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Abstract

Grounding natural language to 3D scenes is an essential research topic for many up-
coming interactive robotic agents or AR/VR applications. In recent years, there has
been tremendous breakthroughs in segmenting objects in images from language. How-
ever, these methods and datasets are restricted to 2D views, where the 3D extent of
an object and its surrounding environment are incompletely modelled. This limitation
hinders applications where it is critical to understand the complete 3D context and the
physical size, e.g. interacting with objects in the indoor scenes. In this dissertation, we
explore the possible deep-learning-based methods for text-driven scene understanding
on RGB-D data.

First, we introduce the task of 3D object localization in RGB-D scans using natural
language descriptions. As input, we assume a point cloud of a scanned 3D scene along
with a free-form description of a specified target object. To address this task, we propose
ScanRefer, learning a fused descriptor from 3D object proposals and encoded sentence
embeddings. This fused descriptor correlates language expressions with geometric fea-
tures, enabling regression of the 3D bounding box of a target object. We also introduce
the ScanRefer dataset, containing 51, 583 descriptions of 11, 046 objects from 800 Scan-
Net scenes. ScanRefer is the first large-scale effort to perform object localization via
natural language expression directly in 3D.
Then, we introduce the task of dense captioning in 3D scans from commodity RGB-D

sensors. As input, we assume a point cloud of a 3D scene; the expected output is the
bounding boxes along with the descriptions for the underlying objects. To address the 3D
object detection and description problems, we propose Scan2Cap, an end-to-end trained
method, to detect objects in the input scene and describe them in natural language.
We use an attention mechanism that generates descriptive tokens while referring to the
related components in the local context. Our method can effectively localize and describe
3D objects in scenes from the ScanRefer dataset, outperforming 2D baseline methods
by a significant margin.
Recent work on dense captioning and visual grounding in 3D have achieved impressive

results. Despite developments in both areas, the limited amount of available 3D vision-
language data causes overfitting issues for 3D visual grounding and 3D dense captioning
methods. Also, how to discriminatively describe objects in complex 3D environments
is not fully studied yet. To address these challenges, we present D3Net, an end-to-
end neural speaker-listener architecture that can detect, describe and discriminate. Our
method unifies dense captioning and visual grounding in 3D in a self-critical manner. Our
method outperforms SOTA methods in both tasks on the ScanRefer dataset, surpassing
the SOTA 3D dense captioning method by a significant margin.
Consequently, we discuss the limitations and potential future directions of our research.
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Zusammenfassung

Das Verankern von natürlicher Sprache in 3D-Szenen ist ein wichtiges Forschungsthema
für viele interaktive Roboteragenten oder AR/VR-Anwendungen. In den letzten Jahren
gab es enorme Durchbrüche bei der Segmentierung von Objekten in Bildern aus der
Sprache heraus. Diese Methoden und Datensätze beschränken sich jedoch auf 2D-
Ansichten, in denen die 3D-Ausdehnung eines Objekts und seiner Umgebung unvollständig
modelliert sind. Diese Begrenzung hindert Anwendungen, bei denen es entscheidend ist,
den vollständigen 3D-Kontext und die physische Größe zu verstehen, z.B. beim Umgang
mit Objekten in Innenräumen. In dieser Dissertation untersuchen wir mögliche Deep-
Learning-basierte Methoden für textbasiertes Szenenverständnis auf RGB-D-Daten.

Zunächst führen wir die Aufgabe der 3D-Objektlokalisierung in RGB-D-Scans unter
Verwendung von natürlicher Sprachbeschreibung ein. Als Eingabe nehmen wir eine
Punktewolke einer gescannten 3D-Szene zusammen mit einer freien Beschreibung eines
bestimmten Zielobjekts an. Um diese Aufgabe anzugehen, schlagen wir ScanRefer vor,
das eine verschmolzene Beschreibung aus 3D-Objektvorschlägen und kodierten Satzem-
beddings lernt. Dieser verschmolzene Deskriptor korreliert Sprachausdrücke mit ge-
ometrischen Merkmalen und ermöglicht die Regression des 3D-Begrenzungsrahmens
eines Zielobjekts. Wir stellen auch das ScanRefer-Datenset vor, das 51.583 Beschrei-
bungen von 11.046 Objekten aus 800 ScanNet-Szenen enthält. ScanRefer ist der erste
groß angelegte Versuch, eine Objektlokalisierung über natürliche Sprachausdrücke direkt
in 3D durchzuführen.
Als nächstes stellen wir die Aufgabe des Dense Captioning in 3D-Scans von han-

delsüblichen RGB-D-Sensoren vor. Dabei nehmen wir als Eingabe einen Punktwolken-
Datensatz einer 3D-Szene an und erwarten als Ausgabe die Begrenzungskästen (bound-
ing boxes) zusammen mit Beschreibungen der darunterliegenden Objekte. Um die Prob-
leme der 3D-Objekterkennung und -beschreibung anzugehen, schlagen wir Scan2Cap vor,
eine end-to-end trainierte Methode, um Objekte in der Eingangsszene zu erkennen und
in natürlicher Sprache zu beschreiben. Wir verwenden einen Aufmerksamkeitsmech-
anismus, der beschreibende Token generiert, während er auf die damit verbundenen
Komponenten im lokalen Kontext Bezug nimmt. Unsere Methode kann 3D-Objekte in
Szenen des ScanRefer-Datensatzes effektiv lokalisieren und beschreiben und übertrifft
2D-Baseline-Methoden deutlich.
Aktuelle Arbeiten zur dichten Bildbeschreibung und visuellen Verankerung in 3D

haben beeindruckende Ergebnisse erzielt. Trotz Entwicklungen in beiden Bereichen führt
die begrenzte Menge verfügbarer 3D-Vision-Sprachdaten zu Überanpassungsproblemen
für 3D-Visuelle-Verankerungs- und 3D-Dichte-Bildbeschreibungsmethoden. Auch die
Frage, wie Objekte in komplexen 3D-Umgebungen diskriminativ beschrieben werden
können, ist noch nicht vollständig untersucht. Um diese Herausforderungen anzuge-
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hen, präsentieren wir D3Net, eine end-to-end neuronale Sprecher-Hörer-Architektur,
die erkennen, beschreiben und diskriminieren kann. Unser D3Net vereint die dichte
Bildbeschreibung und visuelle Verankerung in 3D in einer selbstkritischen Weise. Unsere
Methode übertrifft SOTA-Methoden in beiden Aufgaben auf dem ScanRefer-Datensatz
und übertrifft die SOTA 3D-Dichte-Bildbeschreibungsmethode erheblich.
Infolgedessen diskutieren wir die Grenzen und möglichen zukünftigen Richtungen un-

serer Forschung.
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1 Introduction

Localizing objects in the physical world has been a very important research topic for
computer vision since last century. The ultimate target is to develop an end-to-end
system that can recognize physical entities, such as cats or pedestrians, from the given
visual signals. Traditional object localization algorithms operate on image inputs to
produce object bounding boxes, leveraging classic machine learning techniques such as
Support Vector Machine (SVM) [1] or Scale-Invariant Feature Transform (SIFT) [2].
With the recent advent of the deep learning, the computer vision community has wit-
nessed tremendous progress in localizing objects in images, empowered by large-scale
image datasets such as ImageNet [3] and COCO [4]. Data-driven localization methods
such as Faster R-CNN [5] and Mask R-CNN [6] have dominated the official benchmarks
and incubated numerous downstream applications.

On the basis of the great success on localizing objects in images, language-guided
object localization emerges. Such task is to localize a region described by a given referring
expression in an image. The localization outputs are expected to be either a bounding
box around the target object [7], or a segmentation mask over the target object [8], with
the input description being short phrases [9], [10] or more complex descriptions [11]. This
task is further extended to localize objects given a question as input [12] to encourage
more interactivity between users and the intelligent system.
So far, recognizing entities upon language queries have achieved great success in image

domain. However, localizing objects in images cannot provide the true physical extent
of a real object, such as the size and the location in the environments. This shortage
greatly hinders the development of the upcoming assistant robots or VR/AR applica-
tions, where knowing the 3D extent is critical for interacting with the objects. Thanks to
the recent development of the commodity 3D sensors, large-scale RGB-D dataset, such
as ScanNet [13] has been collected to enable the fundamental research for scene under-
standing in 3D. In this dissertation, we aim to extend modern deep learning techniques
to enable object localization in 3D by learning the underlying spatial relationships in
the 3D environment as well as in the language inputs.
We first show the possibility of using language guidance to localize objects in RGB-D

scans with deep learning techniques. To this end, we introduce the task of 3D object
localization in RGB-D scans using natural language descriptions, shortened as 3D Vi-
sual Grounding. As input, we assume a point cloud of a scanned 3D scene along with
a free-form description of a specified target object. A bounding box for the desired
object in such 3D scene is expected as output. To address this task, we propose the
ScanRefer network, learning a fused descriptor from 3D object proposals and encoded
sentence embeddings. This fused descriptor correlates language expressions with ge-
ometric features, enabling regression of the 3D bounding box of a target object. To
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Part I. Introduction

train and benchmark our proposed ScanRefer network, we also introduce the ScanRefer
dataset, containing 51, 583 descriptions of 11, 046 objects from 800 ScanNet [13] scenes.
In this work, we demonstrate the first large-scale effort to perform object localization
via natural language expression directly in 3D.

As understanding underlying 3D spatial relationships with the language guidance is
critical to accurate object localizations in 3D scenes, explicitly addressing those rela-
tionships in free-form description inputs becomes the next challenge. Naturally, densely
generating descriptions (which is also known as “Dense Captioning”) for the objects and
their 3D environments can directly model the spatial relationships in language. How-
ever, existing methods in images are limited to narrow viewpoints and fail to capture
the complete 3D contexts. To tackle this problem, we introduce the task of dense cap-
tioning in 3D scans from commodity RGB-D sensors, shortened as 3D dense captioning.
Specifically, as input, we assume a point cloud of a 3D scene; the expected output is
the bounding boxes along with the descriptions for the underlying objects. To address
the 3D object detection and description problems, we propose Scan2Cap, an end-to-end
trained method, to detect objects in the input scene and describe them in natural lan-
guage. We use an attention mechanism that generates descriptive tokens while referring
to the related components in the local context. To reflect object relations (i.e. relative
spatial relations) in the generated captions, we use a message passing graph module
to facilitate learning object relation features. Our method can effectively localize and
describe 3D objects in scenes from the ScanRefer dataset, outperforming the baseline
methods by a significant margin.

Although previously introduced deep-learning-based methods have achieved impres-
sive results, they are highly dependent on the data in terms of the richness of the semantic
annotations of the RGB-D scans and the variety of the collected free-form descriptions.
Such data-driven approaches are in general data-hungry. Therefore, training on lim-
ited amount of available 3D vision-language data can easily cause several overfitting
issues for both aforementioned tasks in 3D. Besides the data shortage issue, although
the previously proposed dense captioning method describes the spatial relationships,
the generated descriptions often appear to be similar to each other. Those generated
descriptions cannot be used by down-stream applications to uniquely identify objects
in 3D environments. In the following, we focus on how to make the descriptions more
discriminative in a data-efficient way. To address these challenges, we present D3Net, an
end-to-end neural architecture that can detect, describe and discriminate. Our D3Net
unifies dense captioning and visual grounding in 3D in a self-critical manner: a neu-
ral speaker module detects and describes target objects in a scene, and a neural listener
module discriminates the candidate object proposals using the received description. Such
self-critical property of D3Net encourages generation of discriminative object captions
and enables semi-supervised training on scan data with partially annotated descriptions.
Our method outperforms SOTA methods for both tasks on the ScanRefer dataset, sur-
passing the SOTA 3D dense captioning method by a significant margin. As a conclusion,
we show that the previously proposed visual grounding and dense captioning tasks in
3D are complementary to each other in nature. Our findings can encourage future op-
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portunities in the language-drive 3D scene understanding and generic vision-language
representation learning in 3D.

We start with introducing an essential language-driven 3D scene understanding task,
namely 3D visual grounding. We propose our ScanRefer network for localizing 3D object
with free-form description, and the first large-scale dataset for training and benchmark
this task. Then, we introduce a revered task of 3D visual grounding, where we densely
detect the object and generate their descriptions with respect to the 3D environments,
referred to as 3D dense captioning. Finally, we focus on exploring the complementary
nature of the proposed two tasks. As a summary, we make the following three contribu-
tions in the field of language-driven scene understanding:

• We introduced the new task 3D Visual Grounding for localizing objects in 3D
environments with language-guided. We also proposed the ScanRefer network to
learn a fused descriptor from 3D object proposals and encoded sentence embed-
dings. ScanRefer, a very first language-guided 3D object localization algorithm,
which learns a fused descriptor from 3D object proposals and encoded sentence
embeddings.

• We introduced the new task 3D Dense Captioning for densely detect objects and
generate their descriptions in 3D environments. We also proposed Scan2Cap, the
first 3D Dense Captioning algorithm, and show a significant improvement over the
image-based methods.

• We explored the complementary property of 3D Visual Grounding and Dense Cap-
tioning, and proposed a novel speaker-listener architecture to generate discrimina-
tive descriptions and achieve semi-supervised training. We demonstrated that our
method significantly improves the previous state-of-the-art results for both tasks.

1.1 Dissertation Overview

This thesis is structured in 7 chapters that are grouped into three parts as following:

• Part I: Introduction (Chapters 1–2)

– Chapter 1 (Introduction) introduces the history and recent development of
language-guided object localization and our contributions to the 3D commu-
nity.

– Chapter 2 (Theoretical Fundamentals) explains basic concepts on language-
guided object localization to assist comprehending the thesis.

• Part II: Language-guided 3D Object Localization (Chapters 3–5)

– Chapter 3 introduces our work ScanRefer on language-guided 3D object local-
ization, which is a fundamental task towards understanding 3D environments
with language guidance.

Chapter 1. Introduction 5



Part I. Introduction

– Chapter 4 introduces our work Scan2Cap on describing the objects in 3D
scenes in natural language to explicitly model the underlying spatial relation-
ships in 3D environments.

– Chapter 5 introduces our work D3Net on exploring the joint nature of the
localizing and describing object in 3D environments with natural language.

• Part III: Conclusion & Outlook (Chapters 6–7)

– Chapter 6 (Conclusion) summarizes our proposed methods and concludes our
contributions.

– Chapter 7 (Outlook) discusses the existing problems in our proposed methods
and hints the potential direction.

1.2 Contributions

This thesis discusses the new challenges in localizing objects in 3D environments, in-
cluding specific tasks such as 3D Visual Grounding and Dense Captioning, as well as
the complementary nature of the aforementioned tasks. For 3D Visual Grounding, we
propose ScanRefer [14], an end-to-end neural architecture to learn a fused descriptor
from 3D object proposals and encoded sentence embeddings, showing significantly su-
perior performance over the image-based baselines. ScanRefer also introduces the first
large-scale vision-language dataset in 3D. As understanding the spatial relationships in
the 3D environments is essential to accurate localizations, we propose Scan2Cap [15], an
attention-based neural algorithm to densely generate descriptions for detected objects.
Scan2Cap indicates the advantages of explicitly modelling the language expressions in 3D
environments, demonstrating a significant improvement in comparison to image-based
methods. Besides new challenges, data is a critical factor to strong neural networks. To
tackle this problem, we propose D3Net [16], a speaker-listener-based architecture that
can detect, describe, and discriminate in a unified approach. In this work, the improve-
ments for both tasks demonstrate the joint and complementary nature of those two 3D
vision-language tasks. More specifically, this thesis is structured by publications and
built by the following contributions:

• We introduce the new task 3D Visual Grounding to localize objects in 3D envi-
ronments with language guidance. To tackle this task, we propose the ScanRefer
network, the first end-to-end deep-learning-based approach for 3D Visual Ground-
ing. The ScanRefer network is the first method that learns the joint descriptors
between 3D object proposals and language queries. To train and benchmark the
proposed method, we introduce the ScanRefer dataset, containing over 50, 000 de-
scriptions for around 10, 000 objects in ScanNet scenes. The ScanRefer dataset is
the first large-scale effort for the vision-language field in 3D. On the newly pro-
posed ScanRefer benchmark, our method significantly outperforms all image-based
methods. The implementation of the method and the data collection platform were
done by the first author. Discussions with the co-authors led to the final paper [14].
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• We introduce the new task 3D Dense Captioning to densely detect and describe
objects in 3D environments using natural language, for directly modelling the spa-
tial relationships in the language cues. To tackle this task, we propose Scan2Cap,
the first neural approach to detect objects in the input scene and generate their
natural language descriptions. Scan2Cap is the first work in 3D that generates ob-
ject descriptions via a context-aware attention mechanism. To completely reflect
the 3D spatial relationships, our method applies a message passing graph module
to facilitate learning inter-object relational features. Scan2Cap is the first Dense
Captioning method in 3D, and is shown to outperform image-based methods by
a significant margin. The method development and implementation was done by
the first author. Alternative baselines were provided by Ali Gholami. Discussions
with the co-authors led to the final paper [15].

• We propose D3Net, the first speaker-listener-based neural architecture in 3D that
can detect, describe, and discriminate. In this work, our method unifies 3D Dense
Captioning and Visual Grounding in a self-critical manner: a neural speaker mod-
ule detects and describes target objects, and a neural listener module discriminates
the candidate object proposals using the received descriptions. D3Net is the first
work in 3D vision-language that utilizes synthesized descriptions to achieve semi-
supervised training. Our method outperforms SOTA methods for both 3D Visual
Grounding and Dense Captioning by a significant margin. Our findings also re-
veal the complementary nature of both tasks, encouraging future opportunities
for more generic vision-language representation learning in 3D. The method de-
velopment and implementation was done by the first author. Discussions with the
co-authors led to the final paper [16].

1.3 List of Publications

In this dissertation, the accepted version of the following IEEE publication is used:

Z. Chen, A. Gholami, M. Nießner, and A. X. Chang, “Scan2cap: Context-aware
dense captioning in rgb-d scans,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 3193–3203

The following publications are reproduced with permission from Springer Nature:

Z. Chen, A. X. Chang, and M. Nießner, “Scanrefer: 3d object localization in rgb-d
scans using natural language,” in Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XX, Springer,
2020, pp. 202–221

Z. Chen, Q. Wu, M. Nießner, and A. X. Chang, “D 3 net: A unified speaker-listener
architecture for 3d dense captioning and visual grounding,” in Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXXII, Springer, 2022, pp. 487–505
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2 Fundamentals and Methods

3D Computer Vision is a popular and fast-evolving research area empowered by deep
learning techniques. Connected with the language data, deep learning methods in 3D
are enhanced with capability of jointly understanding the 3D vision signals and lin-
guistic cues. In this dissertation, we discuss our proposed multimodal algorithms for
language-guided 3D object localization. Specifically, we first introduce the different rep-
resentations of 3D and language data that are utilized for training the neural networks
in Section 2.1. Then, we introduce the relevant neural network architectures for process-
ing the 3D and language data in Section 2.2, respectively. Finally, we introduce several
3D datasets (Section 2.3.1) as well as the popular tasks that are relevant to grounding
natural language to 3D scenes (Section 2.3.2).

2.1 Representation

Representing the real-world data in the digital form is the foundation of modern deep-
learning-based algorithms. In this dissertation, we mainly deal with signals from two
sources: 3D physical world and word-based language sequences. The discrepancies be-
tween those two sources bring up many research questions, such as how to represent
data from two significantly different domains as numerical signals, and how to discover
the underlying shared information between the 3D and language inputs. In this section,
we present a brief introduction to the common representations of 3D and language data.

2.1.1 3D Geometry Representation

2.1.1.1 Mesh

A mesh is a collection of vertices, edges, and faces that represents the 3D shape. Specif-
ically, a mesh is usually stored as a list of vertices coordinates, and an index list of the
faces corners. The faces are usually defined by triangles, quadrilaterals, or other convex
polygons. In this dissertation, we primarily deal with triangle mesh data, where the faces
are represented as triangles. Generally, triangle mesh is a very popular representation
for 3D geometry in 3D computer vision and graphics. However, meshes also discretize
the 3D geometry through triangulating the surface. As such, meshes with few faces
often lack the details of the corresponding geometry. We visualize a triangle mesh in
Figure 2.1.
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Figure 2.1: Triangle Mesh of a couch. We visualize the triangle connectivity on the right.

2.1.1.2 Point Cloud

A point cloud is a discrete set of points floating in the 3D space, where each point can
be simply represented by the X, Y, and Z coordinates. In some cases, each point is
often appended with additional features, such as the RGB values or the normal vector.
In a nutshell, point cloud is the simplest and most memory-efficient representation for
3D entities in computer vision. However, point cloud is also an unstructured way for
representing 3D shapes. For instance, even though two point clouds appear totally
different from each other, they can still represent the same 3D shape. We visualize three
different point clouds sampled from the mesh of the Stanford Bunny in Figure 2.2.

Figure 2.2: Point Cloud of the Stanford Bunny. A point cloud is a discrete set of points
representing 3D geometry. Point clouds with different point coordinates and den-
sities can still represent the same 3D shape.
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There are different ways to acquire the point cloud data. For a given triangle mesh,
point clouds can be generated by either taking the vertices of the mesh directly, or
randomly choosing some mesh vertices as the output point cloud. Point clouds can also
be produced by sampling the points on the mesh surface. In this dissertation, we operate
on point clouds that are captured in real-world 3D indoor scenes via RGB-D cameras.
On top of capturing color information as conventional cameras, the RGB-D cameras can
also capture the depth values between the visible positions and the viewpoint in the
current frustum. Utilizing the captured depth maps and the camera parameters, i.e. the
intrinsic and extrinsic matrices, point clouds can be easily produced by back-projecting
points from pixel space to 3D space. We visualize a point cloud generated by an RGB-D
frame in Figure 2.3.

Figure 2.3: Point Cloud From RGB-D camera. We show an RGB frame (top left) and
a depth map (bottom left) from the ScanNet [13]. A point cloud (right) can be
generated by back-projecting the RGB values from pixel space to 3D space using
the depth map.

2.1.1.3 Voxel Grid

A voxel grid is a 3D array representing volume elements on regular grids in 3D space. As
with pixels in counterpart 2D images, the coordinates of voxels are not explicitly encoded
within the stored values. To generate a voxel grid, the target 3D geometry is discretized
with accordance to the desired resolution. In comparison to point clouds, voxel grids
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Figure 2.4: Voxel Grid Representation. We visualize voxel grids of a ShapeNet [17] car in
resolution 643, 1283, and 2563. As the voxelization process discretizes the geometry,
higher resolutions can reveal more details of the target 3D geometry. However, voxel
grids with higher resolution also require significantly more memory for processing
and storage, including numerous voxels representing free space.

are structured. That is, for the same 3D shape, the generated voxel grid is unique
and identical at a specific resolution. Additionally, as voxel grids are the most similar
representation to images (pixel grids), it is also easier to apply neural operands, such
as convolutions, on voxels than on point clouds. However, the major downside of using
voxel grids is the prohibitive memory requirement. With the increase of voxel resolutions,
the storage size for voxel grids increases exponentially. Since empty space is the major
components for most of the voxelized 3D geometries, alternative voxel representations
such as sparse voxel grids are often adapted to reduce memory footprints.

There are many ways to generate voxel grids. One popular way to present voxel grids
is to store the occupancy status of each volume in 3D space. This representation is
call occupancy grid, where each voxel contains binary information whether the volume
is occupied by the 3D shape. We visualize occupancy grids in different resolutions in
Figure 2.4.

2.1.2 Language Representation

2.1.2.1 Bag-of-words Model

The bag-of-words model is a simple yet popular representation used in natural language
processing and information retrieval. It represents a sentence or a document as a set of its
words, where the frequencies of words are counted, but the grammar and the word order
are discarded. In practice, the bag-of-words model is mainly used for generating features
to characterize the language data. We show an example of representing a sentence with
the bag-of-words model below.
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1 sentence="John likes to watch movies. Mary likes movies too."

2 bag_of_words={"John":1, "likes":2, "to":1, "watch":1, "movies":2, "

Mary":1, "too":1}

However, discarding the grammar and the word order eliminates the semantic meaning
of the input expression. The following two sentences represent totally opposite semantic
meanings while possessing exactly the same bad-of-words representations.

1 sentence_1="blue , not red"

2 bag_of_words_1={"blue":1, "red":1, "not":1}

3
4 sentence_2="red , not blue"

5 bag_of_words_2={"blue":1, "red":1, "not":1}

Generally, common words like “the” and “a” always appear with the highest frequen-
cies but contribute little to representing the text inputs. One solution to this problem is
to treat those words as “stop words” and exclude them throughout the encoding process.
Another way is to properly normalize those frequencies with respect to the document.

2.1.2.2 N-gram Model

An n-gram is a consecutive sequence of n items in the input text. Those items can be
letters, syllables, and words according to the application. Usually, an n-gram with 1
item is referred to as unigram; the one with 2 items is a bigram; the one with 3 items is
called trigram. We show examples of n-grams extracted from a given sentence below.

1 sentence="John likes movies and music."

2
3 unigrams={"John", "likes","movies","music"}

4 bigrams={"John likes","likes movies","movies and","and music"}

5 trigrams={"John likes movies","likes movies and","movies and music"}

N-grams are widely used in natural language processing. They can also be used for
modelling the sequence. More concretely, an n-gram model predicts an item xi based on
the other items x0, ..., x(i−1), x(i+1), ..., xn. This can be presented as P (xi|x0, ..., x(i−1),
x(i+1), ..., xn) in probabilistic term. We discuss the application of n-grams in the following
section.

2.1.2.3 Word Embeddings

In natural language processing, a word embedding is a vector representation of a word.
More specifically, the word embedding vector encodes real values that represent the
input word in a continuous vector space. In this vector space, embeddings of words with
similar semantic meanings are expected to be closer to each other, while the dissimilar
ones repel. We visualize some word embeddings in 2-dimensional space in Figure 2.5.
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Figure 2.5: Word embeddings. We visualize the word embeddings in 2D space, where similar
words are grouped together while the dissimilar ones repel.

To obtain the word embeddings with a given text corpus, one can represent each word
as a continuous vector in accordance with the context in the n-gram. This process can
be done in a self-supervised way, i.e. no labels for the text corpus is required. Another
popular way to embed words is to learn the vector representations jointly with the
downstream task. This is often an efficient approach if the word embeddings are only
intended for the specified downstream task.

GloVe Embeddings GloVe (“Global Vectors for Word Representation“) embeddings
are a type of word embedding used in natural language processing [18]. Such embeddings
encode the co-occurrence probability ratio between two words as vector differences. The
intuition behind this approach is that words that appear in similar contexts are likely
to have similar meanings. To create GloVe embeddings, the co-occurrence matrix is
factorized using a matrix factorization algorithm, which produces word embeddings that
capture the statistical relationships between words. Specifically, GloVe uses a weighted
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least squares objective J that minimizes the difference between the dot product of the
vectors of two words and the logarithm of their number of co-occurrences:

J =

V∑

i,j=1

f(Xij)(w
T
i w̃j + bi + b̃j − logXij)

2 (2.1)

where wi and bi are word vector and bias for word i, w̃j and b̃j are word vector and bias
for context word j, Xij is the number of times a word i occurs in the context of another
word j, and f is a weighting function that assigns lower weights to rare and frequent
co-occurrences.

2.2 Neural Feature Extractors

In the previous section, we introduce the 3D and language representations we use in
this dissertation. Once all the representations are available, we apply different neural
networks to extract high-level abstract features for the specific objectives. In this sec-
tion, we introduce several neural networks that we use to process the 3D and language
representations.

2.2.1 PointNet++

Figure 2.6: PointNet++ architecture. PointNet++ is a neural network architecture that
operates directly on point clouds without any preprocessing. It is capable of han-
dling point clouds of variable size and density. PointNet++ can be applied to many
downstream tasks such as segmentation and classification. [19].

PointNet++ [19] is a neural network architecture designed for processing point clouds.
It operates directly on PointNet++ without any preprocessing such as voxelization.
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PointNet++ introduces a hierarchical neural network architecture that is able to capture
features at different scales, allowing it to better handle complex and detailed point cloud
data. The PointNet++ architecture consists of multiple modules, each of which processes
a subset of the input point cloud. These modules are arranged in a hierarchical fashion,
with higher-level modules processing features learned from lower-level modules. The
output of each module is a set of learned features that are passed on to the next module.
We demonstrate the PointNet++ architecture in Figure 2.6.

One of the key features of PointNet++ is its ability to handle point clouds of variable
size and density. It accomplishes this through the use of a sampling and grouping
technique, which selects a subset of points from the input cloud and groups them into
small clusters. Each PointNet module operates on one of these clusters, allowing the
network to process the entire point cloud efficiently.

In this dissertation, we apply PointNet++ as the feature extraction backbone for
handling point cloud data. Its ability to handle variable-sized and density point clouds
makes it a powerful tool for processing real-world 3D data, such as RGB-D scans from
ScanNet [13].

2.2.2 SparseConv

Figure 2.7: SparseConv operate on a sparse tensor. The convolution layer on a sparse
tensor works similarly to that on a dense tensor. However, on a sparse tensor,
convolution operates on a few specified grids according to the hash table. [20].

Although point clouds are memory-efficient for only storing points on structures, the
sparse and unordered nature still lead to the performance bottleneck. In contrast, vox-
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elizing 3D geometries as voxel grids can preserve more spatial details with regular shapes
and uniform properties. As voxel grids are usually represented as 3D tensors in com-
puter vision, one can easily apply 3D convolutional operands on them without any further
processing. However, processing voxel grids with higher resolution requires significantly
more storage and time. Additionally, processing voxel grids representing empty space is
often inefficient in terms of the final objective, as a lot of computations are eventually
wasted.

To tackle this problem, SparseConv (“Sparse Convolution”) proposes to use a sparse
tensor format for the input data, which only stores the non-zero values and their corre-
sponding indices. Such sparse tensor is usually implemented via a hash table in practice.
It then uses a specialized convolution operation that takes advantage of the sparsity of
the input data to reduce the number of computations required. In Figure 2.7, we illus-
trate SparseConv operations on an input sparse tensor.

As sparse tensors can store voxel grids with high resolution efficiently, SparseConv
usually produces much richer semantic features, resulting in better performance in down-
stream tasks such as 3D object classification and 3D semantic segmentation.

2.2.3 Transformers

Recurrent neural networks usually suffer from long-term dependency issue, i.e. the
networks often fail to remember important information hidden in the beginning of a
long sequence. To tackle this issue, the Transformer architecture is proposed [21]. It is
based on a self-attention mechanism, which allows the model to attend to different parts
of the input sequence during the encoding and decoding phases.

As the foundation of Transformers, self-attention is a mechanism that allows the model
to compute a weighted sum of the input elements based on their relevance to each other.
This is done by computing attention weights for each element in the input sequence,
based on its similarity to all other elements in the sequence. The resulting attention
weights are used to compute a weighted sum of the input elements, which forms the
output of the self-attention mechanism. Specifically, the input sequence is duplicated as
three packed input tensors Q, K, and V . The output for a self-attention block is usually
implemented as the following scaled dot product attention:

Attention(Q,K, V ) = Softmax(
QTK√

d
)V (2.2)

where d is a hyperparameter scaling the dot product within the softmax function. We
illustrate the self-attention mechanism in Figure 2.18a.

To enrich the information learned through self-attention mechanism, the Transformer
uses multi-head attention, which computes multiple sets of attention weights in parallel.
In practice, this is achieved by stacking multiple scaled dot-product attention modules,
and map the concatenated attention features through a linear layer as the final output.
We illustrate the multi-head attention block in Figure 2.18c.
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(a) Scaled dot-product atten-
tion. (b) Multi-head attention.

Figure 2.8: Basic modules of Transformers. Self-attention mechanism is the foundation
of Transformers [21]. On the basis of self-attentions, multi-head attention modules
improves the quality of the attention weights, which are used in Transformers to
compute multiple sets of attention weights in parallel.

2.3 Related Datasets and Tasks

In this section, we introduce the relevant 3D and language datasets, as well as the adjunct
tasks related to this dissertation.

2.3.1 Datasets

2.3.1.1 ScanNet

ScanNet [13] is a large-scale indoor scene dataset consists of RGB-D scans of various
indoor environments, along with 3D annotations for a variety of semantic and geomet-
ric properties. The dataset includes over 1,500 scans of indoor environments, totaling
over 2.5 million RGB-D frames. Each scan in the dataset is labeled with a variety of
semantic categories, including walls, floors, ceilings, furniture, and objects. These labels
were created using a combination of manual annotation and automatic segmentation
algorithms. In addition to semantic labels, the dataset includes instance-level annota-
tions for objects, such as chairs, tables, and beds. Besides segmentations, ScanNet also
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Figure 2.9: Rich annotations of the ScanNet scenes [13]. ScanNet provides instance-level
semantic segmentations. Different colors represent different instances.

includes high-quality RGB-D scans captured using a variety of sensors. The scans have
a resolution of 640x480 pixels and a depth resolution of 320x240 pixels. The ScanNet
dataset has been used in a variety of computer vision and machine learning tasks, in-
cluding 3D object detection, semantic segmentation, and scene reconstruction. It has
also been used as a benchmark dataset for evaluating the performance of deep learn-
ing models on indoor scene understanding tasks. In this dissertation, we use ScanNet
as the foundation for grounding language expression in 3D indoor environments. We
demonstrate segmentation masks for ScanNet scenes in Figure 2.9.

2.3.1.2 RefCOCO

RefCOCO [9] (“ReferItGame Referring Expression Comprehension in Context”) is a
dataset for the task of referring expression comprehension (which is also known as “visual
grounding”), i.e. localizing an object in an input image with respect to an input text
query. The RefCOCO dataset consists of images of everyday scenes, each annotated
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Figure 2.10: Example of RefCOCO [9]. RefCOCO provides images and referring expres-
sions for specific regions in paired images.

with one or more referring expressions. Referring expressions are short natural language
phrases that refer to a specific object or region in the image, such as “right rocks”
or “yellow shirt in focus”. RefCOCO provides various types of referring expressions,
including spatial relations, color, size, and shape. It is widely used for training and
evaluating methods for referring expression comprehension. In this dissertation, we
explore referring expression comprehension task in the counterpart 3D environments.
We show some examples of RefCOCO in Figure 2.10.

2.3.1.3 MSCOCO

Figure 2.11: Example of MSCOCO [22]. RefCOCO provides images and associated cap-
tions.

MSCOCO [22] (“Microsoft Common Objects in Context”) dataset is a widely-used
benchmark for image captioning, i.e. automatically generating descriptions for the input
images. The MSCOCO dataset contains numerous images, each of which is annotated
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with five captions about different aspects of the given images. Those captions are anno-
tated by human experts, ensuring the quality and diversity of the language data. The
images in the dataset come from a wide range of sources and depict a diverse set of scenes
and objects. The captions are also diverse, including a wide range of nouns, verbs, and
adjectives. In this dissertation, we explore the possibility of generating captions for 3D
environments. In contrast with image captioning on MSCOCO images, we specify the
task objectives as the object in the 3D indoor scenes, which is different from describing
the whole environment as in image captioning. We show some image-caption pairs of
MSCOCO in Figure 2.11.

2.3.2 Tasks and Related Methods

2.3.2.1 3D Semantic Segmentation

Figure 2.12: Semantic Segmentation in ScanNet [19]. We show the input point cloud
(left) and the output per-point semantic labels (right).

3D Semantic Segmentation is a fundamental problem in 3D scene understanding, with
applications in robotics, autonomous driving, and AR/VR. It is the task of assigning a
label to each point in a 3D point cloud, where the label indicates the semantic category
of the object or surface represented by that point. People usually use IoU (“Intersection
over Union”) to evaluate the performance of the semantic segmentation method. The
IoU score is defined as:

IoU =
B ∩ B̂

B ∪ B̂
(2.3)

where B is the set of points with ground truth labels and B̂ is the predicted ones. We
visualize an input point cloud and the point cloud with predicted semantic labels in
Figure 2.12.
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Figure 2.13: 3DMV [23] architecture. To compensate the poorly reconstructed 3D parts,
RGB features are back-projected to the corresponding 3D locations.

3DMV Pure geometric inputs for 3D semantic segmentation usually suffer from poor
3D reconstruction quality. To tackle this issue, 3DMV [23] introduces a cross-modality
learning method (3DMV) for this task. The key idea of 3DMV is to use encoded RGB
frames as auxiliary input to compensate the poorly reconstructed 3D parts, which are
represented as voxel grids in practice. Specifically, 3D convolutional neural modules are
used to extract geometric features, while a 2D network encodes RGB features. The RGB
features are back-projected to the corresponding 3D locations via camera intrinsic and
extrinsic matrices. The whole architecture is visualized in Figure 2.13.

2.3.2.2 3D Object Detection

3D Object Detection is an important task in computer vision that involves detecting and
localizing objects in 3D space, which is usually from point clouds. This task presents
several unique challenges compared to object detection in counterpart 2D images. For
example, 3D data is often sparse and irregular, requiring specialized techniques for pro-
cessing and analysis. 3D Object Detection has many upcoming applications, including
autonomous driving, assistant robots, and AR/VR. In this dissertation, we treat 3D
Object Detection as the fundamental technique for localizing objects in 3D scenes. We
visualize an input point cloud and the detected object bounding boxes in Figure 2.14.
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Figure 2.14: Object Detection in ScanNet [24]. We show the input point cloud (left) and
the output bounding boxes (right).

One of the most popular metrics for object detection is mAP@k. Here, k is the previ-
ously introduced IoU score. Then, mAP@k is the mean of the AP scores for all object
categories in the dataset, thresholded by given IoU score k. AP (“Average Precision”)
is a single-number metric that summarizes the precision-recall curve. Specifically, AP
is calculated as the area under the precision-recall curve. In this dissertation, we also
adapt this widely used metric to evaluate the performance of our localization network.

Figure 2.15: VoteNet [24] Architecture. VoteNet takes point clouds as input and predict
object bounding boxes from a set of point clusters as output.
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VoteNet VoteNet [24] is a deep-learning-based 3D object detection architecture that
operates directly on point clouds. Leveraging a PointNet++ backbone, VoteNet extracts
rich low-level features directly from the input point cloud data. The key idea of VoteNet
is to use Hough Voting algorithm that involves voting in 3D space to identify clusters
of points that are likely to belong to the same object. VoteNet generates a set of
object proposals, which are candidate regions in the scene that may contain objects
of interest. Then, for each object proposal, VoteNet performs object classification as
well as bounding box regression to determine the type and size of the candidate object.
The training of VoteNet is done in an end-to-end manner. In this dissertation, we take
VoteNet as the basic backbone for predicting bounding boxes of 3D objects in RGB-D
scans. We visualize the VoteNet architecture in Figure 2.15.

2.3.2.3 3D Instance Segmentation

Figure 2.16: Instance Segmentation in ScanNet [25]. We show the input point cloud
(left) and the segmented instance labels (right), where each color corresponds to
an individual object.

3D Instance Segmentation is the task of not only assigning semantic labels to each
point in a 3D point cloud, but also grouping points together into instances of individual
objects. The output of a 3D instance segmentation algorithm is a set of segmented
objects, where each object is assigned a unique instance ID. 3D instance segmentation is
a challenging problem due to the complexity and variability of 3D scenes, as well as the
need to distinguish between different instances of the same semantic category. There are
mainly two types of instance segmentation algorithms: 1) top-down, which first detects
object bounding boxes then segment the 3D shapes, as in Hou et al. [26]; 2) bottom-
up, which first performs semantic segmentation then cluster points into instances, as in
PointGroup [25]. This task is evaluated similarly to 3D Object Detection. The only
difference is that the evaluation of 3D Instance Segmentation is based on points rather
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than bounding boxes. In this dissertation, we also adapt 3D Instance Segmentation
into the object localization pipeline, as it expects much denser and detailed per-point
localizations in comparison to bounding box predictions. We visualize an input point
cloud and the predicted instance labels in Figure 2.16.

Figure 2.17: PointGroup architecture [25]. PointGroup takes a point cloud as input, then
generates instances by a clustering module, a ScoreNet module, and a NMS (“Non-
Maximum Suppression”) module.

PointGroup PointGroup [25] is a SparseConv-based end-to-end approach that gener-
ates accurate and efficient instance segmentation results on large-scale 3D point clouds.
It takes the point cloud as input and converts it into a sparse voxel grid. Then, a
SparseConv [20] backbone extract per-voxel features, which are mapped back to the
original point cloud as per-point features. Afterward, a grouping module uses a cluster-
ing algorithm similar to VoteNet [24] to group points within each object proposal into
instances. PointGroup applies a small network called ScoreNet to predict the confidence
for whether the object proposals are valid instances. A NMS (“Non-Maximum Suppres-
sion”) module is applied during inference to filter out redundant instance predictions. In
this dissertation, we utilize a localization backbone analogous to PointGroup. We show
the PointGroup architecture in Figure [25].

2.3.3 Visual Grounding

Visual Grounding refers to the process of linking language or textual expression to
specific regions in an image. It involves identifying and localizing objects, regions, or
events referred to in the language, and establishing a correspondence between these
elements and their visual representations. Visual Grounding plays a crucial role in the
joint field of natural language processing and computer vision.

There are various approaches to achieve Visual Grounding, including the ones based on
object detection methods and instance segmentation networks, as shown in Figure 2.18.
To enhance the multimodal features learned from images and texts, recent approaches
often apply attention mechanisms [21]. These methods enable the model to identify
and locate visual features in the input, and to establish correspondences between these
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(a) Input image. (b) Grounded image region. (c) Grounded image masks.

Figure 2.18: Visual Grounding. For a given image and a query “people in blue coat”, the
visual grounding system usually predicts the bounding box for the desired region,
or mark the region via a segmentation mask.

features and the textual information in the output. In a nutshell, the accuracy and
effectiveness of visual grounding methods depend on the quality and richness of the visual
features and the textual input, as well as the high-level multimodal features extracted
from both modalities.
To evaluate the performance of Visual Grounding methods, people usually use a

thresholded accuracy, where the positive predictions have higher intersection over union
(IoU) with the ground truths than the thresholds. The Visual Grounding accuracy is
denoted as Acc@kIoU, where k is the threshold for the IoU score. In practice, k is usu-
ally set to 0.25 and 0.5 for most experiments. We also adapt such thresholded accuracy
in this dissertation.

SCRC SCRC (“Spatial Context Recurrent ConvNet”) is an end-to-end approach for
visual grounding in images. Specifically, it follows a two-stage approach: it first detects
a set of image regions as the candidates, then it uses a recurrent neural network to
score the candidate regions according to the input query. This approach can effectively
identify desired image regions using the language cues. In this dissertation, we discuss
its feasibility by lifting SCRC to much more challenging 3D scenarios. We illustrate the
SCRC pipeline in Figure 2.19.

One-Stage Visual Grounding Previous visual grounding methods usually take a two-
stage approach, i.e. producing the bounding box proposals first, then picking the most
likely box in accordance with the input text query. Such approach is often bottle-necked
by the inference speed. Additionally, the grounding performance is also capped by the
quality of the region proposals. For example, if the target region is never detected during
the first stage, it is impossible to match the text query with the correct image region.
To tackle this issue, Yang et al. [27] propose a one-stage visual grounding approach.

The key idea is to directly predict the grounded bounding box given the input image
and query. Specifically, the one-stage network extracts the image features as dense
feature maps, which are then fused together with encoded text features. Such fused
features are processed through a grounding module to predict the bounding box size
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Figure 2.19: SCRC pipeline [7]. SCRC retrieves candidate image regions by scoring each
region according to the text query.

and confidence for matching with the input query. This way, one-stage visual grounding
network achieves fast inference while showing the state-of-the-art performance at the
time of publication. We visualize this architecture in Figure 2.20.

2.3.4 Dense Captioning

The goal of image captioning is to teach an intelligent system to understand the content
of an image and express that understanding in natural language. In contrast, dense
captioning is a multimodal task that involves generating multiple captions for different
regions or objects in an image. Unlike image captioning, dense captioning aims to provide
a more detailed description of the contents of an image by describing the different regions
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Figure 2.20: One-stage visual grounding pipeline [27]. Taking an image and a text query
as input, the one-stage approach detects and identifies the desired image region
in a one-stage manner.

Figure 2.21: A comparison between image captioning and dense captioning [28]. The
key difference between image captioning and dense captioning is that the former
usually expects a single description for the whole image, while the latter expects
dense pairs of image regions and descriptions as output.

or objects within it. To showcase the difference between image captioning and dense
captioning, we show a comparison in Figure 2.21. Dense captioning can be seen as a
combination of object detection and image captioning. One of the challenges of dense
captioning is how to effectively combine object detection and captioning algorithms to
generate accurate and diverse descriptions.

Dense Captioning methods are evaluated with a joint metric of object detection and
image captioning. More concretely, an mAP thresholded by both IoU score and a specific
image captioning metric is applied. Such mAP is measured through computing all paired
threshold values.
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Figure 2.22: DenseCap pipeline [28]. DenseCap detects object regions and iteratively gen-
erate natural language descriptions for all objects.

DenseCap DenseCap [28] is the first work that propose a dense captioning algorithm
that combines object detection and image captioning to generate natural language de-
scriptions of the objects and regions in an image. The algorithm consists of two main
components: a fully convolutional localization network (FCLN) for object detection and
a recurrent neural network (RNN) for caption generation. Specifically, the FCLN mod-
ule directly predicts bounding boxes and object scores for each location in a feature map.
Then, the RNN is trained to generate natural language descriptions taking the object
region features as input, which is analogous to conventional image captioning methods.
In this dissertation, we discuss in depth the feasibility of performing dense captioning in
3D scenes, while highlighting the key challenging of doing so in 3D environments. The
DenseCap pipeline is visualized in Figure 2.22.

Chapter 2. Fundamentals and Methods 29





Part II

Grounding Natural Language to 3D
Scenes





3 3D Object Localization in RGB-D Scans
using Natural Language

This chapter introduces the following paper:

Z. Chen, A. X. Chang, and M. Nießner, “Scanrefer: 3d object localization in rgb-d
scans using natural language,” in Computer Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings, Part XX, Springer, 2020, pp. 202–
221

Abstract of the paper We introduce the task of 3D object localization in RGB-D scans
using natural language descriptions. As input, we assume a point cloud of a scanned
3D scene along with a free-form description of a specified target object. To address this
task, we propose ScanRefer, learning a fused descriptor from 3D object proposals and
encoded sentence embeddings. This fused descriptor correlates language expressions with
geometric features, enabling regression of the 3D bounding box of a target object. We
also introduce the ScanRefer dataset, containing 51, 583 descriptions of 11, 046 objects
from 800 ScanNet [13] scenes. ScanRefer is the first large-scale effort to perform object
localization via natural language expression directly in 3D.

Contribution The method development and implementation was done by the first au-
thor. Discussions with the co-authors led to the final paper.
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Figure 3.1: We introduce the task of object localization in 3D scenes using natural language.
Given as input a 3D scene and a natural language expression, we predict the bound-
ing box for the target 3D object (right). The counterpart 2D task (left) does not
capture the physical extent of the 3D objects.

3.1 Introduction

In recent years, there has been tremendous progress in both semantic understanding
and localization of objects in 2D images from natural language (also known as visual
grounding). Datasets such as ReferIt [9], RefCOCO [29], and Flickr30K Entities [10]
have enabled the development of various methods for visual grounding in 2D [7], [8],
[11]. However, these methods and datasets are restricted to 2D images, where object
localization fails to capture the true 3D extent of an object (see Fig. 4.1, left). This is a
limitation for applications ranging from assistive robots to AR/VR agents where under-
standing the global 3D context and the physical size is important, e.g., finding objects in
large spaces, interacting with them, and understanding their spatial relationships. Early
work by Kong et al. [30] looked at coreference in 3D, but was limited to single-view
RGB-D images.

In this work, we address these shortcomings by proposing the task of object localization
using natural language directly in 3D space. Specifically, we develop a neural network
architecture that localizes objects in 3D point clouds given natural language descriptions
referring to the underlying objects; i.e., for a given text description in a 3D scene,
we predict a corresponding 3D bounding box matching the best-described object. To
facilitate the task, we collect the ScanRefer dataset, which provides natural language
descriptions for RGB-D scans in ScanNet [13]. In total, we acquire 51, 583 descriptions
of 11, 046 objects. To the best of our knowledge, our ScanRefer dataset is the first large-
scale effort that combines 3D scene semantics and free-form descriptions. In summary,
our contributions are as follows:

• We introduce the task of localizing objects in 3D environments using natural lan-
guage descriptions.

• We provide the ScanRefer dataset containing 51, 583 human-written free-form de-
scriptions of 11, 046 objects in 3D scans.
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• We propose a neural network architecture for localization based on language de-
scriptions that directly fuses features from 2D images and language expressions
with 3D point cloud features.

• We show that our end-to-end method outperforms the best 2D visual grounding
method that simply backprojects its 2D predictions to 3D by a significant margin
(9.04 Acc@0.5IoU vs. 22.39 Acc@0.5IoU).

3.2 Related Work

Grounding Referring Expressions in Images. There has been much work connect-
ing images to natural language descriptions across tasks such as image captioning [31]–
[34], text-to-image retrieval [35], [36], and visual grounding [7], [11], [37]. The task of
visual grounding (with variants also known as referring expression comprehension or
phrase localization) is to localize a region described by a given referring expression, the
query. Localization can be specified by a 2D bounding box [9]–[11] or a segmentation
mask [8], with the input description being short phrases [9], [10] or more complex de-
scriptions [11]. Recently, Acharya et al [12] proposed visual query detection where the
input is a question. The focus of our work is to lift this task to 3D, focusing on complex
descriptions that can localize an unique object in a scene.

Existing methods focus on predicting 2D bounding boxes [7], [29], [35], [37]–[42] and
some predict segmentation masks [8], [43]–[47]. A two-stage pipeline is common, where
first an object detector, either unsupervised [48] or pretrained [5], is used to propose
regions of interest, and then the regions are ranked by similarity to the query, with the
highest scoring region provided as the final output. Other methods address the referring
expression task with a single stage end-to-end network [8], [27], [49]. There are also
approaches that incorporate syntax [50], [51], use graph attention networks [52]–[54],
speaker-listener models [11], [55], weakly supervised methods [56]–[58] or tackle zero-
shot settings for unseen nouns [59].

However, all these methods operate on 2D image datasets [9], [10], [29]. A recent
dataset [60] integrates RGB-D images but lacks the complete 3D context beyond a single
image. Qi et al. [61] study referring expressions in an embodied setting, where semantic
annotations are projected from 3D to 2D bounding boxes on images observed by an
agent. Our contribution is to lift NLP tasks to 3D by introducing the first large-scale
effort that couples free-form descriptions to objects in 3D scans. Tab. 3.1 summarizes
the difference between our ScanRefer dataset and existing 2D datasets.

Object Detection in 3D. Recent work on 3D object detection on volumetric grids [26],
[62]–[65] has been applied to several 3D RGB-D datasets [13], [66], [67]. As an alternative
to regular grids, point-based methods, such as PointNet [68] or PointNet++ [19], have
been used as backbones for 3D detection and/or object instance segmentation [69], [70].
Recently, Qi et al. [24] introduced VoteNet, a 3D object detection method for point
clouds based on Hough Voting [71]. Our approach extracts geometric features in a
similar fashion, but backprojects 2D feature information since the color signal is useful
for describing 3D objects with natural language.
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dataset #objects #expressions AvgLeng data format 3D context

ReferIt [9] 96,654 130,364 3.51 image -
RefCOCO [29] 50,000 142,209 3.50 image -
Google RefExp [11] 49,820 95,010 8.40 image -
SUN-Spot [60] 3,245 7,990 14.04 image depth
REVERIE [61] 4,140 21,702 18.00 image panoramic image
ScanRefer (ours) 11,046 51,583 20.27 3D scan depth, size, location, etc.

Table 3.1: Comparison of referring expression datasets in terms of the number of objects (#ob-
jects), number of expressions (#expressions), average lengths of the expressions, data
format and the 3D context.

Figure 3.2: Our task: ScanRefer takes as input a 3D scene point cloud and a description of an
object in the scene, and predicts the object bounding box.

Figure 3.3: Our data collection pipeline. The annotator writes a description for the focused
object in the scene. Then, a verifier selects the objects that match the description.
The selected object is compared with the target object to check that it can be
uniquely identified by the description.

3D Vision and Language. Vision and language research is gaining popularity in im-
age domains (e.g., image captioning [32]–[34], [72], image-text matching [73]–[77], and
text-to-image generation [77]–[79]), but there is little work on vision and language in 3D.
Chen et al. [80] learn a joint embedding of 3D shapes from ShapeNet [17] and correspond-
ing natural language descriptions. Achlioptas et al. [81] disambiguate between different
objects using language. Recent work has started to investigate grounding of language to
3D by identifying 3D bounding boxes of target objects for simple arrangements of prim-
itive shapes of different colors [82]. Instead of focusing on isolated objects, we consider
large 3D RGB-D reconstructions that are typical in semantic 3D scene understanding.
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Figure 3.4: Description lengths.

A closely related work by Kong et al. [30] studied the problem of coreference in text
description of single-view RGB-D images of scenes, where they aimed to connect noun
phrases in a scene description to 3D bounding boxes of objects.

3.3 Task

We introduce the task of object localization in 3D scenes using natural language (Fig. 3.2).
The input is a 3D scene and free-form text describing an object in the scene. The scene
is represented as a point cloud with additional features such as colors and normals for
each point. The goal is to predict the 3D bounding box of the object that matches the
input description.

3.4 Dataset

The ScanRefer dataset is based on ScanNet [13] which is composed of 1,613 RGB-D
scans taken in 806 unique indoor environments. We provide 5 descriptions for each
object in each scene, focusing on complete coverage of all objects that are present in the
reconstruction. Here, we summarize the annotation process and statistics of our dataset
(see supplement for more details).
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Number of descriptions 51,583
Number of scenes 800
Number of objects 11,046
Number of objects per scene 13.81
Number of descriptions per scene 64.48
Number of descriptions per object 4.67
Size of vocabulary 4,197
Average length of descriptions 20.27

Table 3.2: ScanRefer dataset statistics.

(a) (b) (c) (d) (e)

Figure 3.5: Word clouds of terms for (a) object names (b) colors (c) shapes (d) sizes, and (e)
spatial relations for the ScanRefer dataset. Bigger fonts indicate more frequent
terms in the descriptions.

3.4.1 Data Collection

We deploy a web-based annotation interface on Amazon Mechanical Turk (AMT) to
collect object descriptions in the ScanNet scenes. The annotation pipeline consists of
two stages: i) description collection, and ii) verification (Fig. 3.3). From each scene,
we select objects to annotate by restricting to indoor furniture categories and excluding
structural objects such as “Floor” and “Wall”. We manually check the selected objects
are recognizable and filter out objects with reconstructions that are too incomplete or
hard to identify.

Annotation The 3D web-based UI shows each object in context. The workers see all
objects other than the target object faded out and a set of captured image frames to
compensate for incomplete details in the reconstructions. The initial viewpoint is random
but includes the target object. Camera controls allow for adjusting the camera view to
better examine the target object. We ask the annotator to describe the appearance of
the target and its spatial location relative to other objects. To ensure the descriptions
are informative, we require the annotator to provide at least two full sentences. We
batch and randomize the tasks so that each object is described by five different workers.

Verification We recruit trained workers (students) to verify that the descriptions are
discriminative and correct. Verifiers are shown the 3D scene and a description, and are
asked to select the objects (potentially multiple) in the scene that match the description.
Descriptions that result in the wrong object or multiple objects are filtered out. Verifiers
also correct spelling and wording issues in the description when necessary. We filter out
2,823 invalid descriptions that do not match the target objects and fix writing issues for
2,129 descriptions.
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1. There is a brown wooden chair placed right against the wall.
2. This is a triangular shape table. The table is near the armchair.
3. The little nightstand. The nightstand is on the right of the bed.
4. This is a short trash can. It is in front of a taller trash can.
5. The couch is the biggest one below the picture. The couch has three seats and is brown.
6. This is a gray desk chair. This chair is the last one on the side closest to the open door.
7. The kitchen counter is covering the lower cabinets. The kitchen counter is under the upper

cabinets that are mounted above.
8. This is a round bar stool. It is third from the wall.

Table 3.3: Examples from our dataset illustrating different types of phrases such as attributes
(1-8) and parts (5), comparatives (4), superlatives (5), intra-class spatial relations
(6), inter-class spatial relations (7) and ordinal numbers (8).

3.4.2 Dataset Statistics

We collected 51,583 descriptions for 800 ScanNet scenes1. On average, there are 13.81
objects, 64.48 descriptions per scene, and 4.67 descriptions per object after filtering
(see Tab. 3.2 for basic statistics, Tab. 3.3 for sample descriptions, and Fig. 3.4 for
the distribution of the description lengths). The descriptions are complex and diverse,
covering over 250 types of common indoor objects, and exhibiting interesting linguistic
phenomena. Due to the complexity of the descriptions, one of the key challenges of
our task is to determine what parts of the description describe the target object, and
what parts describe neighboring objects. Among those descriptions, 41,034 mention
object attributes such as color, shape, size, etc. We find that many people use spatial
language (98.7%), color (74.7%), and shape terms (64.9%). In contrast, only 14.2% of
the descriptions convey size information. Fig 3.5 shows commonly used object names
and attributes. Tab. 3.3 shows interesting expressions, including comparatives (“taller”)
and superlatives (“the biggest one”), as well as phrases involving ordinals such as “third
from the wall”. Overall, there are 672 and 2,734 descriptions with comparative and
superlative phrases. We provide more detailed statistics in the supplement.

3.5 Method

Our architecture consists of two main modules: 1) detection & encoding; 2) fusion &
localization (Fig. 5.3). The detection & encoding module encodes the input point cloud
and description, and outputs the object proposals and the language embedding, which
are fed into the fusion module to mask out invalid object proposals and produce the
fused features. Finally, the object proposal with the highest confidence predicted by the
localization module is chosen as the final output.

16 scenes are excluded since they do not contain any objects to describe
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Figure 3.6: ScanRefer architecture: The PointNet++ [19] backbone takes as input a point
cloud and aggregates it to high-level point feature maps, which are then clustered
and fused as object proposals by a voting module similar to Qi et al. [24]. Object
proposals are masked by the objectness predictions, and then fused with the sen-
tence embedding of the input descriptions, which is obtained by a GloVE [18] +
GRU [85] embedding. In addition, an extra language-to-object classifier serves as a
proxy loss. We apply a softmax function in the localization module to output the
confidence scores for the object proposals.

3.5.1 Data Representations

Point clouds We randomly sample NP vertices of one scan from ScanNet as the input
point cloud P = {(pi, fi)}, where pi ∈ R3 represents the point coordinates in 3D space
and fi stands for additional point features such as colors and normals. Note that the
point coordinates pi provides only geometrical information and does not contain other
visual information such as color and texture. Since descriptions of objects do refer
to attributes such as color and texture, we incorporate visual appearance by adapting
the feature projection scheme in Dai et al. [23] to project multi-view image features
vi ∈ R128 to the point cloud. The image features are extracted using a pre-trained
ENet [83]. Following Qi et al. [24], we also append the height of the point from the
ground and normals to the new point features f ′

i ∈ R135. The final point cloud data is
prepared offline as P ′ = {(pi, f ′

i)} ∈ RNP×135. We set NP to 40, 000 in our experiments.

Descriptions We tokenize the input description with SpaCy [84] and the NW tokens
to 300-dimensional word embedding vectors W = {wj} ∈ RNW×300 using pretrained
GloVE word embeddings [18].

3.5.2 Network Architecture

Our method takes as input the preprocessed point cloud P ′ and the word embedding
sequence W representing the input description and outputs the 3D bounding box for
the proposal which is most likely referred to by the input description. Conceptually,
our localization pipeline consists of the following four stages: detection, encoding, fusion
and localization.

Detection As the first step in our network, we detect all probable objects in the given
point cloud. To construct our detection module, we adapt the PointNet++ [19] backbone
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and the voting module in Qi et al. [24] to process the point cloud input and aggregate
all object candidates to individual clusters. The output from the voting module is a
set of point clusters C ∈ RM×128 representing all object proposals with enriched point
features, where M is the upper bound of the number of proposals. Next, the proposal
module takes in the point clusters and processes those clusters to predict the objectness
mask Dobjn ∈ RM×1 and the axis-aligned bounding boxes Dbbox ∈ RM×(6+18) for all M
proposals, where each Di

bbox = (cx, cy, cz, rx, ry, rz, l) consists of the box center c, the
box lengths r and a vector l ∈ R18 representing the semantic predictions.

Encoding The sequences of word embedding vectors of the input description are fed
into a GRU cell [85] to aggregate the textual information. We take the final hidden state
e ∈ R256 of the GRU cell as the final language embedding.

Fusion The outputs from the previous detection and encoding modules are fed into the
fusion module (orange block in Fig. 5.3, see supplemental for details) to integrate the
point features together with the language embeddings. Specifically, each feature vector
ci ∈ R128 in the point cluster C is concatenated with the language embedding e ∈ R256

as the extended feature vector, which is then masked by the predicted objectness mask
Di

objn ∈ {0, 1} and fused by a multi-layer perceptron as the the final fused cluster features

C ′ = {c′i} ∈ RM×128.

Localization The localization module aims to predict which of the proposed bounding
boxes corresponds to the description. Point clusters with fused cluster features C′ = {c′i}
are processed by a single layer perceptron to produce the raw scores of how likely each
box is the target box. We use a softmax function to squash all the raw scores into the
interval of [0, 1] as the localization confidences S = {si} ∈ RM×1 for the proposed M
bounding boxes.

3.5.3 Loss Function

Localization loss For the predicted localization confidence si ∈ [0, 1] for object proposal
Di

bbox, the target label is represented as ti ∈ {0, 1}. Following the strategy of Yang et
al. [27], we set the label tj for the j

th box that has the highest IoU score with the ground
truth box as 1 and others as 0. We then use a cross-entropy loss as the localization loss
Lloc = −∑M

i=1 ti log(si).
Object detection lossWe use the same detection loss Ldet as introduced in Qi et al. [24]
for object proposals Di

bbox and Di
objn: Ldet = Lvote-reg + 0.5Lobjn-cls +Lbox + 0.1Lsem-cls,

where Lvote-reg, Lobjn-cls, Lbox and Lsem-cls represent the vote regression loss (defined
in Qi et al. [24]), the objectness binary classification loss, box regression loss and the
semantic classification loss for the 18 ScanNet benchmark classes, respectively. We ignore
the bounding box orientations in our task and simplify Lbox as Lbox = Lcenter-reg +
0.1Lsize-cls + Lsize-reg, where Lcenter-reg, Lsize-cls and Lsize-reg are used for regressing the
box center, classifying the box size and regressing the box size, respectively. We refer
readers to Qi et al. [24] for more details.

Language to object classification loss To further supervise the training, we include
an object classification loss based on the input description. We consider the 18 ScanNet
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benchmark classes (excluding the label “Floor” and “Wall”). The language to object
classification loss Lcls is a multi-class cross-entropy loss.

Final loss The final loss is a linear combination of the localization loss, object detection
loss and the language to object classification loss: L = αLloc+βLdet+γLcls, where α, β
and γ are the weights for the individual loss terms. After fine-tuning on the validation
split, we set those weights to 1, 10, and 10 in our experiments to ensure the loss terms
are roughly of the same magnitude.

3.5.4 Training and Inference

Training During training, the detection and encoding modules propose object candi-
dates as point clusters, which are then fed into the fusion and localization modules to
fuse the features from the previous module and predict the final bounding boxes. We
train the detection backbone end-to-end with the detection loss. In the localization
module, we use a softmax function to compress the raw scores to [0, 1]. The higher the
predicted confidence is, the more likely the proposal will be chosen as output. To filter
out invalid object proposals, we use the predicted objectness mask to ensure that only
positive proposals are taken into account. We set the maximum number of proposals M
to 256 in practice.

Inference Since there can be overlapping detections, we apply a non-maximum sup-
pression module to suppress those overlapping proposals in the inference step. The
remaining object proposals are fed into the localization module to predict the final score
for each proposal. The number of object proposals is less than the upper bound M in
the training step.

Implementation Details We implement our architecture using PyTorch and train
the model end-to-end using ADAM [86] with a learning rate of 1e−3. We train the
model for roughly 130, 000 iterations until convergence. To avoid overfitting, we set the
weight decay factor to 1e−5 and apply data augmentations to our training data. For
point clouds, we apply rotation about all three axes by a random angle in [−5◦, 5◦] and
randomly translate the point cloud within 0.5 meters in all directions. We rotate around
all axes (not just up), since the ground alignment in ScanNet is imperfect.

3.6 Experiments

Train/Val/Test Split. Following the official ScanNet [13] split, we split our data into
train/val/test sets with 36,665, 9,508 and 5,410 samples respectively, ensuring disjoint
scenes for each split. Results and analysis are conducted on the val split (except for
results in Tab. 4.1 bottom). The test set is hidden and will be reserved for the ScanRefer
benchmark.

Metric. To evaluate the performance of our method, we measure the thresholded accu-
racy where the positive predictions have higher intersection over union (IoU) with the
ground truths than the thresholds. Similar to work with 2D images, we use Acc@kIoU as
our metric, where the threshold value k for IoU is set to 0.25 and 0.5 in our experiments.
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Figure 3.7: Object localization in an image using a 2D grounding method and back-projecting
the result to the 3D scene (blue box) vs. directly localizing in the 3D scene (green
box). Grounding in 2D images suffers from the limited view of a single frame, which
results in inaccurate 3D bounding boxes.

Baselines. We design several baselines by 1) evaluating our language localization mod-
ule on ground truth bounding boxes, 2) adapting 3D object detectors, and 3) adapting
2D referring methods to 3D using back-projection.

OracleCatRand & OracleRefer: To examine the difficulty of our task, we use
an oracle with ground truth bounding boxes of objects, and predict the box by simply
selecting a random box that matches the object category (OracleCatRand) or our trained
fusion and localization modules (OracleRefer).

VoteNetRand & VoteNetBest: From the predicted object proposals of the VoteNet
backbone [24], we select one of the bounding box proposals, either by selecting a box
randomly with the correct semantic class label (VoteNetRand) or the best matching box
given the ground truth (VoteNetBest). VoteNetBest provides an upper bound on how
well the object detection component works for our task, while VoteNetRand provides a
measure of whether additional information beyond the semantic label is required.

SCRC & One-stage: 2D image baselines for referring expression comprehension by
extending SCRC [7] and One-stage [27] to 3D using back-projection. Since 2D referring
expression methods operate on a single image frame, we construct a 2D training set by
using the recorded camera pose associated with each annotation to retrieve the frame
from the scan video with the closest camera pose. At inference time, we sample frames
from the scans (using every 20th frame) and predict the target 2D bounding boxes in
each frame. We then select the 2D bounding box with the highest confidence score from
the bounding box candidates and project it to 3D using the depth map for that frame
(see Fig. 3.7).

Ours: We compare our full end-to-end model against using a pretrained VoteNet back-
bone with a trained GRU [85] for selecting a matching bounding box.

3.6.1 Task Difficulty

To understand how informative the input description is beyond capturing the object
category, we analyze the performance of the methods on “unique” and “multiple” subsets
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unique multiple overall
Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

OracleCatRand (GT boxes + RandCat) 100.00 100.00 18.09 17.84 29.99 29.76
OracleRefer (GT boxes + GRU) 74.09 73.55 32.57 32.00 40.63 40.06

VoteNetRand (VoteNet[24] + RandCat) 34.34 19.35 5.73 2.81 10.00 5.28
VoteNetBest (VoteNet[24] + Best) 88.85 85.50 46.63 46.42 55.10 54.33

SCRC [7] + backproj 24.03 9.22 17.77 5.97 18.70 6.45
One-stage [27] + backproj 29.32 22.82 18.72 6.49 20.38 9.04

Ours (VoteNet[48] + GRU) 55.09 37.66 26.37 16.03 32.49 20.53
Ours (end-to-end) 63.04 39.95 28.91 18.17 35.53 22.39

Test results (ScanRefer benchmark)

OracleRefer (GT boxes + GRU) 72.37 71.84 31.81 31.26 39.69 39.13
VoteNetBest (VoteNet[24] + Best) 86.78 83.85 45.54 45.33 53.82 53.07

Ours (VoteNet[48] + GRU) 57.67 36.96 28.31 15.16 34.90 20.05
Ours (end-to-end) 62.90 40.31 30.88 16.54 38.06 21.87

Table 3.4: Comparison of localization results obtained by our ScanRefer and baseline models.
We measure percentage of predictions whose IoU with the ground truth boxes are
greater than 0.25 and 0.5. We also report scores on “unique” and “multiple” sub-
sets; unique means that there is only a single object of its class in the scene. We
outperform all baselines by a significant margin.

with 1,875 and 7,663 samples from val split, respectively. The “unique” subset contains
samples where only one unique object from a certain category matches the description,
while the “multiple” subset contains ambiguous cases where there are multiple objects
of the same category. For instance, if there is only one refrigerator in a scene, it is
sufficient to identify that the sentence refers to a refrigerator. In contrast, if there are
multiple objects of the same category in a scene (e.g., chair), the full description must
be taken into account. From the OracleCatRand baseline, we see that information from
the description, other than the object category, is necessary to disambiguate between
multiple objects (see Tab. 4.1 Acc@0.5IoU multiple). From the OracleRefer baseline, we
see that using our fused language module, we are able to improve beyond over selecting
a random object of the same category (multiple Acc@0.5IoU increases from 17.84% to
32.00%), but we often fail to identify the correct object category (unique Acc@0.5IoU
drops from 100.0% to 73.55%).

3.6.2 Quantitative Analysis

We evaluate the performance of our model against baselines on the val and the hidden
test split of ScanRefer which serves as the ScanRefer benchmark (see Tab. 4.1). Note
that for all results using Ours and VoteNet for object proposal, we take the average
of 5 differently seeded subsamplings (of seed points and vote points) during inference
(see supplemental for more details on experimental variance). Training the detection
backbone jointly with the localization module (end-to-end) leads to a better performance
when compared to the model trained separately (VoteNet[24] + GRU). However, as the
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Figure 3.8: Qualitative results from baseline methods and ScanRefer. Predicted boxes are
marked green if they have an IoU score higher than 0.5, otherwise they are marked
red. We show examples where our method produced good predictions (blue block)
as well as failure cases (orange block). Image best viewed in color.

accuracy gap between VoteNetBest and ours (end-to-end) indicates, there is still room
for improving the match between language inputs and the visual signals. For the val
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unique multiple overall
Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

Ours (xyz) 50.83 31.81 24.38 13.98 29.51 17.43
Ours (xyz+rgb) 51.22 32.09 24.50 14.51 29.68 17.92
Ours (xyz+rgb+normals) 54.24 33.71 25.44 15.53 31.05 19.05
Ours (xyz+multiview) 56.69 35.32 25.83 14.26 31.63 19.75
Ours (xyz+multiview+normals) 55.27 35.51 25.95 16.29 31.64 20.02

Ours (xyz+lobjcls) 58.92 35.01 28.27 16.99 34.21 20.49
Ours (xyz+rgb+lobjcls) 60.11 37.89 27.21 16.49 33.59 20.65
Ours (xyz+rgb+normals+lobjcls) 60.54 39.19 26.95 16.69 33.47 21.06
Ours (xyz+multiview+lobjcls) 61.16 39.02 26.49 16.69 34.71 21.87
Ours (xyz+multiview+normals+lobjcls) 63.04 39.95 28.91 18.17 35.53 22.39

Table 3.5: Ablation study with different features. We measure the percentages of predictions
whose IoU with the ground truth boxes are greater than 0.25 and 0.5. Unique means
that there is only a single object of its class in the scene.

split, we also include additional experiments on the 2D baselines and a comparison
with VoteNetRand. With just category information, VoteNetRand is able to perform
relatively well on the “unique” subset, but has trouble identifying the correct object in
the “multiple” case. However, the gap between the VoteNetRand and OracleCatRand
for the “unique” case shows that 3D object detection still need to be improved. Our
method is able to improve over the bounding box predictions from VoteNetRand, and
leverages additional information in the description to differentiate between ambiguous
objects. It adapts better to the 3D context compared to the 2D methods (SCRC and
One-stage) which is limited by the view of a single frame (see Fig. 3.7 and Fig. 4.6).

3.6.3 Qualitative Analysis

Fig. 4.6 shows results produced by OracleRefer, One-stage, and our method. The suc-
cessful localization cases in the green boxes show our architecture can handle the se-
mantic correlation between the scene contexts and the textual descriptions. In contrast,
even provided with a pool of ground truth proposals, OracleRefer sometimes still fails
to predict correct bounding boxes, while One-stage is limited by the single view and
hence cannot produce accurate bounding boxes in 3D space. The failure case of Or-
acleRefer suggests that our fusion & localization module can still be improved. Some
failure cases of our method are displayed in the orange block in Fig. 4.6, indicating that
our architecture cannot handle all spatial relations to distinguish between ambiguous
objects.

3.6.4 Ablation Studies

We conduct an ablation study on our model to examine what components and point
cloud features contribute to the performance (see Tab. 3.5).

Does a language-based object classifier help? To show the effectiveness of the
extra supervision on input descriptions, we conduct an experiment with the language to
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object classifier (+lobjcls) and without. Architectures with a language to object classifier
outperform ones without it. This indicates that it is helpful to predict the category of
the target object based on the input description.
Do colors help? We compare our method trained with the geometry and multi-
view image features (xyz+multiview+lobjcls) with a model trained with only geom-
etry (xyz+lobjcls) and one trained with RGB values from the reconstructed meshes
(xyz+rgb+lobjcls). ScanRefer trained with geometry and pre-processed multi-view im-
age features outperforms the other two models. The performance of models with color
information are higher than those that use only geometry.
Do other features help? We include normals from the ScanNet meshes to the input
point cloud features and compare performance against networks trained without them.
The additional 3D information improves performance. Our architecture trained with
geometry, multi-view features, and normals (xyz+multiview+ normals+lobjcls) achieves
the best performance among all ablations.

3.7 Conclusion

In this work, we introduce the task of localizing a target object in a 3D point cloud using
natural language descriptions. We collect the ScanReferdataset which contains 51,583
unique descriptions for 11,046 objects from 800 ScanNet [13] scenes. We propose an
end-to-end method for localizing an object with a free-formed description as reference,
which first proposes point clusters of interest and then matches them to the embeddings
of the input sentence. Our architecture is capable of learning the semantic similarities
of the given contexts and regressing the bounding boxes for the target objects. Overall,
we hope that our new dataset and method will enable future research in the 3D visual
language field.
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4 Generating Descriptions for 3D Objects
in RGB-D Scans

This chapter introduces the following paper:

Z. Chen, A. Gholami, M. Nießner, and A. X. Chang, “Scan2cap: Context-aware dense
captioning in rgb-d scans,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 3193–3203

Abstract of the paper We introduce the task of dense captioning in 3D scans from
commodity RGB-D sensors. As input, we assume a point cloud of a 3D scene; the
expected output is the bounding boxes along with the descriptions for the underlying
objects. To address the 3D object detection and description problems, we propose
Scan2Cap, an end-to-end trained method, to detect objects in the input scene and
describe them in natural language. We use an attention mechanism that generates
descriptive tokens while referring to the related components in the local context. To
reflect object relations (i.e. relative spatial relations) in the generated captions, we use a
message passing graph module to facilitate learning object relation features. Our method
can effectively localize and describe 3D objects in scenes from the ScanRefer dataset,
outperforming 2D baseline methods by a significant margin (27.61% CiDEr@0.5IoU
improvement).

Contribution The method development and implementation was done by the first au-
thor. Discussions with the co-authors led to the final paper.
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Figure 4.1: We introduce the task of dense captioning in RGB-D scans with a model that can
densely localize objects in a 3D scene and describe them using natural language in
a single forward pass.

4.1 Introduction

The intersection of visual scene understanding [5], [6] and natural language process-
ing [21], [87] is a rich and active area of research. Specifically, there has been a lot
of work on image captioning [32]–[34], [72], [88] and the related task of dense caption-
ing [28], [32], [89]–[92]. In dense captioning, individual objects are localized in an image
and each object is described using natural language. So far, dense captioning work has
operated purely on 2D visual data, most commonly single-view images that are limited
by the field of view. Images are inherently viewpoint specific and scale agnostic, and
fail to capture the physical extent of 3D objects (i.e. the actual size of the objects) and
their locations in the environment.

In this work, we introduce the new task of dense captioning in 3D scenes. We aim
to jointly localize and describe each object in a 3D scene. We show that leveraging the
3D information of an object such as actual object size or object location results in more
accurate descriptions.

Apart from the 2D constraints in images, even seminal work on dense captioning suffers
from aperture issues [90]. Object relations are often neglected while describing scene
objects, which makes the task more challenging. We address this problem with a graph-
based attentive captioning architecture that jointly learns object features and object
relation features on the instance level, and generates descriptive tokens. Specifically,
our proposed method (referred to as Scan2Cap) consists of two critical components: 1)
Relational Graph facilitates learning the object features and object relation features using
a message passing neural network; 2) Context-aware Attention Captioning generates
the descriptive tokens while attending to the object and object relation features. In
summary, our contribution is fourfold:

• We introduce the 3D dense captioning task to densely detect and describe 3D
objects in RGB-D scans.

• We propose a novel message passing graph module that facilitates learning of the
3D object features and 3D object relation features.
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• We propose an end-to-end trained method that can take 3D object features and
3D object relation features into account when describing the 3D object in a single
forward pass.

• We show that our method outperforms 2D-3D back-projected results of 2D cap-
tioning baselines by a significant margin (27.61%).

Figure 4.2: Scan2Cap takes as input a point cloud to generate the cluster features C for the
proposal module, using a backbone following PointNet++ [19] and a voting module
similar to [24]. The proposal module predicts the object proposals Dbbox as well as
the objectness masks Dobjn, which are later used for filtering the cluster features

as the valid features C′
. A graph is then constructed using the object proposals

and the valid cluster features. The relational graph module takes in the graph and
outputs the enhanced object features V and the relation features C′

. As the last
step, the context-aware attention captioning module, inspired by [88], generates
descriptive tokens for each object proposal using the enhanced features and the
relation features.

4.2 Related work

4.2.1 3D Object Detection

There are many methods for 3D object detection on 3D RGB-D datasets [13], [66], [67],
[93]. Methods utilizing 3D volumetric grids have achieved impressive performance [63]–
[65], [94], [95]. At the same time, methods operating on point clouds serve as an alterna-
tive and also achieve impressive results. For instance, [24] use a Hough voting scheme to
aggregate points and generate object proposals while using a PointNet++ [19] backbone.
Following this work, [96] recently proposed a pipeline to jointly perform voting in both
point clouds and associated images. Our method builds on these works as we utilize the
same backbone for processing the input geometry; however, we back-project multi-view
image features to point clouds to leverage the original RGB input, since appearance is
critical for accurately describing the target objects in the scene.
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4.2.2 Image Captioning

Image captioning has attracted a great deal of interest [32]–[34], [72], [88], [97]–[99].
Attention based captioning over grid regions [34], [72] and over detected objects [88],
[100] allows focusing on specific image regions while captioning. One recent trend is
the attempt to capture relationships between objects using attention and graph neural
networks [101]–[103] or transformers [104]. We build on these ideas to propose a 3D
captioning network with graphs that capture object relations in 3D.
The dense captioning task introduced by [28] is closely related to our task. This task

is a variant of image captioning where captions are generated for all detected objects.
While achieving impressive results, this method does not consider the context outside
of the salient image regions. To tackle this issue, [89] include the global image feature
as context to the captioning input. [91] explicitly model the relations between detected
regions in the image. Due to the limited view of a single image, prior work on 2D
images could not capture the large context available in 3D environments. In contrast,
we focus on decomposing the input 3D scene and capturing the appearance and spatial
information of the objects in the 3D environment.

4.2.3 3D Vision and Language

While the joint field of vision and language has received much attention in the image
domain, in tasks such as image captioning [32]–[34], [72], [88], [97]–[99], dense caption-
ing [28], [89], [91], text-to-image generation [77]–[79], visual grounding [7], [11], [37],
vision and language in 3D is still not well-explored. [80] introduces a dataset which
consists of descriptions for ShapeNet [17] objects, enabling text-to-shape generation and
shape captioning. On the scene level, [14] propose a dataset for localizing object in Scan-
Net [13] scenes using natural language expressions. Concurrently, [105] propose another
dataset for distinguishing fine-grained objects in ScanNet scenes using natural language
queries. This work enables research on connecting natural language to 3D environments,
and inspires our work to densely localize and describe 3D objects with respect to the
scene context.

4.3 Task

We introduce the task of dense captioning in 3D scenes. The input for this task is a
point cloud of a scene, consisting of the object geometries as well as several additional
point features such as RGB values and normal vectors. The expected output is the
object bounding boxes for the underlying instances in the scene and their corresponding
natural language descriptions.

4.4 Method

We propose an end-to-end architecture on the input point clouds to address the 3D dense
description generation task. Our architecture consists of the following main components:
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1) detection backbone; 2) relational graph; 3) context-aware attention captioning. As
Fig. 5.3 shows, our network takes a point cloud as input, and generates a set of 3D
object proposals using the detection module. A relational graph module then enhances
object features using contextual cues and provides object relation features. Finally, a
context-aware attention module generates descriptions from the enhanced object and
relation features.

4.4.1 Data Representation

As input to the detection module, we assume a point cloud P of a scan from ScanNet
consisting of the geometry coordinates and additional point features capturing the visual
appearance and the height from the ground. To obtain the extended visual point features,
we follow [14] and adapt the feature projection scheme of [23] to back-project multi-view
image features to the point cloud as additional features. The image features are extracted
using a pre-trained ENet [83]. Following [24], we also append the height of the point
from the ground to the new point features. As a result, we represent the final point
cloud data as P = {(pi, fi)} ∈ RNP×135, where pi ∈ R3, i = 1, ..., NP are the coordinates
and fi ∈ R132 are the additional features.

4.4.2 Detection Backbone

As the first step in our network, we detect all probable objects in the given point cloud
with the back-projected multi-view image features discussed in 4.4.1. To construct our
detection module, we adapt the PointNet++ [19] backbone and the voting module in
VoteNet [24] to aggregate all object candidates to individual clusters. The output from
the voting module is a set of point clusters C ∈ RM×128 representing all object proposals
with enriched point features, where M is the upper bound of the number of proposals.
Next, the proposal module takes in the point clusters to predict the objectness mask
Dobjn ∈ RM×1 and the axis-aligned bounding boxes Dbbox ∈ RM×(6+18) for all M
proposals, where each Di

bbox = (cx, cy, cz, rx, ry, rz, l) consists of the box center c, the
box lengths r and a vector l ∈ R18 representing the semantic predictions.

4.4.3 Relational Graph

Describing the object in the scene often involves its appearance and spatial location with
respect to nearby objects. Therefore, we propose a relational graph module equipped
with a message passing network to enhance the object features and extract the object
relation features. We create a graph G = (V, E) where we treat the object proposals as
nodes in the graph and relationship between objects as edges. For the edges, we consider
only the nearest K objects surrounding each object. We use standard neural message
passing [106] where the message passing at graph step τ is defined as follows:

V → E : gτ+1
i,j = f τ ([gτi , g

τ
j − gτi ]) (4.1)
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(a) Relational graph module. (b) Context-aware attention captioning module.

Figure 4.3: (a) Context enhancement module takes in the scene graph G = (V, E) and produces
the enhanced object features Vτ and object relation features Eτ+1; (b) At time step
t, the context-aware captioning module takes in the enhanced features vτk of the
target object and generates the next token yt with the help of attention mechanism
on the attention context features Vr.

where gτi ∈ R128 and gτj ∈ R128 are the features of nodes i and j at graph step τ .

gτ+1
i,j ∈ R128 denotes the message between nodes i and j at the next graph step τ + 1.
[·, ·] concatenates two vectors. f τ (·) is a learnable non-linear function, which is in practice
set as an MLP. The aggregated node features from messages after every message passing
step is defined as E → V : gτ+1

i =
∑K

k=1 g
τ
i,k. We take the node features Vτ in the last

graph step τ as the output enhanced object features. We append an additional message
passing layer after the last graph step and use the learned message Eτ+1 as the output
object relation features. An MLP is attached to the output message passing layer to
predict the angular deviations between two objects. We illustrate the relational graph
module in Fig. 4.3a.

4.4.4 Context-aware Attention Captioning

Inspired by [88], we design a context aware attention captioning module which takes both
the enhanced object features and object relation features and generates the caption one
token at a time, as shown in Fig. 4.3b.

Fusion GRU. At time-step t of caption generation, we first concatenate three vectors
as the fused input feature u1t−1: GRU hidden state from time-step t − 1 denoted as
h2t−1 ∈ R512, enhanced object feature vτk ∈ R128 of the kth object and GloVE [18]
embedding of the token generated at t − 1 denoted as xt = Weyt−1 ∈ R300. The
Fusion GRU handles the fused input feature u1t−1 and delivers the hidden state h1t to the
attention module.

Attention module. Unlike the attention module in [88] which only considers object
features, we include both the enhanced object features Vτ = {vτi } ∈ RM×128 as well as
the object relation features ek,j ∈ R128. We add each object relation feature ek,j between
the object k and its neighbor j to the corresponding enhanced object feature vj of the
jth object as the final attention context feature set Vr = {vr1, ..., vτk , ..., vrM}. Intuitively,
the attention module will attend to the neighbor objects and their associated relations
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with the current object. We define the intermediate attention distribution αt ∈ RM×128

over the context features as:

αt = softmax((VrWv + 1hh
1T
t−1Wh)Wa)1a (4.2)

where Wa ∈ R128×1, Wv ∈ R128×128, Wh ∈ R512×128 are learnable parameters. 1h ∈
RM×1 and 1a ∈ R1×128 are identity matrices. Finally, the attention module outputs
the aggregated context vector v̂t =

∑M
i=1 Vr

i ⊙ αti to represent the attended object and
inter-object relation.

Language GRU. We then concatenate the hidden state h1t−1 of the Fusion GRU in last
time step and the aggregated context vector v̂t, and process them with a MLP as the
fused feature u2t . The language GRU takes in the fused input u2t and delivers the hidden
state h2t to the output MLP to predict token yt at the current time step t.

4.4.5 Training Objective

Object detection loss. We use the same detection loss Ldet as introduced in [24] for
object proposals Dbbox and Dobjn: Ldet = Lvote-reg+0.5Lobjn-cls+Lbox+0.1Lsem-cls, where
Lvote-reg, Lobjn-cls, Lbox and Lsem-cls represent the vote regression loss (defined in [24]), the
objectness binary classification loss, box regression loss and the semantic classification
loss for the 18 ScanNet benchmark classes, respectively. We ignore the bounding box
orientations in our task and simplify Lbox as Lbox = Lcenter-reg + 0.1Lsize-cls + Lsize-reg,
where Lcenter-reg, Lsize-cls and Lsize-reg are used for regressing the box center, classifying
the box size and regressing the box size, respectively. We refer readers to [24] for more
details.

Relative orientation loss. To stabilize the learning process of the relational graph
module, we apply a relative orientation loss Lad on the message passing network as a
proxy loss. We discretize the output angular deviations ranges from 0◦ to 180◦ into
6 classes, and use a cross entropy loss as our classification loss. We construct the
ground truth labels using the transformation matrices of the aligned CAD models in
Scan2CAD [107], and mask out objects not provided in Scan2CAD in the loss function.

Description loss. The main objective loss constrains the description generation. We
apply a conventional cross entropy loss function Ldes on the generated token probabilities,
as in previous work [32]–[34].

Final loss. We combine all three loss terms in a linear manner as our final loss function:

L = αLdet + βLad + γLdes (4.3)

where α, β and γ are the weights for the individual loss terms. After fine-tuning on the
validation split, we set those weights to α = 10, β = 1, and γ = 0.1 in our experiments
to ensure the loss terms are roughly of the same magnitude.
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4.4.6 Training and Inference

In our experiments, we randomly select 40,000 points from ScanNet mesh vertices. Dur-
ing training, we set the upper bound of the number of object proposals as M = 256. We
only use the unmasked predictions corresponding to the provided objects in Scan2CAD
for minimizing the relative orientation loss, as stated in 4.4.5. To optimize the descrip-
tion loss, we select the generated description of the object proposal with the largest
IoU with the ground truth bounding box. During inference, we apply a non-maximum
suppression module to suppress overlapping proposals.

4.4.7 Implementation Details

We implement our architecture using PyTorch [108] and train end-to-end using ADAM [86]
with a learning rate of 1e−3. We train the model for 90, 000 iterations until convergence.
To avoid overfitting, we set the weight decay factor to 1e−5 and apply data augmentation
to our training data. Following ScanRefer [14], the point cloud is rotated by a random
angle in [−5◦, 5◦] about all three axes and randomly translated within 0.5 meters in all
directions. Since the ground alignment in ScanNet is imperfect, the rotation is around
all axes (not just up). We truncate descriptions longer than 30 tokens and add SOS and
EOS tokens to indicate the start and end of the description.

Captioning Detection C@0.25IoU B-4@0.25IoU M@0.25IoU R@0.25IoU C@0.5IoU B-4@0.5IoU M@0.5IoU R@0.5IoU mAP@0.5IoU

2D-3D Proj. 2D Mask R-CNN 18.29 10.27 16.67 33.63 8.31 2.31 12.54 25.93 10.50
3D-2D Proj. 2D VoteNet 19.73 17.86 19.83 40.68 11.47 8.56 15.73 31.65 31.83

VoteNetRetr [24] 3D VoteNet 15.12 18.09 19.93 38.99 10.18 13.38 17.14 33.22 31.83
Ours 3D VoteNet 56.82 34.18 26.29 55.27 39.08 23.32 21.97 44.78 32.21

Table 4.1: Comparison of 3D dense captioning results obtained by Scan2Cap and other base-
line methods. We average the scores of the conventional captioning metrics, e.g.
CiDEr [109], with the percentage of the predicted bounding boxes whose IoU with
the ground truth are greater than 0.25 and 0.5. Our method outperforms all base-
lines with a remarkable margin.

Cap C@0.5IoU B-4@0.5IoU M@0.5IoU R@0.5IoU

OracleRetr2D 2D 20.51 20.17 23.76 50.98
Oracle2Cap2D 2D 58.44 37.05 28.59 61.35

OracleRetr3D 3D 33.03 23.36 25.80 52.99
Oracle2Cap3D 3D 67.95 41.49 29.23 63.66

Table 4.2: Comparison of 3D dense captioning results obtained by our method and other base-
line methods with GT detections. We average the scores of the conventional cap-
tioning metrics with the percentage of the predicted bounding boxes whose IoU with
the ground truth are greater than 0.5. Our method with GT bounding boxes out-
performs all variants with a remarkable margin.
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Figure 4.4: In 2D-3D Proj, we first generate a description for each detected object in a rendered
viewpoint. Then we back-project the object mask to the 3D space to evaluate the
caption with our proposed caption evaluation metric.

4.5 Experiments

Dataset. We use the ScanRefer [14] dataset which consists of 51,583 descriptions for
11,046 objects in 800 ScanNet [13] scenes. The descriptions contain information about
the appearance of the objects (e.g. “this is a black wooden chair”), and the spatial
relations between the annotated object and nearby objects (e.g. “the chair is placed at
the end of the long dining table right before the TV on the wall”).

Train&val splits. Following the official ScanRefer [14] benchmark split, we divide our
data into train/val sets with 36,665 and 9,508 samples respectively, ensuring disjoint
scenes for each split. Results and analysis are conducted on the val split, as the hidden
test set is not officially available.

Metrics. To jointly measure the quality of the generated description and the detected
bounding boxes, we evaluate the descriptions by combining standard image captioning
metrics such as CiDEr [109] and BLEU [110], with Intersection-over-Union (IoU) scores
between predicted bounding boxes and the target bounding boxes. We define our com-
bined metrics as m@kIoU = 1

N

∑N
i=0miui, where ui ∈ {0, 1} is set to 1 if the IoU score

for the ith box is greater than k, otherwise 0. We use m to represent the captioning
metrics CiDEr [109], BLEU-4 [110], METEOR [111] and ROUGE [112], abbreviated as
C, B-4, M, R, respectively. N is the number of ground truth or detected object bounding
boxes. We use mean average precision (mAP) thresholded by IoU as the object detection
metric.
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Skylines with ground truth input. To examine the upper limit of our proposed 3D
dense captioning task, we use the ground truth (GT) object bounding boxes for gener-
ating object descriptions using our method and retrieval based approaches. We compare
the performance of captioning in 3D with existing 2D-based captioning methods. For
our 2D-based baselines, we generate descriptions for the 2D renders of the reconstructed
ScanNet [13] scenes using the recorded viewpoints in ScanRefer [14].

Oracle2Cap3D We use ground truth 3D object bounding box features instead of de-
tection backbone predictions to generate object descriptions. The relational graph and
context-aware attention captioning module learn and generate corresponding captioning
for each object. We use the same hyper-parameters with the Scan2Cap experiment.

OracleRetr3D We use the ground truth 3D object bounding box features in the val
split to obtain the description for the most similar object features in the train split.

Oracle2Cap2D We first concatenate the global image and target object features and
feed it to a caption generation method similar to [33]. In addition to [33], we try a
memory augmented meshed transformer [104]. Surprisingly, the former performs better
(see supplementary for details). We suspect that this performance gap is due to noisy
2D input and the size of our dataset, which does not allow for training complex methods
(e.g. transformers) to their maximum potential. The target object bounding boxes are
extracted using rendered ground truth instance masks and their features are extracted
using a pre-trained ResNet-101 [113].

OracleRetr2D Similar to OracleRetr3D, use ground truth 2D object bounding box
features in the val split to retrieve the description from the most similar train split
object.

Baselines. We design experiments that leverage the detected object information in the
input for description generation. Additionally, we show how existing 2D-based caption-
ing methods perform in our newly proposed task.

VoteNetRetr [24] Similar to OracleRetr3D, but we use the features of the 3D bounding
boxes detected using a pre-trained VoteNet [24].

2D-3D Proj We first detect the object bounding boxes in rendered images using a
pre-trained Mask R-CNN [6] with a ResNet-101 [113] backbone, then feed the 2D object
bounding box features to our description generation module similar to [33]. We evaluate
the generated captions in 3D by back-projecting the 2D masks to 3D using inverse camera
extrinsics (see Fig. 4.4).

3D-2D Proj We first detect the object bounding boxes in scans using a pre-trained
VoteNet [24], then project the bounding boxes to the rendered images. The 2D bounding
box features are fed to our captioning module which uses the same decoding scheme as
in [33].

4.5.1 Quantitative Analysis

We compare our method with the baseline methods on the official val split of Scan-
Refer [14]. As there is no direct prior work on this newly proposed task, we divide
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Figure 4.5: Qualitative results from skylines with GT input with inaccurate parts of the gen-
erated caption underscored. Captioning in 3D benefits from the richness of 3D
context, while captioning with 2D information fails to capture the details of the
local physical environment. Best viewed in color.

Figure 4.6: Qualitative results from baseline methods and Scan2Cap with inaccurate parts of
the generated caption underscored. Scan2Cap produces good bounding boxes with
descriptions for the target appearance and their relational interactions with objects
nearby. In contrast, the baselines suffers from poor bounding box predictions or
limited view and produces less informative captions. Best viewed in color.

description generation into: 1) generating the object bounding boxes and descriptions in
2D input, and back-projecting the bounding boxes to 3D using camera parameters; 2)
directly generating object bounding boxes with descriptions in 3D space. As shown in
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Figure 4.7: Comparison of object detections of baseline methods and Scan2Cap. 2D-3D Proj.
suffers from the detection performance gap between image and 3D space. Scan2Cap
produces better bounding boxes compared to 3D-2D Proj. due to the end-to-end
fine-tuning.

Cap Acc (Category) Acc (Attribute) Acc (Relation)

Oracle2Cap2D 2D 69.00 67.42 37.00

Oracle2Cap3D 3D 85.15 (+16.15) 72.22 (+4.80) 76.24 (+39.24)
Ours 3D 84.16 (+15.16) 64.21 (-3.21) 69.00 (+32.00)

Table 4.3: Manual analysis of the generated captions obtained by skyline methods with GT in-
put and ours. We measure the accuracy of three different aspects (object categories,
appearance attributes and spatial relations) in the generated captions. Compared to
captioning in 2D, captioning directly in 3D better capture these aspects in descrip-
tions, especially for describing spatial relations in the local environment.

Tab. 4.1, describing the detected objects in 3D results in a big performance boost com-
pared to the back-projected 2D approach (39.08% compared to 11.47% on C@0.5IoU).
When using ground truth, descriptions generated with 3D object bounding boxes (Ora-
cle2Cap3D) effectively outperform their counterparts that use 2D object bounding box
information (Oracle2Cap2D), as shown in Tab. 4.2. The performance gap between our
method and Oracle2Cap3D indicates that the detection backbone can be further im-
proved as a potential future work.

C@0.25IoU B-4@0.25IoU M@0.25IoU R@0.25IoU C@0.5IoU B-4@0.5IoU M@0.5IoU R@0.5IoU mAP@0.5IoU

Ours (fixed VoteNet) 56.20 35.14 26.14 55.71 33.87 20.11 20.48 42.33 31.83
Ours (end-to-end) 56.82 34.18 26.29 55.27 39.08 23.32 21.97 44.78 32.21

Table 4.4: Ablation study with a fixed pre-trained VoteNet [24] and an end-to-end fine-tuned
VoteNet. We compute standard captioning metrics with respect to the percentage
of the predicted bounding box whose IoU with the ground truth are greater than
0.25 and 0.5. Higher values are better.

4.5.2 Qualitative Analysis

We see from Fig. 4.5 that the captions retrieved by OracleRetr2D hallucinate objects
that are not there, while Oracle2Cap2D provides inaccurate captions that fail to capture
correct local context. In contrast, the captions from Oracle2Cap3D are longer and
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C@0.5IoU B-4@0.5IoU M@0.5IoU R@0.5IoU

VoteNet [24]+GRU [85] 34.31 21.42 20.13 41.33
VoteNet [24]+CAC 36.15 21.58 20.65 41.78
VoteNet [24]+RG+CAC 39.08 23.32 21.97 44.78

Table 4.5: Ablation study with different components in our method: VoteNet [24] + GRU [85],
which is similar to “show and tell” [33]; VoteNet + Context-aware Attention Cap-
tioning (CAC); VoteNet + Relational Graph (RG) + Context-aware Attention Cap-
tioning (CAC), namely Scan2Cap. We compute standard captioning metrics with
respect to the percentage of the predicted bounding boxes whose IoU with the ground
truth are greater than 0.5. The higher the better. Clearly, our method with atten-
tion mechanism and graph module is shown to be effective.

capture relationships with the surrounding objects, such as “above the white desk” and
“next to the window”. Fig. 4.6 show the qualitative results of Oracle2Cap3D, 2D-3D
Proj, 3D-2D Proj and our method (Scan2Cap). Leveraging the end-to-end training,
Scan2Cap is able to predict better object bounding boxes compared to the baseline
methods (see Fig. 4.6 top row). Aside from the improved quality of object bounding
boxes, descriptions generated by our method are richer when describing the relations
between objects (see second row of Fig. 4.6).

Provided with the ground truth object information, Oracle2Cap3D can include even
more details in the descriptions. However, there are mistakes with the local surround-
ings (see the sample in the right column in Fig. 4.6), indicating there is still room for
improvement. In contrast, image-based 2D-3D Proj. suffers from limitations of the 2D
input and fails to produce good bounding boxes with detailed descriptions. Compared
to our method, 3D-2D Proj. fails to predict good bounding boxes because of the lack of
a fine-tuned detection backbone, as shown in Fig. 4.7.

4.5.3 Analysis and Ablations

Is it better to caption in 3D or 2D? One question we want to study is whether it is
better to caption in 3D or 2D. Therefore, we conduct a manual analysis on 100 randomly
selected descriptions generated by Oracle2Cap2D, Oracle2Cap3D and our method. In
this analysis, we manually check if those descriptions correctly capture three important
aspects for indoor objects: object categories, appearance attributes and spatial rela-
tions. As demonstrated in Tab. 5.5, directly captioning objects in 3D captures those
aspects more accurately when comparing Oracle2Cap3D with Oracle2Cap2D, especially
for describing the spatial relations. However, the accuracy drop on object attributes
from Oracle2Cap2D to our method (-3.21%) shows the detection backbone can still be
improved.

Does context-aware attention captioning help? We compare our model with the ba-
sic description generation component (GRU) introduced in [33] and our model with
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the context-aware attention captioning (CAC) as discussed in Sec. 4.4.4. The model
equipped with the context-aware captioning module outperforms its counterpart with-
out attention mechanism on all metrics (see the first row vs. the second row in Tab. 4.5).

Does the relational graph help? We evaluate the performance of our method against
our model without the proposed relational graph (RG) and/or the context-aware at-
tention captioning (CAC). As shown in Tab. 4.5, our model equipped with the context
enhancement module (third row) outperforms all other ablations.

Does end-to-end training help? We show in Tab. 4.4 the effectiveness of fine-tuning the
pretrained VoteNet end-to-end with the description generation objective. We observe
that end-to-end training of the network allows for gradient updates from our relative
orientation loss and description generation loss that compensate for detection errors.
While the fine-tuned VoteNet detection backbone delivers similar detection results, its
performance on describing objects outperforms its fixed ablation by a big margin on all
more demanding metrics (see columns for metrics m@0.5IoU in Tab. 4.4).

4.6 Conclusion

In this work, we introduce the task of dense description generation in RGB-D scans.
We propose an end-to-end trained architecture to localize the 3D objects in the input
point cloud and generate descriptions for them in natural language. Thus, we address
the 3D localization and description generation problems at the same time. We apply
an attention-based captioning pipeline equipped with a message passing network to
generate descriptive tokens while referring to related components in the local context.
Our architecture effectively localizes and describes 3D objects, outperforming 2D-based
dense captioning methods on the 3D dense description generation task by a large margin.
Nevertheless, our method struggles to capture complex relations like ordinal counting.
For instance, our method only predicts “the round chair next to another wooden chair”,
while the ground truth “the third round chair from the wall” reveals more fine-grained
spatial relations, indicating possibilities for improvement. Overall, we hope that our
work will enable future research in 3D vision and language.
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5 Unifying 3D Object Localization and
Describing in RGB-D Scans

This chapter introduces the following paper:

Z. Chen, Q. Wu, M. Nießner, and A. X. Chang, “D 3 net: A unified speaker-listener
architecture for 3d dense captioning and visual grounding,” in Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings,
Part XXXII, Springer, 2022, pp. 487–505

Abstract of the paper Recent work on dense captioning and visual grounding in
3D have achieved impressive results. Despite developments in both areas, the lim-
ited amount of available 3D vision-language data causes overfitting issues for 3D visual
grounding and 3D dense captioning methods. Also, how to discriminatively describe ob-
jects in complex 3D environments is not fully studied yet. To address these challenges,
we present D3Net, an end-to-end neural speaker-listener architecture that can detect,
describe and discriminate. Our D3Net unifies dense captioning and visual grounding
in 3D in a self-critical manner. This self-critical property of D3Net encourages genera-
tion of discriminative object captions and enables semi-supervised training on scan data
with partially annotated descriptions. Our method outperforms SOTA methods in both
tasks on the ScanRefer dataset, surpassing the SOTA 3D dense captioning method by a
significant margin.

Contribution The method development and implementation was done by the first au-
thor. Discussions with the co-authors led to the final paper.
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Figure 5.1: We introduce D3Net, an end-to-end neural speaker-listener architecture that can
detect, describe and discriminate. D3Net also enables semi-supervised training on
ScanNet data with partially annotated descriptions.

5.1 Introduction

Recently, there has been increasing interest in bridging 3D visual scene understand-
ing [13], [24], [66], [67], [93]–[95] and natural language processing [21], [87], [114]–[116].
The task of 3D visual grounding [14], [117], [118] localizes 3D objects described by nat-
ural language queries. 3D dense captioning proposed by [15] is the reverse task where
we generate descriptions for 3D objects in RGB-D scans. Both tasks enable applications
such as assistive robots and natural language control in AR/VR systems.

However, existing work on 3D visual grounding [14], [117]–[120] and dense caption-
ing [15], [121] treats the two problems as separate, with detect-then-dis-criminate or
detect-then-describe being the common strategies for tackling the two tasks. Separating
the two complementary tasks hinders holistic 3D scene understanding where the ultimate
goal is to create models that can infer: 1) what are the objects; 2) how to describe each
object; 3) what object is being referred to through natural language. The disadvantages
of having separated strategies are twofold. First, the detect-then-describe strategy often
struggles to describe target objects in a discriminative way. In Fig. 5.2, the generated
descriptions from Scan2Cap [15] fail to uniquely describe the target objects, especially in
scenes with several similar objects. Second, existing 3D visual grounding methods [14],
[118] in the detect-then-discriminate strategy suffer from severe overfitting issue, partly
due to the small amount of 3D vision-language data [14], [119] which is limited compared
to counterpart 2D datasets such as MSCOCO [4].

To address these issues, we propose an end-to-end self-critical solution, D3Net, to
enable discriminability in dense caption generation and utilize the generated captions
improve localization. Relevant work in image captioning [122], [123] tackles similar issues
where the generated captions are indiscriminative and repetitive by explicitly reinforcing
discriminative caption generation with an image retrieval loss. Inspired by this scheme,
we introduce a speaker-listener strategy, where the captioning module “speaks” about the
3D objects, while the localization module “listens” and finds the targets. Our proposed
speaker-listener architecture can detect, describe and discriminate, as illustrated in
Fig. 5.1. The key idea is to reinforce the speaker to generate discriminative descriptions
so that the listener can better localize the described targets given those descriptions.
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D3Net: the black couch is 
under a whiteboard . there is a 
door on its left .

Scan2Cap: this is a dark 
couch . it is to the right of a table 
.

Human: the couch is located in 
the corner of the room . it is to 
the right side of the door .

Detections Descriptions

Figure 5.2: Prior work [15] struggle to produce discriminative object captions. Also, captions
often appear to be template-based. In contrast, our D3Net generates discriminative
object captions.

This approach brings another benefit. Since the speaker-listener architecture self-
critically generates and discriminates descriptions, we can train on scenes without any
object descriptions. We see further improvements in 3D dense captioning and 3D visual
grounding performance when using this additional data alongside annotated scenes. This
can allow for semi-supervised training on RGB-D scans beyond the ScanNet dataset. To
summarize, our contributions are:

• We introduce a unified speaker-listener architecture to generate discriminative ob-
ject descriptions in RGB-D scans. Our architecture allows for a semi-supervised
training scheme that can alleviate data shortage in the 3D vision-language field.

• We study how the different components impact performance and find that having
a strong detector is essential, and that by jointly optimizing the detector, speaker,
and listener we can improve detection as well as 3D dense captioning and visual
grounding.

• We show that our method outperforms the state-of-the-art for both 3D dense
captioning and 3D visual grounding method by a significant margin.

5.2 Related Work

Vision and language in 3D. Recently, there has been growing interest in grounding
language to 3D data [14], [80], [81], [119], [124]–[126]. [14] and [119] introduce two com-
plementary datasets consisting of descriptions of real-world 3D objects from ScanNet [13]
reconstructions, named ScanRefer and ReferIt3D, respectively. ScanRefer proposes the
joint task of detecting and localizing objects in a 3D scan based on a textual description,
while ReferIt3D is focused on distinguishing 3D objects from the same semantic class
given ground-truth bounding boxes. [117] localize objects by decomposing input queries
into fine-grained aspects, and use PointGroup [25] as their visual backbone. However,
the frozen detection backbone is not fine-tuned together with the localization module.
[118] propose a transformer-based architecture with a VoteNet [24] backbone to handle
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multimodal contexts during localization. Despite the improved matching module, their
work still suffers from poor quality detections due to the weak 3D detector. We show
that fine-tuning an improved 3D detector is essential to getting good predictions and
good localization performance. [15] introduce the task of densely detecting and caption-
ing objects in RGB-D scans. Recently, [121] aggregate the 2D features to point cloud
to generate faithful object descriptions. Although their methods can effectively detect
objects and generate captions w.r.t. their attributes, the quality of the bounding boxes
and the discriminability of the captions are inadequate. Our method explicitly handles
the discriminability of the generated captions through a self-critical speaker-listener ar-
chitecture, resulting in the state-of-the-art performance in both 3D dense captioning and
3D visual grounding tasks.

Generating captions in images. Image captioning has attracted a great deal of inter-
est [32]–[34], [72], [88], [97]–[99], [127]. Recent work [122], [123] suggest that traditional
encoder-decoder-based image captioning methods suffer from the discriminability issues.
[122] propose an additional image retrieval branch to reinforce discriminative caption
generation. [123] propose a reinforcement learning method to train not only on anno-
tated web images, but also images without any paired captions. In contrast to generating
captions for the entire image, in the dense captioning task we densely generate captions
for each detected object in the input image [28], [89], [91]. Although such methods are
effective for generating captions in 2D images, directly applying such training techniques
on 3D dense captioning can lead to unsatisfactory results, since the captions involve 3D
geometric relationships. In contrast, we work directly on 3D scene input dealing with
object attributes as well as 3D spatial relationships.

Grounding referential expressions in images. There has been tremendous progress
in the task of grounding referential expressions in images, also known as visual ground-
ing [7]–[11], [37]. Given an image and a natural language text query as input, the target
object is either localized by a bounding box [7], [37], or a segmentation mask [8]. These
methods have achieved great success in the image domain. However, they are not de-
signed to deal with 3D geometry inputs and handle complex 3D spatial relationships.
Our proposed method directly decomposes the 3D input data with a sparse convolutional
detection backbone, which produces accurate object proposals as well as semantically
rich features.

Speaker-listener models for grounding. The speaker-listener model is a popular
architecture for pragmatic language understanding, where a line of research explores how
the context and communicative goals affect the linguistics [128], [129]. Recent work use
neural speaker-listener architectures to tackle referring expression generation [11], [55],
[130], vision-language navigation [131], and shape differentiation [81]. [11] construct a
CNN-LSTM architecture optimized by a softmax loss to directly discriminate the gen-
erated referential expressions. There is no separate neural listener module compared
with our method. [130] and [55] introduce a LSTM-based neural listener in the speaker-
listener pipeline, but generating the referential expression is not directly supervised via
the listener model, but rather trained via a proxy objective. In contrast, our method
directly optimizes the Transformer-based neural listener for the visual grounding task by
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Figure 5.3: D3Net architecture. We input point clouds into the detector to predict object
proposals. Then, those proposals are fed into the speaker to generate captions that
describes each object. To discriminate the object described by each caption, the
listener matches the generated captions with object proposals. The captioning and
localization results are back-propagated via REINFORCE [132] as rewards through
the dashed lines. D3Net also enables end-to-end training on point clouds with no
GT object descriptions (bottom blue block).

discriminating the generated object captions without any proxy training objective. Sim-
ilarly, [81] includes a pretrained and frozen listener in the training objective, while ours
enables joint end-to-end optimization for both the speaker and listener via policy gradi-
ent algorithm. We experimentally show our method to be effective for semi-supervised
learning in the two 3D vision-language tasks.

5.3 Method

D3Net has three components: a 3D object detector, the speaker (captioning) module, and
the listener (localization) module. Fig. 5.3 shows the overall architecture and training
flow. The point clouds are fed into the detector to predict object proposals. The speaker
takes object proposals as input to produce captions. To increase caption discriminability,
we match these captions with object proposals via the listener. Caption quality is
measured by the CIDEr vedantam2015CIDEr scores and the listener loss, which are
back-propagated via REINFORCE [132] as rewards to the speaker. Our architecture can
handle scenes without ground-truth (GT) object descriptions by reinforcing the speaker
with the listener loss only.

5.3.1 Modules

Detector. We use PointGroup [25] as our detector module. PointGroup is a relatively
simple model for 3D instance segmentation that achieves competitive performance on
the ScanNet benchmark. We use ENet to augment the point clouds with multi-view
features, following [23]. PointGroup uses a U-Net architecture with a SparseConvNet
backbone to encode point features, cluster the points, and uses ScoreNet, another U-
Net structure, to score each cluster. We take the cluster features after ScoreNet as the
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encoded object features. We refer readers to the original paper [25] for more details. The
object bounding boxes are determined by taking the minimum and maximum points in
the point clusters, and are produced as final outputs of our detector module.
Speaker. We base our speaker on the dense captioning method introduced by [15]. Our
speaker module has two submodules: 1) a relational graph module, which is responsible
for learning object-to-object spatial location relationships; 2) a context-aware attention
captioning module, which attentively generates descriptive tokens with respect to the
object attributes as well as the object-to-object spatial relationships.
Listener. For the listener, we follow the architecture introduced by [14] but replace
the multi-modal fusion module with the transformer-based multi-modal fusion module
of [118]. Our listener module has two submodules: 1) a language encoding module with
a GRU cell; 2) a transformer-based multi-modal fusion module similar to [118], which
attends to elements in the input query descriptions and the detected object proposals.
As in [14], we also incorporate a language object classifier to discriminate the semantics
of the target objects in the input query descriptions.

5.3.2 Training Objective

The three modules are designed to be trained in an end-to-end fashion (see 5.3). In this
section, we describe the loss for each module, and how they are combined for the overall
loss.
Detection loss. We use the instance segmentation loss introduced in PointGroup
[25] to train the 3D backbone. The detection loss is composed of four parts: Ldet =
Lsem + Lo reg + Lo dir + Lc score. Lsem is a cross-entropy loss supervising semantic label
prediction for each point. Lo reg is a L1 regression loss constraining the learned point
offsets belonging to the same cluster. Lo dir constrains the direction of predicted offset
vectors, defined as the means of minus cosine similarities. It helps regress precise offsets,
particularly for boundary points of large-size objects, since these points are relatively
far from the instance centroids. Lc score is another binary cross-entropy loss supervising
the predicted objectness scores.
Listener loss. The listener loss is composed of a localization loss Lloc and a language-
based object classification loss Llobjcls. To obtain the localization loss Lloc, we first
require a target bounding box. We use the detected bounding box with the highest
IoU with the GT bounding box as the target bounding box. Then, a cross-entropy loss
Lloc is applied to supervise the matching score prediction. In the end-to-end training
scenario, the detected bounding boxes associated with the generated descriptions from
the speaker are treated as the target bounding boxes. The language object classification
loss is a cross-entropy loss Llobjcls to supervise the classification based on the input
description. The target classes are consistent with the ScanNet 18 classes, excluding
structural objects such as “floor” and “wall”.
Speaker loss using MLE training objective. The speaker loss is a standard caption-
ing loss from maximum likelihood estimation (MLE). During training, provided with a
pair of GT bounding box and the associated GT description, we optimize the description
associated with the predicted bounding box which has the highest IoU score with the
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current GT bounding box. We first treat the description generation task as a sequence
prediction task, factorized as: Lspk-XE(θ) = −∑T

t=1 logp(ĉt|ĉ1, ..., ˆct−1; I, θ), where ĉt
denotes the generated token at step t; I and θ represent the visual signal and model
parameter, respectively. The token ĉt is sampled from the probability distribution over
the pre-defined vocabulary. The generation process is performed by greedy decoding or
beam search in an autoregressive manner, and we use the argmax function to sample
each token.

Joint loss using REINFORCE training objective. We use REINFORCE to train
the detector-speaker-listener jointly. We first describe the enhanced speaker-loss, Lspk-R

that is trained using reinforcement learning to produce discriminative captions. We then
describe the overall loss used in end-to-end training. Following prior work [55], [99], [122],
[123], [133], [134], generating descriptions is treated as a reinforcement learning task. In
the setting of reinforcement learning, the speaker module is treated as the “agent”, while
the previously generated words and the input visual signal I are the “environment”. At
step t, generating word ĉt by the speaker module is deemed as the “action” taken with
the policy pθ, which is defined by the speaker module parameters θ. Specifically, with the
generated description Ĉ = {c1, ..., cT }, the objective is to maximize the reward function
R(Ĉ, I). We apply the “REINFORCE with baseline” algorithm following [99] to reduce
the variance of this loss function, where a baseline reward R(C∗, I) of the description
C∗ independent of Ĉ is introduced. We apply beam search to sample descriptions and
choose the greedily decoded descriptions as the baseline. The simplified policy gradient
is:

Lspk-R(θ) ≈ −(R(Ĉ, I)−R(C∗, I))
T∑

t=1

logp(ĉt|I, θ) (5.1)

Rewards. As the word-level sampling through the argmax function is non-differentiable,
the subsequent listener loss cannot be directly back-propagated through the speaker
module. A workaround is to use the gumbel softmax re-parametrization trick [135]. Fol-
lowing the training scheme of [123] and [122], the listener loss can be inserted into the
REINFORCE reward function to increase the discriminability of generated referential
descriptions. Specifically, given the localization loss Lloc and the language object classi-
fication loss Llobjcls, the reward function R(Ĉ) is the weighted sum of the CIDEr score
of the sampled description and the listener-related losses:

R(Ĉ, I) = RCIDEr(Ĉ, I)− α[Lloc(Ĉ) + βLlobjcls(Ĉ)] (5.2)

where α and β are the weights balancing the CIDEr reward and the listener rewards.
We empirically set them to 0.1 and 1 in our experiments, respectively. To stabilize
the training, the reward related to the baseline description R(C∗) should be formulated
analogously. Note that there should be no gradient calculation and back-propagation
for the baseline C∗. For scenes with no GT descriptions provided, the CIDEr reward is
cancelled in the reward function, which in this case becomes R(Ĉ, I) = −α[Lloc(Ĉ) +
βLlobjcls(Ĉ)].
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Relative orientation loss. Following [15], we adopt the relative orientation loss on
the message passing module as a proxy loss. The object-to-object relative orientations
ranging from 0◦ to 180◦ are discretized into 6 classes. We apply a simple cross-entropy
loss Lori to supervise the relative orientation predictions.

Overall loss. We combine loss terms in our end-to-end joint training objective as:
L = Ldet + Lspk-R + 0.3Lori.

5.3.3 Training

We use a stage-wise training strategy for stable training. We first pretrain the detector
backbone on all training scans in ScanNet via the detector loss Ldet. We then train the
dense captioning pipeline with the pretrained detector and a newly initialized speaker
end-to-end via the detector loss and the speaker MLE loss Lspk-XE. After the speaker
MLE loss converges, we train the visual grounding pipeline with the fine-tuned frozen
detector and the listener via the listener loss Lloc. Finally, we fine-tune the entire
speaker-listener architecture with the overall loss L.

5.3.4 Inference

During inference, we use the detector and the speaker to do 3D dense captioning and
the listener to do visual grounding. The detector first produces object proposals, and
the speaker generates a description for each object proposal. We take the minimum and
maximum coordinates in the predicted object instance masks to construct the bounding
boxes. For the object proposals that are assigned to the same ground truth, we keep
only the one with the highest IoU with the GT bounding box. When evaluating the
detector itself, the non-maximum suppression is applied.

5.4 Experiments

5.4.1 Dataset

We use the ScanRefer [14] dataset consisting of around 51k descriptions for over 11k
objects in 800 ScanNet [13] scans. The descriptions include information about the ap-
pearance of the objects, as well as the object-to-object spatial relationships. We follow
the official split from the ScanRefer benchmark for training and validation. We report
our visual grounding results on the validation split and benchmark results on the hidden
test set1. Our dense captioning results are on the validation split due to the lack of
the test grounding truth. We also conduct experiments on the ReferIt3D dataset [119]
(please see the supplemental).

1http://kaldir.vc.in.tum.de/scanrefer_benchmark
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5.4.2 Semi-supervised Training with Extra Data

As the scans in ScanRefer dataset are only a subset of scans in ScanNet, we extend the
training set by including all re-scans of the same scenes for semi-supervised training.
Unlike the scans in ScanRefer, these re-scans do not have per object descriptions. We
can control how much extra data to use by randomly sampling (with replacement) from
the set of re-scans. We experiment with augmenting our data with 0.1 to 1 times the
amount of annotated data as extra data. During training, we randomly select detected
objects in the sampled extra scans for subsequent dense captioning and visual grounding.
For the complete ‘extra’ scenario, we use a comparable amount (1x) of extra data as the
annotated data in ScanRefer.

5.4.3 Implementation Details

We implement the PointGroup backbone using the Minkowski Engine [20] (see supple-
ment). For the backbone, we train using Adam [86] with a learning rate of 2e-3, on the
ScanNet train split with batch size 4 for 140k iterations, until convergence. For data
augmentation, we follow [25], randomly applying jitter, mirroring about the YZ-plane,
and rotation about the Z axis (up-axis) to each point cloud scene. We then use the Adam
optimizer with learning rate 1e-3 to train the detector and the listener on the ScanRefer
dataset with batch size 4 for 60k iterations, until convergence. Each scan is paired with 8
descriptions (i.e. 4 scans and 32 descriptions per batch iteration). Then, we combine the
trained detector with the newly initialized speaker on the ScanRefer dataset for the 3D
dense captioning task, where the weights of the detector are frozen. We again use Adam
with learning rate 1e-3, with the training process converging within 14k iterations. All
our experiments are conducted on a RTX 3090, and all neural modules are implemented
using PyTorch [136].

5.4.4 Quantitative Results

3D dense captioning and detection. Tab. 5.1 compares our 3D dense caption-
ing and object detection results against the baseline methods Scan2Cap [15] and X-
Trans2Cap [121]. Leveraging the improved PointGroup based detector, our speaker
model trained with the conventional MLE objective (Ours (MLE)) outperforms Scan2Cap
and X-Trans2Cap by a large margin in all metrics. As expected, training with the CIDEr
reward (Ours (CIDEr)) significantly improves the CIDEr score. We note that other cap-
tioning metrics are also improved, but the detection mAP@0.5 remains similar. Training
with object localization reward (Ours (CIDEr+loc.)) improves both captioning and de-
tection further due to the improved discriminability during description generation. Note
that if we use a frozen pretrained listener (Ours (CIDEr+fixed loc.)), the improve-
ment is not as significant as when we allow the listener weights to be fine-tuned (Ours
(CIDEr+loc.)). Our full model with the full listener reward incorporates an additional
language object classification loss (Ours (CIDEr+loc.+lobjcls.)) and further improves
the performance for both tasks.
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C@0.5IoU B-4@0.5IoU M@0.5IoU R@0.5IoU mAP@0.5

Scan2Cap [15] 39.08 23.32 21.97 44.78 32.21
X-Trans2Cap [121] 43.87 25.05 22.46 44.97 35.31

Ours (MLE) 46.07 30.29 24.35 51.67 50.93
Ours (CIDEr) 57.88 32.64 24.86 52.26 51.01
Ours (CIDEr+fixed loc.) 58.93 33.36 25.12 52.62 51.04
Ours (CIDEr+loc.) 61.30 34.50 25.25 52.80 52.07
Ours (CIDEr+loc.+lobjcls.) 61.50 35.05 25.48 53.31 52.58

Ours (w/ 0.1x extra data) 61.91 35.03 25.38 53.25 52.64
Ours (w/ 0.5x extra data) 62.36 35.54 25.43 53.67 53.17
Ours (w/ 1x extra data) 62.64 35.68 25.72 53.90 53.95

Table 5.1: Quantitative results on 3D dense captioning and object detection. As in [15], we
average the conventional captioning evaluation metrics with the percentage of the
predicted bounding boxes whose IoU with the GTs are higher than 0.5. Our speaker
model outperforms the baseline Scan2Cap without training via REINFORCE, while
training with CIDEr reward further boosts the dense captioning performance. We
also showcase the effectiveness of training with additional scans with no description
annotations. Our speaker-listener architecture trained with 1x extra data achieves
the best performance.

Val Acc@0.5IoU Test Acc@0.5IoU

Unique Multiple Overall Unique Multiple Overall

ScanRefer [14] 53.51 21.11 27.40 43.53 20.97 26.03
TGNN [120] 56.80 23.18 29.70 58.90 25.30 32.80
InstanceRefer [117] 66.83 24.77 32.93 66.69 26.88 35.80
3DVG-Trans [118] 60.64 28.42 34.67 55.15 29.33 35.12
3DVG-Trans+ [118] - - - 57.87 31.02 37.04

Ours (w/o fine-tuning) 70.35 27.11 35.58 65.79 27.26 35.90
Ours 72.04 30.05 37.87 68.43 30.74 39.19

Table 5.2: Quantitative results on 3D visual grounding. We adapt the evaluation setting as
in [14]. “Unique” means there is only one object belongs to a specific class in the
scene, while “multiple” represents the cases where more than one object from a spe-
cific class can be found in the scene. Clearly, our base visual grounding network
outperforms all baselines even before being put into the speaker-listener architec-
ture. After the speaker-listener fine-tuning, our method achieves the state-of-the-art
performance on the ScanRefer validation set and the public benchmark. Note that
3DVG-Trans+ is an unpublished extension of 3DVG-Trans [118] which appears only
on the public benchmark.

Does additional data help? As our method allow for training the listener with scans
without language data, we investigate the effectiveness of training with additional Scan-
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Scan2Cap: this is a brown table . it is 
to the right of another whiteboard .

Ours: this is brown wooden table. it 
is under a black tv .

GT: it is a narrow wood console table 
. it sits under the tv .

Scan2Cap: this is a black lamp . it is 
on a dresser .

Ours: this is a black tv above the 
nightstand. it is next to the bed .

GT: this is a tv hanging the cabinets 
and the wall . it is above the bed .

Scan2Cap: this is a brown couch . it is 
to the right of the table .

Ours: this is a brown coffee table . it 
is in front of the couch .

GT: the brown ottoman is in front of a 
brown sofa . it has a black backpack .

Scan2Cap: this is a bathroom cabinet 
. it is to the right of the sink .

Ours: there is a tan bathroom vanity 
. it is to the right of the toilet .

GT: it is a long wooden cabinet . it is 
along the wall in the bathroom .

Scan2Cap: this is a black chair . it is 
facing a desk .

Ours: this is a white chair . it is 
between the bed and another chair  

GT: there is a chair to the right of a 
bed . it is to the left of another chair .

Scan2Cap: this is a brown chair . it is 
to the right of the room .

Ours: this is a brown armchair . it is 
behind the white chair facing a desk

GT: there is a chair to the right of a 
bed . it is to the left of another chair .

Scan2Cap: this is a black monitor . it 
is on a desk .

Ours: this is a monitor . it is on the 
right of the monitor near the window 

GT: the monitor is on the table. the 
monitor is the closest to the window 

Scan2Cap: this is a gray couch . it is 
facing a table .

Ours: this is a brown couch . it is to 
the left of the table against the wall .

GT: there is a brown couch . it is 
between the wall and the table .

Figure 5.4: Qualitative results in 3D dense captioning task from Scan2Cap [15] and our method.
We underline the inaccurate words and mark the spatially discriminative phrases in
bold. Our method qualitatively outperforms Scan2Cap in producing better object
bounding boxes and more discriminative descriptions.

Net data that have not been annotated with descriptions. We vary the amount of extra
scan data (without descriptions) from 0.1x to 1x of fully annotated data and train our
full model with CIDEr and full listener reward (loc.+lobjcls.). Our results (last three
rows of Tab. 5.1), show that our semi-supervised training strategy can leverage the extra
data to improve both dense captioning and object detection.

3D visual grounding. Tab. 5.2 compares our results against prior 3D visual grounding
methods ScanRefer [14], TGNN [120], InstanceRefer [117] and 3DVG-Transformer [118],
and 3DVG-Trans+, an unpublished extension. Our method trained only with the detec-
tion loss and the listener loss (“Ours w/o fine-tuning”), i.e. without the speaker-listener
setting, outperforms all the previous methods in the “Unique” and “Overall” scenarios.
We find the improved fusion module together with the improved detector is sufficient to
outperform 3DVG-Trans. Due to the improved detector, our method can distinguish ob-
jects in the “Unique” case, where the semantic labels play an important role. Meanwhile,
3DVG-Trans [118] still outperforms our base listener when discriminating objects from
the same class (“Multiple” case). Our end-to-end speaker-listener (last row) outperforms
all previous method including 3DVG-Trans.
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Query: This is a black couch. 
It is located next to a tall 
shelf and there is a fan in 
front of it.

Query: A black couch in the 
corner of the room. There is 
an information board above 
it.

Query: This is a black chair. 
It is between the trash bin 
and the table.

Query: The nightstand is 
brown and is in the 
bedroom. It's at the end of 
the bed below the TV.

Query: It is a light brown 
table surrounded by four 
chairs. It is to the left in the 
room by the plant.
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Figure 5.5: 3D visual grounding results using 3DVG-Transformer [118] and our method. 3DVG-
Transformer fails to accurately predict object bounding boxes, while our method
produces accurate bounding boxes and correctly distinguishes target objects from
distractors.

5.4.5 Qualitative Analysis

3D dense captioning. Fig. 5.4 compares our results with object captions from Scan2Cap [15].
Descriptions generated by Scan2Cap cannot uniquely identify the target object in the
input scenes (see the yellow block on the bottom right). Also, Scan2Cap produces inac-
curate object bounding boxes, which affects the quality of object captions (see the yellow
block on the top left). Compared to captions from Scan2Cap, our method produces more
discriminative object captions that specifies more spatial relations (see bolded phrases
in the blue blocks).

3D visual grounding. Fig. 5.5 compares our results with 3DVG-Transformer [118].
Though 3DVG-Transformer is able to pick the correct object, it suffers from poor ob-
ject detections and is constrained by the performance of the VoteNet-based detection
backbone (see the first column). Our method is capable of selecting the queried objects
while also predicting more accurate object bounding boxes.

5.4.6 Analysis and Ablation Studies

Does better detection backbone help? From Tab. 5.1, we see that using a better
detector can significant improve performance. We further examine the effect of using dif-
ferent detection backbones (VoteNet and PointGroup) compared to GT bounding boxes
in Tab. 5.3. For each detection backbone, we use four variants of our method: the models
trained without the joint speaker-listener architecture, and the speaker-listener architec-
ture trained with CIDEr reward, listener reward and extra ScanNet data. The results
with GT boxes show the effectiveness of our speaker-listener architecture, when detec-
tions are perfect. The large improvement from VoteNet [24] to PointGroup [25] show
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Unique Multiple Overall
Method Detection mAP@0.5 C@0.5IoU B-4@0.5IoU M@0.5IoU R@0.5IoU Acc@0.5IoU Acc@0.5IoU Acc@0.5IoU

Ours (MLE) GT 100.00 71.41 42.95 29.67 64.93 88.45 36.46 46.03
Ours (CIDEr) GT 100.00 94.80 47.92 30.80 66.34 - - -
Ours (CIDEr+lis.) GT 100.00 95.62 47.65 30.93 66.31 89.76 36.85 47.14
Ours (CIDEr+lis.+extra) GT 100.00 96.31 48.20 30.80 66.10 89.86 40.66 48.17

Ours (MLE) VoteNet 32.21 39.08 23.32 21.97 44.78 56.41 21.11 27.95
Ours (CIDEr) VoteNet 37.66 46.88 25.96 22.10 44.69 - - -
Ours (CIDEr+lis.) VoteNet 38.03 47.32 24.76 21.66 43.62 57.90 20.73 28.03
Ours (CIDEr+lis.+extra) VoteNet 38.82 48.38 26.09 22.15 44.74 58.40 21.66 29.25

Ours (MLE) PointGroup 47.19 46.07 30.29 24.35 51.67 70.35 27.11 35.58
Ours (CIDEr) PointGroup 52.44 57.88 32.64 24.86 52.26 - - -
Ours (CIDEr+lis.) PointGroup 52.58 61.50 35.05 25.48 53.31 71.04 27.40 35.62
Ours (CIDEr+lis.+extra) PointGroup 53.95 62.64 35.68 25.72 53.90 72.04 30.05 37.87

Table 5.3: Quantitative results on object detection, dense captioning and visual grounding in
RGB-D scans. We train our method using different detection backbones as well
as the ground truth bounding boxes. Our method trained with CIDEr and listener
reward as well as the additional data outperforms the pretrained speaker and listener
models.

Unique Multiple Overall
detection Acc@0.5IoU Acc@0.5IoU Acc@0.5IoU

Scan2Cap [15] VN [24] 80.52 29.95 39.08

Ours (w/ CIDEr & lis.) PG [25] 81.16 30.22 41.62
Ours (w/ CIDEr & lis. & extra) PG [25] 81.27 30.33 41.73

Ours (w/ CIDEr & lis.) GT 89.76 38.53 48.07
Ours (w/ CIDEr & lis. & extra) GT 90.29 40.66 49.71

Table 5.4: We automatically evaluate the discriminability of the generated object descriptions.
A pretrained neural listener similar to [118] is fed with the GT object features and
the descriptions generated by Scan2Cap [15] as well as our method. Higher ground-
ing accuracy indicates better discriminability, especially in the “multiple” case. To
alleviate noisy detections, the evaluation results on the descriptions generated from
the GT object features are also presented. Our method generates more discrimina-
tive descriptions compared to Scan2Cap.

the importance of a better detection backbone. The gap between GT and VoteNet/-
PointGroup shows there is room for further improvement.

Are the generated descriptions more discriminative? To check whether the
speaker-listener architecture generates more discriminative descriptions, we conduct an
automatic evaluation via a reverse task. In this task, we feed the generated descrip-
tions and GT bounding boxes into a pretrained neural listener model similar to [118].
The predicted visual grounding results are evaluated in the same way as in our 3D vi-
sual grounding experiments. Higher grounding accuracy indicates better discrimination,
especially in the “Multiple” case. Results (Tab. 5.4) show that our speaker-listener ar-
chitecture generates more discriminative descriptions compared to Scan2Cap [15]. The
discrimination is further improved when training with extra ScanNet data. To disentan-
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Acc (Category) Acc (Attribute) Acc (Relation)

Scan2Cap [15] 84.10 64.21 69.00

Ours (MLE) 88.00 (+3.84) 74.73 (+10.53) 69.00 (+0.00)
Ours (CIDEr) 88.89 (+4.73) 75.00 (+10.79) 68.00 (-1.00)
Ours (CIDEr+lis.) 90.91 (+6.75) 77.38 (+13.17) 75.00 (+6.00)
Ours (CIDEr+lis.+extra) 92.93 (+8.77) 80.95 (+16.74) 78.57 (+9.57)

Table 5.5: Manual analysis of captions generated by Scan2Cap [15] and variants of our method.
We measure accuracy in three different aspects: object categories, appearance at-
tributes and spatial relations. Our method generates more accurate descriptions in
all aspects, especially for describing spatial relations.

gle the affect of imperfectly predicted bounding boxes, we also train and evaluate our
method with GT boxes (see last two rows in Tab. 5.4). We see that our semi-supervised
speaker-listener architecture generates more discriminative descriptions.

Does the listener help with captioning? The third to the sixth rows in Tab. 5.1
measure the benefit of training the speaker together with the listener (Ours (CIDEr+loc.)
and Ours (CIDEr+loc.+lobjcls.)) rather than training the speaker alone (Ours (CIDEr)).
Training with the listener improves all captioning metrics. Also, training jointly with
an unfrozen listener (Ours (CIDEr+loc.) leads to a better performance when compared
with the variant with a pretrained and frozen listener (Ours (CIDEr+fixed loc.), which
is similar to [81]. Additionally, as the detector is not only fine-tuned with the speaker
but also with the listener, the additional supervision from the listener helps with the
detection performance as well.

To analyze the quality of the generated object captions, we asked 5 students to per-
form a fine-grained manual analysis of the captions. Each student was presented with
a batch of 100 randomly selected object captions with associated objects highlighted
in the 3D scene. The student are then asked to indicate if the respective aspects were
included and correctly described. The manual analysis results in Tab. 5.5 shows that
our method generates more accurate descriptions compared to Scan2Cap. In particu-
lar, training with the listener and extra ScanNet data produces more accurate spatial
relations in the descriptions. The results of fine-grained manual analysis complements
the automatic captioning evaluation metric. While metrics such as CIDEr captures the
overall similarity of the generated sentences against the references, the accuracies in
Tab. 5.5 measures the correctness of the decomposed visual attributes.

Does the speaker help with grounding? Tab. 5.2 compares grounding results
between a pretrained listener (Ours w/o fine-tuning) and a fine-tuned speaker-listener
model (Ours). Although the grounding performance drops in the “Unique” subset, the
improvements in “Multiple” suggests better discriminability in tougher and ambiguous
scenarios.
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5.5 Conclusion

We present D3Net, an end-to-end speaker-listener architecture that can detect, describe
and discriminate. Specifically, the speaker iteratively generates descriptive tokens given
the object proposals detected by the detector, while the listener discriminates the object
proposals in the scene with the generated captions. The self-discriminative property
of D3Net also enables semi-supervised training on ScanNet data without the annotated
descriptions. Our method outperforms the previous SOTA methods in both tasks on
ScanRefer, surpassing the previous SOTA 3D dense captioning method by a significant
margin. Our architecture can serve as an initial step towards leveraging unannotated 3D
data for language and 3D vision. Overall, we hope that our work will encourage more
future research in 3D vision and language.
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6 Conclusion

This dissertation investigates a very important research topic: Grounding Natural Lan-
guage to 3D Scenes. We mainly focus on three problems: Localizing 3D Objects in
RGB-D Scans using Natural Language, Generating Descriptions for 3D Objects and
Unifying 3D Object Localization and Describing in RGB-D Scans. Each of these prob-
lems were introduced in Part II, and we present concluding remarks in the following.

ScanRefer: 3D Object Localization in RGB-D Scans using Natural Language In
Chapter 3, we introduce the task of localizing a target object in a 3D point cloud using
natural language descriptions. We collect the ScanReferdataset, which contains 51,583
unique descriptions for 11,046 objects from 800 ScanNet [13] scenes. We propose an
end-to-end method for localizing an object with a free-formed description as reference,
which first proposes point clusters of interest and then matches them to the embeddings
of the input sentence. Our architecture is capable of learning the semantic similarities
of the given contexts and regressing the bounding boxes for the target objects. Overall,
we hope that our new dataset and method will enable future research in the 3D visual
language field.

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans In Chapter 4, we
introduce the task of dense description generation in RGB-D scans. We propose an
end-to-end trained architecture to localize the 3D objects in the input point cloud and
generate descriptions for them in natural language. Thus, we address the 3D localization
and description generation problems at the same time. We apply an attention-based
captioning pipeline equipped with a message passing network to generate descriptive
tokens while referring to related components in the local context. Our architecture
effectively localizes and describes 3D objects, outperforming 2D-based dense captioning
methods on the 3D dense description generation task by a large margin. Overall, we
hope that our work will enable future research in 3D vision and language.

D3Net: A Unified Speaker-Listener Architecture for 3D Dense Captioning and Visual
Grounding In Chapter 5, we present D3Net, an end-to-end speaker-listener architecture
that can detect, describe and discriminate. Specifically, the speaker iteratively gener-
ates descriptive tokens given the object proposals detected by the detector, while the
listener discriminates the object proposals in the scene with the generated captions. The
self-discriminative property of D3Net also enables semi-supervised training on ScanNet
data without the annotated descriptions. Our method outperforms the previous SOTA
methods in both tasks on ScanRefer, surpassing the previous SOTA 3D dense captioning
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method by a significant margin. Our architecture can serve as an initial step towards
leveraging unannotated 3D data for language and 3D vision. Overall, we hope that our
work will encourage more future research in 3D vision and language.
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7 Limitations and Future Work

ScanRefer: 3D Object Localization in RGB-D Scans using Natural Language In this
work, we introduce the task of localizing a target object in a 3D point cloud using natural
language descriptions. We propose the ScanRefer network for localizing an object with
a free-formed description as reference, which first proposes point clusters of interest and
then matches them to the embeddings of the input sentence. Since the last hidden
state of a recurrent neural network is used as the final language feature, the underlying
importance within words is not handled in this work. One potential improvement is
to apply self-attention mechanism over the text inputs to enhance the language feature
learning, which we would like to leave for future research.

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans In Scan2Cap, we
introduce the task of dense description generation in RGB-D scans. We propose an
end-to-end trained architecture to localize the 3D objects in the input point cloud and
generate descriptions for them in natural language. We apply an attention-based cap-
tioning pipeline equipped with a message passing network to generate descriptive tokens
while referring to related components in the local context. Nevertheless, our method
struggles to capture complex relations like ordinal counting. For instance, our method
only predicts “the round chair next to another wooden chair”, while the ground truth
“the third round chair from the wall” reveals more fine-grained spatial relations, indi-
cating possibilities for improvement. We would like to leave it for future research.

D3Net: A Unified Speaker-Listener Architecture for 3D Dense Captioning and Visual
Grounding In D3Net, we propose an end-to-end neural architecture that can detect,
describe, and discriminate. Our architecture facilitate self-critical learning. This is
done by using a speaker module to iteratively generates descriptive tokens given the
object proposals detected by the detector, and using a listener module to discriminate
the object proposals in the scene with the generated captions. However, our method
applies a reinforcement learning algorithm to approximate sample the gradients for a
non-differentiable objective function. Such approach is hard to optimize in practice due
to a huge variance in the sampled gradients. To enhance the training stability and
facilitate the joint learning, one possible direction is to utilize multimodal transformer
architecture for self-discriminative training. We would like to leave this thought to future
work.
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A Open-source Code & Videos

A.1 ScanRefer: 3D Object Localization in RGB-D Scans using
Natural Language

• Project: https://daveredrum.github.io/ScanRefer/

• Source Code: https://github.com/daveredrum/ScanRefer

• Video: https://www.youtube.com/watch?v=T9J5t-UEcNA

A.2 Scan2Cap: Context-aware Dense Captioning in RGB-D
Scans

• Project: https://daveredrum.github.io/Scan2Cap/

• Source Code: https://github.com/daveredrum/Scan2Cap

• Video: https://www.youtube.com/watch?v=AgmIpDbwTCY

A.3 D3Net: A Unified Speaker-Listener Architecture for 3D
Dense Captioning and Visual Grounding

• Project: https://daveredrum.github.io/D3Net/

• Source Code: https://github.com/daveredrum/D3Net

• Video: https://www.youtube.com/watch?v=mIPNzoVOGN4
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ScanRefer: 3D Object Localization in RGB-D
Scans using Natural Language

Dave Zhenyu Chen1 Angel X. Chang2 Matthias Nießner1

1Technical University of Munich 2Simon Fraser University

Fig. 1: We introduce the task of object localization in 3D scenes using natural
language. Given as input a 3D scene and a natural language expression, we
predict the bounding box for the target 3D object (right). The counterpart 2D
task (left) does not capture the physical extent of the 3D objects.

Abstract. We introduce the task of 3D object localization in RGB-D
scans using natural language descriptions. As input, we assume a point
cloud of a scanned 3D scene along with a free-form description of a spec-
ified target object. To address this task, we propose ScanRefer, learn-
ing a fused descriptor from 3D object proposals and encoded sentence
embeddings. This fused descriptor correlates language expressions with
geometric features, enabling regression of the 3D bounding box of a tar-
get object. We also introduce the ScanRefer dataset, containing 51, 583
descriptions of 11, 046 objects from 800 ScanNet [9] scenes. ScanRefer
is the first large-scale effort to perform object localization via natural
language expression directly in 3D 1.

1 Introduction

In recent years, there has been tremendous progress in both semantic under-
standing and localization of objects in 2D images from natural language (also
known as visual grounding). Datasets such as ReferIt [28], RefCOCO [71], and

1 Project page: https://daveredrum.github.io/ScanRefer/
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Flickr30K Entities [47] have enabled the development of various methods for
visual grounding in 2D [23, 22, 39]. However, these methods and datasets are
restricted to 2D images, where object localization fails to capture the true 3D
extent of an object (see Fig. 1, left). This is a limitation for applications rang-
ing from assistive robots to AR/VR agents where understanding the global 3D
context and the physical size is important, e.g., finding objects in large spaces,
interacting with them, and understanding their spatial relationships. Early work
by Kong et al. [31] looked at coreference in 3D, but was limited to single-view
RGB-D images.

In this work, we address these shortcomings by proposing the task of ob-
ject localization using natural language directly in 3D space. Specifically, we
develop a neural network architecture that localizes objects in 3D point clouds
given natural language descriptions referring to the underlying objects; i.e., for
a given text description in a 3D scene, we predict a corresponding 3D bound-
ing box matching the best-described object. To facilitate the task, we collect
the ScanRefer dataset, which provides natural language descriptions for RGB-D
scans in ScanNet [9]. In total, we acquire 51, 583 descriptions of 11, 046 objects.
To the best of our knowledge, our ScanRefer dataset is the first large-scale effort
that combines 3D scene semantics and free-form descriptions. In summary, our
contributions are as follows:

– We introduce the task of localizing objects in 3D environments using natural
language descriptions.

– We provide the ScanRefer dataset containing 51, 583 human-written free-
form descriptions of 11, 046 objects in 3D scans.

– We propose a neural network architecture for localization based on language
descriptions that directly fuses features from 2D images and language ex-
pressions with 3D point cloud features.

– We show that our end-to-end method outperforms the best 2D visual ground-
ing method that simply backprojects its 2D predictions to 3D by a significant
margin (9.04 Acc@0.5IoU vs. 22.39 Acc@0.5IoU).

2 Related Work

Grounding Referring Expressions in Images. There has been much work
connecting images to natural language descriptions across tasks such as image
captioning [27, 26, 59, 64], text-to-image retrieval [61, 25], and visual ground-
ing [23, 39, 70]. The task of visual grounding (with variants also known as re-
ferring expression comprehension or phrase localization) is to localize a region
described by a given referring expression, the query. Localization can be spec-
ified by a 2D bounding box [28, 47, 39] or a segmentation mask [22], with the
input description being short phrases [28, 47] or more complex descriptions [39].
Recently, Acharya et al [1] proposed visual query detection where the input is a
question. The focus of our work is to lift this task to 3D, focusing on complex
descriptions that can localize an unique object in a scene.
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dataset #objects #expressions AvgLeng data format 3D context

ReferIt [28] 96,654 130,364 3.51 image -
RefCOCO [71] 50,000 142,209 3.50 image -
Google RefExp [39] 49,820 95,010 8.40 image -
SUN-Spot [41] 3,245 7,990 14.04 image depth
REVERIE [52] 4,140 21,702 18.00 image panoramic image
ScanRefer (ours) 11,046 51,583 20.27 3D scan depth, size, location, etc.

Table 1: Comparison of referring expression datasets in terms of the number of
objects (#objects), number of expressions (#expressions), average lengths of the
expressions, data format and the 3D context.

Existing methods focus on predicting 2D bounding boxes [23, 55, 61, 60, 46,
71, 70, 12, 37] and some predict segmentation masks [22, 35, 33, 40, 69, 6]. A two-
stage pipeline is common, where first an object detector, either unsupervised [74]
or pretrained [54], is used to propose regions of interest, and then the regions
are ranked by similarity to the query, with the highest scoring region provided
as the final output. Other methods address the referring expression task with
a single stage end-to-end network [22, 43, 68]. There are also approaches that
incorporate syntax [36, 17], use graph attention networks [62, 66, 67], speaker-
listener models [39, 72], weakly supervised methods [63, 73, 11] or tackle zero-
shot settings for unseen nouns [56].

However, all these methods operate on 2D image datasets [47, 28, 71]. A
recent dataset [41] integrates RGB-D images but lacks the complete 3D context
beyond a single image. Qi et al. [52] study referring expressions in an embodied
setting, where semantic annotations are projected from 3D to 2D bounding boxes
on images observed by an agent. Our contribution is to lift NLP tasks to 3D
by introducing the first large-scale effort that couples free-form descriptions to
objects in 3D scans. Tab. 1 summarizes the difference between our ScanRefer
dataset and existing 2D datasets.
Object Detection in 3D. Recent work on 3D object detection on volumetric
grids [20, 19, 32, 42, 13] has been applied to several 3D RGB-D datasets [58, 9, 4].
As an alternative to regular grids, point-based methods, such as PointNet [50] or
PointNet++ [51], have been used as backbones for 3D detection and/or object
instance segmentation [65, 14]. Recently, Qi et al. [49] introduced VoteNet, a
3D object detection method for point clouds based on Hough Voting [21]. Our
approach extracts geometric features in a similar fashion, but backprojects 2D
feature information since the color signal is useful for describing 3D objects with
natural language.
3D Vision and Language. Vision and language research is gaining popularity
in image domains (e.g., image captioning [26, 59, 64, 38], image-text match-
ing [15, 30, 34, 24, 16], and text-to-image generation [53, 16, 57]), but there is
little work on vision and language in 3D. Chen et al. [7] learn a joint embedding of
3D shapes from ShapeNet [5] and corresponding natural language descriptions.
Achlioptas et al. [3] disambiguate between different objects using language. Re-
cent work has started to investigate grounding of language to 3D by identifying
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Fig. 2: Our task: ScanRefer takes as input a 3D scene point cloud and a descrip-
tion of an object in the scene, and predicts the object bounding box.

Fig. 3: Our data collection pipeline. The annotator writes a description for the
focused object in the scene. Then, a verifier selects the objects that match the
description. The selected object is compared with the target object to check that
it can be uniquely identified by the description.

3D bounding boxes of target objects for simple arrangements of primitive shapes
of different colors [48]. Instead of focusing on isolated objects, we consider large
3D RGB-D reconstructions that are typical in semantic 3D scene understanding.
A closely related work by Kong et al. [31] studied the problem of coreference
in text description of single-view RGB-D images of scenes, where they aimed to
connect noun phrases in a scene description to 3D bounding boxes of objects.
Concurrent with this work, Achlioptas et al. [2] introduces a new dataset and
task that focuses on disambiguating objects from the same category with known
localizations.

3 Task

We introduce the task of object localization in 3D scenes using natural language
(Fig. 2). The input is a 3D scene and free-form text describing an object in the
scene. The scene is represented as a point cloud with additional features such as
colors and normals for each point. The goal is to predict the 3D bounding box
of the object that matches the input description.

4 Dataset

The ScanRefer dataset is based on ScanNet [9] which is composed of 1,613 RGB-
D scans taken in 806 unique indoor environments. We provide 5 descriptions for
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Fig. 4: Description lengths

Number of descriptions 51,583
Number of scenes 800
Number of objects 11,046
Number of objects per scene 13.81
Number of descriptions per scene 64.48
Number of descriptions per object 4.67
Size of vocabulary 4,197
Average length of descriptions 20.27

Table 2: ScanRefer dataset statistics.

(a) (b) (c) (d) (e)

Fig. 5: Word clouds of terms for (a) object names (b) colors (c) shapes (d) sizes,
and (e) spatial relations for the ScanRefer dataset. Bigger fonts indicate more
frequent terms in the descriptions.

each object in each scene, focusing on complete coverage of all objects that are
present in the reconstruction. Here, we summarize the annotation process and
statistics of our dataset (see supplement for more details).

4.1 Data Collection

We deploy a web-based annotation interface on Amazon Mechanical Turk (AMT)
to collect object descriptions in the ScanNet scenes. The annotation pipeline con-
sists of two stages: i) description collection, and ii) verification (Fig. 3). From each
scene, we select objects to annotate by restricting to indoor furniture categories
and excluding structural objects such as “Floor” and “Wall”. We manually check
the selected objects are recognizable and filter out objects with reconstructions
that are too incomplete or hard to identify.
Annotation The 3D web-based UI shows each object in context. The work-
ers see all objects other than the target object faded out and a set of captured
image frames to compensate for incomplete details in the reconstructions. The
initial viewpoint is random but includes the target object. Camera controls al-
low for adjusting the camera view to better examine the target object. We ask
the annotator to describe the appearance of the target and its spatial location
relative to other objects. To ensure the descriptions are informative, we require
the annotator to provide at least two full sentences. We batch and randomize
the tasks so that each object is described by five different workers.
Verification We recruit trained workers (students) to verify that the descrip-
tions are discriminative and correct. Verifiers are shown the 3D scene and a
description, and are asked to select the objects (potentially multiple) in the
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1. There is a brown wooden chair placed right against the wall.
2. This is a triangular shape table. The table is near the armchair.
3. The little nightstand. The nightstand is on the right of the bed.
4. This is a short trash can. It is in front of a taller trash can.
5. The couch is the biggest one below the picture. The couch has three seats and is brown.
6. This is a gray desk chair. This chair is the last one on the side closest to the open door.
7. The kitchen counter is covering the lower cabinets. The kitchen counter is under the upper

cabinets that are mounted above.
8. This is a round bar stool. It is third from the wall.

Table 3: Examples from our dataset illustrating different types of phrases such
as attributes (1-8) and parts (5), comparatives (4), superlatives (5), intra-class
spatial relations (6), inter-class spatial relations (7) and ordinal numbers (8).

scene that match the description. Descriptions that result in the wrong object
or multiple objects are filtered out. Verifiers also correct spelling and wording
issues in the description when necessary. We filter out 2,823 invalid descriptions
that do not match the target objects and fix writing issues for 2,129 descriptions.

4.2 Dataset Statistics

We collected 51,583 descriptions for 800 ScanNet scenes2. On average, there are
13.81 objects, 64.48 descriptions per scene, and 4.67 descriptions per object after
filtering (see Tab. 2 for basic statistics, Tab. 3 for sample descriptions, and Fig. 4
for the distribution of the description lengths). The descriptions are complex
and diverse, covering over 250 types of common indoor objects, and exhibiting
interesting linguistic phenomena. Due to the complexity of the descriptions, one
of the key challenges of our task is to determine what parts of the description
describe the target object, and what parts describe neighboring objects. Among
those descriptions, 41,034 mention object attributes such as color, shape, size,
etc. We find that many people use spatial language (98.7%), color (74.7%), and
shape terms (64.9%). In contrast, only 14.2% of the descriptions convey size
information. Fig 5 shows commonly used object names and attributes. Tab. 3
shows interesting expressions, including comparatives (“taller”) and superlatives
(“the biggest one”), as well as phrases involving ordinals such as “third from
the wall”. Overall, there are 672 and 2,734 descriptions with comparative and
superlative phrases. We provide more detailed statistics in the supplement.

5 Method

Our architecture consists of two main modules: 1) detection & encoding; 2)
fusion & localization (Fig. 6). The detection & encoding module encodes the
input point cloud and description, and outputs the object proposals and the
language embedding, which are fed into the fusion module to mask out invalid

2 6 scenes are excluded since they do not contain any objects to describe
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Fig. 6: ScanRefer architecture: The PointNet++ [51] backbone takes as input a
point cloud and aggregates it to high-level point feature maps, which are then
clustered and fused as object proposals by a voting module similar to Qi et
al. [49]. Object proposals are masked by the objectness predictions, and then
fused with the sentence embedding of the input descriptions, which is obtained
by a GloVE [45] + GRU [8] embedding. In addition, an extra language-to-object
classifier serves as a proxy loss. We apply a softmax function in the localization
module to output the confidence scores for the object proposals.

object proposals and produce the fused features. Finally, the object proposal
with the highest confidence predicted by the localization module is chosen as
the final output.

5.1 Data Representations

Point clouds We randomly sample NP vertices of one scan from ScanNet as
the input point cloud P = {(pi, fi)}, where pi ∈ R3 represents the point coordi-
nates in 3D space and fi stands for additional point features such as colors and
normals. Note that the point coordinates pi provides only geometrical informa-
tion and does not contain other visual information such as color and texture.
Since descriptions of objects do refer to attributes such as color and texture, we
incorporate visual appearance by adapting the feature projection scheme in Dai
et al. [10] to project multi-view image features vi ∈ R128 to the point cloud.
The image features are extracted using a pre-trained ENet [44]. Following Qi et
al. [49], we also append the height of the point from the ground and normals to
the new point features f ′i ∈ R135. The final point cloud data is prepared offline
as P ′ = {(pi, f ′i)} ∈ RNP×135. We set NP to 40, 000 in our experiments.
Descriptions We tokenize the input description with SpaCy [18] and the NW

tokens to 300-dimensional word embedding vectorsW = {wj} ∈ RNW×300 using
pretrained GloVE word embeddings [45].

5.2 Network Architecture

Our method takes as input the preprocessed point cloud P ′ and the word em-
bedding sequence W representing the input description and outputs the 3D
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bounding box for the proposal which is most likely referred to by the input de-
scription. Conceptually, our localization pipeline consists of the following four
stages: detection, encoding, fusion and localization.

Detection As the first step in our network, we detect all probable objects in
the given point cloud. To construct our detection module, we adapt the Point-
Net++ [51] backbone and the voting module in Qi et al. [49] to process the point
cloud input and aggregate all object candidates to individual clusters. The out-
put from the voting module is a set of point clusters C ∈ RM×128 representing
all object proposals with enriched point features, where M is the upper bound of
the number of proposals. Next, the proposal module takes in the point clusters
and processes those clusters to predict the objectness mask Dobjn ∈ RM×1 and
the axis-aligned bounding boxes Dbbox ∈ RM×(6+18) for all M proposals, where
each Di

bbox = (cx, cy, cz, rx, ry, rz, l) consists of the box center c, the box lengths
r and a vector l ∈ R18 representing the semantic predictions.

Encoding The sequences of word embedding vectors of the input description
are fed into a GRU cell [8] to aggregate the textual information. We take the
final hidden state e ∈ R256 of the GRU cell as the final language embedding.

Fusion The outputs from the previous detection and encoding modules are fed
into the fusion module (orange block in Fig. 6, see supplemental for details) to
integrate the point features together with the language embeddings. Specifically,
each feature vector ci ∈ R128 in the point cluster C is concatenated with the
language embedding e ∈ R256 as the extended feature vector, which is then
masked by the predicted objectness mask Di

objn ∈ {0, 1} and fused by a multi-

layer perceptron as the the final fused cluster features C ′ = {c′i} ∈ RM×128.

Localization The localization module aims to predict which of the proposed
bounding boxes corresponds to the description. Point clusters with fused cluster
features C′ = {c′i} are processed by a single layer perceptron to produce the raw
scores of how likely each box is the target box. We use a softmax function to
squash all the raw scores into the interval of [0, 1] as the localization confidences
S = {si} ∈ RM×1 for the proposed M bounding boxes.

5.3 Loss Function

Localization loss For the predicted localization confidence si ∈ [0, 1] for object
proposal Di

bbox, the target label is represented as ti ∈ {0, 1}. Following the
strategy of Yang et al. [68], we set the label tj for the jth box that has the
highest IoU score with the ground truth box as 1 and others as 0. We then use
a cross-entropy loss as the localization loss Lloc = −∑M

i=1 ti log(si).
Object detection loss We use the same detection loss Ldet as introduced in Qi
et al. [49] for object proposals Di

bbox and Di
objn: Ldet = Lvote-reg + 0.5Lobjn-cls +

Lbox + 0.1Lsem-cls, where Lvote-reg, Lobjn-cls, Lbox and Lsem-cls represent the vote
regression loss (defined in Qi et al. [49]), the objectness binary classification
loss, box regression loss and the semantic classification loss for the 18 ScanNet
benchmark classes, respectively. We ignore the bounding box orientations in
our task and simplify Lbox as Lbox = Lcenter-reg + 0.1Lsize-cls + Lsize-reg, where
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Lcenter-reg, Lsize-cls and Lsize-reg are used for regressing the box center, classifying
the box size and regressing the box size, respectively. We refer readers to Qi et
al. [49] for more details.
Language to object classification loss To further supervise the training, we
include an object classification loss based on the input description. We consider
the 18 ScanNet benchmark classes (excluding the label “Floor” and “Wall”).
The language to object classification loss Lcls is a multi-class cross-entropy loss.
Final loss The final loss is a linear combination of the localization loss, object
detection loss and the language to object classification loss: L = αLloc +βLdet +
γLcls, where α, β and γ are the weights for the individual loss terms. After
fine-tuning on the validation split, we set those weights to 0.1, 10, and 1 in our
experiments to ensure the loss terms are roughly of the same magnitude.

5.4 Training and Inference

Training During training, the detection and encoding modules propose object
candidates as point clusters, which are then fed into the fusion and localization
modules to fuse the features from the previous module and predict the final
bounding boxes. We train the detection backbone end-to-end with the detection
loss. In the localization module, we use a softmax function to compress the
raw scores to [0, 1]. The higher the predicted confidence is, the more likely the
proposal will be chosen as output. To filter out invalid object proposals, we use
the predicted objectness mask to ensure that only positive proposals are taken
into account. We set the maximum number of proposals M to 256 in practice.
Inference Since there can be overlapping detections, we apply a non-maximum
suppression module to suppress those overlapping proposals in the inference step.
The remaining object proposals are fed into the localization module to predict
the final score for each proposal. The number of object proposals is less than the
upper bound M in the training step.
Implementation Details We implement our architecture using PyTorch and
train the model end-to-end using ADAM [29] with a learning rate of 1e−3.
We train the model for roughly 130, 000 iterations until convergence. To avoid
overfitting, we set the weight decay factor to 1e−5 and apply data augmentations
to our training data. For point clouds, we apply rotation about all three axes
by a random angle in [−5◦, 5◦] and randomly translate the point cloud within
0.5 meters in all directions. We rotate around all axes (not just up), since the
ground alignment in ScanNet is imperfect.

6 Experiments

Train/Val/Test Split. Following the official ScanNet [9] split, we split our
data into train/val/test sets with 36,665, 9,508 and 5,410 samples respectively,
ensuring disjoint scenes for each split. Results and analysis are conducted on the
val split (except for results in Tab. 4 bottom). The test set is hidden and will be
reserved for the ScanRefer benchmark.
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Fig. 7: Object localization in an image using a 2D grounding method and back-
projecting the result to the 3D scene (blue box) vs. directly localizing in the 3D
scene (green box). Grounding in 2D images suffers from the limited view of a
single frame, which results in inaccurate 3D bounding boxes.

Metric. To evaluate the performance of our method, we measure the thresholded
accuracy where the positive predictions have higher intersection over union (IoU)
with the ground truths than the thresholds. Similar to work with 2D images, we
use Acc@kIoU as our metric, where the threshold value k for IoU is set to 0.25
and 0.5 in our experiments.

Baselines. We design several baselines by 1) evaluating our language localiza-
tion module on ground truth bounding boxes, 2) adapting 3D object detectors,
and 3) adapting 2D referring methods to 3D using back-projection.

OracleCatRand & OracleRefer: To examine the difficulty of our task, we
use an oracle with ground truth bounding boxes of objects, and predict the box
by simply selecting a random box that matches the object category (OracleCa-
tRand) or our trained fusion and localization modules (OracleRefer).

VoteNetRand & VoteNetBest: From the predicted object proposals of the
VoteNet backbone [49], we select one of the bounding box proposals, either by
selecting a box randomly with the correct semantic class label (VoteNetRand) or
the best matching box given the ground truth (VoteNetBest). VoteNetBest pro-
vides an upper bound on how well the object detection component works for our
task, while VoteNetRand provides a measure of whether additional information
beyond the semantic label is required.

SCRC & One-stage: 2D image baselines for referring expression comprehen-
sion by extending SCRC [23] and One-stage [68] to 3D using back-projection.
Since 2D referring expression methods operate on a single image frame, we con-
struct a 2D training set by using the recorded camera pose associated with each
annotation to retrieve the frame from the scan video with the closest camera
pose. At inference time, we sample frames from the scans (using every 20th
frame) and predict the target 2D bounding boxes in each frame. We then select
the 2D bounding box with the highest confidence score from the bounding box
candidates and project it to 3D using the depth map for that frame (see Fig. 7).

Ours: We compare our full end-to-end model against using a pretrained VoteNet
backbone with a trained GRU [8] for selecting a matching bounding box.
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unique multiple overall
Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

OracleCatRand (GT boxes + RandCat) 100.00 100.00 18.09 17.84 29.99 29.76
OracleRefer (GT boxes + GRU) 74.09 73.55 32.57 32.00 40.63 40.06

VoteNetRand (VoteNet[49] + RandCat) 34.34 19.35 5.73 2.81 10.00 5.28
VoteNetBest (VoteNet[49] + Best) 88.85 85.50 46.63 46.42 55.10 54.33

SCRC [23] + backproj 24.03 9.22 17.77 5.97 18.70 6.45
One-stage [68] + backproj 29.32 22.82 18.72 6.49 20.38 9.04

Ours (VoteNet[48] + GRU) 77.33 51.73 30.43 19.46 39.52 25.72
Ours (end-to-end) 76.33 53.51 32.73 21.11 41.19 27.40

Test results (ScanRefer benchmark)

OracleRefer (GT boxes + GRU) 72.37 71.84 31.81 31.26 39.69 39.13
VoteNetBest (VoteNet[49] + Best) 86.78 83.85 45.54 45.33 53.82 53.07

Ours (VoteNet[48] + GRU) 72.55 47.24 32.90 19.16 41.79 25.45
Ours (end-to-end) 71.06 46.66 35.17 20.92 43.22 26.69

Table 4: Comparison of localization results obtained by our ScanRefer and base-
line models. We measure percentage of predictions whose IoU with the ground
truth boxes are greater than 0.25 and 0.5. We also report scores on “unique”
and “multiple” subsets; unique means that there is only a single object of its
class in the scene. We outperform all baselines by a significant margin.

6.1 Task Difficulty

To understand how informative the input description is beyond capturing the
object category, we analyze the performance of the methods on “unique” and
“multiple” subsets with 1,875 and 7,663 samples from val split, respectively. The
“unique” subset contains samples where only one unique object from a certain
category matches the description, while the “multiple” subset contains ambigu-
ous cases where there are multiple objects of the same category. For instance, if
there is only one refrigerator in a scene, it is sufficient to identify that the sen-
tence refers to a refrigerator. In contrast, if there are multiple objects of the same
category in a scene (e.g., chair), the full description must be taken into account.
From the OracleCatRand baseline, we see that information from the description,
other than the object category, is necessary to disambiguate between multiple
objects (see Tab. 4 Acc@0.5IoU multiple). From the OracleRefer baseline, we
see that using our fused language module, we are able to improve beyond over
selecting a random object of the same category (multiple Acc@0.5IoU increases
from 17.84% to 32.00%), but we often fail to identify the correct object category
(unique Acc@0.5IoU drops from 100.0% to 73.55%).

6.2 Quantitative Analysis

We evaluate the performance of our model against baselines on the val and the
hidden test split of ScanRefer which serves as the ScanRefer benchmark (see
Tab. 4). Note that for all results using Ours and VoteNet for object proposal,
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Fig. 8: Qualitative results from baseline methods and ScanRefer. Predicted boxes
are marked green if they have an IoU score higher than 0.5, otherwise they are
marked red. We show examples where our method produced good predictions
(blue block) as well as failure cases (orange block). Image best viewed in color.

we take the average of 5 differently seeded subsamplings (of seed points and
vote points) during inference (see supplemental for more details on experimental
variance). Training the detection backbone jointly with the localization mod-
ule (end-to-end) leads to a better performance when compared to the model
trained separately (VoteNet[49] + GRU). However, as the accuracy gap between
VoteNetBest and ours (end-to-end) indicates, there is still room for improving
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unique multiple overall
Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

Ours (xyz) 63.98 43.57 29.28 18.99 36.01 23.76
Ours (xyz+rgb) 63.24 41.78 30.06 19.23 36.50 23.61
Ours (xyz+rgb+normals) 64.63 43.65 31.89 20.77 38.24 25.21
Ours (xyz+multiview) 77.20 52.69 32.08 19.86 40.84 26.23
Ours (xyz+multiview+normals) 78.22 52.38 33.61 20.77 42.27 26.90

Ours (xyz+lobjcls) 64.31 44.04 30.77 19.44 37.28 24.22
Ours (xyz+rgb+lobjcls) 65.00 43.31 30.63 19.75 37.30 24.32
Ours (xyz+rgb+normals+lobjcls) 67.64 46.19 32.06 21.26 38.97 26.10
Ours (xyz+multiview+lobjcls) 76.00 50.40 34.05 20.73 42.19 26.50
Ours (xyz+multiview+normals+lobjcls) 76.33 53.51 32.73 21.11 41.19 27.40

Table 5: Ablation study with different features. We measure the percentages of
predictions whose IoU with the ground truth boxes are greater than 0.25 and
0.5. Unique means that there is only a single object of its class in the scene.

the match between language inputs and the visual signals. For the val split, we
also include additional experiments on the 2D baselines and a comparison with
VoteNetRand. With just category information, VoteNetRand is able to perform
relatively well on the “unique” subset, but has trouble identifying the correct
object in the “multiple” case. However, the gap between the VoteNetRand and
OracleCatRand for the “unique” case shows that 3D object detection still need
to be improved. Our method is able to improve over the bounding box predic-
tions from VoteNetRand, and leverages additional information in the description
to differentiate between ambiguous objects. It adapts better to the 3D context
compared to the 2D methods (SCRC and One-stage) which is limited by the
view of a single frame (see Fig. 7 and Fig. 8).

6.3 Qualitative Analysis

Fig. 8 shows results produced by OracleRefer, One-stage, and our method. The
successful localization cases in the green boxes show our architecture can handle
the semantic correlation between the scene contexts and the textual descriptions.
In contrast, even provided with a pool of ground truth proposals, OracleRefer
sometimes still fails to predict correct bounding boxes, while One-stage is limited
by the single view and hence cannot produce accurate bounding boxes in 3D
space. The failure case of OracleRefer suggests that our fusion & localization
module can still be improved. Some failure cases of our method are displayed
in the orange block in Fig. 8, indicating that our architecture cannot handle all
spatial relations to distinguish between ambiguous objects.

6.4 Ablation Studies

We conduct an ablation study on our model to examine what components and
point cloud features contribute to the performance (see Tab. 5).
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Does a language-based object classifier help? To show the effectiveness
of the extra supervision on input descriptions, we conduct an experiment with
the language to object classifier (+lobjcls) and without. Architectures with a
language to object classifier outperform ones without it. This indicates that it is
helpful to predict the category of the target object based on the input description.
Do colors help? We compare our method trained with the geometry and multi-
view image features (xyz+multiview+lobjcls) with a model trained with only
geometry (xyz+lobjcls) and one trained with RGB values from the reconstructed
meshes (xyz+rgb+lobjcls). ScanRefer trained with geometry and pre-processed
multi-view image features outperforms the other two models. The performance
of models with color information are higher than those that use only geometry.
Do other features help? We include normals from the ScanNet meshes to the
input point cloud features and compare performance against networks trained
without them. The additional 3D information improves performance. Our archi-
tecture trained with geometry, multi-view features, and normals (xyz+multiview+
normals+lobjcls) achieves the best performance among all ablations.

7 Conclusion

In this work, we introduce the task of localizing a target object in a 3D point
cloud using natural language descriptions. We collect the ScanReferdataset which
contains 51,583 unique descriptions for 11,046 objects from 800 ScanNet [9]
scenes. We propose an end-to-end method for localizing an object with a free-
formed description as reference, which first proposes point clusters of interest and
then matches them to the embeddings of the input sentence. Our architecture is
capable of learning the semantic similarities of the given contexts and regressing
the bounding boxes for the target objects. Overall, we hope that our new dataset
and method will enable future research in the 3D visual language field.
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Supplementary Material

Fig. 9: ScanRefer localizes objects in a scene given a language description as
input. In many cases, including this example, there are multiple objects from
the same category in a single scene which makes the problem challenging and
interesting at the same time.

In this supplementary material, we provide addition details on the data col-
lection and statistic of the ScanRefer dataset (Section A); we also provide imple-
mentation details of our localization network (Section B), as well as additional
quantitative (Section C) and qualitative comparisons (Section D).

A Dataset

A.1 Statistics

We present the distribution of categories of the ScanRefer dataset in Fig. 10.
ScanRefer provides a large coverage of furniture (e.g., chair, table, cabinet, bed,
etc.) in indoor environments with various sizes, colors, materials, and locations.
We use the same category names as in the original ScanNet dataset [9]. In total,
we annotate 11,046 objects from 265 categories from ScanNet [9]. Following the
ScanNet voxel labeling task, we aggregate these finer-grained categories into 17
coarse categories and group the remaining object types into “Others” for a total
of 18 object categories that we use to train the language-based object classifier.

Fig. 11 shows the distribution of finer-grained objects in the category “Oth-
ers”. For each of the 18 coarse categories, Fig. 12 shows the average and max-
imum number of objects for that category in a scene in which an object of
that category appears. For instance, for scenes that contains a bed, the average
number of beds is 1.22 and the maximum is 3.

We also provide detailed statistics in our training and validation splits in
Tab. 6. To further address the difficulty of our task, we present additional de-
tails about the “unique” and “multiple” subsets in Tab. 7. The “unique” subset
consists of cases where there is just one unique object of that category (from
the 18 ScanNet classes), in the scene. In these cases, the object can be localized
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Fig. 10: Distribution of categories of objects in the ScanRefer dataset with an-
notated language descriptions.

Train Val Test Total

Number of descriptions 36,665 9,508 5,410 51,583
Number of scenes 562 141 97 800
Number of objects 7,875 2,068 1,103 11,046
Number of objects per scene 14.01 14.67 11.37 14.14
Number of descriptions per scene 65.24 67.43 55.77 65.68
Number of descriptions per object 4.66 4.60 4.90 4.64

Table 6: ScanRefer dataset statistics on Train and Val splits.

(assuming perfect object detection) just by identifying the semantic class of the
target object from the description (e.g., localizing the table in the scene Fig. 9).
The “multiple” subset refers to cases where there are multiple objects of the
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Number of objects per scene Unique Multiple Overall

total 3.00 11.81 14.14
same category as the target object 1.00 4.96 2.98

Table 7: Average number of objects (per scene) for the “Unique” and “Multi-
ple” subsets of the ScanRefer dataset. Assuming ground truth bounding boxes,
there are on average 14 different objects for to disambiguate between. For the
“Multiple” subset, there are on average 5 objects to disambiguate between even
if we could match the semantic class perfectly.

same category as the target object in the scene, thus requiring disambiguation
between multiple objects of the same time (e.g., localizing a specific chair in the
scene in Fig. 9). As shown in Tab. 7, since there are on average more objects
of the same category as the target object in the “multiple” subset than in the
“unique”, it is more challenging to correctly localize the target object in the
“multiple” subset.

A.2 Collection Details

In this section, we provide more details of the data annotation and verification
processes of ScanRefer. The data collection took place over one month and in-
volved 1,929 AMT workers. Together, the description collection and verification
took around 4,984 man hours in total.

Annotation We deploy our web-based annotation application on Amazon Me-
chanical Turk (AMT) to collect object descriptions in the reconstructed RGB-D
scans, as shown in Fig. 13a. To ensure that the initial descriptions are written in
proper English, we restrict the workers to be from the United States, the United
Kingdom, Canada, and Australia. The workers are asked to finish a batch of 5
description tasks within a time limit of 2 hours once the assignment is accepted
on AMT. To ensure the descriptions are diverse and linguistically rich, we require
that each description consists of at least two sentences. Before the annotation
task begins, the AMT workers are also presented with the instructions shown in
Fig. 13b. We request that the workers provide the following information in the
descriptions:

– The appearance of the object such as shape, color, material and so on.
– The location of that object in the scene, e.g., “the chair is in the center of

this room”.
– The relative position to other objects in the scene, for instance, “this chair

is the second one from the left”.

Verification After collecting the descriptions from AMT, we do a quick inspec-
tion of the descriptions and manually filter and reject obvious bad descriptions
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Fig. 11: Distribution of the top 30 categories in the “Others” category of the
Train/Val/Test splits of the ScanRefer dataset (sorted in descending order ac-
cording to the number of objects in the Train split).

before we start the verification process. We then verify the collected object de-
scriptions by recruiting trained students to perform the verification task on our
WebGL-based application, as shown in Fig. 14a. To ensure that the descriptions
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Fig. 12: Average and maximum numbers of objects in each category per scene in
the ScanRefer dataset. For each category, we only consider scenes that contains
the corresponding objects.

provided are discriminative (e.g., can pick out which one of the chairs is being
described), the verifiers are asked to select the objects in the scene that match
the descriptions the best. The verifiers are also asked to fix any spelling and
wording issues, e.g., “hair” instead of “chair”, and submit the corrected descrip-
tions to our database. To guide the trained verifiers, we provide the verification
instructions as shown in Fig. 14b.

B Additional Implementation Details

B.1 Fusion Module

Fig. 15 shows the feature fusion process in our localization pipeline. Concretely,
the fusion module first concatenates the point clusters C = ci ∈ RM×128 and
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(a) Annotation interface for Amazon Mechanical Turk workers used to create
the ScanRefer dataset.

(b) Annotation instructions shown to the Amazon Mechanical Turk workers.

Fig. 13: (a) Our web-based annotation interface: annotators are requested to
describe a batch of 5 target objects. The viewpoint can be adjusted by the user
while the image on the right is chosen based on the camera view. (b) Screenshot
of the instructions for the Amazon Mechanical Turk workers before providing
descriptions for objects.

expanded language embedding E = e′ ∈ RM×256, then multiply the expanded
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(a) Verification interface used by trained student verifiers in order to ver-
ify each annotation done earlier by the annotation Amazon Mechanical Turk
workers.

(b) Verification instructions shown to the trained student verifiers.

Fig. 14: (a) Our web-based verification interface: verifiers are asked to select
objects that match the provided descriptions from the collection step. The am-
biguous descriptions, which can be used to match multiple objects in the scene,
are excluded from the final dataset. (b) Screenshot of the instructions that the
trained verifiers have to go through before starting the verification.

objectness mask D′objn ∈ RM×384 to filter out invalid object proposals. A multi-
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Fig. 15: The fusion module takes as input the aggregated point clusters, the
language embeddings, and the predicted objectness masks. It first concatenates
the point clusters with the expanded language features as the raw fused features,
of which the invalid ones will be masked out by the predicted objectness masks.
Finally, a multi-layer perceptron takes in the raw fused features and outputs the
final fused multimodal point features.

cab. bed chair sofa tabl. door wind. bkshf. pic. cntr. desk curt. fridg. showr. toil. sink bath. others mAP

[a] 4.77 85.51 64.42 72.74 30.39 11.17 6.62 17.32 0.35 2.16 35.79 7.80 16.69 16.96 76.74 16.77 69.57 5.68 30.08

[b] 9.93 88.43 67.12 69.44 39.76 12.20 5.11 20.27 0.02 9.27 41.52 16.10 30.79 5.77 77.32 14.93 61.02 7.82 32.05
[c] 7.01 88.01 67.13 73.69 32.87 12.36 9.01 17.61 0.31 9.27 44.78 16.25 20.29 3.55 76.50 12.33 72.24 8.08 31.74
[d] 11.16 87.20 70.58 75.17 36.76 11.47 6.72 13.40 1.09 7.08 48.38 11.64 19.96 4.29 85.29 18.20 72.83 10.74 32.89
[e] 7.22 87.72 67.24 72.42 33.66 11.55 8.80 20.16 0.14 9.82 46.07 15.91 22.48 2.67 77.82 13.17 68.14 8.01 31.83
[f] 12.74 83.91 69.94 72.17 36.11 13.38 8.42 17.52 1.99 6.58 46.65 17.65 24.04 31.30 75.99 10.31 61.92 9.78 33.36

[g] 10.53 84.00 63.48 75.27 30.62 7.78 8.45 18.08 1.18 5.47 39.27 10.14 18.83 8.93 69.99 9.36 75.59 7.97 30.27
[h] 11.11 85.63 67.81 71.04 34.96 9.54 6.22 16.37 1.67 6.28 36.07 12.93 17.40 7.46 68.74 11.77 65.69 7.71 29.91
[i] 10.72 86.71 69.86 72.77 32.60 16.33 8.16 19.64 1.14 7.08 42.21 14.31 22.99 6.92 86.09 8.06 65.51 8.79 32.22
[j] 9.76 87.93 65.93 72.59 31.60 9.48 9.05 23.86 0.37 6.69 42.22 13.86 21.42 16.35 80.41 12.30 57.80 7.40 31.61
[k] 8.92 88.20 70.37 73.93 32.89 10.54 9.21 14.05 0.48 6.91 44.74 6.54 17.76 27.64 81.18 12.86 62.40 9.06 32.09

Table 8: Object detection results measured using mean average precision
(mAP) at IOU of 0.5 for the 18 difference classes for [a] VoteNet [49],
[b] Ours (xyz), [c] Ours (xyz+rgb), [d] Ours (xyz+rgb+normals), [e] Ours
(xyz+multiview), [f] Ours (xyz+multiview+normals), [g] Ours (xyz+lobjcls),
[h] Ours (xyz+rgb+lobjcls), [i] Ours (xyz+rgb+normals+lobjcls), [j] Ours
(xyz+multiview+lobjcls), [k] Ours (xyz+multiview+normals+lobjcls). Training
with point normals (compare rows [d,f] to rows [c,e]) and multiview features
(compare rows [e,f] to rows [c,d]) clearly leads to better performance. As ex-
pected, models with the language-based object classifier (rows [g-k]) does not
results in better object detection compared to models without such a module
(rows [b-f]).

layer perceptron maps the filtered feature maps into the final fused features
C′ ∈ RM×128 as the output of the fusion module.
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C Additional quantitative analysis

C.1 Object Detection Results

In order to evaluate the 3D object detection, we conduct ablations of our archi-
tecture with different point cloud features as well as ablating the inclusion of
the language-based object classifier (see Tab. 8). We also compare against the
the object detection results of VoteNet [49]. We use the mean average precision
(mAP) thresholded by IoU value 0.5 as our evaluation metric and examine the
object detection results for different object categories. We exclude structural
objects such as “Floor” and “Wall”. We group all categories which are not in
the ScanNet benchmark categories [9] including “Otherfurnitures”, “Otherstruc-
ture”, and “Otherprop” into the “Others” category in our evaluation. Note that
the “Others” category in our evaluation includes additional types of objects,
such as “Pillow” and “Keyboard”, with respect to those in the “Otherfurniture”
category of the ScanNet benchmark.

While our 3D object detector is robust in identifying and separating out
instances of large objects that are typically placed away from walls (e.g., bed,
chair, sofa, toilet, bathtub), it is not as reliable at identifying instances of flat ob-
jects (e.g., picture, window, door) and objects with unclear instance boundaries
(e.g., cabinet, shelving) and smaller objects (e.g., sink, others). Overall, our best
3D object detector only achieves a mAP of 33%, suggesting that improving 3D
object detection, especially better instance detection for the “other” category, is
a key challenge in our task of localizing objects in 3D using natural language.

As shown in Tab. 8, including point normals as extra point features (rows
[d,f]) in training increases the detection results when compared to the models
trained without the normals (rows [c,e]). Also, training with extracted high-
level color features from the multi-view images (rows [e,f]) also produces better
detection results compared with the results from models trained with just the raw
RGB values (rows [c,d]). Note that networks equipped with the language-based
object classifier (rows [g-k]) fail to produce better detection results compared to
the ones without the extra language classifier module (rows [b-f]). This behavior
is expected as the description provides additional information which helps to
differentiate between objects of the same category; but it has no information for
helping with object detection.

C.2 Training and Evaluation Variance

Since there is a random sampling of 40,000 points from the original point cloud
in the VoteNet [49] detection backbone, we conduct experiments to measure the
training and evaluation variance across multiple runs. As shown in Tab. 9 and
Tab. 10, due to random sampling, there is a stddev of 0.30 across training runs
and a stddev of 0.37 across evaluation runs. For more reliable results, we average
the results of 5 evaluation runs with different random seeds when using VoteNet.
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unique multiple overall
random seed Acc@0.5 Acc@0.5 Acc@0.5

2 46.83 20.57 25.66
4 47.96 19.45 24.98
8 45.96 20.05 25.07

standard deviation 0.82 0.46 0.30
mean 46.92 20.02 25.23

Table 9: Variance between training runs. We train our model (xyz+rgb+lobjcls)
with three different random seeds (2, 4, 8) and evaluate the trained model using
a fixed random seed 42. We have a training stddev of 0.30.

unique multiple overall
random seed Acc@0.5 Acc@0.5 Acc@0.5

42 48.89 22.24 27.40
2 49.28 22.05 27.34
4 48.68 21.56 26.82
8 48.29 21.99 27.09
16 50.35 21.42 27.03
32 49.55 21.75 27.14
64 49.61 22.25 27.56
128 49.28 21.57 26.95
256 49.88 21.98 27.39
512 47.29 21.99 28.12

standard deviation 0.87 0.29 0.37
mean 49.11 21.88 27.28

Table 10: Variance between evaluation runs due to the random sampling of points
in the VoteNet [49]. We train our model (xyz+multiview+normal+lobjcls) with
the a fixed random seed of 42 and evaluate the trained model using 10 different
random seeds as shown in the first column. We have a evaluation stddev of 0.37.

C.3 Additional Ablation Study

In Tab. 11, we examine what happens when we feed different language inputs
into our pipeline.
Does our method really learn from the full descriptions? To evaluate
the impact of information from the full descriptions versus just the identification
of the type of object to locate, we compare using the full description as input
versus using the semantic label or the object name as the input. For example,
for a target object “trash can” with the description This is a short trash can. It
is in front of a taller trash can., we input “trash can” as the object name and
“others” as the semantic label (see Sec. A.1 for list of semantic classes). The
results in Tab. 11 show that using the full descriptions improves the localization
performance compared to using just the semantic labels as input. Comparing the
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unique multiple overall
Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

Ours (semantic labels) 61.60 39.04 28.26 18.98 34.72 21.88
Ours (object names) 70.53 44.69 32.34 20.33 39.75 25.05
Ours (first sentences) 73.52 46.60 33.71 21.20 41.44 26.12
Ours (whole descriptions) 76.33 53.51 32.73 21.11 41.19 27.40

Table 11: Ablation study with different input lengths. We measure the percent-
ages of predictions whose IoU with the ground truth boxes are greater than
0.25 and 0.5. Unique means that there is only a single object of its class in the
scene. Obviously, the richer information the descriptions contain, the better our
localization pipeline performs.

performance of using semantic labels and object names, we see that inputting
the semantic labels helps with the performance in the “unique” scenarios where
there is only one object from a certain category, but suffers in the “multiple”
scenarios where more information is needed to distinguish between objects that
are grouped into the same broad category (e.g., “trash can” and “laptop” would
both be categorized as “other”, and “armchair” would provide more information
than just the coarse semantic label “chair”).
Are the first sentences enough for the task? Since we deliberately collect
at least two sentences as descriptions for the objects to ensure the richness of
information, we also conduct experiments to show that the full description (with
potentially multiple sentences) result in better performance than using only the
first sentences. As Tab. 11 shows, the model trained on longer descriptions per-
forms better than the one trained just on the first sentences.

D Additional Qualitative Analysis

We present additional examples of localization results by our method and the
baselines for further qualitative analysis.
Qualitative results comparing VoteNet [49]+GRU and VoteNetBest
with out method We show more qualitative results in Fig. 16 to display the
difference in performance between these three methods. As shown in the first
column in Fig. 16, using a pretrained VoteNet [49] detection backbone provides
reasonable bounding box around objects, but still performs slightly worse than
our method where we train the detection backbone and localization module in
an end-to-end fashion (see the third column ”ours”).
More qualitative examples comparing OracleRefer and One-stage (with
2D to 3D backprojection) with our method To illustrate the difference in
performance between the methods, we provide more qualitative results. We split
the localization results into “unique” (Fig. 17) and “multiple” (Fig. 18 & Fig. 19)
subsets. As shown in Fig. 17, for the “unique” subset, our method is able to iden-
tify and localize the object. In contrast, the 2D method (One-Stage), is able to
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Fig. 16: Additional qualitative analysis comparing our method with
VoteNet [49]+GRU and VoteNetBest.

identify the rough location of the object, but the backprojected 3D bounding
box does not match the ground truth very well. For the “multiple” subset, there
are challenging cases where our method fails to localize the target object. Fig. 18
and 19 show that our method is able to localize objects correctly (Fig. 18 rows
1,5, Fig. 19 rows 1-3,5-6) even when there are other objects of the same category
in the scene. Our method is sometimes limited by the accuracy of the object
detector, which tends to produce inaccurate bounding boxes for small objects
such as pictures (Fig. 18 row 2). This indicates that the object detection can
still be improved. Our method also has trouble disambiguating between objects
based on spatial relations (Fig. 18 rows 3-4,6). For instance, for comparative
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Fig. 17: Additional qualitative analysis in the “unique” scenarios where there is
only one object from a certain category. Our method is capable of localizing the
target object in a 3D indoor scene with the help of the free-form description.

phrases (e.g., “leftmost” or “rightmost”) or counting (e.g., “the second one from
the left”), the model fails to pick out the correct object (Fig. 18 rows 4).
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Fig. 18: Additional qualitative analysis for the “multiple” subset where there
are multiple objects with the same category as the target objects. While our
methods can correctly localize the target object in some cases (rows 1,5), it
often fails due to the limited accuracy of the object detector (row 2) or difficulty
disambiguating between multiple instances (rows 3,4,6).
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Fig. 19: Additional qualitative analysis for the “multiple” subset where there
are multiple objects with the same category as the target objects. While our
methods can correctly localize the target object in some cases (rows 1-3,5-6), it
can fail due to the limited accuracy of the object detector and difficulty handling
spatial relations (rows 4).
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Scan2Cap: Context-aware Dense Captioning in RGB-D Scans
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Figure 1: We introduce the task of dense captioning in RGB-D scans with a model that can densely localize objects in a 3D
scene and describe them using natural language in a single forward pass.

Abstract

We introduce the task of dense captioning in 3D scans
from commodity RGB-D sensors. As input, we assume a
point cloud of a 3D scene; the expected output is the bound-
ing boxes along with the descriptions for the underlying
objects. To address the 3D object detection and descrip-
tion problems, we propose Scan2Cap, an end-to-end trained
method, to detect objects in the input scene and describe
them in natural language. We use an attention mechanism
that generates descriptive tokens while referring to the re-
lated components in the local context. To reflect object re-
lations (i.e. relative spatial relations) in the generated cap-
tions, we use a message passing graph module to facilitate
learning object relation features. Our method can effec-
tively localize and describe 3D objects in scenes from the
ScanRefer dataset, outperforming 2D baseline methods by a
significant margin (27.61% CiDEr@0.5IoU improvement).

1. Introduction

The intersection of visual scene understanding [45, 20]
and natural language processing [49, 13] is a rich and ac-
tive area of research. Specifically, there has been a lot of
work on image captioning [51, 27, 52, 33, 2] and the re-
lated task of dense captioning [27, 26, 53, 56, 28, 31]. In
dense captioning, individual objects are localized in an im-

age and each object is described using natural language. So
far, dense captioning work has operated purely on 2D visual
data, most commonly single-view images that are limited by
the field of view. Images are inherently viewpoint specific
and scale agnostic, and fail to capture the physical extent
of 3D objects (i.e. the actual size of the objects) and their
locations in the environment.

In this work, we introduce the new task of dense caption-
ing in 3D scenes. We aim to jointly localize and describe
each object in a 3D scene. We show that leveraging the 3D
information of an object such as actual object size or object
location results in more accurate descriptions.

Apart from the 2D constraints in images, even seminal
work on dense captioning suffers from aperture issues [56].
Object relations are often neglected while describing scene
objects, which makes the task more challenging. We ad-
dress this problem with a graph-based attentive captioning
architecture that jointly learns object features and object re-
lation features on the instance level, and generates descrip-
tive tokens. Specifically, our proposed method (referred to
as Scan2Cap) consists of two critical components: 1) Re-
lational Graph facilitates learning the object features and
object relation features using a message passing neural net-
work; 2) Context-aware Attention Captioning generates the
descriptive tokens while attending to the object and object
relation features. In summary, our contribution is fourfold:

• We introduce the 3D dense captioning task to densely



detect and describe 3D objects in RGB-D scans.
• We propose a novel message passing graph module

that facilitates learning of the 3D object features and
3D object relation features.

• We propose an end-to-end trained method that can take
3D object features and 3D object relation features into
account when describing the 3D object in a single for-
ward pass.

• We show that our method outperforms 2D-3D back-
projected results of 2D captioning baselines by a sig-
nificant margin (27.61%).

2. Related work
2.1. 3D Object Detection

There are many methods for 3D object detection on
3D RGB-D datasets [48, 24, 12, 5]. Methods utiliz-
ing 3D volumetric grids have achieved impressive perfor-
mance [21, 22, 30, 36, 15]. At the same time, methods oper-
ating on point clouds serve as an alternative and also achieve
impressive results. For instance, Qi et al. [41] use a Hough
voting scheme to aggregate points and generate object pro-
posals while using a PointNet++ [43] backbone. Follow-
ing this work, Qi et al. [42] recently proposed a pipeline to
jointly perform voting in both point clouds and associated
images. Our method builds on these works as we utilize the
same backbone for processing the input geometry; however,
we back-project multi-view image features to point clouds
to leverage the original RGB input, since appearance is crit-
ical for accurately describing the target objects in the scene.

2.2. Image Captioning

Image captioning has attracted a great deal of inter-
est [51, 52, 14, 27, 33, 2, 25, 46]. Attention based cap-
tioning over grid regions [52, 33] and over detected ob-
jects [2, 34] allows focusing on specific image regions while
captioning. One recent trend is the attempt to capture rela-
tionships between objects using attention and graph neural
networks [16, 55, 54] or transformers [10]. We build on
these ideas to propose a 3D captioning network with graphs
that capture object relations in 3D.

The dense captioning task introduced by Johnson et al.
[26] is closely related to our task. This task is a variant
of image captioning where captions are generated for all
detected objects. While achieving impressive results, this
method does not consider the context outside of the salient
image regions. To tackle this issue, Yang et al. [53] include
the global image feature as context to the captioning input.
Kim et al. [28] explicitly model the relations between de-
tected regions in the image. Due to the limited view of a
single image, prior work on 2D images could not capture
the large context available in 3D environments. In contrast,
we focus on decomposing the input 3D scene and capturing

the appearance and spatial information of the objects in the
3D environment.

2.3. 3D Vision and Language

While the joint field of vision and language has received
much attention in the image domain, in tasks such as im-
age captioning [51, 52, 14, 27, 33, 2, 25, 46], dense cap-
tioning [26, 53, 28], text-to-image generation [44, 47, 18],
visual grounding [23, 35, 57], vision and language in 3D is
still not well-explored. Chen et al. [8] introduces a dataset
which consists of descriptions for ShapeNet [6] objects, en-
abling text-to-shape generation and shape captioning. On
the scene level, Chen et al. [7] propose a dataset for localiz-
ing object in ScanNet [12] scenes using natural language
expressions. Concurrently, Achlioptas et al. [1] propose
another dataset for distinguishing fine-grained objects in
ScanNet scenes using natural language queries. This work
enables research on connecting natural language to 3D en-
vironments, and inspires our work to densely localize and
describe 3D objects with respect to the scene context.

3. Task

We introduce the task of dense captioning in 3D scenes.
The input for this task is a point cloud of a scene, consist-
ing of the object geometries as well as several additional
point features such as RGB values and normal vectors. The
expected output is the object bounding boxes for the under-
lying instances in the scene and their corresponding natural
language descriptions.

4. Method

We propose an end-to-end architecture on the input
point clouds to address the 3D dense description genera-
tion task. Our architecture consists of the following main
components: 1) detection backbone; 2) relational graph; 3)
context-aware attention captioning. As Fig. 2 shows, our
network takes a point cloud as input, and generates a set
of 3D object proposals using the detection module. A re-
lational graph module then enhances object features using
contextual cues and provides object relation features. Fi-
nally, a context-aware attention module generates descrip-
tions from the enhanced object and relation features.

4.1. Data Representation

As input to the detection module, we assume a point
cloud P of a scan from ScanNet consisting of the geom-
etry coordinates and additional point features capturing the
visual appearance and the height from the ground. To obtain
the extended visual point features, we follow Chen et al. [7]
and adapt the feature projection scheme of Dai and Nießner
[11] to back-project multi-view image features to the point



Figure 2: Scan2Cap takes as input a point cloud to generate the cluster features C for the proposal module, using a backbone
following PointNet++ [43] and a voting module similar to Qi et al. [41]. The proposal module predicts the object proposals
Dbbox as well as the objectness masks Dobjn, which are later used for filtering the cluster features as the valid features C′

. A
graph is then constructed using the object proposals and the valid cluster features. The relational graph module takes in the
graph and outputs the enhanced object features V and the relation features C′

. As the last step, the context-aware attention
captioning module, inspired by Anderson et al. [2], generates descriptive tokens for each object proposal using the enhanced
features and the relation features.

cloud as additional features. The image features are ex-
tracted using a pre-trained ENet [38]. Following Qi et al.
[41], we also append the height of the point from the ground
to the new point features. As a result, we represent the fi-
nal point cloud data as P = {(pi, fi)} ∈ RNP×135, where
pi ∈ R3, i = 1, ..., NP are the coordinates and fi ∈ R132

are the additional features.

4.2. Detection Backbone

As the first step in our network, we detect all probable
objects in the given point cloud with the back-projected
multi-view image features discussed in 4.1. To construct
our detection module, we adapt the PointNet++ [43] back-
bone and the voting module in VoteNet [41] to aggregate
all object candidates to individual clusters. The output from
the voting module is a set of point clusters C ∈ RM×128

representing all object proposals with enriched point fea-
tures, where M is the upper bound of the number of pro-
posals. Next, the proposal module takes in the point clus-
ters to predict the objectness mask Dobjn ∈ RM×1 and the
axis-aligned bounding boxes Dbbox ∈ RM×(6+18) for all
M proposals, where each Dibbox = (cx, cy, cz, rx, ry, rz, l)
consists of the box center c, the box lengths r and a vector
l ∈ R18 representing the semantic predictions.

4.3. Relational Graph

Describing the object in the scene often involves its ap-
pearance and spatial location with respect to nearby objects.
Therefore, we propose a relational graph module equipped
with a message passing network to enhance the object fea-
tures and extract the object relation features. We create
a graph G = (V, E) where we treat the object proposals
as nodes in the graph and relationship between objects as

(a) Relational graph module.

(b) Context-aware attention captioning module.

Figure 3: (a) Context enhancement module takes in the
scene graph G = (V, E) and produces the enhanced ob-
ject features Vτ and object relation features Eτ+1; (b) At
time step t, the context-aware captioning module takes in
the enhanced features vτk of the target object and generates
the next token yt with the help of attention mechanism on
the attention context features Vr.

edges. For the edges, we consider only the nearest K ob-
jects surrounding each object. We use standard neural mes-
sage passing [17] where the message passing at graph step
τ is defined as follows:

V → E : gτ+1
i,j = fτ ([gτi , g

τ
j − gτi ]) (1)



where gτi ∈ R128 and gτj ∈ R128 are the features of nodes
i and j at graph step τ . gτ+1

i,j ∈ R128 denotes the message
between nodes i and j at the next graph step τ+1. [·, ·] con-
catenates two vectors. fτ (·) is a learnable non-linear func-
tion, which is in practice set as an MLP. The aggregated
node features from messages after every message passing
step is defined as E → V : gτ+1

i =
∑K
k=1 g

τ
i,k. We take the

node features Vτ in the last graph step τ as the output en-
hanced object features. We append an additional message
passing layer after the last graph step and use the learned
message Eτ+1 as the output object relation features. An
MLP is attached to the output message passing layer to pre-
dict the angular deviations between two objects. We illus-
trate the relational graph module in Fig. 3a.

4.4. Context-aware Attention Captioning

Inspired by Anderson et al. [2], we design a context
aware attention captioning module which takes both the en-
hanced object features and object relation features and gen-
erates the caption one token at a time, as shown in Fig. 3b.
Fusion GRU. At time-step t of caption generation, we first
concatenate three vectors as the fused input feature u1t−1:
GRU hidden state from time-step t − 1 denoted as h2t−1 ∈
R512, enhanced object feature vτk ∈ R128 of the kth object
and GloVE [40] embedding of the token generated at t− 1
denoted as xt =Weyt−1 ∈ R300. The Fusion GRU handles
the fused input feature u1t−1 and delivers the hidden state h1t
to the attention module.
Attention module. Unlike the attention module in An-
derson et al. [2] which only considers object features, we
include both the enhanced object features Vτ = {vτi } ∈
RM×128 as well as the object relation features ek,j ∈ R128.
We add each object relation feature ek,j between the object
k and its neighbor j to the corresponding enhanced object
feature vj of the jth object as the final attention context
feature set Vr = {vr1, ..., vτk , ..., vrM}. Intuitively, the at-
tention module will attend to the neighbor objects and their
associated relations with the current object. We define the
intermediate attention distribution αt ∈ RM×128 over the
context features as:

αt = softmax((VrWv + 1hh
1T
t−1Wh)Wa)1a (2)

where Wa ∈ R128×1, Wv ∈ R128×128, Wh ∈ R512×128

are learnable parameters. 1h ∈ RM×1 and 1a ∈ R1×128

are identity matrices. Finally, the attention module outputs
the aggregated context vector v̂t =

∑M
i=1 Vri � αti to rep-

resent the attended object and inter-object relation.
Language GRU. We then concatenate the hidden state h1t−1

of the Fusion GRU in last time step and the aggregated con-
text vector v̂t, and process them with a MLP as the fused
feature u2t . The language GRU takes in the fused input u2t
and delivers the hidden state h2t to the output MLP to predict
token yt at the current time step t.

4.5. Training Objective

Object detection loss. We use the same detection loss Ldet
as introduced in Qi et al. [41] for object proposalsDbbox and
Dobjn: Ldet = Lvote-reg + 0.5Lobjn-cls + Lbox + 0.1Lsem-cls,
where Lvote-reg, Lobjn-cls, Lbox and Lsem-cls represent the vote
regression loss (defined in Qi et al. [41]), the objectness bi-
nary classification loss, box regression loss and the semantic
classification loss for the 18 ScanNet benchmark classes, re-
spectively. We ignore the bounding box orientations in our
task and simplify Lbox as Lbox = Lcenter-reg + 0.1Lsize-cls +
Lsize-reg, where Lcenter-reg, Lsize-cls and Lsize-reg are used for
regressing the box center, classifying the box size and re-
gressing the box size, respectively. We refer readers to Qi
et al. [41] for more details.
Relative orientation loss. To stabilize the learning process
of the relational graph module, we apply a relative orienta-
tion loss Lad on the message passing network as a proxy
loss. We discretize the output angular deviations ranges
from 0◦ to 180◦ into 6 classes, and use a cross entropy loss
as our classification loss. We construct the ground truth la-
bels using the transformation matrices of the aligned CAD
models in Scan2CAD [3], and mask out objects not pro-
vided in Scan2CAD in the loss function.
Description loss. The main objective loss constrains the de-
scription generation. We apply a conventional cross entropy
loss function Ldes on the generated token probabilities, as in
previous work [52, 51, 27].
Final loss. We combine all three loss terms in a linear man-
ner as our final loss function:

L = αLdet + βLad + γLdes (3)

where α, β and γ are the weights for the individual loss
terms. After fine-tuning on the validation split, we set those
weights to α = 10, β = 1, and γ = 0.1 in our experiments
to ensure the loss terms are roughly of the same magnitude.

4.6. Training and Inference

In our experiments, we randomly select 40,000 points
from ScanNet mesh vertices. During training, we set the
upper bound of the number of object proposals as M =
256. We only use the unmasked predictions corresponding
to the provided objects in Scan2CAD for minimizing the
relative orientation loss, as stated in 4.5. To optimize the
description loss, we select the generated description of the
object proposal with the largest IoU with the ground truth
bounding box. During inference, we apply a non-maximum
suppression module to suppress overlapping proposals.

4.7. Implementation Details

We implement our architecture using PyTorch [39] and
train end-to-end using ADAM [29] with a learning rate of



1e−3. We train the model for 90, 000 iterations until con-
vergence. To avoid overfitting, we set the weight decay fac-
tor to 1e−5 and apply data augmentation to our training
data. Following ScanRefer [7], the point cloud is rotated
by a random angle in [−5◦, 5◦] about all three axes and ran-
domly translated within 0.5 meters in all directions. Since
the ground alignment in ScanNet is imperfect, the rotation
is around all axes (not just up). We truncate descriptions
longer than 30 tokens and add SOS and EOS tokens to in-
dicate the start and end of the description.

5. Experiments

Dataset. We use the ScanRefer [7] dataset which con-
sists of 51,583 descriptions for 11,046 objects in 800 Scan-
Net [12] scenes. The descriptions contain information about
the appearance of the objects (e.g. “this is a black wooden
chair”), and the spatial relations between the annotated ob-
ject and nearby objects (e.g. “the chair is placed at the end
of the long dining table right before the TV on the wall”).

Train&val splits. Following the official ScanRefer [7]
benchmark split, we divide our data into train/val sets with
36,665 and 9,508 samples respectively, ensuring disjoint
scenes for each split. Results and analysis are conducted on
the val split, as the hidden test set is not officially available.

Metrics. To jointly measure the quality of the gener-
ated description and the detected bounding boxes, we eval-
uate the descriptions by combining standard image cap-
tioning metrics such as CiDEr [50] and BLEU [37], with
Intersection-over-Union (IoU) scores between predicted
bounding boxes and the target bounding boxes. We define
our combined metrics asm@kIoU = 1

N

∑N
i=0miui, where

ui ∈ {0, 1} is set to 1 if the IoU score for the ith box is
greater than k, otherwise 0. We use m to represent the cap-
tioning metrics CiDEr [50], BLEU-4 [37], METEOR [4]
and ROUGE [32], abbreviated as C, B-4, M, R, respectively.
N is the number of ground truth or detected object bounding
boxes. We use mean average precision (mAP) thresholded
by IoU as the object detection metric.

Skylines with ground truth input. To examine the up-
per limit of our proposed 3D dense captioning task, we use
the ground truth (GT) object bounding boxes for generating
object descriptions using our method and retrieval based ap-
proaches. We compare the performance of captioning in 3D
with existing 2D-based captioning methods. For our 2D-
based baselines, we generate descriptions for the 2D renders
of the reconstructed ScanNet [12] scenes using the recorded
viewpoints in ScanRefer [7].
Oracle2Cap3D We use ground truth 3D object bounding
box features instead of detection backbone predictions to
generate object descriptions. The relational graph and
context-aware attention captioning module learn and gen-

Figure 4: In 2D-3D Proj, we first generate a description
for each detected object in a rendered viewpoint. Then we
back-project the object mask to the 3D space to evaluate the
caption with our proposed caption evaluation metric.

erate corresponding captioning for each object. We use the
same hyper-parameters with the Scan2Cap experiment.
OracleRetr3D We use the ground truth 3D object bounding
box features in the val split to obtain the description for the
most similar object features in the train split.
Oracle2Cap2D We first concatenate the global image and
target object features and feed it to a caption generation
method similar to [51]. In addition to [51], we try a mem-
ory augmented meshed transformer [10]. Surprisingly, the
former performs better (see supplementary for details). We
suspect that this performance gap is due to noisy 2D input
and the size of our dataset, which does not allow for train-
ing complex methods (e.g. transformers) to their maximum
potential. The target object bounding boxes are extracted
using rendered ground truth instance masks and their fea-
tures are extracted using a pre-trained ResNet-101 [19].
OracleRetr2D Similar to OracleRetr3D, use ground truth
2D object bounding box features in the val split to retrieve
the description from the most similar train split object.

Baselines. We design experiments that leverage the de-
tected object information in the input for description gener-
ation. Additionally, we show how existing 2D-based cap-
tioning methods perform in our newly proposed task.
VoteNetRetr [41] Similar to OracleRetr3D, but we use the
features of the 3D bounding boxes detected using a pre-
trained VoteNet [41].
2D-3D Proj We first detect the object bounding boxes in
rendered images using a pre-trained Mask R-CNN [20]
with a ResNet-101 [19] backbone, then feed the 2D object
bounding box features to our description generation mod-
ule similar to Vinyals et al. [51]. We evaluate the generated
captions in 3D by back-projecting the 2D masks to 3D using
inverse camera extrinsics (see Fig. 4).
3D-2D Proj We first detect the object bounding boxes in
scans using a pre-trained VoteNet [41], then project the
bounding boxes to the rendered images. The 2D bounding
box features are fed to our captioning module which uses
the same decoding scheme as in Vinyals et al. [51].



Captioning Detection C@0.25IoU B-4@0.25IoU M@0.25IoU R@0.25IoU C@0.5IoU B-4@0.5IoU M@0.5IoU R@0.5IoU mAP@0.5IoU

2D-3D Proj. 2D Mask R-CNN 18.29 10.27 16.67 33.63 8.31 2.31 12.54 25.93 10.50
3D-2D Proj. 2D VoteNet 19.73 17.86 19.83 40.68 11.47 8.56 15.73 31.65 31.83

VoteNetRetr [41] 3D VoteNet 15.12 18.09 19.93 38.99 10.18 13.38 17.14 33.22 31.83
Ours 3D VoteNet 56.82 34.18 26.29 55.27 39.08 23.32 21.97 44.78 32.21

Table 1: Comparison of 3D dense captioning results obtained by Scan2Cap and other baseline methods. We average the
scores of the conventional captioning metrics, e.g. CiDEr [50], with the percentage of the predicted bounding boxes whose
IoU with the ground truth are greater than 0.25 and 0.5. Our method outperforms all baselines with a remarkable margin.

Figure 5: Qualitative results from skylines with GT input with inaccurate parts of the generated caption underscored. Cap-
tioning in 3D benefits from the richness of 3D context, while captioning with 2D information fails to capture the details of
the local physical environment. Best viewed in color.

Cap C@0.5IoU B-4@0.5IoU M@0.5IoU R@0.5IoU

OracleRetr2D 2D 20.51 20.17 23.76 50.98
Oracle2Cap2D 2D 58.44 37.05 28.59 61.35

OracleRetr3D 3D 33.03 23.36 25.80 52.99
Oracle2Cap3D 3D 67.95 41.49 29.23 63.66

Table 2: Comparison of 3D dense captioning results ob-
tained by our method and other baseline methods with GT
detections. We average the scores of the conventional cap-
tioning metrics with the percentage of the predicted bound-
ing boxes whose IoU with the ground truth are greater than
0.5. Our method with GT bounding boxes outperforms all
variants with a remarkable margin.

5.1. Quantitative Analysis

We compare our method with the baseline methods on
the official val split of ScanRefer [7]. As there is no di-
rect prior work on this newly proposed task, we divide de-
scription generation into: 1) generating the object bounding
boxes and descriptions in 2D input, and back-projecting the
bounding boxes to 3D using camera parameters; 2) directly
generating object bounding boxes with descriptions in 3D
space. As shown in Tab. 1, describing the detected objects
in 3D results in a big performance boost compared to the

Cap Acc (Category) Acc (Attribute) Acc (Relation)

Oracle2Cap2D 2D 69.00 67.42 37.00

Oracle2Cap3D 3D 85.15 (+16.15) 72.22 (+4.80) 76.24 (+39.24)
Ours 3D 84.16 (+15.16) 64.21 (-3.21) 69.00 (+32.00)

Table 3: Manual analysis of the generated captions obtained
by skyline methods with GT input and ours. We measure
the accuracy of three different aspects (object categories,
appearance attributes and spatial relations) in the generated
captions. Compared to captioning in 2D, captioning directly
in 3D better capture these aspects in descriptions, especially
for describing spatial relations in the local environment.

back-projected 2D approach (39.08% compared to 11.47%
on C@0.5IoU). When using ground truth, descriptions gen-
erated with 3D object bounding boxes (Oracle2Cap3D) ef-
fectively outperform their counterparts that use 2D object
bounding box information (Oracle2Cap2D), as shown in
Tab. 2. The performance gap between our method and Or-
acle2Cap3D indicates that the detection backbone can be
further improved as a potential future work.



Figure 6: Qualitative results from baseline methods and Scan2Cap with inaccurate parts of the generated caption underscored.
Scan2Cap produces good bounding boxes with descriptions for the target appearance and their relational interactions with
objects nearby. In contrast, the baselines suffers from poor bounding box predictions or limited view and produces less
informative captions. Best viewed in color.

Figure 7: Comparison of object detections of baseline methods and Scan2Cap. 2D-3D Proj. suffers from the detection
performance gap between image and 3D space. Scan2Cap produces better bounding boxes compared to 3D-2D Proj. due to
the end-to-end fine-tuning.

C@0.25IoU B-4@0.25IoU M@0.25IoU R@0.25IoU C@0.5IoU B-4@0.5IoU M@0.5IoU R@0.5IoU mAP@0.5IoU

Ours (fixed VoteNet) 56.20 35.14 26.14 55.71 33.87 20.11 20.48 42.33 31.83
Ours (end-to-end) 56.82 34.18 26.29 55.27 39.08 23.32 21.97 44.78 32.21

Table 4: Ablation study with a fixed pre-trained VoteNet [41] and an end-to-end fine-tuned VoteNet. We compute standard
captioning metrics with respect to the percentage of the predicted bounding box whose IoU with the ground truth are greater
than 0.25 and 0.5. Higher values are better.

5.2. Qualitative Analysis

We see from Fig. 5 that the captions retrieved by Ora-
cleRetr2D hallucinate objects that are not there, while Ora-
cle2Cap2D provides inaccurate captions that fail to capture
correct local context. In contrast, the captions from Ora-

cle2Cap3D are longer and capture relationships with the
surrounding objects, such as “above the white desk” and
“next to the window”. Fig. 6 show the qualitative results of
Oracle2Cap3D, 2D-3D Proj, 3D-2D Proj and our method
(Scan2Cap). Leveraging the end-to-end training, Scan2Cap



C@0.5IoU B-4@0.5IoU M@0.5IoU R@0.5IoU

VoteNet [41]+GRU [9] 34.31 21.42 20.13 41.33
VoteNet [41]+CAC 36.15 21.58 20.65 41.78
VoteNet [41]+RG+CAC 39.08 23.32 21.97 44.78

Table 5: Ablation study with different components in our
method: VoteNet [41] + GRU [9], which is similar to “show
and tell” [51]; VoteNet + Context-aware Attention Caption-
ing (CAC); VoteNet + Relational Graph (RG) + Context-
aware Attention Captioning (CAC), namely Scan2Cap. We
compute standard captioning metrics with respect to the
percentage of the predicted bounding boxes whose IoU with
the ground truth are greater than 0.5. The higher the better.
Clearly, our method with attention mechanism and graph
module is shown to be effective.

is able to predict better object bounding boxes compared
to the baseline methods (see Fig. 6 top row). Aside from
the improved quality of object bounding boxes, descriptions
generated by our method are richer when describing the re-
lations between objects (see second row of Fig. 6).

Provided with the ground truth object information, Or-
acle2Cap3D can include even more details in the descrip-
tions. However, there are mistakes with the local surround-
ings (see the sample in the right column in Fig. 6), indicat-
ing there is still room for improvement. In contrast, image-
based 2D-3D Proj. suffers from limitations of the 2D input
and fails to produce good bounding boxes with detailed de-
scriptions. Compared to our method, 3D-2D Proj. fails to
predict good bounding boxes because of the lack of a fine-
tuned detection backbone, as shown in Fig. 7.

5.3. Analysis and Ablations

Is it better to caption in 3D or 2D? One question we
want to study is whether it is better to caption in 3D or
2D. Therefore, we conduct a manual analysis on 100 ran-
domly selected descriptions generated by Oracle2Cap2D,
Oracle2Cap3D and our method. In this analysis, we manu-
ally check if those descriptions correctly capture three im-
portant aspects for indoor objects: object categories, ap-
pearance attributes and spatial relations. As demonstrated in
Tab. 3, directly captioning objects in 3D captures those as-
pects more accurately when comparing Oracle2Cap3D with
Oracle2Cap2D, especially for describing the spatial rela-
tions. However, the accuracy drop on object attributes from
Oracle2Cap2D to our method (-3.21%) shows the detection
backbone can still be improved.

Does context-aware attention captioning help? We
compare our model with the basic description generation
component (GRU) introduced in Vinyals et al. [51] and our
model with the context-aware attention captioning (CAC) as
discussed in Sec. 4.4. The model equipped with the context-
aware captioning module outperforms its counterpart with-
out attention mechanism on all metrics (see the first row vs.
the second row in Tab. 5).

Does the relational graph help? We evaluate the perfor-
mance of our method against our model without the pro-
posed relational graph (RG) and/or the context-aware at-
tention captioning (CAC). As shown in Tab. 5, our model
equipped with the context enhancement module (third row)
outperforms all other ablations.

Does end-to-end training help? We show in Tab. 4 the
effectiveness of fine-tuning the pretrained VoteNet end-to-
end with the description generation objective. We observe
that end-to-end training of the network allows for gradient
updates from our relative orientation loss and description
generation loss that compensate for detection errors. While
the fine-tuned VoteNet detection backbone delivers simi-
lar detection results, its performance on describing objects
outperforms its fixed ablation by a big margin on all more
demanding metrics (see columns for metrics m@0.5IoU in
Tab. 4).

6. Conclusion

In this work, we introduce the task of dense description
generation in RGB-D scans. We propose an end-to-end
trained architecture to localize the 3D objects in the input
point cloud and generate descriptions for them in natural
language. Thus, we address the 3D localization and de-
scription generation problems at the same time. We apply
an attention-based captioning pipeline equipped with a mes-
sage passing network to generate descriptive tokens while
referring to related components in the local context. Our
architecture effectively localizes and describes 3D objects,
outperforming 2D-based dense captioning methods on the
3D dense description generation task by a large margin.
Nevertheless, our method struggles to capture complex re-
lations like ordinal counting. For instance, our method only
predicts “the round chair next to another wooden chair”,
while the ground truth “the third round chair from the wall”
reveals more fine-grained spatial relations, indicating pos-
sibilities for improvement. Overall, we hope that our work
will enable future research in 3D vision and language.
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for 3D Dense Captioning and Visual Grounding

Dave Zhenyu Chen1 Qirui Wu2 Matthias Nießner1 Angel X. Chang2
1Technical University of Munich 2Simon Fraser University

https://daveredrum.github.io/D3Net/

Fig. 1: We introduce D3Net, an end-to-end neural speaker-listener architecture
that can detect, describe and discriminate. D3Net also enables semi-supervised
training on ScanNet data with partially annotated descriptions.

Abstract. Recent work on dense captioning and visual grounding in 3D
have achieved impressive results. Despite developments in both areas, the
limited amount of available 3D vision-language data causes overfitting
issues for 3D visual grounding and 3D dense captioning methods. Also,
how to discriminatively describe objects in complex 3D environments is
not fully studied yet. To address these challenges, we present D3Net, an
end-to-end neural speaker-listener architecture that can detect, describe
and discriminate. Our D3Net unifies dense captioning and visual ground-
ing in 3D in a self-critical manner. This self-critical property of D3Net
encourages generation of discriminative object captions and enables semi-
supervised training on scan data with partially annotated descriptions.
Our method outperforms SOTA methods in both tasks on the Scan-
Refer dataset, surpassing the SOTA 3D dense captioning method by a
significant margin.

1 Introduction

Recently, there has been increasing interest in bridging 3D visual scene under-
standing [41, 18, 19, 5, 11, 22, 46] and natural language processing [48, 13, 4, 34,
55]. The task of 3D visual grounding [6, 59, 60] localizes 3D objects described
by natural language queries. 3D dense captioning proposed by Chen et al. [7] is
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D3Net: the black couch is 
under a whiteboard . there is a 
door on its left .

Scan2Cap: this is a dark 
couch . it is to the right of a table 
.

Human: the couch is located in 
the corner of the room . it is to 
the right side of the door .

Detections Descriptions

Fig. 2: Prior work [7] struggle to produce discriminative object captions. Also,
captions often appear to be template-based. In contrast, our D3Net generates
discriminative object captions.

the reverse task where we generate descriptions for 3D objects in RGB-D scans.
Both tasks enable applications such as assistive robots and natural language
control in AR/VR systems.

However, existing work on 3D visual grounding [6, 1, 59, 23, 60] and dense
captioning [7, 58] treats the two problems as separate, with detect-then-dis-
criminate or detect-then-describe being the common strategies for tackling the
two tasks. Separating the two complementary tasks hinders holistic 3D scene
understanding where the ultimate goal is to create models that can infer: 1)
what are the objects; 2) how to describe each object; 3) what object is being
referred to through natural language. The disadvantages of having separated
strategies are twofold. First, the detect-then-describe strategy often struggles to
describe target objects in a discriminative way. In Fig. 2, the generated descrip-
tions from Scan2Cap [7] fail to uniquely describe the target objects, especially in
scenes with several similar objects. Second, existing 3D visual grounding meth-
ods [6, 60] in the detect-then-discriminate strategy suffer from severe overfitting
issue, partly due to the small amount of 3D vision-language data [6, 1] which is
limited compared to counterpart 2D datasets such as MSCOCO [32].

To address these issues, we propose an end-to-end self-critical solution, D3Net,
to enable discriminability in dense caption generation and utilize the generated
captions improve localization. Relevant work in image captioning [36, 33] tackles
similar issues where the generated captions are indiscriminative and repetitive by
explicitly reinforcing discriminative caption generation with an image retrieval
loss. Inspired by this scheme, we introduce a speaker-listener strategy, where the
captioning module “speaks” about the 3D objects, while the localization module
“listens” and finds the targets. Our proposed speaker-listener architecture can
detect, describe and discriminate, as illustrated in Fig. 1. The key idea is to
reinforce the speaker to generate discriminative descriptions so that the listener
can better localize the described targets given those descriptions.

This approach brings another benefit. Since the speaker-listener architecture
self-critically generates and discriminates descriptions, we can train on scenes
without any object descriptions. We see further improvements in 3D dense cap-
tioning and 3D visual grounding performance when using this additional data
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alongside annotated scenes. This can allow for semi-supervised training on RGB-
D scans beyond the ScanNet dataset. To summarize, our contributions are:
– We introduce a unified speaker-listener architecture to generate discrimi-

native object descriptions in RGB-D scans. Our architecture allows for a
semi-supervised training scheme that can alleviate data shortage in the 3D
vision-language field.

– We study how the different components impact performance and find that
having a strong detector is essential, and that by jointly optimizing the
detector, speaker, and listener we can improve detection as well as 3D dense
captioning and visual grounding.

– We show that our method outperforms the state-of-the-art for both 3D dense
captioning and 3D visual grounding method by a significant margin.

2 Related Work

Vision and language in 3D. Recently, there has been growing interest in
grounding language to 3D data [8, 2, 6, 1, 52, 44, 47]. Chen et al. [6] and Achliop-
tas et al. [1] introduce two complementary datasets consisting of descriptions of
real-world 3D objects from ScanNet [11] reconstructions, named ScanRefer and
ReferIt3D, respectively. ScanRefer proposes the joint task of detecting and lo-
calizing objects in a 3D scan based on a textual description, while ReferIt3D is
focused on distinguishing 3D objects from the same semantic class given ground-
truth bounding boxes. Yuan et al. [59] localize objects by decomposing input
queries into fine-grained aspects, and use PointGroup [25] as their visual back-
bone. However, the frozen detection backbone is not fine-tuned together with the
localization module. Zhao et al. [60] propose a transformer-based architecture
with a VoteNet [41] backbone to handle multimodal contexts during localiza-
tion. Despite the improved matching module, their work still suffers from poor
quality detections due to the weak 3D detector. We show that fine-tuning an
improved 3D detector is essential to getting good predictions and good local-
ization performance. Chen et al. [7] introduce the task of densely detecting and
captioning objects in RGB-D scans. Recently, Yuan et al. [58] aggregate the
2D features to point cloud to generate faithful object descriptions. Although
their methods can effectively detect objects and generate captions w.r.t. their
attributes, the quality of the bounding boxes and the discriminability of the cap-
tions are inadequate. Our method explicitly handles the discriminability of the
generated captions through a self-critical speaker-listener architecture, resulting
in the state-of-the-art performance in both 3D dense captioning and 3D visual
grounding tasks.
Generating captions in images. Image captioning has attracted a great deal
of interest [50, 53, 14, 28, 35, 3, 26, 43, 45]. Recent work [36, 33] suggest that
traditional encoder-decoder-based image captioning methods suffer from the dis-
criminability issues. Luo et al. [36] propose an additional image retrieval branch
to reinforce discriminative caption generation. Liu et al. [33] propose a rein-
forcement learning method to train not only on annotated web images, but also
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images without any paired captions. In contrast to generating captions for the
entire image, in the dense captioning task we densely generate captions for each
detected object in the input image [27, 54, 30]. Although such methods are
effective for generating captions in 2D images, directly applying such training
techniques on 3D dense captioning can lead to unsatisfactory results, since the
captions involve 3D geometric relationships. In contrast, we work directly on 3D
scene input dealing with object attributes as well as 3D spatial relationships.
Grounding referential expressions in images. There has been tremendous
progress in the task of grounding referential expressions in images, also known
as visual grounding [29, 40, 38, 21, 56, 20]. Given an image and a natural lan-
guage text query as input, the target object is either localized by a bounding
box [21, 56], or a segmentation mask [20]. These methods have achieved great
success in the image domain. However, they are not designed to deal with 3D
geometry inputs and handle complex 3D spatial relationships. Our proposed
method directly decomposes the 3D input data with a sparse convolutional de-
tection backbone, which produces accurate object proposals as well as semanti-
cally rich features.
Speaker-listener models for grounding. The speaker-listener model is a
popular architecture for pragmatic language understanding, where a line of re-
search explores how the context and communicative goals affect the linguis-
tics [10, 16]. Recent work use neural speaker-listener architectures to tackle re-
ferring expression generation [38, 57, 37], vision-language navigation [15], and
shape differentiation [2]. Mao et al. [38] construct a CNN-LSTM architecture
optimized by a softmax loss to directly discriminate the generated referential
expressions. There is no separate neural listener module compared with our
method. Luo and Shakhnarovich [37] and Yu et al. [57] introduce a LSTM-based
neural listener in the speaker-listener pipeline, but generating the referential ex-
pression is not directly supervised via the listener model, but rather trained via
a proxy objective. In contrast, our method directly optimizes the Transformer-
based neural listener for the visual grounding task by discriminating the gener-
ated object captions without any proxy training objective. Similarly, Achlioptas
et al. [2] includes a pretrained and frozen listener in the training objective, while
ours enables joint end-to-end optimization for both the speaker and listener via
policy gradient algorithm. We experimentally show our method to be effective
for semi-supervised learning in the two 3D vision-language tasks.

3 Method

D3Net has three components: a 3D object detector, the speaker (captioning)
module, and the listener (localization) module. Fig. 3 shows the overall archi-
tecture and training flow. The point clouds are fed into the detector to predict
object proposals. The speaker takes object proposals as input to produce cap-
tions. To increase caption discriminability, we match these captions with object
proposals via the listener. Caption quality is measured by the CIDEr [49] scores
and the listener loss, which are back-propagated via REINFORCE [51] as re-
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Fig. 3: D3Net architecture. We input point clouds into the detector to predict
object proposals. Then, those proposals are fed into the speaker to generate
captions that describes each object. To discriminate the object described by each
caption, the listener matches the generated captions with object proposals. The
captioning and localization results are back-propagated via REINFORCE [51]
as rewards through the dashed lines. D3Net also enables end-to-end training on
point clouds with no GT object descriptions (bottom blue block).

wards to the speaker. Our architecture can handle scenes without ground-truth
(GT) object descriptions by reinforcing the speaker with the listener loss only.

3.1 Modules

Detector. We use PointGroup [25] as our detector module. PointGroup is a
relatively simple model for 3D instance segmentation that achieves competitive
performance on the ScanNet benchmark. We use ENet to augment the point
clouds with multi-view features, following Dai and Nießner [12]. PointGroup
uses a U-Net architecture with a SparseConvNet backbone to encode point fea-
tures, cluster the points, and uses ScoreNet, another U-Net structure, to score
each cluster. We take the cluster features after ScoreNet as the encoded object
features. We refer readers to the original paper [25] for more details. The object
bounding boxes are determined by taking the minimum and maximum points in
the point clusters, and are produced as final outputs of our detector module.
Speaker. We base our speaker on the dense captioning method introduced by
Chen et al. [7]. Our speaker module has two submodules: 1) a relational graph
module, which is responsible for learning object-to-object spatial location re-
lationships; 2) a context-aware attention captioning module, which attentively
generates descriptive tokens with respect to the object attributes as well as the
object-to-object spatial relationships.
Listener. For the listener, we follow the architecture introduced by Chen et al.
[6] but replace the multi-modal fusion module with the transformer-based multi-
modal fusion module of Zhao et al. [60]. Our listener module has two submodules:
1) a language encoding module with a GRU cell; 2) a transformer-based multi-
modal fusion module similar to Zhao et al. [60], which attends to elements in the
input query descriptions and the detected object proposals. As in Chen et al.
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[6], we also incorporate a language object classifier to discriminate the semantics
of the target objects in the input query descriptions.

3.2 Training Objective

The three modules are designed to be trained in an end-to-end fashion (see
Figure 3). In this section, we describe the loss for each module, and how they
are combined for the overall loss.
Detection loss. We use the instance segmentation loss introduced in Point-
Group [25] to train the 3D backbone. The detection loss is composed of four
parts: Ldet = Lsem + Lo reg + Lo dir + Lc score. Lsem is a cross-entropy loss su-
pervising semantic label prediction for each point. Lo reg is a L1 regression loss
constraining the learned point offsets belonging to the same cluster. Lo dir con-
strains the direction of predicted offset vectors, defined as the means of mi-
nus cosine similarities. It helps regress precise offsets, particularly for boundary
points of large-size objects, since these points are relatively far from the instance
centroids. Lc score is another binary cross-entropy loss supervising the predicted
objectness scores.
Listener loss. The listener loss is composed of a localization loss Lloc and a
language-based object classification loss Llobjcls. To obtain the localization loss
Lloc, we first require a target bounding box. We use the detected bounding
box with the highest IoU with the GT bounding box as the target bounding
box. Then, a cross-entropy loss Lloc is applied to supervise the matching score
prediction. In the end-to-end training scenario, the detected bounding boxes
associated with the generated descriptions from the speaker are treated as the
target bounding boxes. The language object classification loss is a cross-entropy
loss Llobjcls to supervise the classification based on the input description. The
target classes are consistent with the ScanNet 18 classes, excluding structural
objects such as “floor” and “wall”.
Speaker loss using MLE training objective. The speaker loss is a standard
captioning loss from maximum likelihood estimation (MLE). During training,
provided with a pair of GT bounding box and the associated GT description,
we optimize the description associated with the predicted bounding box which
has the highest IoU score with the current GT bounding box. We first treat
the description generation task as a sequence prediction task, factorized as:
Lspk-XE(θ) = −∑T

t=1 logp(ĉt|ĉ1, ..., ˆct−1; I, θ), where ĉt denotes the generated
token at step t; I and θ represent the visual signal and model parameter, re-
spectively. The token ĉt is sampled from the probability distribution over the
pre-defined vocabulary. The generation process is performed by greedy decoding
or beam search in an autoregressive manner, and we use the argmax function to
sample each token.
Joint loss using REINFORCE training objective. We use REINFORCE
to train the detector-speaker-listener jointly. We first describe the enhanced
speaker-loss, Lspk-R that is trained using reinforcement learning to produce
discriminative captions. We then describe the overall loss used in end-to-end
training. Following prior work [36, 33, 42, 17, 57, 43], generating descriptions is
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treated as a reinforcement learning task. In the setting of reinforcement learn-
ing, the speaker module is treated as the “agent”, while the previously generated
words and the input visual signal I are the “environment”. At step t, generat-
ing word ĉt by the speaker module is deemed as the “action” taken with the
policy pθ, which is defined by the speaker module parameters θ. Specifically,
with the generated description Ĉ = {c1, ..., cT }, the objective is to maximize the
reward function R(Ĉ, I). We apply the “REINFORCE with baseline” algorithm
following Rennie et al. [43] to reduce the variance of this loss function, where a
baseline reward R(C∗, I) of the description C∗ independent of Ĉ is introduced.
We apply beam search to sample descriptions and choose the greedily decoded
descriptions as the baseline. The simplified policy gradient is:

Lspk-R(θ) ≈ −(R(Ĉ, I)−R(C∗, I))
T∑

t=1

logp(ĉt|I, θ) (1)

Rewards. As the word-level sampling through the argmax function is non-
differentiable, the subsequent listener loss cannot be directly back-propagated
through the speaker module. A workaround is to use the gumbel softmax re-
parametrization trick [24]. Following the training scheme of Liu et al. [33] and
Luo et al. [36], the listener loss can be inserted into the REINFORCE reward
function to increase the discriminability of generated referential descriptions.
Specifically, given the localization loss Lloc and the language object classification
loss Llobjcls, the reward function R(Ĉ) is the weighted sum of the CIDEr score
of the sampled description and the listener-related losses:

R(Ĉ, I) = RCIDEr(Ĉ, I)− α[Lloc(Ĉ) + βLlobjcls(Ĉ)] (2)

where α and β are the weights balancing the CIDEr reward and the listener
rewards. We empirically set them to 0.1 and 1 in our experiments, respectively.
To stabilize the training, the reward related to the baseline description R(C∗)
should be formulated analogously. Note that there should be no gradient calcu-
lation and back-propagation for the baseline C∗. For scenes with no GT descrip-
tions provided, the CIDEr reward is cancelled in the reward function, which in
this case becomes R(Ĉ, I) = −α[Lloc(Ĉ) + βLlobjcls(Ĉ)].
Relative orientation loss. Following Chen et al. [7], we adopt the relative
orientation loss on the message passing module as a proxy loss. The object-to-
object relative orientations ranging from 0◦ to 180◦ are discretized into 6 classes.
We apply a simple cross-entropy loss Lori to supervise the relative orientation
predictions.
Overall loss. We combine loss terms in our end-to-end joint training objective
as: L = Ldet + Lspk-R + 0.3Lori.

3.3 Training

We use a stage-wise training strategy for stable training. We first pretrain the
detector backbone on all training scans in ScanNet via the detector loss Ldet.
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We then train the dense captioning pipeline with the pretrained detector and a
newly initialized speaker end-to-end via the detector loss and the speaker MLE
loss Lspk-XE. After the speaker MLE loss converges, we train the visual grounding
pipeline with the fine-tuned frozen detector and the listener via the listener loss
Lloc. Finally, we fine-tune the entire speaker-listener architecture with the overall
loss L.

3.4 Inference

During inference, we use the detector and the speaker to do 3D dense caption-
ing and the listener to do visual grounding. The detector first produces object
proposals, and the speaker generates a description for each object proposal. We
take the minimum and maximum coordinates in the predicted object instance
masks to construct the bounding boxes. For the object proposals that are as-
signed to the same ground truth, we keep only the one with the highest IoU with
the GT bounding box. When evaluating the detector itself, the non-maximum
suppression is applied.

4 Experiments

4.1 Dataset

We use the ScanRefer [6] dataset consisting of around 51k descriptions for over
11k objects in 800 ScanNet [11] scans. The descriptions include information
about the appearance of the objects, as well as the object-to-object spatial rela-
tionships. We follow the official split from the ScanRefer benchmark for training
and validation. We report our visual grounding results on the validation split
and benchmark results on the hidden test set1. Our dense captioning results
are on the validation split due to the lack of the test grounding truth. We also
conduct experiments on the ReferIt3D dataset [1] (please see the supplemental).

4.2 Semi-supervised Training with Extra Data

As the scans in ScanRefer dataset are only a subset of scans in ScanNet, we
extend the training set by including all re-scans of the same scenes for semi-
supervised training. Unlike the scans in ScanRefer, these re-scans do not have
per object descriptions. We can control how much extra data to use by randomly
sampling (with replacement) from the set of re-scans. We experiment with aug-
menting our data with 0.1 to 1 times the amount of annotated data as extra
data. During training, we randomly select detected objects in the sampled extra
scans for subsequent dense captioning and visual grounding. For the complete
‘extra’ scenario, we use a comparable amount (1x) of extra data as the annotated
data in ScanRefer.

1 http://kaldir.vc.in.tum.de/scanrefer_benchmark
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Table 1: Quantitative results on 3D dense captioning and object detection. As
in Chen et al. [7], we average the conventional captioning evaluation metrics
with the percentage of the predicted bounding boxes whose IoU with the GTs
are higher than 0.5. Our speaker model outperforms the baseline Scan2Cap with-
out training via REINFORCE, while training with CIDEr reward further boosts
the dense captioning performance. We also showcase the effectiveness of train-
ing with additional scans with no description annotations. Our speaker-listener
architecture trained with 1x extra data achieves the best performance.

C@0.5IoU B-4@0.5IoU M@0.5IoU R@0.5IoU mAP@0.5

Scan2Cap [7] 39.08 23.32 21.97 44.78 32.21
X-Trans2Cap [58] 43.87 25.05 22.46 44.97 35.31

Ours (MLE) 46.07 30.29 24.35 51.67 50.93
Ours (CIDEr) 57.88 32.64 24.86 52.26 51.01
Ours (CIDEr+fixed loc.) 58.93 33.36 25.12 52.62 51.04
Ours (CIDEr+loc.) 61.30 34.50 25.25 52.80 52.07
Ours (CIDEr+loc.+lobjcls.) 61.50 35.05 25.48 53.31 52.58

Ours (w/ 0.1x extra data) 61.91 35.03 25.38 53.25 52.64
Ours (w/ 0.5x extra data) 62.36 35.54 25.43 53.67 53.17
Ours (w/ 1x extra data) 62.64 35.68 25.72 53.90 53.95

4.3 Implementation Details

We implement the PointGroup backbone using the Minkowski Engine [9] (see
supplement). For the backbone, we train using Adam [31] with a learning rate of
2e-3, on the ScanNet train split with batch size 4 for 140k iterations, until con-
vergence. For data augmentation, we follow Jiang et al. [25], randomly applying
jitter, mirroring about the YZ-plane, and rotation about the Z axis (up-axis) to
each point cloud scene. We then use the Adam optimizer with learning rate 1e-3
to train the detector and the listener on the ScanRefer dataset with batch size 4
for 60k iterations, until convergence. Each scan is paired with 8 descriptions (i.e.
4 scans and 32 descriptions per batch iteration). Then, we combine the trained
detector with the newly initialized speaker on the ScanRefer dataset for the 3D
dense captioning task, where the weights of the detector are frozen. We again
use Adam with learning rate 1e-3, with the training process converging within
14k iterations. All our experiments are conducted on a RTX 3090, and all neural
modules are implemented using PyTorch [39].

4.4 Quantitative Results

3D dense captioning and detection Tab. 1 compares our 3D dense cap-
tioning and object detection results against the baseline methods Scan2Cap [7]
and X-Trans2Cap [58]. Leveraging the improved PointGroup based detector,
our speaker model trained with the conventional MLE objective (Ours (MLE))
outperforms Scan2Cap and X-Trans2Cap by a large margin in all metrics. As
expected, training with the CIDEr reward (Ours (CIDEr)) significantly improves
the CIDEr score. We note that other captioning metrics are also improved, but
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Table 2: Quantitative results on 3D visual grounding. We adapt the evaluation
setting as in Chen et al. [6]. “Unique” means there is only one object belongs to
a specific class in the scene, while “multiple” represents the cases where more
than one object from a specific class can be found in the scene. Clearly, our base
visual grounding network outperforms all baselines even before being put into the
speaker-listener architecture. After the speaker-listener fine-tuning, our method
achieves the state-of-the-art performance on the ScanRefer validation set and
the public benchmark. Note that 3DVG-Trans+ is an unpublished extension of
3DVG-Trans [60] which appears only on the public benchmark.

Val Acc@0.5IoU Test Acc@0.5IoU

Unique Multiple Overall Unique Multiple Overall

ScanRefer [6] 53.51 21.11 27.40 43.53 20.97 26.03
TGNN [23] 56.80 23.18 29.70 58.90 25.30 32.80
InstanceRefer [59] 66.83 24.77 32.93 66.69 26.88 35.80
3DVG-Trans [60] 60.64 28.42 34.67 55.15 29.33 35.12
3DVG-Trans+ [60] - - - 57.87 31.02 37.04

Ours (w/o fine-tuning) 70.35 27.11 35.58 65.79 27.26 35.90
Ours 72.04 30.05 37.87 68.43 30.74 39.19

the detection mAP@0.5 remains similar. Training with object localization re-
ward (Ours (CIDEr+loc.)) improves both captioning and detection further due
to the improved discriminability during description generation. Note that if we
use a frozen pretrained listener (Ours (CIDEr+fixed loc.)), the improvement is
not as significant as when we allow the listener weights to be fine-tuned (Ours
(CIDEr+loc.)). Our full model with the full listener reward incorporates an
additional language object classification loss (Ours (CIDEr+loc.+lobjcls.)) and
further improves the performance for both tasks.

Does additional data help? As our method allow for training the listener with
scans without language data, we investigate the effectiveness of training with
additional ScanNet data that have not been annotated with descriptions. We
vary the amount of extra scan data (without descriptions) from 0.1x to 1x of
fully annotated data and train our full model with CIDEr and full listener reward
(loc.+lobjcls.). Our results (last three rows of Tab. 1), show that our semi-
supervised training strategy can leverage the extra data to improve both dense
captioning and object detection.
3D visual grounding Tab. 2 compares our results against prior 3D visual
grounding methods ScanRefer [6], TGNN [23], InstanceRefer [59] and 3DVG-
Transformer [60], and 3DVG-Trans+, an unpublished extension. Our method
trained only with the detection loss and the listener loss (“Ours w/o fine-
tuning”), i.e. without the speaker-listener setting, outperforms all the previous
methods in the “Unique” and “Overall” scenarios. We find the improved fusion
module together with the improved detector is sufficient to outperform 3DVG-
Trans. Due to the improved detector, our method can distinguish objects in the
“Unique” case, where the semantic labels play an important role. Meanwhile,
3DVG-Trans [60] still outperforms our base listener when discriminating objects
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Scan2Cap: this is a brown table . it is 
to the right of another whiteboard .

Ours: this is brown wooden table. it 
is under a black tv .

GT: it is a narrow wood console table 
. it sits under the tv .

Scan2Cap: this is a black lamp . it is 
on a dresser .

Ours: this is a black tv above the 
nightstand. it is next to the bed .

GT: this is a tv hanging the cabinets 
and the wall . it is above the bed .

Scan2Cap: this is a brown couch . it is 
to the right of the table .

Ours: this is a brown coffee table . it 
is in front of the couch .

GT: the brown ottoman is in front of a 
brown sofa . it has a black backpack .

Scan2Cap: this is a bathroom cabinet 
. it is to the right of the sink .

Ours: there is a tan bathroom vanity 
. it is to the right of the toilet .

GT: it is a long wooden cabinet . it is 
along the wall in the bathroom .

Scan2Cap: this is a black chair . it is 
facing a desk .

Ours: this is a white chair . it is 
between the bed and another chair  

GT: there is a chair to the right of a 
bed . it is to the left of another chair .

Scan2Cap: this is a brown chair . it is 
to the right of the room .

Ours: this is a brown armchair . it is 
behind the white chair facing a desk

GT: there is a chair to the right of a 
bed . it is to the left of another chair .

Scan2Cap: this is a black monitor . it 
is on a desk .

Ours: this is a monitor . it is on the 
right of the monitor near the window 

GT: the monitor is on the table. the 
monitor is the closest to the window 

Scan2Cap: this is a gray couch . it is 
facing a table .

Ours: this is a brown couch . it is to 
the left of the table against the wall .

GT: there is a brown couch . it is 
between the wall and the table .

Fig. 4: Qualitative results in 3D dense captioning task from Scan2Cap [7] and
our method. We underline the inaccurate words and mark the spatially dis-
criminative phrases in bold. Our method qualitatively outperforms Scan2Cap in
producing better object bounding boxes and more discriminative descriptions.

from the same class (“Multiple” case). Our end-to-end speaker-listener (last row)
outperforms all previous method including 3DVG-Trans.

4.5 Qualitative Analysis

3D dense captioning Fig. 4 compares our results with object captions from
Scan2Cap [7]. Descriptions generated by Scan2Cap cannot uniquely identify the
target object in the input scenes (see the yellow block on the bottom right). Also,
Scan2Cap produces inaccurate object bounding boxes, which affects the quality
of object captions (see the yellow block on the top left). Compared to captions
from Scan2Cap, our method produces more discriminative object captions that
specifies more spatial relations (see bolded phrases in the blue blocks).
3D visual grounding Fig. 5 compares our results with 3DVG-Transformer [60].
Though 3DVG-Transformer is able to pick the correct object, it suffers from poor
object detections and is constrained by the performance of the VoteNet-based
detection backbone (see the first column). Our method is capable of selecting
the queried objects while also predicting more accurate object bounding boxes.

4.6 Analysis and Ablation Studies

Does better detection backbone help? From Tab. 1, we see that using a
better detector can significant improve performance. We further examine the ef-
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Query: This is a black couch. 
It is located next to a tall 
shelf and there is a fan in 
front of it.

Query: A black couch in the 
corner of the room. There is 
an information board above 
it.

Query: This is a black chair. 
It is between the trash bin 
and the table.

Query: The nightstand is 
brown and is in the 
bedroom. It's at the end of 
the bed below the TV.

Query: It is a light brown 
table surrounded by four 
chairs. It is to the left in the 
room by the plant.
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Fig. 5: 3D visual grounding results using 3DVG-Transformer [60] and our
method. 3DVG-Transformer fails to accurately predict object bounding boxes,
while our method produces accurate bounding boxes and correctly distinguishes
target objects from distractors.

fect of using different detection backbones (VoteNet and PointGroup) compared
to GT bounding boxes in Tab. 3. For each detection backbone, we use four
variants of our method: the models trained without the joint speaker-listener
architecture, and the speaker-listener architecture trained with CIDEr reward,
listener reward and extra ScanNet data. The results with GT boxes show the ef-
fectiveness of our speaker-listener architecture, when detections are perfect. The
large improvement from VoteNet [41] to PointGroup [25] show the importance
of a better detection backbone. The gap between GT and VoteNet/PointGroup
shows there is room for further improvement.
Are the generated descriptions more discriminative? To check whether
the speaker-listener architecture generates more discriminative descriptions, we
conduct an automatic evaluation via a reverse task. In this task, we feed the
generated descriptions and GT bounding boxes into a pretrained neural listener
model similar to Zhao et al. [60]. The predicted visual grounding results are
evaluated in the same way as in our 3D visual grounding experiments. Higher
grounding accuracy indicates better discrimination, especially in the “Multiple”
case. Results (Tab. 4) show that our speaker-listener architecture generates more
discriminative descriptions compared to Scan2Cap [7]. The discrimination is fur-
ther improved when training with extra ScanNet data. To disentangle the affect
of imperfectly predicted bounding boxes, we also train and evaluate our method
with GT boxes (see last two rows in Tab. 4). We see that our semi-supervised
speaker-listener architecture generates more discriminative descriptions.
Does the listener help with captioning? The third to the sixth rows in
Tab. 1 measure the benefit of training the speaker together with the listener
(Ours (CIDEr+loc.) and Ours (CIDEr+loc.+lobjcls.)) rather than training the
speaker alone (Ours (CIDEr)). Training with the listener improves all captioning
metrics. Also, training jointly with an unfrozen listener (Ours (CIDEr+loc.)
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Table 3: Quantitative results on object detection, dense captioning and visual
grounding in RGB-D scans. We train our method using different detection back-
bones as well as the ground truth bounding boxes. Our method trained with
CIDEr and listener reward as well as the additional data outperforms the pre-
trained speaker and listener models.

Unique Multiple Overall
Method Detection mAP@0.5 C@0.5IoU B-4@0.5IoU M@0.5IoU R@0.5IoU Acc@0.5IoU Acc@0.5IoU Acc@0.5IoU

Ours (MLE) GT 100.00 71.41 42.95 29.67 64.93 88.45 36.46 46.03
Ours (CIDEr) GT 100.00 94.80 47.92 30.80 66.34 - - -
Ours (CIDEr+lis.) GT 100.00 95.62 47.65 30.93 66.31 89.76 36.85 47.14
Ours (CIDEr+lis.+extra) GT 100.00 96.31 48.20 30.80 66.10 89.86 40.66 48.17

Ours (MLE) VoteNet 32.21 39.08 23.32 21.97 44.78 56.41 21.11 27.95
Ours (CIDEr) VoteNet 37.66 46.88 25.96 22.10 44.69 - - -
Ours (CIDEr+lis.) VoteNet 38.03 47.32 24.76 21.66 43.62 57.90 20.73 28.03
Ours (CIDEr+lis.+extra) VoteNet 38.82 48.38 26.09 22.15 44.74 58.40 21.66 29.25

Ours (MLE) PointGroup 47.19 46.07 30.29 24.35 51.67 70.35 27.11 35.58
Ours (CIDEr) PointGroup 52.44 57.88 32.64 24.86 52.26 - - -
Ours (CIDEr+lis.) PointGroup 52.58 61.50 35.05 25.48 53.31 71.04 27.40 35.62
Ours (CIDEr+lis.+extra) PointGroup 53.95 62.64 35.68 25.72 53.90 72.04 30.05 37.87

Table 4: We automatically evaluate the discriminability of the generated object
descriptions. A pretrained neural listener similar to Zhao et al. [60] is fed with the
GT object features and the descriptions generated by Scan2Cap [7] as well as our
method. Higher grounding accuracy indicates better discriminability, especially
in the “multiple” case. To alleviate noisy detections, the evaluation results on
the descriptions generated from the GT object features are also presented. Our
method generates more discriminative descriptions compared to Scan2Cap.

Unique Multiple Overall
detection Acc@0.5IoU Acc@0.5IoU Acc@0.5IoU

Scan2Cap [7] VN [41] 80.52 29.95 39.08

Ours (w/ CIDEr & lis.) PG [25] 81.16 30.22 41.62
Ours (w/ CIDEr & lis. & extra) PG [25] 81.27 30.33 41.73

Ours (w/ CIDEr & lis.) GT 89.76 38.53 48.07
Ours (w/ CIDEr & lis. & extra) GT 90.29 40.66 49.71

leads to a better performance when compared with the variant with a pretrained
and frozen listener (Ours (CIDEr+fixed loc.), which is similar to Achlioptas et al.
[2]. Additionally, as the detector is not only fine-tuned with the speaker but also
with the listener, the additional supervision from the listener helps with the
detection performance as well.

To analyze the quality of the generated object captions, we asked 5 students
to perform a fine-grained manual analysis of the captions. Each student was
presented with a batch of 100 randomly selected object captions with associated
objects highlighted in the 3D scene. The student are then asked to indicate if the
respective aspects were included and correctly described. The manual analysis
results in Tab. 5 shows that our method generates more accurate descriptions
compared to Scan2Cap. In particular, training with the listener and extra Scan-
Net data produces more accurate spatial relations in the descriptions. The results
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Table 5: Manual analysis of captions generated by Scan2Cap [7] and variants of
our method. We measure accuracy in three different aspects: object categories,
appearance attributes and spatial relations. Our method generates more accurate
descriptions in all aspects, especially for describing spatial relations.

Acc (Category) Acc (Attribute) Acc (Relation)

Scan2Cap [7] 84.10 64.21 69.00

Ours (MLE) 88.00 (+3.84) 74.73 (+10.53) 69.00 (+0.00)
Ours (CIDEr) 88.89 (+4.73) 75.00 (+10.79) 68.00 (-1.00)
Ours (CIDEr+lis.) 90.91 (+6.75) 77.38 (+13.17) 75.00 (+6.00)
Ours (CIDEr+lis.+extra) 92.93 (+8.77) 80.95 (+16.74) 78.57 (+9.57)

of fine-grained manual analysis complements the automatic captioning evalua-
tion metric. While metrics such as CIDEr captures the overall similarity of the
generated sentences against the references, the accuracies in Tab. 5 measures the
correctness of the decomposed visual attributes.
Does the speaker help with grounding? Tab. 2 compares grounding re-
sults between a pretrained listener (Ours w/o fine-tuning) and a fine-tuned
speaker-listener model (Ours). Although the grounding performance drops in
the “Unique” subset, the improvements in “Multiple” suggests better discrim-
inability in tougher and ambiguous scenarios.

5 Conclusion

We present D3Net, an end-to-end speaker-listener architecture that can detect,
describe and discriminate. Specifically, the speaker iteratively generates descrip-
tive tokens given the object proposals detected by the detector, while the listener
discriminates the object proposals in the scene with the generated captions. The
self-discriminative property of D3Net also enables semi-supervised training on
ScanNet data without the annotated descriptions. Our method outperforms the
previous SOTA methods in both tasks on ScanRefer, surpassing the previous
SOTA 3D dense captioning method by a significant margin. Our architecture
can serve as an initial step towards leveraging unannotated 3D data for lan-
guage and 3D vision. Overall, we hope that our work will encourage more future
research in 3D vision and language.
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4.4 Ablation study with a fixed pre-trained VoteNet [24] and an end-to-end
fine-tuned VoteNet. We compute standard captioning metrics with re-
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5.4 Qualitative results in 3D dense captioning task from Scan2Cap [15] and
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