
SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY — INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

On the Optimal Linear Contraction Order of
Tree Tensor Networks, and Beyond

Mihail Stoian

SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY — INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

On the Optimal Linear Contraction Order of
Tree Tensor Networks, and Beyond

Über die optimale lineare
Kontraktionsreihenfolge von

Tree-Tensor-Networks und weitere Aspekte

Author: Mihail Stoian
Supervisor: Prof. Dr. Christian B. Mendl
Advisor: Richard Milbradt, M.Sc.
Submission Date: 15.05.2023

I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

Munich, 15.05.2023 Mihail Stoian

Acknowledgments

First of all, I would like to thank Prof. Dr. Christian B. Mendl and Richard Milbradt for
the great lecture on tensor networks. Second, I would also like to thank Prof. Dr. Thomas
Neumann and Bernhard Radke for the remarkable lecture on query optimization. The
connections in this thesis would not have been possible without excellent teaching from both
sides.

Finally, I would like to thank my parents who never stopped encouraging me to push my
boundaries.

Abstract

Tensor networks are nowadays the backbone of classical simulations of quantum many-body
systems and quantum circuits. This is because one can contract a corresponding tensor
network, which also circumvents the memory problem that often arises in large simulations.
While tensor contraction itself is a rather simple operation, the order in which the tensors of
the network are contracted significantly impacts the time and memory performance. For this
reason, one aims at finding a priori an optimal contraction order under a cost function that
models the execution time of the whole network contraction.

However, there is a caveat: the problem of finding the optimal contraction is NP-hard. As a
consequence, most works either improve over the exponential algorithm or fall back to greedy
approaches. We argue that this is a defeatist position and show that we can indeed find
optimal contraction orders for a more restrictive class of tensor networks. Namely, we prove
that tree tensor networks accept optimal linear contraction orders. The result comes from a
fascinating yet non-trivial link between database join ordering and the presented problem. To
this end, we adapt a decades-old algorithm to the context of tensor networks.

Beyond the optimality results, we explore whether ad-hoc join ordering techniques aid
in providing near-optimal contraction orders for general tensor networks. We empirically
validate that our optimizers guarantee robustness for tree tensor networks.

This work extends and builds upon our preprint [1], providing a more in-depth exposition
of the optimality result. Moreover, we extend its section on near-optimal optimizers, by
providing a thorough study of their effectiveness for tensor networks.

iv

Kurzfassung

Tensornetzwerke sind heute das Rückgrat klassischer Simulationen von Quanten-Vielteilchen
systemen und Quantenschaltungen. Das liegt daran, dass man ein entsprechendes Tensornetz
kontrahieren kann, wodurch auch das Speicherproblem umgangen wird, das bei großen
Simulationen oft auftritt. Während die Tensorkontraktion selbst eine recht einfache Operation
ist, hat die Reihenfolge, in der die Tensoren des Netzwerks kontrahiert werden, erhebliche
Auswirkungen auf die Zeit- und Speicherleistung. Aus diesem Grund versucht man, a
priori eine optimale Kontraktionsreihenfolge unter einer Kostenfunktion zu finden, die die
Ausführungszeit der gesamten Netzwerkkontraktion modelliert.

Es gibt jedoch eine Einschränkung: Das Problem, die optimale Kontraktion zu finden, ist NP-
hart. Infolgedessen verbessern die meisten Arbeiten entweder den exponentiellen Algorithmus
oder greifen auf gierige Ansätze zurück. Wir argumentieren, dass dies eine defätistische
Position ist und zeigen, dass wir tatsächlich optimale Kontraktionsreihenfolgen für eine
restriktivere Klasse von Tensornetzen finden können. Wir beweisen nämlich, dass Baum-
Tensornetzwerke optimale lineare Kontraktionsreihenfolgen akzeptieren. Das Ergebnis ergibt
sich aus einer faszinierenden, aber nicht trivialen Verbindung zwischen der Optimierung der
Join-Reihenfolge in Datenbanken und dem vorgestellten Problem. Zu diesem Zweck passen
wir einen jahrzehntealten Algorithmus an den Kontext von Tensornetzen an.

Über die Optimalitätsergebnisse hinaus untersuchen wir, ob gängige Techniken zur Opti-
mierung der Join-Reihenfolge dazu beitragen, nahezu optimale Kontraktionssequenzen für
allgemeine Tensornetzwerke zu liefern. Wir validieren empirisch, dass unsere Optimierer
Robustheit für Baum-Tensornetzwerke garantieren.

Diese Arbeit erweitert und baut auf unserem Preprint [1] auf, indem sie eine tiefer gehende
Darstellung des Optimalitätsergebnisses liefert. Außerdem erweitern wir den Abschnitt über
nahezu optimale Optimierer, indem wir eine gründliche Untersuchung ihrer Effektivität für
Tensornetzwerke durchführen.

v

Contents

Acknowledgments iii

Abstract iv

Kurzfassung v

1 Introduction 1

2 Preliminaries 3
2.1 Tensor Networks . 3

2.1.1 Tensor and Network Contraction . 3
2.1.2 Contraction Cost . 4
2.1.3 Contraction Order . 4
2.1.4 Contraction Tree . 5

2.2 Query Optimization . 6
2.2.1 Query Graph . 6
2.2.2 Join Ordering . 6

2.3 Tensor Contraction as Relational Join . 7
2.3.1 Commonalities . 7
2.3.2 Discrepancies . 8

2.4 Cost Function . 8

3 Algorithm 9
3.1 Precedence Graph . 9
3.2 ASI Property . 10

3.2.1 Motivation . 10
3.2.2 Definition . 11
3.2.3 Simplifications . 12
3.2.4 Proof . 13

3.3 TensorIKKBZ . 14
3.3.1 Pseudocode . 15
3.3.2 Example . 17
3.3.3 Time Complexity . 18
3.3.4 Discussion . 18

vi

Contents

4 Beyond Optimality 19
4.1 Linearized Dynamic Programming . 19

4.1.1 Pseudocode . 20
4.2 Iterative Dynamic Programming . 21

4.2.1 Pseudocode . 22
4.3 General Tensor Networks . 23

5 Evaluations 24
5.1 Tree Tensor Networks . 24

5.1.1 FTPS . 25
5.1.2 TTN . 25

5.2 General Tensor Networks . 28
5.2.1 PEPS . 28
5.2.2 Sycamore . 29

6 Related Work 31
6.1 Algorithms . 31
6.2 Unifying Framework . 32
6.3 Open Problems . 32

7 Conclusion & Future Work 33

List of Figures 34

Bibliography 35

vii

1 Introduction

Tensor networks are nowadays an active interdisciplinary field of research. This means not
only that they benefit other fields [2, 3, 4, 5], but also that other fields contribute to their
further development [6, 7]. Even more surprising is that such fields are even foreign to
theoretical physics, the field in which tensor networks were originally developed. On the
other hand, with their popularity comes a natural responsibility: in addition to their general
applicability, tensor network methods are expected to be efficient.

In our context, this amounts to an efficient network contraction operation. It can be thought
of as a step-wise transformation of a tensor network into a single tensor. A single step consists
of contracting two tensors. This step is repeated until a single tensor remains, which is
the result of the network contraction. Although the final result is invariant to the order in
which the pairwise tensor contractions are performed, the overall performance is significantly
affected. For this reason, one aims at finding a priori an optimal contraction order under a
cost function that models the execution time of the whole network contraction.

However, there is a caveat: finding the optimal order is an NP-hard problem [8]. In other
words, it is highly unlikely that we will find an efficient, i.e., polynomial-time, algorithm that
solves the problem. Therefore, one must settle for a mixture of exponential algorithms for
small-size instances, e.g., n ≤ 20, and otherwise hope for good contraction orders. For this
reason, previous research has focused on the latter part, trying to find better heuristics.

We argue that this is a defeatist position and show that we can indeed find optimal
contraction orders for a more restrictive class of tensor networks. Instead of resorting to
heuristics, we ask ourselves the following question:

Which classes of tensor networks accept optimal contraction orders?

A first answer is represented by chain tensor networks. In fact, its solution is one of the
introductory textbook examples for dynamic programming [9] (on which we provide more
details in Sec. 4.1). The answer we give in this work considers a larger class, namely that of
tree tensor networks, for which we show that they accept optimal linear contraction orders.

The result comes from a fascinating yet non-trivial link between database join ordering and
our problem. In short, a database query optimizer aims at finding the order in which the
joins are to be performed. Similar to our context, this order highly influences the performance
of query execution. As a result, much research has been undertaken to develop optimal
algorithms for restrictive input classes and otherwise near-optimal algorithms that behave
well in practice. We will expand on this connection in the next chapter.

1

1 Introduction

The thesis is structured as follows: Chapter 2 introduces general definitions used in tensor
networks and query optimization. Afterward, in Chapter 3, we introduce the TensorIKKBZ
algorithm and prove that it outputs optimal linear contraction orders for tree tensor networks.
In Chapter 4, we study whether ad-hoc join ordering techniques aid in proving near-optimal
contraction orders for general tensor networks. The algorithms are then evaluated in Chapter 5.
Finally, we draw conclusions and discuss future work in Chapter 7.

2

2 Preliminaries

2.1 Tensor Networks

In this work, we regard tensors from a computational perspective, i.e., we treat a tensor as a
multi-dimensional array and define it as an element of Cn1×...×nd , where d is the rank of the
tensor. A tensor can be visualized by means of a graphical notation, where the dimensions are
pictured as legs. An example of a rank-five tensor in graphical notation is shown in Fig. 2.1.

Figure 2.1: A rank-five tensor

A tensor network is defined as a set of n tensors, where we represent tensors as vertices
and the legs along which the tensors are to be contracted as edges. Note that some tensors
could have open legs, represented by edges with only one endpoint. In Fig. 2.2, we draw a
tensor network of three tensors in graphical notation. Reading from left to right, both the first
and last tensors have open legs. While the second and third tensors share only one common
leg, the first and second tensors share two legs.

Figure 2.2: A tensor network of three tensors

2.1.1 Tensor and Network Contraction

Let T[1] ∈ Cp1×...×pa×q1×...×qb and T[2] ∈ Cq1×...×qb×r1×...×rc be two tensors. Contracting T[1]

and T[2] results in another tensor T[1,2] which preserves only the common legs, i.e., T[1,2] ∈
Cp1×...×pa×ra×...×rc . This corresponds to a product over the common legs, i.e.,

T[1,2]
i1,...,ia,k1,...,kc

= ∑
j1,...,jb

T[1]
i1,...,ia,j1,...,jb

T[2]
j1,...,jb,k1,...,kc

. (2.1)

To exemplify this, consider two matrices A ∈ Cp×q and B ∈ Cq×r. Their contraction is the
well-known matrix multiplication Ci,k = ∑

j
Ai,jBj,k (cf. Eq. 2.1), where C ∈ Cp×r.

3

2 Preliminaries

In applications, a contraction of the entire network is required. In Fig. 2.3, we visualize
such a contraction of a tensor network of four tensors. In this example, the result is a scalar,
as there are no open legs.

A

CB

D
→

A

CB

→ AB → A

Figure 2.3: Linear contraction order of a tensor network of four tensors

2.1.2 Contraction Cost

While the output of the tensor network is invariant to the order in which the individual
tensors are contracted, the execution time of the contraction is highly dependent on the chosen
order. The cost of contracting T[1] with T[2] is equal to c(T[1], T[2]) = ∏a

i=1 pi ∏b
j=1 qj ∏c

k=1 rk,
i.e., the product of the sizes of all legs involved in the operation. The reason for this is that
the number of scalar multiplications in a contraction operation is indeed equal to c(T[1], T[2]).
Consequently, the contraction cost of an entire tensor network is defined as the sum of all
contraction costs.

Note that the number of additions is not relevant, since they are executed significantly
faster by the CPU1. Moreover, for simplicity, we ignore the constants involved in multiplying
numbers in C. Strictly speaking, one complex multiplication requires four real multiplications.
However, the constants are not relevant to the minimization and can be neglected.

To exemplify the calculation, let us consider Fig. 2.3 again and calculate the network
contraction cost. For simplicity, assume all legs are of size 2. In the first step, the cost is
2 · 2 · 2 = 8, as there are three legs involved in the operation. Next, the contraction involves
all legs, hence the cost equals again 8. Lastly, the cost is 2 · 2, as there are two legs between
the remaining two tensors. Therefore, the contraction cost equals 8 + 8 + 4 = 20.

2.1.3 Contraction Order

Complementary to the cost function used, the structure of the contraction order has a similar
impact. As classified in [10], there are two types of contraction orders: linear and general. A
linear contraction order can only contract a fixed tensor with the others, while a general one
is allowed to contract the tensors in an arbitrary order. To exemplify their difference, let us
consider the network contraction in Fig. 2.3 again. There, we contract the tensor A each time

1The validity of this statement has changed considerably in recent decades. Modern architectures reduce the
speed difference between these two processes.

4

2 Preliminaries

A

CB

D
→

CB

D

→
D

C

→ D

Figure 2.4: General contraction order of a tensor network of four tensors

with one of its neighbors. Thus, this is a linear contraction order. In contrast, Fig. 2.4 shows
an example of a general contraction order for the same tensor network.

In this case, the two contractions between A and D, and B and C, respectively, are performed
separately. The final contraction is then carried out between the resulting tensors. Note that
the naming convention is not relevant, that is, we could rename the tensor representing the
contraction between A and D by A as well.

Due to their flexibility, general orders allow for an exponentially larger search space, which
makes them desirable in practical applications as they can provide better contraction costs.
However, for the same reason, they are also more difficult to optimize.

2.1.4 Contraction Tree

Complementary to contraction orders, contraction trees offer a more intuitive visualization of
the order in which the contractions are performed. Formally, a contraction tree is a binary tree
the leaves of which are the tensors of the network. Its internal nodes stand for the contractions
between the tensors represented by the left and right children, respectively.

We depict in Fig. 2.5 the contraction trees associated with the contraction orders in Fig. 2.3,
represented by contraction tree (1), and Fig. 2.4, represented by contraction tree (2), respec-
tively. For convenience, we refer to a contraction tree associated with a linear contraction
order as a linear contraction tree; similarly, we refer to a general contraction tree.

A D

C

B

(1)

A D C B

(2)

Figure 2.5: Contraction trees: (1) linear, (2) general

5

2 Preliminaries

2.2 Query Optimization

As pointed out in the introduction, the new results are only possible due to a surprising
connection to database query optimization. Database systems provide a mechanism for storing
tables and answering queries through a programming language called SQL (structured query
language). The underlying mathematical foundation is relational algebra which defines
operators on the tables [11].

2.2.1 Query Graph

For simplicity, we will assume that tables have only one column, i.e., can be represented as
a set of numbers. The relational operator we are interested in is the binary operator JOIN,
which takes two tables A and B as input and outputs another table C containing the values
that A and B have in common. A query can contain multiple joins and can therefore be
represented graphically as a query graph, where the vertices represent the relations, their labels
the sizes (cardinalities) of the tables, and the edges the joins between them. In Fig. 2.6, we
illustrate a query graph with five relations. The edge weights correspond to join selectivities,
and their definition will be introduced later in Sec. 2.3.

R1

(100)

R2

(20)

R3

(50)

R4

(10)

R5 (75)

0.9

0.2

0.5

0.1 0.8

Figure 2.6: A query graph of five relations

2.2.2 Join Ordering

The result of the query consists of a single table that represents the join between all the tables
present in the query. Joining the tables in the order specified by the user (by means of a
SQL query) can lead to slow execution times. Therefore, the goal of query optimization and
especially its subfield, join ordering, is to find or approximate the optimal execution order of
the joins when an optimal solution is infeasible.

From a complexity hardness perspective, the feasibility of finding the optimal order highly
depends on the shape of the query graphs. As a result, query graphs are grouped in several
classes, according to their hardness. Most notably, in this thesis we will mostly deal with
chain and tree queries, that is, query graphs having chain and tree shapes, respectively.

6

2 Preliminaries

2.3 Tensor Contraction as Relational Join

The reader can already notice the similarities between our problem and the one present
in join ordering. Indeed, the problems are almost identical: we can interpret a tensor
contraction as a relational join. As we will see in the next chapters, the cost function used in
query optimization is much more powerful, allowing us to “upgrade” decades-old database
algorithms for join ordering to optimize tensor contractions. At the end of this section, we
underpin the main differences which are to be considered when adapting join ordering
algorithms to tensor networks.

Note that this connection between these two problems has already been highlighted in
Dudek et al. [7], where the notion of tensor networks has been associated with factor graphs
as well. However, their work does not exploit any database algorithms but relies on graph
decompositions, specifically tree decompositions, which are solved by heuristics solvers.

2.3.1 Commonalities

Intuitively, the query optimizer, the database system component responsible for optimizing
the query, aims at a join order which minimizes the size of the intermediate tables created
to obtain the final result. To estimate these sizes, each join has an associated join selectivity
f , defined as f = |R▷◁S|

|R||S| . For instance, in Fig. 2.6, the selectivity between R1 and R2 is 0.9.
When there is no common attribute between R and S, the join becomes a cross-product. This is
similar to the outer tensor product, i.e., there is no common leg to contract the two tensors
over. Ideally, an optimizer should aim for finding solutions that could contain outer products,
as this allows for even more flexibility. We discuss the particularities of considering outer
products during optimization in Chapter 6, where we revisit well-known hardness results
from query optimization.

The equivalent of a contraction tree (Sec. 2.1.4) in query optimization is a join tree. A join
tree is a binary tree with join operators as inner nodes and relations as leaf nodes. The
established classes of join trees are left-deep, zigzag, and bushy, where the first two are
summarized as linear trees [12]. We illustrate a left-deep tree and a bushy tree, respectively,
in Fig. 2.7, as these are the only types we will need throughout this thesis. As the figure
already shows, they correspond to linear and general contraction trees, respectively, so we will
only present the results in terms of linear and general.

▷◁

▷◁

R1 R2

R3

(1)

▷◁

▷◁

R1 R2

▷◁

R3 R4

(2)

Figure 2.7: Join trees: (1) left-deep (linear), (2) bushy (general)

7

2 Preliminaries

2.3.2 Discrepancies

Despite all similarities between the two problems, there are several differences which, at first
sight, impede results in join ordering, notably optimality ones, to be applicable to tensor
networks:

1) Graphical Representation. One prominent difference lies in the graphical representation
of a tensor network and a query. In particular, the edge weights in a tensor network represent
the leg sizes of the tensors, while in a query graph, they represent the join selectivities that
are not directly part of the relations themselves, as is the case in tensor networks.

2) Contraction Cost. Orthogonal to the previous issue, there is another notable issue, which,
in particular, has to be considered in implementation. Namely, the contraction cost of a set S
of tensors depends on the choice of its subsets S1 and S2, where S = S1 ∪̇ S2. This is because
the contraction cost depends on the open legs of both S1 and S2, which might differ for a
different choice S′1 and S′2, with S = S′1 ∪̇ S′2. In contrast, in query optimization, the join cost
does not depend on this choice.

3) Open Legs. Another particularity of tensor networks is the presence of open legs.
Graphically, they are edges with only one end-point and persist in the tensor network. There
is no corresponding definition in query optimization.

4) Hyperedges. While rare in the context of query optimization, they have become a tool
for simplifying the query graph [13]. However, they are only a special type of hyperedge. In
particular, they are defined as an unordered pair (A, B), where A, B ⊆ V, the vertex set. On
the other hand, tensor networks allow arbitrary hyperedges.

In Chapter 3, we address the aforementioned issues by regarding the contraction cost of
two tensors from the perspective of query optimization.

2.4 Cost Function

The cost function to be minimized represents another commonality of both problems. Even
so, we dedicate a separate section to it, as we need its formal description for later reference.

The most commonly used cost function in tensor networks is defined as the total number
of scalar multiplications during all contraction steps, which we (informally) introduced in
Sec. 2.1.2. Similarly, in query optimization, the most common cost function is Cout, which
sums the sizes of all intermediate join results. Since both cost functions are the same, we will
refer to them collectively as C. Formally, C is defined as

C(T) =
{

0, if T is a single tensor

C(T[a]) + C(T[b]) + c(T[a], T[b]), if T = T[a]T[b].
(2.2)

Having introduced the necessary concepts, we are now ready to state the main result of
this thesis, namely an algorithm that computes the optimal linear contraction order of a tree
tensor network, i.e., a tree-shaped tensor network.

8

3 Algorithm

First introduced in [14] by Ibaraki and Kameda, the polynomial-time algorithm IKKBZ only
operates on tree queries and returns the optimal linear join tree without cross-products, under
the assumption that the cost function has the adjacent sequence interchange (ASI) property.
Translated in the context of tensor networks, this represents the optimal linear order for tree
tensor networks, where we disallow outer products. Consequently, if we can show that the
cost function of tensor contraction satisfies the ASI property, then we can directly employ
IKKBZ for tensor networks. Hence, in this chapter, we provide the proof that this is the case,
along with the full-fledged algorithm, called TensorIKKBZ, which finds the optimal linear
contraction order of tree tensor networks.

3.1 Precedence Graph

The main idea of the original algorithm stems from the observation that we work solely with
linear solutions. In a linear solution, we always start with a tensor and then sequentially
contract neighboring tensors. Moreover, as we work on tree-shaped networks, this naturally
imposes a precedence relation on the tensors of the network. To this end, we can consider
each tensor as the first element of the solution and thus root the tree in it. The subsequent
to-be-contracted tensors must adhere to the precedence relation, i.e., a child node must not
be contracted before its parent. An example of a precedence graph of a tree tensor network
is depicted in Fig. 3.1. In that example, the precedence graph enforces that T[4] → T[3] and
T[4] → T[2], i.e., T[4] should be contracted before T[3] and T[2], respectively. In the same
manner, we have T[2] → T[1] and T[2] → T[5].

To achieve optimality, the algorithm roots the tree network in each relation, solves the
ordering problem for the obtained rooted tree, and picks the solution which leads to the
minimum cost.

T[1] T[2]

T[3]

T[4]T[5]

1

5

2
6

T[4]

T[3]

5

T[2]

T[1]

1

T[5]

2

6Root in T[4]

Figure 3.1: Precedence graph of T[4] (right) is obtained by rooting the network (left) in T[4]

9

3 Algorithm

3.2 ASI Property

Another prerequisite for the optimality of the algorithm is the adjacent sequence interchange
(ASI) property of the cost function. Fortunately, our cost function C has this property, as we
shall prove in this section.

3.2.1 Motivation

Let us first motivate the benefit of having such a property by means of an example. Consider
the tree tensor network and one of its precedence graphs (that of T[1]) in Fig. 3.2, where T[1] ∈
Cp×q, T[2] ∈ Cp×r, T[3] ∈ Cr, and T[4] ∈ Cq. In the following, we denote by T[a,b] := T[a]T[b] the
contraction of two tensors T[a] and T[b].

T[1] T[2]

T[3]T[4]

p

q r

T[1]

T[2]

T[3]

r

p

T[4]

q
Root in T[1]

Figure 3.2: Precedence graph of T[1], where T[1] ∈ Cp×q, T[2] ∈ Cp×r, T[3] ∈ Cr, and T[4] ∈ Cq

In the following, we want to (manually) unearth a way to decide which of the following
linear contraction orders is better: T[1]T[2]T[4]T[3] vs. T[1]T[4]T[2]T[3]. Let us first calculate their
costs using Eq. 2.2 to recursively decompose the cost until we arrive at contractions between
individual tensors, as follows:

C(T[1]T[2]T[4]T[3]) = C(T[1]T[2]T[4]) + C(T[3]) + c(T[1,2,4], T[3])

= C(T[1]T[2]T[4]) + 0 + c(T[1,2,4], T[3])

= C(T[1]T[2]) + C(T[4]) + c(T[1,2], T[4]) + c(T[1,2,4], T[3])

= C(T[1]T[2]) + 0 + c(T[1,2], T[4]) + c(T[1,2,4], T[3])

= C(T[1]) + C(T[2]) + c(T[1], T[2]) + c(T[1,2], T[4]) + c(T[1,2,4], T[3])

= 0 + 0 + c(T[1], T[2]) + c(T[1,2], T[4]) + c(T[1,2,4], T[3])

= c(T[1], T[2]) + c(T[1,2], T[4]) + c(T[1,2,4], T[3])

= pqr + qr + r

10

3 Algorithm

C(T[1]T[4]T[2]T[3]) = C(T[1]T[4]T[2]) + C(T[3]) + c(T[1,4,2], T[3])

= C(T[1]T[4]T[2]) + 0 + c(T[1,4,2], T[3])

= C(T[1]T[4]) + C(T[2]) + c(T[1,4], T[2]) + c(T[1,4,2], T[3])

= C(T[1]T[4]) + 0 + c(T[1,4], T[2]) + c(T[1,4,2], T[3])

= C(T[1]) + C(T[4]) + c(T[1], T[4]) + c(T[1,4], T[2]) + c(T[1,4,2], T[3])

= 0 + 0 + c(T[1], T[4]) + c(T[1,4], T[2]) + c(T[1,4,2], T[3])

= c(T[1], T[4]) + c(T[1,4], T[2]) + c(T[1,4,2], T[3])

= pq + pr + r

When comparing both costs, i.e.,

pqr + qr + r ≤ pq + pr + r

⇐⇒ pqr + qr ≤ pq + pr

⇐⇒ pr(q− 1) ≤ q(p− r),

we observe an interesting pattern: the original inequality reduces to a simpler one which
only considers the tensors T[2] and T[4]. To see this, assume q > 1 and p > r, such that the
inequality sign is maintained. Then the inequality reduces to pr

p−r ≤
q

q−1 . Indeed, p and r are

the sizes of the legs of T[2], while q is the only leg of T[4]. Hence, a local decision is enough to
decide whether the order T[1]T[2]T[4]T[3] is better than T[1]T[4]T[2]T[3]. That is, we only need
the information about the tensors to be interchanged in order to make a global decision.

3.2.2 Definition

The pattern illustrated by the previous example is not arbitrary. It is the core idea behind the
ASI property [15], employed by the IKKBZ algorithm:

Definition 1 (ASI Property). Let A and B be two sequences and U and V two non-empty sequences.
We say a cost function C has the adjacent sequence interchange (ASI) property, iff there exists function
r such that the following holds

C(AUVB) ≤ C(AVUB) ⇐⇒ r(U) ≤ r(V)

if AUVB and AVUB satisfy the precedence constraints imposed by a given precedence graph.

Thus, a cost function C with ASI property allows us to use local comparisons based
on the rank function, i.e., r(U) ≤ r(V), to infer comparisons between global costs, i.e.,
C(AUVB) ≤ C(AVUB). The IKKBZ algorithm, therefore, makes extensive use of rank
comparisons to find optimal orders. Before we prove that C has the ASI property, we first
need to simplify the definition of C, as we deal with linear orders and tree-shaped tensor
networks only.

11

3 Algorithm

3.2.3 Simplifications

In the following, we reinterpret the contraction cost of two tensors. Namely, we attribute each
tensor T ∈ Cn1×...×nd a size, which amounts to the product of its leg sizes, i.e., |T| = ∏d

i=1 ni.
We can then rewrite c(T[1], T[2]) as

c(T[1], T[2]) =
a

∏
i=1

pi

b

∏
j=1

qj

c

∏
k=1

rk

=
∏a

i=1 pi ∏b
j=1 qj ∏b

j=1 qj ∏c
k=1 rk

∏b
j=1 qj

=
|T[1]||T[2]|

∏b
j=1 qj

,

(3.1)

where T[1] ∈ Cp1×...×pa×q1×...×qb and T[2] ∈ Cq1×...×qb×r1×...×rc . While this transformation
is trivial, it is one of the key ingredients in the process of adapting the IKKBZ algorithm
to tensor networks. To see why, note that this expression resembles the equation of join
selectivity f defined for query optimization (Sec. 2.2). Namely, we can now regard 1

∏b
j=1 qj

, i.e.,

the inverse product of the sizes of the common legs, as a join selectivity.
The definition of the ASI property (Def. 1) works on sequences. A sequence S represents

a permutation π of tensors which specifies in which order the tensors shall be contracted.
Since we deal with tree tensor networks and enforce that no outer products emerge, each
contraction takes place over a single leg. As such, we can rewrite the definition of C for
sequences as follows, where the empty sequence is marked with ϵ:

C(S) =

0, S = ϵ ∨ S = T[π1]

|T[πi]|, S = T[πi], i ∈ [n] \ {π1}
C(S1) +

∥T[S1]∥
|eS1,S2 |

C(S2), S = S1S2,

(3.2)

where T[S] is the tensor spanning the tensors of sequence S, ∥T[S]∥ is the size of T[S] without
the (single) leg to its parent in the precedence graph, and |eS1,S2 | is the size of the single leg
between T[S1] and T[S2]. Note that in a precedence graph, this edge will always lead to the
first tensor occurring in S2. Therefore, when it is clear from the context, we will write eS2

instead of eS1,S2 . With this notation, we can rewrite ∥T[S]∥ as |T
[S]|
|eS| (hence the natural notation

as norm).
This reformulation of C now allows us to easily prove that C satisfies the ASI property.

Before outlining the proof in the next section, we consider an identity for the norm in the
spirit of the reinterpretation introduced in Eq. 3.1. Namely, for the tensor T[1,2], i.e. the
contraction between T[1] and T[2], it holds that

∥T[1,2]∥ = ∥T
[1]∥∥T[2]∥
|eS1,S2 |

. (3.3)

12

3 Algorithm

This identity follows from the fact that the common leg represented by the edge eS1,S2 does
not matter for either the size or the norm of T[1,2]. We draw the attention of the reader familiar
with query optimization to the fact that this identity does not hold for join cardinalities.

3.2.4 Proof

Lemma 1. C satisfies the ASI property.

Proof. We recursively expand C(AUVB) and C(AVUB) using Eq. 3.2:

C(AUVB) ≤ C(AVUB)

(3.2)⇐⇒ C(AUV) +
∥T[AUV]∥
|eAUV,B|

C(B) ≤ C(AVU) +
∥T[AVU]∥
|eAVU,B|

C(B)

As both T[AUV] and T[AVU] represent the same tensor and both eAUV,B and eAVU,B refer to the
same leg, we have

⇐⇒ C(AUV) ≤ C(AVU)

(3.2)⇐⇒ C(AU) +
∥T[AU]∥
|eAU,V |

C(V) ≤ C(AV) +
∥T[AV]∥
|eAV,U |

C(U)

(3.2)⇐⇒ C(A) +
∥T[A]∥
|eA,U |

C(U) +
∥T[AU]∥
|eAU,V |

C(V) ≤ C(A) +
∥T[A]∥
|eA,V |

C(V) +
∥T[AV]∥
|eAV,U |

C(U)

⇐⇒ ∥T[A]∥
|eA,U |

C(U) +
∥T[AU]∥
|eAU,V |

C(V) ≤ ∥T
[A]∥
|eA,V |

C(V) +
∥T[AV]∥
|eAV,U |

C(U)

Note that ∥T[AU]∥ = ∥T[A]∥∥T[U]∥
|eAU | , due to Eq. 3.3. Analogous for ∥T[AV]∥. Hence, we obtain

⇐⇒ ∥T[A]∥
|eA,U |

C(U) +
∥T[A]∥∥T[U]∥
|eAU,V ||eA,U |

C(V) ≤ ∥T
[A]∥
|eA,V |

C(V) +
∥T[A]∥∥T[V]∥
|eAV,U ||eA,V |

C(U)

⇐⇒ C(U)

|eA,U |
+

∥T[U]∥
|eAU,V ||eA,U |

C(V) ≤ C(V)

|eA,V |
+

∥T[V]∥
|eAV,U ||eA,V |

C(U)

13

3 Algorithm

Next, since AUV and AVU must both satisfy the constraints of the precedence graph due to
Def. 1, there is no edge between U and V. This is because the underlying precedence graph
is a rooted tree, so we cannot have a directed edge between U and V and between V and U at
the same time, otherwise, a cycle would form. This implies that the edge eAU,V is simply the
edge eA,V . Analogously for eAV,U .

⇐⇒ C(U)

|eA,U |
+

∥T[U]∥
|eA,V ||eA,U |

C(V) ≤ C(V)

|eA,V |
+

∥T[V]∥
|eA,U ||eA,V |

C(U)

⇐⇒ C(U)

|eA,U |
(1− ∥T

[V]∥
|eA,V |

) ≤ C(V)

|eA,V |
(1− ∥T

[U]∥
|eA,U |

)

⇐⇒ C(U)

|eA,U |
(
|eA,V |
|eA,V |

− ∥T
[V]∥
|eA,V |

) ≤ C(V)

|eA,V |
(
|eA,U |
|eA,U |

− ∥T
[U]∥
|eA,U |

)

⇐⇒ C(U)(|eA,V | − ∥T[V]∥) ≤ C(V)(|eA,U | − ∥T[U]∥).

First, observe that the inequality reduces to one where solely functions of U and V are
involved. Hence, the ASI property is satisfied. As for the rank function, we can define
r(S) := C(S)

|eS|−∥T[S]∥ , where eS is the unique edge between S (strictly speaking, the first tensor
occurring in S) and its parent in the precedence graph. However, this is not allowed because
the sign of the inequality is reversed when the denominator is negative. Therefore, we write
r(S) as a symbolic fraction, letting n(S) := C(S) and d(S) := |eS| − ∥T[S]∥ be its numerator
and denominator, respectively. Thus, we evaluate r(U) ≤ r(V) as n(U) · d(V) ≤ n(V) · d(U).

3.3 TensorIKKBZ

In this section, we adapt the IKKBZ algorithm to tensor networks using the terms introduced
earlier. In the sequel, we refer to the adapted algorithm as TensorIKKBZ.

The algorithm treats each tensor tensor T[i] separately, by executing two consecutive phases:
First Phase: Build the precedence graph of T[i], as described in Sec. 3.1.
Second Phase: Compute the optimal permutation that reflects the order in which the

tensors should be contracted. The process of transforming the precedence graph into a
permutation is called linearization and can be regarded as a recursive method: once the
subtrees of the children are linearized, we can obtain the linearization of the whole tree by
interleaving (merging) the tensors according to their ranks. The invariant is that the ranks of
the tensors must always be in increasing order.

After performing the linearization of a subtree rooted in T[u], it is possible that the rank of
T[u] is greater than the rank of the first tensor in the linearization, hence violating the above
invariant. To this end, the notion of contradictory or conflicting sequences comes into play:
whenever the precedence graph requires A → B, but r(A) ≥ r(B), A and B must be fused
into a new single node. This node represents a compound tensor that comprises all tensors in
A and B in that order. This operation, called normalization, is applied after interleaving the
linearizations and preserves the invariant that the ranks in the linearization are in increasing

14

3 Algorithm

order. Thus, the only contradictory sequences we might obtain are between the root of a
subtree and the first (compound) tensors in the result of the merge step. In that case, several
normalization steps are applied, until no contradictory sequence is due.

To see why normalization steps are required for optimality, consider the following Lemma
(for reference, see [15, Theorem 2]).

Lemma 2. Let {A, B} be a compound tensor. If A→ B and r(A) ≥ r(B), then we find an optimal
sequence in which B directly follows A.

Proof. Assume, by contradiction, that B does not directly follow A. Since A→ B, any optimal
sequence must be of the form UAVBW, with V ̸= ϵ.

Case 1. r(A) ≥ r(V). We can exchange V and A without increasing the costs.

Case 2. r(A) ≤ r(V). Since r(B) ≤ r(A), due to transitivity we have r(B) ≤ r(V). Thus, we can
exchange B and V without increasing the costs.

At the end, the reverse operation, called denormalization, is performed on the linearization
of the precedence graph, where each compound tensor is replaced by the sequence of tensors
it contains. The obtained sequence of tensors represents exactly the optimal permutation for
the given precedence graph.

Finally, after applying both phases for each tensor T[i], the linearization with the lowest
cost is the optimal solution.

3.3.1 Pseudocode

In Alg. 1, we outline the pseudocode of the TensorIKKBZ algorithm.

Algorithm 1 TensorIKKBZ

1: Input: Tree tensor network T = (V, E, c)
2: Output: Optimal linear contraction order ω

3: ω ← ϵ

4: for each T[i] in V do
5: Build precedence graph PT[i]

6: while PT[i] is not linearized do
7: Select T[u] whose children are linearized
8: Interleave their linearizations by rank
9: Normalize the obtained linearization (Alg. 2)

10: end while
11: if ω = ϵ or C(PT[i]) < C(ω) then
12: ω ← PT[i]

13: end if
14: end for
15: return ω

15

3 Algorithm

The algorithm takes as input the tree tensor network T and outputs the optimal linear
contraction order ω. For each T[i], we build the precedence graph PT[i] (line 5) and linearize it
(lines 6-10). After the precedence graph has been linearized, we calculate its cost and compare
it to the best obtained so far (line 11). Finally, we return the optimal order.

The linearization operation resembles the classical problem of merging n sorted lists. The
sorted lists are the linearizations of the children ci of node u, the node corresponding to tensor
T[u] in line 7. For an efficient implementation, we employ a min-heap data structure [16].

Subsequently, the normalization operation requires solving contradictory sequences after
a linearization. Note that this is the only operation in which we need to update ranks. In
Alg. 2, we provide the pseudocode for this operation.

Algorithm 2 Normalization

1: Input: Current tensor T and the linearization L of its subtree
2: Output: Normalized linearization L
3: i← 1
4: while r(T) > r(Li) do
5: Update numerator of r(T): n(T)← n(T) + ∥T∥

|eLi |
n(Li) (cf. Eq. 3.2)

6: Update denominator of r(T): d(T)← |eT| −
∥TLi∥
|eLi |
∥T∥ (cf. Eq. 3.3)

7: Fuse T with Li as a compound tensor
8: i← i + 1
9: end while

The algorithm receives a tensor T, which will always be tensor T[u] from Alg. 1, along with
the linearization L of its subtree, and performs multiple normalization steps until there is
no contradictory sequence left. At each iteration, the rank r(T) must be updated, which is
represented by the symbolic fraction n(T)

d(T) , as introduced in the proof of Lemma 1. The new
numerator n(T) will represent the cost C(T) after performing the contraction with tensor Li.
To this end, we use Eq. 3.2 to calculate the new cost (line 5). As regards the new denominator
d(T), we need to calculate the norm of the newly created tensor, which can be done via
Eq. 3.3 (line 6). Finally, we create the compound tensor which comprises both T and Li and
replaces T in the precedence graph (line 7).

16

3 Algorithm

3.3.2 Example

T[1] T[2]

T[3]

T[4]T[5]

2

5

1
4

T[4]

T[3]5
4 T[2] 8

2

T[1]2
2 T[5] 1

0

Root in T[4]

1

T[4]

T[3] 5
4 T[2] 8

2

T[1] 2
2

T[5] 1
0

Linearize for T[2]

2

T[4]

T[3]5
4 T[2]T[1] 10

3

T[5] 1
0

Normalize at T[2]

3

T[4]

T[3]
5
4

T[2]T[1] 10
3

T[5] 1
0

Linearize for T[4]

4

T[4]

T[3]

T[2]

T[1]

T[5]

Denormalize

5

Figure 3.3: Execution of the TensorIKKBZ algorithm for the precedence graph of T[4]. Leg
sizes are specified in the original tree tensor network, while the ranks are shown as
symbolic fractions in the upcoming steps, e.g., r(T[3]) = 5

4 . Conflict sequences are
highlighted when a normalization is due. In the last step, we obtain the optimal
linear contraction order for the precedence graph of T[4].

An execution of the algorithm can be visualized in Fig. 3.3. We are considering only the
precedence graph of T[4], but the algorithm would have to consider all precedence graphs.
In the first phase, the algorithm builds the precedence graph of T[4], which is equivalent
to rooting the tree tensor network in T[4]. The subtree of T[2] is not yet linearized, thus
the algorithm merges the linearizations of T[1] and T[5], which in this case are the nodes
themselves, by observing the rank monotonicity (as pointed out earlier, we evaluate the
inequality based on the symbolic fractions representing the ranks). After the merge step, a
normalization step is required (step 3), since T[2] → T[1], but r(T[2]) ≥ r(T[1]). This creates
the compound tensor T[2]T[1] which comprises both T[2] and T[1] in that order. Its rank is
calculated as described in Alg. 2.

Afterward, we are able to linearize T[4] and, in the final step, denormalize it. In our case,
the compound tensor T[2]T[1] is decomposed into individual tensors, as in step 5 . Finally,
we obtain the optimal linear contraction order for the precedence graph of T[4]. That is, T[4]

should be contracted first with T[3], then with T[2], followed by T[1] and T[5].

17

3 Algorithm

3.3.3 Time Complexity

The first phase, constructing the precedence graph, can be done by depth-first search in linear
time, starting from the root and routing the edges to the unexplored nodes of the tree.

In the second phase, while normalization is a cheap operation, requiring only linear time,
linearization is the most expensive one. Interleaving m linearizations of size s each requires
O(ms log m) operations. This can be done with a min-heap data structure of size m. The
worst-case time complexity of each iteration is O(n log n) [16], so O(n2 log n) in total, since
the algorithm repeats the two phases for each of the n tensors.

Note that in the second of the two papers introducing IKKBZ, a more efficient algorithm
was proposed. It reduces the redundancy in the original algorithm, by observing that the
linearizations of two neighboring nodes are similar. The optimized algorithm takes O(n2)-
time. The same optimization can be applied to our case. Therefore, we conclude that
TensorIKKBZ can be implemented in O(n2)-time. We refer the reader to the author’s Bachelor
thesis [17] for details on an efficient implementation of the IKKBZ algorithm.

3.3.4 Discussion

Earlier, Sec. 2.3.2 put forth several issues which impede optimality results from being directly
applicable to tensor networks. The key to solving the first two issues resided in the interpreta-
tion of the contraction cost from the perspective of query optimization (Eq. 3.1). Surprisingly,
the third issue, that of open legs, is also solved by this interpretation. This is because open
legs solely contribute to the size of the tensors, i.e., T[1] and T[2], respectively, from Eq. 3.1.

However, the issue of hyperedges remains open. While there is an algorithm in the spirit
of IKKBZ for hyperedges [18], it does not guarantee optimality and was only designed
for hyperedges present in query optimization (which differ from those present in tensor
networks). In Chapter 7, we leave open as future work whether we can extend TensorIKKBZ
to hyperedges as defined in the context of tensor networks.

18

4 Beyond Optimality

In the last chapter, we have mainly dealt with optimal algorithms. To this end, we identified
the setting under which we can provide optimal contraction orders. This was the case for
tree tensor networks and linear contraction orders. While this result can already provide
practical benefits, in this chapter we aim to close the gap to general tensor networks and
contraction orders. Inspired by recent research in query optimization, we extend the previous
algorithm to find near-optimal contraction trees, given an initial fixed permutation of the
tensors. Recently, Ibrahim et al. [19] have proposed the same algorithm, however, they resort
to heuristics to find the initial permutation. In contrast, we have already presented a way to
order tensors, namely by means of the TensorIKKBZ algorithm. Therefore, we can use its
linear contraction orders as the initial permutation.

The Chapter is structured as follows: Section 4.1 presents the aforementioned extension.
Section 4.2 outlines a last-mile optimizer, already known in the context of join ordering, and
newly proposed for tensor networks as well. Additionally, in Section 4.3, we lift the restriction
of tree tensor networks and adapt the algorithms to work on general tensor networks by
means of an ad-hoc join ordering technique.

Remark that the contribution of this Chapter is to introduce various query optimization
techniques to the tensor network community. This will naturally uncover results that appear
redundant as they have been discovered in both fields.

4.1 Linearized Dynamic Programming

Recent research in join ordering has attempted to bridge the gap between optimizers for
small-size problem instances and those for large-size instances. That is, while there is an
optimal algorithm for small-size instances, for medium- and large-size instances only a greedy
algorithm is applied, which gives poor results. This setting is also applicable in the context
of tensor networks. The goal is to develop an algorithm for medium-sized instances that is
competitive with the greedy algorithm.

Textbooks introduce dynamic programming (DP) with the classical problem of optimal
matrix parenthesization and present a cubic-time solution. Matrices are only a special case of
tensors. Consequently, the parenthesization problem is, in fact, the optimization problem on
chain tensor networks. To apply the same algorithm, we need to find a way to transform the
tensor network into a chain, i.e., to find an order of its tensors. We can then naturally apply
the cubic-time algorithm to optimize the parenthesization, which corresponds to the optimal
contraction tree with the given order. The beauty of this technique is that it is intended to be
general-purpose.

19

4 Beyond Optimality

This novel optimizer was first explored in the adaptive optimization framework of Neumann
et al. [20] in the context of query optimization. The novelty is to use the IKKBZ algorithm
as a seed for the initial tensor orders. The motivation behind this approach is that IKKBZ
already provides the optimal linear order (especially for trees). Hence, the final result will
always be better than or equal to the linear solution. This method is called linearized dynamic
programming (LinDP) and has been shown to yield near-optimal results. Recently, Ibrahim et
al. [19] employed the same cubic-time algorithm in the context of tensor networks. However,
the initial orders used in their work are still greedy and thus cannot provide any theoretical
guarantees. In the following, we adapt LinDP for tensor networks. In particular, we show how
TensorIKKBZ can be used as a seed for LinDP to provide near-optimal general contraction
orders for tree tensor networks.

4.1.1 Pseudocode

In Alg. 3, we outline the pseudocode of LinDP [20], adapted to the context of tensor networks.
In principle, one can only run the cubic-time algorithm on the optimal linear order provided
by TensorIKKBZ. Note, however, that TensorIKKBZ considers each tensor as the root of the
precedence graph. As a consequence, we obtain n many such linearizations. We can take
advantage of this fact and consider each linearization as an initial order. This gives the
algorithm more flexibility to find better general contraction orders.

Overview. More precisely, the algorithm aims to find the optimal contraction tree given an
initial permutation π of the tensors. To this end, it exploits Bellman’s optimality condition [21].
Intuitively, the condition says that if a problem P has an optimal solution S := S1S2, then both
S1 and S2 are optimal solutions for P1 and P2, respectively, with P = P1P2. In our context,
this means that every contraction subtree of the original contraction tree must be an optimal
contraction tree for the tensors it contains.

Algorithm. Once the precedence graph PT[i] of T[i] has been linearized, the key idea is
to compute C(·) for all intervals [i, j], i ≤ j, using Eq. 2.2. These values are stored in the
dynamic programming table dp of size n× n. For the base case in Eq. 2.2, we initialize dp[i, i]
to 0, ∀i ∈ [n] (line 6). Subsequently, we fix an interval size s and iterate all intervals of
that size. Then, by employing Bellman’s optimality principle, we have to guess where the
problem [i, j] splits. This is represented by the index k, for each of which we compute the
cost (cf. Eq. 2.2) and compare with the current minimum obtained for [i, j] (lines 11-12). If
the current k improves the cost, we store it in the table opt (of size n× n) which will be used
to reconstruct the contraction tree of optimal cost. Finally, after the cubic-time algorithm
has finished, we update the contraction tree τ in case the cost dp[1, n], which represents the
optimal cost of the interval [1, n] for the given linearization, is better. If so, we reconstruct the
new contraction tree using the table opt (line 20).

Time Complexity. The fact that we have to consider all TensorIKKBZ linearizations makes
LinDP an expensive algorithm. Namely, its time complexity is O(n4), since we have to run
the cubic-time algorithm for each tensor. This problem can be partially solved by parallelizing
the main for-loop (line 4). This guarantees acceptable optimization times for medium-sized
tensor networks. We will use this variant in the benchmarks of Chapter 5.

20

4 Beyond Optimality

Algorithm 3 LinDP [20]

1: Input: Tensor network T = (V, E, c)
2: Output: General contraction tree τ

3: τ ← ϵ

4: for each T[i] in V do
5: π ← Linearization of precedence graph PT[i] (cf. TensorIKKBZ)
6: dp[i, i] = 0, ∀i ∈ [n]
7: for each s ∈ [2, . . . , n] do
8: for each i ∈ [1, . . . , n− s + 1] do
9: j← i + s− 1

10: for each k ∈ [i, j[do
11: c′ ← dp[i, k] + dp[k + 1, j] + c(T[πi ,...,πk], T[πk+1,...,πj])

12: if c′ < dp[i, j] then
13: dp[i, j] = c′

14: opt[i, j] = k
15: end if
16: end for
17: end for
18: end for
19: if τ = ϵ or dp[1, n] < C(τ) then
20: τ ← Reconstruct contraction tree from opt
21: end if
22: end for
23: return τ

4.2 Iterative Dynamic Programming

In this Section, we illustrate another ad-hoc join ordering technique. The goal of Iterative
Dynamic Programming (IDP) [22] is to refine the solution found by an arbitrary optimizer. In
its original setting, it was used in join ordering to optimize the join tree found by a heuristic
optimizer. In our context, this translates to optimizing the contraction tree found by an
arbitrary optimizer. The key idea is to find an expensive subtree of the contraction tree,
optimize it via an exact algorithm, contract the subtree, and repeat this process until the
contraction tree contains only one node.

It was recently used in Neumann et al. [20], where it was employed for large-size join
ordering instances. In the context of tensor networks, the same idea was introduced in Huang
et al. [23] and in the implementation of cotengra [24]. Thus, this is another algorithm that
has been developed independently in both areas. In the following, we outline the general
idea of the algorithm, while in Sec. 5.2.2, we evaluate it using the implementation of [24].

21

4 Beyond Optimality

4.2.1 Pseudocode

As its name suggests, the algorithm iteratively optimizes subproblems using exact dynamic
programming. In Alg. 4, we outline the pseudocode of IDP. It receives as input the tensor
network, a contraction tree τ thereof, which has been output by any optimizer, and a threshold
k, which specifies the subtree size one can optimize via an exact dynamic programming
optimizer. Finally, IDP will return a refined contraction tree with (possibly) better cost.

Algorithm 4 IDP [22]

1: Input: Tensor network T = (V, E, c), contraction tree τ, threshold k
2: Output: Refined contraction tree τ

3: τ′ ← τ

4: while |τ′| > 1 do
5: σ← Expensive subtree of τ

6: σ′ = ExactDynamicProgramming(σ)
7: In τ, replace σ with σ′, i.e., τ[σ] = σ′

8: In τ′, consider σ′ as base tensor
9: end while

10: return τ

Algorithm. At each iteration, it considers the current contraction tree τ′ (initially set to τ)
and searches for a sub-tree σ whose size is below the threshold k and which is prone to be
non-optimal, that is, expensive. Deciding this is as difficult as the original problem, however,
such subtrees tend to create an imbalance in the contraction tree, e.g., one of the children has
a significantly higher cost than its sibling. Note that the meaning of “expensive” subtree (line
5) is intentionally left open. In experiments, we use the contraction cost C as an indicator of
how expensive a subtree is. This is indeed the default choice in cotengra.

Once the subtree σ is fixed, we can optimize it by employing exact dynamic programming
on the subnetwork induced by the tensors spanned by σ. This will return a new contraction
tree σ′ with C(σ′) ≤ C(σ) (line 6), which will substitute σ in the original contraction tree, τ

(line 7). To allow further optimization, we replace σ′ in τ′ with a single tensor (line 8). In
particular, this reduces the size of τ′ by k− 1. This refinement is repeated until τ′ contains
only one tensor, i.e., its root.

Time Complexity. Assuming that exact dynamic programming takes O(3k) time, where
k is the number of tensors in the network (this is the time complexity of an optimizer for
general contraction orders which does not consider outer products, as analyzed in Moerkotte
et al. [25]), the time complexity of IDP is O((n/k)3k). This leads to a trade-off between the
number of tensors that can be exactly optimized for each iteration, which implies a higher
cost reduction, and the optimization time of IDP. In the experiments, we use the default value
of cotengra for k, namely k = 8.

22

4 Beyond Optimality

4.3 General Tensor Networks

While the last two optimizers, LinDP and IDP, are applicable to general tensor networks (by
general we mean that we are not restricted to trees), we have not explicitly described how one
can leverage the TensorIKKBZ algorithm to work on any tensor network. This is especially
necessary for LinDP since it requires computing the initial permutations via the TensorIKKBZ
algorithm.

Remember that the TensorIKKBZ requires that the input is a tree tensor network. As such,
we need a mechanism to transform the original tensor network into a tree tensor network.
A simple solution is to consider a spanning tree of the network and use it as input. Indeed,
this is a common join ordering technique in query optimization, introduced in the second
IKKBZ paper as a way to deal with arbitrary query graphs [26]. While this technique works
well in practice in query optimization, the results of experiments in Sec. 5.2 show us that this
is not the case for tensor networks. In the following, we underline why this argument is not
directly applicable.

Query graphs tend to be acyclic. Tensor networks, on the other hand, usually have a
lattice structure. When a spanning tree is selected from a graph, it naturally loses several
edges between nodes that are not directly connected in the spanning tree, i.e., non-tree edges.
Consequently, TensorIKKBZ is not aware of the non-tree edges and therefore overlooks many
contractions. This issue worsens with the number of edges in the graph.

Despite this limitation, we also evaluate this technique in Sec. 5.2.2. In the experiments,
we select the maximum spanning tree. The reason for this heuristic is as follows. In the
second IKKBZ paper [26], the minimum spanning tree was used. Given the reformulation
we introduced in Eq. 3.1, namely that we can regard the inverse product of the sizes of the
common legs as a join selectivity, the choice of the maximum spanning tree is a natural
adaptation of the original heuristic to the context of tensor networks.

23

5 Evaluations

In this Chapter, we evaluate the algorithms presented so far. The main goals are twofold: first,
we emphasize the advantage of having an optimal algorithm as a starting point (even one
for a more restrictive class of tensor networks). Second, we explore the benefits of ad-hoc
join ordering techniques for tensor networks. Therefore, the Chapter is structured as follows:
Section 5.1 contains evaluations for tree tensor networks, while Section 5.2 considers general
tensor networks, in particular those representing quantum circuits.

Both TensorIKKBZ and LinDP are implemented in C++ and wrapped with Python. In
addition, DPccp [25], the standard exact optimizer for join ordering, is also included. All
other algorithms are available directly in opt_einsum [27] and cotengra [24]. To distinguish
them, we prefix their names with oe and ctg, respectively.

The experiments were run on an Ubuntu server with an Intel Ivy Bridge 2.20 GHz CPU with
20 cores and 256 GB of main memory. In the experiments, we let the algorithms fully exploit
the potential of parallelization. Namely, for opt_einsum algorithms, we set parallel to
multiprocessing.cpu_count(), which is 40. Similarly, for cotengra we set parallel=True.

5.1 Tree Tensor Networks

We benchmark two classes of tree tensor networks: FTPS (Fork Tensor-Product States) and
TTN (Tree Tensor Network, also known as Hierarchical Tucker). For each tensor network
class, we provide a separate benchmark for the case where open legs are present and not,
respectively. In each case, for the inter-tensor legs, we seed a leg size and randomly assign
powers of that size to each leg. For open legs, we set a constant leg size of 2. Note that for
tensors with more than one open leg, we bundle them into a single one, by multiplying their
sizes.

As optimizers we choose TensorIKKBZ to emphasize that linear contraction orders, al-
though not sufficient, provide robustness, LinDP, to underscore the benefits of building
on optimal algorithms, DPccp and the dynamic programming algorithm of opt_einsum,
oe.DynamicProgramming, to show the lower bound of contraction costs for small instances,
and the random-greedy optimizer from opt_einsum, oe.RandomGreedy, which improves on
the naïve greedy algorithm by repeatedly sampling greedy paths and selecting the best one.
To ensure fairness, we let oe.RandomGreedy sample n times, since both TensorIKKBZ and
LinDP generate n orders themselves.

24

5 Evaluations

5.1.1 FTPS

Figure 5.1: FTPS: Graphical notation

The recently introduced Fork Tensor-Product State (FTPS) has been used as a solver for
multi-orbital dynamical mean-field theory [28]. Its graphical notation is shown in Fig. 5.1,
where a FTPS with nine tensors is drawn. In Fig. 5.2 and Fig. 5.3 we plot the contraction
costs and optimization times, respectively. We observe that TensorIKKBZ and LinDP provide
better contraction orders for the instances without open legs, which is due to the optimality
of the linear contraction orders that TensorIKKBZ outputs. Since LinDP is an inherently
expensive algorithm, it is faster than the random-greedy optimizer only up to 150 tensors.
This threshold is similar to the threshold in Neumann et al. [20], which is 100. Note that since
we enable parallelization, we can optimize larger instances.

For instances with open legs, the contraction cost is much higher (even though we set the
size of all open legs to 2). This is because, by definition, the open legs are maintained during
network contraction. In this case, LinDP is on par with oe.RandomGreedy. However, in terms
of optimization time, LinDP is faster up to 175 tensors.

5.1.2 TTN

Figure 5.4: TTN: Graphical notation

TTN is a popular class of tensor networks that has the form of a complete binary tree. For
example, it has recently been used in generative modeling [29]. Its graphical notation is
shown in Fig. 5.4, where a TTN with seven tensors is drawn. Note that a TNN has open
legs only at the leaf tensors. In Fig. 5.5 and Fig. 5.6 we plot the contraction costs and the
optimization times, respectively. First, we observe that the linear contraction orders provided
by TensorIKKBZ are not sufficient. Despite this, LinDP manages to outperform the greedy
optimizer on all TTN instances. For the instances with open legs, we see the same scenario as
for FTPS, namely that the contraction costs are of the same order of magnitude.

25

5 Evaluations

Figure 5.2: FTPS: Experiments without open legs

Figure 5.3: FTPS: Experiments with open legs

26

5 Evaluations

Figure 5.5: TTN: Experiments without open legs

Figure 5.6: TTN: Experiments with open legs

27

5 Evaluations

5.2 General Tensor Networks

5.2.1 PEPS

Figure 5.7: PEPS: Graphical notation

PEPS is a generalization of the Matrix-Product State (MPS) to a 2D lattice. Its graphical
notation is shown in Fig. 5.7, where a PEPS with nine tensors is drawn. Note that, since
TensorIKKBZ and LinDP are required to operate on tree tensor networks, we need to extract
a spanning tree of the underlying tensor network. As discussed in Sec. 4.3, we select the
maximum spanning tree. In Fig. 5.8 and Fig. 5.9, we plot the contraction costs and optimization
times, respectively. Notably, TensorIKKBZ and LinDP do not provide near-optimal contraction
orders. This is due to the fact that TensorIKKBZ is forced to work on a spanning tree of the
original graph. This naturally excludes an important number of contraction orders.

Figure 5.8: PEPS: Experiments without open legs

28

5 Evaluations

Figure 5.9: PEPS: Experiments with open legs

5.2.2 Sycamore

The Sycamore architecture is the one used and executed in [30]. As shown in [31], one can
represent the quantum circuit as a tensor network. In the paper introducing cotengra [24],
Gray et al. developed a novel tensor network optimizer built on top of the hypergraph
partitioner KaHypar [32]. As discussed in Sec. 4.2, we enable subtree reconfiguration, and
suffix the optimizers where we have enabled it with “+”. For both ctg.Hyper-Greedy
and ctg.Hyper-Par, we use the default setting max_repeats=128. In Fig. 5.10 we plot the
contraction costs and optimization times.

We remark TensorIKKBZ and LinDP do not achieve the contraction cost of ctg.Hyper-Par.
This is because the underlying tensor network representing the circuit is not a tree tensor
network. The contraction cost obtained by ctg.Hyper-Par for 20 cycles, namely log C ≈ 18, is
close to optimal given the current results. We are aware of two other works which achieve the
same order of magnitude, namely: Huang et al. [23] report 6.66× 1018, while Pan et al. [31]
report 4.51× 1018.

29

5 Evaluations

Figure 5.10: Sycamore circuit: contraction cost and optimization time. We suffix with + the
optimizers for which we enabled subtree reconfiguration in cotengra.

30

6 Related Work

This Chapter summarizes related work in the fields of tensor network contraction ordering
and database join ordering by placing them side by side. In addition, open problems and
hardness results in both areas are described.

6.1 Algorithms

Join ordering has a longer history than tensor network contraction ordering. This is not
surprising, since relational database systems began to appear in the 1970s, bringing with them
the need for efficient optimizers. Apart from the standard dynamic programs introduced by
Selinger et al. [33], there are many heuristics, a notable one being GOO [34], which is the
same algorithm in tensor network folklore. Kossmann et al. [22] proposed Iterative Dynamic
Programming, which makes local improvements to the greedy order. We have described it in
Sec. 4.2.

Later, in the tensor network community, a prominent work that emerged is that of Pfeifer
et al. [35], which introduces a graph-theoretic dynamic program. The algorithm works in
a top-down manner, while in [25], Moerkotte et al. present a bottom-up approach to join
ordering, namely DPccp (which is also used in our benchmarks). Recently, Neumann et
al. [20] presented the adaptive optimization framework, along with the novel optimizer
LinDP, which we also studied for tensor networks in this thesis. Lately, Ibrahim et al. [19]
proposed the same idea, namely running the cubic-time dynamic programming algorithm
on a permutation of the tensors. Unlike LinDP, they rely on heuristics to find the initial
permutation, which does not come with any guarantee for the final contraction order. The
work closest to ours is that of Xu et al. [36], which provides a polynomial-time algorithm for
minimizing the time complexity, in terms of O-notation, of a tree tensor network contraction.
Note that this cost function is only a proxy for the original one, C. On the contrary, our work
optimizes C directly.

Newly, learned optimizers have emerged. In the context of join ordering, the first work is
that of Marcus et al. [37]. The work of Meirom et al. [38] also uses reinforcement learning and
proposes a learned optimizer for tensor networks.

Several of these algorithms have been implemented in general-purpose frameworks, such
as opt_einsum [27] and cotengra [24].

While this section is only a summary of work done in both areas, it is also a motivation for
future work to consider the problem in a holistic way, by appropriating techniques developed
in both areas.

31

6 Related Work

6.2 Unifying Framework

Our work is not the first to highlight the similarity of the two problems. The first work we
know of is that of Khamis et al. [39], which includes several problems from database theory,
tensor networks, and probabilistic graphical models under the same umbrella. Later, Dudek
et al. [7] reiterate the similarity between these specific instances of the problem by providing
solvers that use graph decompositions, specifically tree decompositions.

6.3 Open Problems

Apart from common algorithms, both fields also share the same open problems. A notable
open problem, which is related to our work, is that of general contraction orders of tree tensor
networks [36]. In the same manner, in query optimization, finding the optimal bushy join
tree for tree query graphs is still unsolved [12].

Since join ordering is an older problem, there are hardness results for several instances
of the problems. In particular, Cluet et al. [40] proved that the problem is NP-hard if we
consider cross products, even for star graphs, which are in particular trees. This underlines
the fact that considering cross-products is not feasible. Later, Scheufele et al. [41] showed that
the problem is already NP-hard if we only consider cross-products on query graphs, i.e., if
the join selectivities are all 1.

Note that we do not claim that the following hardness results hold in the context of tensor
networks. A proof is needed to guarantee that they hold in this setting as well. This is left as
future work.

32

7 Conclusion & Future Work

We proved that tree tensor networks accept linear contraction orders. To this end, we have
provided an algorithm called TensorIKKBZ, which is an adaptation of a decades-old algorithm
from database join ordering. Its requirement is that the cost function satisfies the adjacent
sequence interchange (ASI) property. We proved that the cost function used in the context of
tensor networks does indeed satisfy this property, and modified the mathematical foundations
of the algorithm to work in this setting.

Beyond the optimality result, we have extended TensorIKKBZ by employing a recent
optimizer in join ordering, called LinDP, which given an initial permutation of the tensors,
outputs the optimal general contraction order. Its advantage is that while it is not guaranteed
to be optimal, it provides robustness by building on the contraction orders provided by the
TensorIKKBZ algorithm. We have further adapted these algorithms to work on general tensor
networks by using an ad-joc join ordering technique, namely that of selecting a spanning
tree of the underlying graph as input to the optimizers. However, tensor networks tend to be
highly cyclic. In contrast, the graphs encountered in query optimization are mainly acyclic,
which is why this technique is not effective for tensor networks. We have empirically shown
that TensorIKKBZ and LinDP provide robust contraction orders for tree tensor networks
compared to greedy optimizers.

Finally, we have summarized related work in both fields, highlighting open problems and
hardness results common to both fields. Our work thus facilitates the integration of results
from one field into the other.

As future work, we see the following directions:
1) Hyperedges. Extend TensorIKKBZ to hyperedges (fourth point in Sec. 2.3.2). The work

in Radke et al. [18] is not directly applicable because the type of hyperedges in query
optimization is different from that in tensor networks.

2) Spanning tree. Is there a way to choose a spanning tree for TensorIKKBZ so that the final
contraction cost is close to that of the original tensor network?

3) Hardness results. Do the hardness results in query optimization presented in Sec. 6.3 also
hold for tensor networks?

4) Open problem. Is the problem of general contraction orders of tree tensor networks
NP-hard? This is currently an open problem in both areas.

33

List of Figures

2.1 Tensor Example . 3
2.2 Example Tensor Network . 3
2.3 Linear Contraction Order . 4
2.4 General Contraction Order . 5
2.5 Contraction Trees . 5
2.6 Query Graph . 6
2.7 Join Trees . 7

3.1 Precedence Graph . 9
3.2 ASI: Motivation . 10
3.3 TensorIKKBZ: Example . 17

5.1 FTPS: Graphical notation . 25
5.4 TTN: Graphical notation . 25
5.2 FTPS: Experiments without open legs . 26
5.3 FTPS: Experiments with open legs . 26
5.5 TTN: Experiments without open legs . 27
5.6 TTN: Experiments with open legs . 27
5.7 PEPS: Graphical notation . 28
5.8 PEPS: Experiments without open legs . 28
5.9 PEPS: Experiments with open legs . 29
5.10 Sycamore Circuit . 30

34

Bibliography

[1] M. Stoian. On the Optimal Linear Contraction Order for Tree Tensor Networks. 2023. arXiv:
2209.12332 [quant-ph].

[2] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and D. P. Mandic. “Tensor
Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-
Rank Tensor Decompositions”. In: Foundations and Trends® in Machine Learning 9.4-5
(2016), pp. 249–429. issn: 1935-8237. doi: 10.1561/2200000059. url: http://dx.doi.
org/10.1561/2200000059.

[3] A. Cichocki, A.-H. Phan, Q. Zhao, N. Lee, I. Oseledets, M. Sugiyama, and D. P. Mandic.
“Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 2
Applications and Future Perspectives”. In: Foundations and Trends® in Machine Learning
9.6 (2017), pp. 431–673. issn: 1935-8237. doi: 10.1561/2200000067. url: http://dx.doi.
org/10.1561/2200000067.

[4] I. L. Markov and Y. Shi. “Simulating Quantum Computation by Contracting Tensor
Networks”. In: SIAM Journal on Computing 38.3 (2008), pp. 963–981. doi: 10.1137/
050644756. eprint: https://doi.org/10.1137/050644756. url: https://doi.org/10.
1137/050644756.

[5] E. M. Stoudenmire and D. J. Schwab. “Supervised Learning with Tensor Networks”. In:
NIPS. 2016.

[6] M. Abo Khamis, H. Q. Ngo, and A. Rudra. “FAQ: questions asked frequently”. In:
Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems. 2016, pp. 13–28.

[7] J. M. Dudek, L. Dueñas-Osorio, and M. Y. Vardi. Efficient Contraction of Large Tensor
Networks for Weighted Model Counting through Graph Decompositions. 2020. arXiv: 1908.
04381 [cs.DS].

[8] C.-C. Lam, P. Sadayappan, and R. Wenger. “On Optimizing a Class of Multi-Dimensional
Loops with Reductions for Parallel Execution”. In: Parallel Process. Lett. 7 (1997), pp. 157–
168.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Third
Edition. 3rd. The MIT Press, 2009. isbn: 0262033844.

[10] B. O’Gorman. “Parameterization of Tensor Network Contraction”. en. In: (2019). doi:
10.4230/LIPICS.TQC.2019.10. url: http://drops.dagstuhl.de/opus/volltexte/
2019/10402/.

35

https://arxiv.org/abs/2209.12332
https://doi.org/10.1561/2200000059
http://dx.doi.org/10.1561/2200000059
http://dx.doi.org/10.1561/2200000059
https://doi.org/10.1561/2200000067
http://dx.doi.org/10.1561/2200000067
http://dx.doi.org/10.1561/2200000067
https://doi.org/10.1137/050644756
https://doi.org/10.1137/050644756
https://doi.org/10.1137/050644756
https://doi.org/10.1137/050644756
https://doi.org/10.1137/050644756
https://arxiv.org/abs/1908.04381
https://arxiv.org/abs/1908.04381
https://doi.org/10.4230/LIPICS.TQC.2019.10
http://drops.dagstuhl.de/opus/volltexte/2019/10402/
http://drops.dagstuhl.de/opus/volltexte/2019/10402/

Bibliography

[11] E. F. Codd. “A relational model of data for large shared data banks”. In: Communications
of the ACM 13.6 (1970), pp. 377–387.

[12] G. Moerkotte. “Building Query Compilers (Under Construction) (expected time to
completion: 5 years)”. In: 2006.

[13] T. Neumann. “Query Simplification: Graceful Degradation for Join-Order Optimization”.
In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’09. Providence, Rhode Island, USA: Association for Computing Machinery,
2009, pp. 403–414. isbn: 9781605585512. doi: 10.1145/1559845.1559889. url: https:
//doi.org/10.1145/1559845.1559889.

[14] T. Ibaraki and T. Kameda. “On the Optimal Nesting Order for Computing N-Relational
Joins”. In: ACM Trans. Database Syst. 9.3 (Sept. 1984), pp. 482–502. issn: 0362-5915. doi:
10.1145/1270.1498. url: https://doi.org/10.1145/1270.1498.

[15] C. Monma and J. Sidney. “Sequencing with Series-Parallel Precedence Constraints”. In:
Math. Oper. Res. 4 (1979), pp. 215–224.

[16] D. Knuth. The Art Of Computer Programming, vol. 3: Sorting And Searching. Addison-
Wesley, 1973, pp. 391–392.

[17] M. Stoian. “An Efficient Implementation of Polynomial-Time Join Ordering”. Bachelor’s
Thesis. Technical University of Munich, 2021.

[18] B. Radke and T. Neumann. “LinDP++: Generalizing Linearized DP to Crossproducts
and Non-Inner Joins”. In: Datenbanksysteme für Business, Technologie und Web (BTW
2019), 18. Fachtagung des GI-Fachbereichs „Datenbanken und Informationssysteme" (DBIS),
4.-8. März 2019, Rostock, Germany, Proceedings. Ed. by T. Grust, F. Naumann, A. Böhm,
W. Lehner, T. Härder, E. Rahm, A. Heuer, M. Klettke, and H. Meyer. Vol. P-289. LNI.
Gesellschaft für Informatik, Bonn, 2019, pp. 57–76. doi: 10.18420/btw2019-05. url:
https://doi.org/10.18420/btw2019-05.

[19] C. Ibrahim, D. Lykov, Z. He, Y. Alexeev, and I. Safro. Constructing Optimal Contraction
Trees for Tensor Network Quantum Circuit Simulation. 2022. doi: 10.48550/ARXIV.2209.
02895. url: https://arxiv.org/abs/2209.02895.

[20] T. Neumann and B. Radke. “Adaptive Optimization of Very Large Join Queries”. In:
Proceedings of the 2018 International Conference on Management of Data. SIGMOD ’18.
Houston, TX, USA: Association for Computing Machinery, 2018, pp. 677–692. isbn:
9781450347037. doi: 10.1145/3183713.3183733. url: https://doi.org/10.1145/
3183713.3183733.

[21] R. Bellman. “On the Theory of Dynamic Programming”. In: Proceedings of the National
Academy of Sciences of the United States of America 38.8 (1952), pp. 716–719. issn: 00278424.
url: http://www.jstor.org/stable/88493 (visited on 05/08/2023).

[22] D. Kossmann and K. Stocker. “Iterative Dynamic Programming: A New Class of Query
Optimization Algorithms”. In: ACM Trans. Database Syst. 25.1 (Mar. 2000), pp. 43–82.
issn: 0362-5915. doi: 10.1145/352958.352982. url: https://doi.org/10.1145/352958.
352982.

36

https://doi.org/10.1145/1559845.1559889
https://doi.org/10.1145/1559845.1559889
https://doi.org/10.1145/1559845.1559889
https://doi.org/10.1145/1270.1498
https://doi.org/10.1145/1270.1498
https://doi.org/10.18420/btw2019-05
https://doi.org/10.18420/btw2019-05
https://doi.org/10.48550/ARXIV.2209.02895
https://doi.org/10.48550/ARXIV.2209.02895
https://arxiv.org/abs/2209.02895
https://doi.org/10.1145/3183713.3183733
https://doi.org/10.1145/3183713.3183733
https://doi.org/10.1145/3183713.3183733
http://www.jstor.org/stable/88493
https://doi.org/10.1145/352958.352982
https://doi.org/10.1145/352958.352982
https://doi.org/10.1145/352958.352982

Bibliography

[23] C. Huang, F. Zhang, M. Newman, J. Cai, X. Gao, Z. Tian, J. Wu, H. Xu, H. Yu, B. Yuan,
M. Szegedy, Y. Shi, and J. Chen. Classical Simulation of Quantum Supremacy Circuits. 2020.
arXiv: 2005.06787 [quant-ph].

[24] J. Gray and S. Kourtis. “Hyper-optimized tensor network contraction”. In: Quantum
5 (Mar. 2021), p. 410. doi: 10.22331/q-2021-03-15-410. url: https://doi.org/10.
22331%2Fq-2021-03-15-410.

[25] G. Moerkotte and T. Neumann. “Analysis of Two Existing and One New Dynamic
Programming Algorithm for the Generation of Optimal Bushy Join Trees without Cross
Products”. In: Proceedings of the 32nd International Conference on Very Large Data Bases.
VLDB ’06. Seoul, Korea: VLDB Endowment, 2006, pp. 930–941.

[26] R. Krishnamurthy, H. Boral, and C. Zaniolo. “Optimization of Nonrecursive Queries”.
In: Proceedings of the 12th International Conference on Very Large Data Bases. VLDB ’86.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1986, pp. 128–137. isbn:
0934613184.

[27] D. G. a. Smith and J. Gray. “opt_einsum - A Python package for optimizing contraction
order for einsum-like expressions”. In: Journal of Open Source Software 3.26 (2018), p. 753.
doi: 10.21105/joss.00753. url: https://doi.org/10.21105/joss.00753.

[28] D. Bauernfeind, M. Zingl, R. Triebl, M. Aichhorn, and H. G. Evertz. “Fork Tensor-
Product States: Efficient Multiorbital Real-Time DMFT Solver”. In: Physical Review X
7.3 (July 2017). doi: 10.1103/physrevx.7.031013. url: https://doi.org/10.1103%
2Fphysrevx.7.031013.

[29] S. Cheng, L. Wang, T. Xiang, and P. Zhang. “Tree tensor networks for generative
modeling”. In: Physical Review B 99.15 (Apr. 2019). doi: 10.1103/physrevb.99.155131.
url: https://doi.org/10.1103%2Fphysrevb.99.155131.

[30] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo,
F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins,
W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina,
R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann,
T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J.
Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark,
E. Lucero, D. Lyakh, S. Mandrà, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K.
Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E.
Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin,
D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher,
B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis.
“Quantum supremacy using a programmable superconducting processor”. In: Nature
574.7779 (Oct. 2019), pp. 505–510. issn: 1476-4687. doi: 10.1038/s41586-019-1666-5.
url: https://doi.org/10.1038/s41586-019-1666-5.

[31] F. Pan and P. Zhang. Simulating the Sycamore quantum supremacy circuits. 2021. arXiv:
2103.03074 [quant-ph].

37

https://arxiv.org/abs/2005.06787
https://doi.org/10.22331/q-2021-03-15-410
https://doi.org/10.22331%2Fq-2021-03-15-410
https://doi.org/10.22331%2Fq-2021-03-15-410
https://doi.org/10.21105/joss.00753
https://doi.org/10.21105/joss.00753
https://doi.org/10.1103/physrevx.7.031013
https://doi.org/10.1103%2Fphysrevx.7.031013
https://doi.org/10.1103%2Fphysrevx.7.031013
https://doi.org/10.1103/physrevb.99.155131
https://doi.org/10.1103%2Fphysrevb.99.155131
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://arxiv.org/abs/2103.03074

Bibliography

[32] S. Schlag, V. Henne, T. Heuer, H. Meyerhenke, P. Sanders, and C. Schulz. “k-way
Hypergraph Partitioning via n-Level Recursive Bisection”. In: 18th Workshop on Algorithm
Engineering and Experiments, (ALENEX 2016). 2016, pp. 53–67.

[33] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. “Access
Path Selection in a Relational Database Management System”. In: Proceedings of the 1979
ACM SIGMOD International Conference on Management of Data. SIGMOD ’79. Boston, Mas-
sachusetts: Association for Computing Machinery, 1979, pp. 23–34. isbn: 089791001X.
doi: 10.1145/582095.582099. url: https://doi.org/10.1145/582095.582099.

[34] L. Fegaras. “A New Heuristic for Optimizing Large Queries”. In: Proceedings of the 9th
International Conference on Database and Expert Systems Applications. DEXA ’98. Berlin,
Heidelberg: Springer-Verlag, 1998, pp. 726–735. isbn: 3540649506.

[35] R. N. C. Pfeifer, J. Haegeman, and F. Verstraete. “Faster identification of optimal
contraction sequences for tensor networks”. In: Phys. Rev. E 90 (3 Sept. 2014), p. 033315.
doi: 10.1103/PhysRevE.90.033315. url: https://link.aps.org/doi/10.1103/
PhysRevE.90.033315.

[36] J. Xu, L. Liang, L. Deng, C. Wen, Y. Xie, and G. Li. “Towards a polynomial algorithm
for optimal contraction sequence of tensor networks from trees”. In: Phys. Rev. E 100
(4 Oct. 2019), p. 043309. doi: 10.1103/PhysRevE.100.043309. url: https://link.aps.
org/doi/10.1103/PhysRevE.100.043309.

[37] R. Marcus and O. Papaemmanouil. “Deep Reinforcement Learning for Join Order
Enumeration”. In: Proceedings of the First International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management. ACM, June 2018. doi: 10.1145/3211954.
3211957. url: https://doi.org/10.1145%2F3211954.3211957.

[38] E. A. Meirom, H. Maron, S. Mannor, and G. Chechik. Optimizing Tensor Network Contrac-
tion Using Reinforcement Learning. 2022. arXiv: 2204.09052 [quant-ph].

[39] M. A. Khamis, H. Q. Ngo, and A. Rudra. FAQ: Questions Asked Frequently. 2017. arXiv:
1504.04044 [cs.DB].

[40] S. Cluet and G. Moerkotte. “On the complexity of generating optimal left-deep pro-
cessing trees with cross products”. In: Database Theory — ICDT ’95. Ed. by G. Gottlob
and M. Y. Vardi. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 54–67. isbn:
978-3-540-49136-1.

[41] W. Scheufele and G. Moerkotte. “On the Complexity of Generating Optimal Plans
with Cross Products (Extended Abstract)”. In: Proceedings of the Sixteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems. PODS ’97. Tucson, Ari-
zona, USA: Association for Computing Machinery, 1997, pp. 238–248. isbn: 0897919106.
doi: 10.1145/263661.263687. url: https://doi.org/10.1145/263661.263687.

38

https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/582095.582099
https://doi.org/10.1103/PhysRevE.90.033315
https://link.aps.org/doi/10.1103/PhysRevE.90.033315
https://link.aps.org/doi/10.1103/PhysRevE.90.033315
https://doi.org/10.1103/PhysRevE.100.043309
https://link.aps.org/doi/10.1103/PhysRevE.100.043309
https://link.aps.org/doi/10.1103/PhysRevE.100.043309
https://doi.org/10.1145/3211954.3211957
https://doi.org/10.1145/3211954.3211957
https://doi.org/10.1145%2F3211954.3211957
https://arxiv.org/abs/2204.09052
https://arxiv.org/abs/1504.04044
https://doi.org/10.1145/263661.263687
https://doi.org/10.1145/263661.263687

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Introduction
	Preliminaries
	Tensor Networks
	Tensor and Network Contraction
	Contraction Cost
	Contraction Order
	Contraction Tree

	Query Optimization
	Query Graph
	Join Ordering

	Tensor Contraction as Relational Join
	Commonalities
	Discrepancies

	Cost Function

	Algorithm
	Precedence Graph
	ASI Property
	Motivation
	Definition
	Simplifications
	Proof

	TensorIKKBZ
	Pseudocode
	Example
	Time Complexity
	Discussion

	Beyond Optimality
	Linearized Dynamic Programming
	Pseudocode

	Iterative Dynamic Programming
	Pseudocode

	General Tensor Networks

	Evaluations
	Tree Tensor Networks
	FTPS
	TTN

	General Tensor Networks
	PEPS
	Sycamore

	Related Work
	Algorithms
	Unifying Framework
	Open Problems

	Conclusion & Future Work
	List of Figures
	Bibliography

