then y.excesspPSpuqq ă cappPSpuqq “ x.excesspPSpuqq by definition of ftc.
Case 2: PSpuq is not an ftc sink in x.
Then, by definition, it holds that

x.pcelppPSpuqq “ x.nfadpvq ¨ ratiolppPSpuqq ą y.nfadpvq ¨ ratiolppPSpuqq “ y.pcelppPSpuqq.

74

3.4. Validity of the Mixed-Integer-Programming Formulation

As v is explored above, it further holds that x.pcenlppPSpuqq “ y.pcenlppPSpuqq, which
yields x.pcepPSpuqq ą y.pcepPSpuqq. As PSpuq is not an ftc sink in both x and y, it holds that

x.excesspPSpuqq “ x.pcepPSpuqq ą y.pcepPSpuqq “ y.excesspPSpuqq.

All in all, it holds that

x.excesspPSpvqq “
ÿ

uPFUNpvq

x.excesspPSpuqq

ą
ÿ

uPFUNpvq

y.excesspPSpuqq “ y.excesspPSpvqq,

which is a contradiction to (▽).

We now prove the final proposition, which shows that, if a node v is explored above with
z.pcepPSpvqq ă thrpvq, then its non-flooded follow-up nodes are as well.

Proposition 3.80 Let v P V be explored above with z.pcepPSpvqq ă thrpvq for all z P tx, yu.
Then

a) it holds that x.wlpvq “ y.wlpvq,

b) for all u P FUNpvq, it holds that x.wlpuq “ y.wlpuq, and

c) for all r P δ`
Gpvq where r is not full in x, it holds that x.fprq “ y.fprq.

Proof. We prove the claims individually.

a) As z.pcepPSpvqq ă thrpPSpvqq for all z P tx, yu, it holds that v is non-flooded in both x
and y.

b) Let u P FUNpvq. If PSpuq is an ftc sink in x, then it is also in y due to Lemmas 3.78
and 3.79, which means that the claim holds in this case. If PSpuq is not an ftc sink in x, it
is, again because of Lemmas 3.78 and 3.79, not an ftc sink in y. In this case, it holds that
x.excesspPSpuqq “ y.excesspPSpuqq, which shows the claim.

c) Let r P δ`
Gpvq where r is not full in x. Then, due to Lemma 3.79, it holds that x.fprq “

x.nfadpvq ¨ ratioprq “ y.nfadpvq ¨ ratioprq “ y.fprq, which proves the claim.

Using this proposition, the desired property of the water levels can be shown.

Proposition 3.81 For all v P V , it holds that x.wlpvq “ y.wlpvq.

Proof. Let v1 P V be the highest node in the graph. As v1 is non-flooded due toAssumption (A2),
it clearly holds that v1 is explored above. If pcepPSpv1qq “ thrpPSpv1qq, we know that all pre-
sinks induced by the follow-up nodes of v1 are ftc sinks, which means that the claim holds. If

75

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

this is not the case, Proposition 3.80 shows that, for each u P FUNpv1q, it holds that x.wlpuq “

y.wlpuq. If wlpuq ą 0, it must hold that PSpuq is a sink, and, hence, that all nodes in PSpuq

have the same water level in the two solutions. Otherwise, Proposition 3.80 shows that u is
explored above. We then continue applying the same arguments to all such u and work our
way down the graph until we have shown the claim for all nodes.

This proposition completes the proof of the main theorem of this section.

Theorem 3.82 Let D Ď A be a feasible set of actions. For any solution x of the MIP taking
exactly the actions inD and the result y of Algorithm 3 applied onGD , it holds that x.wlpvq “

y.wlpvq for all v P V .

3.5 Computational Results

In this section, we present a comparison of the results obtained from ourMIP to results obtained
from established simulation software. Afterwards, we use real-world instances from different
municipalities to identify and analyze the main drivers for the running time of our method and
the quality of the obtained solutions.

3.5.1 Comparison with Established Simulation Software

To validate our approach, we compare the results obtained on real-world instances to re-
sults obtained on these instances from the well-established simulation software “HYSTEM-
EXTRAN” [Ins], which is the German industry standard for hydro-dynamic simulations in
urban water management and is used by most engineering offices and municipalities when
evaluating precautionary measures for pluvial flash floods. It does, however, not support any
kind of optimization, but can only be used to simulate the water levels resulting from a given
(usually manually chosen) combination of actions for a given amount of rain. Thus, we com-
pare the water levels resulting from our approach for the status quo of each instance (which
contains only the already implemented actions, if any) without allowing any additional actions
to the water levels obtained from HYSTEM-EXTRAN’s simulation for the same situation. The
results obtained fromHYSTEM-EXTRAN have been provided and validated by the engineering
office igr AG, which was one of our partners in the project AKUT.

All in all, it is found that the results predominantly coincide, with only slight differences that
usually occur at the periphery of flooded areas. An illustrative example, in which a 30-year rain
event (i.e., the heaviest rain to be expected in the chosen area over a time span of 30 years) is
simulated in a hilly region, is provided in Figure 3.7. We further observe that AKUT slightly
underestimates the damage to buildings in hilly regions whereas it slightly overestimates the
damage to buildings in flat regions. This is due to the fact that HYSTEM-EXTRAN also takes
damage caused by high current velocity into account, which is neglected in AKUT.

76

3.5. Computational Results

(a) Water levels obtained from HYSTEM-
EXTRAN.

(b) Water levels obtained from the software
AKUT.

Figure 3.7.: Extract from a comparison of water levels obtained from HYSTEM-EXTRAN and
AKUT for a 30-year rain event in a hilly region. The darker the blue color, the
higher the water level, where the highest obtained levels are illustrated in purple
in the case of HYSTEM-EXTRAN.

3.5.2 Running Time and Performance

We now investigate the running times of our MIP and the quality of the obtained solutions. For
both of them, we present the most important drivers that have been identified by applying our
approach to awide range of different real-world problem instances during the project AKUT. As
an illustration, results for nine representative instances obtained from three different regions
(two municipalities and a part of a city) that are considered in three relevant scenarios are
presented. The three scenarios are a 30-year rain event with a budget that allows to take four
actions, a 50-year rain event with with a budget that allows to take four actions, and a 50-
year rain event with with a larger budget that allows to take six actions.19 The regions are a
municipality on a hilly terrain, called “Hilly Region” (HR) in the following, a municipality on
a flat terrain, called “Flat Region 1” (FR1) in the following, and a part of a city on a flat terrain,
called “Flat Region 2” (FR2) in the following. For each region, the setA of possible actions is the
same for all three scenarios and consists of about 20 actions that have been selected according
to the local circumstances such that each of them could be implemented in reality.
For each instance, an initial solution taking no actions, which is computed usingAlgorithm 3,

is given to the MIP. As termination criterion, a 3%MIP gap is used for the hilly region, and a 5%
MIP gap is used for the flat regions. Further, a time limit of 24 hours is set. All computations in
this section were executed using Gurobi 9.5.0 on a server with 32 AMD EPYC 7542 processors
(2.9GHz). The most important characteristics of the instances together with the results and the
running times are provided in Table 3.3.
In general, it is found that the maximum possible number of actions is taken in each of the

nine instances. It is worth noting that there are instances, which are not presented here, where
this is not the case. Possible reasons for not taking an action although it would be possible
are (1) an overabundance of possible actions and a large budget such that the action that is not
taken does not contribute to the quality of the solution anymore and (2) a poor-quality location
of the action such that the action does not protect any buildings.
19Recall that a 30-year (50-year) rain event corresponds to the heaviest rain to be expected in the chosen area over

a time span of 30 years (50 years).

77

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

Region Total Area [m2] # Buildings HM
Hilly Region (HR) 2294375 579 7.2%
Flat Region 1 (FR1) 1728799 573 1.9%
Flat Region 2 (FR2) 585123 957 2.0%
Instance |Vred| Running Time FSF IOV BOV

HR, 30-year, 4 actions 4719 48min 31min 821 807
HR, 50-year, 4 actions 4750 2h 20min 44min 863 855
HR, 50-year, 6 actions 4750 56min 42min 863 854
FR1, 30-year, 4 actions 6613 1h 8min 33min 405 392
FR1, 50-year, 4 actions 6646 24h 4h 26min 418 399
FR1, 50-year, 6 actions 6646 24h 2h 35min 418 398
FR2, 30-year, 4 actions 3778 6h 36min 6h 36min 571 475
FR2, 50-year, 4 actions 3790 3h 2min 2h 33min 575 483
FR2, 50-year, 6 actions 3790 2h 27min 2h 27min 575 480

Table 3.3.: Computational results for nine representative instances. The column “HM”
(Hilliness Meassure) contains the median of the values obtained by dividing the
slope of each arc by the Euclidean distance of the centers of its incident nodes, which
is a measure of how hilly the terrain is. The column “FSF” contains the time until the
final solution is found. The column “IOV” contains the objective value of the initial
solution of the MIP provided by applying Algorithm 3. The column “BOV” contains
the objective value of the best solution returned by the MIP. Note that the different
values of |Vred| among instances with the same region result from different merging
of nodes during preprocessing due to different rain events.

Among the 42 actions that are selected by the MIP in the presented instances, 40 are basins,
while only two are ditches or embankments. This confirms observations made on numerous
real-world instances indicating that retention basins, if they can be built, are usually the most
efficient actions. However, building retention basins requires free space, which is not always
available, especially in densely populated urban areas. Embankments and ditches are usually
built together with a retention basin such that the actions overlap geographically. An intuitive
explanation for this behavior of the MIP is that retention basins act as a storage for the water,
while ditches or embankments connect the inflow from a larger area to the basins.
Another interesting finding is that, in hilly regions, the most efficient retention basins, i.e.,

the ones that are typically selected by the MIP, are often low-lying and located centrally. As an
illustration, in the three scenarios considered for HR, 10 of the 14 selected basins are low-lying
and located centrally.
Although the rain volume is significantly higher in the instances modeling the 50-year rain

events, it is found that neither the budget nor the rain volume dramatically change the set of
taken actions. Among the 12 actions taken in the three considered instances with a 50-year rain
event and four possible actions per instance, eight are also taken in the corresponding instances
with a 30-year rain event. Further, among the 12 actions taken in the three instances with a 50-
year rain event and six possible actions per instance, nine are also taken in the corresponding
instances with four possible actions.

78

3.5. Computational Results

In general, the running times show high fluctuations as can be seen in FR1, where the in-
stance with the 30-year rain event takes significantly less time to solve than the instances with
the 50-year rain event. Still, several factors influencing the running time and the quality of the
obtained solutions can be identified.
Concerning the running time, the most important factor is the number of nodes in the graph

(i.e., |Vred|). The instances of FR1, which are the instances with the largest number of nodes,
with a 50-year rain event are the only instances in our experiments on which theMIP gap could
not be closed before reaching the time limit, whereas all other instances could be solved within
less than 7 hours.
The second most important factor is the hilliness of the terrain surface. Comparing HR

and FR2, the instances for HR are solved significantly faster than the instances for FR2 despite
the graph for FR2 being slightly smaller than the graph for HR. Further, in hillier regions, the
MIP tends to be numerically more stable.
Although the parameter “MIPFocus” is set to 2 and the parameter “Heuristics” is set to 0.01,

which both enforce a stronger attention on improving the lower bound, the final solution is
usually found relatively quickly, and the solver spends a significant part of the overall running
time on improving the lower bound afterwards, as can be seen when comparing the values
in the columns “Running Time” and “FSF” (final solution found) in Table 3.3. Without tuning
the parameters accordingly, the running time increases drastically since the solver struggles to
close the MIP gap.

Concerning the quality of the solutions, we observe that hillier regions usually have more
damage potential overall. To illustrate this, we compare HR to FR1, which have almost the
same number of buildings. However, the objective values of both the initial solution and the
solution returned by the MIP are more than twice as large in HR as in FR1. This is due to two
reasons. Firstly, hilly regions have heavier rainfalls than flat regions due to orographic precip-
itation [Roe05]. In our example, a 30-year rain event in HR has a precipitation level of 44.9mm
whereas a 30-year rain event in FR1 has a precipitation level of only 35.9mm. Secondly, hilly
regions tend to have a larger drainage area, which can also be seen comparing the total areas
of HR and FR1. Indeed, the difference in the total areas result almost entirely from a higher
number of water-dispensing nodes in instances of HR.
Lastly, the density of the buildings (i.e., the number of buildings per area) affects the potential

of howmuch better the solution returned by theMIP can be compared to the initial solution (i.e.,
the solution where no actions are taken). In our case, there is a significantly higher density of
buildings in FR2 than there is in HR and FR1. We see that the difference between the objective
values of the initial solution and the obtained solution from the MIP is considerably larger
in FR2 than it is in HR and FR1. This stems from the fact that, if a high water level at a critical
location is prevented by an action, the action protects more buildings in FR2 than it does in
the other two regions. It is worth noting, however, that there are other instances with a high
density of buildings where planning impactful actions becomes hard due to lack of space. In
such cases, a high density of buildings can decrease the potential for damage reduction by
taking actions significantly.

79

3. A Mixed-Integer Programming Approach to Municipal Flood Mitigation

3.6 Conclusion

To the best of our knowledge, the web application AKUT is the first software that uses opti-
mization techniques to support decision making in planning precautionary measures for plu-
vial flash floods and scales well enough to be applied to realistic scenarios. Since its release, it
has been used by over 30 organizations from all over Germany. The usage of optimization tech-
niques in this context has evidently provided valuable support in handling a challenging and
highly topical task for various organizations like municipalities, engineering offices, research
institutes, and many more.
A mixed-integer program is used to minimize the damage in the case of a heavy rain event

by taking best-possible actions subject to a limited budget and constraints on the cooperation
of residents. To model the terrain surface, a grid graph obtained from a digital terrain model is
transformed by several preprocessing methods such that the cardinality of its node set becomes
small enough to apply the previouslymentionedmixed-integer programwhile still maintaining
a realistic representation of the terrain surface. Comparisons with results from established
software provide strong evidence that solutions obtained from our approach yield realistic
results.
When applying the software to large cities, these must currently be subdivided into several

parts due to performance reasons. Hence, an interesting question would be how the perfor-
mance of our approach could further be improved such that it can handle larger instances.
As the problem decomposes into several smaller subproblems, using decomposition methods
could be a promising attempt. Another possible approach for improving the running times
of the model could be to implement callbacks that use Algorithm 3 to compute new solutions
during later stages of the branch and bound process.

80

4 A pB ` 1q-Approximation forNetwork Flow

Interdiction with Unit Removal Costs

Abstract In the network flow interdiction problem (NFI), an interdictor aims to remove
arcs of total cost at most a given budget B from a network with given arc costs
and capacities such that the value of a maximum flow from a source s to a sink t
is minimized. We present a polynomial-time pB ` 1q-approximation algorithm
for NFI with unit arc costs, which is the first approximation algorithm for any
variant of network flow interdiction whose approximation ratio only depends
on the budget available to the interdictor, but not on the size of the network.

4.1 Introduction

While the mixed-integer programming approach presented in the previous chapter influences
the flows by modifying the geodesic heights of the nodes, another well-studied approach to
modeling decision strategies influencing the flows on a network is to remove arcs from the
network. In the context of pluvial flood mitigation, building a ditch could be modeled by re-
moving the arcs from the network that are incident to nodes that intersect with the ditch. While
this technique has not been applied in the software AKUT, we though conducted research on
the well-known network flow interdiction problem. The majority of the results in this chapter
are published in [BT20; BT21].

The class of problems, where an interdictor aims to remove arcs or nodes of total cost at
most a given budget from a (directed or undirected) graph or network such that the optimal
objective value of an optimization problem on the resulting graph or network is maximized (in
case of a minimization problem) or minimized (in case of a maximization problem), is called the
class of interdiction problems. Due to their high applicability and their immediate connection to
assessing the robustness of graphs and networks, interdiction problems have been studied for
the vast majority of important graph-related optimization problems. A survey on interdiction
problems can be found in [SS20].
In this chapter, the network flow interdiction problem, where an interdictor aims to remove

arcs of total cost at most a given budget B from a network with given arc costs and capacities
such that the value of a maximum flow from a source s to a sink t is minimized, is studied.

81

4. A pB ` 1q-Approximation for Network Flow Interdiction with Unit Removal Costs

4.1.1 Previous Work

The problem was first stated in 1964 [Wol64] and has been widely studied since then due to its
numerous applications ranging from highway transportation [Dur66] over targeting strikes in
a lines-of-communication network [Wol70] to critical infrastructure analysis [MMG07]. The
problem formulation used in most of the literature today has been introduced in [Phi93],
where multiple hardness results on different classes of graphs are shown. Furthermore, a
pseudopolynomial-time algorithm and an FPTAS for the problem on planar graphs are pre-
sented. A proof of strong NP-hardness of NFI, which also holds true for unit arc costs, can
be found in [Woo93]. An algorithm for NFI that, for any ε ą 0, either returns a p1 ` 1{εq-
approximate solution or a (super-)optimal solution violating the budget by a factor of at most
p1 ` εq is presented in [Bur+03]. So far, the best known polynomial-time approximation algo-
rithm for NFI is presented in [CZ17] and achieves an approximation ratio of 2pn´ 1q, where n
is the number of nodes in the network. They also present a hardness-of-approximation re-
sult using a reduction from the densest k subgraph problem, which itself is known to be hard
to approximate assuming the exponential time hypothesis [Man17]. Various extensions of the
problem involvingmultiple terminals [ATW11] ormultiple objective functions [RW07; Sch+20]
have also been studied in the literature.
An interesting related field of research worth mentioning are network improvement prob-

lems, where the aim is to improve the network instead of harming it. A variety of network
improvement problems, an analysis of their complexity, and approximation algorithms are
presented in [Kru+98] and a time-expanded version is investigated in [SL06]. The applica-
tion of network improvement problems ranges from improving accessibility to rural health
services [MC09] to the design of new bike lanes [LFH16].
The approximation algorithm for NFI we present in this chapter dynamically scales the ca-

pacities of a subset of arcs in the network and uses an algorithm for the minimum s-t-cut
problem as a subroutine. For an overview of state-of-the-art minimum s-t-cut algorithms, we
refer to [AMO93]. To the best of our knowledge, the fastest algorithm on directed networks so
far, which we also use in our algorithm, with running time in Opnmq is presented in [Orl13].

4.1.2 Our Contribution

We present a pB ` 1q-approximation algorithm for NFI with unit arc costs. This algorithm ex-
tends the algorithm presented in the conference version of this work [BT20], which achieves
an approximation ratio of pB`1q only for the special case of unit-cost arcs that may only have
a small or a large capacity (i.e., only two different values are allowed for the arc capacities), to
the case where arcs still have unit removal costs, but arbitrary capacities. To the best of our
knowledge, our algorithm is the first algorithm for any variant of NFI to achieve an approxima-
tion ratio that only depends on the interdiction budget B, but not on the size of the network.
Moreover, we show that our analysis of the algorithm is essentially tight. Additionally, we
demonstrate that the approximation ratio of our algorithm can be improved to B ´ k ` 1 for
any constant k ď B by a boosting argument.

82

4.2. Problem Definition and Structural Results

The best approximation algorithm known for NFI with unit arc costs so far is the algorithm
of Chestnut and Zenklusen [CZ17], whose approximation ratio improves to pn´1q in the case
of unit arc costs. Since, for instances on simple graphs, the source s can always be separated
from the sink t for any budgetB ě n´1 by simply removing the at most n´1 arcs starting in s,
the approximation ratio we obtain thus dominates the previously best known approximation
ratio for NFI with unit arc costs on simple graphs.

4.2 Problem Definition and Structural Results

Let G “ pV,R, uq be a directed network, consisting of a node set V , a set R of directed arcs,
and a capacity function u : R Ñ Qą0. Furthermore, let s ‰ t be two nodes in G, and let
B P Ną0 be an interdiction budget. The network flow interdiction problem with unit costs
(which we denote by NFI in the following) asks for a subsetD Ď R, called interdiction strategy,
of arcs with cardinality |D| ď B such that the value of a maximum s-t-flow in the network
GD :“ pV,RzD,u

ˇ

ˇ

RzD
q is minimized (where u

ˇ

ˇ

RzD
denotes the restriction of the capacity

function u to RzD). Formally, the problem can be stated as follows:

Instance: A directed network G “ pV,R, uq, two nodes s, t P V with s ‰ t, and a
budget B P Ną0

Task: Find a subset D Ď R of arcs with |D| ď B such that the value valGpDq of a
maximum s-t-flow in the network GD “ pV,RzD,u

ˇ

ˇ

RzD
q is minimized.

Network Flow Interdiction

For an instance of NFI, the number of different capacities is bounded from above by the
number m “ |R| of arcs in the network. Thus, we can assume, that u : R Ñ tu1, . . . , uku

for some k ď m and u1 ă ¨ ¨ ¨ ă uk. Furthermore, the smallest arc capacity u1 can be
assumed to be one by simply dividing all capacities by u1 if u1 ‰ 1. For ease of notation,
we define ū :“ uk. Lastly, we assume that the arcs r1, . . . , rm in the set R are numbered by
non-decreasing capacities, breaking ties arbitrarily. In other words, for two arcs ri, rj P R
with i ă j, it holds that upriq ď uprjq. Note that, if this is not the case, this sorting can be
performed in Opm logpmqq time.

Whenever we refer to the network G “ pV,R, uq with capacity function u : R Ñ Qą0,
we mean the input network of the instance. Throughout this chapter, we also consider slight
modifications of the network G, where the node and arc sets remain unchanged, but the ca-
pacity function is changed. Whenever we refer to such a modification, we denote the network
by H “ pV,R, uHq with capacity function uH : R Ñ Qą0. In any such network H , we adopt
the numbering of the arcs from G. Note that this numbering might not be in non-decreasing
order of capacities with respect to the capacity function uH .
We call an instance of NFI trivial if its optimum objective value equals zero, and non-trivial,

otherwise. By the well-known max-flow min-cut theorem (see [FF62]), it is easy to check in
polynomial time whether a given instance is trivial by testing whether, when setting all arc

83

4. A pB ` 1q-Approximation for Network Flow Interdiction with Unit Removal Costs

capacities to one, a minimum cut in G has capacity at most B. In the following, we assume
that all instances are non-trivial.

4.2.1 Structural Results

When solving the network flow interdiction problem, s-t-cuts play a central role. In this sec-
tion, we show how the concept of removing arcs can be translated to a concept of attacking a
cut. The first observation follows directly from the max-flow min-cut theorem:

Observation 4.2 For any interdiction strategy D Ď R, its objective value valGpDq for NFI
equals the capacity of a minimum s-t-cut in the interdicted network GD .

The computation of minimum cuts plays an important role in our algorithm and its analysis.
Throughout the chapter, we assume the use of an arbitrary but fixed (deterministic) algorithm
to compute a minimum s-t-cut in a given network in polynomial time.1 For a solution D,
we denote the minimum cut in the interdicted network GD computed by this minimum cut
algorithm by CD “ pSD, TDq. The cut CD is interpreted as a cut in the original network G “

pV,R, uq. The next lemma uses an exchange argument and motivates the investigation of cuts
when finding interdiction strategies.

Lemma4.3 For an interdiction strategyD Ď R and anyminimum cut pS, T q in the interdicted
network GD , it either holds that D Ď δ`

GpSq, or valGpDq can be reduced by removing an arc
in Dzδ`

GpSq from D and adding an arc from δ`
GpSqzD to D.

Proof. Assume that there exists an arc r P Dzδ`
GpSq. Since the instance is non-trivial, there

must also exist an arc r1 P δ`
GpSqzD. Now let D1 :“ pDztruq Y tr1u. By Observation 4.2,

removing r from the solution D does not change its value valGpDq, but adding r1 to D de-
creases valGpDq by upr1q ą 0. Therefore, it holds that valGpD1q “ valGpDq ´ upr1q ă

valGpDq.

The lemma immediately implies an important property of optimal interdiction strategies.

Corollary 4.4 For an optimal solution DOPT, any minimum cut pS, T q in the interdicted net-
work GDOPT satisfies DOPT Ď δ`

GpSq.

While any interdiction strategyD is identified with a cutCD , a given cutC can also be iden-
tified with an interdiction strategy by using the interdiction budgetB to reduce the capacity of
the cut in G as far as possible, which can be easily achieved by removing the B arcs of largest
index, i.e., the B arcs with largest capacity, in C . This motivates the following definition:

Definition 4.5 Let H “ pV,R, uHq be a network with the same node and arc set as G. For
a cut C in H , we define the strategy of attacking the cut as the solution DC Ď R containing
the B arcs of largest index in the cut C .2 Interdiction strategies of the form DC are called
1For an overview of minimum cut algorithms, we refer to [AMO93].
2Note that all networks that we consider throughout the chapter are non-trivial. Hence, any cut must contain at
least B ` 1 arcs.

84

4.2. Problem Definition and Structural Results

s

v

t1

1

1

3C

s

v

t1

1

1

C

Figure 4.1.: The network G of the instance described in Example 4.6 on the left hand side and
the network GDC

on the right hand side. The cut C is optimal, while it is not
minimum in GDC

.

cut interdiction strategy. The smallest among the indices of the arcs in the cut interdiction
strategy DC is called the lowest removal index of the cut C . Furthermore, we define the value
of a cut C in H as valHpCq :“ valHpDCq and call a cut C optimal on H if DC is an optimal
interdiction strategy for NFI onH . Lastly, we define the interdicted capacity of a cut C inH as
icapHpCq :“ capHDpCq “ capHpCq ´ uHpDCq, i.e., the capacity of the cut after interdiction.

For simplicity, if a cut C is optimal for NFI on G, we just say that C is optimal without
explicitly referring to the network G. Note that, even though the notion of attacking a cut C
is defined for any modified network H “ pV,R, uHq, for later convenience, the arcs in the
interdiction strategy DC are chosen in a way that reduces the capacity of the cut in G (and
not necessarily in H) as far as possible. In particular, the cut interdiction strategy DC is inde-
pendent of which network H “ pV,R, uHq is considered. Moreover, note that removing arcs
from a cut C in the described way does not imply that C is a minimum cut in the interdicted
networks HDC

or GDC
, not even if C is optimal for NFI on H or G. This is corroborated in

the following example.

Example 4.6 LetG “ pV,R, uq be a network with V “ ts, v, tu, and the arc set consisting of
one arc from s to t with capacity 3, two parallel arcs from s to v with capacity 1 and one arc
from v to t with capacity 1. Further, let B “ 1. The cut C :“ ptsu, tv, tuq is optimal, but it is
not a minimum cut in the interdicted network GDC

. This is illustrated in Figure 4.1.

Example 4.6 motivates the following definition:

Definition 4.7 We call a cut C minimum after interdiction in a network H “ pV,R, uHq if it
is a minimum cut in the interdicted networkHDC

. If the network is clear from the context, we
only say a cut is minimum after interdiction without explicitly referring to the network.

The next lemma follows from the fact that the capacity of a cut is an upper bound on the value
of a maximum s-t-flow in a network and from the max-flow min-cut theorem (see [AMO93]):

Lemma 4.8 Let H “ pV,R, uHq be a network and let C be a cut in H . Then it holds that
valHpCq ď icapHpCq. This holds with equality if and only if C is minimum after interdiction
in H .

85

4. A pB ` 1q-Approximation for Network Flow Interdiction with Unit Removal Costs

Proof. The interdicted capacity icapHpCq is defined as the capacity of C in HDC
, whereas

the value valHpCq is defined as the value of a maximum s-t-flow in HDC
, which, due to the

max-flow min-cut theorem, equals the capacity of a minimum cut in HDC
. Therefore, it holds

that valHpCq ď icapHpCq. Now, C is minimum after interdiction in H if it is a minimum cut
inHDC

, which, with the above argumentation, holds if and only if valHpCq “ icapHpCq.

Being minimum after interdiction is a desirable property of cuts – in particular of optimal
cuts. This motivates the following lemma:

Lemma 4.9 There exists an optimal cut COPT that is minimum after interdiction in G.

Proof. Let DOPT be an optimal interdiction strategy for NFI on G and let COPT be a minimum
cut in GDOPT . Due to Corollary 4.4, the cut COPT must contain all arcs of DOPT. Then, it must
hold that upDCOPTq ď upDOPTq since, otherwise, DCOPT would remove strictly more capacity
from the cutCOPT thanDOPT. AsCOPT is a minimum cut inGDOPT , this would lead to a strictly
better interdiction strategy, contradicting the optimality of DOPT. Conversely, it holds that
upDCOPTq ě upDOPTq as DCOPT contains the B arcs of largest index and, hence, of maximum
capacity in COPT and all the at most B arcs inDOPT are contained in COPT. Thus, it holds that
upDCOPTq “ upDOPTq. This yields

valGpDCOPTq
p1q

ď icapGpCOPTq “ capGpCOPTq ´ upDCOPTq

“ capGpCOPTq ´ upDOPTq
p2q
“ valGpDOPTq,

where (1) holds due to Lemma 4.8, and (2) follows from COPT being a minimum cut in GDOPT .
Hence, DCOPT must be an optimal solution and equality holds in p1q, which shows that COPT

is also minimum after interdiction in G due to Lemma 4.8.

For ease of notation, we formally define the notion of a cut being α-approximate.

Definition 4.10 Let α ě 1 and let H “ pV,R, uHq be a network. A cut C in H is called
α-approximate for NFI on H if DC is α-approximate for NFI on H .

Clearly, if an (approximately) optimal cut C is known, the corresponding (approximately)
optimal interdiction strategy DC can easily be computed in polynomial time. Therefore, the
challenge in approximating NFI on a networkG lies in finding a cut C whose value valGpCq is
as low as possible. Next, we define a network in which the capacities of arcs with large indices
are scaled. This network plays a central role in our algorithm.

Definition 4.11 Let γ ě 1 and l P N with l ď m. We define the capacity function ul,γ : R Ñ

Qą0 by

ul,γpriq :“

#

γ, if i ě l

upriq, else,

86

4.2. Problem Definition and Structural Results

i.e., all arcs of index greater or equal to l have capacity γ while the capacity of the other arcs
remains unchanged. Furthermore, we set Gpl, γq :“ pV,R, ul,γq and define Cpl, γq as the
minimum cut in Gpl, γq returned by the deterministic minimum cut algorithm.

Recall that ū is defined as the largest capacity inG. The intuition behind the networkGpl, γq

is that any cutC in the networkG has a larger value inGpl, ūq than it has inG, and an optimal
cut COPT has the same value for NFI on both Gpl, ūq and G if l is larger than or equal to the
cut’s lowest removal index. This is summarized in the following lemma:

Lemma 4.12 Let C be a cut in G. Then, for any 1 ď l ď m, it holds that valGpCq ď

valGpl,ūqpCq. Let l̄ be the lowest removal index of C . If, additionally, C is minimum after
interdiction in G and l ě l̄, then C is minimum after interdiction in Gpl, ūq and valGpCq “

valGpl,ūqpCq.

Proof. The networks G and Gpl, ūq have the same sets of nodes and arcs, and for each of the
arcs, it holds that its capacity in G is at most its capacity in Gpl, ūq. This yields valGpCq ď

valGpl,ūqpCq. If additionally l ě l̄, all arcs with index greater or equal to l are removed from C
when attacking C in Gpl, ūq, which means the remaining arcs in C after interdiction have the
same capacities in both networks G and Gpl, ūq. In other words, this means that icapGpCq “

icapGpl,ūqpCq. Further, if C is minimum after interdiction in G, it holds that

icapGpCq
p1q
“ valGpCq

p2q

ď valGpl,ūqpCq
p3q

ď icapGpl,ūqpCq,

where p1q and p3q hold because of Lemma 4.8, and p2q has already been shown above. Since
it holds that icapGpCq “ icapGpl,ūqpCq, equality must hold in p2q and p3q, which means
valGpCq “ valGpl,ūqpCq and C is minimum after interdiction inGpl, ūq due to Lemma 4.8.

Applying Lemma 4.12 to an optimal cut yields the following important result.

Corollary 4.13 Let COPT be a cut that is optimal and minimum after interdiction in G and
let lOPT be its lowest removal index. Then COPT is also optimal on GplOPT, ūq and minimum
after interdiction in GplOPT, ūq.

For the remainder of this chapter, we denote byC‹ an arbitrary but fixed optimal cut for NFI
on G that is minimum after interdiction, and by l‹ its lowest removal index. Note that such a
cut exists due to Lemma 4.9. Due to Corollary 4.13, the cut C‹ is also optimal and minimum
after interdiction in Gpl‹, ūq.
The following lemma shows that an α-approximate cut for NFI on Gpl‹, ūq is also α-appro-

ximate for NFI on G.

Lemma 4.14 Any α-approximate cut C for NFI on Gpl‹, ūq, is also an α-approximate cut
for NFI on G.

Proof. It holds that

valGpCq
Lem. 4.12

ď valGpl‹,ūqpCq ď α ¨ valGpl‹,ūqpC‹q
Lem. 4.12

“ α ¨ valGpC‹q.

87

4. A pB ` 1q-Approximation for Network Flow Interdiction with Unit Removal Costs

4.3 A pB ` 1q-Approximation for NFI

Lemma 4.14 shows that, if we manage to find an α-approximate interdiction strategy for NFI
on Gpl‹, ūq, we immediately obtain an α-approximate interdiction strategy for NFI on G. A
problem of this procedure is that l‹ is unknown and cannot be computed efficiently. However,
as l‹ can only attain integer values from 1 tom ´ B ` 1, it is possible to iteratively „guess“ l‹
and compute an approximate interdiction strategy in each iteration. Out of these m ´ B ` 1
interdiction strategies computed for each possible value for l‹, we then take the onewith lowest
value for NFI on G, which then yields an α-approximate interdiction strategy. This idea is
formally summarized in the following lemma:

Lemma 4.15 Let α ě 1. If there exists an algorithm ALG for NFI with additional input l P

t1, . . . ,m ´ B ` 1u that

1) terminates in OpT q time for any l P t1, . . . ,m ´ B ` 1u and

2) returns an α-approximate cut interdiction strategy for NFI on Gpl‹, ūq for l “ l‹,

then applying ALG for l “ 1, . . . ,m ´ B ` 1 and returning an interdiction strategy with
lowest value for NFI on G yields an α-approximation algorithm for NFI on G that runs in
Opm ¨ T q time.

Proof. Let D1, . . . , Dm´B`1 be the interdiction strategies returned by ALG applied for l “

1, . . . ,m´B ` 1, respectively and letDl̄ be the one returned by the described procedure, i.e.,
the one with lowest value. Further, let DCl‹ be the cut interdiction strategy returned by ALG
for l “ l‹. Then it holds that

valGpDl̄q ď valGpDCl‹ q “ valGpCl‹q ď α ¨ valGpC‹q

where the last inequality follows by Lemma 4.14.
The statement for the running time follows as ALG runs inOpT q time and has to be executed

Opmq times, which yields a total running time ofOpm ¨T q. Identifying a solution with lowest
value for NFI on G among D1, . . . , Dm´B`1 is possible in Opm ¨ T̃ q time, where T̃ denotes
the maximum time needed to compute a maximum s-t-flow in one of the networks GDl

, for
l “ 1, . . . ,m ´ B ` 1.3

The scalable capacity function ul,γ treats arcs with index larger or equal to a given index l
differently than the other arcs, which motivates the following definition:

Definition 4.16 Let l P t1, . . . ,m ´ B ` 1u and let γ ě 1. All arcs in Gpl, γq with index
larger than or equal to l are called large arcs, and all other arcs in Gpl, γq are called small arcs.
For a cut C in Gpl, γq, we denote by nlalpCq the number of large arcs in C and by csalpCq :“
ř

riPC:
iăl

upriq the sum of the capacities of the small arcs in C .4

3We assume that T̃ P OpT q.
4nla stands for „number of large arcs“ and csa stands for „capacity of small arcs“.

88

4.3. A pB ` 1q-Approximation for NFI

Before stating the algorithm, we present one more structural result about the number of
large arcs in cuts of the formCpl, γq5 for l P t1, . . . ,m ´ B ` 1u and γ ě 1. The lemma states
that, for fixed l, the number of large arcs in Cpl, γq (weakly) increases if γ is decreased.

Lemma 4.17 Let l P t1, . . . ,m ´ B ` 1u and 1 ď γ1 ă γ2 ď ū. Then it holds that
nlalpCpl, γ1qq ě nlalpCpl, γ2qq.

Proof. Let nla1 :“ nlalpCpl, γ1qq, csa1 :“ csalpCpl, γ1qq and nla2 :“ nlalpCpl, γ2qq, csa2 :“
csalpCpl, γ2qq. By definition of the two cuts, we have

capGpl,γ1qpCpl, γ1qq ď capGpl,γ1qpCpl, γ2qq

capGpl,γ2qpCpl, γ2qq ď capGpl,γ2qpCpl, γ1qq,

which yields

nla1 ¨ γ1 ` csa1 “ capGpl,γ1qpCpl, γ1qq ď capGpl,γ1qpCpl, γ2qq “ nla2 ¨ γ1 ` csa2 (4.1)
and nla2 ¨ γ2 ` csa2 “ capGpl,γ2qpCpl, γ2qq ď capGpl,γ2qpCpl, γ1qq “ nla1 ¨ γ2 ` csa1. (4.2)

Adding (4.1) and (4.2) yields

nla1 ¨ γ1 ` csa1 ` nla2 ¨ γ2 ` csa2 ď nla2 ¨ γ1 ` csa2 ` nla1 ¨ γ2 ` csa1.

This is equivalent to

nla2 ¨ pγ2 ´ γ1q ď nla1 ¨ pγ2 ´ γ1q,

which means that nla1 ě nla2 since γ1 ă γ2.

We now describe our algorithm, whose pseudocode can be found in Algorithm 8. The al-
gorithm takes an instance of NFI and an index l P t1, . . . ,m ´ B ` 1u as input and uses the
recursive bisection procedure stated in Algorithm 9 as a subroutine in order to compute mini-
mum cuts in graphs of the form Gpl, γq for some γ ě 1. Whenever two cuts C1 and C2 have
been found in the subroutine for γ1 and γ2, respectively, the next candidate value γ̂ is chosen as
the value for which the capacities ofC1 andC2 inGpl, γ̂q are equal, and the cut Ĉ :“ Cpl, γ̂q is
computed. If the number of large arcs in Ĉ is different from both that in C1 and that in C2, the
bisection method is called recursively for γ1 and γ̂, and for γ̂ and γ2. Otherwise, the recursion
ends and the cuts C1 and C2 are returned.
For better readability, we refer to a call to Algorithm 9 by bisection(l, γ1, γ2) and to the set

returned by the algorithm by bisectionpl, γ1, γ2q.
The idea of the analysis of the algorithm is to apply Lemma 4.15 to the algorithm. We

start by showing that Algorithm 8 terminates in polynomial time for any given index l P

t1, . . . ,m ´ B ` 1u, which is the first of the two prerequisites required in order to apply the
lemma.
5Recall: Cpl, γq is the min-cut in Gpl, γq returned by the deterministic min-cut algorithm.

89

4. A pB ` 1q-Approximation for Network Flow Interdiction with Unit Removal Costs

Algorithm 8: BISECTION-CUT
1 Procedure bisec-cut(G,B, l)
2 Compute Cpl, 1q and Cpl, ūq

3 if nlalpCpl, 1qq ď B then
4 return DCpl,1q

5 else if nlalpCpl, ūqq ě B then
6 return DCpl,ūq

7 else
8 return a cut interdiction strategy DC , where C P argmin

C̄Pbisectionpl,1,ūq

valGpC̄q

Algorithm 9: BISECTION-PROCEDURE
1 Procedure bisection(l, γ1,γ2)
2 C1 :“ Cpl, γ1q

3 C2 :“ Cpl, γ2q

4 Let γ̂ :“ csalpC2q´csalpC1q

nlalpC1q´nlalpC2q
and compute Ĉ :“ Cpl, γ̂q

5 if nlalpĈq R tnlalpC1q, nlalpC2qu then
6 return bisection (l, γ1, γ̂) Y bisection (l, γ̂, γ2)
7 else
8 return tC1, C2u

Observation 4.18 If Algorithm 8 enters one of the if-statements in line 3 or line 5, the whole
algorithm only needs to compute twominimum cuts, in which case it runs inOpTMCpGpl, 1qq`

TMCpGpl, ūqqq time, where TMCpHq is the time needed to execute the deterministic minimum
cut algorithm on a network H .

Due to Observation 4.18, it remains to analyze the running time of Algorithm 8 if it enters
the else-statement in line 7. To this end, we first show that Algorithm 9 is indeed a bisection
procedure, i.e., for a call to bisection (l, γ1, γ2), the new candidate value γ̂ lies in the inter-
val rγ1, γ2s.

Lemma 4.19 Let l P t1, . . . ,m ´ B ` 1u be an index for which bisec-cut(G,B, l) enters
the else-statement in line 7. Further, let γ1 ‰ γ2 be two values for which bisection(l, γ1, γ2)
is called during the execution of Algorithm 8, let C1 and C2 be the corresponding cuts from
lines 2 and 3, and γ̂ the value computed in line 4 of Algorithm 9. Then it holds that 1 ď γ1 ď

γ̂ ď γ2 ď ū.

Proof. We show by induction over the recursion tree produced by the recursive calls of the
bisection procedure that, whenever bisection(l, γ1, γ2) is called for two values γ1, γ2 as in the
claim, then either 1 ď γ1 ă γ̂ ă γ2 ď u, or γ̂ P tγ1, γ2u and no further recursive calls of the
bisection procedure are made within bisection(l, γ1, γ2).

90

4.3. A pB ` 1q-Approximation for NFI

We prove the basis of our induction by showing the claim for the root node of the recursion
tree, which is the call to bisection(l, 1, ū). In this iteration of the recursion, we have γ̂ “
csalpCpl,ūqq´csalpCpl,1qq

nlalpCpl,1qq´nlalpCpl,ūqq
. We first show that 1 ď γ̂ ď ū. For the sake of a contradiction, first

suppose that γ̂ ă 1. By the definition of γ̂, it holds that

γ̂ ¨ nlalpCpl, 1qq ` csalpCpl, 1qq “ γ̂ ¨ nlalpCpl, ūqq ` csalpCpl, ūqq.

As the else-statement in line 7 of Algorithm 8 is entered, it holds that nlalpCpl, 1qq ą B and
that nlalpCpl, ūqq ă B. In particular, it holds that nlalpCpl, 1qq ą nlalpCpl, ūqq, which yields

1 ¨ nlalpCpl, 1qq ` csalpCpl, 1qq “ γ̂ ¨ nlalpCpl, 1qq ` csalpCpl, 1qq ` p1 ´ γ̂q ¨ nlalpCpl, 1qq

ą γ̂ ¨ nlalpCpl, ūqq ` csalpCpl, ūqq ` p1 ´ γ̂q ¨ nlalpCpl, ūqq

“ 1 ¨ nlalpCpl, ūqq ` csalpCpl, ūqq,

implying that Cpl, 1q is not a minimum cut in Gpl, 1q. This is a contradiction to the defini-
tion of Cpl, 1q, and it follows that γ̂ ě 1. Along the same lines, one can prove that γ̂ ď ū.
Consequently, we obtain that 1 ď γ̂ ď ū.

For proving the induction base, it remains to show that, if γ̂ P t1, ūu, no further recursive
calls to the bisection procedure are made within bisection(l, 1, ū). First assume that γ̂ “ 1.
Since the algorithm used for computing the cutCpl, γ̂q (i.e., a minimum cut inGpl, γ̂q) in line 4
of the bisection procedure is the same determinisctic algorithm that is used to compute Cpl, 1q

in line 2, it then follows that Ĉ “ Cpl, 1q and, in particular, nlalpĈq “ nlalpCpl, 1qq. If γ̂ “ ū,
it follows along the same lines that nlalpĈq “ nlalpCpl, ūqq. In both cases, this implies that no
further recursion steps are made within bisection(l, 1, ū), which completes the proof of the
induction base.

For the induction step, let bisection(l, γ1, γ2) be called during the algorithm and assume
that the statement holds for all predecessors in the recursion tree. In particular, this holds for
the parent in the recursion tree. Let bisection(l, γ1

1, γ
1
2) be the parent in the recursion tree.

Due to the recursive calls in line 6 of Algorithm 9, it must either hold that γ1
1 “ γ1 or γ1

2 “ γ2.
We present the proof for the case that γ1

2 “ γ2. The proof in the other case is along the same
lines.
Again, due to the structure of the recursive calls in line 6 of the bisection procedure, it must

hold that γ1 and Cpl, γ1q are the new candidate value and the cut computed in line 4 of the
algorithm in the parent recursion step, respectively. Hence, applying the induction hypothesis
for the parent recursion step implies that 1 ď γ1 ă γ2 ď u.

Now consider the call tobisection(l, γ1, γ2), inwhich the cutsC1 “ Cpl, γ1q,C2 “ Cpl, γ2q,
and Cpl, γ̂q together with the value γ̂ are computed in lines 2, 3, and 4, respectively. Since
1 ď γ1 ă γ2 ď ū, Lemma 4.17 shows that nlalpC1q ě nlalpC2q. As bisection(l, γ1, γ2) has
been called from the parent recursion step, it must also hold that nlalpC1q ‰ nlalpC2q by the
if-statement in line 5 in the parent recursion. Together, this yields nlalpC1q ą nlalpC2q.

We show that γ̂ P rγ1, γ2s. For the sake of a contradiction, first suppose that γ̂ ă γ1. By
construction, it holds that γ̂ ¨ nlalpC1q ` csalpC1q “ γ̂ ¨ nlalpC2q ` csalpC2q. As nlalpC1q ą

nlalpC2q, it holds that

91

4. A pB ` 1q-Approximation for Network Flow Interdiction with Unit Removal Costs

γ1 ¨ nlalpC1q ` csalpC1q “ γ̂ ¨ nlalpC1q ` csalpC1q ` pγ1 ´ γ̂q ¨ nlalpC1q

ą γ̂ ¨ nlalpC2q ` csalpC2q ` pγ1 ´ γ̂q ¨ nlalpC2q

“ γ1 ¨ nlalpC2q ` csalpC2q,

which means that C1 is not a minimum cut in Gpl, γ1q. This is a contradiction to the choice
of C1, so we obtain that γ̂ ě γ1. Along the same lines, one can prove that γ̂ ď γ2. Conse-
quently, we obtain that 1 ď γ1 ď γ̂ ď γ2 ď ū.
It remains to show that, if γ̂ P tγ1, γ2u, then no further recursive calls of the bisection

procedure are made within bisection(l, γ1, γ2). First assume that γ̂ “ γ1. As in the proof of the
induction base, it follows that Ĉ “ Cpl, γ̂q “ C1 since the min-cut algorithm is deterministic.
In particular, it follows that nlalpĈq “ nlalpC1q. If γ̂ “ γ2, it holds that nlalpĈq “ nlalpC2q

by the same arguments. In both cases, this implies that the if-statement in line 5 is not entered
and, hence, no further recursion steps are made within bisection(l, γ1, γ2), which completes
the proof.

Using Lemmas 4.17 and 4.19, it is next shown that Algorithm 8 runs in polynomial time.

Proposition 4.20 Algorithm 8 runs in Opm ¨ TMCq time, where TMC is the maximum time
needed to compute a minimum cut in a network of the formGpl, γq with l P t1, . . . ,m´B`1u

and γ P r1, ūs.

Proof. Observation 4.18 shows that, if Algorithm 8 enters one of the if-statements in line 3
or line 5, the algorithm runs in OpTMCpGpl, 1qq ` TMCpGpl, ūqqq Ď OpTMCq time. Hence, it
remains to analyze the running time of the algorithm if it enters the else-statement in line 7.
A single recursion loop of the bisection procedure can be performed in OpTMCq time since

the time needed to compute a minimum cut dominates the other steps in a single execution
of the procedure. Moreover, whenever bisection(l, γ1, γ2) is called, Lemma 4.19 shows that
1 ď γ1 ď γ̂ ď γ2 ď ū for γ̂ as in line 4 of the procedure. If γ̂ P tγ1, γ2u, the computed cut Ĉ
equals C1 or C2 since the algorithm used for computing a minimum cut in lines 2, 3, and 4 of
the bisection procedure is deterministic. If γ̂ R tγ1, γ2u, it holds that 1 ď γ1 ă γ̂ ă γ2 ď ū,
so Lemma 4.17 yields nlalpC2q ď nlalpĈq ď nlalpC1q. Thus, since no recursive call to the
bisection procedure is made if nlalpĈq P tnlalpC1q, nlalpC2qu, at most three cuts with exactly q
large arcs can be computed within Algorithm 8 for each 0 ď q ď m, i.e., there are at most
3pm`1q calls of the bisection procedure, which yields a total running time ofOpm ¨TMCq.

4.3.1 Approximating NFI onGpl‹, ūq

In order to apply Lemma 4.15 to Algorithm 8, it remains to show that our algorithm meets the
lemma’s second prerequisite, i.e., that Algorithm 8 applied for l “ l‹ returns an α-approximate
cut interdiction strategy for NFI on Gpl‹, ūq. In this section, we, therefore, consider the case
that l “ l‹ and introduce the following shorthand notation:

92

4.3. A pB ` 1q-Approximation for NFI

Notation 4.21 For γ ě 1, we set Gpγq :“ Gpl‹, γq and define Cpγq :“ Cpl‹, γq as the
minimum cut in Gpγq returned by the deterministic minimum cut algorithm. For a cut C , we
also write nlapCq :“ nlal‹pCq and analogously csapCq :“ csal‹pCq. Further, we introduce a
shorthand notation for ul‹,ū : R Ñ Q and denote it by u‹.

Recall thatC‹ is a fixed optimal cut that is also minimum after interdiction. The interdiction
strategy when attacking C‹ is to remove exactly the B large arcs from the cut. Additionally
using Lemma 4.8 with C‹ being minimum after interdiction in Gpūq yields the following ob-
servation:

Observation 4.22 For the cut C‹, it holds that:

• nlapC‹q “ B

• valGpūqpC‹q “ icapGpūqpC‹q “ csapC‹q

First of all, we rule out two cases in which it is easy to find an optimal solution for NFI
on Gpūq.

Lemma 4.23 If nlapCpūqq ě B, then Cpūq is optimal for NFI on Gpūq and, hence, for NFI
on G.

Proof. As nlapCpūqq ě B, only large arcs are removed when attacking Cpūq, which means
u‹pDCpūqq “ B ¨ ū. Since only large arcs are removed when attacking C‹ as well, it also holds
that u‹pDC‹q “ B ¨ ū. This yields

valGpūqpCpūqq
p1q

ď icapGpūqpCpūqq

“ capGpūqpCpūqq ´ u‹pDCpūqq

“ capGpūqpCpūqq ´ B ¨ ū

ď capGpūqpC‹q ´ B ¨ ū

“ capGpūqpC‹q ´ u‹pDC‹q

“ icapGpūqpC‹q

p2q
“ valGpūqpC‹q,

where p1q follows from Lemma 4.8 and p2q follows from Observation 4.22. The optimality
of Cpūq for NFI on Gpūq follows from the optimality of C‹ and the optimality of Cpūq for NFI
on G then follows immediately from Lemma 4.14.

Lemma 4.24 If nlapCp1qq ď B, then Cp1q is optimal for NFI on Gpūq and, hence, for NFI
on G.

Proof. The interdiction strategy for attacking the cut Cp1q is to first remove all large arcs from
the cut, and then spend the remaining budget on removing B ´ nlapCp1qq small arcs, which

93

4. A pB ` 1q-Approximation for Network Flow Interdiction with Unit Removal Costs

all have at least a capacity of one. The assumption that nlapCp1qq ď B ensures that the budget
is large enough to remove all large arcs from the cut. Therefore, it holds that

valGpūqpCp1qq
p1q

ď icapGpūqpCp1qq

ď csapCp1qq ´ pB ´ nlapCp1qqq ¨ 1

“ csapCp1qq ` nlapCp1qq ´ B

“ capGp1qpCp1qq ´ B

ď capGp1qpC‹q ´ B

“ csapC‹q ` nlapC‹q ´ B
loooooomoooooon

“0 due to Obs. 4.22

“ csapC‹q

p2q
“ valGpūqpC‹q,

where p1q follows from Lemma 4.8 and p2q follows from Observation 4.22. Since C‹ is optimal
for NFI on Gpūq by Corollary 4.13, this shows that Cp1q is optimal for NFI on Gpūq. The
optimality of Cp1q for NFI on G then follows from Lemma 4.14.

Lemmas 4.23 and 4.24 imply that, if Algorithm 8 enters one of the if-statements in line 3
or line 5 for l “ l‹, it returns an optimal solution. Hence, we assume in the following that
Algorithm 8 enters the else-statement in line 7.

The next lemma states a sufficient condition under which the bisection procedure in Algo-
rithm 9 returns an optimal solution:

Lemma 4.25 If Algorithm 9 finds a value γ such that nlapCpγqq “ B, then Cpγq is optimal
for NFI on Gpūq and, hence, for NFI on G.

Proof. As nlapCpγqq “ B, the interdiction strategy for attacking the cut Cpγq consists of
removing exactly the large arcs from the cut. Therefore, the interdicted capacity of the cutCpγq

in the network Gpūq is equal to csapCpγqq. Analogously to the proof of Lemma 4.24, it holds
that

valGpūqpCpγqq ď icapGpūqpCpγqq

“ csapCpγqq ` pnlapCpγqq ´ Bq
looooooooomooooooooon

“0

¨γ

“ capGpγqpCpγqq ´ B ¨ γ

ď capGpγqpC‹q ´ B ¨ γ

“ csapC‹q ` γ ¨ pnlapC‹q ´ Bq
looooooomooooooon

“0 due to Obs. 4.22

“ csapC‹q

“ valGpūqpC‹q,

94

4.3. A pB ` 1q-Approximation for NFI

where the first inequality follows from Lemma 4.8 and the last equality follows from Observa-
tion 4.22. This proves optimality ofCpγq for NFI onGpūq. The optimality for NFI onG follows
immediately from Lemma 4.14.

Due to Lemma 4.25, only the case that the algorithm does not find any cut Cpγq with
nlapCpγqq “ B has to be considered. In the following, we fix C̊1 to be the cut in the set
bisection(l‹, 1, ū) with minimum value nlapC̊1q such that nlapC̊1q ą B, and C̊2 to be the cut in
bisection(l‹, 1, ū) withmaximum value nlapC̊2q such thatB ą nlapC̊2q. Both of these cuts exist
as nla pCp1qq ą B and nlapCpūqq ă B since Algorithm 8 entered neither of the if-statements in
line 3 or line 5. Note also that both cuts are uniquely defined as no two cuts in bisection(l‹, 1, ū)
can have the same number of large arcs due to Lemma 4.17 and the if-statement in line 5 of
Algorithm 9.
Furthermore, we fix γ̊1 and γ̊2 to be the values that led the algorithm to compute C̊1 and C̊2,

respectively. In particular, this implies that bisection(l‹, γ̊1, γ̊2) has been called during the
execution of the algorithm and no further recursive calls have been made during this re-
cursion step. Finally, we fix γ̊ to be the value of γ̂ in the call to bisection(l‹, γ̊1, γ̊2), i.e.,
γ̊ :“ csapC̊2q´csapC̊1q{nlapC̊1q´nlapC̊2q.

Lemma 4.26 It holds that capGp̊γqpC̊1q “ capGp̊γqpC̊2q ď capGp̊γqpC‹q.

Proof. Note that capGp̊γqpC̊1q “ capGp̊γqpC̊2q holds by the construction of γ̊. For the sake of a
contradiction, suppose that capGp̊γqpC̊1q ą capGp̊γqpC‹q. This means that C̊1 and C̊2 are not
minimum cuts in Gp̊γq, which implies that the cut Ĉ :“ C p̊γq must also fulfill capGp̊γqpC̊1q ą

capGp̊γqpĈq. Due to the choice of C̊1 and C̊2, it must hold that nlapĈq P tnlapC̊1q, nlapC̊2qu

because, otherwise, a further recursive call to the bisection procedure would have been made
during the execution of bisection (l‹, γ̊1, γ̊2).
If nlapĈq “ nlapC̊1q, it follows from capGp̊γqpC̊1q ą capGp̊γqpĈq that csapC̊1q ą csapĈq,

which is a contradiction to C̊1 being a minimum cut in Gpγ̊1q. Analogously, if nlapĈq “

nlapC̊2q, it follows from capGp̊γqpC̊2q ą capGp̊γqpĈq that csapC̊2q ą csapĈq, which is a contra-
diction to C̊2 being a minimum cut in Gpγ̊2q.

Proposition 4.27 If Algorithm 8 is applied for l “ l‹ and if the algorithm enters the else-
statement in line 7, it returns a pB ` 1q-approximate cut interdiction strategy for NFI onGpūq

and, hence, returns a pB ` 1q-approximate cut interdiction strategy for NFI on G.

Proof. By Lemma 4.26, it holds that:

capGp̊γqpC̊1q ď capGp̊γqpC‹q (4.3)
capGp̊γqpC̊2q ď capGp̊γqpC‹q (4.4)

From (4.3), we obtain

0 ď capGp̊γqpC‹q ´ capGp̊γqpC̊1q

“ nlapC‹q ¨ γ̊ ` csapC‹q ´ nlapC̊1q ¨ γ̊ ´ csapC̊1q

95

4. A pB ` 1q-Approximation for Network Flow Interdiction with Unit Removal Costs

ď nlapC‹q ¨ γ̊ ` csapC‹q ´ nlapC̊1q ¨ γ̊

“ csapC‹q ` pnlapC‹q
loomoon

“B

´ nlapC̊1q
loomoon

ěB`1

q ¨ γ̊

ď csapC‹q ´ γ̊.

Due to Observation 4.22, it holds that valGpūqpC‹q “ icapGpūqpC‹q “ csapC‹q, which, together
with the above inequality, yields

valGpūqpC‹q “ csapC‹q ě γ̊. (4.5)

Similarly, from (4.4), we obtain

0 ě capGp̊γqpC̊2q ´ capGp̊γqpC‹q

“ pnlapC̊2q ´ nlapC‹qq ¨ γ̊ ` csapC̊2q ´ csapC‹q

p1q
“ pnlapC̊2q ´ Bq ¨ γ̊ ` csapC̊2q ´ csapC‹q

p2q
“ pnlapC̊2q ´ Bq ¨ γ̊ ` csapC̊2q ´ valGpūqpC‹q

ě ´B ¨ γ̊ ` csapC̊2q ´ valGpūqpC‹q

p3q

ě ´B ¨ γ̊ ` valGpūqpC̊2q ´ valGpūqpC‹q (4.6)

where p1q and p2q hold due to Observation 4.22. Further, Inequality p3q holds since there are
less thanB large arcs in the cut C̊2, meaning that the interdicted capacity of C̊2 can be at most
csapC̊2q. Thus, Lemma 4.8 implies that valGpūqpC̊2q ď csapC̊2q.
From (4.6), we get that valGpūqpC‹q ` B ¨ γ̊ ě valGpūqpC̊2q. This together with (4.5) yields

pB ` 1q ¨ valGpūqpC‹q ě valGpūqpC‹q ` B ¨ γ̊ ě valGpūqpC̊2q.

Hence, as C‹ is an optimal solution for NFI on Gpūq, the cut C̊2 is a pB ` 1q-approximate cut
for NFI on Gpūq. Due to Lemma 4.14, the cut C̊2 is also a pB ` 1q-approximate cut for NFI
on G, which completes the proof.

We now show the main result of this section:

Proposition 4.28 If Algorithm 8 is applied for l “ l‹, it returns a pB`1q-approximate solution
for NFI on Gpūq and, hence, for NFI on G.

Proof. This follows immediately from Lemmas 4.23 and 4.24 and Proposition 4.27.

Theorem 4.29 There exists a pB ` 1q-approximation algorithm for NFI on G that runs in
Opm2 ¨ TMCq time, where TMC is the maximum time needed to compute a minimum cut in a
network of the form Gpl, γq with l P t1, . . . ,m ´ B ` 1u and γ P r1, ūs.

Proof. Follows from Lemma 4.15, Proposition 4.20, and Proposition 4.28.

96

4.3. A pB ` 1q-Approximation for NFI

Note that the networks Gpl, γq and G only differ in the arc capacities. Hence, if a strongly
polynomial minimum cut algorithm is used, then TMC equals the running time of this algorithm
onG. To the best of our knowledge, the currently fastest deterministic algorithm for computing
a minimum cut is due to Orlin [Orl13] and runs in O pnmq time. Thus, using this algorithm,
Theorem 4.29 yields a running time of O

`

nm3
˘

for our algorithm.

Finally, we provide an example where the approximation ratio is almost tight in the sense
that the algorithm does not yield a B-approximate solution. The network in this example is a
pearl graph (in particular, a series-parallel graph) with only two different arc capacities, which
means that our analysis is almost tight even for this special case.

Example 4.30 Let G “ pV,R, uq be given by V “ ts, v1, v2, tu and R “ R1 Y R2 Y R3.
The set R1 consists of pB ` 1q2 parallel arcs from s to v1 with capacity 1, R2 consists of
B parallel arcs from v1 to v2 with capacity 1, and B ` 1 parallel arcs from v1 to v2 with
capacity ū ą pB ` 1q2, and R3 consists of B ` 1 parallel arcs from v2 to t with capacity ū.
This is illustrated in Figure 4.2.

The numbering of the arcs is such that the indices of the arcs inR1 are lower than the indices
of those in R2, and the indices of the arcs in R2 are lower than the indices of those in R3.

This network contains only three cuts. Since ū ą pB ` 1q2, the cut Cpūq is the cut
ptsu, tv1, v2, tuq, while the unique optimal cut is COPT “ pts, v1u, tv2, tuq. The cut Cp1q is
the cut pts, v1, v2u, ttuq. Note that this yields l‹ “ m ´ 2B.

We start by showing that COPT is not guaranteed to be found by Algorithm 8 when calling
bisection (l‹, 1, ū) for l “ l‹ “ m´2B. Note that we obtain γ̂ “ B`1 in the call to bisection
(l‹, 1, ū), and all three cuts have the same capacity of pB`1q2 inGpγ̂q. Thus, the deterministic
minimum cut algorithm might return any of the three possible cuts, in which case COPT is not
necessarily found by the algorithm – which we assume in the following.

To show that the cutCOPT is indeed not found by the algorithm, it also needs to be shown that
it is not found when calling Algorithm 8 for any other value l ‰ l‹. To this end, first consider
the case where l ă l‹. Due to the numbering, this means that COPT contains at least B ` 1
large arcs. This implies that, for any γ P r1, ūs, it holds that

capGpl,γqpCOPTq ą capGpl,γqppts, v1, v2u, ttuqq,

which means that the optimal cut is neither found when entering one of the if-statements in
line 3 or line 5 of Algorithm 8, nor can it be found by a call to bisection(l, 1, ū).

Now consider the case where l ą l‹. Then the cutCOPT contains at least one arc of capacity ū
in Gpl, γq for any γ P r1, ūs. Since ū ą pB ` 1q2, this means that

capGpl,γqpCOPTq ą capGpl,γqpptsu, tv1, v2, tuqq,

which, again, implies that the optimal cut is neither foundwhen entering one of the if-statements
in line 3 or line 5 of Algorithm 8, nor can it be found by a call to bisection(l, 1, ū).

97

4. A pB ` 1q-Approximation for Network Flow Interdiction with Unit Removal Costs

s v1 v2 t

1

1

pB ` 1q2 times

ū

B times

ū
1

B ` 1 times

1

ū

ū

B ` 1 times

R1 R2 R3

Figure 4.2.: Network of the instance described in Example 4.30.

For the values of the cuts, we have

valGppts, v1, v2u, ttuqq “ mintū, pB ` 1q2u “ ū,

valGpCOPTq “ B ` 1, and
valGpptsu, tv1, v2, tuqq “ B2 ` B ` 1.

Thus, since ū ą pB`1q2, the interdiction strategy obtained by attacking the cut ptsu, tv1, v2, tuq

is returned by the algorithm and valGpptsu, tv1, v2, tuqq “ B2 ` B ` 1 ą B2 ` B “

B ¨ valGpCOPTq, which shows that the algorithm is not a B-approximation algorithm for NFI
on G.

4.4 Further Reducing the Approximation Ratio

In this section, we present an algorithmic approach how to further reduce the approximation
ratio of an approximation algorithm for NFI whose approximation ratio depends on the bud-
get B. The idea is to fix a number k ď B and guess a set D̂ Ď R consisting of k arcs that
are removed in an optimal solution DOPT Ď R. The presented algorithm tries this for all

`

m
k

˘

possible combinations of k arcs, which means it will actually guess correctly at least once. For
each guess, it removes the arcs from the network G and applies the given approximation al-
gorithm to the network GD̂ with the remaining budget of B ´ k. The solution returned by
the approximation algorithm together with the arcs in D̂ yields a set of exactly B arcs, i.e., a
feasible interdiction strategy for the original problem. Similar to the idea of Lemma 4.15, the
algorithm chooses the solution with lowest value out of all

`

m
k

˘

computed solutions.
Let G be the input network and B the budget for an instance of NFI. In the following, we

denote by ALGpG,Bq Ď R the output of a polynomial-time approximation algorithm for NFI
on the given instancewith approximation ratioαpBq, where we assume thatαpBq is increasing
in B. The algorithm described above is stated in Algorithm 10.
The following proposition shows how the approximation ratio can be improved by applying

Algorithm 10:

98

4.5. Conclusion

Algorithm 10: BOOST-BY-GUESS
1 Procedure boost-by-guess(G,B, k)
2 R “ H

3 forall D̂ Ď R with |D̂| “ k do
4 R “ R Y tD̂ Y ALGpGD̂, B ´ kqu

5 return argmin
DPR

valGpDq

Proposition 4.31 For constant k ď B, Algorithm 10 returns an αpB ´ kq-approximate solu-
tion for NFI on G with budget B.

Proof. Let DOPT be an optimal solution and let D̂ Ď DOPT with |D̂| “ k. Furthermore, let
Ĝ :“ GD̂ . Then, for any set D̄ of B ´ k arcs in Ĝ, it holds that GD̂YD̄ “ ĜD̄ . Hence, a
minimum cut in GD̂YD̄ is also a minimum cut in ĜD̄ . Due to Observation 4.2, the value of
the solution D̄ on Ĝ using budget B ´ k is the same as the value of the solution D̂ Y D̄ on G
using budgetB. In particular, choosing D̄ “ DOPTzD̂ implies thatDOPTzD̂must be an optimal
solution for NFI on Ĝ with budget B ´ k. This yields

valGpD̂ Y ALGpĜ, B ´ kqq “ valĜpALGpĜ, B ´ kqq

ď αpB ´ kq ¨ valĜpDOPTzD̂q

“ αpB ´ kq ¨ valGpDOPTq.

Now, since D̂ Y ALGpĜ, B ´ kq “ D̂ Y ALGpGD̂, B ´ kq is added to the set R during the
for loop starting in line 3 of Algorithm 10 and the algorithm returns a solution of minimum
value among all solutions in R, the solution returned by Algorithm 10 is as least as good as
D̂ Y ALGpĜ, B ´ kq and, therefore, is an αpB ´ kq-approximate solution for NFI on G with
budget B.

Plugging Algorithm 8 from the previous chapter into the proposition directly yields the
following theorem:

Theorem 4.32 There exists a polynomial-time pB ´ k ` 1q-approximation algorithm for NFI
for any constant k ď B.

In particular, this implies that, if B is constant, then there exists a polynomial-time exact
algorithm for NFI onGwith budgetB. This should, however, not be too surprising since using
k “ B in Algorithm 10 translates to enumerating all possible solutions (which are polynomially
many if B is constant).

4.5 Conclusion

In this chapter, a pB`1q-approximation algorithm for NFI with unit removal costs is presented.
To the best of our knowledge, the proposed approximation algorithm is the first approxima-
tion algorithm for any variant of NFI whose approximation ratio only depends on the budget

99

4. A pB ` 1q-Approximation for Network Flow Interdiction with Unit Removal Costs

s v t

p3, 1q

p3, 1q

pM, 1q

pM, 1q

p1, 1q

ppM ` εq ¨ p1 ` εq, 1 ` εq

ppM ` εq ¨ p1 ` εq, 1 ` εq

R1 R2

Figure 4.3.: Network of the instance described in Example 4.33 where the capacities and the
removal costs are the first and second argument in the brackets, respectively.

available to the interdictor, but not on the size of the network. Especially in the case of sim-
ple graphs, where we can assume that B ă n ´ 1, this is a significant improvement over the
previously best known approximation ratio of n ´ 1.
It is also worth noting that the minimum cut algorithm used as a subroutine within our algo-

rithm is only required to be deterministic because it should return the same cut when applying
it twice to the same network. In an efficient implementation of our algorithm, however, it is
anyhow advisable to store the already computed cuts, in which case our results would still hold
true with the use of a non-deterministic minimum cut algorithm.
Further, throughout this chapter, we never make use of the network being directed, which

is why all our results also hold true for NFI on undirected networks.
An obvious open question is whether our algorithm can be extended to the general version

of NFI, where arcs may have different costs. In this case, the best strategy for attacking a given
cut does no longer consist of removing the arcs of largest capacity, but its computation requires
solving a (weakly)NP-hard (minimization) knapsack problem. A greedy approximation algo-
rithm for the knapsack problem is used in [CZ17] to extend the case of unit removal costs.
To this end, the arcs are sorted by their efficiency ρprq :“ uprq{cprq and the algorithm for unit
removal costs is applied using the obtained sorting of the arcs. However, this approach does
not work for our algorithm as the following example shows.

Example 4.33 Let B “ 2 and let G “ pV,R, uq be given by V “ ts, v, tu and R “ R1 Y R2.
Further, let 1 ăă M and let ε :“ 1{M . The set R1 consists of two parallel arcs from s to v
with capacity 3 and removal cost 1 and another two parallel arcs from s to v with capacityM
and removal cost 1. The set R2 consists of an arc from v to t with capacity 1 and removal
cost 1 and two parallel arcs from v to t with capacity pM ` εq ¨ p1 ` εq and removal cost
1 ` ε. The network is illustrated in Figure 4.3. For every value of l, our algorithm only finds
the cutC2 :“ pts, vu, ttuq but not the cutC1 :“ ptsu, tv, tuq. However, the value for NFI when
attacking C1 is 6 while the value for NFI of attacking C2 is pM ` εq ¨ p1 ` εq ` 1. Hence, our
algorithm with the technique used in [CZ17] cannot achieve a bounded approximation ratio.

100

5 Complexity of theTemporal Shortest Path

Interdiction Problem

Abstract In the shortest path interdiction problem, an interdictor aims to remove arcs
of total cost at most a given budget from a directed graph with given arc costs
and traversal times such that the length of a shortest s-t-path is maximized.
For static graphs, this problem is known to be strongly NP-hard, and it has
received considerable attention in the literature.
However, the shortest path interdiction problem has not yet been formally stud-
ied on temporal graphs – a graph class where arcs are only available at certain
times. Here, common definitions of a “shortest path” include: latest start path
(path with maximum start time), earliest arrival path (path with minimum ar-
rival time), shortest duration path (path with minimum traveling time including
waiting times at nodes), and shortest traversal path (path with minimum travel-
ing time not including waiting times at nodes).
In this chapter, we analyze the complexity of the shortest path interdiction
problem on temporal graphs with respect to all four definitions of a shortest
path mentioned above. Even though the shortest path interdiction problem
on static graphs is known to be strongly NP-hard, we show that the latest
start and the earliest arrival path interdiction problems on temporal graphs are
polynomial-time solvable. For the shortest duration and the shortest traversal
path interdiction problem, however, we show strong NP-hardness, but we ob-
tain polynomial-time algorithms for these problems on extension-parallel tem-
poral graphs.
Finally, we show how the complexities of the problems change under three
slightly modified versions of the problem.

5.1 Introduction

Not least because of its great applicability to a wide range of real-world problems, the shortest
s-t-path problem is undeniably one of the most central and well-studied problems in graph

101

5. Complexity of the Temporal Shortest Path Interdiction Problem

theory and network optimization. It is, hence, not surprising that the shortest path interdiction
problem, where arcs are to be removed from a graph subject to a given budget such that the
length of a shortest s-t-path for two given nodes s and t is maximized, is one of the most rel-
evant interdiction problems. On static graphs, where the graph is not subject to change over
time, this problem is widely studied. The assumption of a graph not changing over time, how-
ever, is often too restrictive when modeling real-world problems such as, e.g., the spread of the
virus during the COVID-19 pandemic. In such settings, the concept of temporal graphs, where
arcs are only available at certain times, allows for more realistic models (see, e.g., [BRP21;
Enr+21]) and has recently attracted the interest of researchers in algorithmic network opti-
mization (see, e.g., [Akr+20; MS16; Mol20]).
In this chapter, we investigate the temporal shortest path interdiction problem, where the aim

is to remove arcs from a directed temporal graph such that the length of a shortest path from
a node s to another node t is maximized. As the length of a path in a temporal graph can be
interpreted in various different ways, we investigate four common versions of the temporal
shortest path interdiction problem. We show that two of these versions are polynomial-time
solvable, while the other two are strongly NP-hard.

5.1.1 Previous Work

The following paragraphs summarize the state-of-the-art concerning shortest path problems
on temporal graphs, the (static) shortest path interdiction problem, and related interdiction
problems on temporal graphs.

We start with an overview of the literature about shortest path problems on temporal graphs.
The model of a temporal graph used in this chapter (and, e.g., in [BFJ03; Wu+16]) is some-
times also referred to as a scheduled network [Ber96] or a point-availability time-dependent
network [BCV21]. Here, each temporal arc r can only be entered at a given start time τprq and
it takes λprq units of time to traverse the arc, which leads to an arrival time of τprq ` λprq at
the end node of the arc. In this model, four different definitions of a “shortest path” between
two nodes s and t are considered (see [Wu+16]):

• reverse-foremost or latest start path, which is an s-t-path with maximum start time of the
first arc in the path,

• foremost or earliest arrival path, which is an s-t-path with minimum arrival time of the
last arc in the path,

• shortest duration path, which is an s-t-path with minimum total traveling time including
waiting times at the nodes,

• shortest traversal path, which is an s-t-path with minimum total traveling time not in-
cluding waiting times at the nodes.

For each of the four definitions, the corresponding temporal shortest path problem can be
solved efficiently, i.e., a shortest path can be computed in polynomial time [Ben+20; BFJ03;
Wu+16].

A different definition of temporal graphs is considered, e.g, in [Mol20], where a wide range
of well-studied graph problems is investigated on temporal graphs. This definition can be

102

5.1. Introduction

interpreted as the special case of the previous definition obtained when all traversal times are
zero.1 Bi-objective versions of temporal shortest path problems are considered in [BCV21;
MO19; Oet22].
A definition that allows for continuous availability of arcs in a temporal graph as well as

a time dependency of an arc’s traversal time is provided in [Cas+12]. This definition can be
seen as a generalization of the definition from [BFJ03; Wu+16] used here. However, due to the
definition’s large generality, it does not allow for a finite encoding of temporal graphs without
imposing further assumptions, so classical techniques of complexity analysis cannot be applied
for the most general form of this definition. A natural finite encoding is possible, e.g., if each
arc is restricted to be present over a time interval, i.e., it can be entered at any time between
two specified points in time. Even for this special case of the definition in [Cas+12], it is shown
in Section 5.4.2 that deciding whether two nodes s and t can be separated by removing no more
than B arcs from the graph is already strongly NP-hard.
Next, the literature about the shortest path interdiction problem on static graphs is sum-

marized. To explicitly distinguish between the problem on static graphs and the problem on
temporal graphs, we refer to the shortest path interdiction problem on static graphs as the static
shortest path interdiction problem (S-SP-IP) in the following. This problem is also referred to
as the most vital arcs problem in the literature [BGV89]. S-SP-IP is one of the most-studied
network interdiction problems and a vast amount of literature exists on the problem. A de-
tailed overview is provided in [SS20]. Concerning the complexity of S-SP-IP, the first proof
of weak NP-hardness is provided in [BGV89]. This result is extended in [BKS95], where it
is shown that S-SP-IP is strongly NP-hard even on acyclic graphs and for the special case of
unit arc lengths and removal costs. This result is further extended in [Kha+08], where it is
shown that it is NP-hard to approximate S-SP-IP within any factor α ă 2. Indeed, it is still
an open question whether any non-trivial approximation algorithms exist for S-SP-IP. Vari-
ations of S-SP-IP considering online settings, randomized interdiction strategies, or multiple
objectives have recently been studied, e.g., in [BSR20; HS21; SS16].
While, to the best of our knowledge, the complexity of the shortest path interdiction prob-

lem has not been formally investigated on temporal graphs, a polynomial-time algorithm that
decides whether there exist k arc-disjoint temporal s-t-paths is presented in [Ber96]. They fur-
ther show that it can be decided in polynomial time whether there exists a temporal s-t-path
arriving before a given arrival time even if up to k arcs are removed, which implicitly solves
the temporal earliest arrival path interdiction problem for unit removal costs. However, it is
not clear whether the algorithm can be extended to the case in which arcs can have different
removal costs.
Further, related reachability interdiction problems on temporal graphs are studied in [DP22;

EMS21; Enr+21; MRZ21]. Here, the goal is to minimize (or maximize in some cases) the number
of nodes reachable from a single node or a set of nodes in a temporal graph by either removing
arcs, delaying start times, or changing the order of start times. While the vast majority of
studied problems turn out to be NP-hard even under severe restrictions, only a few special
cases are shown to be polynomial-time solvable. Moreover, the problem of separating two given

1This implies that all polynomial-time solvability results presented here can immediately be transferred to the
definition used in [Mol20]. For our hardness results, we point out explicitly whether they can be transferred to
this definition of temporal graphs.

103

5. Complexity of the Temporal Shortest Path Interdiction Problem

nodes by removing nodes from a temporal graph is considered for various settings in [Flu+20;
Ibi+22; KKK00; Maa+23; Mol22; Zsc+20]. Again, most of the problems are NP-hard, while
some polynomial-time solvability results – mostly for specific classes of graphs – are shown.

5.1.2 Our Contribution

We analyze the complexity of the shortest path interdiction problem on temporal graphs with
respect to all four definitions of a shortest path considered in [Wu+16]. Even though S-SP-IP is
known to be stronglyNP-hard, it is found that polynomial-time algorithms for the latest start
and the earliest arrival path interdiction problem on temporal graphs exist. These algorithms
exploit the fact that, for these versions of the problem, the objective value of a path only de-
pends on either the first or on the last arc in the path (but not on both). For the shortest duration
and shortest traversal path interdiction problem, where both the first and the last arc in a path
(and the amount of time spend waiting at nodes in the former case) are relevant for its length,
however, we show strongNP-hardness. Our reduction further implies that, unless P “ NP ,
there exists no polynomial-time approximation algorithm for any of the two problems with an
approximation ratio smaller than 3{2.
On extension-parallel temporal graphs, however, we obtain polynomial-time algorithms for

the shortest duration path interdiction problem and the shortest traversal path interdiction
problem. This result can be transferred to the static shortest path interdiction problem, where
it also represents a new result.

5.2 Problem Definition

A directed (discrete-time) temporal graph G consists of a nonempty, finite set V of nodes and
a finite set R of temporal arcs. As usual, we denote the number of nodes and the number
of (temporal) arcs in the graph by n and m, respectively. A temporal arc r P R has four
attributes, namely its start node αprq P V , its end node ωprq P V , its start time τprq P Q,
and its traversal time λprq P Qě0. When traversing a temporal arc r P R, the arrival time
of r is τprq ` λprq. A temporal path P “ pr1, . . . , rkq is a sequence of temporal arcs such
that, for each i P t1, . . . , k ´ 1u, it holds that ωpriq “ αpri`1q and τpriq ` λpriq ď τpri`1q,
i.e., the end node of each arc is the start node of the next arc in the path and the arrival time
of each arc is less than or equal to the start time of the next arc.2 For two nodes s, t P V , a
temporal path P “ pr1, . . . , rkq is called a (temporal) s-t-path if αpr1q “ s and ωprkq “ t.
Given a temporal graph G “ pV,Rq, the underlying static graph Gstat “ pV stat, Rstatq is the
(directed) static graph with the same nodes and arcs obtained by disregarding the start times
and traversal times of the arcs. A temporal graph is called acyclic if its underlying static graph
is acyclic, i.e., its underlying static graph does not contain any directed cycle.
While the notion of a “shortest” s-t-path is straightforward in static graphs, temporal graphs

allow for various interpretations of the term “shortest”. In this chapter, we study the four
quality measures for s-t-paths that are presented in [Wu+16].
2Note that this definition allows a path to visit the same node (or even traverse the same arc) several times. Except
for some results obtained for extensions of the problem in Section 5.4, however, all our results also hold when
restricting to elementary paths that do not visit any node more than once.

104

5.2. Problem Definition

Definition 5.1 Let G be a temporal graph, s ‰ t two nodes in G, and P “ pr1, . . . , rkq a
temporal s-t-path.

• The start time of P is defined as startpP q :“ τpr1q.

• The arrival time of P is defined as arrivpP q :“ τprkq ` λprkq.

• The duration of P is defined as durapP q :“ arrivpP q ´ startpP q.

• The traversal time of P is defined as travpP q :“
řk

i“1 λpriq.

Definition 5.2 Let G be a temporal graph and s ‰ t two nodes in G.

• A latest start path is an s-t-path with maximum start time. The latest start time in G,
denoted by LSpGq, is defined as the start time of a latest start path in G.

• An earliest arrival path is an s-t-path with minimum arrival time. The earliest arrival
time in G, denoted by EApGq, is defined as the arrival time of an earliest arrival path
in G.

• A shortest duration path is an s-t-path with minimum duration. The shortest duration
in G, denoted by SDpGq, is defined as the duration of a shortest duration path in G.

• A shortest traversal path is an s-t-path with minimum traversal time. The shortest traver-
sal time in G, denoted by STpGq, is defined as the traversal time of a shortest traversal
path in G.

If no s-t-path exists in G, LSpGq is set to ´8, whereas EApGq, SDpGq, and STpGq are set
to `8.

As a side remark, earliest arrival paths are called foremost paths and latest start paths are
called reverse-foremost paths in [Wu+16]. Next, the four versions of the temporal shortest
path interdiction problem are defined.

Definition 5.3 For an objective OBJ P tLS,EA, SD, STu, the temporal OBJ interdiction prob-
lem (T-OBJP-IP) is defined as follows.

Instance: A temporal graphG “ pV,Rq, two nodes s ‰ t inG, a budget B P Qą0, and
removal costs c : R Ñ Qě0

Task: Find a subset D Ď R of arcs with
ř

rPD cprq ď B such that OBJpGDq is
maximized (minimized in the case that OBJ “ LS), where GD :“ pV,RzDq.

T-OBJP-IP

As in Chapter 4, a solution D Ď R of T-OBJP-IP with
ř

rPD cprq ď B is called an interdiction
strategy and the arcs in D are called interdicted. Further, if no temporal path from a node u
to another node v exists after the arcs in D have been removed, we say that the interdiction
strategy D separates u from v or that the pair pu, vq is separated by D.

105

5. Complexity of the Temporal Shortest Path Interdiction Problem

5.3 Polynomial-Time Algorithms and Complexity Results

In this section, we analyze the complexity of each of the four introduced versions of temporal
shortest path interdiction. It is shown that two versions can be solved in polynomial time and
the other two versions are stronglyNP-hard. On extension-parallel temporal graphs, however,
the two hard versions are shown to be solvable in polynomial time.

5.3.1 Temporal Latest Start Interdiction

We start by presenting a polynomial-time algorithm to solve T-LSP-IP. This is a surprising re-
sult as the static shortest path interdiction problem is known to be stronglyNP-hard [BKS95].
The main reason for the polynomial-time solvability of T-LSP-IP is that the obtained objective
value only depends on the first arc that is used by a latest start path in the interdicted graphGD .

In this section, we let τ1 ă τ2 ă ¨ ¨ ¨ ă τl denote the distinct start times of outgoing arcs
of s inG sorted in increasing order. Further, for k P t1, . . . , lu, we defineGLS,k as the temporal
graph that results from G by removing all outgoing arcs of s with start time at most τk. For
completeness, we also defineGLS,0 :“ G. Our algorithm is based on the following proposition.

Proposition 5.5 Let k P t1, . . . , lu. There exists an interdiction strategy Dk that separates s
from t in GLS,k if and only if there exists an interdiction strategy D in G with objective value
at most τk.

Proof. Let Dk be an interdiction strategy that separates s from t in GLS,k. Then, after inter-
dicting the same set D :“ Dk of arcs in G, no s-t-path in GD can start with an arc with start
time strictly larger than τk (otherwise, the path would also be an s-t-path in GLS,k

Dk). Hence, all
s-t-paths in GD have start time at most τk, i.e., D has objective value at most τk.
Conversely, let D be an interdiction strategy in G with objective value at most τk. Then,

no s-t-path inGD can have start time strictly larger than τk, so the interdiction strategyDk :“
D X RLS,k, where RLS,k is the arc set of GLS,k, separates s from t in GLS,k.

The idea of the algorithm is to use binary search in order to find k‹ P t1, . . . , lu such that s
can be separated from t inGLS,k‹ , but s cannot be separated from t inGLS,k‹´1. Such a k‹ exists
whenever s cannot already be separated from t in the whole graph G “ GLS,0, i.e., whenever
the optimal objective value is not equal to ´8. Consequently, in order to obtain a polynomial-
time algorithm for T-LSP-IP, it only remains to show that deciding whether a node s can be
separated from another node twith a given interdiction budget in an arbitrary temporal graph
is possible in polynomial time.

In a static graph, this question can be answered easily by computing a minimum s-t-cut with
respect to the removal costs and comparing its total cost to the given interdiction budget B.
Hence, we now describe how the question in an arbitrary temporal graph H “ pV,Rq can be
reduced to the static case. To this end, we use a graph construction that is similar to [Wu+16]
and to the construction of time-expanded networks in the context of dynamic flows [Orl84].
The constructed graph is therefore called the time-expanded graph ofH and denoted byH te “

pV te, Rteq. We start by defining the set of crucial times by T :“ YrPRtτprq, τprq ` λprqu. For

106

5.3. Polynomial-Time Algorithms and Complexity Results

easier notation, we write T “ tϕ1, . . . , ϕju, where the crucial times are indexed in increasing
order. For each v P V and ϕ P T , there exists a node pv, ϕq in V te. For each i P t1, . . . , j ´ 1u

and for each v P V , there exists an arc from pv, ϕiq to pv, ϕi`1q with removal cost B ` 1
(i.e., it cannot be interdicted). Traversing this arc represents waiting at node v of the tempo-
ral graph until the next crucial time. Further, for each arc r P R, there exists an arc in Rte

from pαprq, τprqq to pωprq, τprq ` λprqq with removal cost cprq, whose traversal represents
traversing arc r in the temporal graph. We define ste :“ ps, ϕ1q and tte :“ pt, ϕjq. If the tempo-
ral graphH has n nodes andm arcs, its time-expanded graph has n ¨ |T | P Opn ¨mq nodes and
n ¨ p|T | ´ 1q ` m P Opn ¨ mq arcs. Hence, the size of the time-expanded graph is polynomial
in the size of the temporal graph (in contrast to time-expanded networks used in the context
of dynamic flows). The following observation follows directly from the construction of H te.

Observation 5.6 There exists an interdiction strategy separating s from t in H if and only if
there exists an interdiction strategy separating ste from tte in H te.

Applying the previously described algorithm together with Proposition 5.5 and Observa-
tion 5.6 yields the main theorem of this section.

Theorem 5.7 There exists a polynomial-time algorithm for T-LSP-IP with running time in
Oplogplq ¨ TMCpn ¨ m,n ¨ mqq, where l ď m is the number of distinct start times of outgoing
arcs of s and TMCpn ¨ m,n ¨ mq is the time required to compute a minimum s-t-cut in a static
graph with n ¨ m nodes and n ¨ m arcs.

5.3.2 Temporal Earliest Arrival Interdiction

In this section, we present a polynomial-time algorithm to solve T-EAP-IP. Similar to T-LSP-IP,
the reason for the problem’s polynomial-time solvability is that the obtained objective value
only depends on the last arc that is used by an earliest arrival path in the interdicted graphGD .
Indeed, an instance of T-EAP-IP can be transformed into an equivalent instance of T-LSP-IP by
inverting the direction of all arcs and adjusting the start times and traversal times appropriately.
This is described in the following.
Let G “ pV,Rq be the temporal graph in an instance of T-EAP-IP. We construct a graph

GLS “ pV,RLSq for an instance of T-LSP-IP. The maximum arrival time in G is defined as
Φ :“ maxrPR τprq ` λprq. For each r P R, an arc r1 is added to RLS with αpr1q :“ ωprq,
ωpr1q :“ αprq, τpr1q :“ Φ ´ τprq ´ λprq, and λpr1q :“ λprq. The arcs r and r1 are called
associated. Further, an interdiction strategy D in G and the interdiction strategy D1 in GLS

consisting of the arcs in GLS that are associated with those in D are also called associated.
Defining sLS :“ t and tLS :“ s, BLS :“ B, and cLSpr1q :“ cprq for each pair of associated arcs r
and r1, it is then easy to see that mapping an interdiction strategy D in G to its associated
interdiction strategy D1 in GLS defines a bijection between the sets of interdiction strategies
in the two graphs. In the following, the instance of T-EAP-IP is denoted by pG, s, tq and the
constructed instance of T-LSP-IP by pGLS, sLS, tLSq. We next show that there is a one-to-one
correspondence between temporal paths in G and GLS.

107

5. Complexity of the Temporal Shortest Path Interdiction Problem

Proposition 5.8 Let ri and r1
i be associated arcs for each i P t1, . . . , ku, and let D and D1

be associated interdiction strategies in G and GLS, respectively. Then P 1 “ pr1
1, . . . , r

1
kq is a

temporal sLS-tLS-path in GLS
D1 if and only if P “ prk, . . . , r1q is a temporal s-t-path in GD .

Proof. If P 1 “ pr1
1, . . . , r

1
kq is a temporal sLS-tLS-path in GLS

D1 , then r1
i R D1 for i “ 1, . . . , k.

Hence, since D1 and D are associated, we obtain that ri R D for i “ 1, . . . , k. Moreover,
t “ sLS “ αpr1

1q “ ωpr1q, s “ tLS “ ωpr1
kq “ αprkq, and for each i P t1, . . . , k ´ 1u, we have

αpriq “ ωpr1
iq “ αpr1

i`1q “ ωpri`1q and

τpri`1q ` λpri`1q “ Φ ´ τpr1
i`1q ď Φ ´ τpr1

iq ´ λpr1
iq “ Φ ´ τpr1

iq ´ λpriq “ τpriq.

Thus, P “ prk, . . . , r1q is a temporal s-t-path in GD as claimed. The inverse direction can be
shown along the same lines.

We call paths P and P 1 as in Proposition 5.8 associated in the following. Proposition 5.8 allows
us to show the following relationship between the objective values of associated interdiction
strategies for pG, s, tq and pGLS, sLS, tLSq.

Corollary 5.9 An interdiction strategy D for pG, s, tq has objective value z for T-EAP-IP if
and only if the associated interdiction strategyD1 for pGLS, sLS, tLSq has objective value Φ ´ z
for T-LSP-IP.

Proof. Given an interdiction strategy D with objective value z and its associated interdiction
strategyD1, let P be an earliest arrival path inGD . Then, P has arrival time z and by Proposi-
tion 5.8, the associated pathP 1 is a temporal path inGLS

D1 , whose start time isΦ´z. For the sake
of a contradiction, suppose that there exists a path P̄ 1 in GLS

D1 with start time Φ ´ z̄ ą Φ ´ z.
Then, by Proposition 5.8, the path P̄ that is associated to P̄ 1 is a temporal path in GD and its
arrival time is z̄ ă z, which is a contradiction to P being an earliest arrival path inGD . Hence,
the interdiction strategyD1 for pGLS, sLS, tLSq has objective value Φ´ z. The inverse direction
can be shown along the same lines.

Corollary 5.9 immediately yields the following result.

Corollary 5.10 An interdiction strategyD is optimal for pG, s, tq if and only if its associated
interdiction strategy D1 is optimal for pGLS, sLS, tLSq.

Corollary 5.10 and the algorithm presented in Section 5.3.1 yield the main result of this section.

Theorem 5.11 There exists a polynomial-time algorithm for T-EAP-IP with running time in
Oplogplq ¨ TMCpn ¨m,n ¨mqq, where l ď m is the number of distinct arrival times of incoming
arcs of t and TMCpn ¨ m,n ¨ mq is the time required to compute a minimum s-t-cut in a static
graph with n ¨ m nodes and n ¨ m arcs.

108

5.3. Polynomial-Time Algorithms and Complexity Results

5.3.3 Temporal ShortestDuration Interdiction andTemporal Shortest Traver-
sal Interdiction

In this section, we show that T-SDP-IP and T-STP-IP are strongly NP-hard, even for unit re-
moval costs and if the underlying static graph is acyclic. Moreover, the reduction implies an
inapproximability result. We also show, however, that both problems are solvable in polyno-
mial time if the graph is extension-parallel. This result is also shown for the static problem
S-SP-IP.
The proof of strong NP-hardness is similar to the proof in [Ben11], where it is shown that

finding a multicut in directed acyclic graphs is APX -hard. The reduction is performed from
the strongly NP-hard MAX2SAT problem, which is defined as follows.

Instance: A set X “ tx1, . . . , xζu of boolean variables, a set C “ tc1, . . . , cµu of
clauses each containing two literals, and a positive integer δ ă µ

Question: Is there a truth assignment for the variables that satisfies at least δ clauses?

MAX2SAT

Given an instance of MAX2SAT, we construct a temporal graph with removal costs and a
corresponding budget. This graph has the property that no s-t-path waits in any node except
for s and t, which means that, for each feasible interdiction strategy, the objective values in
T-SDP-IP and T-STP-IP are identical. Hence, the resulting instances of T-SDP-IP and T-STP-IP
are equivalent in this case. Thus, we present the construction and the corresponding proofs
only for T-SDP-IP in the following. An example for the construction is provided in Figure 5.1.
Unless explicitly stated otherwise, all arcs within this construction have start time 0, traver-

sal time 0, and removal cost B ` 1 (i.e., they cannot be interdicted). We show later that only
a slight modification of the construction is necessary in the case of unit removal costs. For
each variable xi P X , there is a variable gadget consisting of a directed path with trace
pui,1, ui,2, ui,3, ui,4q where only the arcs from ui,1 to ui,2 and from ui,3 to ui,4 can be inter-
dicted at a removal cost of N :“ µ ` 1. Interdicting the arc from ui,1 to ui,2 is later identified
with setting xi to true and interdicting the arc from ui,3 to ui,4 is identified with setting xi to
false. For each clause cj P C , there is a clause gadget consisting of a directed path with trace
pvj,1, vj,2, vj,3, vj,4q where only the arcs from vj,1 to vj,2 and from vj,3 to vj,4 can be interdicted
at a removal cost of 1.
We next describe the arcs that connect the variable gadgets to the clause gadgets. For a

clause cj “ x̂i _ x̂k, where x̂i P txi, xiu and x̂k P txk, xku, we call x̂i the first literal and x̂k
the second literal of clause cj . For each clause, arcs are then added as follows depending on
the clause’s first and second literal: If the first literal of clause cj is xi (xi), there exists an arc
from ui,2 to vj,1 (from ui,4 to vj,1). If the second literal of clause cj is xk (xk), there exists an
arc from uk,2 to vj,3 (from uk,4 to vj,3).

The construction is continued by adding another six nodes s1, s2, s3, t1, t2, and t3 to the
graph. For each i P t1, . . . , ζu, there exists an arc from s1 to ui,1 and an arc from ui,4 to t1. For
each i P t1, . . . , ζu, there exists an arc from s2 to ui,1 and another arc from s2 to ui,3. Further,

109

5. Complexity of the Temporal Shortest Path Interdiction Problem

s

t

s1 s2 s3

t2 t3t1

Figure 5.1.: The constructed graph for X “ tx1, x2, x3u and C “ tx1 _ x2, x1 _ x3u. The
three variable gadgets for x1, x2, and x3 from left to right are shown on the left and
the clause gadgets for c1 and c2 from left to right are shown on the right. Only the
dashed arcs can be interdicted.

for each j P t1, . . . , µu, there exists an arc from vj,2 to t2 and from vj,4 to t2. Finally, for each
j P t1, . . . , µu, there exists an arc from s3 to vj,1 and an arc from vj,4 to t3.
We finish the construction by adding the nodes s and t to the graph. For each k P t1, 2, 3u,

there exists an arc from s to sk with start time 1´k and traversal time k´1, and an arc from tk
to t with traversal time 3 ´ k (but start time 0). As usual, the constructed temporal graph is
denoted by G “ pV,Rq in the following.
The budget is chosen to be B :“ N ¨ ζ ` 2 ¨ µ ´ δ, which completes the construction of the

problem instance.

We show strong NP-hardness by proving that there exists a truth assignment for the vari-
ables that satisfies at least δ clauses in the instance of MAX2SAT if and only if there exists a
solution for the constructed instance with objective value at least 3. To this end, the following
auxiliary result is required.

Lemma 5.13 Let D be an interdiction strategy in the constructed instance. The objective
value of D is larger than or equal to 3 if and only if the pairs ps1, t1q, ps2, t2q, and ps3, t3q are
separated by D.

Proof. If one of the pairs ps1, t1q, ps2, t2q, or ps3, t3q is not separated by D, it follows immedi-
ately that, after interdiction, there exists an s-t-path with duration 2. Hence, the solution D
has objective value at most 2. To show the other direction, assume that the objective value of
the solution is strictly less than 3 and let PSD be a shortest duration path in GD . If PSD visits

110

5.3. Polynomial-Time Algorithms and Complexity Results

both sk and tk for some k P t1, 2, 3u, we are done. If this is not the case, there are three possible
pairs of nodes, one of which must be visited by PSD since its duration is strictly less than 3 and
every temporal s-t-path in GD must visit one of the sk and one of the tk.
Case 1: PSD visits s1 and t2

This means there exists a subpath P of PSD from s1 to t2. The first arc in P leads into one of
the nodes ui,1 for some i P t1, . . . , ζu. By replacing the first arc in P with the arc starting in s2
and ending in ui,1, we obtain a path from s2 to t2.
Case 2: PSD visits s2 and t3

This means there exists a subpath P of PSD from s2 to t3. The last arc in P starts from one
of the nodes vj,4 for some j P t1, . . . , µu. By replacing the last arc in P with the arc starting
in vj,4 and ending in t2, we again obtain a path from s2 to t2.
Case 3: PSD visits s1 and t3

The first and the last arc in the subpath of PSD from s1 to t3 can be replaced as in the previous
two cases, which again yields a path from s2 to t2.

Lemma 5.13 allows proving strong NP-hardness of T-SDP-IP and T-STP-IP.

Theorem 5.14 T-SDP-IP and T-STP-IP are strongly NP-hard even on acyclic graphs.

Proof. We show that there exists a truth assignment for the variables that satisfies at least δ
clauses in the instance of MAX2SAT if and only if there exists a solution for the constructed
T-SDP-IP instance with objective value at least 3.
First, let x be a truth assignment that satisfies at least δ clauses. We construct an interdiction

strategy for the instance of T-SDP-IP with objective value at least 3 as follows. For each i P

t1, . . . , ζu, we interdict the arc from ui,1 to ui,2 if xi is true and the arc from ui,3 to ui,4 if xi
is false. For each j P t1, . . . , µu, we interdict the arc from vj,1 to vj,2 if the second literal in
clause cj is fulfilled, the arc from vj,3 to vj,4 if the second literal of cj is not fulfilled, but the
first is, and both of these arcs if none of the literals are fulfilled. This yields an interdiction
strategyD that interdicts ζ arcs of costN and at most 2 ¨ µ ´ δ arcs of cost 1 and, hence, does
not exceed the budget.
Due to Lemma 5.13, it remains to show that the pair psk, tkq is separated by D for each k P

t1, 2, 3u. Any path from s1 to t1 has trace ps1, ui,1, ui,2, ui,3, ui,4, t1q for some i P t1, . . . , ζu.
As either the arc from ui,1 to ui,2 or the arc from ui,3 to ui,4 is interdicted, the pair ps1, t1q is
separated by D. Moreover, the analogous argument applied to the clause gadgets shows that
the pair ps3, t3q is separated by D.
To show that the pair ps2, t2q is separated by D, note that each path from s2 to t2 contains

a subpath with trace pui,a, ui,a`1, vj,b, vj,b`1q where i P t1, . . . , ζu, j P t1, . . . , µu, and a, b P

t1, 3u. We interdict either the arc from ui,a to ui,a`1 if the pb`1{2q-th literal of clause cj is
fulfilled or the arc from vj,b to vj,b`1 if it is not. Hence, the pair ps2, t2q is separated by D and
the objective value of D is at least 3 due to Lemma 5.13.

For the inverse direction, letD Ď R be an interdiction strategywith objective value at least 3.
In particular, this interdiction strategy removes arcs of total cost at mostB “ N ¨ ζ ` 2 ¨µ´ δ.
Lemma 5.13 then implies that each pair psk, tkq, for k P t1, 2, 3u, is separated.

111

5. Complexity of the Temporal Shortest Path Interdiction Problem

In order to separate the pair ps1, t1q, one arc has to be removed per variable gadget. For the
sake of a contradiction, suppose that more than one arc is removed in some variable gadget.
The total removal cost of interdicted arcs in the variable gadgets is then at least N ¨ ζ ` N “

N ¨ ζ ` µ ` 1, which leaves only a budget of µ ´ δ ´ 1 ă µ for interdicting arcs in the clause
gadgets. Hence, there exists at least one clause gadget in which none of the arcs is interdicted.
This implies that the pair ps3, t3q is not separated byD, which yields the desired contradiction.
Overall, this means that, for each i P t1, . . . , ζu, either the arc from ui,1 to ui,2 is interdicted, in
which case we set xi to true, or the arc from ui,3 to ui,4 is interdicted, in which case we set xi
to false.
It remains to show that the resulting truth assignment fulfills at least δ clauses. As inter-

dicting one arc per variable gadget already costs N ¨ ζ , there is a budget of 2 ¨ µ ´ δ left for
interdicting arcs in the clause gadgets. In order to separate the pair ps3, t3q, at least one of the
two removable arcs must be removed in each clause gadget. Hence, there are at least δ clause
gadgets in which only one of the arcs is removed. We finish the proof by showing that x fulfills
all the corresponding clauses cj .
To this end, we first assume that the arc from vj,3 to vj,4 is interdicted. If the first literal in cj

is xi, then there exists a path in G with trace ps2, ui,1, ui,2, vj,1, vj,2, t2q. As the arc from vj,1
to vj,2 is not interdicted and the pair ps2, t2q must be separated by D, this means that the
arc from ui,1 to ui,2 must be interdicted and, hence, that xi is set to true, which shows that x
fulfills cj . If the first literal in cj is xi, then the same arguments hold for the path inGwith trace
ps2, ui,3, ui,4, vj,1, vj,2, t2q. The proof for the case when the arc from vj,1 to vj,2 is interdicted is
along the same lines. Hence, at least δ clauses are fulfilled by x, which completes the proof.

Since any solution of the constructed T-SDP-IP instance that does not have objective value at
least 3 has objective value at most 2, the proof of Theorem 5.14 further implies the following
inapproximability result.

Corollary 5.15 Unless P “ NP , there exists no polynomial-time approximation algorithm
with approximation ratio smaller than 3{2 for T-SDP-IP or T-STP-IP, even on acyclic graphs.

In the case of T-SDP-IP, the constructed instance in the reduction can easily be adjusted such
that all traversal times are zero. To do so, all traversal times of the outgoing arcs of s are set to 0
and, for each incoming arc of t, the start time is increased by its traversal time and the traversal
time is then set to 0. Hence, the results on T-SDP-IP from Theorem 5.14 and Corollary 5.15 are
also valid for the definition of temporal graphs used in [Mol20].
In the case of T-STP-IP, however, using nonzero traversal times within the reduction is nec-

essary. Indeed, the results on T-STP-IP from Theorem 5.14 and Corollary 5.15 do not hold for
the definition in [Mol20] (unless P “ NP) since T-STP-IP is solvable in polynomial time if all
traversal times are zero as it then reduces to the question whether s can be separated from t
by an interdiction strategy. It is, however, questionable, whether T-STP-IP has a meaningful
interpretation in this case.
We continue by showing that the results of Theorem 5.14 and Corollary 5.15 (with a slight

modification of the approximation ratio) also hold for instances with unit removal costs and
strictly positive traversal times.

112

5.3. Polynomial-Time Algorithms and Complexity Results

The restriction to unit removal costs can be achieved by replacing each arc r in the con-
structed graph by cprq identical copies with unit removal cost. Any interdiction strategy can
then be assumed to either remove all of these identical copies or none of them. Moreover,
since all removal costs are polynomial in the numbers of variables and clauses of the given
MAX2SAT instance, the constructed instance with unit removal costs is still of polynomial
size, so the arguments in the proof carry over to this instance.
For the restriction to strictly positive traversal times, note that the constructed graph G

is acyclic. In particular, the graph G ´ ts, tu is acyclic. Let σ : V Ñ t1, . . . , n ´ 2u be a
topological sorting of the nodes in G ´ ts, tu, i.e., for each arc r, it holds that σpαprqq ă

σpωprqq. This topological sorting is used to slightly modify the start and traversal times of
the arcs in G ´ ts, tu. Formally, a function σ̄ : V Ñ t1, . . . , n ´ 2u is constructed from the
topological sorting by setting σ̄pvq :“ σpvq if v R ts1, s2, s3, t1, t2, t3u, and σ̄psiq :“ 1 and
σ̄ptiq :“ n ´ 2 for each i P t1, 2, 3u. We then redefine the start and traversal times in G. To
this end, let ε P p0, 1q. For each arc r that is not incident to s or t, we set the start time to
´ε{2¨pn´3q ¨ pn ´ 2 ´ σ̄pαprqqq and the traversal time to ε{2¨pn´3q ¨ pσ̄pωprqq ´ σ̄pαprqqq, which
means that it arrives in ωprq at time ´ε{2¨pn´3q ¨ pn´2´ σ̄pωprqqq. We further set the start time
of the arc from s to s1 to ´ε and its traversal time to ε{2, and we decrease the traversal times
of the other two outgoing arcs of s by ε{2. Hence, all outgoing arcs of s have arrival time ´ε{2.
Moreover, we set the traversal time of the arc from t3 to t to ε.

The proof of Theorem 5.14 for this new instance is along the same lines as before and the
statement of Corollary 5.15 must be slightly changed (see Corollary 5.16). Note that the graph
with the updated start and traversal times does not admit waiting in any node except for s
and t as, for any node v P V zts, tu, all incoming arcs arrive and all outgoing arcs start at time
´ε{2¨pn´3q ¨ pn´ 2´ σ̄pvqq. The result, hence, holds for both problems T-SDP-IP and T-STP-IP.
Thus, when strictly positive traversal times on all arcs are additionally assumed, Theo-

rem 5.14 still holds, but Corollary 5.15 has to be adapted as follows:

Corollary 5.16 Unless P “ NP , there exists no polynomial-time approximation algorithm
with approximation ratio smaller than p3{2`εq for T-SDP-IP and T-STP-IP on acyclic graphs
with positive traversal times for any ε ą 0.

5.3.3.1 Polynomial-Time Solvability on Extension-Parallel Graphs

In this section, we show that T-SDP-IP, T-STP-IP, and the static version S-SP-IP are polynomial-
time solvable on extension-parallel (temporal) graphs.
A temporal graph consisting of two nodes s and t, and a single temporal arc from s to t

is called a temporal one-arc graph. A temporal graph with two distinguished vertices s (the
source) and t (the sink) is series-parallel if it is obtained from a set of temporal one-arc graphs by
a finite sequence of series compositions (identifying the sink of the first graph with the source
of the second graph) and parallel compositions (identifying the sources of the two graphs and
identifying the sinks of the two graphs). If, further, for every series composition, one of the
two composed graphs is a temporal one-arc graph, the graph is called extension-parallel. The
definitions of series- and extension-parallel static graphs is completely analogous and can be
found, e.g., in [EFM07].

113

5. Complexity of the Temporal Shortest Path Interdiction Problem

The decomposition tree TG of a series-parallel (temporal) graphG is a binary tree, where the
leaves represent the arcs in the graph and the inner nodes labeled by S (series composition)
or P (parallel composition) represent the types of compositions used to construct the graph.
The decomposition tree can be computed in linear time [VTL82] and it can easily be seen that
a series-parallel (temporal) graph is extension-parallel if and only if every inner node of TG

that is labeled by S has one child that is a leaf of TG.
The following property of extension-parallel static graphs is used in our algorithm.

Lemma 5.17 Let G “ pV,Rq be an extension-parallel static graph. Then there exists a sub-
set R̄ Ď R of arcs such that

1. each s-t-path in G contains exactly one arc from R̄, and

2. each arc r P R̄ is contained in exactly one s-t-path Pr in G.

Proof. We present an algorithm that constructs R̄ and a corresponding s-t-path Pr for each
r P R̄. Note that, since extension-parallel graphs are always acyclic, the path Pr is uniquely
determined by the set of arcs it traverses. Hence, we slightly abuse notation and identify each
path Pr with the corresponding set of arcs it traverses. The idea of the algorithm is to process
the nodes in the decomposition tree starting at the leaves by iteratively joining two already
processed components of the graph until we reach the root node and obtain the final set R̄.
Initially, we set R̄ :“ R and Pr :“ tru for each r P R and mark all leaf nodes in the

decomposition tree as processed. While not all nodes in the decomposition tree are marked
as processed, we take an unprocessed (inner) node v in the decomposition tree whose two
children have both been processed. If v is labeled by P, we simply mark v as processed while
changing neither the set R̄ nor any of the paths Pr , for r P R̄. If v is labeled by S, at least one of
its children must be a leaf corresponding to an arc r. If only one of the children is a leaf node,
then we remove r from R̄ and delete Pr . Further, we add r to all paths Pr1 for which the leaf
node that corresponds to r1 is a successor of the non-leaf child of v in the decomposition tree.
If both children of v are leaves, then the arc r that corresponds to its right child is removed
from R̄, the pathPr is deleted, and r is added to the pathPr1 , where r1 is the arc that corresponds
to the left child of v. We then mark v as processed and proceed.
To show the correctness of the algorithm, note that each node v in the decomposition tree can

be associated with the subgraph Gv of G whose arc set consists of those arcs that correspond
to leaf nodes in the decomposition tree that are successors of v.

We claim that, after each iteration, for each processed node v that either has no parent (i.e,
v is the root node) or whose parent is still unprocessed, it holds that R̄ restricted to the arc set
of Gv fulfills the properties from the lemma for Gv .
This is clearly the case when only the leaves have been processed since every subgraph Gv

is then a one-arc graph. Now assume that the claim holds at the beginning of an iteration and
let v be the node in the decomposition tree that is processed in the iteration. If v is labeled
by P, each s-t-path in Gv is either completely contained in the graph associated with the left
child of v in the decomposition tree or in the graph associated with the right child. Hence,
since R̄ and the paths Pr , r P R̄, are left unchanged, the claim also holds after processing v. If
the processed node v is labeled by S and both its children are leaves, the claim clearly remains

114

5.3. Polynomial-Time Algorithms and Complexity Results

true. If the processed node v is labeled by S and only one of its children is a leaf, then this
series composition corresponds to prepending or appending an additional arc to the graphGw,
where w denotes the non-leaf child of v. Hence, after the series composition, each path in Gw

is extended by the arc r that corresponds to the leaf child of v, which is precisely what the algo-
rithm does. Moreover, r is removed from R̄ and Pr is deleted, which ensures that uniqueness
is preserved in both properties from the lemma. Hence, the claim also holds after the iteration,
which completes the proof.

Note that the proof of Lemma 5.17 is constructive and the set R̄ together with the paths Pr

for r P R̄ can be obtained in Opm2q time. Indeed, this running time is asymptotically best-
possible since already the space to store the paths Pr for r P R̄ is in Opm2q. In the following,
given an extension-parallel temporal graph, we let R̄ denote a subset of arcs that satisfies the
properties of Lemma 5.17 in the underlying static graph. For each arc r P R̄, we remove r
from the graph and from R̄ if the corresponding s-t-path Pr in the underlying static graph is
not a (temporal) s-t-path in the temporal graph. Note that this does not destroy any temporal
s-t-paths.

The idea of the polynomial-time algorithm to solve T-SDP-IP, T-STP-IP, and the static ver-
sion S-SP-IP is similar to the idea of the algorithm for T-LSP-IP from Section 5.3.1. For ease
of notation, the following exposition is restricted to T-SDP-IP. It is discussed later how the
arguments can be modified for the other two problems.
Let dura1 ă dura2 ă ¨ ¨ ¨ ă dural denote the distinct durations of s-t-paths in G sorted

in increasing order. Further, for k P t1, . . . , lu, we define GSD,k as the temporal graph that
results from G by removing each arc r P R̄ for which Pr has duration at least durak. For
completeness, we also defineGSD,l`1 :“ G. The following proposition and its proof are similar
to Proposition 5.5 and the corresponding proof.

Proposition 5.18 Let k P t1, . . . , lu. There exists an interdiction strategyDk that separates s
from t in GSD,k if and only if there exists an interdiction strategy D in G with objective value
at least durak.

Proof. LetDk be an interdiction strategy that separates s from t inGSD,k. Then, after interdict-
ing the same setD :“ Dk of arcs inG, no s-t-path P inGD can have duration less than durak
(otherwise, P would also be an s-t-path in GSD,k

Dk as (1) no arc in P is in D “ Dk, and (2) the
unique arc r in P contained in R̄ satisfies Pr “ P and, thus, durapPrq “ durapP q ă durak).
Hence, all s-t-paths inGD have duration at least durak, i.e.,D has objective value at least durak.
Conversely, letD be an interdiction strategy in G with objective value at least durak. Then,

no s-t-path inGD can have duration less than durak, so the interdiction strategyDk :“ Dztr P

R̄ | durapPrq ě duraku separates s from t in GSD,k.

As in the algorithm presented in Section 5.3.1, the idea of the algorithm for extension-parallel
(temporal) graphs is to use binary search in order to find k‹ P t1, . . . , lu such that s can be
separated from t in GSD,k‹ , but s cannot be separated from t in GSD,k‹`1. Such a k‹ exists
whenever s cannot already be separated from t in the whole graphG “ GSD,l`1, i.e., whenever
the optimal objective value is not equal to `8.

115

5. Complexity of the Temporal Shortest Path Interdiction Problem

As shown in Section 5.3.1, deciding whether a node s can be separated from another node t
with a given interdiction budget in an arbitrary temporal graph is possible in polynomial time.
Further, Lemma 5.17 implies that the total number of s-t-paths is bounded by the number of
arcs in the graph. Consequently, the number l of distinct durations of s-t-paths is polynomial
in the input size. Altogether, the proposed algorithm runs in polynomial time.
To extend the result to the problems T-STP-IP and S-SP-IP, one observes the distinct traversal

times or lengths of s-t-paths, respectively, to construct the subgraphs used in the algorithm.
All arguments then work along the same lines.
The following theorem summarizes the main results of this section.

Theorem5.19 There exist polynomial-time algorithms for T-SDP-IP, T-STP-IP, and S-SP-IP on
extension-parallel (temporal) graphs with running time inOpm2 ` logpmq ¨TMCpn ¨m,n ¨mqq

for the temporal versions and running time in Opm2 ` logpmq ¨ TMCpn,mqq for the static
version, where TMCpn̄, m̄q is the time required to compute a minimum s-t-cut in a static graph
with n̄ nodes and m̄ arcs.

5.4 Extensions

In this section, we study three extensions of the temporal shortest path interdiction problem.
The first extension is to allow for negative traversal times and it is shown that the results
of Section 5.3 remain valid for T-LSP-IP, T-EAP-IP, and T-SDP-IP if paths are explicitly not
required to be elementary. The second extension is motivated by [Cas+12] and allows for
continuous-time availability of arcs. It is shown that even a slight generalization makes it hard
to decide whether the nodes s and t can be separated by an interdiction strategy in a temporal
graph. Finally, the third extension, motivated by [Cas+21], imposes an additional constraint
on the maximum waiting time in a node. It is shown that the additional constraint does not
change the results from Section 5.3.

5.4.1 Negative Traversal Times

In this section, we show that the results obtained for the problems T-LSP-IP, T-EAP-IP, and
T-SDP-IP in Section 5.3 still hold if negative traversal times are allowed. For this extension,
paths are explicitly not required to be elementary.

We start by arguing that the underlying shortest path problem for the three variants can
be solved efficiently using the time-expanded graph. Note that, given a temporal graph H “

pV,Rq, the construction of the time-expanded graph H te “ pV te, Rteq does not change when
involving negative traversal times. The main difference that arises from allowing negative
traversal times is that the time-expanded graph might have arcs from a node pv, ϕiq to a
node pw, ϕkq with ϕk ă ϕi. For the latest start path problem, the objective of a path only
depends on the first arc in the path. It is easy to see that, for ϕj being the maximum crucial
time, there exists an ps, ϕiq-pt, ϕjq-path inH te if and only if there exists an s-t-path inH with
start time at least ϕi. Note that this only holds if the path is not required to be elementary.
By evaluating whether there exists an ps, ϕiq-pt, ϕjq-path in H te for each crucial time ϕi, the

116

5.4. Extensions

latest start path problem can be solved in polynomial time when involving negative traversal
times. A similar argumentation yields that the earliest arrival path problem and the shortest
duration path problem can also be solved in polynomial time.
By the same argument as above, it is clear that the statement of Observation 5.6 still holds

if negative traversal times are allowed. Note that, while allowing the traversal times to be
negative, the removal costs are still positive and, hence, the problem of deciding whether ste
and tte can be separated inH te “ pV te, Rteq can be solved in polynomial time. Hence, T-LSP-IP
can be solved in polynomial time if negative traversal times are allowed.
For the polynomial time solvability of T-EAP-IP, note that neither the construction ofGLS nor

the proofs of Proposition 5.8 and Corollary 5.9 require the traversal times to be non-negative.
Hence, since T-LSP-IP can be solved in polynomial time if negative traversal times are allowed,
so can be T-EAP-IP.
Finally, for T-SDP-IP, it is evident that allowing for negative traversal times is a general-

ization of the problem studied in Section 5.3 and, hence, the same proof of hardness shows
the hardness in the generalized setting. Since the underlying shortest duration path problem
can be solved in polynomial time, T-SDP-IP is stillNP-hard when allowing negative traversal
times.
The results of this section are summarized in the following theorem:

Theorem5.20 When allowing negative traversal times, T-LSP-IP and T-EAP-IP are polynomi-
al-time solvable, while T-SDP-IP is NP-hard.

For T-STP-IP, the proof of hardness given in Section 5.3.3 also holds true for the same reasons
as for T-SDP-IP. However, it is per se not clear whether the problem is in NP since it is not
evident that a shortest traversal path in a temporal graph can still be computed in polynomial
time when negative traversal times are allowed.

5.4.2 Continuous Time Availability of Arcs

In this section, a slightlymore general model of temporal graphs is investigated, where the start
time τprq of a temporal arc r is not given by one fixed discrete point in time, but rather by a
closed interval rτ lprq, τuprqs “: τprq. The arc can then be entered at any time τ P τprq, leading
to an arrival time of τ ` λprq at ωprq. In the following, we therefore no longer speak of a start
time, but of an availability interval. The resulting temporal graphs where arcs are available
during availability intervals are called continuous-time temporal graphs. Note that the class of
continuous-time temporal graphs comprises the class of temporal graphs, which correspond to
continuous-time temporal graphs in which each availability interval only consists of a single
point.
While a temporal path in a discrete-time temporal graph is given by a sequence of temporal

arcs, the definition has to be slightly adapted in the continuous-time case. A (continuous-time)
temporal path in a continuous-time temporal graph is a sequenceP “ ppr1, τ1q, . . . , prk, τkqq of
pairs of an arc and a start time with τi P τpriq for each i P t1, . . . , ku such that ωpriq “ αpri`1q

and τi ` λpriq ď τi`1 for each i P t1, . . . , k ´ 1u.
We show that, given a continuous-time temporal graph G and an integer B, it is strongly

NP-hard to decide whether a pair ps, tq of nodes can be separated by removing at most B

117

5. Complexity of the Temporal Shortest Path Interdiction Problem

. . . si
xi yi

ti . . . sj
xj yj

tj . . .

t

Figure 5.2.: The gadgets inG for two nodes i and j that are adjacent inG1 (where i ă j). Only
the dashed arcs can be interdicted.

arcs from G. This immediately implies that all variants of temporal shortest path interdiction
problems studied in this chapter are strongly NP-hard on continuous-time temporal graphs,
and that they do not not even admit polynomial-time approximation algorithmswith a bounded
approximation ratio (unless P “ NP).
The reduction, which is similar to the one presented in [BKS95], is from the well-known

(strongly) NP-hard node cover problem, which is defined as follows:

Instance: An undirected (static) graph G1 “ pV 1, Eq and a positive integer B1 ď |V 1|

Question: Is there a subset V̄ Ď V 1 of nodes with |V̄ | ď B1 such that each edge in E is
incident to at least one node in V̄ ?

Node Cover

Given an instance of node cover, a continuous-time temporal graph G and a budget B
are constructed as follows. The budget is chosen as B :“ B1. For the construction of the
continuous-time temporal graph G, it is assumed without loss of generality that
V 1 “ t1, . . . , n1u. For each node i P t1, . . . , n1u, a gadget consisting of two parallel paths
of length five is constructed. These paths are referred to as the upper and lower path of the
gadget. The start node of the two paths is referred to as si and the end node of the two paths
as ti. Further, the start and end node of the third arc in the lower path are referred to as xi
and yi, respectively. All arcs in a gadget, except for the third arc in the lower path, have re-
moval costB ` 1 and availability interval r0, 5n1s. The third arc in the lower path has removal
cost 1 and availability interval r5i ´ 4, 5i ´ 3s. All arcs in the gadget have traversal time 1.

The gadgets are connected by identifying ti with si`1 for all i P t1, . . . , n1 ´ 1u. Further, for
an edge e P E that is incident to the nodes i and j with i ă j, there exists an arc from yi to xj
with availability interval r5i ´ 2, 5i ´ 2s, traversal time 5pj ´ iq ´ 2, and removal cost B ` 1.
This arc is called the shortcut from i to j.
The node s for the instance of temporal shortest path interdiction is s1. The node t is added

and, for each i P t1, . . . , n1u, there exists an arc from yi to t with availability interval r5i ´

3, 5i ´ 3s, traversal time 0, and removal cost B ` 1. An illustration of the construction is
provided in Figure 5.2.

118

5.4. Extensions

To achieve unit removal costs, we can simply replace each arc r by cprqmany identical copies
with unit removal cost (as for the proof of Theorem 5.14 and Corollary 5.15 for unit removal
costs). Note that this conserves the polynomial size of the constructed instance. Using this
construction, we prove the following theorem:

Theorem5.22 Decidingwhether a pair ps, tq of nodes can be separated by removing atmostB
arcs from a continuous-time temporal graph is strongly NP-complete.

Proof. The problem is clearly inNP since it can be easily checked in polynomial time whether
a given set of at most B arcs separates s from t. To show NP-completeness, let D be an
interdiction strategy for the constructed instance. Observe that each s-t-path in GD traverses
at least one shortcut from i to j for some i, j P t1, . . . , n1u. This is possible if and only if none of
the removable arcs in gadgets i and j are removed by the interdiction strategy. By identifying
the interdiction of an interdictable arc in a gadget i with the inclusion of node i in the node
cover, it follows that there exists a node cover of size B1 (“ B) if and only if there exists an
interdiction strategy in G separating s from t that removes at most B arcs.

5.4.3 Waiting Time Constraints

The definition of an s-t-path provided in Section 5.2 implicitly allows to wait at nodes for any
length of time. However, arbitrarily long waiting times are often undesired in real-world prob-
lems such as, e.g., packet routing in communication networks. To this end, the problem of
finding a ∆-restless temporal s-t-path that cannot wait longer than a given amount of time ∆
in any node except s and t has been investigated (see [Cas+21]). As shown in [Cas+21], de-
ciding whether an elementary ∆-restless s-t-path exists is strongly NP-hard for any ∆ ě 0.3
However, in the setting considered here where paths are not required to be elementary, this
problem is polynomial-time solvable. A Dijkstra-like polynomial-time algorithm for comput-
ing not necessarily elementary restless paths in temporal graphs is presented in [Ben+20].

In this section, we show how the time-expanded graph introduced in Section 5.3.1 can be
modified to account for additional waiting time constraints. Further, we show that the complex-
ity of the four versions of temporal shortest path interdiction does not change under additional
waiting time constraints.
Within this section, we assume that s has no incoming arcs and t has no outgoing arcs. This

assumption does not impose a loss of generality since a shortest s-t-path (with respect to any
of the definitions of “shortest”) that uses such an arc could be transformed into one that does
not.
Given an arbitrary temporal graph H “ pVH , RHq, we construct the time-expanded graph

H te “ pV te, Rteq under waiting time constraints. To this end, recall the set T “ tϕ1, . . . , ϕju

of crucial times, which are indexed in increasing order. Similar to the construction of the
time-expanded graph in Section 5.3.1, we introduce a node pv, ϕiq for every v P VH and i P

t1, . . . , ju. For v P ts, tu and i P t1, . . . , j ´ 1u, there exists an arc from pv, ϕiq to pv, ϕi`1q,
3It is worth noting that the definition of temporal graphs in [Cas+21] is slightly different. They state that the
problem is stronglyNP-hard for any∆ ě 1, but, indeed, the same proof of hardness with a slight modification
holds true for the definition of temporal graphs used here for any∆ ě 0.

119

5. Complexity of the Temporal Shortest Path Interdiction Problem

which represents waiting at s before the start of the path or waiting at t after having arrived.
For each arc r P RH , an additional node ur is introduced. Further, there exists an arc in Rte

from pαprq, τprqq to ur and an arc from ur to any node pωprq, ϕq with ϕ P rτprq`λprq, τprq`

λprq ` ∆s. Traversing the arc from pαprq, τprqq to ur and then the arc from ur to some node
pωprq, ϕq represents traversing r in the temporal graph and entering the next arc in the path
(if ωprq ‰ t) exactly at time ϕ. This completes the construction of H te.

To show a one to one correspondence between∆-restless s-t-paths inH and ps, ϕ1q-pt, ϕjq-
paths in H te, note that there are no parallel arcs in H te, which implies that any path in H te is
uniquely given by its trace.

Observation 5.23 There exists a∆-restless s-t-path inH if and only if there exists a ps, ϕ1q-
pt, ϕjq-path in H te.

Proof. Let P “ pr1, . . . , rkq be a ∆-restless s-t-path in H . Then we claim the unique path
with trace pps, ϕ1q, . . . , ps, τpr1qq, ur1 , pωpr1q, τpr2qq, ur2 , . . . , pt, τprkq ` λprkqq, . . . , pt, ϕjqq

is a ps, ϕ1q-pt, ϕjq path in H te. Since, for v P ts, tu and i P t1, . . . , j ´ 1u, there exists an arc
from pv, ϕiq to pv, ϕi`1q, the arcs from ps, ϕ1q to ps, τpr1qq and the arcs from pt, τprkq`λprkqq

to pt, ϕjq are in H te. Moreover, the arc from pαpriq, τpriqq to uri is in H te for i P t1, . . . , ku,
and the arc from uri to pωpriq, τpri`1qq is in H te for i P t1, . . . , k ´ 1u since P is∆-restless.

Conversely let P 1 be an ps, ϕ1q-pt, ϕjq-path in H te. From the construction, it immediately
follows that the trace of P 1 must be of the above form and, by the same arguments as above, it
follows that pr1, . . . , rkq is a ∆-restless s-t-path in H .

To show that T-LSP-IP and T-EAP-IP remain polynomial-time solvable, we assign removal
costs to H te “ pV te, Rteq. For each arc r P R, the (unique) incoming arc of ur has removal
cost cprq. All other arcs have removal cost B ` 1. With this construction, we observe the
following.

Observation 5.24 There exists an interdiction strategyD such that there does not exist a∆-
restless path inHD if and only if there exists an interdiction strategyD1 separating ste from tte

in H te.

Using the algorithm proposed in Sections 5.3.1 and 5.3.2 together with the time-expanded
graph H te “ pV te, Rteq under waiting time constraints constructed in this section, it follows
that T-LSP-IP and T-EAP-IP remain polynomial-time solvable under waiting time constraints.

Theorem 5.25 There exists a polynomial-time algorithm for solving T-LSP-IP and T-EAP-IP
under waiting time constraints for each∆ ě 0.

We proceed with assessing the complexity of T-SDP-IP and T-STP-IP under waiting time
constraints. When taking a closer look at the reduction provided in Section 5.3.3, every s-
t-path in the constructed instance is 0-restless. This immediately implies that T-SDP-IP and
T-STP-IP under waiting time constraints are stronglyNP-hard for every∆ ě 0, which yields
the following theorem.

120

5.5. Conclusion

Theorem 5.26 The problems T-SDP-IP and T-STP-IP are strongly NP-hard under waiting
time constraints for each∆ ě 0.

To close this chapter, we argue that T-SDP-IP and T-STP-IP are still polynomial-time solvable
on extension-parallel temporal graphs under waiting time constraints. To this end, when re-
moving each arc r whose corresponding s-t-path Pr is not a temporal path from the graph and
from the set R̄ as in Lemma 5.17, we additionally check whether Pr is∆-restless and remove r
if this is not the case. Afterwards, the graph contains exactly the∆-restless temporal s-t-paths
and the algorithm presented in Section 5.3.3.1 can be used to solve T-SDP-IP and T-STP-IP on
extension-parallel temporal graphs under waiting time constraints, which yields the following
theorem.

Theorem 5.27 There exists a polynomial-time algorithm for T-SDP-IP and T-STP-IP on ex-
tension-parallel (temporal) graphs under waiting time constraints for each∆ ě 0.

It is worth noting that all results presented in this section can easily be adapted to the general
case where waiting times are constrained node-wise instead of globally. The only difference
to the global case is in the construction of the time-expanded graph, where the node-wise
constriction is enforced by the outgoing arcs of the nodes ur for r P R.

5.5 Conclusion

In this chapter, the complexity of four different versions of temporal shortest path interdiction
is analyzed. While the latest start and the earliest arrival path interdiction problem is shown
to be solvable in polynomial time, the shortest duration and the shortest traversal path inter-
diction problem is strongly NP-hard. It is particularly interesting that, even though temporal
shortest path interdiction seems more complex than its static counterpart, which is known to
be strongly NP-hard, there are versions of temporal shortest path interdiction problems that
are polynomially solvable. We further provide polynomial-time algorithms for the two hard
problems on extension-parallel temporal graphs, which can also be transferred to the static
shortest path interdiction problem.

An interesting direction for future work could be to study temporal shortest path interdic-
tion problems for other types of modifications than arc removal. For example, one could con-
sider the problem of worsening (or improving) the latest start time, the earliest arrival time,
the shortest duration, or the shortest traversal time as much as possible by changing a given
number of start times of arcs in a temporal graph.

121

6 Approximating Single- andMulti-Objective

Nonlinear SumandProductKnapsackProb-
lems

Abstract We present an FPTAS for a very general version of the well-known knapsack
problem. This generalization covers, with few exceptions, all versions of knap-
sack problems that have been studied in the literature so far and allows for an
objective function consisting of sums or products of possibly nonlinear, sepa-
rable item profits, while the knapsack constraint states an upper bound on the
sum of possibly nonlinear, separable item weights. Moreover, we extend our
FPTAS to a MFPTAS for the multi-objective version of the problem.
As applications of our general algorithms, we obtain the first FPTAS for the
recently-introduced 0-1 time-bomb knapsack problem as well as FPTASs for a
variety of robust knapsack problems. Moreover, we extend our FPTAS to the
minimization version of our general problem, which, in particular, allows us
to explicitly state an FPTAS for the classical minimization knapsack problem,
which has been missing in the literature so far.

6.1 Introduction

Integer optimization problems with linear objectives and constraints are becoming more and
more tractable through the availability of better computing hardware and the impressive pro-
gress of solver software (see [Koc+22]). This fostered the progress of research on nonlinear
integer programs leading to a wealth of exact and heuristic solution algorithms for nonlinear
optimization problems over the last two decades, as illustrated by the wide interest in the
MIPLIB 2017 collection of benchmark instances [Gle+21].

We aim at complementing this development from a more theoretical perspective by pre-
senting approximation schemes for a very general nonlinear version of the classical knapsack
problem. This generalization consists of maximizing either the sum

řn
i“1 fipxiq or the prod-

uct
śn

i“1 fipxiq of the profits fipxiq obtained from packing xi copies of item i P t1, . . . , nu,
where xi is bounded by an item-specific upper bound ui. Each number of copies xi of item i

123

6. Approximating Nonlinear Sum and Product Knapsack Problems

gives rise to a packed weight gipxiq, where the total packed weight across all items is bounded
by a knapsack capacity C . Both functions fi and gi can be arbitrary nonlinear functions.

The current literature on nonlinear knapsack problems mostly restricts the objective func-
tion to the sum of the profits fipxiq, which significantly limits the applicability of the developed
algorithms. As an example, a common way to represent preferences over commodity bundles
in economics is to use Cobb-Douglas functions (see [MWG95]). In this setting, the input is
given by discrete quantities of different consumption goods, which determine a utility value
via a utility function of the form

max
n
ź

i“1

xαi
i .

The optimal consumption bundle is then found by maximizing this utility function subject to a
budget constraint. This clearly motivates the consideration of the product of the profits fipxiq.
Further pointers to literature about the relevance of the product in the objective function can
be found in [DAm+18].
The standard knapsack problem can be seen as a cornerstone of integer programming and

has been treated extensively with respect to every conceivable aspect (see [KPP04] and the
recent literature survey [Cac+22a; Cac+22b]). However, there is only a fairly limited amount
of literature on nonlinear versions of the knapsack problem. Moreover, these contributions are
focused on an algorithm engineering perspective, while there are hardly any contributions on
approximation algorithms, although these are widely studied for the linear case (most recently
in [Jin19]).
In this chapter, we devise fully polynomial-time approximation schemes (FPTASs), which

guarantee feasible solutions with strictly limited deviation from optimality for every given
accuracy ε ą 0 within a running time polynomial in the size of the instance and in 1{ε. In
contrast to many other approximation algorithms that are constructed only for their theoretical
properties, the FPTASs presented in this chapter could be quite easily implemented in practice
and would reach solutions with a given accuracy in a reasonable computation time.
We would like to point out that the notion of nonlinearity employed here encompasses ba-

sically every nonlinear knapsack problem with separable profit and weight functions. Profits
contributed by different items can be combined either in an additive or in a multiplicative way,
while weight values are summed up. This model is far more general than the few FPTASs
known so far and will be applicable to every setting with separable functions.

Taking into account the manifold perspectives inherent in complex decision making tasks,
multi-objective optimization models have become more widely used in practice and, therefore,
also studied more intensively from an algorithmic point of view. Following this perspective,
we extend our FPTAS to the multi-objective case, allowing a mix of additive and multiplicative
objectives. This multi-objective setting is even more relevant for the following reason. It is
well known that the set of efficient solutions (Pareto solutions) as well as the set of nondomi-
nated points (nondominated images) for multi-objective integer programming problems, such
as the multi-objective knapsack problem, may have exponential size [Ehr05] and, thus, lead to
an information overflow for a decision maker. By resorting to a multi-objective FPTAS, one

124

6.1. Introduction

can restrict the size of the solution set at the cost of a limited loss of accuracy, while still guar-
anteeing that all parts of the Pareto frontier are adequately represented in the final solution set
(see, e.g., [HRT21]).

6.1.1 Previous Work

For a general overview of the literature about nonlinear knapsack problems, we refer to [BS02]
and [Cac+22b, Sec. 5.1]. Concerning approximation, an FPTAS for a nonlinear version of the
knapsack problem is presented in [Kov96]. They present a p1 ` εq-approximation algorithm
for additive, nondecreasing profit functions fi, and additive (although this is a bit hidden in the
paper) nondecreasing weight functions gi. The running time depends on the sum of the upper
bounds ui of item copies. If upper and lower bounds on the optimal objective value whose ratio
is polynomial in the length of the encoded input are given, the algorithm becomes an FPTAS.
Another FPTAS for a yet more constrained nonlinear version of the knapsack problem is

presented in [Hoc95]. They present an FPTAS with running time only depending on the num-
ber n of items (instead of the sum of the ui) and logC for the case where the profit functions fi
are additive, concave, and nondecreasing, and the weight functions gi are additive, convex, and
nondecreasing.
A matheuristic for a nonlinear knapsack problem is given in [DM11]. This algorithm, how-

ever, does not yield any bounded approximation guarantee. Another metaheuristic for an even
more complex scenario, in which there are multiple knapsacks the items can be assigned to, is
examined in [DMM18].
The only knapsack-type problemwith a multiplicative objective function treated in the liter-

ature so far is the product knapsack problem (PKP) introduced in [DAm+18], where a dynamic-
programming algorithm with running time inOpnCq is presented. PKP considers binary vari-
ables xi with constant profit values. An interesting aspect arises from allowing negative profits,
which gives relevance to the parity of the number of packed items. A proof of weak NP-
hardness for PKP is given in [Hal+19] and an FPTAS is presented in [PST21].
The multi-objective version of the classical (linear, additive) knapsack problem has also been

studied extensively in the literature and several MFPTASs are known. For an overview, we refer
to [HRT21, Section 3.5].

6.1.2 Our Contribution

In this chapter, we present an FPTAS for a very general version of the well-known knapsack
problem, where the objective function consists of sums or products of possibly nonlinear, sepa-
rable item profits, while the knapsack constraint states an upper bound on the sum of possibly
nonlinear, separable item weights. Besides the separability of profits and weights, the only
assumption imposing a loss of generality in our problem definition is that all profits must be
nonnegative. Hence, with few exceptions, our generalized version of the knapsack problem
covers all versions of knapsack problems that have been studied in the literature, and our re-
sults answer the question about the existence of an FPTAS for any separable, nonlinear knap-
sack problem. Moreover, we extend our FPTAS to an MFPTAS for the multi-objective version
of the problem.

125

6. Approximating Nonlinear Sum and Product Knapsack Problems

We conclude the chapter by presenting applications of our general algorithms to various
problems from the literature. In particular, we obtain the first FPTAS for the 0-1 time-bomb
knapsack problem, which has recently been introduced in [MPS22], and FPTASs for a variety
of robust knapsack problems. In addition, extending our FPTAS to the minimization version
of our general problem allows us to explicitly state an FPTAS for the classical minimization
knapsack problem, which has been missing in the literature so far.

6.2 Problem Definition

In this section, a highly generalized version of the knapsack problem is introduced in a single-
and multi-objective setting.

6.2.1 Single-Objective Problems

We are given a set N “ t1, . . . , nu of n items, where each item i P N can be packed at
most ui P Ną0 times. The obtained profit and the required capacity when packing 0 ď xi ď ui
copies of item i are given by the values fipxiq and gipxiq of the nonnegative profit function
fi : t0, . . . , uiu Q xi ÞÑ fipxiq P Qě0 and the (arbitrary sign) weight function gi : t0, . . . , uiu Q

xi ÞÑ gipxiq P Q, respectively. Lower bounds on the number of item copies could also be
included, in which case xi would be restricted to ℓi ď xi ď ui. Given a knapsack capac-
ity C P Qě0, the task then consists of maximizing either the sum

řn
i“1 fipxiq or the product

śn
i“1 fipxiq of the profits obtained from the items while packing a total weight

řn
i“1 gipxiq

of at most C and packing at most ui copies of each item i. The general problem can, thus, be
formulated as follows:

max
n
ÿ

i“1

fipxiq or
n
ź

i“1

fipxiq (6.1)

s.t.
n
ÿ

i“1

gipxiq ď C (6.2)

0 ď xi ď ui @i P t1, . . . , nu (6.3)
xi P Z @i P t1, . . . , nu (6.4)

In the following, we refer to the problem version with the sum objective
řn

i“1 fipxiq as the
nonlinear additive knapsack problem (NAKP) and to the problem version with the product ob-
jective

śn
i“1 fipxiq as the nonlinear product knapsack problem (NPKP). Any vector x P Zn with

0 ď xi ď ui for all i “ 1, . . . , n is called a solution. If such a solution additionally satisfies
the capacity constraint

řn
i“1 gipxiq ď C , it is called a feasible solution. The set of all feasible

solutions is referred to as the feasible set and is denoted by X Ď Zn.
Throughout the chapter, we make the following assumptions.

Assumption 6.1 Any instance of NAKP or NPKP satisfies:

(a) All profits are nonnegative, i.e., fipxiq ě 0 for 0 ď xi ď ui and all i P N .

126

6.2. Problem Definition

(b) The values fipxiq and gipxiq of the profit and weight functions are integers (i.e.,
fipxiq, gipxiq P Z) that are given explicitly in the input for 0 ď xi ď ui and all i P N .

(c) All weights are nonnegative, i.e., gipxiq ě 0 for 0 ď xi ď ui and all i P N .

(d) There exists at least one feasible solution x P X .

Note that Property (a) in Assumption 6.1 has only been listed for completeness since the
profit functions have been assumed to be nonnegative already in the problem definition. Prop-
erties (b)–(d), on the other hand, can easily be seen to impose no real loss of generality. For
Property (b), first note that the assumption of integer values can be ensured in the presence of
rational values by multiplying all numbers by their lowest common denominator.1 It should
be noted that rational numbers can have an impact on the classification as weakly or strongly
NP-hard, as recently shown in [Woj18] for the knapsack problem. However, this does not af-
fect the existence of an FPTAS (see [Woj18]). The important implication of Property (b) is that
the values ui are polynomial in the encoding length of a problem instance since ui ` 1 many
values have to be encoded for fi and gi each. An alternative model would assume that each
value fipxiq or gipxiq can be obtained in constant time via an oracle, in which case these values
would not need to be encoded and the values ui could be super-polynomial in the encoding
length of a problem instance. In this case, however, even determining whether a feasible solu-
tion exists would require super-polynomial time in the worst case even in the special case of a
single item (i.e., for n “ 1) since – as the weight function g1 is not assumed to be monotone –
all the superpolynomially many solutions given by x1 “ 0, . . . , u1 would have to be checked
for feasibility.2
Concerning Property (c), we can determinemin0ďxiďui gipxiq for each item i P N in Opuiq

time (which is polynomial in the encoding length of the input by Property (b)). Then, for each
item i with min0ďxiďui gipxiq ă 0, we can increase all weights of the item as well as the
knapsack capacity by ´min0ďxiďui gipxiq ą 0 by setting gipkq :“ gipkq ´ min0ďxiďui gipxiq
for k “ 0, . . . , ui and C :“ C ´ min0ďxiďui gipxiq, which yields an equivalent instance with
gipxiq ě 0 for 0 ď xi ď ui and all i P N . Similarly, Property (d) imposes no loss of generality
since packing argmin0ďxiďui

gipxiq copies of each item i clearly yields a feasible solution if
one exists, so infeasible instances can be detected by preprocessing in polynomial time.

6.2.2 Multi-Objective Problems

In the multi-objective nonlinear product-sum knapsack problem (MNPSKP), we are given a set
N “ t1, . . . , nu of n items with nonlinear weight functions gi and item-specific upper bounds
1Multiplying all values of the profit and weight functions as well as the knapsack capacity by their lowest com-
mon denominator d P Zą0 does not impact feasibility of solutions, and the objective value of any solution is
multiplied by the same positive factor d (in NAKP) or dn (in NPKP).

2Even under the additional assumption that gipxiq ď C for 0 ď xi ď ui and all i (which implies the existence of a
feasible solution for n “ 1), it is easy to see that no constant approximation ratio can be obtained in polynomial
time in the oracle model since this would again require checking the superpolynomially many solutions given
by x1 “ 0, . . . , u1 in the worst case.

127

6. Approximating Nonlinear Sum and Product Knapsack Problems

ui P Ną0, for i “ 1, . . . , n, and a knapsack capacity C P Qě0 as in the single-objective
problems NAKP and NPKP. However, each item i P N is now associated with a constant
number p ě 2 of profit functions f j

i : t0, . . . , uiu Ñ Qě0, j “ 1, . . . , p. The set tf1, . . . , fpu

of objectives to be maximized is partitioned by a threshold value p1 P t0, 1, . . . , pu such that the
objective functions f1, . . . , fp1 correspond to products, and the remaining objective functions
fp1`1, . . . , fp correspond to sums (where p1 “ 0 means that all objective functions are sums,
while p1 “ p means that all objective functions are products). Thus, the vector of objective
values of any solution x P Zn can be written as:

fpxq “

˜

n
ź

i“1

f1
i pxiq, . . . ,

n
ź

i“1

fp1

i pxiq,
n
ÿ

i“1

fp1`1
i pxiq, . . . ,

n
ÿ

i“1

fp
i pxiq

¸

(6.5)

Note that, in the following, we again assume as in Assumption 6.1 (b)–(d) that the values of
the profit and weight functions are integers (i.e., f j

i pxiq, gipxiq P Z for all i, j and 0 ď xi ď ui)
and are given explicitly in the input, that all weights are nonnegative (i.e., gipxiq ě 0 for all i
and 0 ď xi ď ui), and that at least one feasible solution x P X exists. This can again be seen
to be without loss of generality by the same arguments as before.
For the special case of binary variables, where ui “ 1 for all i P N , we obtain linear profits

and weights. In this case, for p1 “ 0, MNPSKP coincides with the classical multi-objective
knapsack problem, which is widely studied in the literature. Moreover, for p1 “ p, we obtain
the multi-objective generalization of the product knapsack problem (PKP) mentioned in the
introduction. This extension of PKP to more than one objective has not been studied in the
literature so far.

6.3 A Single-Objective FPTAS

In this section, we present an FPTAS that works for both NAKP and NPKP. In order to allow
for a general formulation of the algorithm and its analysis that applies to both problems simul-
taneously, we use the symbols b P t`, ¨u and

Â

P t
ř

,
ś

u to denote either addition (` and
ř

) for the case of NAKP or multiplication (¨ and
ś

) for the case of NPKP.
We first observe that the two values ub` :“

řn
i“1max0ďxiďui fipxiq and

ub¨ :“
śn

i“1max0ďxiďui fipxiq are upper bounds on the objective value of any feasible so-
lution of NAKP and NPKP, respectively, which we denote uniformly by ubb. We then define
ub :“

X

n ¨ log1`εpubbq
\

` 1 and consider the following ub ` 1 intervals, similar to partitions
used in other approximation algorithms (e.g., in [EKP02] for the classical knapsack problem):

r0, 1q, r1, p1 ` εq
1{nq, rp1 ` εq

1{n, p1 ` εq
2{nq, . . . , rp1 ` εq

pub´1q{n, p1 ` εq
ub{nq (6.6)

Note that the number of these intervals is polynomial in the input size of the instance and in 1{ε

since ub P O pn ¨ 1{ε ¨ logpubbqq, and that the intervals cover the whole range t0, . . . , ubbu

of possible objective values, where the last interval contains ubb. The lower bounds of the
intervals are particularly important in our algorithm, which is why we introduce the set

LBb,ε :“ t0, 1, p1 ` εq
1{n, . . . , p1 ` εq

pub´1q{nu.

128

6.3. A Single-Objective FPTAS

The idea of the algorithm is to dynamically compute solutions and round their objective values
down to the nearest value in LBb,ε. Therefore, for any value a ě 0, we denote the largest
value v P LBb,ε such that v ď a by tauε in the following.

Our FPTAS is stated in Algorithm 11. During the algorithm, an array W r¨s indexed by the
values in LBb,ε is populated such that, at termination of the algorithm, we have W rvs “ w
for v P LBb,ε and w P Q if and only if there exists a (not necessarily feasible) solution with
weight w and objective value at least v.

Algorithm 11: FPTAS
1 Procedure FPTAS()
2 W rvs :“ `8 for all v P LBb,ε

3 # Process item 1
4 for x1 “ 0, . . . , u1 do
5 v :“ tf1px1quε
6 W rvs :“ min tW rvs, g1px1qu

7 # Process item i
8 for i “ 2, . . . , n do
9 W 1rvs :“ `8 for all v P LBb,ε

10 for xi “ 0, . . . , ui do
11 for v P LBb,ε do
12 v1 :“ tv b fipxiquε
13 W 1rv1s :“ min tW 1rv1s,W rvs ` gipxiqu

14 for v P LBb,ε do
15 W rvs :“ W 1rvs

16 return maximum value v P LBb,ε such thatW rvs ď C

The following proposition shows that Algorithm 11 computes a p1 ` εq-approximation for
every reachable profit value of NAKP or NPKP:

Proposition 6.2 The following holds at termination of Algorithm 11: For every solution
x P Zn with objective value v̄ and weight w̄, there exists a value v P LBb,ε with W rvs ď w̄
and p1 ` εq ¨ v ě v̄.

Proof. For i P t1, . . . , nu, we refer to a vector x̄ P Zi with 0 ď x̄k ď uk for k “ 1, . . . , i as a
partial solution for items 1, . . . , i with objective value

Âi
k“1 fkpx̄kq and weight

ři
k“1 gkpx̄kq.

We prove by induction that, after item i has been processed during the algorithm, the following
invariant holds:

For each partial solution x̄ P Zi for items 1, . . . , iwith objective value v̄ andweight w̄,
there exists v P LBb,ε such that

p1q W rvs ď w̄ and p2q p1 ` εq
i{n ¨ v ě v̄.

129

6. Approximating Nonlinear Sum and Product Knapsack Problems

For i “ 1, we have x̄ “ x̄1 P Z1 for any partial solution x̄. Thus, its objective value and
weight are given as v̄ “ f1px̄1q and w̄ “ g1px̄1q, respectively. Hence, when lines 5 and 6 are
executed within the algorithm in the iteration for x1 “ x̄1 of the for loop starting in line 4, we
obtain v “ tf1px̄1quε “ tv̄uε ě p1 ` εq´1{n ¨ v̄ andW rvs ď g1px̄1q “ w̄, which proves that the
invariant holds for i “ 1.
Now consider the situation after item i ě 2 has been processed during the algorithm and

assume that the invariant holds for i ´ 1. Let x̄ “ px̄1, . . . , x̄i´1, x̄iq be a partial solution
for items 1, . . . , i with objective value v̄ and weight w̄. From this partial solution, we derive
the partial solution x̄´ “ px̄1, . . . , x̄i´1q for items 1, . . . , i ´ 1 with objective value v̄´ and
weight w̄´. By definition of x̄´, we then have v̄ “ v̄´ b fipx̄iq and w̄ “ w̄´ ` gipx̄iq.
Moreover, since the invariant holds for i´1, we know that after item i´1 has been processed,
there exists v´ P LBb,ε such that

p1q W rv´s ď w̄´ and p2q p1 ` εq
pi´1q{n ¨ v´ ě v̄´.

Hence, when lines 12 and 13 are executed during the processing of item i for xi “ x̄i and
v “ v´, we obtain

v1 “
X

v´ b fipx̄iq
\

ε
ě

Z

1

p1 ` εq
pi´1q{n

¨ v̄´ b fipx̄iq

^

ε

ě
1

p1 ` εq
i{n

¨
`

v̄´ b fipx̄iq
˘

“
1

p1 ` εq
i{n

¨ v̄

and

W 1rv1s ď W rv´s ` gipx̄iq ď w̄´ ` gipx̄iq “ w̄.

Thus, after the copying step in lines 14–15 has been executed, the invariant holds for i.
In order to conclude the proof, note that partial solutions for items 1, . . . , n are simply solu-

tions x P Zn. Thus, the invariant for i “ n implies that, after all items i “ 1, . . . , n have been
processed during the algorithm, for each solution x P Zn with objective value v̄ and weight w̄,
there exists v P LBb,ε withW rvs ď w̄ and p1 ` εq ¨ v ě v̄ as claimed.

Denoting the maximum total number of available item copies byN :“
řn

i“1 ui, it is easy to
see that the running time of Algorithm 11 is in

O pN ¨ ubq “ O
ˆ

N ¨ n ¨
1

ε
¨ log pubbq

˙

.

Using that logpub`q P Oplogpnq ` logpfmaxqq and logpub¨q P Opn ¨ logpfmaxqq, we obtain a
running time inO pN ¨ n ¨ 1{ε ¨ plogpnq ` logpfmaxqqq for NAKP andO

`

N ¨ n2 ¨ 1{ε ¨ logpfmaxq
˘

for NPKP, where fmax :“ max
iPN

max
0ďxiďui

fipxiq denotes the largest value of any profit function.
Together with Proposition 6.2, this yields the following theorem:

130

6.4. Extension to Multiple Objectives

Theorem 6.3 For NAKP and NPKP, there exists an FPTAS with running time in
O pN ¨ n ¨ 1{ε ¨ plogpnq ` logpfmaxqqq and O

`

N ¨ n2 ¨ 1{ε ¨ logpfmaxq
˘

, respectively, where
fmax :“ max

iPN
max

0ďxiďui

fipxiq.

6.4 Extension to Multiple Objectives

In this section, the dynamic programming algorithm from Section 6.3 is extended to the multi-
objective nonlinear product-sum knapsack problem (MNPSKP). The extension follows the ap-
proach pursued, e.g., in [EKP02], but allows for arbitrary combinations of product and sum
objective functions. To this end, for each objective function f j , j “ 1, . . . , p, we define an
upper bound ubjb as in the single-objective case and cover the range t0, . . . , ubjbu of pos-
sible values of fj by ujb ` 1 intervals of geometrically increasing width as in (6.6), where
ujb :“ tn ¨ log1`ε ub

j
bu ` 1. The resulting set of lower bounds of these intervals for the j-th

objective is denoted by LBpjq

b,ε.
In our MFPTAS stated in Algorithm 12, the dynamic programming array W r¨s introduced

in Section 6.3 is extended to a p-dimensional array indexed by vectors pv1, . . . , vpq P LBp1q

b,ε ˆ

¨ ¨ ¨ ˆ LBppq

b,ε “: LBb,ε such that W rv1, . . . , vps “ w for some w P Q at termination of the
algorithm if and only if there exists a (not necessarily feasible) solution with weightw and j-th
objective value at least vj for j “ 1, . . . , p.
Analogous to Algorithm 11, the array is initialized when processing item 1 by considering

all possible numbers x1 “ 0, . . . , u1 of copies of item 1 that could be packed into the knapsack.
The update operation performed when processing each of the items 2, . . . , n is also general-
ized in the natural way. Here, the for loops starting in lines 12 and 16 now iterate over all
p-tuples pv1, . . . , vpq in LBb,ε. Moreover, a rounded-down updated value v1

j now needs to be
computed for each j “ 1, . . . , p, and the resulting p-tuple pv1

1, . . . , v
1
pq is then used as a vector

of array indices in line 15. Additionally, the filtering step in lines 18–20 that filters out array
entries corresponding to infeasible solutions replaces the selection of a feasible solution with
maximum objective value at the end of the algorithm.
The following proposition, whose proof extends the proof of Proposition 6.2, establishes that

Algorithm 12 computes a p1 ` εq-approximation for every reachable vector of profit values:

Proposition 6.4 The following holds at termination of Algorithm 12: For every feasible solu-
tion x P Zn with objective values v̄1, . . . , v̄p and weight w̄, there exists a p-tuple pv1, . . . , vpq

in LBb,ε with W rv1, . . . , vps ď w̄ and p1 ` εq ¨ vj ě v̄j for j “ 1, . . . , p.

Proof. The proof extends the proof of Proposition 6.2 to the case of multiple objectives. Conse-
quently, for i P t1, . . . , nu, each partial solution x̄ P Zi nowhas p objective values

Âi
k“1 f

j
kpx̄kq

for j “ 1, . . . , p and we prove by induction that the following invariant holds after item i has
been processed during the algorithm:

For each partial solution x̄ P Zi for items 1, . . . , i with objective values v̄1, . . . , v̄p

131

6. Approximating Nonlinear Sum and Product Knapsack Problems

Algorithm 12:MFPTAS
1 Procedure MFPTAS()
2 W rv1, . . . , vps :“ `8 for all pv1, . . . , vpq P LBb,ε

3 # Process item 1
4 for x1 “ 0, . . . , u1 do
5 for j “ 1, . . . , p do
6 vj :“

Y

f j
1 px1q

]

ε

7 W rv1, . . . , vps :“ min tW rv1, . . . , vps, g1px1qu

8 # Process item i
9 for i “ 2, . . . , n do
10 W 1rv1, . . . , vps :“ `8 for all pv1, . . . , vpq P LBb,ε

11 for xi “ 0, . . . , ui do
12 for pv1, . . . , vpq P LBb,ε do
13 for j “ 1, . . . , p do
14 v1

j :“
Y

vj b f j
i pxiq

]

ε

15 W 1rv1
1, . . . , v

1
ps :“ min

␣

W 1rv1
1, . . . , v

1
ps,W rv1, . . . , vps ` gipxiq

(

16 for pv1, . . . , vpq P LBb,ε do
17 W rv1, . . . , vps :“ W 1rv1, . . . , vps

18 for pv1, . . . , vpq P LBb,ε do
19 if W rv1, . . . , vps ą C then
20 W rv1, . . . , vps :“ `8

and weight w̄, there exists a p-tuple pv1, . . . , vpq in LBb,ε such that

p1q W rv1, . . . , vps ď w̄ and p2q p1 ` εq
i{n ¨ vj ě v̄j for j “ 1, . . . , p.

For i “ 1, we have x̄ “ x̄1 P Z1 for any partial solution x̄. Thus, for j “ 1, . . . , p, its j-th
objective value is given as v̄j “ f j

1 px̄1q and its weight is given as w̄ “ g1px̄1q. Hence, when
lines 6 and 7 are executed within the algorithm in the iteration for x1 “ x̄1 of the for loop
starting in line 4, we obtain vj “ tf j

1 px̄1quε “ tv̄juε ě p1 ` εq´1{n ¨ v̄j for j “ 1, . . . , p and
W rv1, . . . , vps ď g1px̄1q “ w̄, which proves that the invariant holds for i “ 1.
Now consider the situation after item i ě 2 has been processed during the algorithm and

assume that the invariant holds for i ´ 1. Let x̄ “ px̄1, . . . , x̄i´1, x̄iq be a partial solution
for items 1, . . . , i with objective values v̄1, . . . , v̄p and weight w̄. From this partial solution,
we derive the partial solution x̄´ “ px̄1, . . . , x̄i´1q for items 1, . . . , i ´ 1 with objective val-
ues v̄´

1 , . . . , v̄
´
p and weight w̄´. By definition of x̄´, we then have v̄j “ v̄´

j b f j
i px̄iq for

j “ 1, . . . , p and w̄ “ w̄´ ` gipx̄iq. Moreover, since the invariant holds for i ´ 1, we know
that after item i ´ 1 has been processed, there exists pv´

1 , . . . , v
´
p q P LBb,ε such that

p1q W rv´
1 , . . . , v

´
p s ď w̄´ and p2q p1 ` εq

i´1{n ¨ v´
j ě v̄´

j for j “ 1, . . . , p.

132

6.4. Extension to Multiple Objectives

Hence, when lines 14 and 15 are executed during the processing of item i for xi “ x̄i and
pv1, . . . , vpq “ pv´

1 , . . . , v
´
p q, we obtain

v1
j “

Y

v´
j b f j

i px̄iq
]

ε
ě

Z

1

p1 ` εq
i´1{n

¨ v̄´
j b f j

i px̄iq

^

ε

ě
1

p1 ` εq
i{n

¨

´

v̄´
j b f j

i px̄iq
¯

“
1

p1 ` εq
i{n

¨ v̄j for j “ 1, . . . , p

and

W 1rv1
1, . . . , v

1
ps ď W rv´

1 , . . . , v
´
p s ` gipx̄iq ď w̄´ ` gipx̄iq “ w̄.

Thus, after the copying step in lines 16–17 has been executed, the invariant holds for i.
Since partial solutions for items 1, . . . , n are simply solutions x P Zn, the invariant for i “ n

shows the claim (the filtering step in lines 18–20 only filters out array entries corresponding
to infeasible solutions).

By Proposition 6.4, the set of feasible solutions corresponding to the array entries at termi-
nation of Algorithm 12 is a p1 ` εq-approximate Pareto set. Moreover, similar to the running
time analysis of Algorithm 11, it is easy to see that the running time of Algorithm 12 is in

O

˜

N ¨

p
ź

j“1

ujb

¸

“ O

˜

N ¨

´n

ε

¯p
¨

p
ź

j“1

log
´

ubjb
¯

¸

“ O

¨

˝N ¨

´n

ε

¯p
¨

p1
ź

j“1

logpf j
maxq

˛

‚

“ O

¨

˝N ¨

´n

ε

¯p
¨

p1
ź

j“1

log
`

ubj¨
˘

¨

p
ź

j“p1`1

log
´

ubj`
¯

˛

‚

“ O

¨

˝N ¨

´n

ε

¯p
¨ np1

¨

p1
ź

j“1

log
`

f j
max

˘

¨

p
ź

j“p1`1

`

log
`

f j
max

˘

` logpnq
˘

˛

‚

where, for j “ 1, . . . , p, the term f j
max :“ max

iPN
max

0ďxiďui

f j
i pxiq denotes the largest value of any

item’s j-th profit function. Note that, since the number p of objective functions is a constant
(which is a standard assumption in multi-objective optimization), this running time bound is
still polynomial in the encoding length of the input (and in 1{ε). Together with Proposition 6.4,
this yields the following theorem:

133

6. Approximating Nonlinear Sum and Product Knapsack Problems

Theorem 6.5 There exists an MFPTAS for MNPSKP with running time in

O

¨

˝N ¨

´n

ε

¯p
¨ np1

¨

p1
ź

j“1

log
`

f j
max

˘

¨

p
ź

j“p1`1

`

log
`

f j
max

˘

` logpnq
˘

˛

‚,

where f j
max :“ max

iPN
max

0ďxiďui

f j
i pxiq for j “ 1, . . . , p.

In the special case of pure additive or multiplicative objective functions in MNPSKP, i.e.,
the special case that p1 “ 0 and p1 “ p, respectively, the running time of the algorithm is in
O
´

N ¨
`

n
ε

˘p
¨
śp

j“1

´

log
´

f j
max

¯

` logpnq

¯¯

andO
´

N ¨

´

n2

ε

¯p
¨
śp

j“1 log
´

f j
max

¯¯

, respec-
tively.

6.5 Applications

In this section, we use the general approximation scheme presented in the previous section
to obtain an FPTAS for the 0-1 time-bomb knapsack problem mentioned in the introduction,
where a sum and a product are multiplied in the objective function (Section 6.5.1). Moreover,
we modify our algorithm so that it can also be applied for the minimization case. The modified
algorithm is then used to formally state an FPTAS for the minimization knapsack problem in
Section 6.5.2, which cannot be found in the literature in an explicit form so far. As a third appli-
cation, we consider scenario-based robust optimization problems in Section 6.5.4 and derive an
FPTAS for the most general form of a max-min knapsack problem as well as other objectives.

6.5.1 An FPTAS for the 0-1 Time-Bomb Knapsack Problem

The 0-1 time-bomb knapsack problem (TBKP) has recently been introduced in [MPS22]. In this
extension of the standard 0-1 knapsack problem, each item i P N has a nonnegative, integer
weightwi P Zě0, a nonnegative, integer profit pi P Zě0, and an additional explosion probability
qi P Q X r0, 1q. Each item i that is packed into the knapsack explodes with probability qi,
which then destroys the entire content of the knapsack and, thus, reduces the obtained profit
to zero. Here, the random (indicator) variable determined by whether an item explodes or not
is assumed to be independent of the corresponding variables of all other items. The task in
TBKP consists of maximizing the expected profit obtained from the packed items and can be
formulated as follows (see [MPS22]):

max
˜

n
ÿ

i“1

pixi

¸

¨

˜

n
ź

i“1

p1 ´ qixiq

¸

(6.7)

s.t.
n
ÿ

i“1

wixi ď C (6.8)

xi P t0, 1u @i P t1, . . . , nu (6.9)

134

6.5. Applications

Obviously, every feasible solution is associated with a certain total profit and a combined
explosion probability. The product of these two values constitutes the expected profit of the
solution. Therefore, we can also look at the problem in a bi-objective setting, where the first ob-
jective function f1 is related to the profit and the second objective function f2 to the explosion
probability.
To define the resulting bi-objective nonlinear product-sum knapsack problem formally using

the notation introduced in Section 6.2.2, we set p :“ 2 and p1 :“ 1, f1
i p0q :“ 0 and f1

i p1q :“ pi,
f2
i p0q :“ 1 and f2

i p1q :“ πi :“ 1 ´ qi, gip0q :“ 0 and gip1q :“ wi as well as ui :“ 1 for every
i P N (here, πi corresponds to the probability that item i does not explode). Afterwards,
in order to satisfy our assumption of integer-valued profit functions, even though the val-
ues f2

i p1q “ πi, i P N , are fractional, we then multiply all values f2
i pxiq for xi P t0, 1u and

i P N by their lowest common denominator d P Ną0. This yields an equivalent instance
since the second objective value of any solution is multiplied by the same positive factor dn
of polynomial encoding length (recall the discussion in Section 6.2.1). The set of feasible so-
lutions of TBKP is then identical to the set of feasible solutions of the resulting time-bomb
bi-objective nonlinear product-sum knapsack problem (TB-BNPSKP), and a solution’s objective
function value in TBKP is obtained as 1{dn times the product of its two objective function
values in TB-BNPSKP.
In order to obtain an FPTAS for TBKP, we proceed as follows: Given an instance of TBKP and

ε ą 0, we apply Algorithm 12 with an error bound of ε1 :“
?
1 ` ε ´ 1 to the corresponding

instance of TB-BNPSKP. If we let x˚ denote an optimal solution of the TBKP instance, then the
p1`ε1q-approximate Pareto set obtained fromAlgorithm 12must contain a feasible solution xA
that p1 ` ε1q-approximates x˚, i.e., such that p1 ` ε1q

řn
i“1 f

1
i pxAi q ě

řn
i“1 f

1
i px˚

i q and p1 `

ε1q
śn

i“1 f
2
i pxAi q ě

śn
i“1 f

2
i px˚

i q. Consequently, since p1 ` ε1q2 “ 1 ` ε, the objective value
of xA in the TBKP instance satisfies:

p1 ` εq ¨

˜

n
ÿ

i“1

pix
A
i

¸

¨

˜

n
ź

i“1

`

1 ´ qix
A
i

˘

¸

“ p1 ` ε1q ¨

˜

n
ÿ

i“1

f1
i pxAi q

¸

¨ p1 ` ε1q ¨
1

dn
¨

˜

n
ź

i“1

f2
i pxAi q

¸

ě

˜

n
ÿ

i“1

f1
i px˚

i q

¸

¨
1

dn
¨

˜

n
ź

i“1

f2
i px˚

i q

¸

“

˜

n
ÿ

i“1

pix
˚
i

¸

¨

˜

n
ź

i“1

p1 ´ qix
˚
i q

¸

Thus, the optimal solution x˚ is p1 ` εq-approximated by xA in the original TBKP instance.
Consequently, selecting the solution with the highest objective value in (6.7) from the p1` ε1q-
approximate Pareto set obtained from Algorithm 12 yields a p1 ` εq-approximate solution for
the TBKP instance. Since the running time of this procedure is dominated by the (polynomial)
running time of Algorithm 12 applied to the TB-BNPSKP instance and we have 1{ε1 P O p1{εq,
using Theorem 6.5, this shows:

135

6. Approximating Nonlinear Sum and Product Knapsack Problems

Theorem 6.6 There exists an FPTAS for the 0-1 time-bomb knapsack problem (TBKP) with
running time in O

´

n4 ¨
`

1
ε

˘2
¨ log pdq ¨ plog ppmaxq ` logpnqq

¯

.

6.5.2 Minimization Knapsack Problems

In this section we consider the minimization counterparts of NAKP and NPKP with the clas-
sical minimization knapsack problem as a relevant special case. The problems minNAKP and
minNPKP can be derived from their maximization counterparts, by replacing “max” by “min”
in (6.1) and replacing (6.2) by

n
ÿ

i“1

gipxiq ě C, (6.10)

whereas (6.3) and (6.4) remain unchanged.
In the literature, a special case of minNAKP is considered in [KN09], where the profit func-

tions fi consist of linear, not necessarily connected pieces, but all weights are unitary, i.e.,
gipxiq “ xi for all i P N . They further present an LP-based heuristic for this special case
of minNAKP. The same restriction to unitary weights is considered in [LSH94], where an FP-
TAS is derived for arbitrary nondecreasing profit functions. A special minimization knapsack
problem with a linear objective and an Euclidean norm in the weight constraint arising from
electrical power systems is considered in [EKN19]. They provide a PTAS, while our approach
provides an FPTAS (after taking the square of the Euclidean norm in the constraint).
In the following, we briefly describe how tomodify Algorithm 11 in order to derive an FPTAS

for minNAKP and minNPKP.
Following the exposition of Section 6.3, we use the same set LBb,ε of interval boundaries,

but extend it by the value p1 ` εq
ub{n. In the algorithm, we round objective values a ě 0 up

(instead of down) to the nearest value in LBb,ε (which we denote by rasε). When comparing
two weight values for a dynamic programming entry, we take the maximum between the two
(instead of the minimum). In the initialization, infeasible entries are set to W rvs :“ ´8 or
W 1rvs :“ ´8 for all v P LBb,ε. The value returned at termination of the algorithm is given
by the minimum value v P LBb,ε such thatW rvs ě C .
It should be noted that, in the approximation of minimization problems, instances with op-

timal objective value 0 deserve special attention since every approximation algorithm has to
return a solution with objective value exactly 0 for each such instance. Our dynamic program
has no issue with this aspect since every detected objective value f1px1q “ 0 or vbfipxiq “ 0
will remain 0 by definition of the rounding procedure. Thus, no error will accrue in these cases.

A full description of the resulting algorithm (Algorithm 13) as well as the proof of the approx-
imation ratio, both of which are similar to the results presented in Section 6.3, are presented in
Appendix A.2. We summarize this discussion in the following analogue of Theorem 6.3.

Theorem 6.7 For minNAKP and minNPKP, there exists an FPTAS with running time in
O pN ¨ n ¨ 1{ε ¨ plogpnq ` logpfmaxqqq and O

`

N ¨ n2 ¨ 1{ε ¨ logpfmaxq
˘

, respectively, where
fmax :“ max

iPN
max

0ďxiďui

fipxiq.

136

6.5. Applications

The minimization version of the standard 0-1 knapsack problem (KP) is well known as the
minimization knapsack problem (minKP) and is defined as follows:

min
n
ÿ

i“1

pixi (6.11)

s.t.
n
ÿ

i“1

wixi ě C (6.12)

xi P t0, 1u @i P t1, . . . , nu (6.13)

Here, pi andwi are the integer profit and weight of an item i P N , respectively. Clearly, minKP
is a special case of minNAKP.
Heuristics and approximation algorithms for minKP are presented in [Csi+91; GL79; GJ00].

Surprisingly, an explicit description of an FTPAS forminKP seems to bemissing in the literature
so far. In the monograph [KPP04, ch.13.3.3], only a vague hint at an FPTAS is given. The
existence of an FPTAS for minKP follows from the general framework given in [Woe00]. It
can also be deduced from [Kov96] by plugging in an approximation algorithm for minKP with
constant approximation ratio as given in [Csi+91]. Note that [GL79] also contains pointers to
approximation algorithms forminKP in the early Russian literature. In order to fill the gap of an
explicit reference to an FPTAS for minKP, we state the following consequence of Theorem 6.7.

Corollary 6.8 Algorithm 13 gives an FPTAS for minKP with running time in

O
ˆ

n2 ¨
1

ε
¨ plogpnq ` logppmaxqq

˙

.

The FPTAS is obtained from Algorithm 13 in Appendix A.2 with b :“ ` by setting ui :“ 1,
fip0q :“ 0, fip1q :“ pi, gip0q :“ 0, and gip1q :“ wi for all i P N .

6.5.3 Extension of the Minimization Version to Multiple Objectives

Analogous to Section 6.2.2, we can define the multi-objective extensions of minNAKP and
minNPKP. The multi-objective nonlinear product-sum minimization knapsack problem (min-
MNPSKP) is similar to MNPSKP, but the entries of the vector (6.5) of objective values are to be
minimized.
Similarly to Section 6.4, we can generalize the FPTAS provided in Algorithm 13 to the multi-

objective case by extending the dynamic programming array from one to p dimensions for vec-
tors pv1, . . . , vpq P LBb,ε. At termination of the corresponding algorithm, an entry
W rv1, . . . , vps “ w for some w P Q represents a (not necessarily feasible) solution with
weight w and j-th objective value at most vj for j “ 1, . . . , p. The resulting algorithm can
be derived from Algorithm 12 in a similar way as Algorithm 13 has been derived from Al-
gorithm 11. Without going into further details, we state the following complement of Theo-
rem 6.5.

137

6. Approximating Nonlinear Sum and Product Knapsack Problems

Corollary 6.9 There exists anMFPTAS for minMNPSKPwith the same running time as stated
in Theorem 6.5.

Looking at the FPTASs for the single-objective maximization and minimization problems
and their extensions to the multi-objective case, one can notice that, without further difficul-
ties, one can also combine maximization and minimization objectives in a multi-objective set-
ting. Clearly, this requires some effort for formally defining dominance and efficient solutions
for such a combination of different directions of optimization, but the approximation ratios
obtained for each objective can be combined similarly to the cases with uniform directions.
The knapsack constraint then makes sense for either direction of the inequality.

6.5.4 Max-Min Versions of the Nonlinear Knapsack Problem

In practical applications, the profit functions in a knapsack problem are usually not known ex-
actly, but can only be estimated. Consequently, it is a natural questionwhether robust solutions
can be found that still perform well when profits are uncertain.

In the max-min version of a nonlinear knapsack problem, we are given a set S of scenar-
ios. For each scenario S P S , the profit of item i P N under scenario S is given by a func-
tion fS

i : t0, 1, . . . , uiu Ñ Qě0, which has the properties stated for the profit functions in
Assumption 6.1. The aim of the problem is to find a solution that maximizes the minimum of
the profits over all the scenarios, i.e., a solution that performs best-possible in the worst-case
scenario.
In the well-known max-min nonlinear additive knapsack problem (max-min-NAKP) and in

the max-min nonlinear product knapsack problem (max-min-NPKP), the objective is given by

max
xPZn

min
SPS

n
ÿ

i“1

fS
i pxiq or

n
ź

i“1

fS
i pxiq,

while the constraints are given by (6.2)–(6.4) as in NAKP and NPKP.
It is shown in [ABV09] that any MFPTAS for the multi-objective knapsack problem gives

rise to an FPTAS for the max-min-NAKP since there always exists a max-min optimal solution
that is efficient. It is straightforward to see that, if the number of scenarios is constant (which
is also assumed in [ABV09]), the same reasoning applies also for the usage of an MFPTAS for
MNPSKP. Using Algorithm 12 presented in Section 6.4, this yields an FPTAS for the max-min-
NAKP and the max-min-NPKP and, thus, extends the previously-mentioned result to objective
functions that employ a product instead of a sum objective function.
It is worth noting that – since our FPTAS for MNPSKP can handle arbitrary combinations

of sum and product objective functions – the same procedure can also solve a mixed version
of the max-min knapsack problem where the operator (sum or product) used in the objective
function also depends on the scenario. Further, the procedure can be slightly adapted such that
it provides an FPTAS for the max-max version of NPKP or NAKP, in which the aim is to find
the solution that performs best in the best-case scenario. Moreover, by the same arguments, the
minimization procedure presented in Section 6.5.3 yields an FPTAS for the min-max version
and for the min-min version of NPKP and NAKP. Themin-max version of NAKP is of particular

138

6.6. Conclusion

interest since it is a robust version of the well-known minKP, which has been attended in
Section 6.5.2.

6.6 Conclusion

In this chapter, a very general version of the knapsack problemwith separable, nonlinear profit
and weight functions as well as sums and/or products as operators in the objective function is
presented. Further, the problem is addressed in its maximization and minimization version in
both the single-objective and the multi-objective setting. We present an FPTAS and an MFP-
TAS for the single-objective and the multi-objective case, respectively. These algorithms are
applicable to a wide variety of knapsack problems with separable profit and weight functions
studied in the literature. We note that separability of profit contributions can be seen as a
natural limit of approximation algorithms since the quadratic knapsack problem (QKP), whose
objective function is not separable since the pairwise inclusion of two items i and j contributes
a profit pij , does not permit an FPTAS unless P “ NP , and no constant-factor approximation
algorithm is known for QKP so far [PS16; Tay16].

Our general results are applicable to a wide variety of specific problems from the literature.
For instance, we obtain the first FPTAS for the recently-introduced 0-1 time-bomb knapsack
problem. Moreover, our MFPTAS gives rise to FPTASs for a class of knapsack problems occur-
ring in robust optimization, where uncertainty is modelled by a set of scenarios representing
possible realizations of input data. Here, the aim in the max-min problem, for example, con-
sists of maximizing the profit guaranteed in every scenario, i.e., even in the worst possible
scenario. We present an FPTAS for all four possible combinations, i.e., for the max-min, max-
max, min-max, and min-min version of the problem. Further applications may well arise due
to the general nature of our setting.

139

7 Conclusion

In this thesis, we investigate the problem of choosing best-possible combinations of precau-
tionary measures for pluvial flash floods as well as related interdiction problems on graphs
and variations of the knapsack problem. The former problem is studied from a more practi-
cal viewpoint, presenting a mixed-integer programming formulation of the problem, a variety
of additional methods to reduce the running time making the overall algorithm applicable to
practical problems, and the emerging software, which has meanwhile been used by over 30
institutions. The latter problems are examined rather from a theoretical point of view, assess-
ing their complexity and presenting polynomial-time algorithms, approximation algorithms,
FPTASs, or MFPTASs.

Thus, after basic concepts about complexity theory, graphs and networks, multicriteria op-
timization, and approximation algorithms have been introduced in Chapter 2, we present the
results of the project AKUT – an acronym for the German translation of “Incentive Systems
for Municipal Flood Prevention” – in Chapter 3, where the aim is to compute a combination of
precautionary measures that effectively protects the buildings while adhering to a budget con-
straint and taking the cooperation of local residents into account. The presentation is started
with a formal definition of the problem and a description of the input data, which is chosen
such that it is available to German municipalities. It is then continued by presenting a combi-
natorial algorithm computing the water levels that are to be expected if a given combination of
precautionary measures is taken. Next, a mixed-integer programming formulation and several
presolve techniques are presented. Moreover, it is shown that the mixed-integer programming
formulation is indeed a valid formulation of the presented problem and the chapter is con-
cluded with computational results that point out the most important drivers for the quality of
the obtained solution and the running time.
In Chapter 4, the network flow interdiction problem, where arcs are to be removed from a

network subject to a budget constraint such that the value of a maximum s-t-flow is minimized,
is studied. This problem is in a natural way connected to the task of protecting certain nodes in
a graph from inflow and, hence, closely related to the problem statement in the project AKUT.
We present a pB`1q-approximation algorithm for the special case of the network flow interdic-
tion problem, where arcs have unit removal cost and whereB is the budget, i.e., the maximum
number of arcs that can be removed from the network. To the best of our knowledge, this is
the first approximation algorithm for any version of the problem whose approximation ratio

141

7. Conclusion

does not depend on the size of the network. Further, it is worth noting that, on simple graphs,
this approximation ratio dominates the previously best known approximation ratio of pn´ 1q,
where n is the number of nodes in the network.
Our work is continued by investigating the temporal shortest path interdiction problem in

Chapter 5. Temporal graphs, in which arcs are only available at certain points in time, have
lately attracted the interest of the research community since incorporating the time in graph
problems is in many cases crucial to obtain realistic models for real-world problems such as
the spread of the virus during the COVID-19 pandemic. However, interdiction problems have
barely been investigated on temporal graphs so far. We start by presenting four different
notions of the term “shortest” in the temporal case and investigate the complexities of the
four arising interdiction problems. Interestingly, although the shortest path interdiction prob-
lem on static graphs is known to be NP-hard, two of the four versions on temporal graphs
are polynomial-time solvable while the other two are NP-hard. However, we show that, on
extension-parallel temporal graphs, the latter two versions are also polynomial-time solvable.
We conclude the chapter by presenting three extensions of the problem and show how the
complexities change under these extensions.
Lastly, we investigate thewell-studied non-linear knapsack problem inChapter 6 and present

FPTASs and MFPTASs for highly generalized single- and multi-objective versions of the prob-
lem, which cover, with few exceptions, all versions of the (non-linear) knapsack problem stud-
ied in the literature so far. To this end, we start with a formal definition of the single- and
multi-objective versions and an analysis of our assumptions and their effect on the problem’s
generality. We continue by presenting the FPTAS and the MFPTAS and their proof of correct-
ness and slightly modify the algorithm such that it also works for the minimization knapsack
problem. While vague hints on the existence of an FPTAS or MFPTAS for the minimization
knapsack problem have been given in the literature, this is, to the best of our knowledge, the
first formal proof and closes an important gap in the literature. We use the obtained MFPTAS
to obtain an FPTAS for the recently-introduced 0-1 time-bomb knapsack problem and for some
max-min or min-max versions motivated by the field of robust optimization.

Although all chapters are concluded individually, we conclude the work from a more holis-
tic point of view. While adaption to the consequences of climate change is undeniably one of
the most central problems of mankind in the 21st century, digital decision support in planning
processes of precautionary concepts still often lacks the implementation of combinatorial op-
timization algorithms and relies on simulation algorithms where only the consequences of one
specific scenario can be assessed. We implement a combinatorial optimization algorithmwith a
corresponding web-application to address the problem of finding good precautionarymeasures
for pluvial flash floods in municipalities and address related problems from a theoretical point
of view. The appreciation that is shown from both practical partners and the research com-
munity motivates to further address climate-resilience-related problems such as, for example,
urban heat development or water management in scenarios of water shortage with methods
from combinatorial optimization and other fields of computer science and mathematics. Uti-
lizing nowadays available high-end technology and extending the required theory might be an
important piece of the puzzle of adapting to the consequences of climate change – and we are
gratified to have contributed to fitting this piece into its correct place.

142

A Appendix

Appendix A.1 : Constraints of the Mixed-Integer Programming
Formulation

Weprovide themathematical formulation of the constraints of theMIP presented in Section 3.3.

Water levels at nodes:
Computing excesspvq for each node v P V :

excesspvq “
ÿ

rPδ`
Gex pvq

fprq ´
ÿ

rPδ´
Gex pvq

fprq ` rain ¨ areapvq @v P V (1)

Computing the water level wlpvq at each node v P V :

wlpvq “
excesspvq

areapvq
@v P V (2)

Geodesic heights of nodes:
Setting the variable downpvq for each node v P V :

downpvq ě decBasinpbq @v P V, b P Bpvq (3)
downpvq ě decDitchpdq @v P V, d P Dpvq (4)

downpvq ď
ÿ

bPBpvq

decBasinpbq `
ÿ

dPDpvq

decDitchpdq @v P V (5)

Setting the variables hdbpbq, hddpdq, and hdepeq for b P B, d P D, e P E :

hdbpbq “ depthpbq ¨ decBasinpbq @b P B (6)
hddpdq “ depthpdq ¨ decDitchpdq @d P D (7)
hdepeq “ heightpeq ¨ decEmbpeq @e P E (8)

1

A. Appendix

Computing the maximum height of an embankment for each node v P V :

max_decpvq “ maxpthdbpbq|b P Bpvqu Y thddpdq|d P Dpvqu Y t0uq @v P V (9)
max_incpvq “ maxpthdepeq|e P Epvqu Y t0uq @v P V (10)

Setting the geodesic height variable ghpvq for each node v P V :

ghpvq ě GHpvq ´ max_decpvq @v P V (11)
ghpvq ď GHpvq ` max_incpvq @v P V (12)

ghpvq ď GHpvq ´ max_decpvq ` p1 ´ downpvqq ¨ Mpvq @v P V (13)
ghpvq ě GHpvq ` max_incpvq ´ downpvq ¨ Mpvq @v P V (14)

Arc directions:
Setting the variable odprq for each arc r P R:

odprq “ 1 ñ ghpαprqq ě ghpωprqq @r P R (15)
odprq “ 0 ñ ghpαprqq ă ghpωprqq @r P R (16)

Full arcs:
Setting the auxiliary variables auxO1F1prq, auxO1F0prq, auxO0F1prq, and auxO0F0prq for each
arc r P R:

auxO1F1prq ě ´1 ` odprq ` fullprq @r P R (17.1)
auxO1F1prq ď fullprq @r P R (17.2)
auxO1F1prq ď odprq @r P R (17.3)

auxO1F0prq ě odprq ´ fullprq @r P R (18.1)
auxO1F0prq ď 1 ´ fullprq @r P R (18.2)

auxO1F0prq ď odprq @r P R (18.3)

auxO0F1prq ě ´odprq ` fullprq @r P R (19.1)
auxO0F1prq ď fullprq @r P R (19.2)

auxO0F1prq ď 1 ´ odprq @r P R (19.3)

auxO0F0prq ě 1 ´ odprq ´ fullprq @r P R (20.1)
auxO0F0prq ď 1 ´ fullprq @r P R (20.2)
auxO0F0prq ď 1 ´ odprq @r P R (20.3)

2

Connecting the variables fullprq to the water levels using the auxiliary variables:

auxO1F1prq “ 1 ñ wlpωprqq ě ghpαprqq ´ ghpωprqq @r P R (21)
auxO1F0prq “ 1 ñ wlpωprqq ă ghpαprqq ´ ghpωprqq @r P R (22)
auxO0F1prq “ 1 ñ wlpαprqq ě ghpωprqq ´ ghpαprqq @r P R (23)
auxO0F0prq “ 1 ñ wlpαprqq ă ghpωprqq ´ ghpαprqq @r P R (24)

Flooded nodes:
Setting the variable floodedpvq for each node v P V :

floodedpvq “ 0 ñ wlpvq “ 0 @v P V (25)
floodedpvq “ 1 ñ wlpvq ą 0 @v P V (26)

Active arcs:
Setting the variable activeprq for each arc r P Rex:

activeprq ` active
`Ð
r
˘

“ 1 @r P R (27)
activeprq “ 0 ñ fprq “ 0 @r P Rex (28)

Flow on arcs that are not full
Setting the auxiliary variables aux_fdprq and aux_fd

`Ð
r
˘

for each arc r P R:

aux_fdprq ě activeprq ´ fullprq @r P R (29.1)
aux_fdprq ď activeprq @r P R (29.2)

aux_fdprq ď 1 ´ fullprq @r P R (29.3)

aux_fd
`Ð
r
˘

ě active
`Ð
r
˘

´ fullprq @r P R (30.1)

aux_fd
`Ð
r
˘

ď active
`Ð
r
˘

@r P R (30.2)

aux_fd
`Ð
r
˘

ď 1 ´ fullprq @r P R (30.3)

Distributing the outflow of each node v P V among its outgoing arcs in the extended graph
that are active and not full:

aux_fdpr2q “ 1 ñ fpr1q ď
ratiopr1q

ratiopr2q
¨ fpr2q @v P V, r1, r2 P δ`

Gexpvq (31.1)

aux_fdpr1q “ 1 ñ fpr2q ď
ratiopr2q

ratiopr1q
¨ fpr1q @v P V, r1, r2 P δ`

Gexpvq (31.2)

For each arc r P R that is not full, the water level at the higher of the nodes αprq and ωprq

3

A. Appendix

must be zero:

auxO1F0prq “ 1 ñ wlpαprqq “ 0 @r P R (32)
auxO0F0prq “ 1 ñ wlpωprqq “ 0 @r P R (33)

Water cannot flow on non-full uphill arcs:

auxO1F0prq “ 1 ñ active
`Ð
r
˘

“ 0 @r P R (34)
auxO0F0prq “ 1 ñ activeprq “ 0 @r P R (35)

Flow on full arcs:
Setting the flow on each full arc r P R indirectly by connecting the water levels at its start
node and its end node:

fullprq “ 1 ñ ghpαprqq ` wlpαprqq “ ghpωprqq ` wlpωprqq @r P R (36)

Maximum water levels at buildings:
Bounding the maximum water level variable max_wlpβq from below for each building β P B:

max_wlpβq ě wlpvq @β P B, v P V pβq (37)

Hazard classes of buildings:
Setting a hazard class for each building β P B via its maximum water level:

4
ÿ

k“0

hcpk, βq “ 1 @β P B (38)

hcpk, βq “ 1 ñ max_wlpβq ď thresholdWLpkq @β P B, k P t0, 1, 2, 3u (39)

Budget constraint:
ÿ

bPB
costpbq ¨ decBasinpbq `

ÿ

dPD
costpdq ¨ decDitchpdq `

ÿ

ePE
costpeq ¨ decEmbpeq ď budget

(40)

Incentives for actors:
Enforcing the given upper bounds on the incentives required for cooperation of actors and
ensuring that no actions are taken on properties of actors that do not cooperate at all:

ÿ

pPPyellow

actionppq `
ÿ

pPPred

actionppq ď maxAllowedYellow ` maxAllowedRed (41)

ÿ

pPPred

actionppq ď maxAllowedRed (42)

actionppq “ 0 @p P Pblack (43)

4

decBasinpbq ď actionppq @b P B, p P P : b is located on p (44.1)
decDitchpdq ď actionppq @d P D, p P P : d is located on p (44.2)
decEmbpeq ď actionppq @e P E , p P P : e is located on p (44.3)

Valid inequalities:
The first arc in a pair of consecutive original-direction (i.e., downhill) arcs can only be full if
the second arc is full as well:

fullpr2q ě fullpr1q ´ p2 ´ odpr1q ´ odpr2qq @r1, r2 P R : ωpr1q “ αpr2q (45)

If node v P V is flooded, then each arc r P δ`
Gexpvq with ghpvq ą ghpωprqq must be full:

floodedpvq “ 1 ñ fullprq ě odprq @v P V, r P δ`
Gpvq (46.1)

floodedpvq “ 1 ñ fullprq ě 1 ´ odprq @v P V, r P δ´
Gpvq (46.2)

If node v P V is not flooded, then no arc r P δ´
Gexpvq with ghpvq ă ghpαprqq can be full:

floodedpvq “ 0 ñ fullprq ď 1 ´ odprq @v P V, r P δ´
Gpvq (47.1)

floodedpvq “ 0 ñ fullprq ď odprq @v P V, r P δ`
Gpvq (47.2)

5

Appendix A.2 : An FPTAS for minNAKP and minNPKP

This section contains a full description of our FPTAS for minNAKP and minNPKP (Algo-
rithm 13) together with the proof of its approximation ratio. The algorithm and the proof
are similar to Algorithm 11 and the proof of Proposition 6.2, respectively.

Algorithm 13: FPTAS for Minimization Nonlinear Knapsack
1 Procedure FPTASmin()
2 W rvs :“ ´8 for all v P LBb,ε

3 # Process item 1
4 for x1 “ 0, . . . , u1 do
5 v :“ rf1px1qsε
6 W rvs :“ max tW rvs, g1px1qu

7 # Process item i
8 for i “ 2, . . . , n do
9 W 1rvs :“ ´8 for all v P LBb,ε

10 for xi “ 0, . . . , ui do
11 for v P LBb,ε do
12 v1 :“ rv b fipxiqsε
13 W 1rv1s :“ max tW 1rv1s,W rvs ` gipxiqu

14 for v P LBb,ε do
15 W rvs :“ W 1rvs

16 return minimum value v P LBb,ε such thatW rvs ě C

To prove the approximation ratio of Algorithm 13, we state the following proposition.

Proposition A.1 The following holds at termination of Algorithm 13: For every solution x P

Zn with objective value v̄ and weight w̄, there exists v P LBb,ε with W rvs ě w̄ and v ď

p1 ` εq ¨ v̄.

Proof. The proof is along the same lines as the proof of Proposition 6.2 with slight modifica-
tions. Here, we only state the invariant and prove its correctness, which alsoworks analogously
to the proof of Proposition 6.2. To this end, we prove by induction that, after item i has been
processed during the algorithm, the following invariant holds:

For each partial solution x̄ P Zi for items 1, . . . , iwith objective value v̄ andweight w̄,
there exists v P LBb,ε such that

p1q W rvs ě w̄ and p2q v ď p1 ` εq
i{n ¨ v̄.

For i “ 1, we have x̄ “ x̄1 P Z1 for any partial solution x̄. Thus, its objective value and weight
are given as v̄ “ f1px̄1q and w̄ “ g1px̄1q, respectively. Hence, when lines 5 and 6 are executed
within the algorithm in the iteration for x1 “ x̄1 of the for loop starting in line 4, we obtain
v “ rf1px̄1qsε “ rv̄sε ď p1`εq

1{n ¨ v̄ andW rvs ě g1px̄1q “ w̄, which proves that the invariant
holds for i “ 1.

7

A. Appendix

Now consider the situation after item i ě 2 has been processed during the algorithm and
assume that the invariant holds for i ´ 1. Let x̄ “ px̄1, . . . , x̄i´1, x̄iq be a partial solution
for items 1, . . . , i with objective value v̄ and weight w̄. From this partial solution, we derive
the partial solution x̄´ “ px̄1, . . . , x̄i´1q for items 1, . . . , i ´ 1 with objective value v̄´ and
weight w̄´. By definition of x̄´, we then have v̄ “ v̄´ b fipx̄iq and w̄ “ w̄´ ` gipx̄iq.
Moreover, since the invariant holds for i´1, we know that after item i´1 has been processed,
there exists v´ P LBb,ε such that

p1q W rv´s ě w̄´ and p2q v´ ď p1 ` εq
pi´1q{n ¨ v̄´.

Hence, when lines 12 and 13 are executed during the processing of item i for xi “ x̄i and
v “ v´, we obtain

v1 “
P

v´ b fipx̄iq
T

ε
ď

Q

p1 ` εq
pi´1q{n ¨ v̄´ b fipx̄iq

U

ε

ď p1 ` εq
i{n ¨

`

v̄´ b fipx̄iq
˘

“ p1 ` εq
i{n ¨ v̄

and

W 1rv1s ě W rv´s ` gipx̄iq ě w̄´ ` gipx̄iq “ w̄.

Thus, the after the copying step in lines 14–15 has been executed, the invariant holds for i.

It is easy see that Theorem 6.7 follows from Proposition A.1. Note that the structure of Algo-
rithm 13 is identical to that of Algorithm 11 and, therefore, the same bound on the running
time applies.

8

B List of Figures

3.1. An example of the original graph Gor “ pVor, Rorq on the left, and an example
of the extended original graph Gex

or “ pVor, R
ex
orq on the right. The number in

each node corresponds to its geodesic height, also indicated by the node’s color
The nodes are indexed in non-decreasing order of geodesic height, where ties
are broken arbitrarily as, e.g., for v4 and v5. The arcs in the original graph are
directed such that they start at the node with the higher index. 20

3.2. The instance consists of two nodes u and v, where v is the higher of the two
nodes. This means that water flows from v to u, which is illustrated on the left-
hand side. If a basin with depth strictly larger than the absolute difference of
the nodes’ geodesic heights is built on v, the resulting geodesic height of v after
building the basin is less than the geodesic height of u. Therefore, the water
flows in the opposite direction after building the basin, which is illustrated on
the right-hand side. 21

3.3. An illustration of the flows and joining two nodes during Algorithm 3. 25
3.4. A screenshot from our web application on the left-hand side, where the dy-

namic grid size is visualized and the nodes intersecting with a building are
colored yellow. The corresponding part of the graph Gdg “ pVdg, Rdgq is visu-
alized on the right-hand side. 29

3.5. An illustration of the two solutions in Example 3.1 44
3.6. An illustration of the excesses in the solution x on the left hand side and y on

the right hand side. 59
3.7. Extract from a comparison of water levels obtained from HYSTEM-EXTRAN

and AKUT for a 30-year rain event in a hilly region. The darker the blue color,
the higher the water level, where the highest obtained levels are illustrated in
purple in the case of HYSTEM-EXTRAN. 77

4.1. The network G of the instance described in Example 4.6 on the left hand side
and the network GDC

on the right hand side. The cut C is optimal, while it is
not minimum in GDC

. 85
4.2. Network of the instance described in Example 4.30. 98

9

B. List of Figures

4.3. Network of the instance described in Example 4.33 where the capacities and
the removal costs are the first and second argument in the brackets, respectively. 100

5.1. The constructed graph forX “ tx1, x2, x3u and C “ tx1 _ x2, x1 _ x3u. The
three variable gadgets for x1, x2, and x3 from left to right are shown on the left
and the clause gadgets for c1 and c2 from left to right are shown on the right.
Only the dashed arcs can be interdicted. 110

5.2. The gadgets in G for two nodes i and j that are adjacent in G1 (where i ă j).
Only the dashed arcs can be interdicted. 118

10

C List of Tables

3.1. Comparison of our work to existing literature. A tick in the column “optimiza-
tion” indicates that optimization algorithms are used and a tick in the column
“pluvial” represents that the paper considers a pluvial flood scenario (as op-
posed to a fluvial or coastal flood scenario). A tick in the column “scalable”
indicates that the developed method scales well enough to be applied to realis-
tic scenarios. Finally, a tick in the column “incentivation” means that incentives
or cooperation of residents is considered. 16

3.2. Reduction in the total number of nodes achieved for three representative re-
gions, where the factor provided in the third column is obtained as |Vor|{|Vred|.
. 33

3.3. Computational results for nine representative instances. The column “HM”
(Hilliness Meassure) contains the median of the values obtained by dividing
the slope of each arc by the Euclidean distance of the centers of its incident
nodes, which is a measure of how hilly the terrain is. The column “FSF” con-
tains the time until the final solution is found. The column “IOV” contains the
objective value of the initial solution of the MIP provided by applying Algo-
rithm 3. The column “BOV” contains the objective value of the best solution
returned by the MIP. Note that the different values of |Vred| among instances
with the same region result from different merging of nodes during preprocess-
ing due to different rain events. 78

11

Bibliography

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Prentice Hall, 1993.
doi: 10.1137/1037020.

[ABV09] H. Aissi, C. Bazgan, and D. Vanderpooten. “Min–max and min–max regret ver-
sions of combinatorial optimization problems: A survey”. In: European Journal of
Operational Research 197.2 (2009), 427–438. doi: 10.1016/j.ejor.2008.09.012.

[ATW11] I. Akgün, B. C. Tansel, and R. K. Wood. “The Multi-Terminal Maximum-Flow
Network-Interdiction Problem”. In: European Journal of Operational Research 211.1
(2011), 241–251. doi: 10.1016/j.ejor.2010.12.011.

[Akr+20] E. C. Akrida et al. “Temporal vertex cover with a sliding time window”. In: Journal
of Computer and System Sciences 107 (2020), 108–123. doi: 10.1016/j.jcss.2019.
08.002.

[Aus+12] G. Ausiello et al. Complexity and approximation: Combinatorial optimization prob-
lems and their approximability properties. Springer Science & Business Media,
2012. doi: 10.1007/978-3-642-58412-1.

[BGV89] M. O. Ball, B. L. Golden, and R. V. Vohra. “Finding themost vital arcs in a network”.
In: Operations Research Letters 8.2 (1989), 73–76. doi: 10.1016/0167-6377(89)
90003-5.

[BKS95] A. Bar-Noy, S. Khuller, and B. Schieber. The complexity of finding most vital arcs
and nodes. Tech. rep. CS-TR-3539. University of Maryland, 1995.

[BRP21] B. M. Behring, A. Rizzo, andM. Porfiri. “How adherence to public health measures
shapes epidemic spreading: A temporal network model”. In: Chaos: An Interdisci-
plinary Journal of Nonlinear Science 31.4 (2021), 043115. doi: 10.1063/5.0041993.

[Ben+20] M. Bentert et al. “Efficient computation of optimal temporal walks under waiting-
time constraints”. In: Applied Network Science 5.1 (2020), 73. doi: 10.1007/s4110
9-020-00311-0.

[Ben11] C. Bentz. “On the hardness of finding near-optimal multicuts in directed acyclic
graphs”. In: Theoretical Computer Science 412.39 (2011), 5325–5332. doi: 10.1016/
j.tcs.2011.06.003.

[Ber96] K. A. Berman. “Vulnerability of scheduled networks and a generalization of Men-
ger’s Theorem”. In: Networks 28.3 (1996), 125–134. doi: 10.1002/(SICI)1097-
0037(199610)28:3<125::AID-NET1>3.0.CO;2-P.

13

https://doi.org/10.1137/1037020
https://doi.org/10.1016/j.ejor.2008.09.012
https://doi.org/10.1016/j.ejor.2010.12.011
https://doi.org/10.1016/j.jcss.2019.08.002
https://doi.org/10.1016/j.jcss.2019.08.002
https://doi.org/10.1007/978-3-642-58412-1
https://doi.org/10.1016/0167-6377(89)90003-5
https://doi.org/10.1016/0167-6377(89)90003-5
https://doi.org/10.1063/5.0041993
https://doi.org/10.1007/s41109-020-00311-0
https://doi.org/10.1007/s41109-020-00311-0
https://doi.org/10.1016/j.tcs.2011.06.003
https://doi.org/10.1016/j.tcs.2011.06.003
https://doi.org/10.1002/(SICI)1097-0037(199610)28:3<125::AID-NET1>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1097-0037(199610)28:3<125::AID-NET1>3.0.CO;2-P

C. Bibliography

[Ble+18] S. Blenkinsop et al. “The INTENSE project: using observations and models to un-
derstand the past, present and future of sub-daily rainfall extremes”. In: Advances
in Science and Research 15 (2018), 117–126. doi: 10.5194/asr-15-117-2018.

[Blu+98] L. Blum et al. Complexity and Real Computation. Springer, 1998. doi: 10.1007/
978-1-4612-0701-6.

[BT20] J. Boeckmann and C. Thielen. “An Approximation Algorithm for Network Flow
Interdiction with Unit Costs and Two Capacities”. In: Proceedings of the 18th Colo-
gne-Twente Workshop on Graphs and Combinatorial Optimization (CTW). 2020,
157–169. doi: 10.1007/978-3-030-63072-0_13.

[BT21] J. Boeckmann and C. Thielen. “A (B+1)-approximation for network flow interdic-
tion with unit costs”. In: Discrete Applied Mathematics (2021), 1–13. doi: 10.1016/
j.dam.2021.07.008.

[BT23] J. Boeckmann and C. Thielen. New ways in municipal flood mitigation: A mixed-
integer programming approach and its practical application. Under revision at Op-
erations Research Forum. 2023.

[BTP23] J. Boeckmann, C. Thielen, andU. Pferschy. “Approximating single-andmulti-objec-
tive nonlinear sum and product knapsack problems”. In: Discrete Optimization 48
(2023), 100771. doi: 10.1016/j.disopt.2023.100771.

[BTW23] J. Boeckmann, C. Thielen, and A. Wittmann. Complexity of the Temporal Shortest
Path Interdiction Problem. Accepted for the Proceedings of the 2nd Symposium on
Algorithmic Foundations of Dynamic Networks (SAND 2023). 2023.

[Bon+15] P. Bonami et al. “On mathematical programming with indicator constraints”. In:
Mathematical Programming 151 (2015), 191–223. doi: 10 . 1007 / s10107 - 015 -
0891-4.

[Bre+12] R. Brekelmans et al. “Safe dike heights at minimal costs: The nonhomogeneous
case”. In: Operations Research 60.6 (2012), 1342–1355. doi: 10.1287/opre.1110.
1028.

[BS02] K.M. Bretthauer and B. Shetty. “The nonlinear knapsack problem – algorithms
and applications”. In: European Journal of Operational Research 138.3 (2002), 459–
472. doi: 10.1016/S0377-2217(01)00179-5.

[BCV21] F. Brunelli, P. Crescenzi, and L. Viennot. “On computing Pareto optimal paths in
weighted time-dependent networks”. In: Information Processing Letters 168 (2021),
106086. doi: 10.1016/j.ipl.2020.106086.

[BFJ03] B. Bui-Xuan, A. Ferreira, and A. Jarry. “Computing shortest, fastest, and foremost
journeys in dynamic networks”. In: International Journal of Foundations of Com-
puter Science 14.2 (2003), 267–285. doi: 10.1142/S0129054103001728.

[Bur+03] C. Burch et al. “A Decomposition-Based Pseudoapproximation Algorithm for Net-
work Flow Inhibition”. In: Network Interdiction and Stochastic Integer Program-
ming. Ed. by D. L. Woodruff. Kluwer Academic Press, 2003. Chap. 1, 51–68. doi:
10.1007/0-306-48109-X_3.

14

https://doi.org/10.5194/asr-15-117-2018
https://doi.org/10.1007/978-1-4612-0701-6
https://doi.org/10.1007/978-1-4612-0701-6
https://doi.org/10.1007/978-3-030-63072-0_13
https://doi.org/10.1016/j.dam.2021.07.008
https://doi.org/10.1016/j.dam.2021.07.008
https://doi.org/10.1016/j.disopt.2023.100771
https://doi.org/10.1007/s10107-015-0891-4
https://doi.org/10.1007/s10107-015-0891-4
https://doi.org/10.1287/opre.1110.1028
https://doi.org/10.1287/opre.1110.1028
https://doi.org/10.1016/S0377-2217(01)00179-5
https://doi.org/10.1016/j.ipl.2020.106086
https://doi.org/10.1142/S0129054103001728
https://doi.org/10.1007/0-306-48109-X_3

C. Bibliography

[BSR20] S. Busam, L. E. Schäfer, and S. Ruzika. The two player shortest path network inter-
diction problem. http://arxiv.org/abs/2004.08338. 2020.

[Cac+22a] V. Cacchiani et al. “Knapsack problems — An overview of recent advances. Part
I: Single knapsack problems”. In: Computers & Operations Research 143 (2022),
105692. doi: 10.1016/j.cor.2021.105692.

[Cac+22b] V. Cacchiani et al. “Knapsack problems — An overview of recent advances. Part
II: Multiple, multidimensional, and quadratic knapsack problems”. In: Computers
& Operations Research 143 (2022), 105693. doi: 10.1016/j.cor.2021.105693.

[Cas+12] A. Casteigts et al. “Time-varying graphs and dynamic networks”. In: International
Journal of Parallel, Emergent and Distributed Systems 27.5 (2012), 387–408. doi:
10.1080/17445760.2012.668546.

[Cas+21] A. Casteigts et al. “Finding Temporal Paths Under Waiting Time Constraints”. In:
Algorithmica 83.9 (2021), 2754–2802. doi: 10.1007/s00453-021-00831-w.

[CM15] D. Che and L.W. Mays. “Development of an Optimization/Simulation Model for
Real-Time Flood-Control Operation of River-Reservoirs Systems”. In: Water Re-
sources Management 29 (2015), 3987–4005. doi: 10.1007/s11269-015-1041-8.

[CZ17] S. R. Chestnut and R. Zenklusen. “Hardness and approximation for network flow
interdiction”. In: Networks 69.4 (2017), 378–387. doi: 10.1002/net.21739.

[Csi+91] J. Csirik et al. “Heuristics for the 0-1Min-Knapsack Problem”. In:Acta Cybernetica
10.1-2 (1991), 15–20.

[DM11] C. D’Ambrosio and S. Martello. “Heuristic algorithms for the general nonlinear
separable knapsack problem”. In: Computers & Operations Research 38.2 (2011),
505–513. doi: 10.1016/j.cor.2010.07.010.

[DMM18] C. D’Ambrosio, S. Martello, and L. Mencarelli. “Relaxations and heuristics for the
multiple non-linear separable knapsack problem”. In: Computers & Operations Re-
search 93 (2018), 79–89. doi: 10.1016/j.cor.2017.12.017.

[DAm+18] C. D’Ambrosio et al. “On the Product Knapsack Problem”. In: Optimization Letters
12.4 (2018), 691–712. doi: 10.1007/s11590-017-1227-5.

[DP22] A. Deligkas and I. Potapov. “Optimizing reachability sets in temporal graphs by
delaying”. In: Information and Computation 285 (2022), 104890. doi: 10.1016/j.
ic.2022.104890.

[Die97] R. Diestel. Graph Theory. Springer, 1997. doi: 10.1007/978-3-662-53622-3.
[Dur66] E. P. Durbin.An InterdictionModel of Highway Transportation. RM-4945-PR, RAND

Corporation, Santa Monica, CA. 1966.
[Ehr05] M. Ehrgott. Multicriteria Optimization. Springer, 2005. doi: 10 . 1007 / 3 - 540 -

27659-9.
[EKN19] K. Elbassioni, A. Karapetyan, and T.T. Nguyen. “Approximation schemes for r-

weighted Minimization Knapsack problems”. In: Annals of Operations Research
279.1-2 (2019), 367–386. doi: 10.1007/s10479-018-3111-9.

15

http://arxiv.org/abs/2004.08338
https://doi.org/10.1016/j.cor.2021.105692
https://doi.org/10.1016/j.cor.2021.105693
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1007/s00453-021-00831-w
https://doi.org/10.1007/s11269-015-1041-8
https://doi.org/10.1002/net.21739
https://doi.org/10.1016/j.cor.2010.07.010
https://doi.org/10.1016/j.cor.2017.12.017
https://doi.org/10.1007/s11590-017-1227-5
https://doi.org/10.1016/j.ic.2022.104890
https://doi.org/10.1016/j.ic.2022.104890
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/s10479-018-3111-9

C. Bibliography

[EMS21] J. Enright, K. Meeks, and F. Skerman. “Assigning times to minimise reachability
in temporal graphs”. In: Journal of Computer and System Sciences 115 (2021), 169–
186. doi: 10.1016/j.jcss.2020.08.001.

[Enr+21] J. Enright et al. “Deleting edges to restrict the size of an epidemic in temporal
networks”. In: Journal of Computer and System Sciences 119 (2021), 60–77. doi:
10.1016/j.jcss.2021.01.007.

[EFM07] A. Epstein, M. Feldman, and Y. Mansour. “Strong equilibrium in cost sharing con-
nection games”. In: Proceedings of the 8th ACM Conference on Electronic Commerce
(EC). 2007, 84–92. doi: 10.1145/1250910.1250924.

[EKP02] T. Erlebach, H. Kellerer, and U. Pferschy. “Approximating Multiobjective Knap-
sack Problems”. In: Management Science 48.12 (2002), 1603–1612. doi: 10.1287/
mnsc.48.12.1603.445.

[FS21] A. Fekete and S. Sandholz. “Here Comes the Flood, but Not Failure? Lessons to
Learn after the Heavy Rain and Pluvial Floods in Germany 2021”. In:Water 13.21
(2021), 3016. doi: 10.3390/w13213016.

[Fil14] T. Filatova. “Market-based instruments for flood risk management: A review of
theory, practice and perspectives for climate adaptation policy”. In: Environmental
Science & Policy 37 (2014), 227–242. doi: 10.1016/j.envsci.2013.09.005.

[Flu+20] T. Fluschnik et al. “Temporal Graph Classes: A View Through Temporal Separa-
tors”. In: Theoretical Computer Science 806 (2020), 197–218. doi: 10.1016/j.tcs.
2019.03.031.

[FF62] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, 1962.
doi: 10.1515/9781400875184.

[GJ79] M.R. Garey and D.S. Johnson. Computers and intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., 1979.

[GL79] G.V. Gens and E.V. Levner. “Computational complexity of approximation algo-
rithms for combinatorial problems”. In: Proceedings of the 8th International Sym-
posium on Mathematical Foundations of Computer Science (MFCS). Vol. 74. LNCS.
1979, 292–300. doi: 10.1007/3-540-09526-8_26.

[Ger16] German Association for Water, Wastewater and Waste. Merkblatt DWA-M 119,
Risikomanagement in der kommunalen Überflutungsvorsorge für Entwässerungssys-
teme bei Starkregen (Risk management in municipal flood protection for drainage
systems in the event of heavy rain). 2016.

[Gle+21] A. Gleixner et al. “MIPLIB 2017: data-driven compilation of the 6th mixed-integer
programming library”. In: Mathematical Programming Computation 13.3 (2021),
443–490. doi: 10.1007/s12532-020-00194-3.

[Gua22] The Guardian. Pakistan floods: before-and-after images show extent of devastation.
https://www.theguardian.com/world/2022/aug/31/pakistan- floods-
before-and-after- images- show-extent-of -devastation. accessed 22 March
2023. 2022.

16

https://doi.org/10.1016/j.jcss.2020.08.001
https://doi.org/10.1016/j.jcss.2021.01.007
https://doi.org/10.1145/1250910.1250924
https://doi.org/10.1287/mnsc.48.12.1603.445
https://doi.org/10.1287/mnsc.48.12.1603.445
https://doi.org/10.3390/w13213016
https://doi.org/10.1016/j.envsci.2013.09.005
https://doi.org/10.1016/j.tcs.2019.03.031
https://doi.org/10.1016/j.tcs.2019.03.031
https://doi.org/10.1515/9781400875184
https://doi.org/10.1007/3-540-09526-8_26
https://doi.org/10.1007/s12532-020-00194-3
https://www.theguardian.com/world/2022/aug/31/pakistan-floods-before-and-after-images-show-extent-of-devastation
https://www.theguardian.com/world/2022/aug/31/pakistan-floods-before-and-after-images-show-extent-of-devastation

C. Bibliography

[GJ00] M. M. Güntzer and D. Jungnickel. “Approximate minimization algorithms for the
0/1 Knapsack and Subset-SumProblem”. In:Operations Research Letters 26.2 (2000),
55–66. doi: 10.1016/S0167-6377(99)00066-8.

[Hal+19] N. Halman et al. “Bi-criteria Path Problem with Minimum Length and Maximum
Survival Probability”. In: OR Spectrum 41 (2019), 469–489. doi: 10.1007/s00291-
018-0543-1.

[HRT21] A. Herzel, S. Ruzika, and C. Thielen. “Approximation Methods for Multiobjec-
tive Optimization Problems: A Survey”. In: INFORMS Journal on Computing 33.4
(2021), 1284–1299. doi: 10.1287/ijoc.2020.1028.

[Hoc95] D. S. Hochbaum. “A nonlinear Knapsack problem”. In: Operations Research Letters
17.3 (1995), 103–110. doi: 10.1016/0167-6377(95)00009-9.

[HKT17] M. Holzhauser, S.O. Krumke, and C. Thielen. “Maximum flows in generalized pro-
cessing networks”. In: Journal of Combinatorial Optimization 33 (2017), 1226–1256.
doi: 10.1007/s10878-016-0031-y.

[HS21] T. Holzmann and J.C. Smith. “The Shortest Path Interdiction Problem with Ran-
domized Interdiction Strategies: Complexity and Algorithms”. In: Operations Re-
search 69.1 (2021), 82–99. doi: 10.1287/opre.2020.2023.

[Hua+18] C.L. Huang et al. “Optimization of low impact development layout designs for
megacity flood mitigation”. In: Journal of Hydrology 564 (2018), 542–558. doi: 10.
1016/j.jhydrol.2018.07.044.

[Ibi+22] A. Ibiapina et al.Menger’s Theorem for Temporal Paths (NotWalks). https://arxiv.
org/abs/2206.15251. 2022.

[Ins] Institut für technisch-wissenschaftliche Hydrologie GmbH. HYSTEM-EXTRAN. h
ttps://itwh.de/en/software-products/desktop/hystem-extran/. accessed
02 September 2022.

[IPC21] IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working
Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate
Change. V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger,
N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R.
Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.), Cam-
bridge University Press. 2021.

[JKS08] B.K. Jack, C. Kousky, and K.R.E. Sims. “Designing payments for ecosystem ser-
vices: Lessons from previous experience with incentive-based mechanisms”. In:
Proceedings of the National Academy of Sciences (PNAS) 105.28 (2008), 9465–9470.
doi: 10.1073/pnas.0705503104.

[Jin19] C. Jin. “An Improved FPTAS for 0-1 Knapsack”. In: Proceedings of the 46th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP). Vol. 132.
Leibniz International Proceedings in Informatics (LIPIcs). 2019, 76:1–76:14. doi:
10.4230/LIPIcs.ICALP.2019.76.

17

https://doi.org/10.1016/S0167-6377(99)00066-8
https://doi.org/10.1007/s00291-018-0543-1
https://doi.org/10.1007/s00291-018-0543-1
https://doi.org/10.1287/ijoc.2020.1028
https://doi.org/10.1016/0167-6377(95)00009-9
https://doi.org/10.1007/s10878-016-0031-y
https://doi.org/10.1287/opre.2020.2023
https://doi.org/10.1016/j.jhydrol.2018.07.044
https://doi.org/10.1016/j.jhydrol.2018.07.044
https://arxiv.org/abs/2206.15251
https://arxiv.org/abs/2206.15251
https://itwh.de/en/software-products/desktop/hystem-extran/
https://itwh.de/en/software-products/desktop/hystem-extran/
https://doi.org/10.1073/pnas.0705503104
https://doi.org/10.4230/LIPIcs.ICALP.2019.76

C. Bibliography

[KN09] S. Kameshwaran and Y. Narahari. “Nonconvex piecewise linear knapsack prob-
lems”. In: European Journal of Operational Research 192.1 (2009), 56–68. doi: 10.
1016/j.ejor.2007.08.044.

[KPP04] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004. doi:
10.1007/978-3-540-24777-7.

[KKK00] D. Kempke, J. Kleinberg, and A. Kumar. “Connectivity and Inference Problems for
Temporal Networks”. In: Proceedings of the 32nd ACM Symposium on the Theory
of Computing (STOC). 2000, 504–513. doi: 10.1006/jcss.2002.1829.

[Kha+08] L. Khachiyan et al. “On Short Paths Interdiction Problems: Total and Node-Wise
Limited Interdiction”. In: Theory of Computing Systems 43.2 (2008), 204–233. doi:
10.1007/s00224-007-9025-6.

[KP21] S. Khalilpourazari and S. H. R. Pasandideh. “Designing emergency flood evacu-
ation plans using robust optimization and artificial intelligence”. In: Journal of
Combinatorial Optimization 41 (2021), 640–677. doi: 10 . 1007 / s10878 - 021 -
00699-0.

[Kle+21] W.J. Klerk et al. “Optimal planning of flood defence system reinforcements using
a greedy search algorithm”. In: Reliability Engineering & System Safety 207 (2021),
107344. doi: 10.1016/j.ress.2020.107344.

[Koc+22] T. Koch et al. “Progress in mathematical programming solvers from 2001 to 2020”.
In: EURO Journal on Computational Optimization 10 (2022), 100031. doi: 10.1016/
j.ejco.2022.100031.

[Koe83] Jacob Koene. “Minimal cost flow in processing networks: a primal approach”. PhD
thesis. Centrum voor Wiskunde & Informatica, Amsterdam, 1983.

[Kov96] Y. M. Kovalyov. “A rounding technique to construct approximation algorithms
for knapsack and partition type problems”. In:Applied Mathematics and Computer
Science 6.4 (1996), 789–801.

[Kre+05] H. Kreibich et al. “Flood loss reduction of private households due to building pre-
cautionarymeasures–lessons learned from the Elbe flood in August 2002”. In:Nat-
ural hazards and earth system sciences 5.1 (2005), 117–126. doi: 10.5194/nhess-
5-117-2005.

[Kru+98] S.O. Krumke et al. “Approximation Algorithms for Certain Network Improvement
Problems”. In: Journal of Combinatorial Optimization 2.3 (1998), 257–288. doi: 10.
1023/A:1009798010579.

[LSH94] M Labbé, E.F. Schmeichel, and S. L. Hakimi. “Approximation algorithms for the
capacitated plant allocation problem”. In: Operations Research Letters 15.3 (1994),
115–126. doi: 10.1016/0167-6377(94)90046-9.

[LFH16] M.B. Lowry, P. Furth, and T. Hadden-Loh. “Prioritizing new bicycle facilities to im-
prove low-stress network connectivity”. In: Transportation Research Part A: Policy
and Practice 86 (2016), 124–140. doi: 10.1016/j.tra.2016.02.003.

18

https://doi.org/10.1016/j.ejor.2007.08.044
https://doi.org/10.1016/j.ejor.2007.08.044
https://doi.org/10.1007/978-3-540-24777-7
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1007/s00224-007-9025-6
https://doi.org/10.1007/s10878-021-00699-0
https://doi.org/10.1007/s10878-021-00699-0
https://doi.org/10.1016/j.ress.2020.107344
https://doi.org/10.1016/j.ejco.2022.100031
https://doi.org/10.1016/j.ejco.2022.100031
https://doi.org/10.5194/nhess-5-117-2005
https://doi.org/10.5194/nhess-5-117-2005
https://doi.org/10.1023/A:1009798010579
https://doi.org/10.1023/A:1009798010579
https://doi.org/10.1016/0167-6377(94)90046-9
https://doi.org/10.1016/j.tra.2016.02.003

C. Bibliography

[Maa+23] N. Maack et al. “On finding separators in temporal split and permutation graphs”.
In: Journal of Computer and System Sciences 135 (2023), 1–14. doi: 10.1016/j.jcss.
2023.01.004.

[MHJ18] J. Machac, T. Hartmann, and J. Jilkova. “Negotiating land for flood risk manage-
ment: upstream-downstream in the light of economic game theory”. In: Journal
of Flood Risk Management 11.1 (2018), 66–75. doi: 10.1111/jfr3.12317.

[MRS12] A. Malaviya, C. Rainwater, and T. Sharkey. “Multi-period network interdiction
problems with applications to city-level drug enforcement”. In: IIE Transactions
44.5 (2012), 368–380. doi: 10.1080/0740817X.2011.602659.

[Man17] P. Manurangsi. “Almost-polynomial ratio ETH-hardness of approximating dens-
est k-subgraph”. In: Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing. 2017, 954–961. doi: 10.1145/3055399.3055412.

[MWG95] A. Mas-Colell, M. D. Whinston, and J. R. Green. Microeconomic Theory. Oxford
University Press, 1995.

[MS16] O. Michail and P.G. Spirakis. “Traveling salesman problems in temporal graphs”.
In: Theoretical Computer Science 634 (2016), 1–23. doi: 10.1016/j.tcs.2016.04.
006.

[Moh+23] S. Mohr et al. “A multi-disciplinary analysis of the exceptional flood event of July
2021 in central Europe – Part 1: Event description and analysis”. In: Natural Haz-
ards and Earth System Sciences 23.2 (2023), 525–551. doi: 10.5194/nhess-23-525-
2023.

[Mol20] H. Molter. “Classic Graph Problems Made Temporal – A Parameterized Complex-
ity Analysis”. PhD thesis. Technische Universität Berlin, 2020.

[Mol22] H. Molter. “The Complexity of Finding Temporal Separators under Waiting Time
Constraints”. In: Information Processing Letters 175 (2022), 106229. doi: 10.1016/
j.ipl.2021.106229.

[MRZ21] H. Molter, M. Renken, and P. Zschoche. Temporal Reachability Minimization: De-
laying vs. Deleting. http://arxiv.org/abs/2102.10814. 2021.

[MPS22] M. Monaci, C. Pike-Burke, and A. Santini. “Exact algorithms for the 0-1 Time-
BombKnapsack Problem”. In:Computers &Operations Research 145 (2022), 105848.
doi: 10.1016/j.cor.2022.105848.

[Mun+21] H. S. Munawar et al. “An Integrated Approach for Post-Disaster Flood Manage-
ment Via the Use of Cutting-Edge Technologies and UAVs: A Review”. In: Sustain-
ability 13.14 (2021), 7925. doi: 10.3390/su13147925.

[MC09] L. Murawski and R.L. Church. “Improving accessibility to rural health services:
The maximal covering network improvement problem”. In: Socio-Economic Plan-
ning Sciences 43.2 (2009), 102–110. doi: 10.1016/j.seps.2008.02.012.

[MMG07] A. T. Murray, T. C. Matisziw, and T. H. Grubesic. “Critical Network Infrastructure
Analysis: Interdiction and System Flow”. In: Journal of Geographical Systems 9
(2007), 103–117. doi: 10.1007/s10109-006-0039-4.

19

https://doi.org/10.1016/j.jcss.2023.01.004
https://doi.org/10.1016/j.jcss.2023.01.004
https://doi.org/10.1111/jfr3.12317
https://doi.org/10.1080/0740817X.2011.602659
https://doi.org/10.1145/3055399.3055412
https://doi.org/10.1016/j.tcs.2016.04.006
https://doi.org/10.1016/j.tcs.2016.04.006
https://doi.org/10.5194/nhess-23-525-2023
https://doi.org/10.5194/nhess-23-525-2023
https://doi.org/10.1016/j.ipl.2021.106229
https://doi.org/10.1016/j.ipl.2021.106229
http://arxiv.org/abs/2102.10814
https://doi.org/10.1016/j.cor.2022.105848
https://doi.org/10.3390/su13147925
https://doi.org/10.1016/j.seps.2008.02.012
https://doi.org/10.1007/s10109-006-0039-4

C. Bibliography

[MO19] P.Mutzel and L. Oettershagen. “On the Enumeration of Bicriteria Temporal Paths”.
In: Proceedings of the 15th Annual Conference on Theory and Applications of Mod-
els of Computation (TAMC). Vol. 11436. Lecture Notes in Computer Science. 2019,
518–535. doi: 10.1007/978-3-030-14812-6_32.

[Nem+22] B. Nematollahi et al. “A Stochastic Conflict Resolution Optimization Model for
Flood Management in Detention Basins: Application of Fuzzy Graph Model”. In:
Water 14.5 (2022), 774. doi: 10.3390/w14050774.

[New20] CBC News. Kenya floods have killed nearly 200, displaced thousands. https : //
www.cbc.ca/news/world/kenya- deadly - floods- 1 .5557400. accessed 22
March 2023. 2020.

[Ngo+16] T.T. Ngo et al. “Optimization of UpstreamDetention Reservoir Facilities for Down-
stream Flood Mitigation in Urban Areas”. In:Water 8.7 (2016), 290. doi: 10.3390/
w8070290.

[Oet22] L. Oettershagen. “Temporal Graph Algorithms”. PhD thesis. Rheinische Friedrich-
Wilhelms-Universität Bonn, 2022.

[Orl84] J. B. Orlin. “Minimum Convex Cost Dynamic Network Flows”. In:Mathematics of
Operations Research 9.2 (1984), 190–207. doi: 10.1287/moor.9.2.190.

[Orl13] J. B. Orlin. “Max Flows inOpnmq Time, or Better”. In: Proceedings of the 45th ACM
Symposium on the Theory of Computing (STOC). 2013, 765–774. doi: 10.1145/
2488608.2488705.

[PR14] R.G. Parker and R.L. Rardin. Discrete optimization. Elsevier, 2014. doi: 10.1016/
C2009-0-22165-9.

[PS16] U. Pferschy and J. Schauer. “Approximation of the quadratic knapsack problem”.
In: INFORMS Journal on Computing 28.2 (2016), 308–318. doi: 10.1287/ijoc.2015.
0678.

[PST21] U. Pferschy, J. Schauer, and C. Thielen. “Approximating the product knapsack
problem”. In: Optimization Letters 15 (2021), 2529–2540. doi: 10.1007/s11590-
021-01760-x.

[Phi93] C. Phillips. “The Network Inhibition Problem”. In: Proceedings of the 25th ACM
Symposium on the Theory of Computing (STOC). 1993, 776–785. doi: 10.1145/
167088.167286.

[PBA14] J.K. Poussin, W.J.W. Botzen, and J.C.J.H. Aerts. “Factors of influence on flood dam-
age mitigation behaviour by households”. In: Environmental Science & Policy 40
(2014), 69–77. doi: 10.1016/j.envsci.2014.01.013.

[RS17] J. Rajczak and C. Schär. “Projections of Future Precipitation Extremes Over Eu-
rope: A Multimodel Assessment of Climate Simulations”. In: Journal of Geophysi-
cal Research: Atmospheres 122.20 (2017), 10773–10800. doi: 10.1002/2017JD027
176.

20

https://doi.org/10.1007/978-3-030-14812-6_32
https://doi.org/10.3390/w14050774
https://www.cbc.ca/news/world/kenya-deadly-floods-1.5557400
https://www.cbc.ca/news/world/kenya-deadly-floods-1.5557400
https://doi.org/10.3390/w8070290
https://doi.org/10.3390/w8070290
https://doi.org/10.1287/moor.9.2.190
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1016/C2009-0-22165-9
https://doi.org/10.1016/C2009-0-22165-9
https://doi.org/10.1287/ijoc.2015.0678
https://doi.org/10.1287/ijoc.2015.0678
https://doi.org/10.1007/s11590-021-01760-x
https://doi.org/10.1007/s11590-021-01760-x
https://doi.org/10.1145/167088.167286
https://doi.org/10.1145/167088.167286
https://doi.org/10.1016/j.envsci.2014.01.013
https://doi.org/10.1002/2017JD027176
https://doi.org/10.1002/2017JD027176

C. Bibliography

[Roe05] Gerard H Roe. “Orographic precipitation”. In: Annual Review of earth and plan-
etary sciences 33.1 (2005), 645–671. doi: 10.1146/annurev.earth.33.092203.
122541.

[RW07] J. O. Royset and R. K. Wood. “Solving the Bi-Objective Maximum-Flow Network-
Interdiction Problem”. In: INFORMS Journal on Computing 19.2 (2007), 175–184.
doi: 10.1287/ijoc.1060.0191.

[Sch+20] L. E. Schäfer et al. “The Bicriterion Maximum Flow Network Interdiction Problem
in s-t-Planar Graphs”. In: Operations Research Proceedings 2019: Selected Papers of
the Annual International Conference of the German Operations Research Society.
Springer, 2020, 133–139. doi: 10.1007/978-3-030-48439-2_16.

[Sch+14] T. G. Schmitt et al. “An Optimization and Decision Support Tool for Long-Term
Strategies in the Transformation of Urban Water Infrastructure”. In: Proceedings
of the 11th International Conference on Hydroinformatics (HIC). 2014, 1–8.

[Sch98] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, 1998.
[SS16] J. A. Sefair and J. C. Smith. “Dynamic shortest-path interdiction”. In: Networks

68.4 (2016), 315–330. doi: 10.1002/net.21712.
[Sie18] T. Siekmann. Methodik zur Priorisierung von Maßnahmen der Sturzflutvorsorge.

https://www.siekmann-ingenieure.de/media/priorisierung-massnahmen
_methodik.pdf . accessed 02 September 2022. 2018.

[SS20] J.C. Smith and Y. Song. “A survey of network interdiction models and algorithms”.
In: European Journal of Operational Research 283.3 (2020), 797–811. doi: 10.1016/
j.ejor.2019.06.024.

[SL06] W.Y. Szeto and H.K. Lo. “Transportation network improvement and tolling strate-
gies: The issue of intergeneration equity”. In: Transportation Research Part A: Pol-
icy and Practice 40.3 (2006), 227–243. doi: 10.1016/j.tra.2005.06.004.

[Tas21] Byron Tasseff. “Optimization of Critical Infrastructure with Fluids”. PhD thesis.
University of Michigan, 2021.

[Tay16] R. Taylor. “Approximation of the Quadratic Knapsack Problem”. In: Operations
Research Letters 44.4 (2016), 495–497. doi: 10.1016/j.orl.2016.05.005.

[VTL82] J. Valdes, R. E. Tarjan, and E. L. Lawler. “The recognition of Series Parallel di-
graphs”. In: SIAM Journal on Computing 11.2 (1982), 298–313. doi: 10 . 1145 /
800135.804393.

[Vaz01] V. V. Vazirani. Approximation Algorithms. Vol. 1. Springer, 2001. doi: 10.1007/
978-3-662-04565-7.

[WH08] C.C.Wei andN.S. Hsu. “Multireservoir real-time operations for flood control using
balanced water level index method”. In: Journal of Environmental Management
88.4 (2008), 1624–1639. doi: 10.1016/j.jenvman.2007.08.004.

[WS11] D.P. Williamson and D.B. Shmoys. The Design of Approximation Algorithms. Cam-
bridge university press, 2011. doi: 10.1017/CBO9780511921735.

21

https://doi.org/10.1146/annurev.earth.33.092203.122541
https://doi.org/10.1146/annurev.earth.33.092203.122541
https://doi.org/10.1287/ijoc.1060.0191
https://doi.org/10.1007/978-3-030-48439-2_16
https://doi.org/10.1002/net.21712
https://www.siekmann-ingenieure.de/media/priorisierung-massnahmen_methodik.pdf
https://www.siekmann-ingenieure.de/media/priorisierung-massnahmen_methodik.pdf
https://doi.org/10.1016/j.ejor.2019.06.024
https://doi.org/10.1016/j.ejor.2019.06.024
https://doi.org/10.1016/j.tra.2005.06.004
https://doi.org/10.1016/j.orl.2016.05.005
https://doi.org/10.1145/800135.804393
https://doi.org/10.1145/800135.804393
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1016/j.jenvman.2007.08.004
https://doi.org/10.1017/CBO9780511921735

C. Bibliography

[Woe00] G. J. Woeginger. “When Does a Dynamic Programming Formulation Guarantee
the Existence of a Fully Polynomial Time Approximation Scheme (FPTAS)?” In:
INFORMS Journal on Computing 12.1 (2000), 57–74. doi: 10.1287/ijoc.12.1.57.
11901.

[Woj18] D. Wojtczak. “On strong NP-completeness of rational problems”. In: Proceedings
of the 13th International Computer Science Symposium in Russia (CSR). Vol. 10846.
LNCS. 2018, 308–320. doi: 10.1007/978-3-319-90530-3_26.

[Wol64] R. D. Wollmer. “Removing Arcs from a Network”. In: Operations Research 12.6
(1964), 934–940. doi: 10.1287/opre.12.6.934.

[Wol70] R. D. Wollmer. “Algorithms for Targeting Strikes in a Lines-of-Communication
Network”. In: Operations Research 18.3 (1970), 497–515. doi: 10.1287/opre.18.3.
497.

[Woo93] R. K.Wood. “Deterministic Network Interdiction”. In:Mathematical and Computer
Modelling 17.2 (1993), 1–18. doi: 10.1016/0895-7177(93)90236-R.

[WKG14] M. Woodward, Z. Kapelan, and B. Gouldby. “Adaptive Flood Risk Management
Under Climate Change Uncertainty Using Real Options And Optimization”. In:
Risk Analysis 34.1 (2014), 75–92. doi: 10.1111/risa.12088.

[Wu+16] H. Wu et al. “Efficient Algorithms for Temporal Path Computation”. In: IEEE
Transactions on Knowledge and Data Engineering 28.11 (2016), 2927–2942. doi:
10.1109/TKDE.2016.2594065.

[Zsc+20] P. Zschoche et al. “The complexity of finding small separators in temporal graphs”.
In: Journal of Computer and System Sciences 107 (2020), 72–92. doi: 10.1016/j.
jcss.2019.07.006.

[ZVH18] P. Zwaneveld, G. Verweij, and S. van Hoesel. “Safe dike heights at minimal costs:
An integer programming approach”. In: European Journal of Operational Research
270.1 (2018), 294–301. doi: 10.1016/j.ejor.2018.03.012.

22

https://doi.org/10.1287/ijoc.12.1.57.11901
https://doi.org/10.1287/ijoc.12.1.57.11901
https://doi.org/10.1007/978-3-319-90530-3_26
https://doi.org/10.1287/opre.12.6.934
https://doi.org/10.1287/opre.18.3.497
https://doi.org/10.1287/opre.18.3.497
https://doi.org/10.1016/0895-7177(93)90236-R
https://doi.org/10.1111/risa.12088
https://doi.org/10.1109/TKDE.2016.2594065
https://doi.org/10.1016/j.jcss.2019.07.006
https://doi.org/10.1016/j.jcss.2019.07.006
https://doi.org/10.1016/j.ejor.2018.03.012

	Introduction
	Motivation
	Outline
	Contributions and Credits

	Preliminaries
	Optimization Problems
	Complexity
	Graphs and Networks
	Multicriteria Optimization
	Approximation Algorithms

	A Mixed-Integer Programming Approach to Municipal Flood Mitigation
	Introduction
	Previous Work
	The Project AKUT

	Problem Description and Input Data
	Mathematical Modeling
	Graph-Based Model
	Mixed-Integer Programming Formulation and Presolve Techniques

	Validity of the Mixed-Integer-Programming Formulation
	Assumptions and Structural Results
	Existence of x
	Equality of Water Levels

	Computational Results
	Comparison with Established Simulation Software
	Running Time and Performance

	Conclusion

	A (B+1)-Approximation for Network Flow Interdiction with Unit Removal Costs
	Introduction
	Previous Work
	Our Contribution

	Problem Definition and Structural Results
	Structural Results

	A (B+1)-Approximation for NFI
	Approximating NFI on G(l,)

	Further Reducing the Approximation Ratio
	Conclusion

	Complexity of the Temporal Shortest Path Interdiction Problem
	Introduction
	Previous Work
	Our Contribution

	Problem Definition
	Polynomial-Time Algorithms and Complexity Results
	Temporal Latest Start Interdiction
	Temporal Earliest Arrival Interdiction
	Temporal Shortest Duration Interdiction and Temporal Shortest Traversal Interdiction

	Extensions
	Negative Traversal Times
	Continuous Time Availability of Arcs
	Waiting Time Constraints

	Conclusion

	Approximating Nonlinear Sum and Product Knapsack Problems
	Introduction
	Previous Work
	Our Contribution

	Problem Definition
	Single-Objective Problems
	Multi-Objective Problems

	A Single-Objective FPTAS
	Extension to Multiple Objectives
	Applications
	An FPTAS for the 0-1 Time-Bomb Knapsack Problem
	Minimization Knapsack Problems
	Extension of the Minimization Version to Multiple Objectives
	Max-Min Versions of the Nonlinear Knapsack Problem

	Conclusion

	Conclusion
	Appendix
	List of Figures
	List of Tables
	Bibliography

