Chair of Renewable and Sustainable Energy Systems TUM School of Engineering and Design Technical University of Munich

Sustainable and profitable energy system development in Bosnia and Herzegovina

Anđelka Kerekeš¹, Vedran Perić¹, Elvisa Bećirović², Thomas Hamacher¹

¹Chair of Renewable and Sustainable Energy Systems, Technical University of Munich, Germany ²Public power utility Elektroprivreda BiH, Sarajevo, Bosnia and Herzegovina

∣ Background

- Energy sector of Bosnia and Herzegovina (BiH) heavily relies on coal as a primary energy source [1]. Currently, about two third of the country's electrical energy is generated in coal power plants, while the remainder is coming from hydropower, and marginally wind and solar generation units [2].
- In contrast to most EU countries, governments across southeast Europe plan to build or

Study Objective

 The goal of this work is to investigate the cost-optimal solution for Bosnian electrical energy system development under different frameworks, to deduct which trends support a more sustainable energy sector as well as to provide a basis for deeper technical analysis of chances and constrains for integration of renewable energies in Bosnian system planning.

renew lignite power plants during the next few years [3,4].

Methodology and Assumptions

GoalCost optimal electrical energy system under
different frameworks

Scope

 Geographic Bosnia and Herzegovina as an isolated country. Two regions based on geo-political entities distiguished.

• Time 2030

Model

- Software urbs [5]
- Method Linear optimisation for extension and operational planning of energy systems
- Time resolution
 Hourly profiles for electricity demand and capacity factors of PV, wind and hydro power plants.

Figure 1: Installed generating capacities in 2030

Sensitivity Analysis

Scenarios considering CO2 limitation

Scenario	Parameter	Value	Unit
CO2 price high	CO2 costs from 2026	300	€
CO2 price low	CO2 costs from 2026	67	€
Coal price high	Coal price	30	€
Coal price low	Coal price	7	€
PV, Wind price	PV investment cost	903	€/kW
125%	Wind investment cost	1305	
PV, Wind, Hydro	PV investment cost	926	€/kW
2020 prices [13]	Wind investment cost	1506	

Scenarios without considering CO2 limitation

Scenario	Parameter	Value	Unit
Baseline without	CO2 limit	inf	t/a
CO2 limit *			
PV price 150%	PV investment cost	1083	€/kWh
PV price 150%,	PV investment cost	1083	€/kWh
CO2 price low	CO2 costs from 2026	67	€/t
PV price 150%,	PV investment cost	1083	€/kWh
CO2 price low,	CO2 costs from 2026	67	€/t
PV & Wind limit	PV potential limit	993	MW
[14]	Wind potential limit	5,861	MW

Assumptions Baseline:

Parameter	Subcategory	Value	Unit
Power plant	Gas	815	€/kWh
investment cost	PV	722	
[6,7,8,9]	Wind	1044	
	Lignite	1733	
	Biomass	1950	
	Geothermal	2072	
	Hydro	2718	
Power plant	Gas	55	%
efficiency	Lignite old	30	
	Lignite new	40	
	Biomass	41	
Energy carrier	Gas	340	€/1000m ³
prices	Coal	15	€/t
(without CO2)	Biomass	5	€/MWh
based on			
[6,7,10]			
CO2	Costs till 2026	0	€/t
	Costs from 2026	100	€/t
	Limitation per year	4.1	Mil. t
	based on [11]		
Renewables:	PV	1535	h/a
full load hours	Wind	1660	
per year [12,2]	Hydro	2300	

2020 prices [13]Wind investment cost1506Hydro investment cost2078

Figure 3: New installed capacities in scenarios, compared to baseline

* Base for all scenarios in this group

Figure 4: New installed capacities in scenarios without CO2 emission restriction, compared to baseline

Renewables: capacity limitation Energy storage investment	PV [12] Wind [12] Hydro Batteries Batteries	54,0 32,4 4,6 146,000 168,000	GW €/MWh €/MW	3000 2000 PV, Wind 125% 1000 Biomass Gas Hydro Lignite PV Wind plant plant	0 Biomass Gas Hydro Lignite Lignite PV Wind plant plant plan
Demand	Electricity	15.2	TWh	Figure 5: Electricity production in scenarios, compared to baseline	Figure 6: Electricity production in scenarios without CO2 emission restriction, compared to baseline
 References [1] EURACOAL, "Coal indust https://euracoal.eu/info/co [2] BiH State electricity regulatory commission in [3] NOS BiH, "Indikativni plan www.nosbih.ba/files/2021 [4] Republic of Serbia Ministr the Republic of Serbia from 	try across Europe," EURACOAI bal-industry-across-europe/ atory commission, "Report on a 2020", Tuzla, Dec. 2020. In razvoja proizvodnje 2022-203 /04/20210402-lat-Indikativni-pla ry of construction, transport and m 2021 to 2035,"Sep. 2021.	L, Bruxelles, Feb. activities of the sta 1," Apr. 2021. [On an-razvoja-proizvo d infrastructure, "D	2020. [Online.] te electricity lline]. https:// odnje-2022-2031.pdf oraft Spatial Plan of	 [5] J. Dorfner, K. Schönleber, M. Dorfner, S. Candas, L. Odersky, T. Zipperle et all, <i>urbs</i>: tum-ens 2019. [Online]. https://doi.org/10.5281/zenodo.3265960 [6] J. Gawlick, T. Hamacher, "Impact of coupling the electricity and hydrogen sector in a zero-emission European energy system in 2050", Submitted in Energy Policy, 2022 [7] F. Ausfelder, H. Dura, "3. Roadmap des Kopernikus-Projektes P2X Phase II: Optionen für ein nachhaltiges Energiesystem mit Power-To-X Technologien," Frankfurt am Main, August 2021. [8] statista, "Forecast capital expenditure of a conventional natural gas combined-cycle power plain the United States from 2022 to 2050", 2022 [9] "Sector Projects" in Energy, Sarajevo business forum '12, 201. [Online]. 	 https://www.academia.edu/6827062/ENERGY_SECTOR_PROJECTS [10] Agora Energiewende, "Modernising the European lignite triangle: Towards a safe, cost- effective and sustainable energy transition," Agora Energiewende, Sep. 2020. [11] UNFCCC, Ed., Nationally determined contribution of Bosnia and Herzegovina (NDC): For the period 2020-2030, 2021. [12] H. Houssame, K. Siala, P. Buchenberg, T. Addanki, L. Odersky, and S. Candas, <i>pyGRETA</i>: ant tum-ens, 2022. [Online]. https://doi.org/10.5281/zenodo.6472409 [13] IRENA, "Renewable power generation costs in 2020", 2021 [14] IRENA, "Cost-competitive renewable power generation: Potential in South East Europe ", 2017

Technical University of Munich TUM School of Engineering and Design Chair of Renewable and Sustainable Energy Systems