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Abstract

Modeling joint dynamics is the bottleneck for precise predictive models of machines. Bolted joints are especially
relevant due to their common use in mechanical engineering. Stiffness and damping properties of bolted joints are
highly influenced by contact parameters (geometry, surface treatment, preload, ...). For high amplitude vibrations,
when non-appropriate joint closure is present, even frictional effects can play a role.

Substructuring techniques offer a lean solution for isolating dynamical or quasi-static components of joint dy-
namics. It may be used for an identification of linearized contact parameters for multiple degrees of freedom (dofs).
The main limitation of the method is finding a robust workflow to guarantee a proper controllability and observability
of the desired joint dynamics, as well as dealing with disturbance/noise in the measurements.

In this contribution a robust procedure for the identification of a bolted joint using frequency-based substruc-
turing is presented for a contact in an experimental scenario. The dynamics of the joint are isolated from the
assembled system using different substructuring techniques treating the joint as a quasi-static or dynamic compo-
nent. A simple physical model of the joint is parametrized from the experimental joint dynamics. A validation of the
methodology is given by using the identified joint parameters on a modified assembled system.

Nomenclature

dof(s) degree(s) of freedom
FBS frequency-based substructuring
FRF frequency response function
VPT(,VP) virtual point transformation(, virtual point)
u, f measured displacements, forces
q , m virtual displacements, forces
Y ,Z receptance, dynamic stiffness matrix
R, T VPT reduction, transformation matrix
B signed Boolean matrix
λ Lagrange multiplier
K , C̄ ,C , M stiffness, hysteretic damping, viscous damping, mass matrix
k, c stiffness, viscous damping
f ,Ω frequency, angular frequency
∗A(, B, J , AJB, A∗JB) pertaining to substructure A(, B, J , AJB, A∗JB)
∗u/ f pertaining to measured displacements, forces
∗q,m pertaining to virtual displacements, forces
∗2A(,2B) pertaining to set of dofs 2A (, 2B)
∗̃ reconstructed from identified values
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1 Introduction

Bolts are common connecting elements in mechanical engineering. The dynamics of joints in general or of bolted
joints in particular is a bottleneck in creating precise, predictive models. Identification of joint properties with differ-
ent boundary conditions (e.g. preload, number of contact elements, load direction, tightening procedure, surface
roughness, material pairing, ...) can improve models of systems in an early design stage. It helps in better un-
derstanding the dynamic behavior of joints and of jointed system. Ultimately, the dynamic effects of joints can be
considered in the design process of machines and structures.

One can devise different techniques to identify joint properties or merely its effect on an assembled system.
A possible technique is to measure some transfer paths/frequency response functions of an assembled system
with a joint and compare it to a numerical model of the system. Through a model updating step, the joint in the
numerical model can be adapted to match the experimentally determined dynamics. In theory, this only needs
little experimental measurements and only one model updating step. However, physicality of the joint cannot be
guaranteed as the optimization process could mix up the parameters of the complex multi-dof system, leading to
an overfitting of the joint properties. This impairs the transferability of the obtained joint properties to other systems
and masks the physical understanding of the joint.

Another approach consist in introducing in the procedure a so-called isolation step in order to explicitly sepa-
rate the joints from the rest of the system. Methods to isolate joint dynamics use dynamic substructuring, see [7].
Dynamic substructuring is concerned with analysis of systems in terms of components/substructures. Structures
can be assembled or disassembled using equilibrium of interface forces and compatibility of the interface displace-
ments in different domains, see [19, 20]. In experimental practice, frequency response functions can be measured,
which describe linear dynamics with respect to frequency. Thus, for experimental applications, frequency-based
substructuring is commonly adopted. An assumption of the mentioned dynamic substructuring methods is time
invariance of the system dynamics. In bolted joints, this cannot always be guaranteed due to friction effects or
partial joint closure. Nonetheless, under the assumption of small nonlinearities, the identified joint model can be
seen as a linearization of the joint in the given operational/loading conditions.

This work presents a workflow for a robust identification of linearized contact parameters for a bolted joint using
substructuring techniques. In section 2, the theory for joint identification using frequency-based substructuring
(FBS) is presented. The identification procedure is divided into two steps: an isolation and a parametrization step.
Section 3 presents the experimental test case. At first, the design of the prototype system, consisting of two flexible
bodies connected by a bolted joint, is presented. Then the isolation of the joint dynamics is performed and a simple
physical parametrization is applied. The identified joint model is then validated on the original assembly and on a
slightly modified assembled system. Finally, the effect of varying the bolt torque, which changes the joint’s preload,
is assessed. Section 4 gives a conclusion and an outlook to further studies.

2 Theory

A two-step procedure is used in this contribution to identify a bolted joint. In the isolation step, the dynamics of
the joint is decoupled from the assembled system using substructure decoupling. In the parametrization step, a
simple physical model is used to fit the experimentally identified joint dynamics.

2.1 Joint Isolation

The isolation of the joint is performed using frequency-based substructuring. The methods can be organized by
the type of isolation and type of joint model, see table 1, cf. [1]. The isolation step can be based on a primal
or a dual decoupling. Primal decoupling uses displacements, dual decoupling uses forces as unknowns in the
substructuring procedure. As a natural consequence, it is common to use impedance (dynamic stiffness) for
primal disassembly and dynamic compliance (i.e. frequency response functions) for dual disassembly.

Another distinction is made depending on the model assumed for the joint to be identified: “Dynamic” if the joint
is a dynamic component, i.e. includes inertia effects inside the joint, and “Quasi-Static” if the joint is a massless
compliant component, i.e. it only has stiffness and damping parts.

The setup for joint identification consists of a system with two substructures (A, B), that are connected via one
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Figure 1: Assembled system with substructures A, B and joint J .

joint (J ), see fig. 1. Here, only FRFs that are measured at the interface are used, i.e. at points 2A, 2B .

Table 1: Classification of dynamic decoupling methods

Primal Dual
Dynamic Primal Decoupling Dual Decoupling (LM-FBS)
Quasi-static Inverse Substructuring LM-FBS with weakened interface

2.1.1 Virtual Point Transformation

The decoupling and coupling procedures, presented here, require coinciding points at the interface, which cannot
be measured directly. Thus, in experimental practice the virtual point transformation (VPT) is often applied, [1,
p.126ff], which is described in this section. In analytical models (e.g. finite element models), the conditions can be
easily enforced on coinciding nodes. In experiments, it is often not possible to measure all dofs and often not at
matching locations. Directly measuring FRFs in rotational dofs is cumbersome. It is very difficult to apply a pure
moment to a structure and uncommon to use rotational accelerometers. Also, most of the time, it is not possible
to measure directly at the interface, because it is not accessible due to the connection elements like e.g. bolts.

qy

r h

r k

ek
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eh f h
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Figure 2: Virtual point transformation.

Thus, it is necessary to project the measurements near the interface to a collocated virtual point. In fig. 2, the
virtual point transformation (VPT) is illustrated schematically. The virtual point coordinates q are obtained from
the sensor dofs u. Similarly the forces and moments m in the space of the virtual point are obtained from the
experimentally applied forces f . Consequently, the subscript ∗uf is used to denote the space of the measurement
channels and the subscript ∗qm is used to denote the space of the virtual point, e.g. for the transformed FRF Yqm.

Applying the transformation matrices allows to transform the FRFs from the sensor-space Yuf to the virtual-
point-space Yqm:

Yqm = TuYuf T T
f . (1)

The transformation matrices Tu, T f are obtained from the reduction bases Ru,R f by a Moore-Penrose pseudo-
inverse. The pseudo-inverse is denoted by the superscript ∗+,

u = Ruq → q =
�

RT
u Ru

�−1
RT

u u = R+u u = Tuu (2)

m = RT
f f → f̃ =

�

R+f
�T

m = T T
f m.

The reduced force f̃ describes a minimal forces in a least-squared sense necessary to obtain the resulting forces
and moments m at the interface.
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The bases for the projection can be chosen. However, in practice the measurements are often projected using
six local rigid modes, which gives the FRFs in the virtual point as translations and rotations. The underlying
assumption is that the interface behaves rigidly. It is also possible to include more local “modes” for the interface
to account for the flexible motion of the interface. In this contribution, only a rigid basis is used for the VPT so that
the virtual point coordinates are given as

q =

�

qt
qϕ

�

, with qt =





qx
qy
qz



 and qϕ =





qϕx

qϕy

qϕz



 .

The generalized forces m are given in the same directions analogously. It is common to use more channels
than the necessary six per dof. Using more channels than necessary makes the problem over-determined. The
measurements are projected on the prescribed rigid body modes of the interface in a least-squares sense, see
eq. (2). This can mitigate some uncertainties in the measurements.

A detailed derivation of the transformation matrices for the virtual point transformation can be found in [11, 19,
24].

2.1.2 Dynamic Decoupling

Dynamic Decoupling considers the joint as a dynamic component. It removes the dynamic contribution of substruc-
tures A and B from the assembled system AJB to isolate the joint J . It requires measuring FRFs of the assembled
system and of the individual substructures, and applying the virtual point transformation to obtain YAJB

qm , YA
qm, Y B

qm,
see section 2.1.1. Then, primal or dual decoupling is applied as follows.

Primal Decoupling The FRF-matrices are inverted to obtain the dynamic stiffness matrices Zqm =
�

Yqm

�−1
.

The decoupling step subtracts the substructures’ dynamic stiffnesses from the assembled system’s stiffness.

 

Z J
2A,2A

Z J
2A,2B

Z J
2B ,2A

Z J
2B ,2B

!

︸ ︷︷ ︸

Z J
qm

=

 

ZA
2A,2A

+ Z J
2A,2A

Z J
2A,2B

Z J
2B ,2A

ZB
2B ,2B

+ Z J
2B ,2B

!

︸ ︷︷ ︸

ZAJB
qm

−

 

ZA
2A,2A

0

0 ZB
2B ,2B

!

︸ ︷︷ ︸

ZA|B
qm

. (3)

This operation is called Primal Decoupling. In numerical practice, this procedure is well established for the assem-
bly of finite element models.

Lagrange Multiplier-Frequency Based Substructuring The dual formulation of this method is called Dual De-
coupling or Lagrange-Multiplier Frequency based Substructuring (LM-FBS), see [8]. This procedure is formulated
using directly the FRFs. The coupling or decoupling is enforced via compatibility and equilibrium conditions on the
interface.

�

Bu = 0
u = Y

�

f − BTλ
� (4)

where B is a signed Boolean matrix that imposes compatibility on the matching interface degrees of freedom (dofs).
The matrix Y includes the matrices of the structures that are to be coupled or decoupled. For joint identification,
this is given as

Y =





YAJB
qm 0 0
0 −YA

qm 0
0 0 −Y B

qm





which indicates decoupling of substructures A and B from the assembled system AJB. Enforcing compatibility and
equilibrium yields

Y J
decoupled =

�

I − YBT
�

BYBT
�−1

B
�

Y
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The resulting matrix Y J
decoupled includes the joint FRF, but with redundant dofs. Removing the redundancy in the

resulting matrix gives the joint FRF matrix Y J
qm.

From a mathematical point of view primal decoupling and LM-FBS are equivalent methods of dynamic decou-
pling, when only interface dofs are used, which is the case in this contribution.

2.1.3 Quasi-static Decoupling

Quasi-static decoupling considers the joint as a massless component, e.g. a network of springs and dampers. In
the following, two formulations, a primal and a dual, are presented.

Inverse Substructuring Application of quasi-static decoupling in terms of dynamic stiffness is called Inverse
Substructuring, cf. [10, 15]. It requires measuring FRFs of the assembled system and applying the virtual point
transformation to obtain YAJB

qm , see section 2.1.1.
Consider the dynamic stiffness matrix of the assembled system AJB after inversion:

ZAJB
qm =

�

ZA
2A,2A

+ Z J
2A,2A

Z J
2A,2B

Z J
2B ,2A

ZB
2B ,2B

+ Z J
2B ,2B

�

It can be seen that the off-diagonal blocks only contain the dynamics of the joint. This can be used to reconstruct
the entire dynamic stiffness of the joint. If we assume no cross-coupling between dofs and we further assume the
joint to have no mass, i.e. no dynamics, the joint stiffness can be re-constructed as

Z J =

�

−Z J
2A,2B

Z J
2A,2B

Z J
2B ,2A

−Z J
2B ,2A

�

.

This identification method is advantageous, because it only requires measuring the assembled system. It is not
necessary to measure the individual substructures separately. An equivalent formulation of Inverse Substructuring
in the dual domain can be found in [26] and later also improved in [10, 12, 16].

LM-FBS with weakened interface The method LM-FBS with weakened interface in table 1 uses a different for-
mulation in the dual domain, but still identifies a joint as massless, cf. [2]. Compared to inverse substructuring, it
additionally requires measuring the FRFs of the individual substructures and transforming the measurements on
a virtual point to obtain YA

qm, Y B
qm. It uses a weakened compatibility condition Bu = ∆uJ = Y Jλ compared to

eq. (4). The approach has been presented for joint identification purposes in [9, 13, 22].

In both quasi-static decoupling methods, once the massless joint has been parametrized/identified, it is still
possible to take into account of existing mass contributions (e.g. due to bolts, washers, nuts...) by assuming
them lumped on the two sides of the interface of components A and B. The relevance of the masses and the
lumped approximation will be then validated by reconstructing the assembly AJB (+ masses). This contribution is
neglected in the presented work because the mass of the bolt-nut-washer turns out to be small enough compared
to the mass of both substructures.

2.1.4 Using Internal Degrees of Freedom

In the presented procedures, only measurement at the interface dofs (dofs labeled “2” in fig. 1) have been used for
decoupling. In order to make the decoupling more robust, it can be beneficial to also include internal dofs, i.e. dofs
that are not on the interface (dofs labeled “1” and “3” in fig. 1). The additional dynamic information can improve the
observability, controllability and conditioning of the interface problem. In [4, 6, 19, 21, 23, 25], extensions of the
frequency-based decoupling procedures are presented.

2.2 Joint Parametrization

The joint identification step summarized above yields the dynamic stiffness of the joint as a function of the fre-
quency: Z J (Ω). This result could be used directly as a model of the joint. However, this dynamic stiffness can
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often polluted by noise and disturbances, thus leading to non-reliable/usable results. It makes sense to extract the
joint parameters by fitting the isolated transfer functions following a physical-based modeling approach. A typical
example of a physical-based parametrization for a frequency-based identification is

Z J (Ω) =
�

−Ω2M J + jΩC J +
�

K J + jC̄ J
��

where M J ,C J , K J , C̃ J denote the mass, viscous damping, stiffness and hysteretic damping matrices respectively.
The mass matrix M J would be taken as zero, if a quasi-static joint has been assumed in the isolation step.

The identified model of the joint must be validated. A digital realization of the assembled system is constructed
by using the FRF-matrices of the isolated subsystems A and B and the parametrized model for the joint J . This is
compared to the direct measurements performed on the assembled system AJB. This is called the validation-step
in this contribution. In the cross-validation, the same procedure is performed, but with a slightly modified subsystem
A∗. The cross-validation makes a stronger statement about the correctness of the identified joint parameters. It
proofs the transferability of the joint prediction to other systems with the analyzed contact.

Once a suitable robust procedure is established, it can be used to investigate the joint for changing parameters.
For a bolted joint, this can include for example the preload of the bolt due to different torques.

There exist one-step formulations of the proposed joint identification, which are not shown here, but could be
found in [5, 18]. These do not separate the joint isolation from the parametrization step, but they try to identify the
joint directly from the measured FRFs of the assembly using a model-updating procedure.

3 Experimental Test Case

In this section, the experimental test case is presented.

3.1 Design of the Prototype

The investigated system is given in fig. 3. It consists of 2 substructures (A and B) that are connected via a bolted
joint.

x

z

y

B A

23
0

90
100

(a) Whole system.

“connecting arms”

xy

B

A
chamfer for

x -y-excitation on A

(b) Close-up of the contact.

Figure 3: Model of the assembled system AJB.

Substructures A and B are designed to have well separated modes in a medium frequency range below
1000 Hz. This also results in well-separated modes of the assembly. The parts containing the interface are
designed as rigid blocks to comply with a rigid virtual point assumption. These interface blocks are connected
to the mounting plates via thinner arms. The mounting plates are designed to enable fixing them rigidly to the
environment or to use the holes as suspension points for a free-free suspension. In the current design, excitation
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in x -direction on substructure A in the assembled system is only possible via chamfers on the interface block,
see fig. 3b, due to the size of the commonly used impact hammer. This does not allow excitation purely in the
x -direction for substructure A, but in a mixed x - and y-direction. The design of substructure A could be improved
by moving the connecting bar closer to the edge of the mounting plate to make excitation in x -direction easier. The
structures are made from solid aluminum using CNC milling for easy and repeatable manufacturing. There is no
additional surface treatment, even on the interface areas.

A stainless steel M6 bolt and washer is used. Substructure A has a threaded insert. The screw-in depth is
about 1.5 times the bolt diameter. The interface surfaces between substructures A and B and between the washer
and substructure B at the bolt head are slightly protruding to provide small, well-defined contact areas, see fig. 3b.
This will create a high contact pressure and thus ensure defined contact conditions, i.e. full contact in the interface.

x

z

y

B A

(a) Measurement setup with suspension.

B A

(b) Close-up of the assembled interface.

B A

(c) Close-up on disassembled A and B.

Figure 4: Measurement setup of the assembly.

In the experiments, the individual substructures are investigated with free-free boundary conditions. The parts
are suspended with a combination of rubber bands and vinyl wires from a portal frame. On the top of the portal
frame rubber bands are used due to their low stiffness, in the lower part of the suspension vinyl wires are used that
are looped directly through the mounting plate holes. This provides very low eigenfrequencies of the suspension
for a free-free assumption while reducing the movement of the system during testing. A free-free suspension is
chosen, because a fixed boundary would be very hard to reproduce between experiments and to parametrize in
case a numerical modeling is desired.

On each interface (for each virtual point), three small tri-axial acceleration sensors are used (PCB 356A03,
range: 500 g, mass ≈ 1× 10−3 kg). The sensors are fixed to the structure using instant adhesive (Loctite 408).
Additional sensors are attached to the mounting plates, which are not used in this work, but could be used for more
advanced decoupling techniques, e.g. using internal dofs, see section 2.1.4. In this work only measurements close
the interface are considered.

The structures are excited by an impact hammer with a vinyl tip (PCB 086C03). Each impact is adjusted to
have a peak force between 100 and 150 N to improve repeatability by avoiding amplitude variations that could
lead to nonlinear distortions. Care is taken to distribute the impact points evenly on the interface. Figure 4 shows
the measurement setup for the assembled system. Figure 4a shows the setup with the suspension and fig. 4b
shows a a close-up photo of the interface with the acceleration sensors and some impact position that are marked
with crosses.

A Müller-BBM PAK -system is used for data acquisition and computing the FRFs. The frequency data is pro-
cessed using the python-toolbox pyFBS [3].

3.2 Isolation

In the isolation step, the dynamics of the joint is decoupled from the system’s dynamics. In a quasi-static method,
the joint is assumed to only act as stiffness and damping. Here, Inverse Substructuring is used. This is preferred
due to its simplicity as it requires only a single measurement campaign on the assembled system. If the joint
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presents internal dynamics, i.e. with mass-influence, a dynamic decoupling must be performed. This requires
measurements on the assembled system and on the isolated subsystems. Here, Primal Decoupling is used. In
order to later validate the quasi-static assumption for the joint model in the inverse substructuring, the authors
suggest to compare the results with the joint identification results obtained by a dynamic decoupling approach.

3.2.1 Inverse Substructuring

Measure assembly AJB Virtual Point
Transformation Inversion Inverse Substructuring

ZAJB
qm =

�

Y AJB
qm

�−1

Y AJB
qm

Y AJB
uf ZAJB

2,2 =







ZA
2A,2A
+ Z J

2A,2A
Z J

2A,2B

Z J
2B ,2A

ZA
2B ,2B

+ Z J
2B ,2B







Figure 5: Inverse Substructuring.

Inverse Substructuring uses the dynamic stiffness-matrix of the assembled system: The assumptions are that
there is no cross-coupling between connections dofs and no joint dynamics (i.e. no joint mass, see section 2.1.3):

Z J
2A,2A

= −Z J
2A,2B

= −Z J
2B ,2A

= Z J
2B ,2B

, Z J
2,2 =

 

−Z J
2A,2B

Z J
2A,2B

Z J
2B ,2A

−Z J
2B ,2A

!

.

The upper right and lower left blocks in ZAJB should be the same for an ideal system. In real-life experiments,
this is not exactly fulfilled. For this setup, the upper right and lower left blocks agree well, details can be found in
fig. 23 of appendix A. For this reason, only entries from the upper right block matrix are shown in this section.

The isolation procedure explained in section 2.1.3 is summarized in fig. 5.
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Figure 6: Joint dynamics from Inverse Substructuring for translational dofs.
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Figure 7: Joint dynamics from Inverse Substructuring for rotational dofs.

Figure 6 shows the isolated direct dynamic stiffness for the translational dofs. Direct stiffness in this sense
describes the driving point dynamic stiffness, so for excitation and response in the same direction i.e. values on
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Figure 8: Joint dynamics from Inverse Substructuring for cross-coupling stiffness compared to direct (diagonal) stiffness.
Direct stiffness values are drawn as a thick line.

the diagonal of Z J
qm. For the x -direction, in the frequency range between 500 and 1300 Hz the curves are very flat

and undisturbed from dynamic peaks/spuriosity. The phase is constant and very close to zero in this region. The
results for y and z-direction stiffness are flat in an even larger region than the x -direction stiffness curve. Figure 7
shows the direct dynamic stiffness for the rotational dofs. The rotational stiffness in ϕx has a large flat region like
the translational stiffnesses. The directions ϕy and ϕz have a narrower band with flat stiffness highlighting the
limited controllability and observability band for these interface DoFs. It is assumed that the dynamics of the joints
cannot be well observed in these directions for the current setup. In a parametrization step, only the limited flat
regions will be used. The range exhibiting (probably spurious) dynamics

The stiffness curves, shown in figs. 6 and 7, are subject to large disturbances for low frequencies. Results for
under 100 Hz are not usable, although the original measured FRFs still have a good coherence in that region. This
behavior can be explained by a bad conditioning of the method and the processing in the low frequency region. A
similar effect can be seen in rubber joint identification, for example in [10] although not as pronounced as in this
case. Indeed, for low frequencies, the assembled system behaves like a rigid body. The joint is not adequately
activated and thus cannot be accurately observed. This limitation for the low frequency range is not relevant
for the presented methodology, because later in the parametrization step, a constant stiffness and damping will
be assumed to be representative for the contact properties (non frequency-dependent behavior), which seems
acceptable for the type of joint under analysis, see section 3.3. This procedure is validated in section 3.4.

As explained above, one assumption for Inverse Substructuring is that there is no cross-coupling between the
dofs for a given input of the admittance matrix of the joint.. In fig. 8, the magnitude of the translational stiffness
are shown. The direct stiffness curves are highlighted with a thick line. The rotational stiffness and the coupling
between rotational and translational stiffness are not directly compared. For rotation-translation coupling, the units
are different and thus these curves are always hard to compare. More extensive results can be found in fig. 23
of appendix A. It is expected that the cross-coupling terms are order of magnitude lower than the direct stiffness
terms: In this figure, it can be seen that the cross-coupling terms are clearly lower than the direct stiffness terms
in the relevant flat regions. Only in the regions polluted by spurious dynamics, this is not true. These regions are
not used to parametrize the stiffness and thus, do not influence the result. Also, in section 3.4 it can be shown that
the system can be well represented even when neglecting the cross-coupling terms.

3.2.2 Comparison with Primal Decoupling

To verify the applicability of the Inverse Substructuring method, its results are compared to the decoupled stiffness
using Primal Decoupling. In Primal Decoupling the joint is modeled as a full dynamic component, i.e. it can include
mass.

Primal Decoupling requires measurement on the assembled system and additionally also measurements of the
individual substructures. The joint stiffness is obtained by subtracting the dynamic stiffness of the substructures
from the assembled system, see eq. (3). See fig. 9 for a summary of the procedure.

Comparisons for the results for the translational and rotational dofs are given in figs. 11 and 12. The explanation
on how the coefficients are extracted from the joint dynamics matrix is clarified in fig. 10. Both methods use the
same set of measurements on the assembled system. This enables a direct comparison without additional sources
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Figure 10: Decoupled joint matrix Z J
qm. Entries in the anti-diagonal blocks are the same as for inverse substructuring. The

cells marked in black and blue are shown in figs. 11 and 12.

of inaccuracies/errors due to repeatability of the experiments. The comparisons only show driving point dynamic
stiffnesses, i.e. direct stiffnesses Z J

2A,2A
. The anti-diagonal blocks (Z J

2A,2B
and Z J

2B ,2A
) are the same in primal

decoupling as in inverse substructuring, because these are not changed by the decoupling.
In the translational dofs, the results from both methods agree very well. For the rotational dofs, there is some

difference. In the rotation with ϕx , both methods give good, matching results. The rotation around ϕy does not
agree well between the methods. In ϕz , the results agree in a narrow frequency range. As seen in the previous
section, section 3.2.1, rotational dynamics have been shown to be more difficult to isolate, especially in ϕy and
ϕz directions, which are rotations around axes perpendicular to the bolt axis. As seen above in section 3.2.1 the
observability of the rotation is worse than the translations in this setup.

For the translational directions and for the rotation with ϕx , there are again large frequency regions with con-
stant values. This means that the joint does not show dynamic behavior. Also the good agreement between the
Inverse Substructuring and the Primal Decoupling further confirms the validity of neglecting the joint dynamics.
This means the joint can be reliably modeled by a stiffness and damping contribution in the considered frequency
range.

Comparing the experimental effort, inverse substructuring is far superior to primal decoupling as it only requires
measurements on the assembled system, but not of the individual subsystems. In this section, it has been shown
to give equivalent results. Thus, Inverse Substructuring is the preferred method for isolating the joint dynamics in
the presented example.
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3.3 Parametrization

Results from decoupling
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Z J
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Figure 13: Parametrization: Identification of the parameters of the selected joint model.

The joint is modeled using a classical physical-based approach with stiffness and viscous damping: Z J
ii =

ki + jΩci . The stiffness matrix of the joint is assumed to have only diagonal entries, neglecting cross-coupling
between dofs, complying with the assumptions used for Inverse Substructuring.

The procedure for parametrization is given in fig. 13. The parametrization is performed only for the diagonal en-
tries of the dynamic stiffness, for each direction individually. A clean frequency range, without spurious peaks and
other dynamic effects, is selected manually, but an automatic procedure could be implemented to make the pro-
cess more efficient. For the selected region, a least-squares fit (using the python function scipy.optimize.curve_fit)
is performed fitting separately the real and imaginary parts of each dynamic stiffness Zii .

3.3.1 Parametrization of the stiffness

Figure 14 shows the real part of the decoupled translational stiffness in black. Indicated in orange with horizontal
lines is the identified stiffness value for each direction. The translational stiffness perpendicular to the bolt axis
(y , z) and the rotational stiffness around the bolt axis (ϕx ) can be easily identified because of the large frequency
regions with clean real parts. The stiffness values for y and z are similar. This is expected, because the bolted
connection is rotationally symmetric around the bolt axis. Thus, the stiffnesses perpendicular to the bolt axis
should be equal. The translational stiffness in the bolt axis (x ) and the rotational stiffnesses with ϕy and ϕz offer
a more challenging identification. It is expected that the stiffness values for ϕy and ϕz should be similar due to
the joint’s symmetry, which is not validated by the experimental results. This may be due to the poor identification
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Figure 14: Parametrization of the direct stiffness.

in these directions or due to asymmetric behavior of the joint because of joint preload, e.g. by gravity.

3.3.2 Note about Damping

The identification of the damping fails in giving clear quantitative values. The imaginary part of Z is very close to
zero and even crosses zero, switching signs, which indicates very low damping values. Due to this, the measure-
ment noise has a rather large influence on the damping identification. Figure 15 shows damping identification for
the z-direction exemplarily, which clearly gives unsatisfactory results.
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−2 · 107

0

2 · 107

f /kHz

Im
(Z
)/
�

N m

�

full data
fitted data

Figure 15: Example of damping identification for the z-direction.

The noise floor in an experimental setting will commonly hinder the identification of a very low damping. Damp-
ing values may still be retrieved if a further model updating procedure with a numerical approach is followed.
However, doubts regarding the relevance of having such damping in the joint arise if these do not contribute
significantly in the dynamics of the assembled system.

The low damping assumption can be validated by investigating the modal damping of the modes of the assem-
bled system. The modal parameters are assessed from the VP-transformed FRF matrix of the assembled system
YAJB

qm . Only the driving point FRF for excitation and response in x -direction are considered. An LSCF-identification
(Least-Squares Complex Frequency) is used in the pyEMA-toolbox [17]. Figure 16 shows the amplitude of the
considered FRF with the modal damping of the modes written near the corresponding peaks.

The damping values of the assembled system are very low, which concludes that the damping of the joint must
also be very low.
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corresponding to the different peaks, here given as accelerance.

3.3.3 Repeatability

Repeatability is checked by comparing results on the system before and after a re-assembly. The isolation step
with Inverse Substructuring and the parametrization step are repeated. The resulting stiffnesses are summarized
in table 2.

Table 2: Identified joint stiffness for two measurement sets. The system was disassembled and reassembled between the
measurements.

stiffness stiffness change
first measurement set second measurement set in stiffness

kx 2.50× 108 N m−1 3.08× 108 N m−1 +23%
ky 1.54× 108 N m−1 1.55× 108 N m−1 +1%
kz 1.61× 108 N m−1 1.59× 108 N m−1 −1%

kϕx
5.10× 103 N m rad−1 4.66× 103 N m rad−1 −8%

kϕy
4.02× 103 N m rad−1 4.97× 103 N m rad−1 +24%

kϕz
6.30× 103 N m rad−1 5.67× 103 N m rad−1 −10%

It can be seen that repeatability of the translational dofs y and z (perpendicular to the bolt axis) is very good,
while there are some differences in the other directions. This can be explained by the overall difficulties in clearly
isolating and parametrizing the stiffness in these directions, which also has been commented in the previous
sections.

3.3.4 Summary of the parametrization

The frequency range for the parametrization has to be selected manually, looking for clean regions in the identified
dynamic stiffnesses. Estimation of the stiffness works very well for the translational directions, especially for y
and z direction. Estimation for the rotational stiffnesses has larger uncertainty. The damping cannot be reliably
estimated for the given case, as it appears to be too low and cannot be distinguished form other measurement
uncertainties propagating through the substructuring procedure. More advanced methods, like model updating,
are necessary to parametrize the damping, even if the distinction between joint and structure damping will be chal-
lenging for these scenarios. Here, the joint is parametrized as uncoupled three translational and three rotational
stiffnesses without damping.

3.4 Validation

Here, the identified joint parameters and measurement of the substructures A, B are used to re-construct the
assembled system FRFs using a primal coupling procedure similar to section 2.1.2. The results of the coupling
are compared to measured FRFs of the assembly. This procedure is performed for the original system AJB and
for a slightly modified system A∗JB.
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Figure 17: Procedure for validation.

First, validation is performed using the original system AJB. See the summary of the procedure in fig. 17
The substructures A and B are measured individually and a VPT is performed. The FRFs are inverted to obtain

the dynamic stiffnesses ZA
qm,ZB

qm. The stiffness matrix of the joint is called Z̃ J
qm. These dynamic stiffness matrices

are assembled by primal coupling. The resulting dynamic stiffness of the the assembled system is inverted to

obtain the FRFs in terms of the VP-coordinates: ỸAJB
qm =

�

Z̃AJB
qm

�−1
.

These reconstructed FRFs are compared with the directly measured FRFs of the assembled system in terms
of VP-coordinates YAJB

qm .
To assess the robustness/validity of the isolated joint properties, the identified stiffnesses values are slightly

changed and the new assembled predictions evaluated. For this, two additional reconstructed systems are built
with a halved (Z̃ J

qm,half = Z̃ J
qm/2) and doubled (Z̃ J

qm,double = 2 · Z̃ J
qm) joint stiffness. If the identified joint dynamics

are meaningful, the results should clearly worsen with the altered stiffness.
The magnitude of the FRFs are given as comparisons for different dofs in Figures 18a and 18b.
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Figure 18: Comparison of original measured FRF YAJB
qm with reconstructed FRFs for validation.

It can be seen in figs. 18a and 18b that the reconstructed FRF is very close to the measured FRF. Furthermore,
the joint stiffness deviations with factor two, half or double, show definitely worse prediction results.

This analysis also indicates that it would also be possible to further tune the values of the identified stiffnesses to
have a better match between the reconstructed FRFs of YAJB

qm and the measured once. However, the discrepancies
seen in fig. 18 could also come from e.g. small measurements errors of the FRFs of A and B used in the assembly,
it is not clear if a further tuning would truly yield more accurate joint parameters.

It is concluded that the reduction of the joint model to three translational and three rotational constant stiffnesses
is acceptable. The damping of the joint is negligible, as it does not significantly contribute to the damping of the
assembly.

3.4.2 Cross-Validation with Altered System

Now, substructure A is slightly changed by adding an additional mass to it. The new substructure is called A?, see
fig. 20a. In fig. 20b, lower eigenfrequencies of A∗JB can be seen compared to AJB, the change is visible in every
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Figure 20: System A∗JB with additional mass added to substructure A.

peak. Overall dynamic behavior is still similar. The contact interface remains unchanged.
In the previous section, the identified dynamic stiffness Z̃ J (from AJB) was used to reconstruct AJB from

substructures A and B with Z̃ J . Now, in the cross-validation the identified dynamic stiffness Z̃ J (from AJB) is used
to reconstruct A∗JB from substructures A∗ and B with Z̃ J . This procedure checks if the identified stiffness can be
transferred to another system.

Figure 21 shows a comparison of the measured and reconstructed FRFs. The reconstructed |YA∗JB
qm | is similar

to the measured curve. In some non-driving point measurements, see fig. 21c, the anti-resonances are shifted or
even skipped, which can be seen in the box in fig. 21c. In the which can bee seen specifically. The resonance posi-
tions always agree well. For a scaling of the joint stiffness with a factor 2 the correlation between the reconstructed
system and the measured one are clearly worse.

The transferability of the obtained joint parameters has been validated. The identified joint dynamics is truly
a property of the joint alone, independent from the substructures. However, the system used for cross-validation
was only slightly modified from the original system. An even stronger prove of the transferability would be the
application of the identified joint parameters to a completely different system with the same bolted joint. Care must
be taken that the joint parameters are the same in the new configuration. Many factors, like e.g. mass loading or
preload of the interface, can influence the dynamics of the joint.
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Figure 21: Comparison of measured FRF of the altered system YA∗JB
qm with reconstructed FRFs for cross-validation.

3.5 Variation of the Bolt Torque

In a new experiment on the modified system A∗JB, the bolt torque is varied. Isolation results for the original torque
level and for a significantly lower torque level (Mlow ≈ Moriginal/3) are compared. The results are presented in
fig. 22, where the real part of the isolated joint FRFs are presented for the translational directions. The real part
corresponds to the stiffness of the joint. The results for rotational dofs are not shown here, because these results
are less clear.
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Figure 22: Real part of the isolated joint FRF for different torque levels

Stiffness in y and z-directions is lower for a lower bolt torque. A lower bolt torque reduces the preload in the
bolted interface, which decreases the stiffness of the interface. But, the influence of the torque on the stiffness
is still rather low, see the absolute values in fig. 22. For the stiffness in x -direction (along the bolt axis), there is
no clear trend between torque and resulting joint stiffness. Since changes in impedance for the x -direction are in
same order of magnitude of repeatability uncertainty, shown in section 3.3.3, no hard conclusion with the performed
measurements can be made. The joint must be defined more strictly in the future to ensure good control.
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4 Conclusion and Outlook

4.1 Conclusion

A robust procedure for the identification of bolted joints using frequency-based substructuring was presented on a
real-life experimental application.

Inverse Substructuring gives good results for the analyzed case and only requires FRF measurements of
the assembled system, but not of the individual substructures. The applicability of Inverse Substructuring was
validated by a comparison with Primal Decoupling. The joint stiffness can be detected and identified. Damping
can be considered as very small and was neglected in this case. In a validation step, it is shown that the original
system can be well represented by the identified stiffness. In the cross-validation step, the transferability of the
identified joint parameters to a slightly altered system is presented.

There are some limitations to the presented methodology. Low damping cannot be estimated quantitatively
with the proposed isolation techniques. There is some uncertainty in the positioning of the impacts and sensors
that can have an influence on the substructuring prediction, especially for rotational dofs. The effects of different
torque levels was not assessed in details. There may be many effects that influence the joint stiffness that cannot
be clearly separated yet, e.g. changing of the tribology due to assembly and disassembly or run-in effects. It is
expected that preload of the joint has a larger influence, however, the preload-torque relationship is not clear.

4.2 Outlook

In further studies, the experimental procedure can be improved by using more sensors at the interface to improve
the VPT and using an automatic impact hammer [14], to better control the impact positions. To get statistically
relevant results for a parameter study, large measurement campaigns are necessary. A refined protocol for the
experiments should be used to improve repeatability and to clearly isolate the effect of changes to different contact
parameters.

To improve the decoupling, additional sensor data away from the interface, commonly called internal dofs [6,
25], can be used. More elaborate methods for decoupling can be used, like [23], which uses singular vector
decomposition to smooth the processed measured data. Damping identification could be improved by model
updating with a numerical model of the system, using the obtained stiffness and damping as a starting point for
the optimization process, similar to [22].
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A Appendix: Detailed results

In the appendix, additional figures for the results presented above, are given. Figure 23 gives a comparison of
Primal Decoupling and Inverse Substructuring results from sections 3.2.1 and 3.2.2.

Figure 24 shows the validation results from section 3.4 and fig. 25 shows the cross-validation results from
section 3.4.2.
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