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Physics Beyond the Standard Model at all Scales

Physik jenseits des Standardmodells bei allen Skalen

Tobias Theil

Abstract

The observation of phenomena not explainable by the Standard Model calls for new theories,
extending our current understanding of Nature. Well motivated extensions populate vast energy
ranges. In this thesis, we explore experiments at three benchmark scales and their potential to
find or at least constrain new physics: In the first three parts we discuss the effects of physics
beyond the Standard model at the LHC and future colliders, its contributions to the lepton and
neutron electric dipole moments and finally potential deviations from Newton’s law. In the last
part, we present a method to efficiently calculate infrared divergences in high-loop amplitudes,
which is useful for precision calculations for, among others, the experiments covered in this
thesis.

Zusammenfassung

Die Beobachtung von Phänomenen, die nicht durch das bisherige Standardmodell erklärbar
sind, verlangt nach neuen Theorien, die unser bisheriges Verständnis erweitern. Gut motivierte
Erweiterungen des Standardmodells sagen neue Teilchen bei sämtlichen Energieskalen voraus.
In dieser Dissertation untersuchen wir verschiedene Experimente an drei Benchmarkpunkten
und ihr Potenzial, neue Physik zu entdecken oder zumindest einzuschränken: In den ersten
drei Teilen analysieren wir die Effekte von neuer Physik am LHC und zukünftigen Beschleu-
nigern, ihre Beiträge zu den elektrischen Dipolmomenten der Leptonen und des Neutrons und
schließlich mögliche Abweichungen von Newtons Gravitationsgesetz. Im letzten Teil präsentieren
wir eine Methode, mit der infrarote Divergenzen in Schleifendiagrammen effizient berechnet wer-
den können, was von hohem Nutzen für Präzisionsrechnungen für die Experimente ist, die in
dieser Dissertation betrachtet werden.

1



2



Contents

Introduction 7

I Four-Top Production as a High-Energy Probe of New Physics 11

1 Motivation and Introduction 13

2 Composite Higgs and Partial Compositeness 15

2.1 The Hierarchy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Composite Higgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 The Composite Higgs Framework . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Partial compositeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Power Counting and Effective Operators . . . . . . . . . . . . . . . . . . . . . . . 21

3 Composite Top Quarks at Colliders 23

3.1 Effective Operators Probing Composite Top Quarks . . . . . . . . . . . . . . . . 24

3.2 Current Status and BSM Interpretation of Multilepton Excesses . . . . . . . . . 26

3.3 Future proton-proton colliders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Same-sign dileptons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Trileptons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.3 Same-sign dileptons and trileptons combination and discussion . . . . . . 39

3.3.4 Fully hadronic final state . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Future electron-positron colliders . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Conclusions 47

Appendices Part I 49

I.A Running Induced by Four-Fermion Operators . . . . . . . . . . . . . . . . . . . . 49

I.A.1 Loops with external tR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

I.A.2 Loops with external tL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

II Electric Dipole Moments as Low-Energy Probes of New Physics 53

5 Motivation and Introduction 55

6 Electric Dipole Moments in the SM and Beyond 59

6.1 Within in the SM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Beyond the SM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3



Contents

6.3 Dipole moments of non-elementary particles: neutron EDM . . . . . . . . . . . . 63

7 Renormalization and Operator Mixing 67

7.1 Coupling renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2 Selection Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2.1 Helicity Selection Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2.2 Angular Momentum Selection Rules . . . . . . . . . . . . . . . . . . . . . 72

8 Electric Dipole Moments at the 1-Loop Order 75

8.1 Transition from the gauge to the mass basis . . . . . . . . . . . . . . . . . . . . . 75

8.2 Scheme definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.3 Gauge invariance and redundant operators . . . . . . . . . . . . . . . . . . . . . . 79

8.3.1 Gauge invariance and BFM . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.3.2 Redundant operators and choice of basis . . . . . . . . . . . . . . . . . . . 79

8.3.3 Contributions related by gauge invariance . . . . . . . . . . . . . . . . . . 80

8.4 Non-rational functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.5 Results and bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.5.1 Lepton EDMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.5.2 Neutron EDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9 Conclusions 91

Appendices Part II 93

II.A Analytic expressions of various EDMs . . . . . . . . . . . . . . . . . . . . . . . . 93

II.A.1 Universal contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

II.A.2 Lepton EDMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

II.A.3 Quark EDMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

II.A.4 Quark cEDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

II.A.5 Gluon cEDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

II.A.6 O(S1/8, RR)

ud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

II.A.7 O(S1/8, RR)

duud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

II.A.8 OHud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

II.B Bounds on Wilson coefficients and UV scale Λ . . . . . . . . . . . . . . . . . . . . 112

II.B.1 Electron EDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

II.B.2 Neutron EDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

III Torsion Balance as a Classical Probe of New Physics 119

10 Introduction and Motivation 121

11 Spinor Helicity Variables 123

11.1 Massless Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

11.2 Massive Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

11.2.1 Massive Spinor Helicity Variables . . . . . . . . . . . . . . . . . . . . . . . 126

11.2.2 High-Energy Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4



Contents

12 Graviton Scattering and Higher Spins 131

12.1 Gravity as an EFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

12.2 Gravity EFT from Higher Spins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

12.3 Higher Spins in the High-Energy Limit . . . . . . . . . . . . . . . . . . . . . . . . 139

13 Testing Higher Spins with Torsion Balance 143

13.1 Interaction potential from Higher Spins . . . . . . . . . . . . . . . . . . . . . . . 143

13.2 The Torsion Balance Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

14 Conclusions 151

Appendices Part III 153

III.ACalculation of Massive Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . 153

III.A.1 All-massive Amplitude with Two Scalars . . . . . . . . . . . . . . . . . . . 153

III.A.2 Two-massless One-massive Amplitude with Two Gravitons . . . . . . . . 156

IV IR divergences from the Renormalization of the Energy-Momentum
Tensor 159

15 Motivation and Introduction 161

16 Renormalization of Green’s Functions 163

17 Amplitudes and Unitarity 167

17.1 Tree-Level Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

17.2 Renormalization from the Optical Theorem . . . . . . . . . . . . . . . . . . . . . 169

18 Infrared Divergences from Real Radiation 175

19 (Non-)Renormalization of Conserved Currents 179

20 Infrared Divergences in a Yukawa Theory 183

20.1 Scalar Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

20.1.1 On-shell Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

20.1.2 Feynman diagrammatic approach . . . . . . . . . . . . . . . . . . . . . . . 189

20.1.3 Cancellation of Real Radiation . . . . . . . . . . . . . . . . . . . . . . . . 192

20.2 Fermion Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

20.2.1 Using the energy-momentum tensor . . . . . . . . . . . . . . . . . . . . . 194

20.2.2 Using the charge current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

21 Infrared Divergences in an SM Toy Model 199

21.1 Two-loop Energy-Momentum Tensor . . . . . . . . . . . . . . . . . . . . . . . . . 201

21.1.1 Gluon External States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

21.1.2 W External States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

21.1.3 B External States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

21.1.4 Left-handed Fermion External States . . . . . . . . . . . . . . . . . . . . . 208

21.1.5 Right-handed Fermion External States . . . . . . . . . . . . . . . . . . . . 210

21.1.6 Scalar External State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

21.2 UV Renormalization of the U(1) Current . . . . . . . . . . . . . . . . . . . . . . 214

5



Contents

22 Conclusions 219

Appendices Part IV 221
IV.AAll Order Form Factor for the SM Toy Model . . . . . . . . . . . . . . . . . . . . 221
IV.B Loop Integral Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
IV.CDerivations of Important Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . 223

IV.C.1 Imaginary Part of Logarithms and their Derivatives . . . . . . . . . . . . 223
IV.C.2 Loop Parameterization and Phase Space Integrals . . . . . . . . . . . . . 224

IV.DProjection Procedure for Tµν . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

V Conclusions 229

Bibliography 239

6



Introduction

The advent of the Standard Model of Particle Physics marks a major milestone in the evolution
of modern particle physics. With a rather comprehensible particle content, the accuracy with
which it can be used to describe the matter around us and its interactions through all but one
of the fundamental forces is astounding. However, it can not explain all observations and this is
already a sign of the fact that the Standard Model cannot be the final step in the pursuit of a
theory capable of explaining all physical phenomena measurable. Finding this extension of the
Standard Model suitable for this task is now the main challenge of particle physics.

In fact, despite the number of predictions of the Standard Model that have been confirmed
experimentally — like the measurement of the magnetic dipole moment of the electron as the
most accurate verification of such a prediction —, there is a seemingly equal number of problems
left unsolved. One main class of these problems contains questions about the large separation
between observed scales and the scale of gravity, also known as Hierarchy problems. The two
most commonly known members are concerned with the mass of the Higgs boson and the non-
zero Cosmological Constant. Neither of these quantities are protected by symmetries, contrary
to, e.g., the mass of chiral fermions or the gauge bosons, such that quantum corrections should
drive them to be as large as the cut-off of the theory. But this is not what is observed in exper-
iments, and neither has a natural mechanism that protects the Higgs mass or the Cosmological
Constant been found so far.

While plenty of proposed solutions for the Hierarchy problems, particularly considering the
light Higgs mass, require new degrees of freedom with masses well beyond the weak scale, as
in composite Higgs or supersymmetric models, there are further hints for physics beyond the
Standard Model at scales below the weak scale. For instance, the Standard Model does not allow
for an explanation for why the sector of strong interactions does not violate the combination of
charge and parity symmetry, even an operator violating this symmetry can easily be included
in the Lagrangian of the Standard Model. To answer this question, it was proposed that the
coefficient of this symmetry violating operator is promoted to a dynamical field, the axion, [1–4]
whose value dynamically relaxes to zero. Further, it is an irrefutable fact that the visible matter
constitutes only a small fraction to the total matter in the universe. The majority is made up
from yet unknown dark matter for which no viable candidate exists in the current version of the
Standard Model and while theories of dark matter cover an immense mass range, there is also
a significant amount that populates masses of around or below the weak scale.

All of this tells us that i) there is a lot of new physics left to discover and ii) new physics
does not necessarily have to lie at scales beyond the reach of current experiments, but it could
as well be hidden at much lower scales. We use this second insight as the guiding principle of
this thesis and investigate how experiments at vastly different energy scales, both current and
future ones, can be used to probe, find and at least constrain models of physics beyond the
Standard Model: In Part I we explore the potential of the LHC and future colliders to constrain
composite Higgs (CH) models through a potentially composite top quark as a representative for
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a high-energy search. Next, we significantly reduce the energy in Part II down to the mass of the
electron or the neutron, when we investigate the 1-loop effects of higher dimensional operators
on their respective electric dipole moments. Even though, these scales are already considerably
lower than the ones considered in I, reduce the energy even further, down to the classical, non-
relativistic torsion balance experiments in Part III, where we try to probe the contributions of
massive higher-spin degrees of freedom to the gravitational potential between two test masses.
Finally, in Part IV we change gears and discuss how the energy-momentum tensor can be used
as a tool to effectively extract infrared divergences at a priori arbitrarily high orders in massless
theories. While this last part does not seem to fit the narrative of testing new physics at all
scales, it is nonetheless highly important as it allows for higher-order and therefore more precise
calculations used for all of the above experiments. Finally, we conclude in Part V and summarize
our main results. We also give an outlook on still ongoing work, open questions and possible
future directions.

We start Part I by briefly introducing the Hierarchy problem as well as potential solution
in the form of framework of CH models in chapter 2. In this framework, the Higgs arises as a
pseudo-Nambu Goldstone Boson (pNGB) associated to the breaking of some large approximate
symmetry G → H. This means that the Higgs has to obey an approximate shift symmetry,
which in turn protects its mass from large quantum corrections and therefore it can be naturally
lighter than the cut-off of the theory. Then, once the Higgs acquires a vacuum expectation
value (VEV), the known breaking of the electroweak (EW) symmetry occurs, giving mass to the
EW gauge bosons. However, the question on how fermions acquire mass remains open and we
adopt the concept of partial compositeness, where the fermions couple linearly to some massive
resonances in the new sector, with the mixing angle related to the measured mass or equivalently
the Yukawa coupling of the respective fermion. Due to its large mass, this motivates us to assume
that the top quark, in particular only its right-handed component, is fully composite. In practice,
we will not be interested in the exact dynamics in the new sector, but instead we will take the
route of using an effective theory to describe the new physics at energies below the masses of
the new resonances. The corresponding power counting of the generated effective operators is
presented in Sec. 2.3. Then, in chapter 3, we use the established power counting to identify
the dominant operators in the limit of a fully composite right-handed top quark, finding that
a dimension-6 operator built from four such quarks is greatly enhanced in the strong coupling
regime. While it is not the only operator exhibiting such an enhancement, we find that its
growth with energy can easily be exploited in four-top production at hadron colliders. Finally,
we discuss the potential of future lepton colliders, where an alternative final state to the four
tops has to be found, due to the limited scattering energies.

Then, in Part II we turn to the electric dipole moment (EDM) of the neutron as well as of
the leptons and how new physics can contribute in a model-independent effective field theory
(EFT) approach. We start by discussing the relevance of the EDMs of elementary particles in
chapter 6 and how they arise both in the Standard Model (SM) and beyond. We discuss how
flavor symmetries require that EDMs are generated at high loop orders in the SM and how
higher dimensional operators can circumvent this. Further, we also explain how the EDM of
composite objects can be obtained from those of their elementary constituents, focussing on
the case of the neutron. Then in chapter 7, we review the basics of the renormalization of the
couplings in a theory. This will be crucial, as the EDMs of the elementary particles can be
identified with the Wilson coefficients of certain dimension-5 operators at low energies. In the
same chapter, we also see how general helicity and angular momentum arguments can be used
to determine the mixing pattern of higher-dimensional operators without any loop calculations,
allowing us to reduce the amount of computation necessary. In chapter 8 we perform the full
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1-loop calculation of the lepton and neutron EDMs in the dimension-6 Standard Model effective
field theory (SMEFT). We discuss all the details of the computations, such as the transition
from the gauge to the mass basis, Sec. 8.1, used calculation schemes, 8.2, and how to deal with
gauge fixing and redundant operators, 8.3. Finally, we discuss the results in Sec. 8.5, focussing
in particular on the effect of non-logarithmic terms compared to the logarithmic ones associated
to the renormalization group (RG) running.

In Part III we address the possibility of new, massive higher-spin fields modifying the classi-
cal, non-relativistic interaction potential between two massive objects. We start by introducing
both the massless and massive spinor helicity variables in chapter 11, which allow for a stream-
lined calculation of tree-level, on-shell scattering amplitudes, using only the information about
the spin or helicity of the external particles, without the need of an Lagrangian and the as-
sociated Feynman rules. We then apply this formalism in chapter 12 to scattering amplitudes
of four gravitons, computing the full amplitudes generated by an exchange of a particle with
arbitrary spin S and mass mS and we obtain the gravitational EFT upon integrating out these
new degrees of freedom at energies E < mS . We also discuss how the higher-spin fields can
cure acausalities in the four graviton scattering in the presence of higher-dimensional operators
modifying the triple-graviton coupling. Then, in chapter 13, assuming that the higher-spin fields
couple directly to matter, we put constraints on these couplings and their masses using a classi-
cal torsion-balance experiment by modelling the test mass in the experiment as neutral, massive
scalars and computing their non-relativist interaction potential induced by the exchange of the
spin-S particle using the aforementioned spinor helicity methods.

Finally, in Part IV, we change topics completely and explore how the energy-momentum
tensor can be used to extract the infrared divergences of high-loop amplitudes in massless theo-
ries using both modern on-shell techniques as well as the conventional Feynman diagrammatic
approach. We start in chapter 16 by extending the concepts of renormalizing couplings, intro-
duced in 7, to the renormalization of Green’s functions and scattering amplitudes, obviously
including the possibility of infrared divergences. We continue in the chapter 17, where we show
explicitly how this renormalization of on-shell amplitudes can be obtained using the optical
theorem and on-shell cuts of the renormalized amplitudes instead of the divergences in the bare
amplitudes. In chapter 18, we show a physical reason for the appearance of infrared divergences
in loop amplitudes, by requiring the cancellation of infrared divergences in total cross-sections
or other observables. Then, in chapter 19, we come to the main point of this part and show that
conserved currents, among which the energy-momentum tensor resides, do not show any UV
renormalization, apart from a few, well understood and therefore easily extractable exceptions.
Finally, we apply all this knowledge and formalism to two toy models, varying in complexity:
In chapter 20 we consider a theory of a neutral scalar and a Dirac fermion, coupled to each
other through a Yukawa-type interaction. For this theory, we show in detail both the on-shell
and Feynman diagrammatic calculations. The second theory, discussed in 21, is a toy model
for the SM, with its three gauge groups, a Higgs-like scalar and the first generation of quarks.
We compute all the building blocks for infrared divergences in this model using only Feynman
diagrams and we show how to apply the results by calculating the UV renormalization of the
U(1) gauge current.
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Chapter 1

Motivation and Introduction

While the LHC fulfilled one of its main goals, the discovery of the Higgs boson [10, 11], this
raised more questions than it actually answered. Out of these, the most important ones are
concerned with the origin of the EW symmetry breaking and the smallness of the Higgs mass,
both of which cannot be answered by the current SM.

Of course, there are a plethora of proposed answers, leaving it to experiments like the LHC or
its successor to decide which one of those portrays Nature the best. One particularly prominent
solution is the CH framework [12–14], where the Higgs arises as a composite pNGB of a new
strong sector beyond the SM. One of its many appeals comes from the fact that within the CH
framework it is straightforward to construct concrete theories just from the symmetry breaking
pattern in the new sector, using the CCWZ construction [15,16] established by Callan, Coleman,
Wess and Zumino. The minimal ansatz, given by the breaking pattern SU(3)→ SU(2)× U(1),
satisfies the minimal conditions of generating four pNGBs as well as containing the EW part of
the SM gauge group as its unbroken subgroup. However, experiments prefer theories where the
new sector contains an additional SO(4) ≃ SU(2)× SU(2), the so-called “custodial symmetry”,
parts of which will be gauged to become the SM gauge group. This gauging, specifically the
U(1) subgroup in one of the SU(2) factors, will then lightly break this symmetry. In fact,
the Higgs sector of the SM approximately respects this custodial symmetry, weakly broken
by the gauging of the U(1)Y subgroup, and it can be shown that this fixes the ρ parameter
given by the ratio of the heavy gauge bosons masses [17]. Beyond the Higgs sector, the Yukawa
interactions of the fermions with the Higgs, in particular the top quark, also explicitly break this
custodial symmetry in the SM. Nevertheless, the SM value of this parameter has been confirmed
experimentally up to per-mille precision, so any beyond the Standard Model (BSM) models
face tight constraints coming from this measurement. Imposing the condition of preserving the
custodial symmetry leaves a single choice for a minimal, realistic CH model, SO(5)→ SO(4) [18].

Independent of the precise implementation, all CH models have in common that they, in
addition to turning the Higgs into a composite state, generate many more new states. These are
heavy resonances similar to the hadrons in low-energy QCD, with masses around the breaking
scale in the new sector. Further, for non-minimal models, the symmetry breaking generates
more than the four Goldstone modes needed to form the Higgs doublet, which can serve as
dark matter candidates [19–22]. These new states can drastically change the phenomenology
of experiments like colliders, once they reach energies high enough to produce any of the new
particles. While we can expect the heavy resonances to appear beyond the TeV threshold,
see e.g., [23, 24] for constraints on colored top partners, their effect on observables can still be
captured by employing the EFT language.

In this part of the thesis, we focus on how, in an EFT setting, these new resonances can
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Chapter 1. Motivation and Introduction

impact the top sector of the SM. Being the most massive particle in the SM, the top quark
enjoys the strongest coupling to the Higgs, which in turn makes it a natural guess to assume
that it also couples more strongly to the new sector than any other particle. In fact, due to
their coupling to the strong sector, the fermions can be seen as at least partially composite
states [25], with the degree of compositeness being tightly related to the size of their coupling
to the Higgs. One can go even further and assign potentially different degrees of compositeness
to the chiral components of each fermion individually. They can, however, not be unrelated
because the product of the two is fixed by the respective Yukawa coupling, forming a kind
of seesaw. Because the left-handed top quark will always be in a non-trivial representation
of the new group, it is charged under the EW gauge group of the SM after all, it will always
contribute to the Higgs potential and therefore the Higgs mass, where the size of its contribution
is controlled by its degree of compositeness [26]. The right-handed top, on the other hand, is
already a singlet under the electroweak SM and by choosing it to be also a singlet in the full new
sector, one can make its contribution to the Higgs potential to vanish, independent of its degree
of compositeness [26]. For this reason, it is highly motivated to consider the limit in which we
take the right-handed top quark to be fully composite, leaving the left-handed component with
the smallest degree of compositeness possible [26,27].

We will see, using power counting arguments, that in this limit operators with four right-
handed tops can be as parametrically large as ones containing only Higgs fields. In turn, these
operators can be tested at current and future colliders, both of the hadronic and leptonic kind,
through four top and top quark pair production. We then find that, especially at future colliders,
probing top quark production can provide competitive if not superior constraints on CH models
compared to precision tests in the Higgs sector itself.

We will start this part of the thesis with an introduction to CH models and how they can give
rise to partially composite fermions in chapter 2. In the same chapter, we will also establish the
power counting we need to assess the parametric size of various operators appearing in the EFT,
such that we can focus on the leading ones. Using this, we will turn to the collider phenomenology
in chapter 3, where we will investigate the impact of the leading effective operators both at
current and future hadron colliders as well as future lepton colliders.

Chapter 3 is heavily based on [5], from where all figures, tables, and parts of the text have
been taken.
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Chapter 2

Composite Higgs and Partial
Compositeness

In this chapter, we set up the theoretical framework needed for the rest of this chapter. First, we
introduce the EW hierarchy problem in Sec. 2.1. Afterward, we introduce one of its most popular
solutions, the Composite Higgs framework in Sec. 2.2, where we also discuss how other fields can
be made composite in such theories. In the end, we will not use any specific implementation of
a CH model, so we will refrain from going into too many details of certain symmetry breaking
patterns. We then conclude this chapter by outlining the power counting estimates for strongly
coupled theories in Sec. 2.3, which we can use to classify the effective operators generated upon
integrating out the heavy resonances in the model.

2.1 The Hierarchy Problem

Discussions about the Higgs hierarchy problem, first formulated in [28–30], are among the most
present and controversial topics within high-energy physics. To state the main points and why
it is a problem, we will follow [14], for a more recent take on the topic see e.g., [31, 32].

Even though the SM is highly successful in predicting most of the phenomena in Nature, we
know that it can only be the EFT of some underlying and more fundamental theory. This fact
will be the basis for setting up the hierarchy problem. We even know the latest point at which
the SM has to yield in favor of this new theory because of gravity. The current field-theoretical
description of gravity is a non-renormalizable theory of a massless spin-2 field, the graviton. This
theory can be written as an infinite series of higher and higher dimensional operators, whose size
is controlled by the Planck massMP. At energies far below this scale, the gravitational operators
are highly suppressed compared to the renormalizable part of the SM, however once we reach
E ∼MP they become effectively strongly coupled, signalling the need for a UV completion that
can cure this growth. Of course, it does not have to be that the SM is UV completed only at
the Planck scale, there can be one or more intermediate scales at which it is replaced by a new
theory.

Nevertheless, at the scales that are currently accessible by experiments, we can therefore
write the SM Lagrangian as a series expansion of operators1

1Technically, we could also include a d = 0 term, corresponding to the cosmological constant, which comes
with a hierarchy problem of its own. However, it is not relevant for the current discussion.
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Chapter 2. Composite Higgs and Partial Compositeness

L = Ld=2 + Ld=4 +
∑

d>4

∑

i

c
(d)
i

O
(d)
i

Λd−4
SM

, (2.1)

where d is the mass dimension of the corresponding operator, c
(d)
i are constant coefficients and

the scale of new physics ΛSM suppressing the higher dimensional operators is necessary purely
from dimensional analysis.

The d = 4 part of the above Lagrangian is already enough to ensure the aforementioned
success of the Standard Model. But the higher dimensional operators can make our description
of Nature even more successful. A prime example is given by the neutrino masses, about which
experiments tell us that they have to be non-vanishing. If we do not enlarge our field content
to accommodate right-handed neutrinos, the only possibility to generate masses is given by the
d = 5 Weinberg operator,

O(5)
ν = (L̄LH

c)(LcHc), (2.2)

with L(c) the (charge conjugate) lepton doublet, H the Higgs doublet and Hc = iσ2H∗. Note,
that this operator breaks the lepton symmetry, which is only accidental in the d = 4 part of
the Lagrangian. In fact, within EFTs it is common for higher dimensional operators to break
accidental symmetries respected by the lower dimensional ones. If we assume its coefficient to
be of order one, the right size of the neutrino masses can be achieved by setting ΛSM ∼ 1014

GeV. This immensely large scale suppressing makes it obvious why using only the d = 4 part of
the Lagrangian is already enough to give predictions that are highly compatible with the current
experimental findings, higher order corrections are just too small to observe at low scales. It
is interesting to note that for d = 6 also the accidental baryon symmetry is broken, rendering
proton decay possible, which has yet to be observed. Plugging in the numbers, one finds bounds
on ΛSM that are similar in size as the ones we get from neutrino masses, both of which are
numerically in the same range as the scale at which a Grand Unified Theory (GUT) is expected
to set in, MGUT ∼ 1015 GeV. So far, we did concern ourselves with operators with d > 2, which
are, however, unfazed by the hierarchy problem. The crucial piece is the single d = 2 operator
we can have in the SM, the Higgs mass term

Ld=2 = cΛ2
SM|H|2. (2.3)

Since it is a relevant operator, we know its coefficient has to carry a positive mass dimension,
which the same scale ΛSM that suppresses the d > 4 part takes care of. Consequently, if this
scale is large, the Higgs mass term is highly enhanced instead of suppressed. But because we
know the Higgs mass from experiments, we know that µ2 ≡ m2

H/2 = (89GeV )2 and so

c =
µ2

Λ2
SM

∼ 10−28 ≪ 1 (2.4)

needs to be highly tuned, which seems very unnatural. In fact, the separation of scales we see
lies at the heart of the hierarchy problem. But we can make the notion of naturalness more
concrete. If we assume we know the fundamental theory beyond ΛSM, which is valid up to
arbitrarily high energies, the Higgs mass is calculable in terms of the parameters {pi} of this
fundamental theory, which we can write as [14]

m2
H =

∫ ∞

0
dE

dm2
H

dE
(E; {pi}). (2.5)
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2.2. Composite Higgs

The integral simply sums up all the contributions to the Higgs mass at various scales. Naturally,
we can split it into two contributions, the ones coming from within the SM and the ones from
beyond. These two regimes are, by construction, separated by the scale ΛSM and we can calculate
the low-energy contribution because we know the SM,

m2
H =

∫ ∼ΛSM

0
dE

dm2
H

dE
(E; {pi}) +

∫ ∞

∼ΛSM

dE
dm2

H

dE
(E; {pi})

≡ m2
H(δSM + δBSM). (2.6)

Approximating the low-energy regime using the 1-loop contributions from the top quark and
the gauge bosons as well as the Higgs self-interaction, we have [14]

m2
HδSM = Λ2

SM

[
3y2t
8π2
− 3g2W

32π2

(
1 +

1

2 cos2(θW )

)
− 3λ

8π2

]
. (2.7)

Of course, if we look only at the SM isolated, the above expression mimics the calculation
of the quadratic divergences of the respective loop integrals using cut-off regularization. As
usual, divergences of this kind are unphysical and have to be subtracted using the appropriate
renormalization scheme2. However, in the light of calculating the Higgs mass from some UV
complete theory, this expression makes sense as a low-energy approximation. Note that, as
Eq. (2.3) already suggested, the Higgs mass within the SM is quadratically sensitive to the scale
at which new physics sets in. In the end, to get a mass mH ≪ ΛSM, as suggested by experiment,
the contributions from the theory beyond the SM, δBSM, has to be tuned in such a way that
it cancels the low-energy contribution up to a tiny fraction, and we can, in fact, quantify this
tuning by

∆ ≥ δSMm
2
H

m2
H

≃
(

ΛSM

500GeV

)2

. (2.8)

We want to conclude this section, by stating that there is of course nothing fundamentally
wrong with theories that show high degrees of fine-tuning and the solution to the hierarchy
problem comes down to just anthropic selection. However, so far, more often than not, it has
been the case that Nature tends to be natural and fine-tuning is cured by some underlying
principle we have yet to understand. For this reason, it is worthwhile to investigate models that
can solve the hierarchy problem without the need for fine-tuning.

2.2 Composite Higgs

The basic idea behind a composite Higgs is, as its name suggests, that the Higgs is not a point-
like, elementary particle but instead a bound object of some sorts [33–38]. In practice, this could
mean that the Higgs originates from a new strong sector that confines at some scale m∗, in the
same way as protons and other hadrons are formed by the confining of QCD at low energies.
This can help shield the Higgs mass against large UV effects, by having the picture in mind
that the Higgs dissolves into its constituents if probed with energies E > m∗, similar to protons
deconfining into quarks at energies above the QCD scale. This section loosely follows [14], for
further introductory literature and more recent reviews see e.g., [12, 13,39].

2In dimensional regularization they do not even appear as quadratic divergences.
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Chapter 2. Composite Higgs and Partial Compositeness

2.2.1 The Composite Higgs Framework

To collect all the ingredients that make up a valid CH model, we will make extensive use of
analogies to QCD, as we will discover many similarities between the two seemingly unrelated
theories.

Obviously, to have composite states, we need some sector that is sufficiently strongly coupled
for these states to form in the first place. This composite sector is generated by some new,
fundamental theory at a high scale Λ, the concrete definition of which will not matter, after
all, the whole point is to desensitize the Higgs mass regarding the UV. The only thing we
require is that it generates the composite sector close to a fixed point of its RG running, with no
operators with scaling dimension much less than 4. Of course, at tree level, operators with scaling
dimension of exactly 4 are marginal and stay at the fixed point indefinitely, but quantum effects
will change this by generating an anomalous dimension turning the former marginal coupling
into either a relevant or irrelevant one. For marginally relevant operators close to the fixed
point, this slight shift of scaling dimension will lead to a logarithmic growth of the coupling g.
At some scale, this coupling will formally diverge, signalling the onset of confinement. In fact,
the confinement scale m∗ can be calculated using

m∗ = Λexp

(
− 8π2

−b0 g2(Λ)

)
, (2.9)

with b0 < 0 the coefficient of the beta function for the marginally relevant coupling. From this
equation, it is obvious that an exponential hierarchy between the UV and the confinement scale
can easily be achieved, depending on how close to the fixed point the evolution starts.

Now, if the Higgs would be just any of the composite states, we would naturally expect its
mass to be mH ∼ m∗. However, we know from experiments that m∗ has to sit well beyond the
TeV scale. Otherwise, we would have either seen many other resonances of mass m∗ directly or
they would induce effective operators of sizes that are incompatible with precision measurements.
Having such a large confinement scale would reintroduce the problem of a finely tuned Higgs
mass.

Luckily, there is a way to keep the setup of a confining sector from a fundamental theory,
while still having naturally light scalars; they originate as pNGBs of some spontaneously broken
symmetry. But it is not enough to just add a symmetry that is only spontaneously broken; in
the broken sector, there will be an exact shift symmetry, making it impossible to generate a
potential for the Goldstone modes, keeping them exactly massless. On the other hand, if there
is an explicit breaking of the symmetry in the first place, a potential can be generated, leading
to mass, whose size is controlled by how severely the symmetry was broken. In practice, the
explicit breaking comes from the coupling to an elementary sector, that contains all the SM
fields apart from the Higgs and possibly, this is the main point of this part, the right-handed
top quark. An additional source of explicit breaking is provided by the gauging of only the
SU(2)×U(1) part of the unbroken subgroup H.

To be a bit more concrete, let us assume the new sector respects some symmetry G that,
after confining, gets spontaneously broken down to some subgroup H. As mentioned in the
introduction, to be phenomenologically viable, the EW gauge group has to be contained in the
unbroken group, H ⊆ SU(2)×U(1). Further, to supply at least the four components of the Higgs
doublet, there need to be at least four broken generators in the coset G/H. In the following, we
will denote the generators of G with TA, the unbroken ones that span H with T a and the broken
ones in the coset with T â. Then, we can parametrize the Goldstone modes θâ as fluctuations
around some reference vacuum F , defined to be orthogonal to the space of H,
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2.2. Composite Higgs

G
~F

H vEW

v/f

Figure 2.1: Pictorial illustration of the vacuum misalignment mechanism for the breaking
pattern SO(3) → SO(2). Here F describes the vacuum configuration without any explicit
breaking (⟨θ⟩ = 0). ⟨θ⟩ is the pNGB VEV from the explicit breaking characterizing the vacuum
misalignment and v is its projection on the subgroup H, corresponding to the EW scale in the
SM.

ϕ(x) = exp
[
iθâ(x)T â

]
F . (2.10)

Eventually, we want the Goldstones to acquire a VEV to trigger electroweak symmetry
breaking (EWSB). But, if G is exact, there will be no EWSB, since the VEV of the Goldstones
are unphysical and can even be set to zero with an appropriate G transformation, using the
broken generators, to be more precise. Instead, breaking G is equivalent to choosing a preferred
direction inG, which cannot be rotated away by an exact symmetry. This induces a misalignment
between the vacuum of the explicitly broken theory, compared to the reference F , the angle of
which is exactly given by the VEV of the Goldstones, ⟨θ⟩. This angle sets the EWSB scale,
which controls the size of the EW breaking effects via

v = f sin(⟨θ⟩), f = |F |. (2.11)

To obtain a light Higgs, we therefore want v ≪ f or equivalently sin(⟨θ⟩) ≪ 1 and we can
parametrize the hierarchy between the two breaking scales as

ξ =

(
v

f

)2

≪ 1. (2.12)

In Fig. 2.1 we show an graphical representation of this vacuum misalignment mechanism for
the simple case of the breaking pattern SO(3)→ SO(2).

2.2.2 Partial compositeness

Until now, we have only considered the composite sector and how the Higgs can arise from it
through the spontaneous breaking of an (approximate) global symmetry. This breaking then
gives mass to the EW gauge bosons and also produces a massive scalar boson, which we can
identify with the SM Higgs boson. It remains, however, the question of how the fermions acquire
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Chapter 2. Composite Higgs and Partial Compositeness

their mass. There are various approaches to this, e.g., technicolor models (see [29,30,40–42]) or
partial compositeness. We will consider the latter here.

In this case, the fermions originating from the elementary sector couple linearly to fermionic,
composite resonances from the strong sector [27]

∆L = yLf q̄
el
LPq[QR] + yRf t̄

el
RPt[TL] +MQQ̄LQR +MT T̄RTL + gρQ̄LθTR, (2.13)

where f denotes the Goldstone decay constant, QL/R and TL/R are fermionic, composite reso-
nances and Pq/t some projector operators to extract the components of the BSM resonances,
such that they can couple to the elementary doublet qL and singlet tR. It is obvious that these
BSM components have to have the same quantum numbers as the elementary fermions to en-
sure gauge invariance for the interactions in Eq. (2.13). Here we assumed that the elementary
sector couples only to the lowest lying resonances of the strong sector and that the couplings to
heavier resonances can be neglected. The last term, the coupling of the heavy resonances to the
Goldstone matrix θ with coupling strength gρ, will become important once EWSB sets in [27],
but for now, we will consider only the bilinear terms.

Diagonalizing these, we get two states that are massless before EWSB,

qL = cos θLq
el
L + sin θLPq[QL], (2.14)

tR = cos θRt
el
R + sin θRPt[TR], (2.15)

which can be identified as the SM fermions, with mixing angles

tan θL =
yLf

MQ
, (2.16)

tan θR =
yRf

MT
. (2.17)

Additionally, we get states orthogonal to the ones in equations (2.14)-(2.15) with a mass squared
M2
Q+y2Lf

2 andM2
T +y

2
Rf

2, respectively, but these are unimportant for the following discussion.
From equations Eqs. (2.14)-(2.15) we see that the SM fermions are a mixture of the el-

ementary fermions and the composite resonances of the strong sector, which is why they are
called partially composite. To give them their measured masses after EWSB the last operator in
equation (2.13) comes into play. Comparing it with equations (2.14) and (2.15) we see that it is
built exactly from the composite components of the SM fermions. Following this line of thought,
it is easy to see, that this operator induces the usual Yukawa couplings of the SM states to the
Goldstone matrix with coupling strength

y = gρ sin θL sin θR, (2.18)

as is illustrated in figure 2.2. Requiring that after θ acquires a non-zero VEV the top mass
coincides with the measured value gives constraints on the mixing angles sin θL/R ≳ 0.6/gρ [27].

The relation in (2.18) makes it clear why the top quark is considered as a mostly composite
fermion, as for yt ∼ O(1) the mixing angles for both chiralities cannot be too small. However,
due to the electroweak symmetry that the mixing angles for the left-handed bottom and top
quark are forced to be equal, i.e.,

θL,b = θL,t.

So, naturally, increasing both mixing angles would also imply a large mixing for the bottom
quark which in turn would lead to large corrections to the very precisely known Zb̄b vertex, see
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tL

tR

QL

TR

Σ

sin θL

sin θRL

gρ

Figure 2.2: Schematic depiction of how the SM Yukawa couplings arise through the elementary-
composite mixing of the SM fermions described in the text

e.g., [43]. To circumvent this problem one can then go to the limit, where the top quark is fully
composite, i.e., sin(θR,t) ∼ O(1)3. Another, maybe more robust, argument for considering a
fully composite right-handed top is that, assuming it is a singlet under the group G of the new
sector, it reduces the amount of fine-tuning needed for the Higgs potential and correspondingly
its mass [14, 26]. If the right-handed top quark is to be taken as a singlet, the quadratic Higgs
potential can be written as, neglecting subleading gauge boson loops, [14]

V (H) ∼ sin2 θL,t
16π2

|H|2. (2.19)

While this cannot be made to vanish, numerically it turns out that it is favored for this potential
to reach its minimal value. If, on the other hand, tR does transform non-trivially under G, both
chiralities contribute to the above potential, where the leading effect obviously comes from the
chirality with the higher degree of compositeness.

To conclude this section, we want to comment briefly on the partial compositeness of other
SM states. Previously, we have only considered the possibility that linear couplings between
elementary and composite fermions give rise to their respective compositeness. But in fact the
same can happen for the gauge bosons. It can be shown that mass mixing terms between the
elementary gauge boson and vector resonances of the strong sector respect the SM gauge sym-
metry, including color [43]. Therefore, after diagonalizing also the gauge part of the Lagrangian,
one obtains two linear combinations of gauge and composite bosons, one of which is massless
before EWSB, corresponding to the SM gauge boson, and one heavy degree of freedom.

2.3 Power Counting and Effective Operators

In the end, we won’t be interested in the precise dynamics of the resonances themselves. Instead,
we will use the assumptions that the energies we work at are below the confinement scale,
E < m∗, so it is vald to work with an EFT built from only SM states. To not having to
deal with all effective operators simultaneously, it is nice to have some way of estimating their
parametric size. Of course, these estimates cannot always be taken at face value, depending on
the observable, operators that are formally subleading can still be more sensitive than leading
ones because of the varying experimental precision in the respective processes. Nevertheless, it
will be a good guideline.

3At tree level, this vertex can be protected by a discrete symmetry. However, it is broken at the loop level,
which again favors a minimal θL,t [27]
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Chapter 2. Composite Higgs and Partial Compositeness

The key point to finding such estimates is the assumption that the composite sector can
be effectively described by one scale m∗ and one coupling g∗, which characterize the typical
mass of the composite resonances and coupling strength among them, respectively. Under these
assumptions, the Lagrangian can be written as [14,26]

L =
m4

∗
g2∗
L̂
[
∂

m∗
,
g∗θ

m∗

]
, (2.20)

with the Goldstone field θ. Of course, there will also be heavy resonances, but they are not
relevant here, as they are integrated out in the end.

To be able to use dimensional analysis, we temporarily reintroduce the Planck constant ℏ
and the speed of light c.

We know that the action has units of E ·T , the same as ℏ, hence it follows for the Lagrangian

[L] = ET/L4 = [ℏ]/L4. (2.21)

For canonically normalized bosonic and fermionic fields we can thus derive their dimensions
by looking at their kinetic terms (keeping in mind that [∂µ] = 1/L) and we find

[θ] = [ℏ]1/2/L (2.22)

Now, by looking at terms in Eq. (2.20), we see that

[m∗] = L−1 and [g∗] = [ℏ]−1/2. (2.23)

Because we know that the symmetry breaking scale f normalizes the Goldstone fields we know
[f ] = [θ] and putting together the above relations, dimensional analysis tells us that

m∗ = g∗f. (2.24)

Next, we also need the dimensionality of the elementary fields. Starting with the gauge
fields, we notice that they couple to the composite sector through the composite gauge currents
Jµ, gAµJ

µ. From Noether’s theorem, we know that

[J ] = [L] · L = [ℏ]/L3. (2.25)

Therefore, given [A] = [ℏ]1/2/L, we find that

[g] = [ℏ] or [g ·A] = 1/L. (2.26)

Finally, we need the dimensions of elementary fermions. For this, we recall the partial compos-
iteness hypothesis, stating that the physical fermions are a mixture of elementary and composite
states, characterized by a mixing parameter λL,R ≡ sin θL,R for each of the fermion chiralities.
Hence, SM sector fermions have the same dimension as the composite ones, they are, however,
accompanied by their respective mixing parameter. So, by introducing the appropriate powers
to make each fermion insertion dimensionless, we find

L =
m4

∗
g2∗
L̂
[
∂

m∗
,
g∗Π

m∗
,
g ·Aµ
m∗

, λL,R
g∗ψL,R

m
3/2
∗

]
, (2.27)

The generalization to loop level effects is straightforward.
In the next chapter, we will use this power counting to classify the operators relevant for the

phenomenology of composite top quarks at current and future colliders.
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Chapter 3

Composite Top Quarks at Colliders

In this chapter, we investigate the implications of a strongly coupled right-handed top quark for
the phenomenology at current and future colliders. Because of the power counting arguments
given in Sec. 2.3 we expect the operator

ctt
Λ2

(t̄RγµtR)(t̄RγµtR) (3.1)

to be among the leading ones, with its coefficient scaling like

ctt
Λ2
∼ g2∗
m2

∗
≡ 1

f2
, (3.2)

where we reintroduced the symmetry breaking scale f . Moreover, it induces top scattering with
an amplitude of the form

|A(tRtR → tRtR)| ∼
g4∗
m4

∗
(s− 2m2

t )
2, (3.3)

which grows like s2 ∼ E4 at large energies, leading to an enhanced sensitivity compared to the
rare SM production [27]. Because of this energy growth, together with its scaling with g∗ the
main focus of this chapter will be on Ott.

We will start this chapter with introducing the set of effective operators considered in this
part, together with their respective power counting estimates, in section Sec. 3.1. We will
see that, even though some of them show formally subleading power counting estimates, their
different scaling allows them to probe parts of the parameter space the operator Ott cannot reach.
Then, in Sec. 3.2 we review the current experimental constraints on the various operators and
discuss if these operators are able to explain some of the mild excesses found in the recent tttt
and the associated background measurements. Afterward, we will explore the reach achievable
at future hadron colliders through tttt production in Sec. 3.3 and top quark pair production at
lepton colliders in Sec. 3.4. In the former case, we give a detailed analysis of some multilepton
final states, and we also comment on the opportunities and challenges of a fully hadronic decay
of the top quarks. We will find that at both future hadron and lepton colliders, this provides
a superior probe of CH models with fully composite right-handed top quarks. In fact, future
colliders can test, through the top quark, fine-tunings of the electroweak scale at the ξ ≈ 10−3

level, a hundred-fold that of the LHC and certainly unprecedented in the realm of particle
physics. This is a truly exceptional motivation for future discoveries that could await us at the
high-energy frontier.
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Ott = (t̄RγµtR)
2

Otq = (t̄RγµtR)(q̄Lγ
µqL)

O(8)

tq =
(
t̄Rγµt

AtR
)(
q̄Lγ

µtAqL
)

Oqq = (q̄LγµqL)
2

O(8)
qq =

(
q̄Lγµt

AqL
)2

OHt = i(H†
↔
DµH)(t̄Rγ

µtR)

OHq = i(H†
↔
DµH)(q̄Lγ

µqL)

O(3)

Hq = i(H†σa
↔
DµH)(q̄Lγ

µσaqL)

Oyt = ytH
†Hq̄LH̃tR

OtD = (∂µBµν)(t̄Rγ
νtR)

O(8)

tD = (DµGAµν)(t̄Rγ
νtAtR)

OqD = (∂µBµν)(q̄Lγ
νqL)

O(8)

qD = (DµGAµν)(q̄Lγ
νtAqL)

O(3)

qD = (DµW a
µν)(q̄Lγ

νσaqL)

OH = 1
2

(
∂µ|H|2

)2

OT = 1
2

(
H†

↔
DµH

)2

OW = ig 1
2(H

†σa
↔
DµH)DνW

aµν

OB = ig′ 12(H
†
↔
DµH)∂νB

µν

O2G = −1
2(D

µGAµν)
2

O2W = −1
2(D

µW a
µν)

2

O2B = −1
2(∂

µBµν)
2

Õγ = H†HBµνB̃µν

Table 3.1: Set of dimension-six operators relevant to this part of the thesis, grouped in five
different boxes corresponding to the different classes discussed in the main text. Dashed lines
within a box separate operators in a given class with a different power counting estimate. We

have defined H†(σa)
↔
DµH = H†(σa)DµH − (DµH)†(σa)H and H̃ = iσ2H∗.

3.1 Effective Operators Probing Composite Top Quarks

In this section, we define the dimension-six operators (see Table 3.1) and discuss their expected
size in theories with a composite, i.e., a strongly interacting right-handed top quark.

As we will see in the next section, searches for the production of four top quarks at the 13 TeV
LHC have provided important constraints on the idea of top quark compositeness. Constraints
comparable to the one on ctt are obtained for the full set of four-top operators [44], which also
involve the third generation left-handed quark doublet,

ctq
Λ2

(t̄RγµtR)(q̄Lγ
µqL) ,

c(8)tq
Λ2

(
t̄Rγµt

AtR
)(
q̄Lγ

µtAqL
)
,
cqq
Λ2

(q̄LγµqL)
2 ,

c(8)qq
Λ2

(
q̄Lγµt

AqL
)2
, (3.4)

where tA = λA/2 are the generators of SU(3). Then, the generic expectation in scenarios dealing
with the generation of the top Yukawa coupling, such as CH models [14], is that operators in-
volving qL are generated as well, yet with coefficients proportional to yt, i.e. ctq, c

(8)

tq /Λ
2 ∼ y2t /m2

∗,

and cqq, c
(8)
qq /Λ2 ∼ y2t (yt/g∗)2/m2

∗, thus not as enhanced as ctt/Λ
2 for large new-physics couplings

g∗ ≫ yt. We note that the H parameter [45] effectively contributes to four-top production just
as the Otq operator does.

Since our main interest is in new-physics scenarios with a strongly interacting Higgs, top-
Higgs operators should also be present and in principle with large coefficients. This is the case
of

cHt
Λ2

i(H† ↔
DµH)(t̄Rγ

µtR) , (3.5)
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3.1. Effective Operators Probing Composite Top Quarks

which leads to a zero-momentum deformation of the ZtRtR coupling. However, we point out
that, apart from the fact that the experimental sensitivity on such anomalous couplings has
been typically weak (see however Sec. 3.2), this operator turns out to be suppressed by an
accidental discrete symmetry [46] in models where the right-handed top does not induce radiative
contributions to the Higgs potential, as preferred by fine-tuning considerations. Although such
a symmetry is eventually broken, the coefficient of OHt would be expected to be small in these
cases, cHt/Λ

2 ∼ Nc(yt/4πf)
2. Similar statements can be made for the analogous operators with

qL, namely OHq and O(3)

Hq (see Table 3.1). The combination cHq + c(3)Hq induces a correction to
the ZbLbL coupling which, although constrained at the per-mille level at LEP, is also typically
protected by PLR symmetry [46, 47]. Measurements of deviations in the ZtLtL and WtLbL
couplings from the SM, associated with cHq − c(3)Hq and c(3)Hq respectively, do not reach the level
of precision to be competitive with the four-top operator Eq. (3.1), in particular at large m∗
because cHq/Λ

2 ∼ y2t /m
2
∗. Similarly, for the still poor measurements of the Higgs coupling to

the top, which probe the Yukawa-like dimension-six operator Oyt , even if cyt/Λ
2 ∼ g2∗/m2

∗.
Even though operators with SM gauge field strengths and top quarks are generated with

coefficients that are not enhanced, or are even suppressed at strong coupling,1 they could be
relevant in situations where direct probes of the four-top operators are not feasible, as it is the
case of future lepton colliders (see Sec. 3.4). Such operators are

ctD
Λ2

(∂µBµν)(t̄Rγ
νtR) ,

c(8)tD
Λ2

(DµGAµν)(t̄Rγ
νtAtR) , (3.6)

with ctD/Λ
2 ∼ g′/m2

∗ and c(8)tD/Λ
2 ∼ gs/m2

∗, as well as

cqD
Λ2

(∂µBµν)(q̄Lγ
νqL) ,

c(8)qD
Λ2

(DµGAµν)(q̄Lγ
νtAqL) ,

c(3)qD
Λ2

(DµW a
µν)(q̄Lγ

νσaqL), (3.7)

with cqD/Λ
2 ∼ (yt/g∗)

2g′/m2
∗, c

(8)

qD/Λ
2 ∼ (yt/g∗)

2gs/m
2
∗, c

(3)

qD/Λ
2 ∼ (yt/g∗)

2g/m2
∗ for a strongly

coupled right-handed top. These operators are equivalent to a particular combination of four-
fermion operators, since by the equations of motion,

∂µBµν = −g′
(
1
2 iH

† ↔
DνH + 2

3 ūRγνuR − 1
3 d̄RγνdR + 1

6 q̄LγνqL − ēRγνeR − 1
2 ℓ̄LγνℓL

)
, (3.8)

DµGAµν = −gs
(
ūRγνt

AuR + d̄Rγνt
AdR + q̄Lγνt

AqL
)
, (3.9)

DµW a
µν = −g 1

2

(
iH†σa

↔
DνH + q̄Lγνσ

aqL + ℓ̄Lγνσ
aℓL
)
. (3.10)

For an example of the potential relevance of this class of operators in deciphering the composite
nature of the top quark, let us consider probes of O(8)

tD at the LHC. This operator affects top-pair
production through a qq̄ → tt̄ amplitude that grows with energy [49]. Given the expectation
c(8)tD/Λ

2 ∼ gs/m
2
∗, one could naively conclude that the new-physics effects do not depend on g∗

for fixed m∗. However, renormalization group (see App. I.A) evolution implies that at relevant
scale, µ, the coefficient of O(8)

tD is [50]

c(8)tD(µ) = c(8)tD(m∗) + ctt(m∗)
gs

12π2
log
(m2

∗
µ2

)
. (3.11)

Therefore, one-loop diagrams with one insertion of the four-top contact interaction Eq. (3.1)
dominate the amplitude at large g∗,Mqq̄→tt̄ ∼ g2s(g∗/4π)

2(E/m∗)
2 log(m2

∗/E
2). Although cur-

rent LHC searches in top-pair production yield c(8)tD/Λ
2 < 0.7TeV−2 at 95% CL [51] and are

1Interesting exceptions exist, in particular the so-called Remedios power counting [48].
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therefore not sensitive enough to yield a relevant constraint on the (m∗, g∗) plane, we show
in Sec. 3.4 that this changes at high-energy lepton colliders, due to the superior precision in
top-pair production.

The main conclusion of the previous discussion is that probes of the four-top operator
Eq. (3.1) are the most relevant ones concerning a strongly interacting (right-handed) top quark.2

We will discuss the impact of current LHC bounds from four-top production on the (m∗, g∗)
parameter space in more detail in Sec. 3.2, where we also present a comparison with the main
universal tests of CH models. The latter comprise searches for anomalous Higgs couplings,
primarily controlled by OH = 1

2

(
∂µ|H|2

)2
and constrained by Higgs and electroweak precision

data. Given that cH/Λ
2 ∼ g2∗/m

2
∗, provides, as we will see, the leading constraint at strong

coupling. Note however that such a bound is largely correlated with other contributions to the
electroweak parameters, in particular S and T, controlled by the operators OW , OB, and OT
respectively (see Table 3.1). These last operators are, in fact, crucial in CH models, giving rise
to constraints that are independent of the new-physics coupling, since cW,B/Λ

2 ∼ 1/m2
∗ and

cT ∼ Ncy
2
t (yt/4π)

2/m2
∗, the latter being of one top-loop size because of custodial symmetry [17].

The other set of relevant bounds are associated with non-standard effects that are largest at weak
g∗. They are described in terms of the parameters Z, W, Y [54], or equivalently by the operators
O2G, O2W , O2B (see Table 3.1), with coefficients c2G/Λ

2 ∼ (gs/g∗)
2/m2

∗, c2W /Λ
2 ∼ (g/g∗)

2/m2
∗,

c2B/Λ
2 ∼ (g′/g∗)

2/m2
∗, respectively.

3

Finally, one of the most relevant constraints on CH models, connected as well with the top
sector, comes from the CP-violating operator Õγ = H†HBµνB̃µν , with coefficient of one top-
loop size c̃γ/Λ

2 ∼ g′2Nc(yt/4π)
2/m2

∗ and which itself contributes at one loop to the EDM of the
electron. The current constraint on m∗, taking the power counting estimate at face value, is
m∗ > 20TeV at the 95% CL [55, 56]. While this is the strongest bound independent of g∗, let
us note that being CP-violating it is of a qualitatively different nature regarding the previous
ones; for this reason, we do not further consider it in this part of the thesis. It will reappear,
however, in more detail in part II in the context of measurements of EDMs.

3.2 Current Status and BSM Interpretation of Multilepton Ex-
cesses

In this section, we review our current knowledge of the corresponding experimental constraints,
paying special attention to those operators leading to the largest sensitivity on the parameter
space of CH models. The current status is summarized in Fig. 3.1. We will also discuss how the
inclusion of the aforementioned EFT operators can at least alleviate some of the tension in four
top and top pair production in association with additional weak bosons.

From the absence of significant deviations in the total cross-section in four-top produc-
tion, which have been searched for using ≈ 36 fb−1 of data in the single-lepton [44, 57, 58],
opposite-sign dilepton [44, 58], and same-sign dilepton and multilepton final states [59–61],
the combined ATLAS observed (expected) bound on the four-fermion operator Eq. (3.1) is
|ctt|/Λ2 < 1.9 (1.6)TeV−2 at 95% CL [58]. A similar bound is obtained by CMS [44]. Besides,
very recently both experiments have updated their multilepton searches to ≈ 140 fb−1 [62, 63],
observing mild but intriguing excesses with respect to the SM predictions; we will discuss these
shortly.

2See also [52,53] for previous phenomenological studies at the LHC with a similar spirit.
3Since we are considering scenarios with (partial) top quark compositeness, it is implicitly assumed that the

new-physics sector features colored states that generate O2G at low energies.

26



3.2. Current Status and BSM Interpretation of Multilepton Excesses

2 4 6 8 10

2

4

6

8

10

12

Figure 3.1: Current 95% CL excluded regions in the (m∗, g∗) plane of scenarios featuring a
strongly- interacting Higgs and (right-handed) top quark. The different limits are associated
with bounds on individual operators, each dominating the corresponding observables in a certain
region of parameter space (see main text for details) — this is not a global fit.

The only other operator with the same scaling as Ott is the pure Higgs operator OH . The
current exclusive (one operator at a time) 95% CL bound on its coefficient is cH/Λ

2 < 1.5TeV−2

[64]. Including the strong correlation with the operators OW , OB, and OT significantly weakens
the bounds, giving f |LHC

H ≳ 550GeV after marginalizing (i.e., letting the corresponding EW
parameters S and T float). As mentioned before, these operators give constraints independent
of the new-physics coupling, that is why the region of parameter space covered by the bound
(cW + cB)/Λ

2 < 0.07TeV−2 [64, 65], corresponding to m∗ > 3.7 TeV, is also shown in Fig. 3.1.
Operators with two top quarks also enter top quark pair production at hadron colliders,

and we find that the current main sensitivity arises from LHC dijet searches, which lead to the
bound c2G/Λ

2 < 0.01TeV−2 [66–68]. As shown in Fig. 3.1, this is superior to the LEP and LHC
limits derived from c2W and c2B [64]. This remains the case at the high-luminosity phase of
the LHC, even if with more statistics the constraint on W from pp→ ℓν is expected to reach a
comparable level to that on Z [69].

Now that we have established the most interesting operators in the context of a strongly
coupled top quark, and we saw how well they are currently constrained by experiments, we
want to investigate if and how their effects can explain certain tensions in the data. We will
focus on the recent measurement of four-top production performed by both the ATLAS [70] and
CMS [71] collaborations, as well as the associated measurements of the main backgrounds tt̄W ,
tt̄Z, tt̄h. At the LHC, these measurements are dominated by final states with multileptons plus
jets. After Run 2, an intriguing, generalized pattern of mild excesses has emerged in these final
states. We review the latest experimental results here4:

1. The CMS four-top analysis [62], in its cut-based version (on which we focus below), finds

4During writing up this thesis both the CMS and ATLAS collaboration announced the observation of four-
top production for the very first time [72, 73]. Both analyses investigate multi-lepton final states and obtain
cross-sections which are consistent with each other as well as with the SM prediction.
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Figure 3.2: Summary of experimental measurements (dots with error bars) compared to the-
oretical predictions (dashed vertical lines with uncertainty bands).

σtt̄tt̄ = 9.4+6.2
−5.6 fb compared to the SM reference prediction σSM,R

tt̄tt̄
= 12.0 fb, while letting

the normalizations µtt̄W = 1.3±0.2 and µtt̄Z = 1.3±0.2 float in the fit, with SM reference
cross-sections σSM,R

tt̄W
= 610 fb and σSM,R

tt̄Z
= 840 fb, respectively.

2. The ATLAS four-top measurement [63] finds σtt̄tt̄ = 24+7
−6 fb, and also observes an excess

of tt̄W events relative to the SM reference, with best fit µtt̄W = 1.6 ± 0.3 based on
σSM,R

tt̄W
= 601 fb. The normalization of tt̄Z is not left to vary in the fit.

3. The CMS measurement of tt̄h, tt̄W , and tt̄Z [74],5 quotes µtt̄W = 1.43 ± 0.21 for a
reference cross-section σSM,R

tt̄W
= 650 fb. Interestingly, this analysis included for the first

time the O(αsα
3) contribution to tt̄W+ jets at the differential level, dominated by tW

scattering [75]. In addition, the fit gives µtt̄Z = 1.03 ± 0.14 with σSM,R

tt̄Z
= 839 fb and

µtt̄h = 0.92+0.25
−0.23 for σSM,R

tt̄h
= 507 fb.

4. The ATLAS analysis [76] finds µtt̄W = 1.39+0.17
−0.16 for a SM reference σSM,R

tt̄W
= 727 fb and

µtt̄h = 0.70+0.36
−0.33 for σSM,R

tt̄h
= 507 fb, when using a single tt̄W normalization factor.

5. A dedicated measurement by CMS of tt̄Z [77] finds a cross-section σtt̄Z = 950 ± 80 fb
compared to the SM reference σSM,R

tt̄Z
= 860 fb.

6. A dedicated measurement of tt̄Z [78] by ATLAS obtains µtt̄Z = 1.19± 0.12 with σSM,R

tt̄Z
=

880 fb.

Most measurements [62, 63, 74, 78] are based on ≈ 140 fb−1, whereas [76, 77] use ≈ 80 fb−1. In
addition, we mention but do not discuss further the combined analysis of EFT operators in top
associated production modes by CMS [71], as well as previous measurements of tt̄W , tt̄Z by
CMS [79] and ATLAS [80], which are all based on a smaller data set, ≈ 40 fb−1.

The above overview shows that an extensive pattern of 2σ-level excesses with respect to the
SM predictions is observed by both ATLAS and CMS. We summarize the status in Fig. 3.2,

5This analysis also measures the th cross-section, but we omit it since the accuracy is much weaker than for
the tt̄X processes.
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Figure 3.3: Comparison of our MC event yields to the CMS simulation. Once normalized
to 544 fb [81], the tt̄W (QCD) sample requires a rescaling factor rtt̄W (QCD) = 0.92 to match the
total CMS MC yield in CRW. After using 839 fb as normalization [82], the tt̄Z sample is rescaled
by rtt̄Z = 0.75 to match the total CMS MC yield in CRZ.

where the above-quoted experimental results are compared with the following SM theoretical
predictions in femtobarns

σSM

tt̄tt̄ = 12.0+18%
−21% , σSM

tt̄W = 577+11%
−11% [81]; σSM

tt̄Z = 839+10%
−12% , σSM

tt̄h = 507+6.8%
−9.9% [82] . (3.12)

The discrepancies are mild, yet their somewhat coherent structure hints that they may not be
due to mere statistical fluctuations.6 Recent theoretical studies have focused on pushing the
SM predictions to higher accuracy, especially for tt̄W [70, 84–89], which however, still exhibits
the strongest disagreement between theory and experiment. For now, a complete NNLO QCD
calculation remains unreachable.

Here we take a different standpoint and entertain the possibility that the excesses are due
to heavy new physics, described by at least some of the effective operators from the previous
section. Since, here, we are interested only in processes with at least two top quarks, the two
operators Ott and OHt are the leading ones according to their power counting (ignoring for now
the possible PLR forbidding OHt ). The former mediates tt̄tt̄ production, whereas the latter
modifies the ZtRtR coupling, thereby leading to three distinct effects: it contributes to tt̄Z
production at the leading O(α2

sα), to tt̄W+ jets at the formally subleading, but tW scattering-
enhanced, O(αsα

3) [75], and to tt̄tt̄ production at O(α2
sα

2). We consider these two operators as a
motivated first approximation, but note that others should be added in a more general analysis
that includes e.g., tt̄h production, notably Oyt given that this modifies the htt coupling (the
sensitivity of tt̄tt̄ to Oyt was studied in [90]). We concentrate on the CMS four-top analysis [62]
because it provides a cut-and-count version and sufficient pre-fit information for us to perform
a detailed, if simplified, reinterpretation.

The analysis selects events containing at least two leptons of the same sign, Nj ≥ 2 and
Nb ≥ 2, HT > 300 GeV and pmiss

T > 50 GeV, with complete definitions and list of require-
ments reported in [62]. The cut-based analysis defines two control regions, CRW (where the
contribution of tt̄W is enhanced) and CRZ (where tt̄Z is enhanced), and 14 signal regions.
In our reinterpretation, for simplicity, we combine all signal regions into a single one (SR).
Signal and background events are generated using MadGraph5 aMC@NLO [91], implementing
higher-dimensional operators via FeynRules [92]. The factorization and renormalization scales

6Note that 8 TeV data only afforded to measure these processes with order 50% uncertainties; see e.g., [83] for
tt̄W , tt̄Z.
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are set to the default dynamical value for all processes, the top mass is set to 172.5 GeV, and
NNPDF23 lo as 0130 qed parton distribution functions [93] are used. Parton showering and
hadronization are performed by Pythia8 [94] and detector effects are parametrized using the
CMS card in Delphes3 [95], but setting R = 0.4 for the anti-kt jet clustering algorithm [96],
implemented via the Fast Jet package [97]. As a preliminary check of our simulation tool chain,
we reproduce the SM tt̄W (tt̄Z) event yields in the CRW (CRZ), obtained by CMS with full
detector simulation. The results, reported in Fig. 3.3, show that after application of mild scal-
ing factors to match the overall normalizations, our simulations reproduce reasonably well the
results reported by CMS (where it should be kept in mind that we simulate at LO in QCD,
whereas the CMS treatment is at NLO). Having thus gained confidence in our setup, we proceed
to include the new physics effects.

The impact of OHt on tt̄Z production is captured by rescaling the CMS yields using the
overall factor (note that we set Λ = v throughout this section)

µtt̄Z(cHt) =
g2ZtLtL + g2ZtRtR

(
1 + 3cHt

4s2w

)2

g2ZtLtL + g2ZtRtR
, gZff = gZ(T

3
Lf − s2wQf ) , (3.13)

which we have checked to be a good approximation by simulating a set of samples with different
values of cHt (see [98, 99] for NLO QCD analyses of the tt̄Z sensitivity to top electroweak
couplings). In addition, we consider the impact of cHt on tt̄Wj(EW); this piece was altogether
neglected in the CMS simulation of tt̄W+ jets [62]. For the tt̄tt̄ process, our simulation is
simplified in two ways: we neglect interference of the Ott -mediated amplitude with the SM,7

and neglect the contribution of OHt. We do so because reliably assessing these effects at the
hadronic differential level goes beyond our computational resources, and besides it would be best
performed by the LHC experiments directly. At the qualitative level, we note that the ctt - SM
interference is suppressed at high energies, whereas the impact of cHt on four-top production is
generally expected to be moderate, as the tt̄ → tt̄ amplitude does not grow with energy when
cHt ̸= 0, in contrast with the aforementioned case of tW scattering. We provide an estimate of
the expected size and pattern of these effects after presenting the results of our fit.

To shed light on the compatibility of the data with our BSM hypothesis, we form a χ2 from
18 non-overlapping bins,

χ2 =
∑

iCRW

(
∆Ni

δCMS,i

)2

+
∑

iCRZ

(
∆Ni

δCMS,i

)2

+
∑

iSR

(
∆Ni

δCMS,i

)2

, (3.14)

with ∆Ni = NSM,i−Ni({p}) the difference between the number of events in each bin in the SM
and the predicted number of events dependent on the parameters {p} to be estimated. In the
above sum iCRW and iCRZ run over all bins given by Nj with the Nj = 6, 7 bins in CRZ merged,
while iSR enumerates 9 HT bins with all events with HT being merged into a single bin. For
δCMS,i We use the uncertainties on event counts as read from Figs. 2 and 3 in [62], averaging
over positive and negative directions, and neglect theoretical uncertainties. The results of a
two-parameter fit to {p} = (cHt, ctt) are shown in the upper panels of Fig. 3.4, while in the
lower panel we show for comparison a fit where no higher-dimensional operators are introduced,

7The O(c2tt) term of the cross-section is normalized by applying a K-factor of 1.24, as derived for SM four-
top production using the NLO QCD-only cross-section of 11.1 fb [81]. However, SMEFT@NLO framework [100]
has enabled the calculation at full NLO in QCD of the contributions of four-top operators to tt̄tt̄ production
(including interference with the SM). In particular, K < 1 was obtained for the O(c2tt) piece. Due to the different
scale choices, our approximate-NLO cross-section turns out to be numerically very close to the exact-NLO result
quoted in [100].
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Figure 3.4: Exclusion contours from fits to the CMS data in [62]. Top: plane of the EFT
coefficients (cHt, ctt). The contours are invariant under ctt → −ctt because we neglected inter-
ference between the BSM and SM tt̄tt̄ amplitudes. The left panel shows the full fit, whereas the
right panel displays the 1σ regions when the χ2 is restricted only to CRW, CRZ, or SR. Bottom:
plane of the signal strengths (µtt̄W , µtt̄Z). Here µtt̄W rescales the total SM rate, including the
tt̄Wj(EW) component, which we add to the CMS reference cross-section. In all panels, a black
dot indicates the SM point.

but the signal strengths {p} = (µttW , µttZ) are left floating, which is similar to the treatment
performed by CMS. The best-fit point of the latter fit is (µtt̄W , µtt̄Z) ≈ (1.3, 1.2). We note that
the two EFT coefficients parametrizing the effects of heavy new physics provide a reasonable fit
to the data, with comparable goodness of fit to the ad-hoc signal strengths. The best fit is given
by (cHt, ctt) ≈ (0.21,±0.054), corresponding to scales f |Ht ≈ 540GeV and f |tt ≈ 1.1TeV if the
respective coefficients are set to unity. The impact of the BSM contributions to the CRW, CRZ
and SR are shown in Fig. 3.5 taking the best-fit values of the coefficients.

Next, to gain some insight on the effects of the approximations we made in our description
of the four-top process, we consider parton level tt̄tt̄ production (with undecayed tops) including
the full LO amplitude for the SM plus Ott and OHt. We split the cross-section into a low-energy
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and a high-energy region according to MT =
∑4

i=1(m
2
t + pi 2T )1/2,

σMT < 1.15TeV [fb] = 6.1− 20 ctt + 410 c2tt + 5.3 cHt + 9.3 c2Ht − 63 cHtctt , (3.15)

σMT > 1.15TeV [fb] = 3.6− 6.8 ctt + 1100 c2tt + 1.4 cHt + 2.3 c2Ht − 25 cHtctt . (3.16)

The boundary value MT = 1.15TeV is chosen to roughly match HT = 800GeV at hadronic
level, which we have verified splits the SR into two sub-regions of comparable sensitivity in our
fit to CMS data (see the bottom panel of Fig. 3.5). Equation (3.16) confirms the expectation
that at high energies, it is reasonable to neglect all BSM terms except for the O(c2tt) one: for
example, plugging in the best fit point, we find σ>/σ

SM
> = 1.79 whereas our approximation

gives 1.86. For the low-energy region, using, Eq. (3.15) we find σ</σ
SM
< = 1.15 versus the

approximate value 1.20. This apparently reasonable agreement is, however, actually, the result
of a compensation between different corrections arising from cHt and ctt, suggesting that the
shapes of our fit contours could be somewhat affected by a fully accurate description of BSM
effects in the low-HT bins of SR.

Finally, we remark that OHt mediates BSM contributions to additional processes, including
for instance pp→ tt̄hj at O(αsα

3) and tZW at O(αsα
2). The analysis of such subleading effects

was initiated in [75] and later expanded in [101]. Based on their findings, we do not expect
the OHt dependence of these and other analogous processes, which is neglected here, to have
a significant impact on our results. Nonetheless, a detailed assessment would be of interest to
obtain a complete picture of heavy new physics effects in LHC multilepton plus jets final states.

In summary, the main messages we derive from the fit are:

• The O(αsα
3) tt̄Wj(EW) contribution to tt̄W+ jets is important and should be consistently

included at the differential level, as originally pointed out in [75] and later analyzed in
depth in [81,86].

• An interpretation of the CMS data [62] in terms of the OHt and Ott operators gives a
goodness of fit comparable to the application of constant rescaling factors to the tt̄W and
tt̄Z cross-sections, while having a stronger physical motivation.

• While it is too early to draw any conclusions, it is intriguing that a scale f ∼ 750GeV
improves the fit to multilepton + jets data, while being roughly consistent both with four-
top constraints from the single lepton and opposite-sign dilepton final states [58], and with
measurements of the Higgs couplings [64].

A more comprehensive study, including a wider set of signal regions, would be strongly desirable
to obtain further insight. Nevertheless, we regard the coincidence of scales suggested by our
analysis as an additional motivation to further investigate heavy top-philic new physics.

3.3 Future proton-proton colliders

Let us remark that under well-motivated assumptions, current searches for strong tt̄tt̄ production
enjoy a higher reach on the compositeness scale 4πf than probes of the Higgs sector at the
LHC. This fact motivates our sensitivity studies at future colliders. We begin in this section
with hadron colliders, first discussing shortly the high-luminosity phase of the LHC and then
analyzing in detail the 100 TeV FCC-hh [102].

To estimate the HL-LHC sensitivity to ctt/Λ
2, we perform a simple extrapolation of the CMS

four-top search in multileptons [62]. We focus on the signal region (bottom panel of Fig. 3.5),
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Figure 3.5: The filled histograms show the CMS MC predictions as given in [62]. The
stacked, light green [dark green] (dark red) dashed histograms show the BSM contribution
to tt̄Z [SM+BSM contribution to tt̄Wj(EW)] (BSM contribution to tt̄tt̄) at the best-fit point
(cHt, ctt) ≈ (0.21,±0.054). Black points show the data with error bars as quoted by CMS. Al-
though in our fit we combine the last two bins of CRZ and the last 5 bins of SR, for illustration
here we retain the same binning as chosen by CMS.

adopting the HT -binning chosen by CMS and rescaling their MC predictions for all SM processes
to a luminosity of 3 ab−1. As in the previous section, we include the missing SM tt̄Wj(EW)
contribution among the backgrounds and simulate the signal, neglecting interference with SM
four-top production. Assuming as systematics on the two main backgrounds (δtt̄tt̄, δtt̄W ) =
(8.5%, 7.5%), which correspond to half the current theoretical uncertainties [81], and applying
a mild PDF rescaling factor [103] to account for the increase in collider energy to 14 TeV, we
obtain at 95% CL

Λ/
√
|ctt| > 1.3TeV (no syst.: 1.4TeV) . (HL - LHC) (3.17)

We view this as a conservative estimate, as the actual HL-LHC analysis will capitalize on the
≈ 20 times larger statistics by refining the binning at larger HT , thus increasing slightly the
sensitivity.8 Furthermore, a caveat is that we have assumed agreement of data with the SM
predictions, although as discussed in Sec. 3.2 this is somewhat unclear for current multilepton
measurements.

We now turn to the analysis of the four-top final state at the FCC-hh. The decays of the
four tops give rise to a complex set of possible final states. The same-sign dileptons (SSL)
and trileptons (3L) signatures both benefit from suppressed SM backgrounds, while retaining

8In addition, rescaling the current statistical-only 95% CL bound Λ/
√

|ctt| > 0.93 TeV using Collider
Reach [103] would give an estimate of 1.7 TeV at the HL-LHC.
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not-too-small branching ratios of 4.1% and 2.6%, respectively. These numbers do not include
contributions from leptonic τ decays, which are systematically neglected in our FCC analysis
(whereas they are always included when we quote LHC results).9 Conversely, the fully hadronic
signature has a large branching ratio of 20%, but suffers from challenging backgrounds. In this
section, we thoroughly analyze the SSL and 3L signatures, and perform an exploratory study of
the fully hadronic final state.

For the SSL and 3L final states we partly build on the latest LHC searches for four-top
production in multilepton+ jets [62, 63], and on the LHC study [104] which focused on SM
tt̄tt̄ production and BSM effects mediated by relatively light new physics (see also [105] for
a thorough analysis of resonant signals in the four-top final state at the LHC). Signal and
background events are generated using MadGraph5 aMC@NLO [91], using a FeynRules [92]
model where Ott is added to the SM. The factorization and renormalization scales are set to
MT /2 for all processes, where MT is the sum of transverse masses. The signal samples only
contain the O(c2tt) contribution, as interference with the SM tt̄tt̄ amplitude is a small effect in
our signal region; we provide a quantitative assessment of this at the end of the section. The
SM four-top production is simulated at full LO, namely O(αisα

j) with i, j ∈ {0, . . . , 4} and
i + j = 4, while as normalization we use the complete NLO (QCD+EW) calculation of [81].
The normalization of the signal is rescaled by the ratio of the NLO (QCD+EW) and LO QCD
cross-sections as calculated for SM production, which equals 1.8.

Parton showering and hadronization are performed by Pythia8 [94] and detector effects are
parametrized using Delphes3 [95] adopting the FCC card. Within Delphes, jets are clustered
with the FastJet package [97] using the anti-kt algorithm [96] with R = 0.5. The b-tagging
performance is described through the following efficiencies,

ϵi(pT ) = ϵ0i χ[10GeV, 15TeV](pT )
(
1− χ[500GeV, 15TeV](pT )

pT
15TeV

)
, (3.18)

ϵ0b,c,j = 0.85, 0.05,0.01 for |η| < 2.5 , ϵ0b,c,j = 0.64, 0.03, 0.0075 for 2.5 < |η| < 4.0 ,

and ϵ0b,c,j = 0 for |η| > 4.0. In Eq. (3.18), χ denotes the characteristic function. As our
signals feature highly boosted tops, as well as a generally large amount of hadronic activity,
we apply lepton isolation using a variable cone, following the mini-isolation proposal [106]: an
electron (muon) ℓ is said to be isolated if pconeT /pℓT < 0.1 (0.2), where pconeT is the sum of the
transverse momenta within a cone of radius Riso = min (rmin, p

0
T /p

ℓ
T ) around the lepton [the

sum excludes the lepton itself], where rmin = 0.2 (0.3) and p0T = 8 (10)GeV. These values are
very similar to those used in [58,104]. As input parameters, we take

GF = 1.166× 10−5GeV−2, mZ,h,t = 91.19, 125, 173GeV, α(mZ) = 1/132.5 , (3.19)

and we employ NNPDF23 lo as 0130 qed parton distribution functions [93].

3.3.1 Same-sign dileptons

In this channel, the main background beyond the irreducible SM tt̄tt̄ is the production of
tt̄W+ jets, which is in fact also primarily measured in the SSL final state. Secondary back-
grounds with genuine SSL include tt̄Z and tt̄h, as well as some other processes listed in Table 3.2,
together with the MC generation-level cross-sections. In all cases, we generate processes giving
rise to at least a SSL pair and four jets at the matrix element level; for a few backgrounds,
we are able to include additional jets within computing limitations. Some important processes,

9As taus dominantly originate from W and Z decays, they give approximate equal contributions to both signal
and backgrounds, hence neglecting them makes our FCC results slightly conservative.

34



3.3. Future proton-proton colliders

including SM tt̄tt̄ and tt̄W production, are normalized to the best available predictions that
include both QCD and EW corrections [81,107,108].

In addition, there are important reducible backgrounds: either a jet is misidentified as a
“fake” lepton, or one lepton belonging to an opposite-sign pair has its charge mismeasured
(Qflip); both of these originate mainly from tt̄+ jets. The fake lepton component can be esti-
mated by applying a probability for a given jet to be misidentified as a lepton (in general, the
probability depends on the jet favor and pT ), and a transfer function relating the properties
of the daughter lepton to those of the parent jet [109]. The probability and transfer function
parameters need to be tuned against data. Here we follow a simplified approach, assuming a
constant probability for both heavy favor and light jets, and that the fake lepton inherits the
full four-momentum of the jet it originates from, whereas the lepton charge and favor are as-
signed randomly and independently. The probability is fixed to εfake = 3.7×10−5 by comparing
a sample of 13TeV semileptonic tt̄+ jets, normalized to a cross-section of 832 pb [110], to the
“nonprompt” yields in the control region CRW of the CMS four-top search [62] (see left panel
of Fig. 3.5).10

The Qflip component is estimated from MC events containing an e+e− or e±µ∓ pair and ap-
plying a constant probability for the charge of each electron with peT > 10GeV to be mismeasured
(the probability of flipping the charge of a muon is negligible). The probability εflip = 2.2×10−4

is taken from [104] and further validated by checking that a 13TeV fully leptonic tt̄+ jets sam-
ple reproduces the “charge misID” yields in the control region CRW of [62]. The processes
we include in our estimates of the fake lepton and Qflip backgrounds at the FCC are listed in
Table 3.2.

We now turn to the event selection. First, we identify the lepton and jet candidates satisfying

pℓT > 25GeV , |ηℓ| < 3 , pjT > 50GeV , |ηj | < 5 . (3.20)

Next, to prevent assignment of a single detector response to both a lepton and a jet, we apply
to the selected candidates an overlap removal procedure, following closely [58]. To avoid the
double counting of energy deposits as electrons and jets, for each electron the closest jet within
∆R < 0.2 (if any) is removed; however, if the next-to-closest jet is within ∆R < 0.5 of the
electron, then the electron is removed and the previously removed jet is reinstated. For muons,
we apply a different criterion, aimed at distinguishing muons arising from hadron decays within
proper jets, from muons that undergo bremsstrahlung radiation inside the calorimeter and are
accidentally reconstructed as jets, typically characterized by a very small number of matching
tracks. If a jet satisfies ∆R(µ, j) < 0.04 + 10GeV/pµT and it has at least three tracks, the muon
is rejected; otherwise, the jet is removed. The baseline selection is completed by the following
requirements,

exactly two SSL with pℓ1,ℓ2T > 40, 25GeV ,

≥ 5 jets, of which ≥ 3 b-tagged , HT > 400GeV , (3.21)

where ℓ1 (ℓ2) denotes the (sub)leading lepton. We expect that the above requirements on the
lepton transverse momenta will allow for a high efficiency of an FCC-hh dilepton trigger. At
this stage, for a reference BSM scale Λ/

√
|ctt| = 6TeV, we have S/B ∼ 10−3, as shown in

Table 3.3. Therefore, we search for additional cuts tailored to the signal, which is characterized
by a hard tt̄→ tt̄ scattering. We find as optimal variables the pT of the leading lepton and ST ,
defined as the scalar sum of the transverse momenta of the SSL pair and of all jets. Normalized
distributions of these variables after the baseline selection are shown for the signal and the main
backgrounds in Fig. 3.6. We apply the cuts pℓ1T > 275GeV and ST > 3TeV, and divide the
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category processes decay channel σ × BR [fb]

tt̄tt̄ (signal)
tt̄tt̄

Wℓ± Wℓ± Whad Whad 0.325
Λ/
√
|ctt| = 6TeV

tt̄tt̄ (SM) tt̄tt̄ Wℓ± Wℓ± Whad Whad 144 [81]

tt̄W
tt̄W±+0,1,2 jets Wℓ± Wℓ± Whad 640 [81]

tt̄W±bjj Wℓ± Wℓ± Whad 4.11
tt̄W±jj Wℓ+ Wℓ− Wℓ± 63.4† [108]

tt̄Z
tt̄Z +0,1,2 jets Wℓ± Whad Zℓ+ℓ− 1120 [107]

tt̄Zjj Wℓ+ Wℓ− Zℓ+ℓ− 82.6

tt̄h
tt̄h, h→WW ∗ Wℓ± Wℓ± Whad Whad 300 [107]
tt̄h, h→ ZZ∗ Wℓ± Whad Zℓ+ℓ− Zhad 24.0 [107]
tt̄h, h→ τ+τ− Wℓ± Whad τℓ± τhad 140 [107]

other
tZbjj Wℓ± Zℓ+ℓ− 145

tt̄W+W− Wℓ± Wℓ± Whad Whad 35.3
tt̄W+W− Wℓ+ Wℓ− Wℓ± Whad 11.7

fake ℓ
tt̄+1,2 jets Wℓ± Whad Ktt̄ 3.45× 106

tt̄bjj Wℓ± Whad Ktt̄ 6.13× 104

Qflip
tt̄jj Wℓ+ Wℓ− Ktt̄ 4.63× 105

tt̄bjj Wℓ+ Wℓ− Ktt̄ 1.06× 104

Table 3.2: SSL signal and background processes at
√
s = 100TeV. Samples with different jet

multiplicities have been merged using the MLM prescription with a matching scale of 30GeV.
The cuts pjT > 50GeV and |ηj | < 5 are imposed on jets arising from QCD radiation, but no
cuts are applied yet to decay products of heavy particles. The subsequent baseline selection,
discussed in Sec. 3.3.1, requires ≥ 5 jets, among which ≥ 3 are b-tagged. The higher-order
cross-sections we use for normalization always assume µ = MT /2 (note that in [81] this is not
the central choice for tt̄tt̄). The † indicates that pjT > 100GeV was exceptionally required, to
match [108] (we have checked that this different initial cut has negligible impact on the event
yield after the complete selection). Whenever they do not appear in tt̄ or bb̄ pairs, the symbols
t and b refer to either particles or antiparticles. To the tt̄+ jets samples used to estimate the
fake lepton and Qflip backgrounds, we apply a Ktt̄ = 1.4, calculated for inclusive tt̄ production
using the NNLO cross-section of 34.7 nb [111].

remaining events into three ST bins, with S/B ranging from 8× 10−3 to 5× 10−2. To derive a
bound on Λ we construct a χ2, accounting for the systematic uncertainties on the two main SM
backgrounds, namely tt̄tt̄ and tt̄W . For n bins, the χ2 is defined as

χ2 =
n∑

i,j=1

NS
i (C

−1
tot )ijN

S
j , Ctot = Cstat + Ctt̄tt̄sys + Ctt̄Wsys , (3.22)

where the number of signal events NS
i ∝ c2tt Λ−4, and

(Cstat)ij = (σstati )2δij , (CAsys)ij = σsys,Ai ρijσ
sys,A
j (A = tt̄tt̄, tt̄W ) , (3.23)

with σstati =
√
NSM
i , σsys,Ai = δAN

A
i and we assume that each systematic uncertainty δA is fully

correlated across bins, namely ρij = 1 for all i, j. We have also assumed that the observed number

10For comparison, εfake = 7.2× 10−5 was obtained in [104] by matching to an earlier ATLAS analysis.
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Figure 3.6: Normalized distributions of the leading lepton pT (left) and the scalar sum of the
transverse momenta of all jets and the two leptons (right), after the baseline SSL selection, for
the signal and the main backgrounds.

signal tt̄tt̄
tt̄W tt̄Z tt̄h other

fake
Qflip

S at S/B

Λ/
√
|ctt| = 6TeV SM ℓ 30/ab [10−2]

baseline 43 17000 4200 2900 1800 920 5300 2200 1.3 0.13

pℓ1T > 275GeV 20 1600 670 300 110 120 590 130 1.8 0.55
ST ∈ [3, 4] TeV 4.2 260 120 90 11 13 47 13 0.99 0.77
ST ∈ [4, 5] TeV 3.1 110 56 1.0 5.4 6.0 15 4.1 1.2 1.6
ST > 5TeV 6.1 67 41 2.1 2.5 2.6 7.3 2.4 2.9 4.9

Table 3.3: Cut flow for the SSL final state, with cross-sections in ab. The (purely statistical)
significance is defined as S = S/

√
S +B , and a two-sided exclusion at (1− p) CL corresponds

to S =
√
2 erf−1(1− p).

of events will match the SM expectation. We take (δtt̄tt̄, δtt̄W ) = (8.5%, 7.5%) as reference
values, obtained by halving the current theoretical uncertainties on the SM predictions [81].
The resulting 95% CL bound with L = 30 ab−1 is

Λ/
√
|ctt| > 6.1TeV (no syst.: 6.9TeV) . (FCC-hh, SSL) (3.24)

3.3.2 Trileptons

In the trilepton channel the main backgrounds are the irreducible SM tt̄tt̄ production and the
tt̄W , tt̄Z, tt̄h+ jets processes. The full list of backgrounds we consider is given in Table 3.4,
together with the MC generation-level cross-sections. We generate processes giving rise to
three leptons and at least four jets at the matrix element level. The fake lepton background is
generated using the same method as in the SSL analysis of Sec. 3.3.1, but applied to a different set
of processes. The Qflip background is negligible, since no requirement is imposed on the lepton
charges. The event selection is analogous to the one for SSL: after lepton and jet candidates
are identified as in Eq. (3.20), we apply the same overlap removal procedure. In addition, the
baseline selection requires

exactly three leptons with pℓT > 25GeV ,
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category processes decay channel σ × BR [fb]

tt̄tt̄ (signal)
tt̄tt̄

Wℓ+ Wℓ− Wℓ± Whad 0.206
Λ/
√
|ctt| = 6 TeV

tt̄tt̄ (SM) tt̄tt̄ Wℓ+ Wℓ− Wℓ± Whad 90.9 [81]

tt̄W tt̄W±jj Wℓ+ Wℓ− Wℓ± 63.4† [108]

tt̄Z
tt̄Z +0,1,2 jets Wℓ± Whad Zℓ+ℓ− 1120 [107]

tt̄Zjj Wℓ+ Wℓ− Zℓ+ℓ− 82.6

tt̄h
tt̄h, h→WW ∗ Wℓ+ Wℓ− Wℓ± Whad 190 [107]
tt̄h, h→ ZZ∗ Wℓ± Whad Zℓ+ℓ− Zhad 24.0 [107]
tt̄h, h→ τ+τ− Wℓ+ Wℓ− τℓ± τhad 44.2 [107]

other
tZbjj Wℓ± Zℓ+ℓ− 145

tt̄W+W− Wℓ+ Wℓ− Wℓ± Whad 11.7

fake ℓ
tt̄jj Wℓ+ Wℓ− Ktt̄ 4.63× 105

tt̄bjj Wℓ+ Wℓ− Ktt̄ 1.06× 104

Table 3.4: 3L signal and background processes at
√
s = 100TeV. Samples with different jet

multiplicities were merged using the MLM prescription with matching scale of 30GeV. The cuts
pjT > 50GeV and |ηj | < 5 are imposed on jets arising from QCD radiation, but no cuts are
applied to decay products of heavy particles. The subsequent baseline selection, discussed in
Sec. 3.3.2, requires ≥ 4 jets, among which ≥ 3 are b-tagged. The higher-order cross-sections we
use for normalization always assume µ = MT /2 (note that in [81] this is not the central choice
for tt̄tt̄). The † indicates that pjT > 100GeV was exceptionally required, to match [108] (we have
checked that this different initial cut has negligible impact on the event yield after the complete
selection). Whenever they do not appear in tt̄ or bb̄ pairs, the symbols t and b refer to either
particles or antiparticles. To the tt̄+ jets samples used to estimate the fake lepton background,
we apply a Ktt̄ = 1.4.

signal tt̄tt̄
tt̄W tt̄Z tt̄h other

fake S at S/B

Λ/
√
|ctt| = 6TeV SM ℓ 30/ab [10−2]

baseline 21 6700 570 1400 680 250 2100 1.1 0.18

pℓ1T > 275GeV 13 1000 160 180 74 52 310 1.7 0.73
ST ∈ [3, 4] TeV 2.9 160 35 13 9.4 6.4 33 0.99 1.1
ST ∈ [4, 5] TeV 2.1 66 19 4.1 1.7 4.0 9.9 1.1 2.0
ST > 5TeV 3.7 39 16 4.1 1.4 1.9 6.9 2.4 5.3

Table 3.5: Cut flow for the 3L final state, with cross-sections in ab.

≥ 4 jets , of which ≥ 3 b-tagged , HT > 400GeV , (3.25)

and events, where among the three leptons appears one opposite-sign, same-favor lepton pair
satisfying |mℓ+i ℓ

−
i
−mZ | < 15GeV are vetoed, to suppress backgrounds containing a leptonic Z

decay. The requirement of three leptons with pℓT > 25GeV should allow for a straightforward
triggering on these events. Notice that these selection requirements are orthogonal to those of
the SSL analysis, which will ease the combination of the results.

After the baseline selection, for a reference BSM scale Λ/
√
|ctt| = 6TeV, we have S/B ∼

2 × 10−3, as shown in Table 3.5. Normalized distributions of pℓ1T and ST at the baseline stage
are shown in Fig. 3.7. We adopt the same additional cuts as for the SSL selection, namely
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Figure 3.7: Normalized distributions of the leading lepton pT (left) and the scalar sum of the
transverse momenta of all jets and the three leptons (right), after the baseline 3L selection, for
the signal and the main backgrounds.

pℓ1T > 275GeV and ST > 3TeV, and divide the remaining events into three ST bins, with S/B
in the (1 - 5)× 10−2 range. We thus obtain at 95% CL

Λ/
√
|ctt| > 5.8TeV (no syst.: 6.6TeV) , (FCC-hh, 3L) (3.26)

where L = 30 ab−1 was assumed.

3.3.3 Same-sign dileptons and trileptons combination and discussion

We now combine the results in the SSL and 3L final states, by considering a joint χ2 with 6
orthogonal bins. We obtain

Λ/
√
|ctt| > 6.5TeV (no syst.: 7.3TeV) , (FCC-hh, SSL + 3L) (3.27)

from L = 30 ab−1 and with the reference systematic uncertainties (δtt̄tt̄, δtt̄W ) = (8.5%, 7.5%).
The impact of varying these uncertainties is shown in the left panel of Fig. 3.8; we stress that
we assume full correlation of each uncertainty across bins. In the right panel of Fig. 3.8 we
display the dependence of the combined bound on the fake lepton probability, whose value at
FCC-hh is unknown and which we have fixed based on a fit to LHC data. The Qflip background
affects only the SSL analysis and is 3 - 4 times smaller than the fake lepton background in
our benchmark scenario, so its impact remains small for any reasonable choice of the electron
charge-flip probability εflip.

In addition, we want to ensure that our bounds arise from regions of phase space where the
EFT expansion is under control. For this purpose, we show in Fig. 3.9 the combined SSL+3L
bound on Λ/

√
|ctt| obtained by discarding events where the largest parton-level invariant mass

of a top quark pair is larger than m∗, which represents the mass of new resonances. Since it is
not possible to tell on an event-by-event basis whether the hard scattering involved a tt̄, tt, or
t̄t̄ pair, we make the conservative choice to discard events where the largest invariant mass of
any such combination is larger than m∗.

We now return to the role of the interference between the signal and SM tt̄tt̄ amplitudes. To
quantify it, it is enough to work at the parton level, hence as a rough proxy for our signal region
we consider the process pp→ tt̄tt̄, followed by SSL decays and including the cuts pℓ1T > 200GeV
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Figure 3.8: Left: contours of the 95% CL bound on Λ/
√
|ctt| in TeV, obtained by combining the

SSL and 3L analyses, in the plane of systematic uncertainties on the two main SM backgrounds.
The cross indicates our reference values. Right: Impact on the bound of varying the probability
for a jet to give rise to a fake lepton. The dashed line indicates our baseline assumption.
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Figure 3.9: Combined SSL+3L bound as a function of m∗, the maximal allowed parton-level
invariant mass of any pair of top or antitop quarks. Dashed lines indicate contours of constant
new-physics coupling g∗ =

√
|ctt|m∗/Λ.

and HT > 2TeV.11 We find the leading order cross-section

σ(tt̄tt̄) [fb] = 1.5 + (0.3± 0.3)× 10−3 (6TeV)2

Λ2/ctt
+ 0.071

(6TeV)4

Λ4/c2tt
, (3.28)

where the coefficients are obtained by fitting to a set of cross-sections calculated for varying
ctt/Λ

2, and the uncertainties on the SM and O(c2tt) terms are negligible compared to the one
on the linear term. This result confirms that interference can be safely neglected. The same
conclusion applies to the 3L final state.

Finally, in Fig. 3.10 we show the impact of our combined SSL+3L bound, Eq. (3.27), on
the (m∗, g∗) parameter space of CH models, and compare it with other, complementary probes
which will become available throughout the development of the FCC program.

Strikingly, four-top production at the FCC-hh provides the dominant sensitivity on the com-
positeness scale, f |FCC

tt ≳ 6.5TeV, outperforming tests of Higgs coupling deformations associated

11For this check we only consider the dominant O(α2
s) component of the SM amplitude.
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Figure 3.10: Future sensitivity at the FCC, including the ee/eh/hh stages, at 95% CL in the
(m∗, g∗) plane of scenarios featuring a strongly interacting Higgs and (right-handed) top quark.
The different limits are associated with constraints on individual operators, each dominating
the corresponding observables in a certain region of parameter space (see main text for details).
The limit on Ott is derived using only FCC-hh.

with OH , as combined in [112] which includes input from the HL-LHC and the FCC-ee, -eh,
and -hh phases, resulting in f |FCC

H ≳ 4.2TeV at 95% CL. In addition, we show the projected
constraint on OW , OB [112], namely m∗ > 17TeV at 95% CL, as well as the expected FCC-hh
bounds on O2W and O2G, derived from charged- and neutral-current dilepton production [112]
(see also [69]), and high-energy dijet and inclusive jet production [68], respectively. These ob-
servables dominate the sensitivity for moderate strength of the new-physics coupling g∗. Finally,
we mention that strong constraints are also expected from CP-violating observables: the limit
on Õγ from the future measurement of the electron EDM by the ACME III experiment [113]
reachesm∗ > 115TeV at 95% CL. However, this probe is left out of Fig. 3.10 due to its inherently
different nature, as already done in Fig. 3.1.

To conclude the discussion on multilepton final states, we want to note that the presented
results would hold in the same way if instead of Ott we had chosen Oqq or Otq to generate
the signal, since their respective amplitudes all show the same growth with energy (apart from
possibly different color factors if the octet operators are chosen). But, of course, they would
constrain different parts of the parameter space due to their different power counting behavior.
A natural way to extend our analysis in a way that can distinguish between the various operators
is to take also the top polarization into account. Because of the definite chirality of the quarks in
the operator, this immediately fixes the polarization of all the quarks in the tttt production. This
would also increase the discriminating power of the signal with respect to the SM production,
which is mostly unpolarized at the LHC because of unpolarized initial state and the vector like
coupling of QCD [27].

3.3.4 Fully hadronic final state

Finally, we turn to the signature that arises when all four tops decay hadronically. This channel
benefits from a large branching ratio of 20% and is intrinsically interesting because at the FCC-
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hh the hadronic tops will frequently possess multi-TeV transverse momenta, entering a kinematic
regime that is only marginally accessible at the LHC (for which the fully hadronic signature was
discussed in [105], albeit assuming a resonant signal). While this happens already in the SM, the
relative importance of ultra-boosted tops increases further in the presence of heavy new physics
that generates Ott. To obtain a first estimate of the reach, we perform a crudely simplified
analysis that requires four top-tagged jets, relying on the performance of existing hadronic top
tagging methods developed for the LHC, as studied by CMS [114]. As a first step, we generate
the signal and the main backgrounds, which are tt̄tt̄, tt̄jj and jjjj production in the SM, at
parton level with a pT > 200 GeV cut on each undecayed top or jet. The interference between
the BSM and SM four-top amplitudes is neglected, since we are interested in the high-energy
regime. We then include the branching ratios for hadronic top decays and apply, on an event-by-
event basis, the pT -dependent efficiencies and mistag rates extracted from [114].12 Finally, we
select highly energetic events by requiring the total invariant mass of the four final-state objects
to be larger than 5.5TeV and the sum of the transverse momenta to be larger than 4.5TeV.
Demanding S/

√
B > 1.96 for L = 30 ab−1 we find the 95% CL bound

Λ/
√
|ctt| > 6.0TeV . (FCC-hh, fully hadronic, estimate) (3.29)

The corresponding signal cross-section is ≈ 1.0 ab and S/B ≈ 0.13, which justifies omitting
systematic uncertainties in first approximation. The background is dominated by SM four-top
production with an O(10)% contribution from tt̄jj, while jjjj is negligible.

The estimate Eq. (3.29), although obtained through rough approximations, indicates a
promising potential for the fully hadronic channel. However, requiring a large pT for all four
tops, as necessary to apply the results of [114], severely suppresses the signal rate, ultimately
limiting the sensitivity. This motivates pursuing a different strategy, where the two hardest tops
are tagged using jet substructure algorithms whereas the two softest tops are identified from
their resolved decay-product jets; this is in consonance with the topology of our signal, which
is characterized by a high-energy tt̄ → tt̄ scattering mediated by Ott. The challenge of this
approach is to retain a strong rejection capability against the tt̄jj background, in particular
the configuration where the two tops have larger pT ’s than the light jets’, in which case the
signal/background discriminating power must be obtained from the “soft” component of the
event.

To study this problem, we generate SM four-top production and tt̄jj with hadronic top
decays, using the MadGraph5 aMC@NLO–Pythia8 –Delphes3 chain. All final-state partons
are required to have pT > 100GeV, whereas the leading (subleading) jet is required to have
pT > 900 (800)GeV and theHT must exceed 2TeV. The only notable setup differences compared
to the multilepton analyses are that we use the default Delphes card and set R = 0.3 for the
(anti-kt) jet clustering because using such narrower jets allows for a more efficient matching of the
hadron- and parton-level objects, therefore easing the isolation of a tt̄jj sub-sample containing
the configuration where the light jets are softer than the tops (which happens for O(10)% of
the events). Two different strategies are investigated to separate this background from SM
tt̄tt̄ production: one based on top invariant mass reconstruction, and one employing a neural
network discriminant.

For the first strategy, we implement an algorithm which first removes the two hard jets
that are matched to partonic tops, and then identifies two sets of up to three jets each, whose
invariant masses are closest to mt, with each set required to contain at least one b-tagged jet.

12For 200GeV < pT < 600GeV (pT > 600GeV) we use the low-pT (high-pT ) working point in Fig. 10 (Fig. 11)
of [114], assuming the combination of jet substructure algorithms corresponding to the light green points. The
efficiency and mistag rate are assumed constant for pT > 1.5TeV.
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This method results in an 8% efficiency per event on SM four-top production and 0.4% on the
background. For the second strategy, we use the same MC samples to train a three-layer neural
network with 2910 neurons per layer, which takes as input features the pT , η, ϕ, mass, number of
tracks, and b-tag flag of up to 26 jets with pT > 50GeV in each event (including, in particular,
the two hard jets which are matched to tops), as well as information on possible additional
particles such as taus and photons, and on missing transverse energy. At the optimal threshold
value the efficiency on SM four-top production is 16%, significantly higher than for the mass
reconstruction procedure, but this comes at the price of a less effective background suppression
of 4%. The above efficiencies are obtained neglecting systematic uncertainties.

Unfortunately, neither approach yields a satisfactory combination of signal efficiency and
background rejection, resulting in weaker bounds on Λ/

√
|ctt| than the estimate in Eq. (3.29).

Nevertheless, we believe that our attempts have only scratched the surface of the fully hadronic
four-top final state, while uncovering some of the main obstacles that need to be overcome.
The sensitivity of this channel is thus still waiting to be untapped, for instance through the
development and application of FCC-tailored or machine learning-based top tagging algorithms
(see e.g., [115–117]) that encompass both the resolved and boosted top regimes. Judging from
our preliminary estimates, this channel has the potential to give the strongest constraint on the
new-physics scale at the FCC-hh, further improving on our multilepton results.

3.4 Future electron-positron colliders

In this section, we show that future leptonic machines have much to inform on the fate of a
strongly interacting top quark. The colliders under consideration are CLIC [118], the Inter-
national Linear Collider (ILC) [119], and the FCC-ee [102]. We will not be carrying out any
new analysis towards the extraction of their sensitivity to the dimension-six effective operators
of interest, since this has been the subject of a number of detailed and comprehensive stud-
ies. Instead, we merely yet crucially reinterpret the relevant results in terms of the expected
effects associated with a strongly interacting (right-handed) top quark, in particular via the
four-top operator Eq. (3.1).13 The different collider specifications can be found in the pertinent
works: [121] for what regards the top sector, and [112] concerning universal effects, which we
use to draw a comparison of both types of probes in the context of composite Higgs models.
The runs from where most of the sensitivity to a composite top comes from are those at the
highest energies:

√
s = 3TeV (L = 3ab−1) at CLIC,

√
s = 1TeV (L = 1ab−1) at ILC, and√

s = 365GeV (L = 1.5 ab−1) at FCC-ee.14 This is because at linear colliders the best process
to probe such type of physics is top-pair production, e+e− → tt̄. In our new-physics oriented
analysis, we find that the largest effects are associated with the four-fermion operators

cte
Λ2

(ēRγµeR)(t̄Rγ
µtR) +

ctℓ
Λ2

(ℓ̄LγµℓL)(t̄Rγ
µtR) , (3.30)

where both eR and ℓL correspond to first-generation leptons. Since we consider a negligible
degree of lepton compositeness, as motivated by their small Yukawa couplings, the largest con-
tribution to the coefficients in Eq. (3.30) arises from operators of the form of Eq. (3.6), in
particular from OtD which, given the equation of motion Eq. (3.8), yields cte = g′ctD and

13To some extent, our analysis resembles that of [120]. However, as in previous sections, we focus on a single
operator at a time, the one leading to the largest sensitivity in a given region of the (m∗, g∗) parameter space,
which is not always the same operator as claimed in that study. Besides, by considering exclusive constraints, we
avoid issues associated with cancellations from different operators in a given observable.

14Notice the mildly different assumptions made for the luminosities and energies of these machines in [121]
and [112].
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ctℓ = g′ctD/2. What is important to notice is that at the relevant scale, µ =
√
s, the coefficient

of OtD is dominated by the renormalization group evolution (RGE) (see App. I.A) contribution
from the four-top operator Ott,

ctD(µ) = ctD(m∗) + ctt(m∗)
32

9

g′

16π2
log
(m2

∗
µ2

)
, (3.31)

for a mildly strong coupling g∗, since recall ctD/Λ
2 ∼ g′/m2

∗ and ctt/Λ
2 ∼ g2∗/m

2
∗ at the scale

m∗, where the coefficients are generated. Therefore, a strongly interacting (right-handed) top
quark leads to a new-physics amplitude that scales like

Me+e−→tt̄ ∼
g′2

16π2
s

f2
log
(m2

∗
s

)
. (3.32)

From the expected 1σ sensitivity to the operator Ote at the 3 TeV CLIC, cte/Λ
2 < 1.6 ×

10−4TeV−2 [121],15 we arrive at the 95% CL bound on the compositeness scale

f |CLIC
tt > 7.7TeV , (3.33)

for m∗ = 4πf (to fix the size of the logarithm in Eq. (3.32)). This is stronger than the expected
sensitivity to be achieved in Higgs measurements via the operator OH , f |CLIC

H > 4.3TeV [112],
also shown in Fig. 3.11 in the (m∗, g∗) plane. At the ILC the sensitivity via the four-top operator
is comparatively lower, f |ILC

tt > 4.1TeV (cte/Λ
2 < 7×10−4TeV−2 [121]), yet similar to that from

the Higgs. Finally, the importance of high collision energies for this type of probe is reflected
in FCC-ee bounds on cte, ctℓ, which are approximately an order of magnitude weaker, yielding
a significantly lower sensitivity f |FCC-ee

tt > 1.6TeV (cte < 4.3× 10−3TeV−2 [121]), see Fig. 3.11.

Let us note at this point that our analysis of one operator at a time must be interpreted
with a certain care, particularly in the case where several operators enter a given process.
For instance, while the one-loop contribution from Ott gives the leading non-standard effect in
e+e− → tt̄ at large g∗, for small new-physics couplings other operators become comparable and
eventually dominate, in particular the finite contribution to OtD generated at m∗, see Eq. (3.31)
(loops from other four-top operators in Eq. (3.4) are not enhanced by the strong coupling and
thus always subleading). This implies that, in the transition region, cancellations could take
place, reducing the sensitivity to new physics. Fortunately, this is not an issue that prevents
us from probing those regions of parameter space, since they are tested in other processes via
independent operators; specifically, tests of the operator OW+B in electroweak precision data
are expected to provide at CLIC the bound m∗ > 19TeV at 95% CL [112], independent of the
new-physics coupling. The same holds at ILC and FCC-ee, even though, as shown in Fig. 3.11,
the sensitivity to the resonance scale is somewhat lower.

The power of tests of the top sector in covering the parameter space of CH models goes
beyond top-pair production. As already noted in [120], production of left-handed bottom pairs
at lepton colliders is sensitive to effects that are enhanced at weak coupling, for instance via
the operator O(3)

qD in Eq. (3.7) with c(3)qD/Λ
2 ∼ (yt/g∗)

2g/m2
∗, which from the equations of motion

contributes as a contact term to the amplitude for e+e− → bb̄. As we show in Fig. 3.11, this
is superior to electroweak precision tests in the form of the W parameter, to be measured in
e.g., e+e− → µ+µ− because the coefficient of O(3)

qD is enhanced by the top Yukawa coupling,

c(3)qD/(gc2W ) ∼ (yt/g)
2, while the experimental precision in the two processes is expected to be

comparable. In addition, it is worth noting that at CLIC and ILC, bottom-pair production could

15The experimental sensitivity to Otℓ is similar, but we neglect it in setting the limit because ctℓ = cte/2.
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Figure 3.11: Future sensitivities at lepton colliders: CLIC (top), ILC (middle), and FCC-ee
(bottom), at 95% CL in the (m∗, g∗) plane of scenarios featuring a strongly interacting Higgs
and (right-handed) top quark. The different limits are associated with constraints on individual
operators, each dominating the corresponding observables in a certain region of parameter space
(see main text for details).
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provide a non-negligible sensitivity to the masses of the composite resonances, independently of
g∗, because of RGE (see App. I.A) effects associated with the four-top operator Otq in Eq. (3.4),

cqD(µ) = cqD(m∗) + ctq(m∗)
g′

12π2
log
(m2

∗
µ2

)
. (3.34)

Given that ctq/Λ
2 ∼ y2t /m2

∗, we find m∗|CLIC
tq > 6.5TeV, a significant constraint, yet weaker than

the sensitivity to be achieved from the S parameter (OW+B).
Let us finally comment on the potential sensitivity from measurements of anomalous top

and bottom couplings to the Z boson. Under our assumptions, both the corrections to the
ZtRtR and ZbLbL couplings, dominated by OHt and OHq + O(3)

Hq respectively, do not receive
large tree-level contributions, being protected by a PLR symmetry. This then implies that the
dominant contributions arise from the RGE associated with OHq and O

(3)

Hq themselves and with
the leading four-top operators in g∗, Ott and Otq (see App. I.A),

cHt(µ) ≃ ctt(m∗)
y2t
2π2

log
(m2

∗
µ2

)
, (3.35)

cHq(µ) + c(3)Hq(µ) ≃ [3ctq(m∗) + 4c(3)Hq(m∗)]
y2t

16π2
log
(m2

∗
µ2

)
, (3.36)

where we set cHq(m∗) + c(3)Hq(m∗) ≃ 0 and neglected gauge coupling terms, which are relatively

suppressed by (g/yt)
2 [122]. We find that the expected precision on these couplings [112, 121]

is not high enough to give rise to any constraint at the level of those already discussed. In
fact, not even measurements of the ZtLtL coupling, which receives relatively large corrections
(cHq − c(3)Hq)/Λ

2 ∼ y2t /m
2
∗ and for which the prospective exclusive 1σ bound is, e.g., at the

ILC, 0.075TeV−2 [121], can compete with universal probes. Dropping PLR symmetry, i.e., for
cHt/Λ

2 ∼ 1/f2 and (cHq + c(3)Hq)/Λ
2 ∼ y2t /m

2
∗, the situation at CLIC and ILC is actually not

much different. For instance, at the ILC cHt/Λ
2 < 0.15TeV−2 at 95% CL [121], which leads

to f |ILC
Ht > 2.6TeV, a weaker sensitivity than from e+e− → tt̄, even though the latter is loop

suppressed. Likewise, from (cHq + c(3)Hq)/Λ
2 < 0.019TeV−2 [112] we find m∗|CLIC

Hq > 10TeV,
lower than the scale to be reached with electroweak precision data. At the FCC-ee instead,
the absence of PLR would make a difference since, as we discussed, the lower

√
s penalizes

the effects of contact interactions. We find f |FCC-ee
Ht > 1.8TeV, which, however, is still below the

expected compositeness scale probed with Higgs measurements, while m∗|FCC-ee
Hq > 24TeV, under

optimistic assumptions on the systematics of the bottom forward-backward asymmetry [112].
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Conclusions

In this part of the thesis, we have shown that some of the proposed high-energy colliders have
an outstanding sensitivity to four-top operators, which constitute telltale signs of a strongly
interacting top quark. Focusing on the Ott = (t̄RγµtR)

2 operator (with coefficient ctt/Λ
2),

we have performed realistic analyses of four-top production at the FCC-hh in the same-sign
dilepton and trilepton final states, and inspected the fully hadronic final state. We have also
reinterpreted previous results to constrain Ott at future high-energy lepton colliders, through
its one-loop renormalization group contributions to top-pair production. We have obtained the
following 95% CL bounds,

FCC-hh pp→ tt̄tt̄

100TeV, 30 ab−1 : Λ/
√
|ctt| > 6.5TeV ,

CLIC e+e−→ tt̄
3TeV, 3 ab−1 : Λ/

√
|ctt| > 7.7TeV , (4.1)

ILC e+e−→ tt̄
1TeV, 1 ab−1 : Λ/

√
|ctt| > 4.1TeV .

For context, the 13TeV LHC limit as derived from a combination of tt̄tt̄ final states is Λ/
√
|ctt| >

0.73TeV, based on approximately 36 fb−1. Thus, a tantalizing result of our study is that both
the FCC-hh and CLIC at its highest-energy run would increase by an order of magnitude the
reach on the scale of new physics. Note that to achieve the bound for the FCC-hh, we only
exploited the high-energy behavior of Ott and that it could potentially be even improved if its
special polarization characteristics are also considered, which could make it easier to distinguish
SM from BSM production. In contrast, the lower energy FCC-ee (365GeV, 1.5 ab−1) displays a
significantly milder reach of Λ/

√
|ctt| > 1.6TeV.

In addition, we have studied the moderate excesses of events observed by ATLAS and CMS
in their LHC Run 2 measurements of tt̄tt̄, tt̄W , tt̄Z, and tt̄h in multilepton plus jets final
states. We have attempted a first interpretation of these results in the context of heavy physics
beyond the SM, examining the latest CMS four-top search in terms of the operators Ott and
OHt, the latter of which modifies the ZtRtR coupling with respect to the SM. While far from
conclusive, our analysis strongly suggests that a new-physics scale of around 0.75TeV could
improve the agreement with multilepton+ jets data, while remaining consistent with other com-
peting measurements, notably in the Higgs sector. Further studies are warranted, both at the
phenomenological level, including a more comprehensive set of measurements, and at the ex-
perimental level, where a complete modelling of the impact of higher-dimensional operators can
be achieved. A well-motivated set would include, beyond Ott and OHt, the operator Oyt , which
controls non-standard contributions to the htt coupling; these three operators are weakly con-
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strained by other measurements, yet their coefficients are expected to be large.1 In general,
the current status of top data provides additional motivation to investigate the new-physics
scenarios discussed in this part of the thesis.

Looking ahead, our FCC-hh analysis of Ott in multilepton final states can be repurposed
to derive the reach on other four-top operators, which may play a central role under different
theoretical assumptions. On the other hand, exploiting the whole potential of the fully hadronic
signature requires a targeted study. Furthermore, the indirect sensitivity attainable at a multi-
TeV muon collider remains to be explored [123].

Finally, we stress the importance of our results for composite Higgs models, where minimal
fine-tuning and electroweak precision data point towards a fully composite right-handed top
quark. With the scales of compositeness that we have shown are to be reached, future high-
energy colliders will push the concept of naturalness of the electroweak scale to a whole new
level, perhaps one where the SM is no longer.

1A more comprehensive set would incorporate OH and O
(3)
Hq (with cHq = −c

(3)
Hq) as well, which modify respec-

tively the hV V and WtLbL couplings. The former is of relevance in e.g. th production.
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Appendices part I

I.A Running Induced by Four-Fermion Operators

In this appendix, we want to show explicitly how to get the loop contributions shown in Eqs.
(3.11), (3.31) and (3.34). The relevant 1-loop diagram is shown in Fig. I.A.1 after choosing the
appropriate external states. We will work in the broken phase of the SM; however, we will not
rotate the gauge sector to keep the hypercharge bosonBµ. This way, we can calculate the running
of operators with an extra Higgs field using the same diagram we use for the renormalization
of ctD and c(8)tD, while in the unbroken phase diagrams with at least one additional Higgs field
would have been necessary.

I.A.1 Loops with external tR

Starting with the hypercharge boson and writing down the amplitude, we find two independent
Lorentz structures with momentum dependent form factors

M =
g′(Nc + 1)

4π2
ctt
Λ2

(t̄RγµtR)Bν
[
F1(q

2)(qµqν − q2gµν) +m2
tF2(q

2)gµν
]
, (I.A.1)

with q the momentum of the gauge boson. In the above construction, we chose to name the
fermion spinors and gauge boson polarization vector such that it will be easy to match operator
structures later, and we suppressed the trivially contracted color indices. Regularizing the loop
integral in D = 4− 2ϵ space-time dimensions, the form factors turn out to be

F1(q
2) = YR

∫ 1

0
dx x(1− x)

(
1

ϵ
− log

(
m2
t − (1− x)x q2

µ2

))
+O(ϵ) (I.A.2)

F2(q
2) = (YR − YL)

∫ 1

0
dx

(
1

ϵ
− log

(
m2
t − (1− x)x q2

µ2

))
+O(ϵ), (I.A.3)

with YR and YL the U(1) hypercharges of the right- and left-handed top, respectively. Notice
that, even though Ott contains only right-handed tops, F2 picks up a contribution proportional
to the left-handed hypercharge. In fact, the form factor F2 comes with explicit factors of the
top mass, or equivalently the top Yukawa in the unbroken phase, signalling the presence of a
Higgs field responsible for the needed chirality flip.

Using these results, we can easily match the 1-loop amplitude to the corresponding tree
amplitudes after realizing that

i(H† ↔
DµH)(t̄Rγ

µtR) ⊃
g′v2

2
(t̄Rγ

µtR)Bµ, (I.A.4)

if we set the Higgs to its VEV v.
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Figure I.A.1: Relevant 1-loop diagram for the renormalization of the two-fermion operators
relevant in this part.

To renormalize the UV divergence, we define

creni (q2) = ci(q
2) + δci (I.A.5)

and we estimate the counterterm as

δci = −ci(m2
∗). (I.A.6)

Then, putting everything together and plugging in the values for the hypercharges and
Nc = 3, we arrive at

crentD = ctD(m∗) + ctt
32

9

g′

16π2
log

(
m2

∗
q2

)
, (I.A.7)

crenHt = cHt(m
2
∗) + ctt 8

y2t
16π2

log

(
m2

∗
q2

)
. (I.A.8)

The calculation for the gluon is completely analogous, and the form factors are the same as
for the hypercharge boson after setting YR = YL = 1 and g′ → gs. We see, immediately, that
this sets F2(q

2) ≡ 0, as it should be, since the Higgs field does not couple to the gluon, so no
gluonic operator analogous to OHt exists. In total, we find

c(8),rentD = c(8)tD(m∗) + ctt
4

3

gs
16π2

log

(
m2

∗
q2

)
. (I.A.9)

Note, that technically we only calculated the running of an operator of the form

(∂µGAµν)(t̄Rγ
νtAtR). (I.A.10)

This is of course not gauge invariant, and we have to replace the ordinary derivative with a
covariant one. Therefore, we can, as cross-check, calculate with an additional gluon, which,
by gauge invariance, has to give the same result as Eq. (3.11). These diagrams are shown in
Fig. I.A.2.

Because of the two ways of contracting both the spinor and color indices in the four-fermion
vertex, each diagram Fig. I.A.2 contains two terms with different color structures. Only one of
those, the non-trivial contraction of adjoint indices, can be matched onto OHt and we checked
explicitly that the terms with the trivial contraction do not diverge, such that they don’t con-
tribute to the running of cHt.
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+

Figure I.A.2: Relevant 1-loop diagrams for the renormalization c(8)tD. Note that the calculation
of this diagram serves merely as a cross-check for the calculation of the diagram in I.A.1, since
gauge-invariance forces them to have the same divergent and logarithmic term for external gluon.

To simplify the calculation, we only calculate the divergent part of the diagram, as this is
sufficient to check gauge invariance, and we find

iM =
1

ϵ

4

3

g2s
16π2

fABCTCGνAGµB t̄R [gµν(/k1 − /k2) + (2k2 + k1)µγν − (2k1 + k2)νγµ] tR.

(I.A.11)
After matching to the relevant tree-level expression, we are left with the divergent part

c(8)tD = ctt
1

ϵ

4

3

g2s
16π2

, (I.A.12)

matching the coefficient of the logarithm in Eq. (3.11), as it should be.

I.A.2 Loops with external tL

Starting with the insertion of Otq we find a structure very similar to the insertion of Ott,

M =
g′Nc

2π2
ctq
Λ2

(t̄LγµtL)Bν
[
F1(q

2)(qµqν − q2gµν) +m2
tF2(q

2)gµν
]
, (I.A.13)

with the form factors defined in Eqs. (I.A.2), (I.A.3). Again subtracting the divergence at
q2 = m2

∗ and plugging in the specific values we find for the renormalized coefficients

crentD = ctD(m∗) + ctq
2

3

g′

16π2
log

(
m2

∗
q2

)
, (I.A.14)

crenHt = crenHq(m
2
∗) + ctq 3

y2t
16π2

log

(
m2

∗
q2

)
. (I.A.15)
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Chapter 5

Motivation and Introduction

The intrinsic angular momentum of a particle couples to external electric and magnetic fields,
with strengths characterized by the electric and magnetic dipole moments, respectively. For a
spin-1/2 fermion f the non-relativistic Hamiltonian describing these interactions is given by

HNR =
af eQf
2mf

σ ·B − df σ ·E , (5.1)

where σ is the vector of Pauli matrices (related to the spin operator s = σ/2), df and af are
the electric and magnetic dipole moments of the fermion and Qf and mf are its charge and
mass. Already from this classical expression we can deduce the transformation properties of
the magnetic and electric dipole moments, respectively, under CP: if the theory is invariant
under CP, the only term in Eq. (5.1) which is allowed is the coupling to the magnetic field. The
corresponding relativistic Lagrangian is

L = −afeQf
4mf

ψ̄ σµνψ Fµν −
i

2
df ψ̄ σ

µνγ5ψ Fµν . (5.2)

where the second term, barring the factor i, changes sign under a CP transformation due to the
presence of the γ5 matrix.

For this part of this thesis, it is more convenient to use chiral fermions, and we can rewrite
the Lagrangian in Eq. (5.2) such that it becomes

L =
cfγ
Λ

ψ̄L σ
µνψR Fµν + h.c. . (5.3)

In the above equation, we included explicitly a scale Λ for dimensional reasons, such that
cfγ is dimensionless. By comparing Eqs. (5.2), (5.3) we can relate the coefficient cfγ with the
dipole moments af and df and we find

af = −4mf

eQf

Re [cfγ ]

Λ
, df = −2 Im [cfγ ]

Λ
. (5.4)

If not further specified, all operators of the form of Eq. (5.3), i.e., also those built from other
vector fields, will be called low-energy dipole operators collectively throughout this work.

While the magnetic moment of the electron has been measured with extraordinary precision
[124,125], there is no experimental evidence for the electric moment of neither the electron nor
of all other leptons as well as the neutron. Instead, currently only upper bounds can be given
by experiments [126–129],
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|de| < 1.1× 10−29 e · cm ,

|dµ| < 1.5× 10−19 e · cm ,

|dτ | < 1.6× 10−18 e · cm ,

|dn| < 1.8× 10−26 e · cm ,

(5.5)

while the prospected bounds on the electron EDM1 at the ACME III experiment and on the
neutron EDM at n2EDM are [113,131]

|de| < 0.3× 10−30 e · cm ,

|dn| < 10−27 e · cm .
(5.6)

Even though these bounds show incredible sensitivities to electric dipole moments, there is
still much room for new physics to hide between the experimental bounds and the estimated
SM values. In fact, they are estimated to be [132–136] 2

de ∼ 10−48 e · cm ,

dn ∼ 10−32 e · cm ,
(5.7)

well below even the proposed future experimental reaches.

Nevertheless, this tiny SM background encourages the usage of EDMs as probes of new
physics, simply for the reason that if future experiments measure EDMs of sizes larger than
Eq. (5.7), they provide a solid proof of CP violating new physics. As it turns out and depending
on the effective operator, the bounds on, e.g., the electron EDM require new physics at very
high scales in order for it to be consistent with the experiment, or equivalently, new physics at
lower scales would give large contributions to the EDMs. One result presented in this part of
the thesis is that the electron EDM acquires, among others, contributions like

de ≃ −1.1× 10−29e · cm
Im
[
CeB

11

]

g′ye

(
1350TeV

Λ

)2

, (5.8)

which does not carry any loop suppression and comes from a tree level Feynman diagram with
OeB =

(
L̄Lσ

µνeR
)
HBµν insertion. In the above expression, we divided the Wilson coefficient

by its expected size g′ye (more on this in Sec. 8.5 and Table 8.2), where g′ is the U(1)Y coupling
and ye the electron Yukawa coupling, and Λ is the scale of new physics. As the formula shows, if

Im
[
CeB

11

]
∼ g′ye the scale of the CP violating new physics contributing to the EDMs is bounded

to be larger than ∼ 103 TeV.

The constraining power of EDMs has stimulated plenty of different analyses in various UV
completions of the SM. There are several studies of the electron and neutron EDMs in SUSY
models [138–141], in Composite Higgs models [14,142,143], in Leptoquark models [144–147], in
complex two-Higgs and three-Higgs doublet models [148–154], in scotogenic models [155] and in
the context of dark matter [156]. On the model independent side, Ref. [157] provides an anal-
ysis of the electron EDM including some contributions that arise at 2-loop and at dimension-8
level, while Ref. [158] studies the complete 1-loop expression for the lepton magnetic moments.

1Also the bound on the muon EDM might be improved, by three orders of magnitudes, at a future Muon
Collider [130].

2Note that the perturbative estimates of the electron EDM could be exceeded by long-distance effects by
several orders of magnitude [137].
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Ref. [159] studies the neutron EDM in presence of an effective CP violating Higgs-gluon interac-
tion encoded by a dimension-6 SMEFT operator and Ref. [160] analyses the contribution to the
neutron EDM induced by chromo-dipoles of second and third generation quarks. Other studies
of EDMs in the presence of dimension-6 interactions involving the Higgs boson and fermion
fields – in particular related to top physics – are performed in [161–170].

The purpose of the present work is to study the lepton and neutron EDMs to 1-loop accuracy
in the presence of new physics at some scale Λ ≫ v, going to O(Λ−2). New physics effects
are parametrized in a model independent way within the SMEFT, which we expanded in the
Warsaw basis [171]. We will provide the complete 1-loop expressions of the low energy EDMs
observables, for leptons as well as for the neutron, in terms of the Wilson coefficients of the
Warsaw basis, including both RG flow effects and finite terms. In fact, while for extremely large-
scale separations the logarithmic contributions are expected to be larger than the corresponding
finite terms, for Λ ≲ 10 TeV we find them to be comparable. A complete 1-loop result is a step
towards a higher accuracy in the theoretical predictions for EDMs observables, which will be
measured with increased precision in future experiments. As a matter of fact, having accurate
results would turn out crucial in the event of a non-zero measurement of a fermion EDM.

Partial results of these calculations can be found scattered throughout the literature: the
derivation of the RGE within SMEFT has been performed in [172–174], both the tree level
matching of the SMEFT to the low energy effective field theory (LEFT) as well as the LEFT
RGE can be found in [175, 176] and the loop-level matching of the SMEFT to the LEFT has
been calculated in [177]. Although these resources are useful in their own right, they cannot be
used to obtain the full 1-loop correction to the EDM.

In the context of the loop corrections to the EDMs, we only refer to individual diagrams
that appeared in the calculation whenever necessary, the full set of diagrams considered for this
chapter can be found in Appendix A of [6].

We will begin this part by discussing the EDM observables in the SM, arguing why they are
so highly suppressed using symmetry arguments, as well as defining the relevant set of operators
contribution beyond the SM in Chapter 6. In the same chapter, we also define the neutron EDM
in terms of the elementary dipole moments of the neutron’s constituents. Then, in Chapter 7 we
introduce the basics needed to perform renormalization. In particular, we show how to arrive at
the RGE for individual Lagrangian parameters. In addition, we introduce selection rules based
on both helicity arguments and angular momentum conservation that allow us to determine the
pattern of renormalization in an EFT without the need of performing loop integrals. Having
defined the necessary ingredients and techniques, we go into the details of the calculations of the
full 1-loop expressions of both the electron and the neutron EDM in Chapter 8. We explicitly
define all the calculation schemes employed in this part and explain how we perform gauge
fixing and how redundant operators, i.e., operators that were not originally part of the operator
basis used, are needed to renormalize all appearing divergences. In the same chapter, we also
present the results and discuss the origin of non-rational, finite functions in multiscale theories,
like the SMEFT in the broken phase. Again, we focus on illustrating the impact of terms not
associated with the RG running of the Wilson coefficient, which have largely been overlooked
in the literature. As is expected for theories with massless particles, here the photon and the
gluon, infrared divergences arise during the calculation and necessitate a different approach than
ultraviolet ones. We then conclude this part in Chapter 9.

Chapters 6 and 8 as well as Appendices II.A and II.B are heavily based on [6], from where
all figures, tables, results, and large parts of the text have been taken.
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Chapter 6

Electric Dipole Moments in the SM
and Beyond

In this chapter, we want to discuss the different contributions to both the electron as well as
the neutron EDM within the SM and beyond. We start by defining both the electron as well
as neutron EDMs in terms of coefficients of higher dimensional operators. For the electron, this
will overlap with the discussion presented already in the introduction, due to the electron being
an elementary particle. The story is, however, different for the neutron, which we know is a
bound state made up of elementary quarks and gluons. Both the electric and chromo-electric,
i.e., their coupling to the QCD equivalent to the QED electric field, of the individual constituents
combine into the total neutron EDM. In principle, there is also a contribution of the topological
QCD θ-term related to the QCD vacuum structure, which can, however, be removed by the
well-known Peccei-Quinn mechanism [2] at the cost of introducing the axion field. Then, in
Sec. 6.1 and Sec. 6.2, respectively, we will investigate the strong suppression of both the electron
and neutron EDM in the SM using symmetry arguments, as well as how contributions from CP
violating new physics could dominate over the small SM background.

6.1 Within in the SM

As the dipole operator is an irrelevant operator, it is clear that within the SM these operators
cannot be generated through RG effects. Nevertheless, they do acquire finite contributions
from loop corrections to the ψ̄ψγ vertex. While the leading contribution to af arises already
at 1-loop, first calculated by Schwinger in 1948 [178], the EDM df receives contributions only
starting at three loops, in the quark case, and at four loops, in the electron case, which makes
them tiny. The natural question that arises is how such a suppression can arise. For this, it will
be instructive to consider the parametric estimate for the electron EDM, which can be estimated
to be

de ∼ e
me

m2
W

g6g2s
(16π2)4

(
v

mW

)12

JCP . (6.1)

This expression makes the small size explicit. A CP odd physical amplitude, respecting the
symmetries of the model, must be a combination of invariants, under (non-physical) changes
of basis and field redefinitions, which should be a function of the complex phases responsible
for the CP violation. We focus here on the flavor source for CP violating effects; the size of
CP odd observables can therefore be estimated exploiting an analysis of the flavor structure
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and symmetries of the model. In the absence of Yukawa interactions, the SM, with massless
neutrinos, is invariant under the global flavor symmetry [179]

GF = U(3)5 = U(3)Q × U(3)u × U(3)d × U(3)L × U(3)e, (6.2)

where i = Q, u, d, L, e stands for the left-handed quarks, right-handed up and down quarks
and left- and right-handed leptons, respectively, each of them with the corresponding gauge
multiplicity. Each of these fermion species transforms as a triplet under its respective U(3)
and as a singlet under the remaining ones. Now, the Yukawa interactions break this symmetry
explicitly, mixing different fermion species, and assuming this breaking is small due to the
small Yukawas1 we can formally reinstate GF -invariance by promoting the Yukawa couplings
to spurions in flavor space. The assumption that this is the only explicit breaking of GF is
known as Minimal Flavor Violation (MFV) [182–184]; MFV is exact within the SM and can be
extended to the full flavor structure of the SMEFT.

In such MFV scenarios, the flavor structure, as well as any flavored CP violation effect, is
completely determined by the Yukawa spurions. Ignoring the QCD θ term and neutrino masses,
the only source of CP violation in the SM lies in the complex CKM phase in the quark sector;
thus, any CP odd quantity must necessarily be built from quark Yukawas. This allows us to
estimate the size of the EDMs as functions of yu,d in such a way that the lepton L̄σµνdeyeeF

µν

and quark Q̄σµνdu(d)yu(d)u(d)F
µν dipoles are GF invariants, where we have factored the yf

Yukawa out of the df dipole moments. Since the lepton EDM is a singlet under quark flavor
transformations, it must be proportional to the identity matrix times an invariant built from
the quark Yukawas. This is the well-known Jarlskog invariant [185]

JCP =
1

2i
det
{[
yu (yu)

† , yd (yd)
†
]}
∼ 10−22 . (6.3)

which is the single basis independent CP violating quantity in the SM, so it necessarily has
to appear in Eq. (6.1). Actually, the Jarlskog invariant is related to the rephasing invariant

J of the CKM matrix in the following way: JCP ≈ m4
bm

2
sm

2
c

v8
J [184]. The number of Yukawa

matrices appearing in Eq. (6.3) can be translated into the the fact that JCP , for the lepton EDM,
can only be generated at the 3-loop level or higher. In fact, due to the symmetry properties
of the Jarlskog invariant under exchange of up and down quarks an additional gauge loop is
needed, such that the lepton EDMs can only be generated at the 4-loop level [184]. This high
loop suppression, together with large mass suppression in the Jarlskog invariant, explains the
smallness of the lepton EDMs, as seen in Eq. (6.1). A representative Feynman diagram is shown
in Fig. 6.1

Similar considerations apply to the quark EDMs, although du(d) is not a flavor invariant, but

rather transforms as an octet of U(3)Q. It should therefore be a non-traced chain of yu(d)y
†
u(d)

products, and it turns out that it needs to contain at least 8 quark Yukawas and can be generated
at the three-loop level (c.f. Fig. 6.1), already including the additional loop needed for amplitude
to have the correct symmetries. The imaginary parts of entries of the matrix are again functions
of the Jarlskog invariant, which parameterizes all CP violation in the SM, but are less suppressed
with respect to the lepton case: they can be 10 orders of magnitudes larger than JCP . For more
details, see, e.g., [184].

1Here we ignore the fact that the top Yukawa is large, yt ∼ 1 such that it cannot be considered as a small
breaking parameter. One possibility to account for this is to choose the formally unbroken flavor symmetry to
act only on the first two generations of fermions [180,181]
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γ

d u d ` ν` `

γ
d

Figure 6.1: Representative Feynman diagrams for the leading SM contributions to the quark
(left) and the lepton (right) EDMs. For the up-quark EDM, the labels d and u have to be
exchanged in the left diagram. Unlabeled wiggly lines correspond to W bosons.

6.2 Beyond the SM

The situation explained in the previous section changes drastically in the presence of heavy new
physics. The plethora of new, effective operators, in general including CP violating ones, give
rise to new phases, which can enter physical observables through other basis invariants than
the Jarlskog invariant. In the context of the SMEFT these invariants have been systematically
characterized in [186].

In the phase of unbroken EW symmetry, the SMEFT operators relevant for the discussion of
EDMs are the ones containing the hypercharge and weak gauge bosons B and W I , respectively.

To ensure gauge invariance, these operators have to contain an additional Higgs doublet
compared to the expression in Eq. (5.2) to compensate for the transformation of the left-handed
fermion doublet. They have the form

OfB =
(
ψ̄Lσ

µνψR
) (∼)

HBµν and OfW =
(
ψ̄Lσ

µνσIψR
) (∼)

HW I
µν . (6.4)

It is easy to see that these reduce to the low-energy dipole operator Eq. (5.3) in the broken
phase, by setting the Higgs field to its VEV and performing the appropriate rotation in the
gauge sector. This allows us to extract the energy eigenstates and their Wilson coefficients in
both phases are related by

cfγ =
v

Λ

(
cw cfB + 2T 3

f sw cfW
)
, (6.5)

where we defined the trigonometric function of the weak mixing angle cw ≡ cos θw and
sw ≡ sin θw and T 3

f is the third component of the weak isospin for the respective fermion and is
non-zero only for left-handed chiralities.

We already discussed in the previous section, that in the SM the photonic dipole operator
can only receive rational contributions at very high loop orders because marginal operators
cannot renormalize higher-dimensional ones. If we are, however, in the SMEFT, there are many
more dimension-6 operators present, a substantial amount of which can renormalize the dipole
operators already at 1-loop. Because the EDMs are low-energy observables, all coefficients have
to be evaluated at the scale of the corresponding experiment using the RGE we will discuss
in Chapter 7. Then, depending on the scale at which these effective operators are generated
by integrating out heavy new physics, the scale separation between the new physics and the
electroweak scale solving the RGEs can generate potentially large logarithms, which could easily
dominate over the tiny SM value.
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OeB
ab

=
(
L̄aLσ

µνebR
)
HBµν

OeW
ab

=
(
L̄aLσ

µνσIebR
)
HW I

µν ,

OuB
ab

=
(
Q̄aLσ

µνubR
)
H̃Bµν

OuW
ab

=
(
Q̄aLσ

µνσIubR
)
H̃W I

µν ,

OdB
ab

=
(
Q̄aLσ

µνdbR
)
HBµν

OdW
ab

=
(
Q̄aLσ

µνσIdbR
)
HW I

µν

OuG
ab

=
(
Q̄aLσ

µνTAubR
)
H̃GAµν

OdG
ab

=
(
Q̄aLσ

µνTAdbR
)
HGAµν ,

O(3)

lequ
abcd

=
(
L̄jaL σµνe

b
R

)
ϵjk
(
Q̄kcL σµνu

d
R

)

O(1)

quqd
abcd

=
(
Q̄jaL ubR

)
ϵjk
(
Q̄kcL ddR

)

O(8)

quqd
abcd

=
(
Q̄jaL TAubR

)
ϵjk
(
Q̄kcL TAddR

)

O le
abcd

=
(
L̄aLγµL

b
L

)(
ēcRγµe

d
R

)

O(1)
qu
abcd

=
(
Q̄aLγµQ

b
L

)(
ūcRγµu

d
R

)

O(8)
qu
abcd

=
(
Q̄aLγµT

AQbL
)(
ūcRγµT

AudR
)

O(1)

qd
abcd

=
(
Q̄aLγµQ

b
L

)(
d̄cRγµd

d
R

)

O(8)

qd
abcd

=
(
Q̄aLγµT

AQbL
)(
d̄cRγµT

AddR
)

O(1)

ud
abcd

=
(
ūaRγµu

b
R

)(
d̄cRγµd

d
R

)

O(8)

ud
abcd

=
(
ūaRγµT

AubR
)(
d̄cRγµT

AddR
)

O
W̃

= ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

O
G̃
= fABCG̃Aνµ GBρν GCµρ

O
HB̃

= H†HBµνB̃µν

O
W̃

= H†HW IµνW̃ I
µν

O
HWB̃

= (H†σIH)W IµνB̃µν

O
HG̃

= H†HGAµνG̃Aµν

OHud
ab

= i
(
H̃†DµH

) (
ūaRγ

µdbR
) OdH

ab
= H†H

(
Q̄aL d

b
RH

)

OuH
ab

= H†H
(
Q̄aL u

b
R H̃

)

Table 6.1: Set of dimension-6 SMEFT operators relevant in this part of the thesis, grouped
in six different boxes corresponding to the different classes discussed in the main text. The

operators O
(1,8)
ud as well as the ψ2H3 type operators can only be probed at the 1-loop level

through the neutron EDM. The dashed line separates the 4-fermion operators of the form ψ4

and those of the form ψ2ψ̄2. We use the usual definitions H̃ = iσ2H∗ and F̃µν = 1
2ϵµναβF

αβ

for F any of the gauge bosons. For the operators O(3)

lequ and O(1,8)

quqd we show SU(2) indices j, k
explicitly. For the vector operators in the 4-fermion class, the only CP violation can arise if the
flavors of the fermions in each current are not identical. Hence, we explicitly give the generation
indices a, b, c, d.

In practice, one way to determine the effect on the low-energy observable EDM coming from
some new physics, that is matched onto the SMEFT at some scale Λ > v, is to calculate the
running of the SMEFT dipole operators, to be introduced in the next section, down to the EW
scale, to match these operators onto the respective LEFT operators and finally calculate the
loop contributions within the LEFT. To perform the full 1-loop calculation we do not choose
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6.3. Dipole moments of non-elementary particles: neutron EDM

the multi-stage procedure described above, but instead go directly to the phase of broken EW
symmetry, with all the SM fields in the (physical) basis of mass and electric charge eigenstates,
and calculate all virtual effects at once, expressing our result in terms of the SMEFT coefficients
in the Warsaw basis evaluated at the scale Λ above the scale of EW symmetry breaking.

The set of relevant operators contributing to both the electron and neutron EDM is summa-
rized in Table 6.1. To reduce the full Warsaw basis to the ones given in Table 6.1, we used the
selection rules explained in Sec. 7.2.

6.3 Dipole moments of non-elementary particles: neutron EDM

So far, we have considered only fundamental particles within the SMEFT. But, as already
mentioned in the introduction, another prominent observable apart from the lepton EDMs is the
electric dipole moment of the neutron. Being a composite state built from quarks and gluons, we
can write the neutron EDM as a function of the constituents’ EDMs and chromo-electric dipole
moments (cEDMs). The latter are defined as the coefficient of the CP odd operator in Eq. (5.2),
but with a gluonic field strength instead of the photonic one. Putting everything together, we
find [159,187–195]

dn =− (0.204± 0.011) du + (0.784± 0.028) dd − (0.0027± 0.0016) ds+

+ 0.055(1± 0.5) d̂u + 0.111(1± 0.5) d̂d − 51.2(1± 0.5) e ·MeV
CG̃
Λ2

+

− 9.22(1+2.33
−0.67) e ·MeV

Im[CHud
11
]

Λ2
+

− 0.615(1+1
−0.75) e ·GeV



Im[c(S1,RR)

ud
1111

− c(S1,RR)

duud
1111

]

Λ2
+

Im[c(S8,RR)

ud
1111

− c(S8,RR)

duud
1111

]

Λ2


 .

(6.6)

where the “11” and “1111” subscripts of the Wilson coefficients in the last two lines indicate
that the first flavor generation is taken into account.

The first three terms are contributions from the up, down and strange quark EDMs, respec-
tively, the next two terms are the effects of the up and down quark cEDMs and the last term of
the second line comes directly from the dimension-6 Weinberg operator [196] built from three
gluons,

O
G̃
= fABCGAνµ GBρν G̃Cµρ , (6.7)

that can be interpreted as the cEDM of the gluon. The contributions in the third and fourth
lines are related to the SMEFT operators

OHud = (ūγµd)(H̃
†iDµH) ,

O(1)

quqd = (q̄ru)ϵrs(q̄
sd) ,

O(8)

quqd = (q̄rTAu)ϵrs(q̄
sTAd) .

(6.8)

Furthermore, c(S1,RR)

ud and c(S1,RR)

duud are the Wilson coefficients of the following operators of the low
energy effective field theory [175–177]

O(S1,RR)

ud = (ūLuR)(d̄LdR) ,

O(S1,RR)

duud = (d̄LuR)(ūLdR) ,
(6.9)
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which are generated, below the electroweak scale, at tree level by O(1)

quqd and at 1-loop level by

O(8)

quqd. The tree level matching conditions are the following,

O(S1,RR)

ud
1111

= O(1)

quqd
1111

,

O(S1,RR)

duud
1111

= −O(1)

quqd
1111

,
(6.10)

where the fermion fields are in the mass basis defined in Sec. 8.1. Analogously, c(S8,RR)

ud and
c(S8,RR)

duud are the Wilson coefficients of

O(S8,RR)

ud = (ūLT
AuR)(d̄LT

AdR) ,

O(S8,RR)

duud = (d̄LT
AuR)(ūLT

AdR) ,
(6.11)

which are generated at tree level by O(8)

quqd and at 1-loop level by O(1)

quqd, with the following tree
level matching conditions

O(S8,RR)

ud
1111

= O(8)

quqd
1111

,

O(S8,RR)

duud
1111

= −O(8)

quqd
1111

.
(6.12)

All the terms in the third and fourth lines of Eq. (6.6) describe the contributions from CP
violating low energy four-fermion interactions. In fact, below the electroweak scale, also OHud
generates four-quark operators through a tree level exchange of a W boson between the right-
handed fermion current of the dimension-6 operator and a left-handed current which has an SM
coupling with the W . All the coefficients appearing in the above expression should be evaluated
at the hadronic scale µH that characterizes the neutron EDM. To be more rigorous, in the case
of CHud what is evaluated at energy scales below the EW scale are the coefficients of the four-
quark operators generated after integrating out the heavy SM particles from the SMEFT, which
is to say (ūLγµdL)(d̄Rγ

µuR) at tree level and (ūLγµT
AdL)(d̄Rγ

µTAuR) at 1-loop level. Note
that while C

G̃
, CHud, c

(S1(8),RR)

ud and c(S1(8),RR)

duud are dimensionless, the fermionic dipole coefficients

have the dimension of an inverse energy (di, d̂i ∼ v/Λ2).
As we have just discussed, the neutron EDM does not only receive contributions from the

EDMs and cEDMs of the quarks. This allows operators to be probed, that would otherwise only
be available at higher loop orders, if at all. One example would be the Yukawa type operators
ψ2H3. At the 1-loop level, they cannot be accessed by EDMs of elementary particles, as they
contribute only starting at the 2-loop order. However, as they give 1-loop contributions to OHud,
which enters the neutron EDM also at tree level, one can probe them at a lower order as naively
expected.

In the expression of the neutron EDM we implicitly assumed a Peccei-Quinn mechanism [2]
to remove the contribution from the well-known QCD θ−term

Lθ ∼ θ̄ Tr
[
GµνG̃µν

]
, (6.13)

which otherwise would give the dominant effect on the neutron EDM. Here θ̄ is a linear com-
bination of a bare θ parameter and the argument of the determinant of the quark Yukawa
couplings [197]. On top of introducing the usual term that removes the contribution of the QCD
θ-term, the Peccei-Quinn mechanism induces a shift on the axion potential due to the presence
of the chromo dipole operators. In return, this shift modifies the coefficients for the light quark
cEDMs and completely cancels the effect of the strange quark cEDM [189,198,199].
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At this point, we want to stress that the results presented in this thesis can in principle be
used for any function of the neutron EDM in terms of quark (c)EDMs, which might differ from
(6.6).
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Chapter 7

Renormalization and Operator
Mixing

In this chapter, we discuss the renormalization and possible mixing patterns of interaction oper-
ators, including also higher-dimensional ones. In particular, we show how the RGE for coupling
constant of these operators can be obtained from their respective counterterms, specifically the
single pole term, while the higher pole terms arising at higher loop orders have to satisfy certain
consistency conditions to ensure the finiteness of the coupling anomalous dimension or, equiv-
alently, the beta function. Further, we investigate general arguments based on both helicity
and angular momentum considerations to find and explain zeroes in the one-loop anomalous
dimension matrix.

7.1 Coupling renormalization

Given the SM together with some set of higher-dimensional operator (here, we will focus mainly
on those of dimension-6), we can write the total Lagrangian as

L = L0,SM +
∑

d>4

∑

i

c
(d)
0,i

O
(d)
0,i

Λd−4
SM

. (7.1)

The subscript denotes the fact that we wrote the Lagrangian in terms of bare couplings c0,i
and fields Φ0. When calculating scattering amplitudes using the bare Lagrangian, the results
are, in general, not UV finite when going beyond the tree level approximation. However, we
can make sense of these divergences by rewriting all the bare quantities in terms of finite, or
renormalized, ones, which we denote by simply dropping the subscript “0”, and multiplicative
divergent constants Z as

c0,i = µnϵZcici, Φ0 = Z
1/2
Φ Φ. (7.2)

We introduced an arbitrary renormalization scale µ, which ensures that the renormalized cou-
pling has a constant mass dimension when evaluating loop integrals in D = 4− 2ϵ dimensions.
The integer n depends on the field content of the operator associated to ci.

In the weak coupling regime, the renormalization constants Z allow for a perturbative ex-
pansion

Zi = 1 + δi, (7.3)
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where the counterterm δ itself is a power series in the small coupling. Depending on the renor-
malization scheme, the renormalization constants can contain finite pieces beyond the tree level
one, but in this part of the thesis we will exclusively use the MS scheme in which all loop contri-
butions to Z will be purely divergent. This, in turn, lets us write the renormalization constants
as a power series in ϵ, which will be useful shortly,

Zi = 1 +
∑

l=1

C
(l)
i

ϵl
, (7.4)

where each C(l) itself can be written as an perturbative expansion in the coupling.

Plugging Eq. (7.4) into Eq. (7.1), the tree level contribution gives back the original La-
grangian, but now expressed in terms of renormalized objects, while the higher-order terms
generate additional vertices, the so-called counterterm Lagrangian. Note that the counterterm
Lagrangian will also contain 2-point interactions coming from the expansion of the kinetic terms
in the bare Lagrangian. In the end, all of these new vertices are responsible for the cancellation
of divergences in correlation functions of renormalized field. In fact, in the MS scheme, the
condition to exactly cancel any appearing divergence is how the counterterms are determined in
practice.

Since the choice of µ is arbitrary, bare quantities cannot depend on its explicit value, which
immediately implies that the renormalized couplings and operators have to depend on µ in such
a way that cancels the explicit dependence in Eq. (7.2),

µ
d

dµ
c0,i = µ

d

dµ

(
µnϵZcici

)
= 0. (7.5)

Expanding the derivative using the product rule, we quickly arrive at the RGE for the
coupling

µ
d

dµ
ci = −nϵci − γcici, (7.6)

where we defined the anomalous dimension γc as

γci = (Zci)
−1µ

d

dµ
Zci . (7.7)

Note that the entire right-hand side of Eq. (7.6) is often also referred to as the negative of the
beta function β = −(nϵ + γci)ci. Moreover, in four dimensions, i.e., ϵ → 0, the first term in
Eq. (7.6) vanishes, however, it will be important shortly.

In general, various operators can contribute to each other through renormalization, so the
RGE is really a matrix equation and treating the ci as components of a vector of couplings can

write the bare couplings as c
(0)
i = µnϵ(Zc)ijcj , such that Eq. (7.6) easily generalizes to include

the effect of operator mixing

µ
d

dµ
ci = −(γc)ijcj , , (7.8)

with the anomalous dimension matrix

(γc)ij = (Z−1
c )ik µ

d

dµ
(Zc)kj . (7.9)
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Using, for simplicity, the one-dimensional case, we can now show that the anomalous di-
mension of a coupling can easily be calculated from the single pole term in the coupling renor-
malization constant at any order, which is tightly related to the finiteness of γci in the limit
ϵ → 0. First, we plug Eq. (7.4) into the definition of the anomalous dimension and using the
fact that the coefficients C(l) depend only implicitly on the scale µ through their dependence on
the couplings, we can write

∑

l=0

γci
C(l)

ϵl
=
∑

l=1

β

ϵl
d

dci
C(l), (7.10)

where we defined C(0) ≡ 1 and already used the definition of the beta function as the derivative
of the coupling with respect to µ. Then, plugging in the explicit form of β, or equivalently the
right-hand side of Eq. (7.6), keeping also seemingly vanishing term linear in ϵ, we find

∑

l=0

γci
C(l)

ϵl
= −

∑

l=0

1

ϵl

[
nci

d

dci
C(l+1) + γci

d

dci
C(l)

]
, (7.11)

Finally, by comparing powers of ϵ on both sides of the equation, the n = 0 term gives us a finite
relation between the anomalous dimension and the single pole term in Zci ,

γci = −nci
d

dci
C(1), (7.12)

while the higher-order pole terms have to satisfy a consistency condition which completely
determines them in terms of lower-order ones,

nci
d

dci
C(l+1) = γciC

(l) − γci
d

dci
C(l). (7.13)

Note that Eq. (7.12) is the same for any anomalous dimension defined from other renor-
malization constant, e.g., the ones for fields and composite operators. Eq. (7.13), on the other
hand, has to be slightly modified, by replacing γci in the first term on the right-hand side by
the appropriate anomalous dimension, while keeping the coupling anomalous dimension in the
second term. The above equations can easily be generalized to the case of multiple couplings
that undergo mixing under renormalization by appropriately summing the contributions coming
from different couplings.

Now that we know how to calculate the anomalous dimension from the single pole countert-
erm, the only thing left to do is to determine the counterterm itself. To do so, we make use of
the fact that instead of renormalizing couplings and field separately, we can renormalize each
term in the Lagrangian as a whole by

µ−nϵc0,iO0,i = ZOiciOi. (7.14)

In the MS scheme, the operator renormalization constant allows for the same series expansion
as for the coupling and field renormalization constants. By plugging this expression back into
the Lagrangian, it is easy to see that the counterterms in ZOi capture all divergences appearing
in one-particle irreducibe (1PI) diagrams. Then we can relate the renormalization constants of
operators to that of their respective coupling,

µ−nϵc0,iO0,i = ZOiciOi = Zci


 ∏

j∈fields
Z

1/2
j


 ciOi, (7.15)
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where the product runs over all fields appearing in the operator. Comparing the two expressions,
we can easily identify

Zci = ZOi


 ∏

j∈fields
Z

−1/2
j


 , (7.16)

which can be expanded order by order in perturbation theory.

To summarize, we can calculate the renormalization of any coupling ci by calculating the
ZOi from the divergences appearing in the loop corrections to the vertex associated to Oi, as
well as the field renormalization constants for each field appearing in Oi, and combining them
according to Eq. (7.16) to obtain Zci at the desired order in perturbation theory.

Coupling renormalization as it was discussed in this section is the method of choice employed
for the calculation of the loop corrections to various EDMs discussed in Chapter 8.

Additional care has to be taken if there are particles with the same charge in the theory.
In this case, they can mix at the loop level, such that it is not enough to introduce only a
renormalization constant for the fields, but also those for the mixing have to be included. An
example relevant for this thesis is the EW part of the SM after symmetry breaking, where the
photon and the Z boson can mix through loops. To take care of all divergences, we therefore
introduce a (non-diagonal) matrix of renormalization constants as

(
A0

Z0

)
=

(
Z

1/2
AA Z

1/2
AZ

Z
1/2
ZA Z

1/2
ZZ

)(
A
Z

)
=

(
1 + 1

2δAA
1
2δAZ

1
2δZA 1 + 1

2δZZ

)(
A
Z

)
. (7.17)

We see that this is non-diagonal only beyond tree-level, and plugging this into the bare
Lagrangian we find the correct renormalized one.

7.2 Selection Rules

We saw in the previous section that divergences in loop integrals allow different operators to
mix, which is governed by the RGE. In fact, not only divergent terms can give contributions to
different operators, but also finite terms can induce such shifts. Given a large set of operators,
like the Warsaw basis [171], it can be quite cumbersome to calculate all possible loop diagrams
with all possible operator insertions, just to get the contributions to a single coefficient, even at
the 1-loop level. Of course, usually it can be easy to see that many operators cannot contribute
to the desired operator, given the fact that there are simply no diagrams possible to draw, but
it would still be beneficial to further cut down the set of operators to only those that in the end
really do contribute. Fortunately, there exist a few, but still powerful criteria the operators have
to satisfy to be able to enter the coefficients of others.

This section will be dedicated to explaining the main ideas behind these criteria, using
contributions to the dipole operators as an example. Since there are no conceptual differences
regarding the selection rules for the other operators appearing in this chapter, we do not go
through them here explicitly.

We summarize the pattern of contributions in Fig. 7.1 allowed by these criteria together with
the additional requirement of CP violation, which is crucial for the generation of EDMs.

We want to stress that the selection rules we are going to present in this section are valid
only at the 1-loop level.
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Fψ2H

F 3

H2F 2

ψ4

ψ2ψ̄2

ψψ̄H2D

ψ2H3
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+

finite ‡

finite

RGE+finite

RGE † fin
ite

finite

finite

RGE+
finite

Figure 7.1: The mixing pattern of the operators relevant for this chapter, obtained by using
helicity and angular momentum selection rules, as well as the requirement of CP violation.
Operators connected with solid arrows enter the RGEs, while dashed arrows describe purely
finite effects. The † indicates that the operator O(1)

lequ is not included in the ψ4 class here.
Interestingly, we find that the other operators in this class only enter via the RGE, generating
no rational terms. The ‡ shows that the operator O

W̃
gives only rational terms.

7.2.1 Helicity Selection Rules

The first set of selection rules relies on the helicity [200,201] and number of external legs of the
amplitudes generated by the effective operators in our set. If one of these operators generates
a contact interaction, i.e., an amplitude with no poles or branch cuts, with n external legs and
total helicity

∑
h, it can only be renormalized by another operator with (n′,

∑
h′) if the relations

n′ ≤ n and
∣∣∣
∑

h−
∑

h′
∣∣∣ ≤ n− n′ (7.18)

hold [202,203]. The dipole operators are of the form Fψ2H, where F and ψ are positive helicity
field strength tensor and fermion respectively, so we can characterize them by (n,

∑
h) = (4, 2).

Using the above relations, we see that the only operators able to renormalize the dipoles within
the Warsaw basis of the SMEFT are:

• Operators with (n,
∑
h) = (3, 3), i.e., operators of the class F 3;

• Operators with (n,
∑
h) = (4, 2). This includes operators of the form F 2H2, ψ4 and of

course, the dipole operators Fψ2H themselves.

Although there is an exception to Eq. (7.18), we can show that it does not change the set of
renormalizing operators given above. It is related to the existence of the so-called exceptional,
four-dimensional ψ4 amplitude with (n,

∑
h) = (4, 2)1 [202–204]. It can be shown that an inser-

tion of this exceptional amplitude could potentially lead to the renormalization of the dipoles

1This amplitude is proportional to the product of up and down quark Yukawa couplings and is the only SM
4-point amplitude having total helicity different from zero.
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from higher-dimensional operators with (n,
∑
h) = (4, 0). Operators with this number of legs

and total helicity in the Warsaw basis are of the form ψ2ψ̄2, ψψ̄H2D and H4D2. Hence, we
see that we cannot build a loop amplitude with the particle content of the dipole in the exter-
nal states by combining these higher-dimensional contact amplitudes with the four-dimensional
exceptional amplitude.

While these helicity selection rules provide a helpful tool when aiming to calculate the RGEs
of various operators, they have one major shortcoming if one is interested in a full 1-loop
calculation. This is related to the fact that helicity arguments deal only with the renormalization
of operators and cannot tell if there are operators that contribute only through rational terms2.

Interestingly, although the operator O
W̃

belongs to the F 3 class, hence could renormalize the
dipole operators, it instead gives only a finite, rational contribution. This was computed using
both Feynman diagrams [157,208,209] as well as on-shell methods [210]. Its gluonic counterpart,
on the other hand, does also enter the dipole operator RGE.

7.2.2 Angular Momentum Selection Rules

We can alleviate the problem of rational terms by augmenting the helicity selection rules with
angular momentum considerations [211]. So far, these were used as an alternate way to derive
the pattern of renormalization among operators using the conservation of angular momentum of
external states, instead of employing the cut-based factorization of loop amplitudes that is used
to arrive at the above helicity selection rules. As the name suggests, at the core of this approach
lies the conservation of angular momentum during a scattering process. For every scattering
amplitude, we find (at least) one scattering channel where the total angular momentum j of the
scattering particles is conserved. Given this, operators can renormalize one another if they share
at least one such channel. Note that this approach is complementary to the helicity selection
rules, in the sense that operators allowed by the former can be forbidden if we additionally use
the latter and vice versa. Let us illustrate this with an example relevant for this part of the
thesis, the renormalization of the lepton dipole operators by 4-fermion operators. We find two
possible scattering channels for the dipoles,

• the V H → ψψ channel, with j = 1;

• and the V ψ → Hψ channel, with j = 1/2.

On the other hand, using helicity selection rules, we already know that the only possible 4-
fermion operators that can renormalize the dipoles necessarily have to take the form ψ4, with
total helicity

∑
h = 2. It turns out that in this class of operators, some have j = 0 and others

j = 1 in the ψψ scattering channel, while for the dipole operators only the latter is allowed.
In the Warsaw basis, the only two operators that could potentially be relevant, concerning the
lepton dipole operators, are the semileptonic operator

O(1)

lequ =
(
L̄jLeR

)
ϵjk
(
Q̄kLuR

)
(7.19)

and its tensorial cousin O(3)

lequ defined in Table 6.1. We see that the former could contribute to
the dipole only through a j = 0 two-lepton channel, while the latter contributes through a j = 1
channel. Since the dipole operators have j = 1 in the two-fermion channels, only the tensor
operator can, in fact, renormalize the dipole. We want to stress here, that, without actually

2While there are no helicity selection rules for rational terms, they can still be calculated using helicity
amplitudes. However, this would require to perform all possible multi-particle cuts either in D dimensions, see
e.g. [205], or using massive loop propagators [206,207]

72



7.2. Selection Rules

performing the loop calculation, we were unable to see this by using only helicity selection rules
without the angular momentum conservation. Among the operators mixing with the dipoles
through RG flow, the one with O(1)

lequ is the only one which would have been allowed by helicity
selection rules but is forbidden by angular momentum conservation.

As an example for the opposite relation, we want to mention operators in the class ψψ̄H2D,
with zero total helicity. By angular momentum arguments these would be allowed to renormalize
the dipole, via the ψH channel [211], but they do not satisfy the conditions in Eq. (7.18) and
therefore do, in fact, not enter the dipole operators’ RGE. Note that these operators cannot
give a CP odd contribution with only a single insertion, apart from OHud. Hence, the latter
enters indeed in the 1-loop corrections to (chromo-)dipoles of the quarks, while we can remove
the remaining operators of this class from the set of relevant operators with only the condition
of CP violation.

Because the angular momentum argument does not rely on performing cuts in the loop
integral but only on the angular momentum of external states, it should be possible to extend
the procedure to rational terms. While we are not aware of a rigorous proof for this and leave
any detailed investigation for later work, we checked a few cases and the procedure worked for
all of them. One example would be the ψψ̄H2D2 class of operators, whose renormalization
to the dipoles is forbidden by helicity selection rules. Notice, that the only operator in this
class that can give CP odd contributions is OHud, which contributes only to the chromo-dipoles.
Looking at the angular momentum structure, we see that OHud shares the ψH channel with the
dipoles [211]. So even though helicity selection rules forbid renormalization, angular momentum
conservation allows for rational contributions, which we indeed find.

There is, however, a caveat that is related to the existence of so-called evanescent operators.
These are operators that generate non-vanishing amplitudes in D ̸= 4 space-time dimensions
that then vanish in the limit, D → 4 and often arise in the context of 4-fermion operators
and Fierz identities that change for D ̸= 4. In particular, let us look at the operator Ole in the
Warsaw basis and its counterparts with quarks defined in Table 6.1; the connection of evanescent
operators to the dipole through this particular operator was already mentioned in [157]. It lives in
the operator class ψ2ψ̄2, having j = 0 in the ψψ channel, so by angular momentum conservation
it can neither renormalize the dipole nor give only rational contributions. On the other hand, it
is straightforward to compute the loop diagram with a single insertion of this operator and see
that it, against all odds, does, in fact, give a rational contribution. This apparent contradiction
with angular momentum conservation can be resolved by realizing that we can apply a Fierz
identity to rewrite this operator as

Ole =
(
L̄LγµLL

)(
ēRγµeR

)
∝
(
L̄LeR

)(
ēRLL

)
. (7.20)

Again, we can calculate the corresponding diagram with an insertion of this operator after
the Fierzing, and we indeed find a vanishing result, in accordance with angular momentum
conservation. At this point, we have to stress that the above Fierzing does only hold in D = 4,
in a general number of space-time dimensions the identity reads [177]

Ole =
(
L̄LγµLL

)(
ēRγµeR

)
= 2
(
L̄LeR

)(
ēRLL

)
+ E(2)

LR, (7.21)

where E(2)

LR is an evanescent operator that vanishes in 4 dimensions. This additional operator
then gives a rational term when inserted into the loop integral.

In this chapter we use the Warsaw basis without any Fierzing, so the contribution from this
kind of operator appears explicitly in the final result, however, keeping in mind that it is related
to the presence of an evanescent operator.
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Chapter 8

Electric Dipole Moments at the
1-Loop Order

In this chapter, we provide the details on the calculation of all the 1-loop contributions to the
electric and chromo-electric dipole operators and the results thereof. Because we work directly
in the broken phase of the SMEFT we start by specifying the procedure we used to translate
the Wilson coefficients from the gauge to the mass basis. In section Sec. 8.2, we give the
definitions and implications of the different schemes relevant for all calculations. This includes
the regularization of divergent loop integrals, the subtraction of both UV and and IR divergences
and the treatment of chiral fermions in arbitrary dimensions. Then, in Sec. 8.3, we will discuss
the gauge invariance of our calculation and the background field method (BFM) to fix the
gauge in a way that simplifies the calculations in practice. We will also explain how redundant
operators enter in intermediate steps of our calculations and how gauge invariance can provide
a cross-check for their contribution. Before showing the results, we want to briefly discuss the
origin of non-rational, but finite functions in multiscale scenarios like the SMEFT in the broken
phase in Sec. 8.4. Finally, we conclude this chapter by presenting the results of the calculation in
Sec. 8.5, and we will focus on how the inclusion of finite pieces can affect the bounds on various
operators compared to just including effects of RG running.

We already want to mention here that we used two independent implementations using the
Mathematica package PackageX [212] in one and the FeynRules/FeynArts/FormCalc [213–215]
pipeline in the other, finding the same results in both cases. We use the former to obtain explicit
analytic expressions of the Passarino-Veltman (PV) loop integrals.

Further, by performing a full 1-loop calculation, we automatically rederived the RGEs in both
the SMEFT [172–174] and LEFT [175, 176] and we explicitly verified that our RGEs coincide
with the ones in the literature, after performing the respective weak rotations in the case of the
SMEFT RGEs.

8.1 Transition from the gauge to the mass basis

As already mentioned, all calculations in this paper were performed directly in the phase of
spontaneously broken electroweak symmetry and it is convenient to go from the gauge to the
mass basis for fermions, which is necessary to deal with the propagating degrees of freedom. We
want to briefly discuss how this basis change affects the Wilson coefficients.

We diagonalise the fermion mass matrices by rotating each chiral fermion, which are triplets
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in generation space, using unitary transformations in flavor space,

ψ′ i
L/R = U iL/R ψ

i
L/R (8.1)

with (un)primed fields in the (mass) gauge basis and i denotes any of the fermion flavors. Note,
at the order we are working at, it is sufficient to take the SM part from the matrices U iL/R,
ignoring their dimension-6 pieces. These rotations can be absorbed by redefining the Wilson
coefficients, as shown in Table 8.1.Because the components of the electroweak quark doublets
need to be transformed differently to diagonalise all Yukawa matrices, there is no way to redefine
the Wilson coefficients such that all rotation matrices are absorbed. This is because the Wilson
coefficients are defined in the unbroken phase, where a U(3)Q flavor transformation acts on
the full SU(2)L doublet. Possible choices, for the gauge basis in which the SMEFT Wilson
coefficients are defined in the unbroken phase, are the absorption either of the up-type or of the
down-type rotation: we denote them in the following as up- and down-quark bases, in which the
up- and down-quark Yukawa matrices are diagonal, respectively. Then, after EW spontaneous
symmetry breaking and full rotation to the mass basis, in the quark sector this generates the
CKM matrix, defined as

V ≡ VCKM = (UuL)
† UdL, (8.2)

and the precise terms where it appears are given by the choice of the definition of the Wilson
coefficients in the gauge basis1. We choose, in our work, to present the final expressions for the
EDMs in terms of the Wilson coefficients in the mass basis, defined in Table 8.1, in such a way
that the least amount of CKM matrices appear explicitly. Furthermore, also the bounds are set
here on the mass basis Wilson coefficients, even if in presenting these constraints in Table II.B.5
and II.B.8, the C ′ coefficients in the gauge basis are shown explicitly, choosing the up-quark
basis and consequently UdL = V and UuL/R = 1.

8.2 Scheme definitions

When calculating loop corrections to the various operators appearing in this part, most loop in-
tegrals will be divergent, and we regularize them by using dimensional regularization to evaluate
all integrals in D = 4 − 2ϵ space-time dimensions performing the limit ϵ → 0 at the end of the
calculation. In this regularization scheme, 1-loop UV divergences manifest themselves as simple
poles in the expansion for small ϵ and we subtract these poles with appropriate counterterms
in the MS scheme. The only exception to this procedure are the scalar tadpoles, loop contri-
butions to the Higgs one-point function, that renormalize the Higgs VEV and are present only
in the broken phase of the SMEFT. To deal with this type of diagram, we chose the tadpole
counterterm such that it cancels the tadpole diagrams completely, analogously to what was done
in [216]. The result is that no such diagrams have to be calculated, and the loop contributions
to the Higgs VEV are given by the loops in the physical Higgs 2-point function. In addition,
due to the photon and gluon being massless, we encounter a few IR divergent diagrams. In the
contexts of loop contributions to EDMs, we regularize these by assigning both these bosons an
infinitesimally small mass m and keeping only terms that are regular in the limit m→ 0. Note,
the IR divergences can, of course, be regulated using dimensional regularization, analogous to
the UV divergences. Nevertheless, we chose the finite mass regulator to make distinguishing
between UV and IR divergences and logarithms straightforward. However, we checked explicitly
that the rational terms presented in this chapter are independent of the chosen regulator. In

1If we would relax our assumption of massless neutrinos the PMNS matrix would be generated accordingly in
the lepton sector.
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CdW =
(
UdL
)†
C ′
dWU

d
R

CdB =
(
UdL
)†
C ′
dWU

d
R

CdG =
(
UdL
)†
C ′
dWU

d
R

CdH =
(
UdL
)†
C ′
dHU

d
R

CuW = (UuL)
†C ′

uWU
u
R

CuB = (UuL)
†C ′

uWU
u
R

CuG = (UuL)
†C ′

uWU
u
R

CuH = (UuL)
†C ′

uHU
u
R

CHud = (UuR)
†C ′

HudU
d
R

C(3)

lequ
abcd

= δiaδjb (U
u
L)

†
ck (U

u
R)ldC

′(3)
lequ
ijkl

C(1,8)

quqd
abcd

=
(
UdL
)†
ai
(UuR)jb (U

u
L)

†
ck

(
UdR
)
ld
C ′(1,8)

quqd
ijkl

C(1,8)
qu
abcd

= (UuL)
†
ai (U

u
L)jb (U

u
R)

†
ck (U

u
R)ldC

′(1,8)
qu
ijkl

C(1,8)

qd
abcd

=
(
UdL
)†
ai

(
UdL
)
jb

(
UdR
)†
ck

(
UdR
)
ld
C ′(1,8)

qd
ijkl

C(1,8)

ud
abcd

= (UuR)
†
ai (U

u
R)jb

(
UdR
)†
ck

(
UdR
)
ld
C ′(1,8)

ud
ijkl

Table 8.1: Definitions of Wilson coefficients of fermionic operators used in this work. We
suppress flavor indices whenever their contraction is non-ambiguous. (Un)primed coefficients
denote the ones in the (mass) gauge basis. The specific form of the U unitary matrices, needed
for the transformation to the mass basis, depends on the specific choice for the gauge basis in
which the C ′ coefficients are defined: for example, UuL/R = 1, UdL = V (UdL/R = 1, UuL = V †)

in the up (down) – quark basis. Here we already assumed a diagonal lepton Yukawa, hence
U eL/R = 1 and CeV = C ′

eV .

Part IV we will revisit this issue and how to tackle it within dimensional regularization by using
matrix elements of UV finite operators.

While dimensional regularization has well-known advantages, like being a mass-independent
regulator and preserving gauge invariance and other symmetries, certain theories have to be
treated with special care. The SMEFT is one of these theories, since due to its chiral structure
and the presence of CP violating, purely bosonic operators, both the fifth Dirac matrix γ5 as
well as the Levi-Civita symbol ϵµναβ (ϵ0123 = +1) appear explicitly. It is well-known that these
two objects are intrinsically defined as four-dimensional, and there exists no generally accepted
procedure to consistently extend them to D dimension.

Considering first γ5, there exist various schemes on how to treat γ5 in D ̸= 4 space-time di-
mensions [217] that all have advantages and disadvantages compared to respective other schemes.
For simplicity, we will use the naive dimensional regularization (NDR) scheme [218–220]. In this
scheme, the anti-commutation property of γ5,

{γµ, γ5} = 0 for any µ , (8.3)

is retained for an arbitrary number of space-time dimensions and in particular, we use the
definition

γ5 = −
i

4!
ϵµναβγµγνγαγβ , (8.4)

making the connection between γ5 and the Levi-Civita symbol evident.
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This leads to obvious inconsistencies in four dimensions by recalling that for D = 4 the
relation

Tr
{
γµγνγαγβγ5

}
= 4iϵµναβ (8.5)

holds. Because of the appearance of the Levi-Civita symbol we can expect this relation to
hold strictly only in D = 4 dimensions and in fact, preserving the anti-commutation relation of
Eq. (8.3), we find

Tr
{
γµγνγαγβγ5

}
= 0 (8.6)

in D ̸= 4 dimensions, which obviously is not smoothly connected to Eq. (8.5) in the limit
D → 4. Nevertheless, we will use this scheme for its simplicity and implementation in various
computer programs used for evaluating loop integrals, keeping in mind that the finite terms
arising in our calculation depend explicitly on this scheme choice and paying attention to possible
inconsistencies that could arise in diagrams including traces with an odd number of γ5 matrices.

The NDR scheme as we use it in this paper also fixes the treatment of the Levi-Civita symbol
in an arbitrary number of space-time dimensions, namely, we treat its properties the usual way,
pretending as if we are working in four dimensions. This can lead to possible issues for diagrams
containing the CP odd operators from the H2F 2 and F 3 classes. These would arise mainly from
contractions of two or more Levi-Civita symbols, but they can be avoided by performing the loop
integral before contracting any of the indices of the Levi-Civita symbol, leaving only four four-
dimensional indices to be contracted and hence no source of any inconsistencies remain [177]. In
fact, we explicitly checked that for the H2F 2 operators, the result does not change if the indices
are contracted from the beginning.

Additional care has to be taken when calculating the contributions of the CP odd F 3 oper-
ators to the dipoles, independently of the gauge bosons they are built from. By investigating
the respective diagram and performing a power counting we note that its most singular piece is
linearly divergent and from the treatment of axial anomalies it is known that such diagrams are
not necessarily independent of the choice of momentum routing in the loop. Together with the
NDR scheme, this leads to the result for e.g., the W 3 operator,

dψ
e
× Λ2 ⊃ 3−A

32π2
emψ

sw
C
W̃
. (8.7)

Here A is a constant, arbitrary shift of the loop momentum in the convention where the fermion
in the loop carries the momentum q+A p1, where q is the loop momentum and p1 the incoming
fermion momentum. In this calculation, the choice A = 0 corresponds to the known result found
in the literature [157, 208, 209]. The same dependence on A appears in the rational part of the
gluonic diagram if it is calculated in this naive way, while the divergent structure is independent
of the loop momentum routing. To circumvent this issue, we proceed as mentioned above and
explained in [177] and keep the Levi-Civita symbol external to the loop integral and contract its
indices only after evaluating said integral. However, contrary to [177], we extract the W+W−γ
vertex by treating all the legs of the operator O

W̃
to be on-shell and in D = 4, such that we

can use properties of the the Levi-Civita symbol to simplify the vertex rule. This procedure
reproduces the results in [157,208,209], where the authors start from a W+W−γ operator, but
does not capture the the contribution of an evanescent operator, see [177].
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8.3 Gauge invariance and redundant operators

8.3.1 Gauge invariance and BFM

Being built upon the SM, the SMEFT is imbued with the same gauge symmetry; hence our
results respect this gauge invariance as well.

However, it is a long and well-known fact of QFT that to quantize gauge theories, it is
necessary to introduce a gauge fixing term to the Lagrangian to cure the issues arising from
the integration over all gauge-related field configurations in the path integral. This explicitly
breaks gauge invariance, leaving the theory invariant under the more general BRST transforma-
tions [221–223]. For loop calculations, this implies the necessity of gauge-variant, but BRST-
invariant, operator structures to account for all the ones appearing in the loops. Allowing for
non-renormalizable operators, the usual gauge fixing procedure makes any calculation more te-
dious because of the large number of such gauge-variant structures needed that did not appear
in the original operator basis and hence have to be removed by using field redefinitions. For
a calculation of the dipole renormalization using Rξ gauges with gauge-variant operators, see,
e.g., [224].

An alternate way to fix the gauge of a gauge theory lies in the BFM [225–228], which greatly
simplifies the calculation and was used for any calculation performed in this paper. The key point
is that all the fields are split into a classical background field as well as a quantum field, where
the path integral is performed only over field configurations of the latter. By doing so, gauge
invariance for the classical fields can be made manifest, such that only gauge-invariant operators
have to be considered, greatly simplifying any calculation and the gauge for the quantum fields
can be fixed independently of the classical fields. We choose a linear Rξ gauge and in particular
the Feynman gauge (ξ = 1) for quantum and unitary gauge (ξ →∞) for classical fields. We will
not go into further detail about the BFM and refer the reader to [225–228] for a more rigorous
treatment in general and to [229–231] for the BFM in the context of gauge fixing the SMEFT.

In practice, the classical fields correspond to external fields and tree level propagators while
the quantum fields describe fields running in loops and differences to the conventional gauge
fixing procedure can arise only in Feynman rules containing both classical and quantum fields.
In fact, because we are dealing only with CP odd dimension-6 operators that are not directly
affected by gauge fixing, the only modifications we encounter involve only the gauge boson
self-interactions, Goldstone-gauge and ghost-gauge vertices within the SM.

Let us remark that, even though Feynman gauge is used for the quantum fields in our
calculations, we explicitly checked gauge invariance by leaving the gauge parameter ξ generic
in various subsets of diagrams and confirming analytically that every dependence on ξ drops
out. Further, as will be illustrated in Sec. 8.3.3, we used the cancellation of various divergences
related by gauge symmetry by the same redundant operator as a further check related to gauge
invariance.

8.3.2 Redundant operators and choice of basis

As already mentioned, for loop calculations within effective theories one can also use a complete
set of operators which are independent under integration by parts (IBP), but possibly redundant
under the SM renormalizable equations of motion (EOMs). By applying the latter, this set
should then be reduced to an operator basis; this procedure is related to the fact that for
theories with non-renormalizable operators there is no unique basis and all different basis choices
are related by field redefinitions. In particular, we consider as redundant set the so-called Green’s
basis [232, 233], which is given by all the operators, independent under IBP, which are directly
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generated by 1PI Green’s functions. In such a way, one can avoid the calculation of reducible
diagrams: they correspond indeed, among all the contributions to the operators in the non-
redundant basis, to the ones that arise through field redefinitions. So, the procedure is the
following:

I Calculate all the relevant, irreducible loop diagrams (see Appendix A in [6]).

II Extend the original, non-redundant operator basis to a redundant set as an intermediate
step, such that all operator structures from the previous step can be accounted for. As
mentioned, we temporarily extend the Warsaw basis [171] to the Green’s basis, both taken
to be in phase of broken EW symmetry.

III Once all operator structures from step I are taken care of, remove the redundant operators
by performing the appropriate field redefinitions. This induces shifts of the coefficients of
the operators in the non-redundant set as well as those of higher dimensional operators,
in terms of the redundant ones, which in turn are fixed by the result of step I. For our
purposes, we can neglect the latter, as they would correspond to dimension-8 effects.

Let us note that an alternative to this approach, which avoids the introduction of redundant
operators, is to directly compute all reducible diagrams with the desired final states. For our
purposes, this would correspond to attaching, e.g., the 1-loop fermion 2-point function to the tree
level dipole vertex. But since we are working in the phase of broken EW symmetry with massive
particles a cancellation between the 2-point function and the on-shell propagator connecting the
loop to the tree level vertex is not obvious and spurious kinematic divergences appear if not
treated with care.

8.3.3 Contributions related by gauge invariance

It is well known that due to gauge invariance, certain terms in diagrams with differing numbers
of external fields can correspond to the same operator if it contains covariant derivatives or
non-Abelian field strength tensors. This allows us to relate terms in different n-point functions
coming from the same gauge-invariant operator through the common corresponding Wilson
coefficient.

We will explicitly demonstrate this with a situation appearing during our calculations. Con-
sider the loop contributions to the fermion 2-point function, especially the middle and right
diagram in Fig. 8.1. The left diagram is not relevant for the discussion to follow, as it is a purely
SM diagram, therefore giving contributions only to the fermion wave function and the fermion
masses. On the other hand, exchanging one of the SM vertices in this diagram with the electron
dipole operator (diagrams on the right) we find that, not only the usual SM structures appear
but also one that is proportional to the fermion momentum squared, p2. Clearly, no operator
either within the SM or the Warsaw basis can give rise to such a structure, but there is one in
the Green’s basis and in the phase of broken EW symmetry it has the form

OD2 ∼ ψ̄D2ψ . (8.8)

Note that we could have chosen an operator with /D /D instead of D2, since these are related by

/D /D = D2 +
1

2
eQeσµνF

µν , (8.9)

and both operators have the same p2 matrix element. However, we chose the former, as it is easier
to relate it to matrix elements with additional gauge bosons, which will be important shortly.
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f f ′

γ, Z, g,W−

f f f ′

γ, Z, g,W−

f f ff

γ, Z, g

Figure 8.1: The fermionic 2-point function at 1-loop, including both SM and dimension-6
contributions. Dashed lines ending with a crossed endpoint correspond to Higgs fields in the
unbroken phase, that are fixed to their VEV in the broken phase.

Note also that Eq. (8.9) is a purely algebraic identity, as it uses only the anti-commutation
relation of the Dirac matrices and the definition of the field strength tensor as the commutator
of two covariant derivatives: the two operators are indeed equivalent even in the Green’s basis,
since the above relation does not rely on redefinitions via EOMs.

In the following, we will use the electron field below the weak scale for illustrative purpose,
such that the covariant derivative only contains the photon. The reasoning holds for all the
other gauge bosons in the same way. The coefficient cD2 of the redundant operator is then given
by precisely the 1-loop sized term in the 2-point function proportional to p2 and, as explained
above, we now need to find a field redefinition that removes the D2 operator at the cost of
redefining the coefficients of the other operators appearing in our Warsaw basis. To do so, we
summarize the relevant operators for this little exercise,

L ⊃ iē /De+ cD2v√
2
ēD2e+

ceγv√
2
ēσµνeF

µν . (8.10)

The appropriate field redefinition to remove the OD2 operator is

e→ e+ i
cD2v√

2
/De (8.11a)

and we find that it also induces a shift of the dipole coefficient

ceγ → ceγ −
1

2
cD2 , (8.12)

which is straightforward to see by plugging the above field redefinition into Eq. (8.10) and
neglecting higher dimensional terms.

Accounting for the p2 term in the 2-point function concerns only the derivative part in the
covariant derivatives of the redundant operator. Therefore, investigating the other terms in the
covariant derivatives, by gauge invariance, we expect an operator structure in the eeγ vertex
function that cannot be accounted for by any SM or Warsaw basis operator but instead by
the one-photon part of OD2 and is numerically related to the p2 structure we found above.
And we find this exact 1-loop contribution, which serves as another check of our calculations.
Taking this reasoning even further, we deduce that there has to be a term in the eeγγ 4-point
function corresponding to the two-photon part of OD2 , whose coefficient we can predict by gauge
invariance from the ones in the 2- or 3-point function, but we have not performed this check
explicitly.
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For completeness, we also quote the additional redundant operator needed in this chapter,
here expressed in the unbroken phase,

O(2)

D2 =
(
ψ̄LDµψR

)
DµH . (8.13)

It appeared in the calculation of the dipole operator contributions to CHud. We refer to [233]
for the coefficients in Warsaw basis in terms of the ones in the Green’s basis.

8.4 Non-rational functions

In this section, we want to discuss the presence, in the EDMs expressions, of finite but non-
rational terms, where finite contributions are meant to be the ones that do not contain a log-
arithmic function of the SMEFT cut-off Λ. Thus, these terms cannot be directly derived from
the RGE of the Wilson coefficients in the unbroken phase of the SMEFT and, as we will explain
here, they are intrinsically related to the multiscale nature of the SM in the phase of broken
EW symmetry.

We see that in App. II.A, in particular in Eqs. (II.A.3) and (II.A.8a)-(II.A.8c), non-rational
functions on only SM scales appear. For such functions to appear, at least two massive particles
have to take part in one Feynman diagram and because we are working at leading order in m/v,
this effectively means that at least two particles with masses of the order of the electroweak scale
need to be present. In fact, the equations that we are discussing are the only places in which
multiple heavy scales can arise and even though the analytic form of these functions looks very
different in (II.A.3) and (II.A.8a)-(II.A.8c) have a very similar origin.

To illustrate this, let us first focus on Eq. (II.A.3), specifically the arctan functions. By
looking closely at these expressions, it is not too hard to reconstruct the origin. They come
from loop corrections to the scalar 2-point functions, and hence the two heavy scales involved
in this amplitude are the external Higgs mass and mi, with mi any of the W , Z or top mass
from the particles in the loop. It is well-known, this kind of diagrams exhibits a branch cut in
the complex s plane starting at (2mi)

2, corresponding to the production of a 2-particle state
with arbitrary momenta. Then, by setting the external fields to be on-shell and rewriting the
complex logarithms appearing in the analytic expression of the discontinuity across this branch
cut, we arrive at the arctan functions appearing in (II.A.3).

The non-rational terms in the contributions of the H2F 2 operators are a bit more involved,
as they are 4- instead of 2-point functions with three internal propagators. After the PV decom-
position of the loop integrals again, two-propagator bubble integrals are generated with branch
cuts, corresponding to either the production of a lepton-Z or lepton-Higgs system, plus addi-
tional non-rational functions from three-propagator triangle integrals. Then, keeping leading
terms in m/v only the logarithms of ratios of heavy scales survive. And even though they are
not related to the divergences of the diagram, they are not completely disconnected from the
RG running. In fact, they can be interpreted as the part of the running between the Higgs and
the Z boson, that could also be obtained after integrating out only the Higgs boson.

8.5 Results and bounds

Now that we have established all the technical details of our calculation, we will present the
results and bounds derived from them in this section. Because the full expressions for all the
EDMs are quite long, we will not report them here, but instead refer the reader to App. II.A. The
results shown there are taken to be at leading order in the external m/v, where m is the mass of
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Table 8.2: Rescalings of the Wilson coefficients performed throughout this chapter to reflect
the natural size we expect them to carry. We assume the operators which are built from vector
currents and therefore do not involve a chirality flip to be generated by a heavy vector boson
exchange and choose the SM U(1)Y gauge coupling as a representative.

the external fermion. While this is a good approximation even for the third-generation leptons,
this is not applicable for the third generation quarks. Further, due to the sheer amount of Wilson
coefficients appearing we also do not present all the bounds we obtained here, rather we quote
them in App. II.B. Nevertheless, we will discuss the most interesting points in the following. In
particular, one of the main focuses of this chapter lies on the inclusion of finite terms, so we are
also interested in quantifying the impact these terms have on the final result. To extract the
bounds on various Wilson coefficients from any of the experimental EDM bounds, we neglect the
SM contributions, that are many orders of magnitude smaller than the experimental constraints,
and turn on only one coefficient at a time, rescaling them by the appropriate combination of
SM couplings, reflecting the naturally expected to be carried by the corresponding coefficient,
see as well Table 8.2. Using this factorization, we expect, in most of the BSM theories, order
one rescaled Wilson coefficients, if the parameters of the UV completion have natural O(1) size.
For the new physics scale, we assume Λ = 5 TeV. Furthermore, we will also set lower bounds
on the new physics scale Λ, assuming that the Wilson coefficients have the naturally expected
size; we will see that EDMs push Λ to be very large, of the order of 103 TeV.

In this section, we define RG running contributions to be all terms that explicitly con-
tain a scale dependence, i.e. log(Λ). All remaining terms, both rational and non-rational, are
collectively called finite.

Note, that we do not use any assumptions on the flavor structure of the dimension-6 oper-
ators. For a discussion on the expansion of the coefficients in terms of the needed spurions for
different flavor assumptions as well as the bounds obtained with such assumptions can be found
in [6].

8.5.1 Lepton EDMs

We will start by investigating the lepton EDMs, where fewer operators appear, compared to the
neutron case. In the following, we illustrate the impact of different terms in the contributions
to EDMs coming from various class of operators. For the H2F 2 class, we illustrate the impact
of finite terms, showing, in the upper panel of Fig. 8.2, the relative change when using only the
RGE versus the full 1-loop result. For illustrative purposes, we use the electron EDM, and while
the numerics change due to differing masses, the overall pattern is the same for the other lepton
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flavors.

In fact, these, together with the dipole operators themselves, are the only operators that give
both RGE and finite contributions, while operators of the ψ4 class give vanishing rational terms
and both the F 3 and ψ2ψ̄2 class operators enter only through purely rational terms. We want
to note that, on the other hand, for the dipole operators finite terms play a negligible role in
affecting the result by ≲ 1%, but this is simply because they enter the EDMs also at tree level,
completely dominating over corrections to higher-order terms. This is why, in this case, we do
not show the impact of the 1-loop finite terms but rather of the full 1-loop result compared to
the tree level term for these operators only, in Fig. 8.2. We see that these higher order effects
add destructively to the tree level piece, therefore actually lowering the bound on the scale Λ.

On the contrary, for the H2F 2 class operators any tree level contribution is obviously absent,
which presents a great opportunity to study the size of finite terms. Indeed, we find that the
finite terms change the bound by ∼ 10 − 20%, however, due to positive relative signs they
interfere constructively and consequently increase the bound compared to when using the RG
running only. By looking at the corresponding expression, we can also easily explain why the
effects of the two operators with only one kind of gauge field appearing are very similar but,
on the other hand, quite different from the mixed one. The operators O

HB̃
and O

HW̃
do

only get contributions from the photon and Z components of the weak bosons, meaning apart
from numerical prefactors coming from different couplings, they give the same contributions.
Moreover, the mixed operator, O

HWB̃
, also receives contributions from its W component, and

it turns out that this piece has the opposite sign of the neutral ones, again reducing the total
impact on the lepton EDMs.

Of course, these statements are dependent on the scale Λ, as this changes the energy regime
that needs to be swept by the RGE logs. This implies that for new physics sectors well above
the TeV, the finite terms will be completely subdominant compared to the large logarithms
appearing. On the other hand, the closer the new sector lies to EW scale the smaller the logs
and therefore finite terms can have an increasingly big effect. We illustrate this in the lower
panel of Fig. 8.2, where we show the dependence on Λ of the relative shift in the electron EDM
for the H2F 2-class operators. We see that because of the slow logarithmic growth, the effect of
finite terms does not deteriorate tremendously for e.g., Λ ∼ 10 TeV, while it almost doubles for
Λ approaching ∼ 1 TeV.

Finally, let us briefly discuss the bounds on the Wilson coefficients from the electron, muon
and tau EDM, summarized in Fig. 8.3 and computed assuming Λ = 5 TeV and applying the
rescalings shown in Table 8.2. Here we show the full tree plus loop level result, i.e., including
both the RG running and finite terms; in the case of the electron EDM the prospected future
bounds are shown as well. Note that for the 4-fermion operators, we chose to show only the
component with the most stringent bound for each of the operators. The bounds on other
components can easily be obtained from the ones shown in Fig. 8.3 by rescaling them with the
appropriate ratio of fermion masses. The most obvious conclusion that can be drawn from this
figure, by comparing the upper panel with the lower one (and with the values in Table II.B.1)
is that the supreme precision of the eEDM measurement gives by far the most stringent bounds
from any of the lepton flavors. One can notice that, for Λ = 5 TeV, the constraints from the
electron EDM can set bounds of order 10−5 on the Wilson coefficients of operators with fermions
and of 10−3 ÷ 10−2 in the case of purely bosonic operators. These bounds will further improve
by one or two orders of magnitude at ACME III.

Nevertheless, we can make another interesting observation. Even though the experimental
sensitivity to the muon EDM is roughly one order of magnitude higher than for the tau EDM,
it still happens to be the case that the tau lepton is slightly more constraining than its lighter
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Figure 8.2: Upper panel: Relative change of the electron EDM when using the full 1-loop
result compared to only the RG running (H2F 2 operators) and impact of the full 1-loop effects
compared to the tree level term (Fψ2H operators). Lower panel: Dependence of the relative
shift in the EDMs as a function of the scale Λ. Here the dotted line shows the benchmark value
of Λ = 5 TeV used in this paper.

cousin. Speaking of the different masses of these leptons, this is precisely the reason this hap-
pens. For every operator, the contribution is proportional to the lepton Yukawa, either through
our rescaling of the Wilson coefficients to their natural size or because the contribution itself
is directly proportional to the lepton mass. So it turns out that with the current sensitivities
the mass difference between the muon and tau lepton barely overcompensates the lower experi-
mental reach for the latter, such that the tau EDM is indeed more constraining than its muonic
counterpart. This argument, however, does not hold for the operator Ole. For this operator, we
see the inverted situation, where the tau EDM is less constraining than the muon EDM. But this
is readily explained by closer examining the corresponding expression in Eq. (II.A.11). Here we
see that it is, in fact, not proportional to the mass of the external lepton but of the lepton inside
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Figure 8.3: Upper bounds on the Wilson coefficients, assuming Λ = 5 TeV and applying the
rescalings shown in Table 8.2, obtained including the full 1-loop expressions, from the experi-
mental bounds on the different lepton EDMs. Upper panel: The current constraints (ACME II)
coming from the best bounds on the electron EDM, compared to the ones from the projected
future bounds (ACME III). Lower panel: We compare the bounds of the two heavy lepton fla-
vors with each other. Here i = 2(3) stands for the muon (tau) EDM and j denotes the heavier
of the two lepton flavors, different from i in the operator Ole.

the loop instead. Because we chose the most constraining component of each Wilson coefficient,
this mass is the tau mass for the muon EDM and vice versa, such that the reasoning here is
exactly inverted with respect to all the other operators and on top of the weaker experimental
bound, the constraint from the tau EDM is further suppressed by the muon mass, contrary to
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Figure 8.4: Selected upper bounds on the Wilson coefficients, assuming Λ = 5 TeV and
applying the rescalings shown in Table 8.2, obtained including the full 1-loop expressions, from
the experimental bounds on the neutron EDM. In addition to the bounds from the central values,
we also show the influence of the uncertainties in the determination of the chromo-dipole and
Weinberg operator matrix elements. We also show bounds on the Wilson coefficients for the
projected accuracy of the n2EDM experiment. Notice that the last two Wilson coefficients are
in the up-quark gauge basis, while the others in the mass basis.

the tau mass in the muon EDM. From this perspective, the phenomenal constraining power of
the electron EDM is even more impressive, as the mass gap between the electron mass and the
other lepton masses spans multiple orders of magnitude, but still, the electron bounds by far
overshadow the other ones.

As mentioned before, we also set lower bounds on the new physics scale Λ, assuming that the
Wilson coefficients have values corresponding to the natural size indicated in Table 8.2. Turning

on one operator at a time, the strongest constraints come from the dipole and the O
(3)
lequ
1133

and

O le
1331

contributions and are of the order of 103 TeV.

8.5.2 Neutron EDM

We proceed with the neutron EDM, which is composed of the (chromo-)EDMs of the quarks and

gluons as well as the operators OHud
11

and O
(1,8)
quqd
1111

which can be matched to operators which have

a non-vanishing matrix element on the neutron EDM. There are several differences with respect
to the lepton EDMs as we can now have cancellations between the 1-loop contributions of the
EDMs and chromo-EDMs of the light quarks, more flavor components of the Wilson coefficients
are contributing to the dipole amplitudes (this is all the more true in the gauge basis, due to the
non-trivial rotation between gauge and mass basis, see Sec. 8.1) and in general more operators
due to the presence of QCD degrees of freedom. We show a selection of bounds in Fig. 8.4

87



Chapter 8. Electric Dipole Moments at the 1-Loop Order

where we have also included a conservative estimate of the influence of the uncertainties in the
determination of the matrix elements of all contributing effective operators in the expression of
the neutron EDM and a projection for the expected accuracy of the n2EDM experiment [131].
The full set of bounds can be found in App. II.B.2.

Starting with the dipole operators, in addition to the electroweak dipole operators also
the gluonic dipole operators contribute to the neutron EDM. There, the effects of including
finite terms are much larger than for the electroweak dipoles. This is due to the large rational
terms in the wave function renormalization of the gluon. In addition, we can also probe more
flavor components of the dipole operators through the appearance of the strange quark dipole
in the neutron EDM as well as the appearance of all flavor components of the quark dipole
Wilson coefficients in the 3-gluon 1-loop amplitudes. The bounds on these flavor components
are suppressed with respect to the dominant up and down quark chromo-dipole operators, since
the matrix elements in the expression for the neutron EDM are smaller and some flavor elements
only enter through loop corrections. Note also, that the contribution of the dipole operators
through effective operators apart from the dipole operators in the expression of the neutron EDM
is negligible, since these contributions are suppressed by the much smaller matrix elements of
the effective operators and the common loop factor that all dipole contributions receive that
are sourced by these additional effective operators. One exception to this is the contribution
through the Weinberg operator, as those loop contributions are enhanced by an inverse quark
mass.

For the H2F 2 type operators, we also have to differentiate between the operators with field
strengths of electroweak and strong gauge bosons. The bounds on the electroweak operators are
less stringent, by around three orders of magnitude, than the ones obtained from the electron
EDM, as is expected due to the experimental bound on the neutron EDM being so much weaker.
Interestingly, for all three electroweak operators there is a constructive interference between the
terms from the different quark EDMs, enhancing the contribution to the neutron EDM, together
with the enhancement from the quark Yukawas with respect to the electron case. Therefore, with
an experimental bound on the neutron EDM with the same constraining power as the current
electron EDM sensitivity, the bounds on the Wilson coefficients would actually be stronger
than those obtained from the electron EDM. The neutron EDM receives, through the quark
chromo-EDMs, contributions also from the gluonic H2G2 operator. Such terms are additionally
enhanced by the strong coupling and for this reason, the bound on the corresponding Wilson
coefficient is stronger than the constraints obtained for the Wilson coefficients of the electroweak
bosonic operators by more than two orders of magnitude, as shown in Fig. 8.4.

For the 4-fermion operators we have the same situation as for the lepton EDMs, only now
there are more operators including quarks contributing to the EDM. As for the lepton EDMs, the
4-fermion operators either enter only via RG running or only via rational terms to the dominant
contributions that are given by the (chromo-)dipole operators. They can also enter directly with
a small hadronic matrix element in the neutron EDM. What is interesting for these 4-fermion
operators made from quarks is that the change of basis from the gauge to the mass basis is
non-trivial, as discussed in Sec. 8.1. Starting, for example, from an up- or down-quark gauge
basis, in the rotation to the mass basis a CKM matrix appears for the down or up component
of the operators, respectively. As mentioned above, whenever we use expressions in terms of
Wilson coefficients in the gauge basis, we choose the up-basis since more operators with up
quarks appear in the final expression of the neutron EDM. In fact, with this choice, a larger
number of operators is left unchanged by the basis transformation; for example, this is the case

for the O
(3)
lequ operator already considered in the previous section in the discussion of the lepton

EDMs.
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However, since both the up and down type dipole appear in the neutron EDM, it is inevitable
that CKM matrix elements appear somewhere. Since the CKM matrix contains a CP violating
phase, this also enables us to probe the real part of some Wilson coefficients in the gauge basis,
in particular of some flavor off-diagonal ones (see the rightmost column in Fig. 8.4). In fact,
these real parts contribute to the imaginary parts of the Wilson coefficients in the mass basis,
that enter the EDMs expressions. Those constraints are of the same order as the bounds on
the corresponding imaginary parts, since the imaginary part of the very off-diagonal part of the
CKM matrix is of the same order as its real part.

Another interesting contribution appears through the Weinberg operator. Unlike OW̃ , it
can also contribute with RG running and in addition to its appearance through the quark
chromo-dipoles, it also enters directly in the expression of the neutron EDM, interpreted as the
chromo-dipole of the gluon. As can be seen in the analytical expressions of the dipoles with how
they enter the neutron EDM, the interference between the different chromo-EDMs is constructive
and all effects proportional to the Weinberg Wilson coefficient add up to the comparably strong
bound. This, together with the strong coupling enhancement for these contributions, leads to the
most stringent among the constraints imposed by the neutron EDM experimental bound, being
of order 10−4 for Λ = 5 TeV and for a CG̃ rescaled as in Table 8.2. In addition, there are large
finite terms in the self 1-loop contributions of the Weinberg operator, which give corrections of
∼ 45% with respect to only including RG running at the considered scale.

Furthermore, there can be direct contributions of the 4-fermion operators O
(1,8)
quqd, which are

however largely suppressed by their small matrix element in the neutron EDM. This leads to
an interesting interference where loop suppressed contributions of these 4-fermion operators to
the dipole operators, which are further suppressed by small Yukawa couplings, are of the same
order as the direct tree level contributions of those operators (see App.II.A and Eq. (6.6)). The
dipole contributions to those 4-fermion operators are suppressed by small matrix elements and
loop factors, as discussed before.

Finally, there is a small direct contribution to the neutron EDM of the operator OHud, which
also contributes with a finite term to the dipole operators. As can be seen in Fig. 8.4, the Wilson
coefficient of these operators gets a significant bound from the neutron EDM, mostly due to the
tree level contribution to the neutron EDM. The Yukawa-like operators OuH,dH which appear
in the 1-loop contribution to this operator, on the other hand, are largely suppressed by a loop-
factor and small Yukawas and therefore only get bounds beyond the perturbative unitarity limit.
As mentioned previously, the dipole contributions which also enter this 1-loop expression are
negligible when compared to the dominant direct contributions to the neutron EDM. Lastly,
there is another 4-fermion operator which enters the 1-loop expression of the operator OHud,

O
(1,8)
ud , which also only receives a bound around the perturbative unitarity limit.

We also show in Fig. 8.4 the error bars associated with the 50% uncertainties of the matrix
elements of the quark and gluon chromo-EDMs. Wherever the Wilson coefficients of the chromo-
dipole operators enter at tree level, the uncertainties translate directly to the bound. In the
case of the electroweak operators, which can only enter at loop level in the chromo-EDMs, the
dependence on the uncertainties is much smaller.

Furthermore, we also estimate the bounds on all Wilson coefficients with the projected
experimental bound of the n2EDM experiment [131]. With the projected experimental bound
of ∼ 10−27e cm, we expect an improvement of about one order of magnitude for all Wilson
coefficients.

Importantly, we notice that, assuming the Wilson coefficients are of the natural size shown
in Table 8.2, the experimental constraint on the neutron EDM sets a bound on the new physics
scale of order 103 TeV, coming from the Weinberg operator G3. All the bounds imposed when
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any of the other operators is instead turned on are at least one order of magnitude weaker.
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Chapter 9

Conclusions

In this part of the thesis, we perform the analysis at 1-loop level of the lepton and neutron
electric dipole moments, using the model independent EFT approach. We provide, at this
accuracy, the complete expressions of these CP violating low-energy observables as a function
of the dimension-6 SMEFT Wilson coefficients in the Warsaw basis, including the RG running
effects as well as finite terms. The latter play a fundamental role in the cases of operators that
do not renormalize the dipoles, but there are also classes of operators for which they provide an
important fraction, 10− 20%, of the total 1-loop contribution, if the NP scale is around Λ = 5
TeV. In presenting these results, we also discuss the various loop contributions to the EDMs
under the light of selection rules, based on helicity, angular momentum and CP arguments.

Furthermore, we compute the full set of bounds that the current and prospected experimental
constraints impose on the Wilson coefficients, with one single operator turned on at a time, for
a fixed SMEFT cut-off scale. On the other hand, we also provide the lower bounds on the
scale of new physics, obtained assuming that the Wilson coefficients values are given by the
natural sizes that we expect them to carry. One can see that EDMs provide a powerful probe
for deviations from the SM, since the computed bounds are strong and can push the scale of
new physics above 103 TeV, with the mentioned natural values for the Wilson coefficients. This
means that any UV completion of the SM, for which the operators responsible for these strong
bounds are generated, should accidentally have a very suppressed CP violation, similar to the
SM one, unless some fine-tuning mechanism is present.
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Appendices part II

II.A Analytic expressions of various EDMs

In this appendix, we report the analytic expressions computed in this work. To improve read-
ability, we divide the full expressions into categories defined by the field content of the operators
contributing to the dipole. Because we give the expression of the observable EDM we repeat
here its relation to the Wilson coefficient cfγ , of the operator f̄Lσ

µνfRFµν ,

df = − 2

Λ2
Im cfγ , (II.A.1)

and similar for the chromo-dipoles.

II.A.1 Universal contributions

Since the full expression of the fermion (c)EDMs is rather long, we will start by providing their
universal parts first. Apart from the term proportional to gs, Eqs. (II.A.2b), (II.A.2d), which
is present only for quark dipoles, these are universal in the sense that they correspond to pure
SM loops on the external particle 2-point functions and are independent of the fermion species
and therefore enter all dipoles in the same way. This includes both the renormalization of the
Higgs VEV, which in this work is given by just the loops in the physical Higgs 2-point function,
as well as the mixing of the neutral gauge bosons at 1-loop.

All these contributions are:

• Loops on external left-handed (LH) and right-handed (RH) fermions:

16π2 × (LH Fermion 2-pt.)f = 2 e2Q2
f −

e2

4s2w
− e2

2s2wc
2
w

(T 3
f −Qfs2w)2 (II.A.2a)

+ 2 e2Q2
f log

(
Λ

mf

)
+

e2

2s2w
log

(
Λ

mW

)

+
e2

s2wc
2
w

(T 3
f −Qfs2w)2 log

(
Λ

mZ

)

+ 2 cF,3g
2
s + 2 cF,3g

2
s log

(
Λ

mf

)
(II.A.2b)

16π2 × (RH Fermion 2-pt.)f = 2 e2Q2
f −

e2Q2
f t

2
w

2
+ 2 e2Q2

f log

(
Λ

mf

)
(II.A.2c)
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+ e2Q2
f t

2
w log

(
Λ

mZ

)

+ 2 cF,3g
2
s + 2 cF,3g

2
s log

(
Λ

mf

)
(II.A.2d)

• Loop contributions to the Higgs VEV:

16π2 ×Higgs 2-pt. =
4Ncm

2
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− 4 e2
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(II.A.3)
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• Loops on external photons:

16π2 × Photon 2-pt. =− 2 e2

3
− 14 e2 log

(
Λ

mW

)
(II.A.4)

+
8

3

∑

fermions

(δiℓ +Ncδiq) e
2Q2

i log

(
Λ

mi

)

• Photon-Z mixing:

16π2 × Photon-Z Mixing = − 2e2

3tw
− 1 + 42c2w

6swcw
e2 log

(
Λ

mZ

)
(II.A.5)

+
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2
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Nce
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swcw
Qu(T
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u − 2Qus

2
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• Loops on external gluons:

16π2 ×Gluon 2-pt. = −67Nc

9
g2s −

22

9
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2
s log
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+
4

3
g2s log

(
Λ

mb

)
+

4

3
g2s log

(
Λ

mt

)}

II.A.2 Lepton EDMs

We start with showing the results for lepton EDMs. Note that the logs arising from the divergent
terms of the photon wave function renormalization do not necessarily run down to the mass of
the fermion running in the loop, but only to the mass of the external lepton if the latter is
heavier than the former.

Contributions from ψ2HF operators

dℓ
e
× (4πΛ)2 ⊃
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Contributions from H2F 2 operators
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Contributions from F 3 operators
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Contributions from ψ4 operators
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Contributions from ψ2ψ̄2 operators
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II.A.3 Quark EDMs

We show here the results for the quark EDMs; for the scale in the logs of the photon 2-point
function, the same discussion as in the case of the lepton EDMs applies. Furthermore, µH ∼
O(GeV) denotes the hadronic scale. We define the following frequently used combination,

(LH+RH quark WFR)q = Eq. (II.A.2a)q + Eq. (II.A.2b)q + Eq. (II.A.2c)q + Eq. (II.A.2d)q
(II.A.12)

where the subscript q = u, d denotes the type of quark.
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Contributions from F 3 operators
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Contributions from ψ4 operators
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Contributions from ψ2ψ̄2 operators
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II.A.4 Quark cEDM

Contributions from ψ2HF operators
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[
1
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+ (Qd +Qu)s

2
w

]
log

(
Λ

mW
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− 2
[
4T 3

d − 1− 4(Qd +Qu)s
2
w

]
log

(
Λ

mZ

)
+ 2 log

(
Λ

mh

)

+
[
4T 3

d − 1− 4(Qd +Qu)s
2
w

] 2m2
W

m2
Z −m2

W

log

(
mZ

mW

)

− 16 s2wm
2
W

m2
Z −m2

W

[
T 3
u

s2w
+Qu + (Qd +Qu)

m2
Z

m2
Z −m2

W

]
log

(
mZ

mW

)

− 2m2
W

m2
h −m2

W

log

(
mh

mW

)

+
4
√
2gsmu

v

cF,3
Nc

Im
[
CdG

11

]{
3 + 2 log

(
Λ

mZ

)
+ 2 log

(
Λ

mh

)}
(II.A.39d)

+
(
CdW

11
→ −CuW

11
, d↔ u

)
(II.A.39e)
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Im

[
c(S8,RR)

duud
1111

]
× (4πΛ)2 ⊃

√
2emu

v
Im
[
cwCdB

11
− swCdW

11

]{
24Qu (II.A.40a)

+16Qu log

(
Λ

mZ

)
+ 16Qu log

(
Λ

mh

)}

+

√
2emu

v cwsw
Im
[
swCdB

11
+ cwCdW

11

]{
8(2Qus

2
w − T 3

u ) (II.A.40b)

+ 8(2Qus
2
w − T 3

u )

[
log

(
Λ

mZ

)
+ log

(
Λ

mh

)]

− 8(2Qus
2
w − T 3

u )
m2
Z

m2
h −m2

Z

log

(
mh

mZ

)}

− 4
√
2emu

v sw
Im
[
CdW

11

]{
1 + 4 log

(
Λ

mW

)}
(II.A.40c)

− 2
√
2gsmu

v
Im
[
CdG

11

]{3(2 +Nc)

Nc
+ 4 log

(
Λ

mW

)
(II.A.40d)

+
4

Nc
log

(
Λ

mZ

)
+

4

Nc
log

(
Λ

mh

)}

+
(
CdW

11
→ −CuW

11
, d↔ u

)
(II.A.40e)

II.A.8 OHud

Contributions from ψψ̄H2D operators

Im
[
CHud

11

]
× (4πΛ)2 ⊃

{
(4π)2 − 1

2

(
Eq. (II.A.2c)u + Eq. (II.A.2d)u + Eq. (II.A.3) (II.A.41)

+ Eq. (II.A.2c)d + Eq. (II.A.2d)d

)
− π2e2 (II.A.42)

− 2π2

3
e2
m2
Z
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W

[
Qd −Qd t2w

4
−QdQu t2w

m2
Z

m2
W
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− 4e2 − 4g2 − 2g2c2w −
g2

2c2w
+ e2Qd

c2w
c2w

+
g2

12c4w
+ 2e2t2w

− g2t2w − 2e2QdQu
t2w
c2w

+ 2
m2
h

v2
− m4

h

3m2
W v

2

+ 2
[
cF,3g

2
s + e2QdQu

]
log

(
Λ

µH

)
− 2e2 log

(
Λ

mW

)
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−
[
2e2 +

7

3
g2 + 2g2(c2w − 2s2w)− 2e2(1 +QdQu)t

2
w

]
log

(
Λ

mZ

)

− 5g2

3
log

(
Λ
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)
− 4e2t2wQdQu

m4
Z

m4
W

log2
(
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+ g2
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1

3
+

3m2
h
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− 2m4

h
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W v
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+

m6
h

3m4
W v
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(
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)
− g2

3
log

(
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mZ

)

+ 2e2
[
Qu(3− t2w +Qd t

2
w) +

c2w
c2w
− (3−QdQut2w)
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Z

m2
W

]
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(
mZ
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)

− g2
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3
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1

2c2w

−
(
1 + c2w +

1

2c2w

)
m2
Z

m2
W

+
1

12c2w

m2
Z

m2
W

]
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(
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mW

)

− e2Qd
c2w

m2
Z

m2
W

[
c2w − 2QdQus

2
w

m2
Z

m2
W

]
Li2
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1 +

m2
Z

m2
W

)

−
[
g2 +

4m2
h

3v2
− m4

h

3m2
W v

2

]
F (m2

W ,mh,mW )

+

[
4e2 − 2g2cw −

g2

3c2w
+ g2

m2
Z

12m2
W

(
1

c2w
− 12

)]
F (m2

W ,mW ,mZ)

+e2
[
2− 1

c2w

]
C0(m

2
W ,mZ ,mW )

}
Im
[
CHud

11

]
,

where we defined

F (x, y, z) =

√
λ(x, y2, z2)

x
log

(
y2 + z2 − x+

√
λ(x, y2, z2)

2yz

)
, (II.A.43)

C0(x, y,
√
x) =

π2

6
+

1

2
log

( √
y4 − 4xy2 − y2

2x+
√
y4 − 4xy2 − y2

)
(II.A.44)

− Li2

(
2x

y2 −
√
y4 − 4xy2

)
+ Li2

(
− 2x

2x+
√
y4 − 4xy2 − y2

)
,

with the usual Kallen λ-function and Li2 (x) denotes the dilogarithm.

Contributions from ψ2HF operators

Im
[
CHud

11

]
×(4πΛ)2 ⊃ −5cF,3gsmu√

2v
Im
[
CdG

11

]
(II.A.45a)

− emu√
2v

Im
[
−swCdW

11
+ cwCdB

11

]
[−1 + 9Qu
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+ 4Qum
2
hC0(m
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(II.A.45e)

where C0(s1, s12, s2,m0,m1,m2) is the scalar Passarino-Veltman three-point function with
kinematic invariants s1, s12, s2 and masses m0,m1,m2 which can be evaluated numerically with
computer programs like Package-X [212].

Contributions from ψ2ψ̄2 operators
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(II.A.46)
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Here we defined

sgnij = sgn(md,i −mu,j). (II.A.47)

Contributions from ψ2H3 operators
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Operator Tree Tree+Loop

ImCeB
11

1.37 · 10−5λeg
′
1.70 · 10−5λeg

′

ImCeW
11

1.37 · 10−5λeg 1.68 · 10−5λeg

Operator RGE only RGE + finite

C
HB̃

5.27 · 10−3g
′2 3.08 · 10−3g

′2

C
HW̃

1.95 · 10−3g2 1.18 · 10−3g2

C
HWB̃

1.52 · 10−3gg
′
2.12 · 10−3gg

′

C
W̃

— 1.59 · 10−2g3

Operator RGE only RGE + finite

ImC
(3)
lequ
1111

5.43 · 104λeλu —

ImC
(3)
lequ
1122

1.57 · 10−1λeλc —

ImC
(3)
lequ
1133

4.33 · 10−5λeλt —

ImC le
1221

— 8.15 · 10−5g
′2

ImC le
1331

— 4.85 · 10−6g
′2

Table II.B.1: Upper bounds on the Wilson coefficients contributing to the EDM of the electron,
assuming Λ = 5 TeV and no further assumptions. In the upper left table, the Wilson coefficients
which can enter at tree level are presented. The column ’Tree+Loop’ presents bounds including
the tree level contribution, the RG running and all finite terms. In the other tables one can find
all other Wilson coefficients which cannot enter at tree level. The left column shows only RG
running, while the right column shows both RG running and finite terms. Above, the parameter
λi is the i

th diagonal entry of the lepton Yukawa matrix.

II.B Bounds on Wilson coefficients and UV scale Λ

In this appendix, we present the bounds on all Wilson coefficients that appear in the expression of
the electron and neutron EDM. To give more meaningful bounds, we factor out their naturally
expected scaling in the Standard Model couplings. We also obtained bounds on the scale of
new physics Λ by rescaling the Wilson coefficients by their natural scaling and demanding the
remaining Wilson coefficient to be of order 1.

II.B.1 Electron EDM
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Operator Tree Tree+Loop

ImCeB
11

1.35 · 103 1.11 · 103

ImCeW
11

1.35 · 103 1.13 · 103

Operator RGE only RGE + finite

C
HB̃

1.03 · 102 1.2 · 102

C
HW̃

1.1 · 102 1.27 · 102

C
HWB̃

1.62 · 102 1.46 · 102

C
W̃

— 3.96 · 101

Operator RGE only RGE + finite

ImC
(3)
lequ
1111

1.73 · 10−2 —

ImC
(3)
lequ
1122

1.30 · 101 —

ImC
(3)
lequ
1133

1.16 · 103 —

ImC le
1221

— 5.54 · 102

Table II.B.2: Lower bounds on the UV scale Λ in TeV assuming the natural scaling for all
Wilson coefficients as given in the previous table and no further assumptions. The labelling of
the tables is the same as for the bounds on the Wilson coefficients.
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Operator Tree Tree+Loop

ImCuG
11

1.61 · 10−2λugs 3.91 · 10−3λugs

ImCuB
11

2.59 · 10−2λug
′ 5.12 · 10−2λug

′

ImCuW
11

2.59 · 10−2λug 4.19 · 10−2λug

ImCdG
11

3.73 · 10−3λdgs 1.11 · 10−3λdgs

ImCdB
11

3.11 · 10−3λdg
′ 6.48 · 10−3λdg

′

ImCdW
11

3.11 · 10−3λdg 5.44 · 10−3λdg

ImCdB
22

4.54 · 10−2λsg
′ 9.62 · 10−2λsg

′

ImCdW
22

4.54 · 10−2λsg 8.95 · 10−2λsg

Operator RGE only RGE + finite

ImCdG
22

7.42 · 10−2λsgs 2.19 · 10−2λsgs

ImCuG
22

— 1.65 · 10−2λcgs

ImCdG
33

— 1.65 · 10−2λbgs

ImCuG
33

— 1.65 · 10−2λtgs

Table II.B.3: Upper bounds on the Wilson coefficients of the dipole operators assuming Λ = 5
TeV and no further assumptions. On the left-hand side the coefficients are presented which can
enter at tree level. The column ’Tree+Loop’ presents bounds including the tree level contribu-
tion, the RG running and all finite terms. On the right-hand side, one can find all elements
which cannot enter at tree level. The left column shows only RG running, while the right column
shows both RG running and finite terms. Above, the parameter λi is the ith diagonal entry of
the corresponding diagonalized quark Yukawa matrix here and in all tables that follow.

Operator RGE only RGE + finite

C
HG̃

9.40 · 10−3g2s 7.81 · 10−3g2s

C
HB̃

2.04 · 100g′2 1.53 · 100g′2

C
HW̃

2.99 · 10−1g2 2.62 · 10−1g2

C
HWB̃

1.76 · 10−1gg′ 1.61 · 10−1gg′

C
W̃

— 3.46 · 100g3

C
G̃

4.74 · 10−5g3s 6.91 · 10−5g3s

Operator RGE only RGE + finite

ImCHud
11

1.87 · 10−2g
′2 2.03 · 10−2g

′2

ImCHud
31

— 1.03 · 10−2g
′2

Re CHud
31

— 3.53 · 10−3g
′2

ImCuH
11

— 1.33 · 109λu
ImCdH

11
— 1.33 · 109λd

Table II.B.4: Upper bounds on the Wilson coefficients of the bosonic operators on the left
and the ψψ̄H2D and ψ2H3 type operators on the right, assuming Λ = 5 TeV and no further
assumptions. The ’RGE + finite’ column for CHud

11
also includes the tree level contribution.

II.B.2 Neutron EDM
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Operator RGE only RGE + finite

ImC
′(3)
lequ
1111

7.54 · 109λeλu —

ImC
′(3)
lequ
2211

1.76 · 105λµλu —

ImC
′(3)
lequ
2211

6.21 · 102λτλu —

ImV †
1iC

′(1)
quqd
i111

1.88 · 107λuλd 1.84 · 107λuλd

ImV †
1iC

′(8)
quqd
i111

3.82 · 107λuλd 3.73 · 107λuλd

ImV †
1iC

′(1)
quqd
i221

7.79 · 102λcλd —

ImV †
1iC

′(8)
quqd
i221

1.56 · 103λcλd —

ImV †
1iC

′(1)
quqd
i331

9.86 · 10−2λtλd —

ImV †
1iC

′(8)
quqd
i331

1.98 · 10−1λtλd —

ImV †
2iC

′(1)
quqd
i112

9.35 · 105λuλs —

ImV †
2iC

′(8)
quqd
i111

1.03 · 107λuλs —

ImV †
2iC

′(1)
quqd
i222

2.56 · 104λcλs —

ImV †
2iC

′(8)
quqd
i222

1.92 · 104λcλs —

ImV †
2iC

′(1)
quqd
i332

3.24 · 100λtλs —

ImV †
2iC

′(8)
quqd
i332

2.43 · 100λtλs —

ImV †
3iC

′(1)
quqd
i113

5.15 · 102λuλb —

ImV †
3iC

′(8)
quqd
i113

5.65 · 103λuλb —

Operator RGE only RGE + finite

ImC
′(1)
qu
1221

— 5.79 · 10−2g′2

ImC
′(8)
qu
1221

— 4.70 · 10−2g′2

ImC
′(1)
qu
1331

— 3.76 · 10−4g′2

ImC
′(8)
qu
1331

— 4.03 · 10−4g′2

ImV †
1iVj1C

′(1)
qd
ij11

— 7.66 · 10−1g′2

ImV †
1iVj1C

′(8)
qd
ij11

— 6.60 · 10−1g′2

ImV †
1iVj2C

′(1)
qd
ij21

— 3.85 · 10−1g′2

ImV †
1iVj2C

′(8)
qd
ij21

— 3.31 · 10−1g′2

ImV †
1iVj3C

′(1)
qd
ij31

— 8.56 · 10−2g′2

ImV †
1iVj3C

′(8)
qd
ij31

— 7.37 · 10−3g′2

ImV †
2iVj1C

′(1)
qd
ij12

— 3.35 · 103g′2

ImV †
2iVj1C

′(8)
qd
ij12

— 2.52 · 103g′2

ImV †
2iVj2C

′(1)
qd
ij22

— 1.68 · 102g′2

ImV †
2iVj2C

′(8)
qd
ij22

— 1.26 · 102g′2

ImV †
2iVj3C

′(1)
qd
ij32

— 3.75 · 100g′2

ImV †
2iVj3C

′(8)
qd
ij32

— 2.81 · 100g′2

ImC
′(1)
ud
1331

9.30 · 100g′2 7.17 · 100g′2

ImC
′(8)
ud
1321

6.98 · 100g′2 5.38 · 100g′2

Table II.B.5: Upper bounds on the Wilson coefficients of the 4-fermion operators assuming
Λ = 5 TeV and no further assumptions. Notice that each entry in the table corresponds to
one of the mass-basis Wilson coefficients that enter the expression of the neutron EDM. For
all of them, however, the corresponding C ′ Wilson coefficients in the up-quark gauge basis are
indicated, together with the CKM transformations needed for the change of basis. Wherever
the phase of the CKM matrix enters the bound, the bound is given on the real instead of the
imaginary part. If the summation over the CKM elements gives a symmetric contribution for

the operator O
(1,8)
qd , they have to be ignored because they are CP even and cannot give rise

to an EDM. Note also, that the ’RGE + finite’ column for V †
1iC

′(1,8)
quqd
i111

includes the tree level

contribution.
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Operator Tree Tree+Loop

ImCuG
11

3.93 · 101 8.55 · 101

ImCuB
11

3.11 · 101 1.98 · 101

ImCuW
11

3.11 · 101 2.30 · 101

ImCdG
11

8.19 · 101 1.65 · 102

ImCdB
11

8.96 · 101 4.97 · 101

ImCdW
11

8.96 · 101 5.94 · 101

ImCdB
22

2.35 · 101 1.47 · 101

ImCdW
22

2.35 · 101 1.54 · 101

Operator RGE only RGE + finite

ImCdG
22

3.26 · 101 1.99 · 101

ImCuG
22

— 3.89 · 101

ImCdG
33

— 3.89 · 101

ImCuG
33

— 3.89 · 101

Table II.B.6: Lower bounds on the UV scale Λ in TeV, assuming natural scaling of the
dipole Wilson coefficients and no further assumptions. On the left-hand side the coefficients are
presented which can enter at tree level. The column ’Tree+Loop’ presents bounds including
the tree level contribution, the RG running and all finite terms. On the right-hand side, one
can find all elements which cannot enter at tree level. The left column shows only RG running,
while the right column shows both RG running and finite terms.

Operator RGE only RGE + finite

C
HG̃

6.73 · 101 7.16 · 101

C
HB̃

3.29 · 100 3.94 · 100

C
HW̃

9.97 · 100 1.06 · 101

C
HWB̃

1.33 · 101 1.38 · 101

C
W̃

— 2.69 · 100

C
G̃

1.09 · 103 1.01 · 103

Operator RGE only RGE + finite

ImCHud
11

3.67 · 101 3.53 · 101

ImCHud
31

— 4.93 · 101

Re CHud
31

— 8.42 · 101

ImCuH
11

— 1.37 · 10−4

ImCdH
11

— 1.37 · 10−4

Table II.B.7: Lower bounds on the UV scale Λ in TeV, assuming natural scaling for the Wilson
coefficients of the bosonic operators and no further assumptions. The ’RGE + finite’ column
for CHud

11
also includes the tree level contribution.
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Operator RGE only RGE + finite

ImC
′(3)
lequ
1111

4.02 · 10−5 —

ImC
′(3)
lequ
2211

1.62 · 10−3 —

ImC
′(3)
lequ
3311

1.49 · 10−1 —

ImV †
1iC

′(1)
quqd
i111

5.85 · 10−4 6.14 · 10−4

ImV †
1iC

′(8)
quqd
i111

6.42 · 10−4 6.55 · 10−4

ImV †
1iC

′(1)
quqd
i221

1.32 · 10−1 —

ImV †
1iC

′(8)
quqd
i221

8.84 · 10−2 —

ImV †
1iC

′(1)
quqd
i331

1.88 · 101 —

ImV †
1iC

′(8)
quqd
i331

1.27 · 101 —

ImV †
2iC

′(1)
quqd
i112

1.22 · 10−3 —

ImV †
2iC

′(8)
quqd
i112

5.96 · 10−4 —

ImV †
2iC

′(1)
quqd
i222

1.64 · 10−2 —

ImV †
2iC

′(8)
quqd
i222

1.97 · 10−2 —

ImV †
2iC

′(1)
quqd
i332

2.47 · 100 —

ImV †
2iC

′(8)
quqd
i332

2.94 · 100 —

ImV †
3iC

′(1)
quqd
i113

1.58 · 10−1 —

ImV †
3iC

′(8)
quqd
i113

3.69 · 10−2 —

Operator RGE only RGE + finite

ImC
′(1)
qu
1221

— 2.08 · 101

ImC
′(8)
qu
1221

— 2.31 · 101

ImC
′(1)
qu
1331

— 2.50 · 102

ImC
′(8)
qu
1331

— 2.59 · 102

ImV †
1iVj1C

′(1)
qd
ij11

— 1.81 · 100

ImV †
1iVj1C

′(8)
qd
ij11

— 1.95 · 100

ImV †
1iVj2C

′(1)
qd
ij21

— 8.06 · 100

ImV †
1iVj2C

′(8)
qd
ij21

— 8.69 · 100

ImV †
1iVj3C

′(1)
qd
ij31

— 5.40 · 101

ImV †
1iVj3C

′(8)
qd
ij31

— 5.82 · 101

ImV †
2iVj1C

′(1)
qd
ij12

— 8.63 · 10−2

ImV †
2iVj1C

′(8)
qd
ij12

— 9.97 · 10−2

ImV †
2iVj2C

′(1)
qd
ij22

— 3.85 · 10−1

ImV †
2iVj2C

′(8)
qd
ij22

— 4.45 · 10−1

ImV †
2iVj3C

′(1)
qd
ij32

— 2.58 · 100

ImV †
2iVj3C

′(8)
qd
ij32

— 2.98 · 100

ImC
′(1)
ud
1331

1.26 · 100 1.61 · 100

ImC
′(8)
ud
1321

1.52 · 100 1.90 · 100

Table II.B.8: Lower bounds on the UV scale Λ in TeV, assuming natural scaling of the Wilson
coefficients of the 4-fermion operators. Notice that each entry in the table corresponds to one
of the mass-basis Wilson coefficients that enter the expression of the neutron EDM. For all
of them, however, the corresponding C ′ Wilson coefficients in the up-quark gauge basis are
indicated, together with the CKM transformations needed for the change of basis. Wherever
the phase of the CKM matrix enters the bound, the bound is given from the real instead of
the imaginary part of the Wilson coefficient. If the summation over the CKM elements gives

a symmetric contribution for the operator O
(1,8)
qd , they have to be ignored because they are CP

even and cannot give rise to an EDM. Note also, that the ’RGE + finite’ column for V †
1iC

′(1,8)
quqd
i111

includes the tree level contribution.
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Chapter 10

Introduction and Motivation

While we have not yet encountered any elementary particle of spin > 2, there is a priori nothing
preventing them from existing. Just like for any other field, they can be classified in the usual
way as representations of the Poincaré group. In fact, higher spins in general are not just of
purely academic interest but they exist in nature, e.g., as massive hadronic bound states and
their excitations in the low-energy version of QCD.

However, upon closer inspection, it turns out that theories containing fields with higher spins1

are plagued with theoretical problems and inconsistencies, especially if one aims for implementing
massless higher-spin fields. The most commonly known hindrances of writing down theories with
massless higher spin fields come in the form of various no-go theorems, which we will briefly
summarize here. Using the factorization properties of amplitudes with one bosonic, massless
particle of spin S and momentum q, it was shown by Weinberg [234] (see [235,236] for extension
to fermionic and supersymmetric theories), that the unphysical polarization of the spin-S field
can decouple in the soft q → 0 limit only if

∑

i

gipiµ1 · · · piµS−1
= 0, ∀pi, (10.1)

where the pi denote the momenta of the other external particles and gi their respective coupling
to the spin-S particle. For S = 1 and S = 2 this reduces to the condition of charge conservation
and the requirement that all particles couple universally to the massless spin-2 field, also known
as the graviton. But for larger values of S there exists no solution for generic momenta, such
that Weinberg’s theorem tells us that only field of spin ≤ 2 can interact at low energies and
therefore generate long-distance effects. While this does not completely rule out massless higher
spin fields, it does put severe constraints on them and it turns out that combining Weinberg’s
soft theorem with another no-go theorem by Weinberg and Witten [237] and its extension [238]
can, in fact, rule out massless higher spins completely in the presence of an universal interaction,
which of course exists in nature in the form of gravity. This theorem states that a theory with
a gauge-invariant and Lorentz covariant energy-momentum tensor cannot accommodate for the
presence of massless fields with spins ≥ 2. While this seems to exclude also the graviton, note
that the energy-momentum tensor in a gravitational theory cannot be made both gauge-invariant
and Lorentz covariant at the same time and the same is true for theories with massless higher-
spin fields2. However, the generalization of this theorem, found by Porrati in [238], states that
no massless particle with S > 2 can consistently be coupled to gravity. Combining Weinberg’s

1If not explicitly stated otherwise, we refer to particles as having “higher spin” if it has spin > 2.
2This is equivalent to the spin-1 currents, which cannot be both gauge-invariant and Lorentz covariant for

non-Abelian gauge symmetries.
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Chapter 10. Introduction and Motivation

and Porrati’s theorem forbids any theory that contains both a universal, i.e., gravitational,
interaction and massless fields with S > 2. This can be seen as follows: Consider an amplitude
with one soft graviton as well as an additional (not necessarily soft) graviton and two fields
of spin > 2. Then, Porrati’s theorem requires that the soft graviton couples to the higher
spin fields with some vanishing coupling, while it couples to the non-soft graviton with some
universal coupling. This, however, violates Weinberg’s theorem, such that also the full amplitude
has to vanish. While the above discussion captures the main point of prohibiting the existence
of massless higher-spin fields in the presence of gravity, it, of course, does not cover all the
details. For these, we refer the reader to the original literature cited above as well as reviews
like, e.g., [239–242].

For massive higher-spin fields, on the other hand, the story is different. There are no no-
go theorems ruling out their existence in the first place, so we will focus on massive fields in
the rest of this part of the thesis. But even a non-zero mass does not imply that there are
no constraints on such theories: A consistent coupling of massive higher-spin fields to either
electromagnetism [238] or gravity [243] requires the cut-off of the corresponding EFT to depend
on the mass of the higher-spin fields in a way that it vanishes in the massless limit, such that
they decouple from the rest of the theory, in accordance to the no-go theorems above. In fact,
an upper bound on the cut-off can be found, see [238,243].

While we do not make explicit use of these bounds in this part of the thesis, it is good
to keep them in mind. Instead, we will investigate how an EFT obtained by integrating out
higher-spin fields can generate higher dimensional contributions to the usual general relativistic
action. Following the discussion in [244], an infinite tower of higher-spin states is said to be able
to cure acausalities generated by modified cubic vertices. To see this explicitly using the four
graviton amplitude mediated by higher-spin fields is still an open question and we investigate
one particular UV-limit of the amplitudes we obtained. Because gravity obviously couples also
to ordinary matter, similar causality violations are expected in amplitudes with gravitons and
matter, which likely are also cancelled by the very same tower of new degrees of freedom. Taking
this approach, it necessitates the fact that the higher-spins directly couple to matter, such that
they can be probed through pure matter scattering processes.

We will start this part of the thesis by introducing both massless and massive spinor helicity
variables in chapter 11, which streamline the computation of on-shell amplitudes, without the
need for a Lagrangian. In fact, the massless variables will also extensively be used in the next
part of the thesis. One particularly useful property of using spinor helicity variables is that
they allow us to write all the necessary amplitudes for an arbitrary spin S in a closed form.
In chapter 12 we then introduce the EFT of gravity and discuss how it can be generated by
an infinite tower of massive fields in a low-energy limit. Finally, in chapter 13 we follow the
argument presented above and study the possibility of probing the higher-spin fields by looking
for deviations from the Newtonian potential generated by the new fields, provided they couple
directly to matter.
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Chapter 11

Spinor Helicity Variables

We want to devote this chapter to first introducing massless spinor-helicity variables, which
allow us to easily write down on-shell scattering amplitudes [245–248]. We will also cover their
straightforward extension to massive amplitudes [207]. Our conventions for two-component
spinors follow [249]. Unless stated differently, we will assume that all momenta are incoming
throughout the remainder of this thesis.

11.1 Massless Particles

The key insight is that the fundamental representations of the complexified Lorentz group,
SO(1, 3) ≃ [SU(2)L × SU(2)R]/Z2, are given by the spinorial (1/2, 0) and (0, 1/2) spinorial
representations. Then, the natural consequence is to use the left- and right-handed spinors
ψα ∼ (1/2, 0) and ψ̃α̇ ∼ (0, 1/2) as basic building blocks for constructing objects in higher
representations. Here, dotted and undotted indices denote the SU(2)R and SU(2)L, respectively.
This means, we can write any momentum P ∼ (1/2, 1/2) as a bispinor instead of a four-vector,
by using the four-vector of 2× 2 Pauli matrices (σ0 = 1),

Pαα̇ ≡ σµαα̇Pµ =

(
P 0 − P 3 P 1 + iP 2

P 1 − iP 2 P 0 + P 3

)
. (11.1)

The on-shell condition then just becomes

PµPµ = m2 = det(Pαα̇), (11.2)

as can be easily checked by direct computation. Consequently, for massless momenta Pαα̇ has
a vanishing determinant and is therefore not of full rank, allowing us to write it as a product of
two two-spinors,

Pαα̇ = λαλ̃α̇. (11.3)

Note that even though we call these objects spinors, they are not Grassmann numbers. In
general, the spinors λα and λ̃α̇ are independent, however, imposing the condition of real momenta
leads to

λ̃α̇ = (λα)
∗ . (11.4)

For convenience, as it lets us write down scattering amplitudes concisely, we introduce the
square and angle bracket notation as follows,
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Chapter 11. Spinor Helicity Variables

λα = ⟨λ|α, λα = |λ⟩α, λ̃α̇ = [λ̃|α̇, λ̃α̇ = |λ̃]α̇. (11.5)

Indices can be raised and lowered using the antisymmetric epsilon tensor, e.g., λα = ϵαβλ
β. Sim-

ilarly to constructing Lorentz invariants from four-vectors (or objects in higher representations),
we can build Lorentz invariants from the spinors λα and λ̃α̇ by contracting all indices,

⟨λχ⟩ ≡ ϵαβλαχβ = λαχα = −χαλα = −⟨χλ⟩,
[λ̃χ̃] ≡ ϵα̇β̇λ̃α̇χ̃β̇ = λ̃α̇χ̃

α̇ = −χ̃α̇λ̃α̇ = −[χ̃λ̃],
(11.6)

with the normalization ϵ12 = ϵ1̇2̇ = −ϵ12 = −ϵ1̇2̇ = 1 and from antisymmetry, it follows that
⟨λλ⟩ = [λ̃λ̃] = 01. In our convention (again, we follow [249]) undotted indices are always
contracted from top to bottom and vice versa for dotted ones.

Let us now present useful relations that can be used to simplify expressions of spinor products.
First, we note that we can write Mandelstam invariants as spinor products

sij = (pi + pj)
2 = 2pipj = ⟨ij⟩[ji]. (11.7)

In an n-particle scattering process, we can also relate various spinor products to each other
using momentum conservation, which, in terms of spinors, reads

n∑

j=1

pj =

n∑

j=1

λjαλ̃
j
α̇ = 0. (11.8)

This expression can be sandwiched between two arbitrary spinors i and k, such that

n∑

j=1

⟨ij⟩[jk] = 0. (11.9)

The last relations we want to highlight here are the so-called Schouten identities. These
make use of the fact that the spinors live in a two-dimensional vector space, such that only two
of them can be linearly independent. This implies that we can write every spinor λα1 in terms
of two others like

λα1 =
⟨13⟩
⟨23⟩λ

α
2 +
⟨21⟩
⟨23⟩λ

α
3 . (11.10)

This relation can be contracted with a fourth external spinor j to then give the Schouten
identities

⟨12⟩⟨3j⟩+ ⟨13⟩⟨j2⟩+ ⟨1j⟩⟨23⟩ = 0. (11.11)

Obviously, j /∈ {1, 2, 3} for the above relation to be non-trivial. Equivalent identities, of course,
also exist for SU(2)R spinors.

The real beauty of using the spinor-helicity variables instead of the usual momenta and
polarizations to write down scattering amplitudes comes from realizing that Eq. (11.3) does not
uniquely determine the spinors λα and λ̃α̇, but instead allows for a rescaling of the form

λiα → tiλ
i
α, λ̃iα̇ → t−1

i λ̃iα̇. (11.12)

1This is directly related to the momenta being massless. In the massive case, the spinor contractions of the
same spinor do not vanish and are, in fact, proportional to the mass.
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11.1. Massless Particles

Since λα and λ̃α̇ are independent for complex momenta, t can be any complex number,
however, for real momenta it can only be a phase factor because of Eq. (11.4). This freedom of
choosing a phase for the spinors is a direct reflection of the U(1) little group, which by definition
is the part of the Lorentz group under which the momentum p does not transform, for massless
particles.

Then, it can be shown (see, e.g., [245]) that the little group scaling of the spinors Eq. (11.12)
can be translated into the scaling behavior of full amplitudes2 built from these spinors such that

A(1h1 , 2h2 , . . . , nhn)→
n∏

i=1

t−2hi
i A(1h1 , 2h2 , . . . , nhn), (11.13)

with hi the helicity of particle i (h = 1/2 for fermions, h = 1 for vectors, etc.). Thus, we can
write any scattering amplitude in the form

A(1h1 , 2h2 , . . . , nhn) ∝ f({sij})
n∏

i=1

λri λ̃
r̄
i , r − r̄ = −2hi, (11.14)

where all spinor indices have to be contracted and f({sij}) is a scalar function built from
only the kinematic invariants. The fact that the little group scaling provides a powerful tool to
construct amplitudes is especially true for three-point amplitudes. These are completely fixed
by the helicity of the external states, as we will demonstrate now.

For massless external states, all kinematic invariants for on-shell three-point amplitudes
have to vanish by momentum conservation, s12 = s13 = s23 = 0. Recalling Eq. (11.7), this
implies that either λ1 ∝ λ2 ∝ λ3 or λ̃1 ∝ λ̃2 ∝ λ̃3, such that either the square or the angle
brackets vanish by antisymmetry of the spinor contractions. In fact, for real momenta, due
to Eq. (11.4) all spinor contractions have to vanish, such that all three-point amplitudes are
forced to vanish identically. However, temporarily allowing for complex momenta, left- and
right-handed spinors are no longer related, and we can choose either the square or the angle
brackets to vanish. Demanding a smooth limit to real momenta, where all brackets vanish, any
three-point amplitude can then be written as

A(1h1 , 2h2 , 3h3) = g

{
⟨12⟩h3−h1−h2⟨23⟩h1−h2−h3⟨31⟩h2−h3−h1 , ∑

i hi ≤ 0
[12]h1+h2−h3 [23]h2+h3−h1 [31]h1+h3−h2 ,

∑
i hi ≥ 0

, (11.15)

with some coupling constant g. To conclude this section, we note that because spinor-helicity
variables allow us to construct scattering amplitudes from just the external particles, there is no
need to worry about details considering gauge redundancies, gauge fixing and so on, contrary
to the usual Lagrangian formalism.

One essential property of on-shell amplitudes we will use extensively is that amplitudes
factorize into lower point amplitudes for on-shell intermediate states, i.e.

RessiA(0) =
∑

X

A(0)
L A

(0)∗
R |p2X=m2

X
, (11.16)

where X denotes all possible intermediate states. We will postpone the proof of this relation
using the optical theorem to the next part of this thesis.

2The amplitude is not invariant under little group transformations. However, physical observables depend only
on the modulus squared of amplitudes, which is of course invariant under phase transformations.
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11.2 Massive Particles

11.2.1 Massive Spinor Helicity Variables

In the last section, we saw how to write down on-shell scattering amplitudes by using only the
information about the transformation properties under the little group of the external states.
This is particularly easy for massless particles, since the little group contains only scale transfor-
mations. Of course, this can be generalized to massive particles, be it at the cost of introducing
more complications due to the larger little group.

In this section, we will introduce the formalism for massive spinor helicity variables proposed
in [207] and we will closely follow [207,250]. We will start from equation Eq. (11.2) and comment
on the connection to the massive little group later.

Now the momenta Pαα̇ do not have a vanishing determinant and are therefore of full rank
two. Hence, we can write them as a sum of two rank one matrices,

Pαα̇ = λIαλ̃α̇I , (11.17)

where our spinor helicity variables now carry an additional set of additional indices, I = 1, 2,
which represent the SU(2) little group of real, massive momenta. These new variables will be the
building blocks of massive amplitudes, just as the massless spinor variables in the last section.
As we will see, we can also use combinations of massive and massless variables to construct
amplitudes containing both kinds of particles. Now, using the fact, that every spin S degree of
freedom can be embedded into the symmetric part of a combination of spin 1/2 representations,
every amplitude with n massive external states can be written as [207]

A{I1···I2S1
}···{J1···J2Sn} = λI11,α1

· · ·λI2S1
1,α2S

λI1n,β1 · · ·λ
I2Sn
n,β2S
A{α1···α2S}···{β1···β2S}, (11.18)

where each massive external state contributes its own set of 2S indices, which have to be sym-
metrized individually.3 Note that all the information about the massive particles is carried by
undotted spinors. In fact, as we will see shortly, any dotted spinor can always be transformed
into an undotted by the use of the equations of motion and it will turn out convenient to write
down massive amplitudes purely in terms of either dotted or undotted massive spinors.

Before we continue with the discussion of the generic structure of (partially) massive three-
point amplitudes, we want to briefly introduce the basic identities we need as well as the notation
we will use in this part of the thesis, closely following the one in [250].

For the spinor variables, we use the same bracket notation as for the massless ones, with
the slight modification that we simply append the additional little group indices. Further, to
distinguish them even further from massless spinors, we write them in a bold-faced font, e.g.,
λαI = ⟨λ|αI . Obviously, because the little group indices are in the fundamental representation,
they can be raised and lowered using the antisymmetric tensor, e.g., ⟨λ|αI = εIJ⟨λJ |α.

Then, as we saw before, we can write momenta as

Pαα̇ = |λI⟩[λI |. (11.19)

For later convenience we also give the matrix of momenta with the inverse order of dotted and
undotted indices by contracting the four-vector with σ̄µ = (1,−σ), instead of with σµ introduced
in the last section,

3Note that we symmetrize as {I1, · · · In} = 1/n!
∑

σ(I1, · · · In), where the sum runs over all permutations σ
of the objects to be symmetrized. This is different from, e.g., the procedure used in [250] where the appropriate
Clebsch-Gordan coefficients are used instead.
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11.2. Massive Particles

P α̇α = −|λI ]⟨λI |, (11.20)

where the minus sign compared to the previous section comes from the fact that the contraction
of the little group indices is now inverted. Using these expressions, we can write down the
equations of motion for the spinors,

P |λI ] = m|λI⟩, P |λI⟩ = m|λI ],
[λI |P = −m⟨λI |, ⟨λI |P = −m[λI |,

(11.21)

showing that we can trade angle brackets for square ones (and vice versa) by applying the
respective momentum and justifying the expression of only undotted spinors in Eq. (11.18).
Note also that by taking m → 0 and removing the little group index, we recover the simple
massless equations of motion. Using these equations, we can obtain relations for bilinears of the
same spinor types

[λIλJ ] = mδIJ , [λIλJ ] = −mϵIJ , [λIλJ ] = mϵIJ

⟨λIλJ⟩ = −mδIJ , ⟨λIλJ⟩ = mϵIJ , ⟨λIλJ⟩ = −mϵIJ ,
(11.22)

and they also satisfy

|λI⟩⟨λI | = −mδβα, |λI ][λI | = mδα̇
β̇
, (11.23)

for the contraction of little group indices.

These are the main relations we will use in this part and we continue to discuss the gen-
eral structure of three-point amplitudes. We saw in the previous section that the three-point
amplitudes with only massless particles are completely and uniquely fixed by the helicity of
the external states, due to the highly constraining three-point kinematics. For massive external
states, a case by case study has to be performed, depending on the number of massive external
states. The two cases relevant for this part are the all-massive case and amplitudes with only
one massive and two massless external states. It turns out that, just as in the all-massless case,
the latter amplitude is unique and can be determined from only the helicity of the massless
particles [207]. The corresponding stripped amplitude, i.e., without the spinors for the massive
particle, reads [207]

Ah1h2{α1···α2S} =
g

Λ3S+h1+h2−1

(
λS+h2−h11 λS+h1−h22

)
{α1,··· ,α2S}

[12]S+h1−h2 , (11.24)

where we introduced the appropriate power of some scale Λ such that the coupling g is di-
mensionless for any spin S. The all-massive amplitude, on the other hand, is not that heavily
constrained. Because there are no massless particles, there are no massless spinors we can use
to construct the amplitude and instead a suited set of building blocks is given by

ϵαβ and Oαβ = εβ̇γ̇p1{αβ̇p2β}γ̇ , (11.25)

and the most general, all-massive three-point amplitude can be written as

A{α1···α2S1
},{β1···β2S2

},{γ1···γ2S3
} =

1∑

i=0

∑

σi

gσi
(
OS1+S2+S3−iεi

)σi
{α1,··· ,α2S1

},{β1,··· ,β2S2
},{γ1,··· ,γ2S3

} ,

(11.26)
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with σi labeling, the distinct ways to distribute the SU(2) spinor indices. Note, that this
expression contains at most one power of ε due to the relation OαβOγδ − OγβOαδ ∼ εαγεβδ,
such that higher powers of ε can be traded for lower powers and products of O. Here we choose
not to extract the mass dimension of the coupling, as different terms in the above sum carry
different mass dimensions, due to the varying numbers of the O object.

We will use Eqs. (11.24) and (11.26) to explicitly calculate all the necessary three-point
amplitudes needed in this part, see also App. III.A.

11.2.2 High-Energy Limit

Now that we have introduced both the massive and the massless spinor helicity variables, we want
to see if they can be related in some way. Naively, we expect that there exists some procedure
of taking the limit m→ 0 or, alternatively, the limit of large energies, in which the components
of massive spinor variables reduce to massless ones. In fact, as we will see, taking this limit then
simply decomposes massive amplitudes into their massless helicity components [207]. To take
the high-energy limit, we follow the procedure outlined in [207] (see also, e.g., [250] for more
details) by expanding the massive spinors in terms of a basis of two-dimensional vectors ζ±I in
little group space,

λIα = λαζ
−I + ηαζ

+I , (11.27)

λ̃Iα̇ = λ̃α̇ζ
+I + η̃α̇ζ

−I , (11.28)

with
⟨λη⟩ = m = [η̃λ̃]. (11.29)

After plugging this expansion into the amplitude of interest, we can identify the relevant
helicity components by counting the numbers of ζ±I appearing. As an example, we will anticipate
the result for the amplitude of two scalars coupled to some massive particle of spin S as calculated
in App. III.A,

A(1ϕi ,2ϕi ,3S) = g′S⟨3|p1p2|3⟩S , (11.30)

where g′S is not dimensionless here, and calculate its high-energy limit for the first non-trivial
cases, S = 1, 2. Here and in the following, we use a notation, where we suppress the little group
indices on the massive spinors to avoid formulas cluttered with indices. Due to the boldfaced
notation, the massive and massless spinors are still easily distinguishable visibly, and the indices
can be reinstated unambiguously because they always have to be totally symmetrized.

For simplicity, we will take the scalars to be massless, which is trivial to do, as their respective
spinors appear only in the form of momenta. Further, we will drop the little group indices on
the ζ±. Starting with S = 1 we find

A(1ϕi , 2ϕi ,3S1) = g′S [(ζ
−)2⟨3|p1p2|3⟩+(ζ+)2⟨η|p1p2|η⟩+ζ+ζ−(⟨3|p1p2|η⟩+⟨η|p1p2|3⟩)]. (11.31)

We can then read off the (−, 0,+) helicity components of the vector, which should reproduce
the well-known coupling of scalars to the photon, as follows (dropping the coupling for brevity),

− : ⟨3|p1p2|3⟩ = ⟨31⟩[12]⟨23⟩ = g′Sm
2 ⟨31⟩⟨32⟩
⟨21⟩ ,

0 : (⟨3|p1p2|η⟩+ ⟨η|p1p2|3⟩) = −
g′S
m

(⟨3|p1p2p1|3] + [3|p2p1p2|3⟩) =
2g′S
m

s212 = 2g′Sm
3,

+ : g′S⟨η|p1p2|η⟩ =
g′S
m2

[3|p3p1p2p3|3] =
g′Ss12
m2

[31][31]⟨12⟩ = g′Sm
2 [31][31]

[21]

(11.32)
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To arrive at the final results, we used [250]

mη⟩ = p33], s12 = 2p1 · p2 = m2, (11.33)

as well as momentum conservation.
Before we go on to the S = 2 case, which should recover the known GR amplitudes, let us

comment on the results for the S = 1 case first. Notice that the spinorial structures of the +
and − amplitudes reproduce exactly the well-known result for the coupling of massive scalars to
a massless vector. Notice also, that these amplitudes are not supposed to vanish in the m→ 0
limit, which can only happen if g′1 ∝ 1/m2, or in other words, if the scale Λ is related to the
mass of the exchanged spinning particle. Next, notice that the 0 helicity component is just a
constant, representing a purely scalar amplitude. This is, of course, expected, since we know
that the longitudinal polarization of a vector boson can be seen as an eaten scalar Goldstone
boson. Finally, even for g′1 ∝ 1/m2, the 0 component still vanishes in the m → 0 limit, again
following the expectation, since a massless particle of any spin has only two polarizations.

Let us now continue with the S = 2 or graviton amplitude. Plugging in the expansion of the
massive spinors, we find

M(1ϕi , 2ϕi ,3S2) = g′2⟨3|p1p2|3⟩2

= g′2
[
(ζ−)4⟨3|p1p2|3⟩2 + (ζ+)4⟨η|p1p2|η⟩2

+ ζ+ζ−(⟨3|p1p2|η⟩+ ⟨η|p1p2|3⟩) ((ζ−)2⟨3|p1p2|3⟩+ (ζ+)2⟨η|p1p2|η⟩)
+(ζ+ζ−)2(⟨3|p1p2|η⟩+ ⟨η|p1p2|3⟩)2

]
.

(11.34)

Using the results for the different spinor brackets in the high-energy limit from the S = 1 case,
we can easily determine the various helicity components:

−− : m4 ⟨31⟩2⟨32⟩2
⟨21⟩2

−0 : m5 ⟨31⟩⟨32⟩
⟨21⟩

00 : m6

+0 : m5 [31][31]

[21]

++ : m4 [31]
2[31]2

[21]2

(11.35)

Among these helicity components, we find the known GR amplitudes in the form of the all plus
and all minus components. Again, these are non-vanishing in the limit m → 0 if the coupling
and the mass are related, in this case g′2 ∝ 1/m4. The additional components satisfy the
expectation that a massive spin-2 particle has also spin-1 and scalar polarizations, which appear
as the vector-scalar and scalar-scalar amplitudes in the ±0 and the 00 helicity components,
respectively. Moreover, as expected, they carry additional factors of the mass compared to the
±± components and vanish for m → 0 even if g′2 ∝ 1/(m4Λ), where we introduced the scale Λ
to keep the correct mass dimension. In fact, if we choose Λ ∼Mpl, we recover the gravitational
coupling of a massless graviton.

Judging from these two explicit cases as well as the fact that the 3-point amplitude for two
scalars and a generic spin S particle is just the vector case to the power S, it is easy to see
how it decomposes into its helicity components. Out of these helicity components then all lower
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spin components vanish in the limit m→ 0, leaving only the ones with helicities ±S, given the
coupling scales like

g′S ∝
1

m2SΛS−1
,

to cancel spurious powers of the mass, where again the appropriate power of Λ was introduced
to keep the correct mass dimension of the 3-point amplitude.
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Chapter 12

Graviton Scattering and Higher
Spins

12.1 Gravity as an EFT

At long distances, Einstein’s theory of general relativity (GR) provides an extraordinarily suc-
cessful classical theory of gravity. At its heart lies the equation of motion (EOM) of gravity, the
Einstein equations,

Rµν =
1

M2
pl

(
Tµν −

1

2
Tgµν

)
, (12.1)

with the Ricci tensor Rµν associated with the metric gµν and the energy-momentum tensor
Tµν with its trace T = gµνTµν encoding potential contributions from matter fields. The scale
M2

pl = 8πG is the reduced Planck mass, related to the Newton’s gravitational constant. Note,
we will ignore contributions from a non-vanishing cosmological constant. These equations can
be connected to an action of the form

S = −
M2

pl

2

∫
d4x
√−gR+

√−gLmatter (12.2)

with the Ricci scalar, R = gµνRµν , and g = det (gµν). Minimizing this action, both the Einstein
equations as well as the definition of the matter energy-momentum tensor in terms of the matter
Lagrangian follow immediately. Because the energy-momentum tensor is the main object of
interest in the next part of this thesis, we will postpone showing its definition and we will
mainly focus on the purely gravitational terms in this section.

To quantize GR, it turns out to be convenient to separate the metric into some background
metric ḡµν and some fluctuations hµν around this background, such that

gµν = ḡµν +
1

Mpl
hµν , (12.3)

where we introduced the Planck mass for dimensional reasons because we will identify the
fluctuation hµν with a bosonic spin-2 field of mass-dimension 1, the graviton. Throughout
this entire part, we will take the background to be the flat Minkowski metric, ḡµν = ηµν .
Note that after using this expansion, only the background metric is used to raise and lower
indices, instead of the full one. Plugging this expansion back into the gravitational action
Eq. (12.2), it quickly becomes clear that this action corresponds to a non-renormalizable theory,
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as we are able to extract higher-dimensional operators at arbitrarily high mass dimensions by
expanding the action to the appropriate order, such that the action Eq. (12.2) can only present
the leading term in an low energy EFT. In fact, as in any EFT higher-dimensional operators
have to be included at latest at the quantum level, to cancel divergences arising from both pure
gravitational effects as well as from contributions of matter fields [251–256] order by order in
Mpl. These higher dimensional operators contain higher powers of the Riemann tensor (and its
versions with contracted indices) and up to terms with four tensors and mass dimension eight
the effective gravitational action can be written as [257,258]

S =

∫
d4x
√−g

[
−
M2

pl

2
R+ α2R

2 + α′
2RµνR

µν − 1

3!

(
α3R

(3) + α̃3R̃
(3)
)

+
1

4

(
α4

(
R(2)

)2
+ α′

4

(
R̃(2)

)2
+ 2α̃4R

(2)R̃(2)

)
+O(R5)

]
,

(12.4)

where we defined

R(2) = RµνρσR
µνρσ, R̃(2) = RµνρσR̃

µνρσ,

R(3) = Rµν
ρσRρσ

αβRαβ
µν , R̃(3) = Rµν

ρσRρσ
αβR̃ µν

αβ .

(12.5)

with the dual Riemann tensor defined as R̃µνρσ ≡ 1
2ϵµν

αβRαβρσ in analogy to the dual field
strength tensor in gauge theories. The specific choice of coefficients for the operators with
three or more Riemann structures will become clear shortly, when we match these operators to
four-graviton amplitudes. Note that in general, we could add a term proportional to just R(2).
However, it turns out that in four dimensions it is not independent of the quadratic terms in
Eq. (12.4) because the Gauss-Bonnet term LGB = R2 − 4RµνR

µν +R(2) is a total derivative in
four dimensions.

Before we turn to the scattering of gravitons induced by this effective action, let us first
discuss the quadratic terms separately, as they are interesting in their own right. First notice
that that they are formally marginal operators because [R] = 2, such that the corresponding
coupling constants are dimensionless 1. In addition, the leading term in their expansion around
the flat background is obviously quadratic in the graviton, be it with more derivatives, so they
represent contributions to the kinetic term. In fact, as is the case for theories with higher-
derivative kinetic terms, they can be rephrased in terms of usual kinetics terms by introducing
new, massive degrees of freedom, where their mass is related directly to the coefficient of the
higher dimensional term. In the current example of the quadratic gravity terms, this can easily
be seen by investigating the propagator [259]

Dµνρσ(k) = −
i

(2π)4

[
P

(2)
µνρσ − 2P

(0)
µνρσ

k2
− P

(2)
µνρσ

k2 +M2
pl/(2α

′
2)

+
2P

(0)
µνρσ

k2 +M2
pl/(4(3α2 − α′

2))

]
, (12.6)

where P
(2)
µνρσ and 2P

(0)
µνρσ are projectors onto massive spin-2 and spin-0 modes of a generic spin-

2 field, respectively, the exact form of which is not relevant here. We see that the first term
corresponds to the standard propagation of a massless spin-2 degree of freedom. This can be seen
from both the location of the pole at k2 = 0, as well as from the fact that in the numerator we

1Of course, expanding them to sufficiently high order in the graviton generates non-renormalizable interactions.
But the leading term is of dimension 4, while already the leading term for all operators with more Riemann tensors
is already of dimension higher than 4.
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exactly remove the spin-0 modes from the massive spin-2 object, leaving only the massless spin-2.
However, the presence of the R2 terms in Eq. (12.4) generates additional terms, corresponding
to the propagation of the aforementioned additional degrees of freedom. We can easily read off
their masses from the propagators, finding

m2 =
Mpl√
2α′

2

, m0 =
Mpl√

4(3α2 − α′
2)
. (12.7)

In the non-relativistic limit, these additional massive degrees of freedom generate new contri-
butions to the gravitational potential between two masses already at tree level in the form of
Yukawa potentials with their range set by the respective masses. So, in principle, by looking
for deviations from the Newtonian inverse-square law (ISL) potential, bounds on the masses of
these new fields and therefore on the Lagrangian coefficients can be set. But it turns out that
experiments like the torsion-balance experiment of the EötWash group are not very sensitive to
these operators. Already in [259] the bounds on the coefficients were estimated to be of order
α2, α

′
2 ≲ 1074 (see also [260, 261] and even using the newer results of [262] this estimate can-

not be pushed down much, giving α2, α
′
2 ≲ 1060). But although it seems highly unnatural for

these parameters to be much larger than 1, they can be expected to arise in the low-energy ISL
experiments. This is because for natural values of O(1) the effects of the R2 terms are highly
suppressed compared to the leading term in the gravity EFT, due to the additional number of
derivatives. So for the ISL experiments, which operate at very low energies, in order for the
non-standard pieces to be borderline O(1) the enormous size of the parameters α2, α

′
2 are needed

to compensate for the suppression of the additional derivatives.

However, investigating Eq. (12.6) further, there is a glaring issue in the form of the negative
sign in front of the massive spin-2 part of the propagator. This signals the presence of a negative-
norm state, or in other words, a ghost. But contrary to the ghosts appearing when quantizing a
non-Abelian gauge theory, there is nothing preventing these ghosts to appear as external states
in scattering processes, making them somewhat physical. One way out of this is to assume
that the coefficients α2, α

′
2 are small enough (or in other words the masses m2 and m0 become

large), such that it is possible to go to an EFT in which the new states, including the ghosts,
do not appear anymore. In this case, at least in theory, it would still be possible to use ISL
type experiments, but the gravitational potential would be generated only at the loop level and
would therefore be suppressed by both more powers of Mpl and the fact that the potential itself
becomes more and more short-ranged. But unfortunately, it was argued in [263] using multiple
approaches that operators of the type R2 do not generate any contributions to the gravitational
potential beyond tree-level.

So, in summary, to not have ghosts in our theory, we assume that the coefficients of the
quadratic terms are sufficiently small such that we can always integrate out the auxiliary par-
ticles. Further, it turns out that the quadratic terms do not contribute to graviton scattering
amplitudes, since they can always be traded for pure matter operators using the EOM Eq. (12.1).
Then, we can neglect the quadratic operators for our purposes, since all their contributions to
both the graviton scattering amplitude as well as the classical potential, the main objects of
interest, vanish.

Having said this, we now turn to the terms with three or more Riemann structures. As these
are genuine interaction operators, they only modify interaction vertices such that there are no
issues of new degrees of freedom needing to be included. We will mainly be interested in the
cubic and quartic operators because they are the only ones contributing to the four-graviton
scattering amplitude at tree level, the easiest non-trivial, pure graviton amplitude barring the
three-point amplitude. Because the gravitons are massless, we can write down the amplitudes
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for all possible combinations of their helicities using only the arguments presented in Sec. 11.1.
We find, using the same notation as in [258],

A
(
1+22−23−24+2

)
= ⟨23⟩4[14]4f(s, t, u), (12.8)

A
(
1+22+23+24−2

)
= ([12][13]⟨14⟩)4 g(s, t, u), (12.9)

A
(
1+22+23+24+2

)
=

[12]2[34]2

⟨12⟩2⟨34⟩2h(s, t, u), (12.10)

with s = (p1 + p2)
2, t = (p1 + p3)

2 and u = (p1 + p4)
2. Note the different definitions of the

Mandelstam invariants compared to [258]. Amplitudes with more negative helicity gravitons can
trivially be obtained from these by complex conjugation. Because the correct helicity weight is
already factored, the functions f , g and h can only be functions of the Mandelstam invariants
[258],

f(s, t) = −8πG

stu
− 2πGst

u
|d̂3|2 + d4 − d5u+ d6u

2 − d′6st+ . . . , (12.11)

g(s, t) = −4πG

stu
d̂3 +

1

2
d̂′′6 + . . . , (12.12)

h(s, t) = −40πGd̂3stu+
1

2
d̂4
(
s2 + t2 + u2

)2

− 2d̂5stu(s
2 + t2 + u2) + d̂6(s

2 + t2 + u2)3 + d̂′6s
2t2u2 + . . . , (12.13)

ignoring loop effects. The coefficients dk can be related to the Wilson coefficients of graviton
operators with k/2 derivatives, in particular

d̂3 = α3 + iα̃3, d4 = 8πG(α4 + α′
4), d̂4 = 8πG(α4 − α′

4 + iα̃4), (12.14)

showing why we chose the Wilson coefficient as we did in Eq. (12.4). Notice, that the leading
operator in our EFT, i.e., the one corresponding to classical GR, can only contribute to the
amplitude with vanishing total helicity, while the effective operators entirely generate the other
two. This concludes the discussion about the effective theory of gravity and the corrections to
classical GR from higher dimensional operators. In the next section, we investigate a potential
theory that can generate the higher-order terms by introducing an infinite tower of massive
higher spin fields.

12.2 Gravity EFT from Higher Spins

We want to show how a theory that, apart from universal gravity, contains additional particles
of some generic spin > 2 and mass mS can generate the purely gravitational, higher-dimensional
operators once the energy scales are below mS . To do so, we use the massive spinor helicity
formalism introduced in Sec. 11.2. This allows us to write down all the relevant amplitudes
in full generality for any generic spin S mediator. Because all gravitons are massless, we can
calculate the four-point amplitude by combining two three-point amplitudes with two massless
and one massive external leg, which are unique, given the helicities and spin S. Using Eq. (11.24)
all relevant amplitudes, turn out to be (see App. III.A)
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A(1h+ , 2h+ ,3S) =
gS

m3S+3
S

[12]4⟨3|p1p2|3⟩S ,

A(1h− , 2h− ,3S) =
gS

m3S+3
S

⟨12⟩4⟨3|p1p2|3⟩S ,

A(1h+ , 2h− ,3S) =
gS

m3S−1
S

[12]S⟨13⟩S−4⟨23⟩S+4.

(12.15)

To calculate the four-point amplitudes from these, we can use Eq. (11.16) to calculate the
residues on the poles in all possible channels and put them together with the actual propagators.
For gluing amplitudes with massive spinors Eq. (11.16) becomes, e.g., in the s-channel [250]

Ress(A(1, 2, 3, 4)) = −A{I1···I2S}(1, 2,PS)A{I1···I2S}(−PS , 3, 4). (12.16)

Of course, for massive external states, the amplitude carries little group indices. We do not
show them here because they remain unchanged by the gluing procedure, the only indices to
be contracted are those associated with the intermediate state. If the mediating particle is of
non-zero spin, care has to be taken when treating the spinors with negative momenta in the
right amplitude. In fact, it turns out that the relations Eq. (11.23) have to be modified [250],

|λI⟩⟨−λI | = mδβα, |λI ][−λI | = mδα̇
β̇
. (12.17)

Technically, also Eq. (11.20) changes sign, but we will not need it because we express our
amplitudes in a way that contains only massive spinors of one type.

Before calculating the actual four-point functions, let us note that the three-point amplitudes
can be written in a way more convenient for contracting the little group indices, by simply moving
around the symmetrization operation. This is possible because, again, the amplitude contains
only one type of heavy spinor and in particular only one massive external leg with non-zero spin
in total. Then, we can write, e.g., the all-plus three-point as

A(1h+ , 2h+ ,3S) =
gS

m3S+3
S

[12]4λ
{I1α1

3 · · ·λI2S}α2S

3 α1 |p1p2|α2 · · · α2S−1 |p1p2|α2S

=
gS

m3S+3
S

[12]4λ
I1{α1

3 · · ·λI2Sα2S}
3 α1 |p1p2|α2 · · · α2S−1 |p1p2|α2S

=
gS

m3S+3
S

[12]4λI1α1
3 · · ·λI2Sα2S

3 {α1
|p1p2|α2 · · · α2S−1 |p1p2|α2S}.

(12.18)

In the first step we used that a symmetrization of the little group indices is equivalent to
that of the spinorial indices here and in the last step we used that contracting an tensor with
a symmetric tensor just extracts all the symmetric components. Equivalent expressions can
similarly be found for the other two three-point functions. Then, using Eq. (12.17) simply turns
the contraction of the little group indices into a contraction of the symmetrized spinor indices,
e.g.,

Ress(A(1h+ , 2h+ , 3h+ , 4+)) = −
g2S

m5S+6
S

[12]4[34]4{α1
|p1p2|α2 · · · α2S−1 |p1p2|α2S}

× α1 |p3p4|α2 · · · α2S−1 |p3p4|α2S .

(12.19)

But this is nothing else than the combinatorial problem of finding all unique contractions of
the massless spinors and their respective multiplicities. In fact, it turns out that the contraction
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of the stripped amplitudes for the residues can be performed for generic helicities of the external
states. For simplicity, we show only the s-channel, but all the other channels can be obtained
by appropriate relabelings. We get

[12]S+h1+h2 [34]S+h3+h4
(
λS−h121 λS+h122

)
{α1,··· ,α2S}

(
λS−h343 λS+h344

){α1,··· ,α2S}

∝
min (S−h12,S−h34)∑

a=0

ch12,h34(a) ⟨13⟩a⟨14⟩S−h12−a⟨24⟩h12+h34+a⟨23⟩S−h34−a.
(12.20)

Here we defined hij = hi − hj and the summation index a just counts how often we choose to
contract a spinor of momentum p1 on one side of the cut with a spinor of p3 on the other side.
This also explains the upper limit of the sum, since there cannot be more of these two spinors
as the lower amount of each of them. The combinatorial factor turns out to be [207]

ch12,h34(a) =
(S + h12)!(S − h12)!(S + h34)!(S − h34)!

(2S)!

×
(

2S

a, S − h12 − a, h12 + h34 + a, S − h34 − a

)

=
(S + h12)!(S − h12)!(S + h34)!(S − h34)!

a!(S − h12 − a)!(h12 + h34 + a)!(S − h34 − a)!
,

(12.21)

where the object in the first equation is the multinomial coefficient, defined as

(
n

k1, k2, . . . , km

)
=

n!

k1!k2! · · · km!
. (12.22)

Let us briefly explain how this factor comes about. We can interpret the problem of combination
as sorting an assortment of objects, the spinors, into a set of boxes, the spinor products. The
exponents of the spinor products then simply count how many of these objects are put into each
box. If all objects were distinct, the number of ways to distribute them among the boxes is
precisely given by the multinomial coefficient, with n being the total number of objects, 2S in
our case, and ki the multiplicities within each box, the exponents of the spinor products for us.
However, not all 2S spinors are distinct, so we have to account for this by multiplying with the
multiplicity of each spinor, hence the additional factorials in the numerator. Finally, the factor
of (2S)! in the denominator simply comes from our choice of symmetrization procedure. Note
that summing this coefficient over all values of a just gives (2S)!, as it should be.

In the following, we show how to use the above results to calculate the four-point function
with vanishing total helicity in some detail. Since there are no conceptual differences for the
other two helicity configurations, we will only quote the results. Starting with the s-channel, we
need the three-point amplitudes with opposite helicity gravitons, and we have h12 = −h34 = 4.
Therefore,

Ress(A(1h+ , 2h− , 3h− , 4h+)) = −
g2S

m4S−2
S

[12]S [34]S
S−4∑

a=0

c4,−4(a) ⟨13⟩a⟨14⟩S−4−a⟨24⟩a⟨23⟩S+4−a

= − g2S
m4S−2
S

⟨23⟩4[14]4
t4

S−4∑

a=0

c4,−4(a) (−⟨3|p2p1p4|3])S−a⟨3|p4p2p1|3]a
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= − g2S
m2S−2
S

[23]4[14]4
S−4∑

a=0

c4,−4(a) u
S−4−a(−t)a, (12.23)

where we used

⟨a|pbpcpd|a] = Tr
[
PL/pa/pb/pc/pd

]
=

1

2
Tr
[
(1− γ5)/pa/pb/pc/pd

]
. (12.24)

Because the t-channel is related to the s-channel by a simple exchange of same-helicity
gravitons, it can easily be obtained by simply replacing s ↔ t everywhere, as required by Bose
symmetry.

Rest(A(1h+ , 2h− , 3h− , 4h+)) = −
g2S

m2S−2
S

⟨23⟩4[14]4
S−4∑

a=0

c4,−4(a) u
S−4−a(−s)a. (12.25)

The u-channel, on the other hand, is different from the previous results because instead of
the mixed amplitudes on either side of the cut, we have the same helicity ones. This means

Resu(A(1h+ , 2h− , 3h− , 4h+)) = −
g2S

m4S−2
S

[23]S−4[14]S+4
S∑

a=0

c0,0(a) ⟨13⟩a⟨12⟩S−a⟨42⟩a⟨43⟩S−a

= − g2S
m2S+6
S

[23]4[14]4
S∑

a=0

c0,0(a) (−s)S−ata. (12.26)

Note the functional differences of the s, t-channel to the u-channel. While, in principle, any
spin can contribute to the latter, only spins larger than 4 are able to contribute to the former.
Further, by investigating the 3-point amplitudes in more detail (see App. III.A), we can realize
that the factor containing the heavy spinors for the same-helicity amplitudes is antisymmetric
under an exchange of the two gravitons if S is odd, breaking Bose symmetry. Hence, the only
way out is to set gS = 0 for all odd S in these amplitudes. In total, we find

A(1h+ , 2h− , 3h− , 4h+)
([23][14])4

= −
∑

S

g2S
m2S−2
S

[
S−4∑

a=0

c4,−4(a)

(
uS−4−a(−t)a
s−m2

S

+
uS−4−a(−s)a
t−m2

S

)

+
e(S)

m8
S

S∑

a=0

c0,0(a)
(−s)S−ata
u−m2

S

]
, (12.27)

where we defined

e(S) = 1− S mod 2 =

{
1 if S is even

0 if S is odd
, (12.28)

to implement the fact of only even spins in the same-helicity three-point functions.
The other amplitudes can be calculated similarly. In fact, since they have to be fully sym-

metric under any exchange of any two Mandelstam invariants (contrary to the result above,
which is only symmetric under s ↔ t), it is sufficient to compute one channel and infer the
others by a simple relabelling of invariants. They read

A(1h+ , 2h+ , 3h+ , 4h−) = − ([12][13]⟨14⟩)4
∑

S

g2S
m2S−2
S

e(S)

×
S−4∑

a=0

c0,4(a)
uS−4−a(−t)a
s−m2

S

+ (s↔ t) + (s↔ u),

(12.29)
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A(1h+ , 2h+ , 3h+ , 4h+) = −
[12]2[34]2

⟨12⟩2⟨34⟩2
∑

S

g2S
m2S−2
S

e(S)

×
S∑

a=0

c0,0(a)
(−uS−a)ta
s−m2

S

+ (s↔ t) + (s↔ u).

(12.30)

Now that we have the full four-graviton amplitudes, it is straightforward to determine the
effective operators generated upon integrating out the higher spin fields by simply taking the
mS → ∞ limit. Trivially extracting the functions f , g and h and expanding them to the
appropriate order, we find

f(s, t, u) = 140
g̃24
m8

4

− 14

5

(
25

g̃24
m10

4

− 99
g̃25
m10

5

)
u+

14

5

(
25

g̃24
m12

4

− 9
g̃25
m12

5

+ 335
g̃26
m12

6

)
u2

+
28

5

(
25

g̃24
m12

4

+ 81
g̃25
m12

5

+ 225
g̃26
m12

6

)
st . . . ,

g(s, t, u) = 210
g̃24
m8

4

+ . . . , (12.31)

h(s, t, u) = 18
g̃24
m8

4

(s2 + t2 + u2)2 − 105

2

g̃24
m10

4

stu(s2 + t2 + u2)

+ 3

(
g̃24
m10

4

− 587
g̃26
m10

6

)
s2t2u2 +

1

4

(
g̃24
m12

4

+ 463
g̃26
m10

6

)
(s2 + t2 + u2)3 + . . . ,

where we defined g̃S = S! gS for convenience and we included only particles of spin≥ 4. Note that
at each mass dimension, there is a maximal spin contributing, i.e., there is no need for manually
truncating the sum over spins at a fixed mass dimension. This is simply because of the structure
of the amplitudes. They are simply polynomials in the Mandelstam invariants, with a degree
that increases with the spin of th exchanged particle and by expanding the propagator for large
masses this degree cannot be decreased but only increased, giving a maximal contributing spin
at each total power of Mandelstams. Using Eq. (12.2) together with Eqs. (12.8) - (12.10), we
can easily obtain the EFT parameters by comparing coefficients, giving

d̂3 = 0, d4 = 140
g̃24
m8

4

, d5 =
14

5

(
25

g̃24
m10

4

− 99
g̃25
m10

5

)
,

d6 =
14

5

(
25

g̃24
m12

4

− 9
g̃25
m12

5

+ 335
g̃26
m12

6

)
, d′6 =

28

5

(
25

g̃24
m12

4

+ 81
g̃25
m12

5

+ 225
g̃26
m12

6

)
,

d′′6 = 420
g̃24
m12

4

, d̂4 = 36
g̃24
m8

4

, d̂5 =
105

4

g̃24
m10

4

,

d̂6 =
1

4

(
g̃24
m12

4

+ 463
g̃26
m12

6

)
, d̂′6 = 3

(
51

g̃24
m12

4

− 587
g̃26
m12

6

)
.

(12.32)

Interestingly, we cannot generate the cubic Riemann operator by simply integrating out the
massive degrees of freedom. This is also clear from the structure of the amplitudes. Since the
R3 operators only modify the three-point interaction of gravitons in on-shell amplitudes, their
contribution to the four-point amplitude comes with the exchange of an intermediate, massless
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graviton. This necessarily has a pole at 0, for when the graviton goes on-shell. The amplitudes
from the higher-spin exchange, on the other hand, have, before integrating them out, poles away
from 0 at the masses of the mediators and no new poles can be generated by a simple mS → 0
expansion. We will discuss the R3 in the context of massive higher spin fields in the next section.

But before we do so, we want to discuss an important consistency check of the results of
matching the higher spin theory to the gravity EFT: causality constraints. We will not go into
any detail on the derivation of these, instead we just mention that they can be obtained from
the requirement of both unitary and causal scattering amplitudes at all energies and they give
constraints on EFT coefficients from first principle, independent of any experiment. In [258]
such constraints were obtained for the the coefficients in Eqs. (12.11) - (12.13), which we quote
here for reference

d4 ≥ 0, |d̂4| ≤ d4, −d4 ≤ d5M2 ≤ d4

0 ≤ d6M4 ≤ d4, −90

11
≤ d′6
d6
≤ 6,

(12.33)

whereM is the EFT cut-off, which we do not further specify here. Note that our results trivially
satisfy the first two of these constraints, independently of the parameters of the theory, since

140
g̃24
m8

4

≥ 0 and 140
g̃24
m8

4

≥ 36
g̃24
m8

4

. (12.34)

While it is of course crucial for these constraints to be satisfied, the remaining bounds are more
interesting since they will establish connections between the couplings and masses of different
states. E.g., the third constraint translates to

−25

99

g̃24
m8

4M
2

(
2− M2

m2
4

)
≤ g̃25
m10

5

≤ 25

99

g̃24
m8

4M
2

(
2 +

M2

m2
4

)
. (12.35)

Note that, assuming real coefficients, the lower bound is trivially satisfied unless m4 ≤
√
2M ,

while the the upper bound always represents a non-trivial upper bound on the S = 5 particle
depending on the S = 4 one and the cut-off of the theory.

The third causality constraint then relates the S = 6 parameters to the lower ones, in
particular we find

10

737

g̃24
m10

4 M
2

(
1− 5M2

m2
4

)
≤ g̃26
m12

6

≤ 10

737

g̃24
m8

4M
4

(
11− M2

m2
4

− 5M4

m4
4

)
, (12.36)

where we already used the constraints in Eq. (12.35) to eliminate the S = 5 parameters in favor
of the S = 4 ones. Note that the lower bound can become non-trivial (assuming real coefficients
again) for m4 ≥

√
5M . Finally, note that the final constraint in Eq. (12.33) is trivially satisfied

for real couplings, as can be easily seen by simply plugging in the respective matching coefficients.

12.3 Higher Spins in the High-Energy Limit

We have seen in the previous section that the R3 type operators cannot be generated by inte-
grating out a massive particle with spin S ≥ 4. However, it was argued in [244] that if such a
modification of the the gravitational three-point coupling is present, it leads to causality viola-
tion at high energies, which can only be cured by the introduction of an infinite power of massive
higher spin particles. As mentioned in the introduction, to our knowledge this still has to be
seen explicitly. To address this point, we use the full amplitudes we obtained in the previous
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section and take the limit of large energies, which can also be states as mS → 0 for all S ≥ 4.
This means assuming a rather unique standpoint, in which the effective R3 operator does not
dissolve into new degrees of freedom at high energies, but instead persists at all energies and
its dangerous high-energy behavior is cured by the additional inclusion of an infinite tower of
higher spin fields. Below the scale at which the R3 coupling becomes large, the effect of this
infinite tower is simply captured by an gravitational EFT, the leading terms of which we already
discovered in the last section.

We will focus on the amplitude with vanishing total helicity and in the limit mS → 0 the
corresponding function of Mandelstam invariants can be written as

f(s, t, u) =
∑

S≥4


e(S)

S/2∑

i=1

d
(i)
1 (S)

(st)i

u2i−1
+

S−5∑

i=0

d
(i)
2 (S)

u2i+1

(st)i


+ . . . , (12.37)

where the ellipses stand for terms of different mass dimension and we find the following closed

form for the function d
(i)
1 (S)

d
(i)
1 (S) =





S(1 + S)Γ(1 + S)2 ĝ2S if i = 1

(−1)i+1 2
2i+S

2 −2(4i+S−5)!!Γ(i+S
2
−1)

2
Γ(2i+S−3)

(i!)2Γ(S
2
−1)

ĝ2S+2(i−2) if i > 1

, (12.38)

and where we defined ĝ2S = g2S/m
10
S . Notice that here we encountered the opposite situation as

for the matching coefficient in the sense that instead of a maximal spin contributes at a given
order, a minimum spin is needed to generate each of the powers of Mandelstam invariants. We

believe that a similarly compact expression can be found for d
(i)
2 (S), however, we could not find

it. Instead, we find that, e.g., the terms originating from odd spins can be written as

d
(i)
2 (Sodd) =

2i∑

a=0

a
(i)
j S

i ×





√
2
−1−i Γ(1+i+2S)Γ(9+i+2S)Γ(10+2i+2S)

Γ(2S) if i is odd

√
2
−i Γ(i+2S)Γ(8+i+2S)Γ(9+2i+2S)

Γ(2S−1) if i is even
, (12.39)

where a
(i)
j are some numeric constants and we neglected the coupling dependence.

By comparing this expression with Eq. (12.11), we that the i = 1 term in the first sum has
the same structure as the one generated by a graviton exchange and the insertion of the R3

operator. By requiring the cancellation of the two, to recover a well-behaved amplitude, we find
the condition

|d̂3|2 =
1

2πG

∞∑

S=4

g2S
m10
S

S(1 + S)Γ(1 + 2S)2. (12.40)

Further, it is obvious from Eq. (12.37), that the addition of each new spin contributes not only
to Eq. (12.40) but also introduces new terms with larger i, which in term have to be cancelled
by including even higher spins, which introduce even higher terms in i and so on. To ensure the
cancellation of these spurious terms, we require that

∞∑

S=4

22i+
S
2
−2(4i+ S − 5)!!Γ

(
i+ S

2 − 1
)2

Γ(2i+ S − 3)

(i!)2Γ
(
S
2 − 1

)
g2S+2(i−2)

m10
S+2(i−2)

= 0 ∀i > 1, (12.41)
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which, in principle, allows us to relate the couplings and masses of higher spin fields with that
of lower ones, down to S = 4, which can in turn be used to relate the R3 coupling to a single

higher spin coupling using (12.40). Then, provided a closed expression for d
(i)
2 is obtained,

further relations between all the odd and even spin couplings can be derived by requiring the
vanishing of all terms in the second sum in 12.37, fixing the full spectrum of the higher spin
sector in terms of the lowest spin.

Note that the fact that d
(i)
1 is generated only by even spins is consistent with the fact that

the amplitudes with different helicity configurations are generated by only even spins, such that
the respective term arising from R3 can only be cancelled by even spins in these amplitudes in
the first place. In summary, the odd spins are only necessary for cancelling the spurious terms
with more Mandelstam invariants after the odd spins have taken care of the R3 operator. To
conclude this section, we want to mention that the results presented in this section represent
only a first step towards mapping out the full pattern of the higher spin spectrum and we leave

the full determination of d
(i)
2 as well as discussion about the other helicity configurations for

future work.
We want to conclude this section by commenting on the particular limit we chose. By

having a closer look at Eq. (12.41), we see that every term in this sum is non-negative, such
that the naive limit mS → 0, or equivalently E → ∞, would imply that all couplings have to
vanish identically. However, to avoid issues of non-perturbativity in the high-energy regime, one
should rather take the limit while keeping the impact parameter finite, which is currently under
investigation.
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Chapter 13

Testing Higher Spins with Torsion
Balance

We have seen in the previous chapter how the introduction of massive higher spin states can cure
the bad energy growth behavior in pure graviton scattering amplitudes, in particular from R3

type operators. Since this operator also enters the scattering of gravitons with matter through
the modified triple graviton vertex, we expect the same behavior for large energies, which needs
to be tamed to have in a sensible theory. In fact, since we already included the massive higher
spin states to cure problems arising from R3 contributions in the graviton four-point function,
these new degrees of freedom will be able to also cure the matter-graviton amplitudes, once we
allow for a coupling to matter directly.

However, in this chapter we will not further investigate this cancellation of the high-energy
growth, but instead we will focus on experimental probes of these new higher spin degrees
of freedom, provided their direct coupling to matter. In particular, given the fact that new
mediating particles contribute to the potential between two sources as a fifth force, we will show
how torsion-balance experiments like the EötWash experiment (see e.g., [262]) can be used to
use as a classical and therefore very low-energy probe of these new particles.

13.1 Interaction potential from Higher Spins

Before we go into details about the actual experiments and how to extract constraints on the
higher spin states, we first need to calculate the main object of interest: The four-point scattering
amplitude of massive matter fields mediated by the new fields, hence modifying the interaction
potential. For simplicity, we will model the matter fields ϕ12, which later we will associate
with the macroscopic test bodies used in the torsion balance experiment, as two scalars with
massesm1 andm2, respectively, such that we can neglect any spin-dependent or electromagnetic
interactions.

To actually calculate the needed amplitudes, we want to exploit the advantages of the massive
spinor helicity formalism introduced in Chapter 17. This allows us to calculate all amplitudes
for a generic spin S in a relatively straightforward way, which would become exponentially
difficult even for single-digit values of S in the Lagrangian approach, due to the enormous gauge
redundancies and introduction of many Goldstone-like particles. As shown in App. III.A, it
turns out the the three-point interaction between two massive scalars and a generic, massive
spin S particle can be written in two very compact but equivalent ways
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M(1ϕi ,2ϕi ,3S) =
gS

Λ2S−1
⟨3|p1 − p2|3]S =

g′S
Λ3S−1

⟨3|p1p2|3⟩S , (13.1)

where we again suppressed the little group indices on the massive spinors, as they are trivial
to reinstate because they are fully symmetrized. Notice that the the expression with fewer
momenta, i.e., the one proportional to gS , looks a lot like the result obtained from a Lagrangian
approach using the usual Feynman diagrams, by realizing that it can also be written as

A(1ϕi ,2ϕi ,3S) =
gS

Λ2S−1
ϵ(3)µ1µ2···µS (p1 − p2)µ1(p1 − p2)µ2 · · · (p1 − p2)µS , (13.2)

with

ϵ(3)µ1µ2···µS ∝ ⟨3|σµ1 |3]⟨3|σµ2 |3] · · · ⟨3|σµS |3] (13.3)

the polarization tensor of the spin S particle (see [264] for the S = 2 case). However, since it
contains both dotted and undotted massive spinors, the contraction of the little group indices
when calculating the four-point function becomes much more involved. Therefore, we use the
expression with more momenta, i.e., the one proportional to g′S because it contains only undotted
spinors, ignoring the couplings for now, reinstating them in the end. We can easily transform
the symmetrization of the little group indices into a symmetrization of the spinorial indices

A(1ϕi , 2ϕi ,3S) = λ
{I1α1

3 λI2α2
3 · · ·λI2S}α2S

3 α1 |p1p2|α2α3 |p1p2|α4 · · · α2S−1 |p1p2|α2S

= λI1α1
3 λI2α2

3 · · ·λI2Sα2S
3 {α1

|p1p2|α2α3 |p1p2|α4 · · · α2S−1 |p1p2|α2S},
(13.4)

where we also used that contracting a symmetric tensor with an arbitrary tensor picks out
exactly the symmetric component of this latter tensor.

Then, we can use Eq. (12.16) to calculate the four point function, or rather the residues on
its poles, by gluing two three-point amplitudes together and contracting all little group indices.
As for the graviton amplitude, we can directly use Eq. (11.22) to transform the contraction of
the little group indices into a contraction of spinor indices. Since we later we will be interested
only in the long-range effects of the amplitude once transformed into position space, the only
relevant channel will the the t = (p1 + p3)

2 channel. Nevertheless, all the other channels can
be calculated in the same way by the gluing procedure. Alternatively, we can just use the fact
that an amplitude of four real scalars has to be Bose symmetric under any exchange of external
states, such that e.g., the s = (p1+p2)

2 channel result can be obtained from the t-channel one by
simply exchanging s↔ t and equivalently of the other channels. Having said this, one possible
complication might arise because we are considering fully massive amplitudes, but since we are
dealing only with external scalars, we know that the dependence on their momenta can only
appear in the form of spinors that are contracted into actual momenta, i.e., there are no open
little group indices. This helps the computation tremendously, since we can temporarily demote
the momenta in Eq. (13.4) to massless ones, which allows us to easily split them into spinors
and use the relations of the massless spinor helicity formalism, knowing that in the end they all
have to recombine into momenta again. We then have

Rest(A(1ϕ1 ,2ϕ2 ,3ϕ1 ,4ϕ2)) = m2S
S [13]S [24]Sλ1{α1

λ3α2 · · ·λ1α2S−1λ3α2S}λ
β1
2 λ

β2
4 · · ·λ

β2S−1

2 λβ2S4 .
(13.5)

As was the case for the graviton amplitudes, what remains is the combinatorial problem of
finding all the possible contractions of the spinors and their respective multiplicities. For the
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case that all helicities are zero, Eq. (12.21) just reduces to the square of a binomial coefficient
and the residue in the t-channel simply reads

Rest(A(1ϕ1 ,2ϕ2 ,3ϕ1 ,4ϕ2)) = m2S
S [13]S [24]S(S!)2

S∑

a=0

(−1)a
(
S

a

)2

⟨12⟩S−a⟨14⟩a⟨23⟩a⟨34⟩S−a.

(13.6)
Note that this result matches the one for the s-channel exchange in [207] after making the

2↔ 3 exchange. In fact, in the s-channel, this amplitude reproduces the well-known result that
the four-scalar amplitude reduces to a Legendre polynomial in the center of mass frame. To
quickly check this, we first do 2↔ 3 to go from a t-channel to an s-channel exchange and then
we go to the center of mass frame in which we can relate the spinors λ3/4 with λ1/2 by using

(
|3⟩
|4⟩

)
=

(
cθ/2 −sθ/2eiϕ
sθ/2e

iϕ cθ/2

)(
|1⟩
|2⟩

)
, (13.7)

as well as the conjugate relation for the λ̃ spinors. Here θ is the scattering angle. Plugging this
in we find

Rest(A(1ϕ1 ,2ϕ2 ,3ϕ1 ,4ϕ2)) = m2S
S [12]S [34]S(S!)2

S∑

a=0

(
S

a

)2

⟨13⟩S−a⟨14⟩a⟨23⟩a⟨24⟩S−a

= m2S
S s2S

1

2S
(S!)2

S∑

a=0

(
S

a

)
(cos θ − 1)a(cos θ + 1)S−a

= m2S
S s2S(S!)2PS(cos θ),

(13.8)

where we used the definition of the Legendre polynomials in the last step,

Pn(x) =
1

2n

n∑

a=0

(
S

a

)
(x− 1)a(x+ 1)S−a. (13.9)

We would have arrived at a very similar result if we had used massive spinors throughout
the entire computation, the only difference being we would have to carry around the contracted
little group indices. But these are trivial to reinstate because we know that they all have to be
contracted in such a way that momenta can be formed. So we just need to assign each pair of
square and angle brackets with the same argument the same index. This is unambiguous since
there is the same number of both square and angle brackets, so we can always find a counterpart
to construct momenta. Nevertheless, we keep the spinors to be massless for now, such that we
do not have to carry these indices, but writing Eq. (13.6), we find

Rest(A(1ϕ1 ,2ϕ2 ,3ϕ1 ,4ϕ2)) = m2S
S (S!)2

S∑

a=0

(−1)a
(
S

a

)2

⟨1|243|1]S−a⟨1|423|1]a
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S

2

)S S∑
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(2m2
1m

2
2 − st)S−a(tu− 2m2

1m
2
2)
a (13.10)

=

(
m2
S

2

)S
[(2m2

1 + t)(2m2
2 + t)]SPS

(
t(s− u)

(2m2
1 − t)(t− 2m2

2)

)
.
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Of course, when evaluating the Dirac traces, we now can no longer treat the scalars to be
massless, hence the appearances of the masses m1/2. Finally, because to calculate the t-channel
residue we go to the limit t → m2

S , we can replace every t with the mediator mass and using
Bose symmetry, we can easily find for the full four-scalar amplitude induced by a generic spin
S exchange

A(1ϕ1 ,2ϕ2 ,3ϕ1 ,4ϕ2) = 2−S(S!)2
[
m2
S (m

2
S − 2m2

1) (m
2
S − 2m2

2)
]S

t−m2
S

× PS
(

m2
S(s− u)

(m2
S − 2m2

1) (m
2
S − 2m2

2)

)
+ (t↔ s) + (t↔ u),

(13.11)
where we used PS(−x) = (−1)SPS(x) and we ignored all factors of (−1)S because we know from
the 3-point amplitude that S has to be even.

We are now in the position to calculate the contribution to the interaction potential between
the two scalars arising from the mediating higher spin field.

Since we are eventually interested in the position space potential, calculated from a 2 → 2
scattering amplitude, between the two scalars, we need to change the particles (3,4) from being
incoming to outgoing states. Employing a slight abuse of notation this does not change the form
of the amplitude, keeping the change of sign of the momenta implicit in the definition of the
Mandelstam invariants, which are now the usual ones for 2→ 2 scattering. We will see shortly
that it will be convenient to express it only in terms of the Mandelstam invariants s, related to
the scattering energy (s = (E1 + E2)

2), and t, related to the momentum transfer (t = −|q|2).
Thus, we use

s+ t+ u = 2m2
1 + 2m2

2

to arrive at the final expression for the four-scalar amplitude

A(1ϕ1 ,2ϕ2 → 3ϕ1 ,4ϕ2) = 2−S(S!)2
[
m2
S (m

2
S − 2m2

1) (m
2
S − 2m2

2)
]S

t−m2
S

× PS
(
m2
S(2s− 2m1 − 2m2

2 − |q2|)
(m2

S − 2m2
1) (m

2
S − 2m2

2)

) (13.12)

where we ignored the other two channels, as they will contribute only through short-ranged
contact terms to the total potential, which is not what we are interested in. To calculate the
potential we Fourier-transform the amplitude to move from the momentum-exchange-space to
distance-space

V (r, s) =
1

4E1E2

∫
d3q

(2π)3
eiq·rA(1ϕ1 ,2ϕ2 → 3ϕ1 ,4ϕ2), (13.13)

where the factor in front of the integral is needed to account for the different normalization of
states in non-relativistic quantum mechanics with respect to the one used in the QFT framework.
Using the residue theorem, the integral is easily performed and we arrive at

V (r, s) =
2−S

16π
(S!)2

[
m2
S (m

2
S − 2m2

1) (m
2
S − 2m2

2)
]S

E1E2

× PS
(
m2
S(2s− 2m2

1 − 2m2
2 +m2

S)

(m2
S − 2m2

1) (m
2
S − 2m2

2)

)
× 1

r
e−mSr,

(13.14)

finding that the functional dependence on the distance is the same as the Yukawa potential.
This could have been expected already from the form of the 2→ 2 scattering amplitude (13.12).

146



13.1. Interaction potential from Higher Spins

For different choices of S, only the degree S polynomial in the numerator changes. When
performing the contour integral arising in the Fourier transformation, the functional dependence
on the distance r is set only by the pole in the denominator, while the numerator just becomes a
constant, namely the polynomial evaluated at the pole. The only way to change the functional
form is if the pole would lie on the real axis, i.e., if the spin S particle is massless, but it is
well-known that there is no consistent theory of massless particles with spin S > 2.

Finally, we take the non-relativistic limit, since the experiment we want to test the potential
with works at such low energies by setting

E1 ∼ m1, E2 ∼ m2 s ∼ (m1 +m2)
2. (13.15)

Then the non-relativistic potential between two scalar masses reads

VNR(r) = −
2S−4

π
(S!)2

(
gS

mSΛS−1

)2
[
(m2

S − 2m2
1) (m

2
S − 2m2

2)
]S

m1m2

× PS
(

m2
S(m

2
S − 4m1m2)

(m2
S − 2m2

1) (m
2
S − 2m2

2)

)
× 1

r
e−mSr,

(13.16)

where we reinstated the coupling dependence and used (III.A.15) to rewrite it in terms of the
lower dimensional, unprimed coupling, as well as the results of the discussion on the high-energy
limit in Sec. 11.2.2.

Before going to the experimental constraints set on the higher spin fields using the above
potential, we want to comment on the expression for specific values of S, namely S = 1, 2, which
are well known in the literature.

Considering first the case of S = 1, the Eq. (13.16) reduces to

V S=1
NR (r) =

g2S
2π

(
1− m2

S

4m1m2

)
× 1

r
e−mSr ≃ g2S

2π

1

r
e−mSr, (13.17)

where in the last step assumed that mS ≪ m1,2, which is a good approximation for classical
experiments like EötWash.

At this point, we note that the above potential vanishes for real scalars, as the three point
function of two identical scalars and a vector has to vanish due to Bose symmetry. However,
if we take the scalars to be complex this obstruction can be avoided since now the scalars in
the 3-point function are distinguishable by their charge Qi. This means that the coupling now
depends on the charge of the scalars and we have

V S=1
NR (r) =

α2
SQ1Q2

2π

1

r
e−mSr, (13.18)

recovering the known potential between charged objects, generated by a massive vector field,
see, e.g., [265].

For S = 2, however, things look different and the potential reduces to

V S=2
NR (r) =

1

8π

(
gS
m2
SΛ

)2 3(4m1m2 −m2
S)

2m4
S − (m2

S − 2m2
1)

2 (m2
S − 2m2

2)
2

m1m2
× 1

r
e−mSr

≃ − 2

π

(gS
Λ

)2 m2
1m

2
2

m4
S

× m1m2

r
e−mSr,

(13.19)
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which does not reproduce the usual potential from a massive spin-2 exchange, see e.g.,
[260,266],

V S=2
lit (r) = −4

3

1

8π

1

m2
S

× m1m2

r
e−mSr, (13.20)

due to the additional, dimensionless fraction of masses. Although we believe that our result is
correct, in the end it reproduces the results presented in [207], it is still curious that such a
discrepancy arises, but finding the origin is left for future work. But, to conclude this section,
we want to give a possible explanation that might be worth further investigation. One possible
source where the difference between our expression for the massive S = 2 and the literature
might originate from is the prescription we use for symmetrizing the little group indices for
the massive spinors. This implies that, even though the three-point amplitudes are correct,
differences in higher point functions might arise, since there the symmetrization prescription
is relevant for the contracted little group indices. Recall that we use a global factor of 1/n!
dividing the sum of all possible permutations of a given set of indices. An alternative way,
which allows for a straightforward identification of the scalar polarizations, would be to use the
appropriate Clebsch-Gordan coefficients, as explained in [250]. Another point in favor of this
theory is that, using Eq. (13.2), we can strip the massive polarization tensor from the amplitude
and use the resulting vertex rule together with the appropriate propagator to calculate the
four point amplitude. We explicitly checked that this reproduces the usual massive S = 2
potential, however, recalling the previous point, using already the propagator implicitly assumes
a sum over massive polarizations using the symmetrization with the Clebsch-Gordan coefficients
[250]. Nevertheless, we will use our results for the potential obtained with our symmetrization
prescription here and in the following.

13.2 The Torsion Balance Experiment

In the last section, we calculated the non-relativistic potential between two massive scalars
generated by the exchange of a new particle with arbitrary spin S. Of course, this is not the
total potential between the scalars, but only a new contribution to the omnipresent Newtonian
potential mediated by a massless graviton. Hence, one way to probe these new degrees of
freedom is by employing experiments that search for deviations from the Newtonian potential
generated by new fith-forces. In particular, we focus on the EötWash experiments using the
results presented in [262] and the associated supplementary material.

Before presenting the constraints set by this experiment, we want to first want to discuss
how it works in the first place. At its core, the experiment is simply constructed from objects of
different masses which are put in very close proximity to each other, such that the force between
these two objects generated by their interaction potential can be measured. In practice, this, of
course, requires a far more sophisticated setup to be able to test the potential at microscopic
distances. Further, all other possible interactions, such as electromagnetic or spin interactions,
need to be eliminated as thoroughly as possible, to effectively isolate the gravitational contri-
bution as well as effects from new physics. Therefore, these objects can be modelled as some
neutral scalar. Further, we will assume that the higher-spin fields couple to all constituents with
the same strength and that the entirety of the macroscopic objects coherently contributes to the
interaction potential.

In the case of the EötWash experiment [262] (see also [267,268] for details on the current and
previous implementations of the experiment, respectively) the two test masses are thin metal
plates aligned vertically. These plates feature an inner 120-fold and outer 18-fold pattern of
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13.2. The Torsion Balance Experiment

Figure 13.1: Constraints on the higher-spin fields set by the EötWash experiment in themS−Λ
plane.

alternating wedges, with every other wedge being a cut-out of filled with glue. When rotating
one of these plates, called the attractor, with respect to the other, the pendulum, this periodic
change of the mass density a fixed point on the pendulum sees, induces a periodic torque which
can be read out and related to the gravitational interactions between the two plates. This
periodic mass distribution, together with the (approximate) cylindrical symmetry of the whole
setup, allows for a Fourier decomposition of the measured torque function in terms of mode
functions [269], making an extraction of the signal generated by the individual wedge patterns
straightforward. For a Yukawa type potential of the form

V (r) =
αm1m2

r
e−λr (13.21)

the torque induced on the pendulum by the rotating attractor can be calculated as [269]

Th,N (θ) =128hN2αρ
2

π
sin(hNθ)×

∫ ∞

0
dk

sinh (t1γ/2) sinh (t2γ/2)

kγ3
exp

[
−γ
(
s+

t1 + t2
2

)]

×




∞∑

j=0

hN + 2j + 1

(hN + 2j)(hN + 2j + 2)
(r1JhN+2j+1(r1k)− r2JhN+2j+1(r2k))



2

, (13.22)

with Ji(x) the Bessel function of the first kind. Here ρ is the mass density of the two
objects, where we assumed that they both have the density, which is a valid approximation for
the experiment at hand. The variables t1/2 denote the thickness of the two objects, r1/2 are the

radii of the inner and outer wedge patterns respectively and γ =
√
k2 + λ2. Finally, h and N
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are the h-th harmonic of the N -th multiple of the attractor eigenfrequency, N = 18, 120, and θ
denotes the relative angle between the two plates with respect to some initial reference position.
Obviously, this expression reduces to the torque in a Newtonian potential in the limit λ → 0.
Then, from Eq. (13.22), it is clear that the measured torques can easily be compared to the
predicted values by decomposing them into Fourier modes and comparing the amplitudes of the
sine terms of the appropriate frequency.

Then, by using a χ2 we can find constraints on the masses and couplings of the higher spin
fields to the matter fields using Eq. (13.16) and we show the results in Fig. 13.1 for various values
of S. We want to conclude this section by discussing the main features in Fig. 13.1. First, we see
the bounds for all values of S shown are extremely strong for light new states with masses below
of order of a few milli-electronvolts. Here the mass range is limited by the physical separation
between the test bodies that can be achieved in the experiments and which is of the order of
at leas a few microns in the current setup of the EötWash experiment. The large values for the
suppression scale then come from the macroscopically large external masses m1/2 which appear
to the power of some multiple of S in Eq. (13.16), such that a large value of Λ is necessary to
compensate for them. Recalling the discussion on the S = 2 potential from the last section, they
might become significantly less restrictive once the situation with additional mass fractions is
resolved. The qualitative features of the exclusion regions, however, are not expected to change
notably. Further, for increasing values of S the bounds become weaker and while there is still
some non-trivial structure observable for the boundary curve of the lower spins, it flattens out
more and more for higher values. Both these features arise from the fact that for higher spins
a higher power of Λ is needed to keep the correct mass dimension of the potential, such that,
ultimately, a lower value is necessary for the same compensation of the remaining terms in the
potential. Finally, while not shown explicitly in Fig. 13.1, we observed that for spins S ≳ 100 the
bounds become stronger again, exactly when the global (2S!)2 factor overtakes the suppression
by the high powers of Λ.
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Conclusions

In this part of the thesis, we have investigated effects on both gravitational as well as matter
scattering induced by new, massive degrees of freedom of spin S ≥ 4. We have shown how
integrating them out generates an EFT of purely gravitational, higher dimensional operators
and we give the the matching coefficients for operators with at most four Riemann tensors and up
to dimension eight in Eq. (12.32). As a result of this matching, we also find that no contributions
to cubic operators are generated. We can easily convince ourselves of this fact, by realizing that
the four-point amplitude generated by such operators still has poles due to the necessary graviton
exchange, while no such non-localities can remain after the massive propagator is expanded to
give local interactions.

However, following the argument presented in [244], we investigated how an infinite tower
of higher-spin fields can cure acausalities in the four-point function generated in the presence
of the cubic operator at high energies. To do so, we took the high-energy limit of the four-
graviton amplitude with a massive mediator and isolated the structure matching that from
the R3 operator. In particular, we focused on the graviton configuration with vanishing total
helicity and we were able to find closed a closed expression for a large part of the amplitude
in the high-energy limit at the relevant mass dimension, see Eq. (12.37). While a full closed
expression still needs to be determined, our results already show interesting features. First,
we showed that the correct structure to cancel contributions of the cubic operator can only be
generated by particles of even spin. Further, we saw that by adding the lowest spin possible,
S = 4, additional terms with higher powers of the Mandelstam invariants are generated. This
can be cancelled by adding the next higher spin, S = 6, however, it also generates contributions
to the R3 structure as well as even higher powers in the Mandelstam invariants. These will be
cancelled by the S = 8 particle and so on such that in the end we arrived at an expression of
the Wilson coefficient of the R3 operator in terms of a linear combination of the couplings and
masses of all the even higher spins and additionally a set of relations between these couplings
and masses from requiring the cancellation of these higher-power terms. In the end, we could,
in principle, use to express everything in terms of the lowest spin coupling and mass. Of course,
upon expanding around the high-energy limit, also terms with entirely different combinations
of the Mandelstam invariants are generated, e.g., the second sum in Eq. (12.37). In the case of
the amplitude with vanishing total helicity, this is where the odd spins come into play, which
are able to cancel these terms. But, we also found that the conditions for cancellation of these
spurious terms in the naive E → ∞ imply that all couplings necessarily need to vanish in this
regime. An alternate limit, which is still under investigation, keeps the impact parameter to be
finite, such that non-perturbatively large couplings at high-energy can be avoided. In summary,
we see that investigating different limits and finding the full closed expression of Eq. (12.37)
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and equivalently for other limits for all spins as well as finding the equivalent expression for the
other two helicity configurations can provide interesting insights in the necessary insights on the
pattern of the the higher-spin sector. We leave this for a future work.

Finally, assuming that the higher-spin fields also directly couple to matter, we present a way
to probe them using classical experiments like fith-force experiments looking for deviations from
the Newtonian potential at short distances. To do so, we modelled the experimental test masses
as point-like massive scalars, that universally couple to the higher-spin degrees of freedom,
independently of their constituents. This allowed us to calculate the four-point amplitude of
only scalars mediated by these new fields and compute the interaction potential between by
isolating the long-range contributions. While our result does show discrepancies to other results
for the potential found in the literature (which might originate from our choice of symmetrization
prescription of the little group indices in the massive amplitudes, as discussed below (13.19)),
we still use it to set constraints on the higher-spin parameter space, as it passes cross-checks
with the literature on massive on-shell scattering amplitudes [207], see also Appendix A of [258],
shown in (13.1). We also leave the resolution of this issue for future work. Coming back to
the constraint, we found that the classical EötWash experiment has the potential of being an
excellent probe of the higher-spin sector for light new states, even if the explicit form of the
potential might change as a consequence of a different choice of the symmetrization procedure
during the calculation, where future iterations of the experimental setup can potentially lead to
a significant increase in both the reach on the mass as well as the effective coupling strength.
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Appendices part III

III.A Calculation of Massive Amplitudes

We devote this appendix to the calculation of the massive three-point amplitudes necessary for
this part of the thesis using Eqs. (11.24) and (11.26).

III.A.1 All-massive Amplitude with Two Scalars

We start by calculating the amplitude of two massive scalars coupled to an massive state of
arbitrary spin S. We start with Eq. (11.26) and for S1 = S2 = 0 and S3 = S we find

A{α1,··· ,α2S} =

1∑

i=0

∑

σi

gσi
(
OS−iεi

)σi
{α1,··· ,α2S}

. (III.A.1)

It will be instructive to calculate the amplitude for the first few explicit values of S, to see
how it generalizes to arbitrary S. We find

S=0:

A =

1∑

i=0

∑

σi

gσi
(
O−iεi

)σi (III.A.2)

Because there can be no negative powers, the only term contributing in the outer sum is
i = 0, trivially giving

A(1ϕi ,2ϕi ,3S0) = const, (III.A.3)

as expected for a purely scalar amplitude.

S=1:

A{αβ} =

1∑

i=0

∑

σi

gσi
(
O1−iεi

)σi
{α,β} = g0 p1{αβ̇p

β̇
2β} + g1 ε{αβ} (III.A.4)

Obviously, the second term drops out after explicitly expanding the symmetrization of the
indices. After contracting with the external massive spinors, we find

A(1ϕi ,2ϕi ,3S1) = g0 λ
α
3Iλ

β
3J p1{αβ̇p

β̇
2β} = g0 ⟨3|p1p2|3⟩. (III.A.5)

Here we used that the symmetrization in the indices SU(2) Lorentz indices, α, β, is equivalent
to the symmetrization of the SU(2) little group indices, which is, however, left implicit in our
choice for notation of massive spinors. Using momentum conservation, p1 + p2 + p3 = 0, as well
as the equations of motion (11.21) we can write the amplitude as
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A(1ϕi ,2ϕi ,3S1) = −g0m2
i ⟨33⟩+ g0mS⟨3|p2|3], (III.A.6)

which, after using momentum conservation once more, as well as

⟨3{I3J}⟩ = mSε
{IJ} = 0,

and redefining the arbitrary coupling constant, we finally arrive at

A(1ϕi ,2ϕi ,3S1) = g0⟨3|p1 − p2|3]. (III.A.7)

This result reproduces the spinor structure in [250] for a fully massive scalar-scalar-vector
amplitude. Note, this amplitude, having all the correct transformation properties, is antisym-
metric under the exchange 1↔ 2, while it has to be symmetric for identical scalars, forcing us
to set g0 = 0.

S=2:

A{αβµν} =

1∑

i=0

∑

σi

gσi
(
O2−iεi

)σi
{α,β} = g0O{αβOµν} + g1O{αβεµν} (III.A.8)

Again, symmetrizing the SU(2) Lorentz indices is equivalent to symmetrizing the SU(2)
little group indices, so after contracting the above expression with the external spinors, we find

A(1ϕi ,2ϕi ,3S2) = λα3{Iλ
β
3Jλ

µ
3Kλ

ν
3L} (g0OαβOµν + g1Oαβεµν)

= g0⟨3|p1p2|3⟩2 + g1⟨3|p1p2|3⟩⟨33⟩.
(III.A.9)

Using the results from the S = 1 case and defining new arbitrary coefficients, this can be written
in the form

A(1ϕi ,2ϕi ,3S2) = g0⟨3|p1 − p2|3]2 + g1⟨3|p1 − p2|3]⟨33⟩+ g2⟨33⟩2. (III.A.10)

After making the symmetrization of the little group indices explicit, it is easy to see that
the g1 and g2 term vanish, as there will always be pairs of permutations related by only a single
index exchange for one of the antisymmetric tensors arising from ⟨3{I3J}⟩ ∼ ε{IJ} = 0, e.g.

ε{IJεKL} = εIJεKL + εIJεLK (= 0)

+ εKJεLI + εKJεIL (= 0)

+ · · · = 0.

(III.A.11)

Since this does not rely on exchanging indices of both tensors, but only one, the same argument
holds also for the g1 term.

In summary, we find

A(1ϕi ,2ϕi ,3S2) = g0⟨3|p1 − p2|3]2. (III.A.12)

Note, this spinor structure precisely matches the one in [264]. By comparing the S = 1 and
S = 2 terms, there is an apparent pattern emerging where the amplitude for an arbitrary spin S
is simply the S = 1 expression taken to the power S (keeping in mind that all indices have still
to be symmetrized, i.e., the symmetrization procedure is obviously not exponentiated). Indeed,
we find that this pattern emerges, as we will show now.

With the previous results, we can make the ansatz
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A(1ϕi ,2ϕi ,3S) = g̃0⟨3|p1p2|3⟩S + g̃1⟨3|p1p2|3⟩S−1⟨33⟩ =
S∑

i=0

gi⟨3|p1− p2|3]S−i⟨33⟩i. (III.A.13)

Using the antisymmetry of the ε tensor as before, we see that all terms with i > 0 vanish after
symmetrizing all the little group indices, so we find for general (bosonic) spin

A(1ϕi ,2ϕi ,3S) =
gS

Λ2S−1
⟨3|p1 − p2|3]S =

g′S
Λ3S−1

⟨3|p1p2|3⟩S , (III.A.14)

where we introduced the appropriate power of some scale Λ such that gS (g′S) is dimensionless.
Note that Bose symmetry demands gS = 0 = g′S if S is odd. In fact, the two couplings are
related by

g′S =
(mS

2

)S
gS . (III.A.15)

Since scalars do not have spin, we know that all spinors corresponding to their momenta have
to combine into momenta, such that all the little group transformation becomes trivial. Since it
is trivial to go from massive to massless momenta and vice versa, taking the massless limit for the
scalar is just as trivial, we just treat all appearing momenta to be massless instead of massive.
In fact, this leads to an easier and shorter way to derive the needed 3-point amplitudes by using
(11.24), such that one can use the simpler tricks of the massless spinor-helicity formalism at
least for two out of the three particles in the amplitude. For the case of two massless scalars,
the general expression for such an amplitude reduces to just

A{α1,··· ,α2S} =
(
λS1λ

S
2

)
{α1,··· ,α2S}

[12]S , (III.A.16)

where we ignored the coupling dependence for simplicity. Let us use this formula in a few cases
before considering general spin.

S=0: This case is trivial, all powers are 0 and therefore

A(1ϕi , 2ϕi ,3S0) = const (III.A.17)

S=1: As before, symmetrizing in the SU(2) Lorentz indices is equivalent to symmetrizing the
SU(2) little group indices, which is left implicit in the notation we use here. Therefore

A(1ϕi , 2ϕi ,3S1) = λ
α{I
3 λ

βJ}
3 λ1αλ2β[12]

= ⟨31⟩⟨32⟩[12]
= ⟨3|p1p2|3⟩.

(III.A.18)

After taking the same steps as in the all massive case, one can arrive at the same final form of
the amplitude.

S=2:
A(1ϕi , 2ϕi ,3S2) = λ

α{I
3 λβJλµK3 λ

νL}
3 λ1αλ1βλ2µλ2ν [12]

2

= ⟨31⟩⟨31⟩⟨32⟩⟨32⟩[12]2

= ⟨3|p1p2|3⟩2,
(III.A.19)

which again matches the result of the all massive amplitude after performing the same manip-
ulations.
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General S:

A(1ϕi , 2ϕi ,3S) = λ
α1{I1
3 · · ·λαSISλ

αS+1IS+1

3 · · ·λα2SI2S}
3 λ1α1 · · ·λ1αSλ2αS+1λ2α2S [12]

S

= ⟨3{I11⟩ · · · ⟨3IS1⟩⟨3IS+12⟩⟨3I2S}2⟩[12]S

= ⟨3|p1p2|3⟩S .
(III.A.20)

Again, we recover the same amplitude as in the fully massive case.

Notice, that this particular form of the amplitude could also have been obtained by consid-
ering all particles to be massless and bolding all the spinors only at the end. Of course, when
simplifying the amplitude, the massless limit, especially for the spin S particle, cannot be used
further and its non-zero mass has to be reintroduced.

III.A.2 Two-massless One-massive Amplitude with Two Gravitons

Because the two gravitons are massless, we can directly use Eq. (11.24) to calculate its coupling
to a generic spin S particle. However, since they carry non-vanishing helicity, there are three
different amplitudes, corresponding to the three helicity combinations. We will start by present-
ing the calculation for the case that both gravitons have the same helicity, as this is very similar
to the scalar computation shown in the previous section.

For two positive helicity gravitons, Eq. (11.24) reduces to

A{α1,··· ,α2S} =
g

Λ3S+3

(
λS1λ

S
2

)
{α1,··· ,α2S}

[12]S+4. (III.A.21)

Since the only difference to the scalar case is the power of the already contracted massless
spinors, contracting this expression with the massive spinors is completely analogous and we
find

A(1h+ , 2h+ ,3S) =
g

Λ3S+3
[12]4⟨3|p1p2|3⟩S =

g

Λ3S+3
[12]4⟨3|p1 − p2|3]S (III.A.22)

The amplitude for two negative helicity gravitons can be calculated in a very similar manner,
since the the only difference is again only the power of the already contracted spinors. We find

A(1h− , 2h− ,3S) =
g

Λ3S−5
[12]−4⟨3|p1p2|3⟩S =

g

Λ3S−5m8
S

⟨12⟩4⟨3|p1p2|3⟩S , (III.A.23)

where we used ⟨12⟩[21] = (p1 + p2)
2 = m2

S in the last equality to trade the square brackets for
angular ones. Since we want the change of helicity of the gravitons to correspond to a complex
conjugation of the respective spinors, we choose Λ = mS .

Finally, we present the amplitude with opposite helicity gravitons. Already contracting with
the external massive spinors, the amplitude reads

A(1h+ , 2h− ,3S) =
g

m3S−1
S

λ
α1{I1
3 · · ·λαSISλ

αS+1IS+1

3 · · ·λα2SI2S}
3 λ1α1 · · ·λ1αS−4λ2αS−3λ2α2S [12]

S

=
g

m3S−1
S

⟨3{I11⟩ · · · ⟨3IS−41⟩⟨3IS−32⟩⟨3I2S}2⟩[12]S

=
g

m3S−1
S

[12]S⟨13⟩S−4⟨23⟩S+4.

(III.A.24)
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III.A. Calculation of Massive Amplitudes

Note that here, we cannot factor the dependence on the heavy spinors and the helicity of the
external states due to the potentially negative exponents of the ⟨13⟩ factor. While inverse powers
of spinor contractions are well-defined for massless momenta, as they are simply numbers, this
is not the case if it at least one massive spinor is involved, due to the resulting contraction not
being a scalar object.
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Chapter 15

Motivation and Introduction

We have already seen in previous parts of this thesis that for the running of couplings, it is not
sufficient to calculate only the running of the corresponding vertex, but also effects from the
external states have to be considered and contributions of UV and IR divergent terms have to
be disentangled. While the former can easily be done using the usual methods for loop calcula-
tions of two-point functions, the latter is more involved. However, both these contributions are
universal in the sense that they are a characteristic property of the external states in a theory,
such that it suffices to calculate them once for the simplest possible cases. In practice, there
are different ways of regularizing divergences in loop amplitude and, in general, independent
regulators can be used for UV and IR divergences. One possibility was already presented in
Part II, namely to introduce an auxiliary mass for the massless fields in the amplitude, serving
as a lower cut-off for the loop integral. An alternative, which is favored from a computational
perspective, is to use dimensional regularization, such that all divergences are treated in the
same way. One disadvantage, however, is that both types of divergences appear as poles in the
limit d→ 4, leaving the possibility of cancellation between different types of divergences. Obvi-
ously, this makes it difficult to disentangle different dynamics, creating the need for methods to
do so. In this part of the thesis, we tackle this by using matrix elements of UV finite operators,
such that the divergences can be attributed to only the external states and possible additional
IR divergences. In the following, we will collectively denote these two contributions as IR di-
vergences. We do so, since we will see that, to calculate the UV renormalization of non-finite
operators, exactly their combined associated anomalous dimension has to be subtracted from
the total anomalous dimension. In particular, we use the matrix elements of conserved currents
because it can be shown on general grounds to be finite, up to a small and well-understood set
of exceptions. While it is not the simplest such tensor, we will use the energy-momentum tensor
for a given field Φ as the conserved Noether current of the space-time translations,

Tµν =
∂L

∂(∂µΦ)
∂νΦ− gµνL, (15.1)

with L the Lagrangian as usual. Note that, in general, this is not symmetric in the Lorentz
indices, but it is well-known that it can be made symmetric by adding the divergence of a fully
antisymmetric 3-tensor, which does not affect the current conservation. The reason, we use the
energy-momentum tensor is that we can find one for every propagating degree of freedom in a
theory, and in some cases it is even the only conserved current, as in the case of a real scalar
field. Of course, for charged particles, a possibly easier current can be found and we will come
back to this later.

Instead, we can directly derive a symmetric energy momentum tensor by temporarily treating
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Chapter 15. Motivation and Introduction

the metric tensor gµν to be non-Minkowskian and calculate the variation of the action with
respect to it,

Tµν =
−2√−g

δS

δgµν
= −2 δL

δgµν
+ gµνL, (15.2)

where g = det(gµν) and we used S =
∫ √−gL. Since this expression is manifestly symmetric,

we can further split it into a symmetric and traceless part, as well as a term corresponding to
the trace. Both of these terms transform irreducibly like a 2-tensor and a scalar under Lorentz
transformation, such that we can assign them an angular momentum of J = 2 and J = 0 [270],
respectively. This separation is immensely useful, as it allows us to calculate matrix elements
of only one of the two components, by utilizing the appropriate projection operator, as we will
see in the rest of this part.

We will start this part by briefly reviewing the renormalization of Green’s functions with
operator insertions and explicitly giving RGEs up to the two-loop order in Chapter 16. Then,
since we will consider only massless theories in this part, we introduce the spinor helicity variables
as a powerful tool to write down on-shell amplitudes, without the need of intensive computations,
especially at tree level in Chapter 17. In the same chapter, we also discuss the optical theorem
for on-shell amplitudes as a direct consequence of the unitarity of the S matrix. We will see that,
at tree level, it implies that we can build up amplitudes as simple products of on-shell amplitudes
with fewer legs, which, again, can easily be written down using the spinor helicity variables. We
also go beyond tree level, where the optical theorem tells us that the imaginary part of loop
amplitudes is calculable by performing on-shell cuts between simpler amplitudes of lower loop
orders and different numbers of external legs according to the Cutkosky rules [271]. Further, by
using the analytical properties of the logarithms contained in loop amplitudes, we can directly
relate these on-shell cuts to the RGE, enabling us to extract the anomalous dimensions. In
Chapter 19 we then show why conserved currents are, up to very few exceptions, UV finite and
we discuss the aforementioned exceptions. Finally, we apply all these techniques to a simple
theory of a real scalar coupled to a Dirac field through a Yukawa interaction in Chapter 20.
There, we first perform the calculation of the IR anomalous dimension of the scalar using the
on-shell methods described in Chapter 17, as well as by calculating the full two-loop expressions
as a non-trivial consistency check finding perfect agreement between the two methods. Then,
we repeat the calculations for the fermion in the theory using again both the on-shell as well as
Feynman diagrammatic methods, finding agreement once more. Moreover, since the fermion is
a complex field, we can assign it a conserved charge with an associated conserved current. As
an additional, non-trivial consistency check, we calculate amplitudes with an insertion of this
charge current instead of the energy momentum tensor, finding the same result, as it should be.
Finally, we conclude in Chapter 22.

This part of the thesis IV is heavily based on [7], from which most of the results and some
figures have been taken.
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Chapter 16

Renormalization of Green’s
Functions

Instead of calculating RGEs for parameters appearing in the Lagrangian, as presented in Chap-
ter 7, we can directly renormalize the Green’s functions obtained from the Lagrangian. This
approach is more general than just the renormalization of couplings because it allows for in-
sertions of operators which do not appear in the Lagrangian and hence do not have to satisfy
momentum conservation at the operator vertex.

We define bare Green’s functions with an additional insertion of some operator O as the
correlator,

⟨O⟩0 ≡ ⟨Ω|O0(y)Φ0(x1)Φ0(x2) · · · |Ω⟩, (16.1)

where time ordering and the amputation of external legs is implied. For Green’s functions
without any sources, we can just take O = 1. Here we did not restrict ourselves to some order
in the couplings and take the Green’s function as an all-order object, which can be expanded in
perturbation theory.

As is usually the case for bare quantities, the bare Green’s function is, in general, divergent
beyond tree level. Therefore, we define the renormalized Greens’s function by renormalizing
fields, couplings, and the operator O itself1. A slight caveat arises in the presence of infrared
divergences. These cannot be cancelled by the the renormalization above because these only
deal with the UV behavior, so an additional constant ZIR has to be included. We define

⟨O⟩0 = ZIRZO⟨O⟩ ≡ ZG⟨O⟩, (16.2)

where the renormalization of couplings is implicit in ⟨O⟩ and we defined ZG as the total multi-
plicative renormalization constant. Notice that we can calculate anomalous dimensions for each
of the Zi factors individually, as well as for ZG, using Eq. (7.12), and the consistency condition
Eq. (7.13) has also to be obeyed by all the Zi

2 separately and by the total ZG. Note also that
ZIR contains the renormalization of the external fields, but can, in general, contain additional
pieces, associated to infrared divergences. Often times it is more convenient to calculate the

1Note that even though O is built from fields it is not enough to renormalize just the fields, but instead a new
renormalization constant has to be included. A simple example illustrating this fact is given by the renormalization
of the operator ϕ2 in a ϕ4 theory at 1-loop. The field is not renormalized at 1-loop, but the 2-point function with
insertions of ϕ2 still contains divergences, which have to be cancelled by the operator renormalization.

2This is true only in the absence of IR divergences. With IR divergences, ZG can depend explicitly on µ, see,
e.g., [272–274]. However, there will be additional higher pole terms to ensure the finiteness of the anomalous
dimension.
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Chapter 16. Renormalization of Green’s Functions

renormalized Green’s function using the inverted relation,

⟨O⟩ = Z−1
G ⟨O⟩0|g0→g, (16.3)

where we made explicit that the coupling in the bare Green’s function has to be replaced by the
renormalized one. Upon expanding in powers of couplings, we trivially find

⟨O⟩ = (1 + δ
(1)
G + δ

(2)
G + . . . )−1⟨O⟩(0)0|g0→g − δ

(1)
G ⟨O⟩

(1)
0|g0→g + . . . . (16.4)

At this point, we want to comment on the last term containing only one-loop objects. Obviously,
it is of two-loop order, but it is not a genuine two-loop term, as it can be predicted after doing
just the one-loop calculation. Nevertheless, it is important as it takes care of cancelling one-loop
sub-divergences, which is particularly obvious in the absence of IR divergences. In this case,
bare two-loop Green’s functions contain non-local divergences, which cannot be cancelled by
local counterterms alone. Instead, this last term, is responsible for removing them, since it is
just a local counterterm multiplied by a non-local one-loop amplitude. While this procedure of
renormalizing can easily be done by just replacing all couplings by their renormalized counter-
parts and multiplying by counterterms obtained from only overall divergences, we can also follow
the textbook approach to cancel subdivergences and explicitly calculate Green’s functions with
insertions of counterterm vertices. As it turns out, using the field and coupling counterterms
from the renormalized Lagrangian accounts for replacing the bare with renormalized coupling
in the above equation, as well as as the field counterterm contained in δG. The remaining diver-
gences in δG can be accounted for by adding counterterm vertices for all possible loop amplitudes
absorbing the remaining divergences. In this part of the thesis, we will use both methods for
two different models.

Given Eq. (16.3), we can easily derive the RGE for the renormalized Green’s function by
requiring that the bare one does not depend on any scale choice,

0 = µ
d

dµ
⟨O⟩0 = ZG

(
µ
d

dµ
⟨O⟩
)
+

(
µ
d

dµ
ZG

)
⟨O⟩. (16.5)

We can rewrite this equation to arrive at the well-known RGE for Green’s functions

(µ∂µ + β∂ +∆γ)⟨O⟩ = 0, (16.6)

where we defined the anomalous dimension ∆γ in analogy to Eq. (7.7) and we used

µ
d

dµ
= µ∂µ + µ

dci
dµ

∂

∂ci
= µ∂µ + β

d

dci
≡ µ∂µ + β∂. (16.7)

Here, ∆γ accounts for the fact that the running of Green’s functions is not only generated by
UV effects, but also IR ones. We defined it such that

∆γ = γUV − γIR. (16.8)

Eq. (16.6) is valid to all orders in perturbation theory, but the all order expression is not very
useful, as we cannot calculate the Green’s function at all orders. Instead, we can expand it and
since we will be interested in the 2-loop equation later, this will be the highest order we will be
working at. Collecting terms of the same size, we find the 1- and 2-loop RGEs,

0 = µ∂µ⟨O⟩(1) + (γ(1) + β(1)∂)⟨O⟩(0), (16.9)

0 = µ∂µ⟨O⟩(2) + (γ(1) + β(1)∂)⟨O⟩(1) + (γ(2) + β(2)∂)⟨O⟩(0), (16.10)
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where the superscript denotes the loop order at which the various objects are evaluated.
We will extensively use these equations to calculate the anomalous dimension of the energy-

momentum tensor up to the 2-loop order, making use of different ways of rewriting them.
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Chapter 17

Amplitudes and Unitarity

17.1 Tree-Level Factorization

We have seen in the previous section how we can use spinor-helicity variables to efficiently
determine the structure of (massless) on-shell scattering amplitudes and that their behavior un-
der little group transformations uniquely and completely determines all three-point amplitudes
purely in terms of the helicity of the external states. In this section, we want to establish how
these can be used to construct higher point amplitudes as well as determine the renormaliza-
tion of loop amplitudes, based only on their analytic properties as well as the condition for the
S-matrix to be unitary.

We can use this constraint on the S-matrix to derive the optical theorem, which in turn can
be used to calculate the factorization of higher point tree-level amplitudes as well as anomalous
dimensions at a priori arbitrary orders in perturbation theory.

Starting with the S-matrix, we can split it up into a trivial piece and the T-matrix, which
captures all the non-trivial scattering information,

S = 1 + iT. (17.1)

Then, using that the S-matrix is unitary, SS† = 1, we arrive at the relation

iT † − iT = TT †. (17.2)

Sandwiching this expression between initial and final states i and j and inserting a complete set
of states on the right-hand side, we already arrive at the optical theorem.

Aif −A∗
fi = i

∑

X

∫
dLIPSXAiXA∗

Xf . (17.3)

with Aif ≡ ⟨f |T |i⟩ describing the amplitude for scattering an initial state i into a final state j
and dLIPSX the Lorentz-invariant phase space of the (multi-)particle state X, defined as

dLIPSX =
∏

i

d4pi
(2π)4

(2π)δ+(p2i )(2π)
4δ4(pi − pX), (17.4)

where the superscript on the delta function means that only solutions with positive energy
contribute to the phase space. Here we leave the inclusion of appropriate symmetry factors
needed in the presence of indistinguishable particles implicit

For the cases we are interested in, f is the vacuum state, such that exchanging initial and
final states amounts to simply flipping the signs of all the external momenta. Provided time

167



Chapter 17. Amplitudes and Unitarity

reflection invariance is obeyed, the scattering amplitude is invariant under such a transformation
such that we can write the optical theorem as

2Im(A) =
∑

X

∫
dLIPSXALA∗

R. (17.5)

Here we changed the subscripts of the amplitudes in a way that reflects the fact that they can be
seen on the left and right side of propagators that are cut in the sense of the Cutkosky cutting
rules [271], i.e., they are joined by on-shell propagators.

Before we go on, there are a few, but important comments at order. By definition, the
left-hand side of the above equation is entirely real, implying the same also for the phase space
integral. Then, by complex conjugation, it is easy to see that it does not matter which of the
amplitudes in the integral has to be complex conjugated, as long as one of them is. We also want
to stress the relevance of the above equation. It tells us how to calculate the imaginary part
of any loop amplitude and from a product of two easier amplitudes integrated over the phase
space of some on-shell intermediate state and it is at the heart of the factorization properties of
amplitudes.

Insert, for example, a tree level amplitude into the left-hand side. Restoring the Feynman
prescription in the propagators, any tree amplitude has the structure

A(0) =
∑

i

Resi(A(0))

si + iϵ
+ contact =

∑

i

Resi(A(0))
si − iϵ
s2i + ϵ2

+ contact, (17.6)

where Resi(A(0)) is the residue of the amplitude at the i-th pole, i.e., when si = 0 and the last
term collects all potential regular pieces and it is purely real. The number in the superscript
denotes the loop order at which the amplitude is evaluated.

Using this last expression, we trivially get the imaginary part of the amplitude,

Im(A(0)) = −
∑

i

Resi(A(0))
ϵ

s2i + ϵ2
. (17.7)

This seems to be vanishing in the limit ϵ → 0 (which is implicit here), but this is true only
off-shell, i.e., si ̸= 0, consistent with the fact, that the Feynman prescription becomes important
only on the poles. On the other hand, for general momentum configurations, one has to realize
that

− lim
ϵ→0

ϵ

x2 + ϵ2
= πδ(x), (17.8)

such that

−
∑

i

Resi(A(0))δ(si) =
∑

X

δ(p2X)A(0)
L A

(0)∗
R |pX=pi , (17.9)

where we used on the right-hand side that X can only be a single-particle state such that the
momentum-conserving delta function trivializes the integral, leaving only the on-shell condition
for X times 2π, which, however, cancels with the left-hand side. To make it easier to read off
the factorization property, we focus only on one particular factorization channel, i.e. p2i = si.
Then,

Resi(A(0)) =
∑

X

A(0)
L A

(0)∗
R |p2X=si

. (17.10)
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This equation pretty clearly states, that the residue of an amplitude at any pole can be calculated
as the product of lower point amplitudes summed over all possible on-shell intermediate single-
particle states with momenta corresponding to the respective factorization channel. To make
the formula even more familiar, recall that we can extract any residue from the full amplitude
by

lim
si→0

siA(0) = lim
si→0


∑

j

Resj(A(0))
si

sj + iϵ
+ si × contact


 = Resi(A(0)), (17.11)

such that we finally arrive at the well-known expression

lim
si→0

siA(0) =
∑

X

A(0)
L A

(0)∗
R |p2X=si

. (17.12)

17.2 Renormalization from the Optical Theorem

In addition to simple poles, which are captured by the discussion above, the pole structure of
loop amplitudes contains branch cuts, which, as the optical theorem will tell us, arise from
the propagation of on-shell multi-particle states. In the following, we will use that the scale
dependence of amplitudes appears only as powers of logarithms. This can be easily seen from
the fact that to keep the mass dimension of an n-loop integral constant for any number of
dimensions, we multiply it by µ−2nϵ with some integer n. In the limit ϵ → 0, this generates
only polynomials of logarithms. The loop integral itself depends solely on external and loop
momenta, so no additional dependence on µ can be generated by solving the integral itself.
Defining the branch cut of the complex logarithm via

log

(
− si
µ2

)
≡ log

(
si
µ2

)
− iπ, si > 0, (17.13)

where we implicitly restored Feynman’s ϵ prescription by setting si → si+ iϵ in the limit ϵ→ 0,
we can relate the imaginary part of any power of logarithms to a series of derivatives by

2Im

[
logn

(
− si
µ2

)]
= i
(
e−iπµ∂µ − 1

)
logn

(
− si
µ2

)
. (17.14)

We explicitly prove this relation for an arbitrary choice of branch of the logarithm in App. IV.C.1.

Since the derivative is linear, this relation obviously also holds for linear combinations of
different powers of logarithms such that

2Im [A] = i
(
e−iπµ∂µ − 1

)
A, (17.15)

which, after plugging it back into the optical theorem, immediately yields

(
e−iπµ∂µ − 1

)
A = −i

∑

X

∫
dLIPSXALA∗

R. (17.16)

Notice that, if we had used the expressions for the conjugated amplitude, we would recover the
main formula in [275]1,

1Technically, the equation in [275] is given for form factors. However, it holds equivalently for the scattering
amplitudes, as form factors and the T -matrix can be treated on equal footings. We will come back to this shortly.
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eiπDA∗ = SA∗, (17.17)

after identifying D = −µ∂µ.
Eq. (17.16) is an exact equation, but it will be more useful to investigate its perturbative

expansion order by order. But before we do so, an important comment is in order. The form of
the optical theorem we use is heavily reliant on the choice of the branch cut of the logarithm,
Eq. (17.13), simply because for other choices the relation between the imaginary part of the
logarithm and its derivatives is no longer given by Eq. (17.14), as explicitly seen in IV.C.1.

It turns out that for evalauating Eq. (17.16) up to the two-loop order, it suffices to expand the
exponential to fourth order2, all higher derivatives of the amplitude will necessarily correspond
to higher loop effects,

[
µ∂µ −

iπ

2
(µ∂µ)

2 − π2

6
(µ∂µ)

3 +
iπ3

24
(µ∂µ)

4

]
A =

1

π

∑

X

∫
dLIPSXALA∗

R. (17.18)

Moreover, up to this loop order, X can be either a two- or three-particle state 3 If A is renormal-
ized, we can use the RGE Eq. (16.6) to rewrite the derivatives in terms of anomalous dimensions
and beta functions,

(γ + β∂)A− iπ
2
µ∂µ [(γ + β∂)A]

= − 1

π

∑

X

∫
dLIPSXA(i→ X)A∗(X → 0).

(17.19)

This equation still contains both one- and two-loop pieces, which we can separate because
the optical theorem has to be satisfied order by order. Starting at one-loop, the higher order
derivatives are seemingly irrelevant. While this is true for the third and fourth derivative, it is
not for the second derivative in the presence of IR, specifically soft divergences. In this case, the
anomalous dimension can explicitly depend on the renormalization scale [272–275], due to the
presence of higher order poles before renormalization or equivalently higher order logarithms in
the renormalized amplitude. Schematically, we can write

γ ⊃ −2ag2 log
(
− s

µ2

)
, (17.20)

with some numerical factor a. With this, the left-hand side of Eq. (17.19) can be written as

(γ + β∂)A(0) − iπ

2
µ∂µ

[
(γ + β∂)A(0)

]
⊃ −2ag2

[
log

(
− s

µ2

)
+ iπ

]
A0. (17.21)

Using our choice of the branch cut, Eq. (17.13), we see that the second derivative term is
responsible for cancelling the imaginary part of the anomalous dimension in the presence of soft
divergences. This is exactly as expected in the light of the above discussion.

Then, in total, we find the well-known result [275]

2At an arbitrary loop order n, the highest divergence the amplitude can have is of order ϵ−2n, which implies
that the highest power of logarithms is 2n after expanding around ϵ = 0. In the end, terms up to the 2n’th
derivative are needed at loop order n.

3We saw before that for X to be a one-particle state, the amplitude A needs to be a tree-amplitude. But
tree-amplitudes do not contain logs, they have only simple poles. These are not captured by Eq. (17.18), which
explicitly uses the branch cuts of logarithms.
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(
Re
[
γ(1)

]
+ β(1)∂

)
A(0) = − 1

π

∑

X

∫
dLIPS2A(0)

L A
(0)
R = − 2

π
Im
[
A(1)

]
, (17.22)

where we dropped the complex conjugate because tree amplitudes are real. We also ignored the
second derivative at the cost of explicitly introducing the real part of the anomalous dimension
to account also for soft divergences.

In App. IV.C.2, we show how to express this integral in terms of only two angular integrals,
corresponding to the polar and azimuthal angles between initial and final states in 2 → 2
scattering in the center-of-mass frame,

(
γ(1) + β(1)∂

)
A(0) = − 1

8π3

∑

X

∫ 2π

0
dϕ

∫ π
2

0
dθ cos θ sin θA(0)

L A
(0)
R . (17.23)

Finally, to also write the amplitudes in terms of these angular variables it is best to express
them in terms of spinor-helicity variables and relate the loop momenta, li, to the external ones,
pi [275–277],

(
λl1
λl2

)
=

(
cos θ − sin θeiϕ

sin θe−iϕ cos θ

)(
λ1
λ2

)
(17.24)

and the analogous relation for the complex conjugate variables. Note that this relation obeys
momentum conservation, l1 + l2 = p1 + p2.

Next, we tackle the two-loop pieces. Again, the higher derivative terms are there to ensure the
realness of the equation. As for the one-loop case, the presence of soft divergences generates an
explicit dependence on µ for γ. The higher derivatives generate extra terms from the derivative
of the anomalous dimension, with the purpose of cancelling its imaginary part. As in the one-
loop discussion, we ignore these at the cost of explicitly taking the real part of γ. But starting
at this loop order, they will also introduce corrections to the real part in the presence of soft
divergences. Carefully expanding the exponential above and using the RGE repeatedly, keeping
track of any imaginary parts, and assuming that the anomalous dimension contains at most
linear logarithms [273,274] then yields

(
Re
[
γ(2)

]
+ β(2)∂

)
A(0)+

(
Re
[
γ(1)

]
+ β(1)∂

)
Re
[
A(1)

]
− π

6
β(1)

(
∂Im

[
γ(1)

])
A(0)

=− 1

π

∑

X

∫ [
dLIPS2

(
A(0)
L A

(1)∗
R +A(1)

L A
(0)
R

)
+ dLIPS3A(0)

L A
(0)
R

]

(17.25)
The first two terms in the second line in this equation are equivalent to the one-loop ex-

pression, taking one of the amplitudes in the cut to be higher order. Hence, the phase-space
integral can be brought to the same form as in Eq. (17.23). Note that because the RGE is writ-
ten for renormalized amplitudes, all one-loop objects in Eq. (17.25) have to be renormalized,
including the ones appearing in on-shell cuts. The last term, however, gives new contributions,
not present at lower orders, since it contains the phase-space of three intermediate, on-shell
particles. Pictorially, we can write the second line in Eq. (17.23) as

∑

X

∫ [
dLIPS2

(
A(0)
L A

(1)∗
R +A(1)

L A
(0)
R

)
+ dLIPS3A(0)

L A
(0)
R

]

= + + ,

(17.26)
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l3

l2

l1

p2

p1
θ2, φ2

θ3, φ3
θ1

l1

l2

l3

p1

p2

θ1, φ1

θ2, φ2

Figure 17.1: Illustrations of the physical interpretation of the various parameterizations used
for the three-particle phase space as different scattering processes. Grey circles indicate the
origin of integration variables in the phase space measure. Left: First, one of the external
momenta splits into a collinear pair, with subsequent 2 → 2 scatterings. Right: The initial
momenta scatter into a massless and a massive momentum, with the latter further decaying
into two massless final states.

where (un)holed ellipses denote (tree-)loop-level amplitudes, respectively, and complex conjuga-
tion of AR is left implicit on the right-hand side.

For the three-particle phase space, we use two different but equivalent parametrizations,
whose physical interpretations are shown schematically in Fig. 17.1. In practice, this can be
useful because we can choose the parameterization in a way that makes solving the phase-space
integrals as easy as possible.

The first one leads to a differential phase-space of the form [275–277]

∫
dLIPS3 =

p2X
43π5

∫ π/2

0
dθ1dθ2dθ3

∫ 2π

0
dϕdρ sin θ1 cos θ1 sin

3 θ2 cos θ2 sin θ3 cos θ3, (17.27)

corresponding to relating the spinors of the internal momenta li to the external ones p1 via



λl1
λl2
λl3


 =




c2 −s2eiϕ 0

s2c3 c2c3e
iϕ −s3ei(ρ+ϕ)

s2s3 c2s3e
iϕ c3e

i(ρ+ϕ)






λ1
c1λ2
s1λ2




=



1 0 0
0 eiϕ 0

0 0 ei(ϕ+ρ)





1 0 0
0 c3 −s3eiρ
0 s3e

−iρ c3






c2 −s2eiϕ 0
s2e

−iϕ c2 0
0 0 1






λ1
c1λ2
s1λ2


 ,

(17.28)

where we used to notation si ≡ sin θi and equivalently for ci.
By splitting the 3 × 3 matrix, as we did in the second line of Eq. (17.28), we make the

physical interpretation, modulo the phases in the first matrix, of this parametrization explicit.
As depicted on the left of Fig. 17.1, we can interpret the momentum p2 to split collinearly into
two daughters with momentum fractions sin θ1 and cos θ1, respectively. Then, the momenta li
are reached by scattering one of those daughters with p1 according to Eq. (17.24). One of the
final states of this first scattering is then rescattered with the second, so far unchanged, daughter
of p2, where the scattering is characterized by (θ2, ϕ2), while the other is already identified with
one of the li. The reaming two li are then identified with the products of this second scattering,
characterized by (θ3, ϕ3).
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An alternative parametrization can be found by using a different physical interpretation [278].
We will first present the result and explain the physical reasoning afterward. The parametriza-
tion is given by



λl1
λl2
λl3


 =



e−iϕ2c1s2 − eiϕ1

√
λ c2s1 c1c2 + ei(ϕ1+ϕ2)

√
λ s1s2√

λ c1c2 + e−i(ϕ1+ϕ2)s1s2 e−iϕ1c2s1 − eiϕ2
√
λ c1s2√

1− λ c2 eiϕ2
√
1− λ s2



(
λ1
λ2

)
, (17.29)

leading to the phase space integral

∫
dLIPS3 =

p2X
128π5

∫ 1

0
dλ (1− λ)

∫ 2π

0
dϕ1dϕ2

∫ π
2

0
dθ1dθ2 sin θ1 cos θ1 sin θ2 cos θ2. (17.30)

We explicitly show how to arrive at the above phase space integral in App. IV.C.2.
Let us briefly discuss the physical reasoning behind these expressions. The full process

described in the following is shown diagrammatically on the right in Fig. 17.1. First, we can
treat again the problem as a 2→ 3 scattering of the pi into the li. Further, we can treat it as a
two-step process, where pi scatter into a massless and a massive momentum, l3 and p12 = l1+ l2.
We also introduce two auxiliary, massless momenta pα and pβ along the direction of p12 and
l3, respectively. Note that even though l3 is already massless, l3 and pβ are only equal up to a
proportionality constant κ to be determined later, p3 = κpµ. We then use Eq. (17.24) to relate

(
λβ
λα

)
=

(
cos θ2 − sin θ2e

iϕ2

sin θ2e
−iϕ2 cos θ2

)(
λ1
λ2

)
. (17.31)

Further, we can parametrize any massive momentum as a linear combination of two massless
ones, which we choose to be pβ and pα. Momentum conservation, p12 + l3 = p1 + p2, implies
that

p12 = λ pβ + pα

p3 = (1− λ) pβ.
(17.32)

But we also know that λ pµ + pα = l1 + l2, so we can use Eq. (17.24) one more time to get

(
λl1
λl2

)
=

(
cos θ1 − sin θ1e

iϕ1

sin θ1e
−iϕ1 cos θ1

)(√
λλβ
λα

)
, (17.33)

where we used that spinors get rescaled by the square root of the momentum rescaling by the
virtue of Eq. (11.3). Putting everything together and eliminating the auxiliary momenta gives
Eq. (17.29).

So far, we only considered on-shell cuts between amplitudes, so now we will argue that the
above relations are also valid for form factors F , which are amplitudes with additional insertions
of momentum through off-shell operators. This will become important in the following sections.
Physically, they can be seen as a perturbation of the S matrix [275], δS = iF . Then, unitarity
of the S-matrix implies

F = SF†S. (17.34)

Now, because the S-matrix leaves the vacuum invariant, this relation can be simplified by
sandwiching it between one vacuum state and one state with only incoming stats. Then,

⟨Ω|F|i⟩ = ⟨Ω|SF†S|i⟩ = ⟨Ω|F†S|i⟩. (17.35)

Inserting a complete set of states on the right-hand side and writing S = 1 + iM, we see that
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2Im [F ] =
∑

X

∫
dLIPSXFA∗, (17.36)

where we used the regular font to denote the matrix elements of F . We also used the realness
of the equation to move the complex conjugation from the form factor to the amplitude. This
equation is in complete analogy with Eq. (17.5) and because form factors depend only logarith-
mically on the renormalization scale, just like amplitudes do, we can use the very same relations
to rewrite the imaginary part in terms of derivatives and consequently use the RGE Eq. (16.6).

To conclude this section, we want to mention the issue of fermion signs in this formalism.
Using the conventional Feynman diagrammatic approach, it is well known that, e.g., a minus
sign has to be introduced for each closed fermion loop. However, in the on-shell approach, it
is not always clear how to assign signs, as it is not always obvious if a fermion loop is cut or
not. Further, when using spinor-helicity formalism to write down amplitudes, it is convenient
to have all momenta either incoming or outgoing. But, as we saw above, one of the amplitudes
in the cut describes a scattering of particles, i.e., with both incoming and outgoing states. Even
though we can use crossing symmetry to cross everything into either the final or initial states,
this introduces issues of the right fermion ordering and how to deal with spinors of negative
momenta. We will cover each of these issues in order. First, using crossing symmetry to write
everything in terms of incoming states, we have

⟨ph11 , ph22 |T |ph33 , ph44 ⟩ = ⟨Ω|T | − p−h22 ,−ph11 , ph33 , ph44 ⟩ = A(−p−h22 ,−ph11 , ph33 , ph44 ). (17.37)

Note that not only the sign of the momenta, but also the corresponding helicities have to
be inverted and we reversed the order of the crossed momenta to take care of minus signs from
fermion loops [275].

Then, note that there is no unique way to deal with spinors of negative momenta, since the
only condition they need to satisfy is

−pαα̇1 = λα−p1 λ̃
α̇
−p1 . (17.38)

We choose the convention where

(| − pi⟩, | − pi]) = i(|pi⟩, |pi]). (17.39)

This, however, introduces additional factors of i, as can be seen using helicity scaling argu-
ments of the amplitudes in the cut. To account for these, we introduce a correction factor to
the phase space integral, such that [279,280]

dLIPSX → iF ({X})dLIPSX , (17.40)

where F ({X}) is the number of fermions in the intermediate state X. Note that this holds
only if the negative momentum is chosen on the right side of the cut. If we assign the negative
momentum to the other side, the correction factor (−i)F ({X}) has to be used instead. This
accounts for all possible signs that can arise from cutting through intermediate states.
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Chapter 18

Infrared Divergences from Real
Radiation

In general, and especially in the presence of massless particles, it happens that loop amplitudes
show more than one type of divergence. First, there are the UV divergences which require
the machinery of renormalizing field, couplings, and composite operators to be tamed, as we
discussed thoroughly in previous sections. They are sensitive to modes with large energies and
are therefore depended on the details of the scattering process itself. On the other hand, there
also exist IR divergences, which can be further split into soft and collinear ones and depend only
on the types of external states. These names are somewhat self-explanatory, and we will come
back to their physical interpretation shortly. While we cannot get rid of such divergences by
the means of renormalization, using dimensional regularization, which conveniently regularizes
both UV and IR divergences, we can still remove them from amplitudes similarly, see Eq. (16.2).
The corresponding divergent factors allow for an renormalization group equation similar to the
UV one, which is why we can combine both UV and IR effects into a single equation, such
that both the UV and IR anomalous dimensions appear in Eq. (16.6). In fact, the running of
IR divergent terms can be associated with the renormalization of Wilson coefficients in a soft-
collinear effective field theory (SCET), obtained after integrating out hard and non-collinear
modes. The UV behavior of the corresponding operators is then directly linked to the IR part of
the full theory. We will not go into any details on SCET, but for an introduction see, e.g., [281].

Instead, to interpret IR singularities, we will adopt another, possibly more physical approach.
As it turns out, IR divergences do not only appear when integrating over some internal loop
momenta, but also in processes with additional external states, whenever some corresponding
momenta become soft, i.e., they have vanishing energy, collinear, i.e., their opening angle is
small, or both. While tree-amplitudes are finite, even in the soft or collinear limit, the cross-
section calculated from them can be infinite because of the phase-space integration. This seems
problematic because cross-sections, being the observables they are, cannot be infinite. However,
it was realized by Bloch and Nordsieck that in QED cross-sections are finite if on top of higher-
loop virtual corrections also contributions from processes with more and more additional photons
in the final state are included [282]. Of course, these are different processes, because of the
different external states, however, in the soft and collinear limit the additional photons cannot
be resolved by experiment with a finite resolution, such that they look like the same process in
any measurement. Schematically, we can write this as

σ ∼ |M0 +M1 + . . . |2 = |M (0)
0 |2 + |M

(0)
1 |2 + 2Re

[
M

(0)
0 M

(1)∗
0

]
· · · , (18.1)
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where the subscript and superscript denote the number of additional photons in the final state
and the loop order, respectively, and a sum over polarization and spins is implied. At this point
we want to stress that the amplitudes in Eq. (18.1) are required to be UV renormalized, in
the sense that all couplings appearing are the renormalized ones. Even though this removes all
infrared divergences in observables in QED, it happens that it is not enough in more complicated
theories like QCD. Here, also additional external states radiated from the initial states have
to be included such that all divergences cancel, as shown by Kinoshita, Lee and Nauenberg
[283,284]. While this is, in general, not very useful for practical calculations, it still gives a clear
interpretation of the IR divergences appearing in loop amplitudes. They come from regions of
the integration over loop momenta where some momenta are either soft, collinear or both and
they are such that they cancel the ones coming from processes with additional, indistinguishable
radiation, rendering observables finite in the process. We will also use this interpretation as a
physical cross-check of the IR anomalous dimension we calculate using the RGE, Eq. (16.6). To
do so, we focus on a specific processes in which initial state radiation is not present, leaving only
the sum over final state radiation, as is the case in the Bloch-Nordsieck theorem in QED.

In the context of infrared divergences, there is a particularly convenient way to parametrize
the phase space integrals appearing in the calculation, where we will work in the center-of-mass
frame of the momentum P , such that P = (

√
P 2,0). Further, because we want to calculate spin-

summed and squared matrix elements, we can express everything in terms of scalar products of
momenta, which, if at all, depend only on polar angles θi. To calculate infrared divergences up
to the two-loop level, we need phase space integrals over the momenta of up to n = 4 particles.

For n = 2, the situation is trivial, as momentum conservation forces the momenta p1/2
to be back to back in the center-of-mass frame. Therefore, all appearing scalar products are
independent of any angles, rendering all possible squared matrix element trivial under integration
against the measure given by Eq. (IV.C.13) in the limit m→ 0.

For n = 3, this becomes slightly more involved, as not the entire angular dependence can
be made trivial. After using momentum conservation to express p3 in terms of p1 and p2, we
are left with two independent momenta. Then we again assume, the center of mass frame of
P , such that the momentum p1 points along the z-direction. Further, the kinematics of such a
system allow it for p1 and p2 to always lie in the same plane, such that the polar angle of p2
(or equivalently the angle between p1 and p2) is, together with energies E1 and E2, enough to
parameterize the full phase space. Finally, we can relate these three variables to the Mandelstam
invariants sij = 2pi · pj to get a phase space of the form [285]

∫
dLIPS

(D)
3 =

21−2Dπ1−D

Γ(D − 2)
(P 2)1−D/2

∫ ∞

0
ds12ds13ds23

δ(P 2 − s12 − s13 − s23)
(s12s13s23)2−D/2

, (18.2)

where the remaining delta function is the on-shell condition for p3.

Choosing the Mandelstam invariants as integration variables makes the physical origin of
infrared divergences obvious. Soft singularities arise whenever, any momentum goes to 0, leading
to the simultaneous vanishing of two invariants, e.g., s12 → 0 and s13 → 0 for p1 → 0. Collinear
divergences, on the other hand, have their origin in two momenta becoming parallel, such that
only one invariant vanishes at a time, e.g., s12 → 0 for p1||p2. Then, using these considerations,
it is easy to identify the terms giving divergences once the squared matrix element is written
in terms of the sij . In particular, it is easy to check by direct computation the squared matrix
element has to contain negative powers of any Mandelstam. In fact, there have to be more
negative powers than positive ones in total, to generate divergences. But these naturally arise
in diagrams with additional radiation due to additional propagators, leading us to yet another
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physical interpretation: infrared divergences arise whenever intermediate propagators go on-
shell, signalled by sij → 0 in the massless limit, where one on-shell propagator is enough for
collinear divergences, while we need to simultaneously on-shell propagators to generate soft ones.

Note also that if we start with a two-particle final state, the real radiation contribution can
have at most one additional propagator, such that the squared amplitude can have at most
two powers of Mandelstam invariants in the denominator. With the previous considerations,
it is then easy to see that the 3-particle phase space for such processes can develop at most
quadratic poles in ϵ; one from the soft region, where both vanish at the same time, and one
from the collinear region, where only one at a time vanishes. To simplify the integration, we
eliminate the delta function and define the new integration variables zi via

s12 = P 2(1− z1), s13 = P 2z1z2, s23 = P 2z1(1− z2), (18.3)

such that the integral becomes

∫
dLIPS

(D)
3 =

21−2Dπ1−D

Γ(D − 2)
(P 2)D−3

∫ 1

0
dz1dz2 z

D−3
1 [z2(1− z1)(1− z2)]D/2−2. (18.4)

Finally, the case for n = 4 is again more involved, as more particles and therefore a stronger
angular dependence appear. However, we can follow the strategy from before, where we assume
that p1 points along the z-direction. Then we parametrize p2 and p3 in terms of the angles θ1
and θ2 with p1 (or equivalently their respective polar angles), while p4 is fully determined by
momentum conservation. These are, however, only five variables and not enough to specify all
six Mandelstam invariants. The crucial point we are missing so far is that three independent
vectors can, in general, not be defined to lie in the same plane. So the final variable is the
azimuthal angle ϕ of p3. Expressing all energies and angles in terms of the Mandelstam invariant
yields [285]

∫
dLIPS

(D)
4 =

161−D
√
π
1−3D

Γ(D − 3)Γ(d−1
2 )

(P 2)3−D/2
∫ ∞

0
ds12ds13ds14ds23ds24ds34

δ(P 2 − s12 − s13 − s14 − s23 − s24 − s34)√
−∆5−d θ(−∆),

(18.5)

where we defined ∆ = s212s
2
34 + s213s

2
24 + s214s

2
23 − 2(s12s34s13s24 + s12s34s14s23 + s14s23s13s24).

Extracting the infrared divergences follows the same argument as in the previous case:
Squared amplitudes come with extra propagators, manifesting themselves as inverse powers
of Mandelstam invariants. Whenever the integration hits regions where one or more invariants
vanish, divergences are generated. However, for four final states, there are now more divergent
configurations on top of the single-collinear and single-soft in the n = 3 case. These are the
double-collinear region, where two distinct momenta become collinear to others, the double-soft
region with two soft momenta and the mixed region with one pair of collinear momenta as well
as one soft momentum. Whenever all these regions, together with the single-collinear region,
overlap, up to four invariants vanish simultaneously, which is the maximal number of propa-
gators in squared matrix elements at this level, generating up to quartic divergences. While
the above integral allows for a direct computation of the four particle phase space, solving it in
practice is highly non-trivial, see [285]. Instead, we will employ another technique, the so called
reversed unitarity [286], making use of the fact that phase-space integrals are nothing else than
just multiparticle, on-shell cuts of higher loop amplitudes. We go into more details about this
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in section Sec. 20.1.3, when we actually apply the method to compute four-particle phase space
integrals.

While the approach to calculating infrared divergences highlights the physical origin of in-
frared divergences, it also requires a lot of calculational effort. Assuming a two-particle final
state at leading order, at the two-loop level, e.g., we need tree-level objects with up to four final
states and one-loop objects with up to three final states, integrating the appropriate phase space
measures introduced above, which in itself can become highly non-trivial. Then, to check the
cancellation of the infrared divergences, the two-final-state two-loop object is necessary.

On the other hand, exploiting the RGE for form factors or amplitudes of UV safe operators,
as explained in the previous sections, greatly reduces the amount of computation necessary.
Using on-shell methods, one-loop objects are the highest order necessary and the phase space
integrals have to be performed only over two- and three-particle particle states, where the latter
contains only tree-level objects.

Nevertheless, we use the calculation of real emission contributions to have an additional
check of our RGE calculations and help to understand them in more detail.
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Chapter 19

(Non-)Renormalization of Conserved
Currents

If we transform all fields in our theory according to

Φ→ Φ′ = Φ+ ϵF [Φ′] +O(ϵ2), (19.1)

with F [Φ′] such that the transformation is a symmetry under which the action is invariant,
S[Φ′] = S[Φ]. Then, the reparametrization invariance of the path integral leads to the Ward
identity, the quantum-mechanical equivalent of current conservation [287–291],

∂

∂xµ

〈
T

{
jµ(x)

m∏

i=1

Φi(xi)

}〉
= (−i)

m∑

k=1

δ(x− xk)
〈
T



Fk[Φ(xk)]

m∏

i ̸=k
Φi(xi)





〉
. (19.2)

The conserved current jµ associated to the symmetry is given by

jµ =
δL

δ(∂µΦn)
Fn[Φ]−Kµ, (19.3)

where Kµ accounts for a possible transformation of the Lagrangian itself, L → L+ ∂µK
µ.

So far, we did not specify if the Green’s functions in Eq. (19.2) are bare or renormalized. In
fact, Eq. (19.2) can be derived using either the bare or renormalized Lagrangian in the same way,
such that it holds in both cases by just replacing bare objects with renormalized ones. On the
other hand, we can always express bare operators in terms of renormalized ones using divergent
renormalization constants, see, e.g., Eq. (7.2). This leads to the identification of renormalized
Green’s function (we do not explicitly denote renormalized quantities here for simplicity)

Zj
∂

∂xµ

〈
T

{
jµ(x)

m∏

i=1

Φi(xi)

}〉
=

∂

∂xµ

〈
T

{
jµ(x)

m∏

i=1

Φi(xi)

}〉
, (19.4)

or equivalently Zj = 1. From this, we could infer that Green’s functions with the insertion of a
conserved current, and consequently also the current itself, do not require any renormalization
on top of the renormalization of fields and couplings. For a more detailed derivation of the
non-renormalization of conserved currents, we refer the reader to [289–291].

Note, however, the non-renormalization implied by Eq. (19.4), holds strictly only for the
divergence of the Green’s functions. In fact, conserved currents can mix with a special class of
counter-term operators Oµ whose divergence vanishes identically, ∂µO

µ ≡ 0, without the use of
the equations of motion. If those were necessary, the divergent counterterm would introduce
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new, divergent terms to the right-hand side of Eq. (19.2) by the virtue of the equation of motion
for Green’s functions

〈
T

{
δS

δΦj

m∏

i=1

Φi(xi)

}〉
= i

m∑

k=1

δ(x− xk)δjk
〈
T





m∏

i ̸=k
Φi(xi)





〉
, (19.5)

spoiling the finiteness of Eq. (19.2).

It turns out that identically conserved counterterms exist only in the context of gauge the-
ories, as well as for the energy-momentum tensor [291, 292], the conserved tensor current of
space-time translations. An example of the former is the electron number current jµ = ψ̄γµψ in
QED with its counterterm of the form Oµ = ∂νF

νµ, whose divergence vanishes trivially by the
antisymmetry of the field strength tensor. For more details on the renormalization of the vector
current and a discussion on accompanying problems as well as their solution, we refer the reader
to [293].

In this thesis, we are more interested in the case of the energy-momentum tensor. If we
assume gravity to be non-dynamical, there exists only a single possible operator. We will show
this explicitly now, employing a rather brute force approach. We start by listing all conditions
possible counterterms have to satisfy:

i) a symmetric Lorentz-tensor carrying two indices, Oµν = Oνµ,

ii) of mass dimension 4, [Oµν ] = 4,

iii) identically conserved, ∂µO
µν ≡ 0, without the usage of any EOMs.

While, in general, the energy-momentum tensor calculated from Noether’s theorem Eq. (19.3)
itself does not obey condition i), we can always add the divergence of an antisymmetric three-
tensor to make it symmetric without changing any of its physical properties. Given these
conditions, we can check whether it is impossible to build counterterms from fermions (ψ),
scalars (ϕ) or vectors (A) in theories with at most marginal couplings. Further, note that
condition iii) implies that here it is sufficient to consider only operators with the same field
content because the only way to mix operators with different field contents is by the equations
of motion.

Fermions:

Their transformation under the Lorentz group tells us that fermions must always come in
pairs, ψ̄ψ, which have mass dimension [ψ̄ψ] = 3. The remaining mass dimension can then be
obtained by either a relevant coupling λ, a bosonic field or one derivative.

For a relevant coupling or a scalar, the situation is easy, as in this case, the only symmetric,
two index structure we can have is the metric, which is obviously not identically conserved,

∂µO
µν ∼ ∂ν

{
(ϕψ̄ψ)
(ψ̄ψ)

̸= 0. (19.6)

The case of additional derivatives and a vector field can be combined by using the covariant
derivative. There are two independent possible structures

gµνψ̄ /Dψ, ψ̄ γ{µD ν}ψ, (19.7)
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neither of which are traceless or identically conserved on their own. (Note we defined the
symmetrization without symmetry factor, e.g., γ{µD ν} = γµDν + γνDµ)

But, of course, it may be possible to construct suitable operators from linear combinations
of the above. The most general symmetric operator we can then write reads

OµνF = a gµνψ̄ /Dψ + b ψ̄γ{µD ν}ψ, (19.8)

with a priori arbitrary coefficients a, b. However, because the two operators are independent by
construction, the same holds for their divergences, so the only possibility to satisfy condition iii)
is the trivial solution a = b = 0. So we conclude that it is not possible to construct a suitable
counterterm from operators containing fermions.

Scalars:

In theories with scalars, there is the well-known counterterm term, see e.g., [292], built from
scalars and derivatives only,

Oµν =
(
∂µ∂ν − gµν∂2

)
ϕ2. (19.9)

Obviously, operators built from four scalars are not identically conserved and from above, we
know that also fermions are not a viable option. This leaves only the inclusion of vector bosons,
which, due to gauge invariance, can only appear in field strength tensors Fµν . It turns out
that the only possibility is to have one field strength without additional derivatives. It can be
checked, that otherwise we would either need a non-zero trace of the field strength or condition
i) cannot be satisfied. So one is left with

Oµν ∼ Fµνϕn n ∈ {1, 2} . (19.10)

This is obviously not conserved identically, we conclude that no suitable counterterm containing
scalars can be constructed. Note that all operators of the form Eq. (19.9) with ϕ2 replaced by any
other Lorentz scalar are valid counterterms as well, however, all gauge invariant combinations
of non-scalar fields are necessarily of higher order.

Vectors:

From the above, we know that operators with fermions and scalars cannot give rise to
counterterms, so the only option left are vectors and derivatives thereof.

For operators with only field strength tensors and no additional derivatives, we again have
two possibilities for a symmetric two-index tensor,

FµαF να , gµνFαβFαβ, (19.11)

neither of which are conserved identically. As in the fermionic case, we can construct no identi-
cally conserved linear combination because of the linear independence of the operators.

If we chose to have additional derivatives instead of a second field strength tensor and the
only possible structure is,

∂α∂
{µF ν}α, (19.12)

which is not identically conserved because of pieces in which two derivatives are contracted.
In the end, we find that any possible counterterm cannot contain scalars, vectors, or fermions

up to marginal interactions, implying that the energy momentum tensor cannot be renormalized
at any order in such theories.
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This is, however, not the case once gravity is turned and the graviton is allowed to propagate.
In this case, the operator [294]

Oµν = ∂ρ∂σC
ρµσν (19.13)

is identically conserved. Here Cρµσν is the Weyl tensor, the traceless part of the Riemann tensor.
Since the Weyl tensor inherits all the symmetries of the Riemann tensor, conservation of the
above operator follows trivially from antisymmetry. In this thesis, we will not consider the
renormalization induced by this operator, and focus only on marginal couplings instead.

As discussed in [210], form factors of the energy-momentum tensor can be split into pieces
corresponding to different angular momenta of the external states using a partial wave decom-
position. This corresponds to decomposing the tensor itself into its irreducible representations
under the Lorentz group. Then the symmetric and traceless piece corresponds to an angular
momentum J = 2, while the trace has J = 0. Now, the crucial point is that the operator
Eq. (19.9) lives entirely in the J = 0 region and can as such be completely associated with the
trace. Thus, since there are no other possible counterterms, it follows immediately that the
J = 2, or in other words, the symmetric and traceless part, is not renormalized at any loop
order.

At this point, we want to stress, that this is the main point of this part of the thesis. Due
to the all-order non-renormalization of the J = 2 component, we know that γUV = 0 exactly.
In turn, this immediately implies that by considering the renormalization of form factors of the
J = 2 component, we directly calculate the universal infrared anomalous dimension, without
the need of separating UV and IR contributions first. Once this has been done for all particles
in a given theory at a given loop order, this reduces the computational effort when calculating
the renormalization of any other amplitude in the theory, as any IR anomalous dimension can
easily be subtracted without any additional computation, leaving only the UV piece.

182



Chapter 20

Infrared Divergences in a Yukawa
Theory

Now that we introduced and explained the main computational methods to calculate infrared
divergences using form factors of the traceless energy-momentum tensor, we want to explicitly
perform them in a simple toy model. The model contains a Dirac fermion ψ, which we split into
its left- and right-handed components ψL and ψR, respectively, as well as a real, conformally
coupled scalar ϕ. The interactions included are a Yukawa type interaction of strength y between
the fermions and scalar together with a scalar quartic coupling λ, which is necessary for the
renormalizability of the theory. The energy-momentum tensor of such a theory is given by

Tµν = ∂µϕ∂νϕ−
1

2
ηµν∂αϕ∂

αϕ+
D − 2

4(D − 1)
(∂µ∂ν − ηµν∂2)ϕ2

+ i
1

4

∑

i=L,R

ψ̄[γµ
←→
∂ ν + γν

←→
∂ µ − 2gµνγα

←→
∂ α] + . . . ,

(20.1)

where the ellipsis stands for terms with more than two fields. These are irrelevant for the present
purpose, simply because their index structure is trivially given by the metric and therefore they
vanish once projected according to the method we will explain later. The last term in Eq. (20.1)
is generated by the conformal coupling of the scalar and originates, in the Lagrangian picture,
from a term of the form Rϕ2, with R being the Ricci scalar. We also kept it to depend explicitly
on D such that T = ηµνTµν = 0 in all dimensions. In D = 4, it reduces to the known factor of
1/6.

To set up the notation for this section, we define

Tµν({j}) ≡ ⟨Ω|Tµν |1, 2, . . . , j⟩. (20.2)

Since we can always write the energy momentum tensor in a symmetric form, also the
corresponding Green’s function will be a symmetric two-tensor. Hence, we can always decompose
it as

Tµν({j}) = T2,i(q
2) Tµν,2({j}) + T0,i(q

2) Tµν,0({j}), (20.3)

where Tµν,2({j}) is the symmetric and traceless component, which transforms like a two-tensor
under rotations and can therefore be associated with an angular momentum of J = 2. Tµν,0({j}),
on the other hand, is the trace part, which transforms like a scalar under a rotation, with an
corresponding angular momentum of J = 0. The scalar functions T2,i and T0,i are form factors,
in full analogy to the electric and magnetic form factors of the QED vertex function. For a two-
particle final state, the i in the subscript is given by the difference of their helicities, i = h1−h2.
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Chapter 20. Infrared Divergences in a Yukawa Theory

To efficiently extract the scalar form factors, it is convenient to define some projection procedure,
effectively removing all open Lorentz indices. We present the procedure used for two-particle
states of particle-antiparticle pairs in App. IV.D. Throughout the rest of this part of the thesis,
we will make extensive use of the projection techniques presented in that appendix.

To obtain the infrared anomalous dimension, we first use on-shell methods to directly cal-
culate it. We then confirm the results of the on-shell calculation by using the full two-loop
form factor and extract the anomalous dimension from both the imaginary part of the UV
renormalized form factor, as well as the single pole divergence.

Finally, we calculate squared matrix elements to check if the divergences we find cancel
against real emission contributions in physical observables. To do so, we temporarily restore the
graviton and couple it the the vertex of the Tµν insertion. When squaring the amplitude, the
only ingredient needed is the polarization sum for the spin-2 polarization tensor, for which we
use

∑

k

ϵµνk ϵρσk =
1

2
(gµρgνσ + gνρgµσ − gµνgρσ) . (20.4)

This choice of initial state allows us to consider only corrections from initial-state radiation, as
any radiation from the initial gluon would contribute only at higher orders in the gravitational
coupling, which is not what we are interested in.

20.1 Scalar Field

We start by calculating the infrared divergences associated to the scalar of the theory, i.e., we
fix the external states to be a pair of scalars. The relevant angular momentum component we
project on is T2,0(1ϕ, 2ϕ). This also implies that at tree-level, the form factor is the minimal one,
meaning it does not depend on any couplings in the theory. Hence, the derivative with respect
to the coupling in Eq. (16.6) vanish whenever they act on the tree-level form factor.

20.1.1 On-shell Methods

Starting with the on-shell approach, we use the relevant tree- and one-loop form factors and
amplitudes [7] to calculate all the on-shell cuts as dictated by the RGE. It turns out that in the
theory at hand, all two-particle phase-space integrals up to the two loop order can straightfor-
wardly be evaluated in four dimensions. This will not be the case, in general, in the presence of
soft divergences, where the phase space integral itself is divergent in four dimensions.

Starting at one-loop, there are in principle on-shell cuts with both fermion chiralities as well
as the scalar as intermediate particles. The latter, however, vanishes, as can be seen by using
angular momentum arguments. Projecting onto the J = 2 component, this obviously fixes the
angular momentum of the legs in the form factor. Angular momentum conservation then forces
the J = 2 to be transmitted to the amplitude. Now, since the external states are fixed to be
scalars, we need a four-scalar amplitude in this channel. In our theory, the only such amplitude
at tree level is given by the contact interaction generated by λ, which, however, has only a
J = 0 component. This implies that the phase space integral has to vanish. Thus, at one-loop
only intermediate fermions contribute to the infrared divergences and being careful with fermion
signs, we find

×Tµν =
y2

4π
T
(0)
2,0 (1ϕ, 2ϕ). (20.5)
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20.1. Scalar Field

Plugging this into Eq. (17.23) and using both ∆γ = −γIR and ∂ T
(0)
2,0 (1ϕ, 2ϕ) = 0 we find

γ
(ϕ,1)
IR =

y2

4π2
. (20.6)

This is the well-known result of twice (once for each external scalar field) the collinear anomalous
dimension of a scalar coupled with a Yukawa term to a Dirac fermion. Note, that we also
explicitly reproduced the fact there are no infrared divergences in a quartic scalar theory at all,
as our result does not depend on λ. We will see why this is indeed the case, using the cancellation
of infrared divergences between real and virtual corrections in cross-sections. Further, it does
not contain logarithms, implying the absence of soft divergences, such that the correction term
from the higher derivative terms in Eq. (17.25) is absent for the scalar in this theory.

But first, we continue with the two-loop calculation. As already mentioned, also at this order
the two-particle phase space can straightforwardly be evaluated in four dimensions, however, now
also the scalar channel contributes. For the tree-insertions of the energy-momentum tensor we
find, also the scalar channel contributes because at one-loop, the four-scalar amplitude is no
longer constrained to contain only J = 0 pieces, and in total we find

×Tµν =

[
y4

128π3

(
5 log

(
s12
µ2

)
− 30− iπ

)
− λ2

1536π3

]
T
(0)
2,0 (1ϕ, 2ϕ), (20.7)

where we already extracted the imaginary part, keeping in mind that the loop amplitude has to
be complex conjugated, and explicitly see the contribution from the scalar quartic. Calculating
the missing two-particle cuts with one-loop insertions of Tµν we find

×Tµν = − y4

128π3

[
log

(
s12
µ2

)
− 3− iπ

]
T
(0)
2,0 (1ϕ, 2ϕ). (20.8)

Here, the scalar channel, or equivalently, terms proportional to λ vanish because of the same
angular momentum argument as at one-loop. Adding these two results, we easily see that the
imaginary parts cancel each other, as required by the optical theorem, explicitly highlighting
the importance of the complex conjugation of the appropriate loop amplitudes.

This leaves us with only the three-particle cuts left to compute. As usual, the necessary form
factors and amplitudes are given in [7]. It turns out, these are quite a bit more involved and
we will make full use of our freedom of choosing a parameterization for the phase-space integral
to make the computation as easy as possible. We will briefly explain, why it can be so useful
to have different ways of expressing the same integral. Take for example the spinor expression
⟨l1p1⟩⟨l2p2⟩, which appears at some point of the calculation of the 3-particle cuts: Using the
parameterization given in Eq. (17.28), we find

⟨l11⟩⟨l22⟩ = eiϕ cos θ1 sin
2 θ2 cos θ3⟨12⟩, (20.9)

i.e., we get an expression where all phases can be factored out. To obtain expressions with
definite powers of phases is particularly helpful if they appear in denominators, such that all
phases can just be factored out. Because of the structure of the phase-space integral, only
terms with a trivial dependence on any phase survive the integration (provided, again, all terms
contain only definite powers). On the other hand, it can be easily shown by direct computation,
that using Eq. (17.29), it is impossible to reach something with definite phases starting from
⟨l11⟩⟨l22⟩, even after possible relabelings of the li. On the other hand, e.g., the expression
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Chapter 20. Infrared Divergences in a Yukawa Theory

sl2l3⟨l21⟩⟨l1l3⟩ can only be turned into something with a definite phase by using Eq. (17.29) and
not Eq. (17.28). So, whenever, the denominator in a certain parameterization does not look to
be easily integrable, there is the possibility that a different one does. However, we will encounter
a few cases, where neither of the two can give a denominator of definite phase. We will come
back to them shortly.

Another subtlety, as we will see, is given by the fact that some integrals appearing cannot
be solved in four dimensions, they exhibit a divergence, that needs to be treated using, e.g.,
dimensional regularization. We will come back to the origin of this divergence when discussing
the calculation of the full two-loop form factor. So in total, we can split the calculation of the
three-particle cuts into three categories: (i) finite integrals, that can easily be solved using the
appropriate parameterization, (ii) finite integrals with denominators with no definite phase and
(iii) divergent integrals. We give the result for the first category without going into the details
of the computation

×Tµν

∣∣∣∣∣∣∣
(i)

=
9y4

128π3
T
(0)
2,0 (1ϕ, 2ϕ). (20.10)

For category (iii) we can use Eq. (17.29)1 to find expressions of definite phase and the D-
dimensional phase space measure Eq. (IV.C.18), evaluating to

×Tµν

∣∣∣∣∣∣∣
(iii)

=
y4

64π3

[
2 log

(
s12
µ2

)
− 1

ϵ
− 37

6

]
T
(0)
2,0 (1ϕ, 2ϕ), (20.11)

such that we last missing ingredient is given by category (ii). Choosing again Eq. (17.29), the
integrand, not including the measure, can be written in form

F (0)A(0) = s12

(
−(1− λ)2

2
√
λ

(1 + 3c4θ2)

)


− 1(√

λcθ1cθ2 − ei(ϕ1−ϕ2)sθ1sθ2
)(

cθ1cθ2 −
√
λe−i(ϕ1−ϕ2)sθ1sθ2

)


 .

(20.12)

We see that the term in the first bracket depends only on one angular variable, so we can focus
on the second one. To start, we mention that it is easiest to solve the integration over (θ1, ϕ1)
first, treating all other integration variables as constants for now. By doing so, we can bring it
to an easily calculable form using the residue theorem. Reinstating the relevant part integration
measure, but dropping all constant factors for now, we find

∫
dLIPS3F

(0)A(0) ∝ eiϕ2

cθ2sθ2

∫ π

0
dθ1

∮

S1

dz

i

1

(z − ηt)(z − η/t) , (20.13)

where we defined η =
√
λ exp(iϕ2), t = tθ1tθ2 and z = exp(iϕ1). The integrand has two distinct

poles, which, however, can only contribute to the integral if |ηt| < 1 or |η/t| < 1 or both, such
that they lie within the integration contour. Using the residue theorem yields

1When performing the integration in D dimensions, we have to change ϕi → 2ϕi in the exponentials. This
accounts for the fact, that in D ̸= 4 the ϕi are not the azimuthal angles and have only half of the integration
range, ϕi ∈ [0, π], compared to d = 4, where ϕi ∈ [0, 2π].
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20.1. Scalar Field

∫
dLIPS3F

(0)A(0) ∝ 1

cθ2sθ2

2π√
λ

∫ π

0
dθ1

t

t2 − 1

[
θ

(
1√
λ
− t
)
− θ(t−

√
λ)

]
, (20.14)

with the Heaviside functions encoding the conditions for the poles to lie within the integration
contour. Then, changing the integration variable from θ2 to y = t2, we arrive at an integral that
can straightforwardly be evaluated,

∫
dLIPS3F

(0)A(0) ∝ 1

cθ2sθ2

π√
λ

(∫ 1
λ

0
−
∫ ∞

λ

)
dy

(y − 1)(y/tθ21 + 1)

=
π√
λ
log

(
(λ− 1)2t2θ1

(λ+ t2θ1)(1 + λt2θ1)

) (20.15)

This concludes the integration over (θ1, ϕ1), so next, we will integrate over (θ2, ϕ2), where now
also the first bracket in Eq. (20.12) has to be included. We have observed that all the dependence
on the phase drops out, making the ϕ2 integral trivial to solve. The integral over θ2 can be written
in terms of elementary functions, giving

∫
dLIPS3F

(0)A(0) ∝ −(1− λ)2π2
λ

∫ π

0
dθ1 (1 + 3c4θ2) sθ2cθ2 log

(
(λ− 1)2t2θ1

(λ+ t2θ1)(1 + λt2θ1)

)

= −4π2
(
2− λ+ 1

λ− 1
log λ

)
.

(20.16)

Finally, we can solve the last integration for λ,

∫
dLIPS3F

(0)A(0) ∝ −4π2
∫ 1

0
dλ (1− λ)

(
2− λ+ 1

λ− 1
log λ

)
= π2. (20.17)

Finally, after putting back all factors from the phase space measure we dropped so far, we get
the final result for the contributions from category (ii) of the three-particle cuts,

×Tµν

∣∣∣∣∣∣∣
(ii)

=
y4

64π3
T
(0)
2,0 (1ϕ, 2ϕ). (20.18)

Summing all the contributions, we have

∑

X

∫ [
dLIPS2

(
T
(0)
2,0A(1)∗ + T

(1)
2,0A(0)

)
+ dLIPS3 T

(0)
2,0A(0)

]

=
1

64π3

[
4y4 log

(
s12
µ2

)
− y4

ϵ
− 85

6
y4 +

λ2

24

]
T
(0)
2,0 (1ϕ, 2ϕ).

(20.19)

But this result is still divergent, which cannot be correct, since it would imply that either
the beta function or the anomalous dimension are divergent, which they are not. The crucial
piece of information to resolve this issue is that the RGE needs to be evaluated for renormal-
ized amplitudes and form factors only. While, we used renormalized loop amplitudes in the
two-particle cuts, this does not cover the entire renormalization needed. Instead, it contains
only counterterms for the vertices and intermediate propagators within the loop amplitude, but

187



Chapter 20. Infrared Divergences in a Yukawa Theory

Tµν

p1

p2

Figure 20.1: Diagram leading to a divergence in the three-particle cut. Scalars and fermions
are denoted by dashed and solid lines with arrows, respectively. Crossed diagrams are not shown,
but exhibit the same divergence in their three-particle cut.

does not account for divergences from external legs, which are left over in the field renormaliza-
tion constants, even after amputation. These are precisely the counterterms needed, to render
Eq. (20.19) finite. In particular, we will find that the divergence comes from two-loop diagrams
with one-loop subdiagrams of the form of a fermion wave-function renormalization, with the
corresponding cut going right through this loop, as shown in Fig. 20.1. Adding a diagram with
the one-loop subdiagram replaced with the appropriate counterterm gives a contribution that
exactly cancels this divergence.

In the light of on-shell methods, we need to include a cut of the form

2
∑

i=L,R

δψi

∫
dLIPS

(D)
2 T

(0)
2,0 (1

′
ψi
, 2′ψ̄i

)A(0)(−2′ψi
,−1′ψ̄i

, 1ϕ, 2ϕ), (20.20)

with δψi
the divergent one-loop wave function counterterm for the fermion. We stress that it

is important to perform the integration in D dimensions because a four-dimensional one is not
sufficient to generate the correct finite terms from combining the divergence in δψi

with possible
terms of O(ϵ) that come out of the integral. Including this last counterterm, we finally arrive
at our result for the sum of all the on-shell cuts necessary at the two-loop order

∑

X

∫ [
dLIPS2

(
T
(0)
2,0A(1)∗ + T

(1)
2,0A(0)

)
+ dLIPS3 T

(0)
2,0A(0)

]

=
1

64π3

[
3y4 log

(
s12
µ2

)
− 23

2
y4 +

λ2

24

]
T
(0)
2,0 (1ϕ, 2ϕ).

(20.21)

At this point, we note that an alternative procedure would be to not use any renormalized
amplitudes, perform all phase space integrals, in particular also the two-particle ones, in D
dimensions and then replace bare couplings with the renormalized ones. Note also, there are no
terms with a mixed dependence on the Yukawa and the scalar quartic coupling.

With this result, we are now ready to calculate the two-loop infrared anomalous dimension
of the scalar in our theory. Of course, recalling Eq. (17.25), we also need the one-loop beta
function. This can easily be calculated via the one-loop renormalization of the Yukawa vertex,
which we will not reproduce here, instead we just quote the result,

βy =
5y3

16π2
. (20.22)

For convenience, we also quote the projected and renormalized one-loop form factor here, as
it is explicitly needed for the RGE, making the imaginary part explicit,

T
(1)
2,0 (1ϕ, 2ϕ) = −T

(0)
2,0 (1ϕ, 2ϕ)

y2

16π2

[
2 log

(
s12
µ2

)
− 6− 2iπ

]
. (20.23)
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Even though we already removed all imaginary parts in Eq. (17.25) on general grounds, we
want to show the cancellation explicitly here. An intermediate step of the derivation of that
equation contains an purely imaginary term built from only one-loop quantities, with the task
to cancel the imaginary part of the one-loop form factor appearing in the RGE. Keeping this
term explicitly at the cost of not taking the real part of the one-loop form factor amounts to
calculating

(
γ(1) + β(1)∂

)
T
(1)
2,0 +

iπ

2

(
γ(1) + β(1)∂

)2
T
(0)
2,0 =

y4

64π4

[
9− 3 log

(
s12
µ2

)]
T
(0)
2,0 . (20.24)

This result shows explicitly how the higher-derivative terms are responsible for cancelling all
imaginary terms, as required by the optical theorem. Further, recalling the extra factor of −1/π
the cuts have to be augmented with, we also see that all logarithms cancel, indicating that no
soft divergences are present for the scalar in a Yukawa theory, even at two loops.

Finally, we can combine all of the above results to find the infrared anomalous dimension
for the scalar, which comes out to be

γ
(ϕ,2)
IR = − 5y4

128π4
+

λ2

1536π4
. (20.25)

Before going to an alternative approach for calculating this anomalous dimension, we note that
again, the infrared anomalous dimension coincides with that of the scalar field at two-loops [295],
and we will come back to this shortly.

20.1.2 Feynman diagrammatic approach

Let us confirm this result by explicitly calculating the full two-loop form factor. The correspond-
ing two-loop diagrams are shown in Fig. 20.2. There we recognize the first diagram to be the
one giving a divergent three-particle cut. Further, the three-particle cut we could not straight-
forwardly integrate and had to use the residue theorem comes exclusively from the non-planar
diagram.

After contracting the energy momentum tensor onto the desired form factor, we are left
with only scalar products of external and loop momenta in the numerators of the loop integrals.
These can further be reduced to scalar integrals by rewriting the scalar products in terms
of inverse propagators such that they cancel parts of the denominator2. The resulting scalar
integrals are, however, not linear independent and can be related to a basis of scalar integrals by
using Integration-By-Parts (IBP) and Lorentz-Invariance (LI) identities. In practice, we use the
software Kira [296], which fully automizes the reduction of scalar integrals to the basis integrals.
For more details on the method, see App. IV.B

2At the two-loop level with two independent external momenta there are 7 independent scalar products includ-
ing at least one loop momentum. In our case, the two-loop diagrams have at most six independent propagators,
such that we have to include additional auxiliary propagators to be able to write all scalar products in terms of
propagators.
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p12 p12 ≡ A3(d, p
2
12),

p12 p12 ≡ A2(d, p
2
12),

p12
p1

p2

≡ A4(d, p
2
12),

p12
p1

p2

≡ A6(d, p
2
12).

(20.26)

We do not give the explicit analytic expressions of the integrals, as they are not particularly
illuminating, but we refer the reader, e.g., [297,298].

As usual, these two-loop integrals contain non-local divergences of the form of logarithms
with divergent coefficients, originating from regions where only one of the two loop momenta
becomes large at a time. These, being non-local, cannot be cancelled by any counterterms present
in the Lagrangian, which can generate only local terms, i.e., polynomials of momenta. Instead,
these will be cancelled by the same non-local divergences appearing in diagrams with insertions
of one-loop counterterms. Conceptually, these are just one-loop diagrams, which can easily be
solved using the standard methods. But note, that here, the one-loop basis integrals have to be
expanded to O(ϵ), to generate a rational term due to the 1/ϵ factor from the counterterm.

Comparing this to the on-shell approach, including these one-loop counterterms is equivalent
to using renormalized loop amplitudes in the two-particle cuts as well as adding Eq. (20.20),
such that all divergences within the cuts cancel.

Then, adding the genuine two-loop diagrams and the one-loop counterterm diagrams as well
as all other (tree-level) counterterms needed for renormalization, together with the one-loop and
tree level form factors, we find

T2,0(1ϕ, 2ϕ) = T
(0)
2,0 (1ϕ, 2ϕ)

{
1 + δ

(1)
ϕ + δ

(2)
ϕ +

( y
4π

)2 [2
ϵ
+ 2 log

(
−s12
µ2

)
+ 6

]

+
( y
4π

)4 [ 3
ϵ2
− 5

2ϵ
− 3 log2

(
−s12
µ2

)
+ 23 log

(
−s12
µ2

)
− 547

12
− π2

]

+
λ2

(4π)4

[
1

24ϵ
− 1

12
log

(
−s12
µ2

)
+

65

144

]
+ . . .

}
,

(20.27)
with the ith loop counterterm δ(i) and the ellipsis denote even higher-order contributions. We
also explicitly kept the divergent piece, as well as the renormalization constant necessary to
absorb it, such that the expression if finite, despite the explicit divergent term. Given this
expression, it is easy to calculate the sum of all cuts by simply taking twice the imaginary part,
yielding

2Im [T2,0(1ϕ, 2ϕ)] =
1

64π3

[
3y4 log

(
s12
µ2

)
− 23

2
y4 +

λ2

24

]
T
(0)
2,0 (1ϕ, 2ϕ), (20.28)

in perfect agreement with Eq. (20.21), leading to the same anomalous dimension as in Eq. (20.25).
Because we left the divergences implicit, we can also use them to calculate the anomalous

dimension. Using Eq. (16.3), we find the renormalization constant of the Green’s function to be

Z
(ϕ)
G =

(
1 + δ

(1)
ϕ + δ

(2)
ϕ

)−1
=

[
1 +

( y
4π

)2 2
ϵ
+
( y
4π

)4( 5

ϵ2
− 7

2ϵ

)
+

λ2

6144π4

]
. (20.29)

190



20.1. Scalar Field
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Figure 20.2: (a)– (f) Two-loop Feynman diagrams, up to symmetry operations, entering the
computation of the two-loop corrections to the form factor T2,0(1ϕ, 2ϕ). (a′)– (g′) At the same
order in perturbation theory, there are several one-loop diagrams with insertions of one-loop
counterterms, which are needed for the cancellation of non-local sub divergences. As mentioned
above, the double cut of (a′), precisely cancels the divergence of the three-particle phase space
integral associated to the triple cut of (a), and cutting on either side of the counterterm vertex
gives the factor of 2 in Eq. (20.20).

191



Chapter 20. Infrared Divergences in a Yukawa Theory

Taking the derivative according to Eq. (7.12), with the three level scalings of the couplings with
µ given by n(λ) = 2n(y) = 2, we again arrive at Eq. (20.25). Further, the higher pole terms
satisfy Eq. (7.13), as can be easily checked by direct computation.

20.1.3 Cancellation of Real Radiation

As a final cross-check, we calculate the cancellation divergences in real emission diagrams against
those of loop amplitude, given the results of the previous sections. The precise amplitudes
feeding into the squared amplitudes are in general not particularly illuminating, so we will not
present them here, using a more diagrammatic approach to present equations, but explicitly
show details, whenever necessary.

Starting, once more, at the one-loop level we have the diagrammatic relation

∣∣∣∣∣

∣∣∣∣∣

2

⊃ + 2Re





 !

= finite. (20.30)

Here, the textured ellipse on the left-hand side represents the all-order amplitude, while the
number of inserted circles has the same meaning as before. Note, again, that the above equation
implies the usage of UV renormalized amplitudes. But because the tree amplitude does not
depend on any coupling (except for the gravitational coupling, but since all loop-amplitudes are
of the same order in that coupling there is no need for renormalizing it), it is the same as the
bare amplitude at this coupling order. However, since we are also interested in the two-loop
expressions, we need to use the renormalized coupling in both the three- and two-particle cuts
because the one-loop piece of the coupling in these cuts will contribute at the two-loop order.

The second term, being only a two-particle cut, on the right-hand side, is trivial to calculate,
as explained in Chapter 18. Further, because the two-particle phase space is finite and we are
interested only in the cancellation of the divergent terms, it suffices to use

=

(
1

2ϵ
γ
(ϕ,1)
IR +O(ϵ0)

)
× . (20.31)

The three-particle cut, on the other hand, has to be integrated using Eq. (18.4) and the
accompanying variable substitutions, which can be done in a straightforward fashion using com-
puter algebra programs. In total, adding the two contributions and including symmetry factors
wherever needed, we find that

+ 2Re





 =

(P 2)2

96π3ϵ

(
γ
(ϕ,1)
IR − y2

4π2

)
, (20.32)

with P the graviton momentum. This exactly vanishes after using the result in Eq. (20.6),
providing an additional cross-check.

As expected, this calculation provides many insights concerning the structure of the infrared
divergences. First, there find only a single pole in the individual contributions, showing once
more the absence of divergences from soft divergences. Further, it explains, why the collinear
anomalous dimension at this loop order is numerically the same as twice the field anomalous
dimension. Performing the three-particle phase space integration diagram by diagram, we see
that the only source of divergences are diagrams of the form shown in Fig. 20.3.
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20.1. Scalar Field

Figure 20.3: The only source of divergences from real radiation off the scalar legs.

This has a one-loop subdiagram with exactly the same form as the one-loop renormalization
of the scalar field, so naturally the divergences look the same. Further, because the subdiagram
can be inserted into either of the two scalars, we, in fact, get twice the divergence of a single
scalar. Any diagram where the two fermions do not close onto the same scalar propagator is
finite, just as in the on-shell calculation of the anomalous dimension, where very similar three-
particle cuts appeared.

This seemingly straightforward calculation gets much more involved at the two-loop level.
At this order, we have

∣∣∣∣∣

∣∣∣∣∣

2

⊃ + 2Re







+

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
+ 2Re





 !

= finite.

(20.33)

Here we left implicit the contribution from the renormalized coupling in the three-particle
cut between tree level amplitudes mentioned above. All these terms can be calculated using
the results presented in Chapter 18. However, we will focus only on contributions generated by
the scalar quartic coupling for simplicity. In this case, all three-particle phase space integrals
vanish, as there are simply no amplitudes with an odd number of external states at this coupling
order. Further, as we have seen before, also the one-loop amplitude for two scalars coupling
to the graviton receives no contribution from the quartic coupling3 This leaves only the four-
particle phase space integral and the two-particle phase space containing the two-loop, two-scalar
amplitude as the non-vanishing terms. We will focus on the former because we already calculated
the latter in the previous section, and the calculation shows a few computational novelties.

As a first, naive try, we could use Eq. (18.5) and evaluate the phase-space integral in a rather
brute-force way. While this works for the three-particle phase space because the integrands can
factorize in the integration variables, this is highly non-trivial here because of the factor

√
∆ in

the denominator. Instead, we will make use of the fact that a phase space integral can be seen
as an on-shell cut of some higher loop integral. To explicitly see this, we can write [285]

∫
dLIPS

(D)
4 =

∫ 4∏

k

dpk
(2π)D

i

Dk
(2π)DδD(P − p1 − p2 − p3 − p4), (20.34)

where the cut propagators are given as a difference of Feynman propagators with the opposite
prescription for their imaginary part [271]

3Technically, we saw that the amplitude projected onto the J = 2 form factor vanishes in the absence of
the Yukawa coupling. However, due to the traceless character of the graviton, convoluting the two two-point
amplitudes and summing over the graviton polarizations is equivalent to projecting onto the traceless component.
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1

Dk
= 2πiδ+(p2k) =

1

p2k + iε
− 1

p2k − iε
. (20.35)

Then, the phase-space integral is nothing more than a linear combination of the same loop
integral, where the terms just differ by the imaginary parts of the individual propagators. But
the Integration-by-Parts (IBP) identities presented in App. IV.B rely only on total derivatives
of the integrands, so they do not depend on the prescription for the imaginary part. Hence, the
application of the IBP identities commutes with cutting the loop integral [286]. In other words,
in practice we can interpret the cut-propagators in Eq. (20.34) as actual Feynman propagators,
reduce the loop integral to some set of easier to calculate (or already known) master integrals
and finally perform the appropriate cuts on these master integrals. In the present case, we are
interested in the four-particle cuts of three-loop self-energy diagrams. The corresponding master
integrals are known to a sufficiently high order in ϵ [299,300]. In fact, of the six master integrals
only three exhibit a four-particle cut, all of which were calculated in [285].

For the two-loop contribution generated by the scalar quartic coupling it turns out that only
the two planar master integrals in [285] are needed and we find

= λ2
[

ϵ(ϵ+ 1)

12(6ϵ2 − 13ϵ+ 6)
I6 +

18− 33ϵ+O(ϵ2)
36ϵ(2ϵ− 3)(2ϵ− 1)(3ϵ− 2)

I4

]
|4-cut, | (20.36)

where the master integrals are

≡ I4, ≡ I6. (20.37)

Because the four-particle cuts of both these master integrals are finite, we can also ignore the
term proportional to I6, as we are interested only in the divergent parts of the integral. Using
the cut of I4, which is nothing else than the volume of the four particle phase space, and adding
the two-loop amplitude, we find

+ 2Re





 =

(P 2)2

192πϵ

(
γ
(ϕ,2)
IR,λ2

− λ2

1536π4

)
, (20.38)

which exactly vanishes if we use the corresponding part of the anomalous dimension in
Eq. (20.25), confirming our result obtained using the form factor of the energy-momentum
tensor.

To conclude this section, we note that using this approach to calculating the infrared di-
vergences makes it obvious that there are no contribution containing both the Yukawa and the
quartic coupling because there are simply no amplitudes with additional external states at this
coupling order, which can glue together in the phase-space integral.

20.2 Fermion Fields

20.2.1 Using the energy-momentum tensor

Let us continue with the fermion fields. The main difference compared to the scalar case is
the projection we apply to the energy-momentum form factor because the external states now
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carry helicity different from one. In this section, we will focus only on the case of left-handed
fermion and its anti-particle in the final states, such that we need to consider T2,−1(1ψL

, 2ψ̄L
).

The results presented in this section are equally valid for the right-handed fermion if we use
T2,1(1ψR

, 2ψ̄R
) instead.

While the details of the computation, apart from the different projection needed, are of
course different compared to the previous section, due to the different choice of external state,
there are no additional conceptual complications. Thus, in this section we provide mostly the
results without discussing them too much.

Starting again at the one-loop level, both the fermion and the scalar contribute in the cut
and we find

×Tµν =
y2

16π
T
(0)
2,−1(1ψL

, 2ψ̄L
), (20.39)

directly giving

γ
(1)
IR =

y2

16π2
. (20.40)

Again, this coincides with twice the one-loop field anomalous dimension. It being finite means
that for the fermion, the correction term in Eq. (17.25) vanishes as well.

As for the scalar, also the two-particle cuts for the fermionic form factor pose no difficul-
ties whatsoever, and can easily be integrated using the phase space parameterization from the
previous sections. We find

×Tµν + ×Tµν =
y4

1024π3

[
6 log

(
s12
µ2

)
− 51

]
T
(0)
2,−1(1ψL

, 2ψ̄L
),

(20.41)
As for the scalar, the three-particle cuts can be separated into the same three categories,

and we can use the same methods as described in the last section, such that we will just quote
the sum of all cuts as

∑

X

∫ [
dLIPS2

(
T
(0)
2,0A(1)∗ + T

(1)
2,0A(0)

)
+ dLIPS3 T

(0)
2,0A(0)

]

=
y4

512π3

[
15 log

(
s12
µ2

)
− 6

ϵ
− 289

6

]
T
(0)
2,−1(1ψL

, 2ψ̄L
).

(20.42)

Once again, we find a divergent result. The resolution comes, once more, in the form of
the one-loop propagator renormalization we did not include so far and which gets cut in the
three-particle cuts. However, it turns out, that for the fermion form factor, not only the fermion
renormalization, but also the scalar one contributes such that we have to add cuts of the form

∑

i=ψL,ψR,ϕ

δi

∫
dLIPS

(D)
2 T

(0)
2,−1(1

′
i, 2

′
ī)A(0)(−2′i,−1′i, 1ψL

, 2ψ̄L
). (20.43)

Including this contribution, we arrive at the final, finite expression for the sum of all cuts,

∑

X

∫ [
dLIPS2

(
T
(0)
2,0A(1)∗ + T

(1)
2,0A(0)

)
+ dLIPS3 T

(0)
2,0A(0)

]

=
y4

512π3

[
9 log

(
s12
µ2

)
− 67

2

]
T
(0)
2,−1(1ψL

, 2ψ̄L
),

(20.44)
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which we can use to calculate the IR anomalous dimension.
Because we need its explicit expression, we quote the full one-loop form factor

T
(1)
2,−1(1ψL

, 2ψ̄L
) = − y2

32π2

[
log

(
s12
µ2

)
− 3

2
− iπ

]
T
(0)
2,−1(1ψL

, 2ψ̄L
). (20.45)

Then, the terms containing only one-loop objects in the RGE give

(
γ(1) + β(1)∂

)
T
(1)
2,−1 +

iπ

2

(
γ(1) + β(1)∂

)2
T
(0)
2,−1 = −

y4

512π4

[
9 log

(
s12
µ2

)
+

27

2

]
T
(0)
2,−1. (20.46)

Comparing to our results for the cuts, we see that all logarithms cancel, keeping in mind the
extra factor of −1/π, confirming, that there are no soft divergences in a Yukawa theory, while
for the two-loop collinear divergence of the fermion we find

γIR = − 13y4

1024π4
. (20.47)

Notice that, as in the scalar case, this coincides with twice the field anomalous dimension [295].
To verify this result, we calculate the full two-loop form factor using the same method as for the
scalar case for the diagrams shown in Fig. 20.4. The main difference is that after the integral
reduction, only the planar integrals in Eq. (20.26) appear. The full result reads

T2,−1(1ψL
, 2ψ̄L

) = T
(0)
2,−1(1ψL

, 2ψ̄L
)

{
1 + δ(1) + δ(2) +

1

2

( y
4π

)2 [1
ϵ
− log

(
−s12
µ2

)
+ 3

]

+
( y
8π

)4 [18
ϵ2
− 13

ϵ
− 18 log2

(
−s12
µ2

)
+ 134 log

(
−s12
µ2

)
− 519

2
− 6π2

]
+ . . .

}
,

(20.48)
Taking the imaginary part of this expression, we find

2Im [T2,0(1ϕ, 2ϕ)] =
y4

512π3

[
9 log

(
s12
µ2

)
− 67

2

]
T
(0)
2,−1(1ψL

, 2ψ̄L
), (20.49)

which agrees perfectly with Eq. (20.44), therefore giving the same anomalous dimension.
Finally, let us briefly extract the renormalization constant for this form factor and we find

ZG =
(
1 + δ(1) + δ(2)

)−1
=

[
1 +

( y
4π

)2 1

2ϵ
+
( y
8π

)4(22

ϵ2
− 13

ϵ

)]
. (20.50)

Using Eq. (7.12) once more, we recover both the one- and two-loop anomalous dimensions from
above from the single pole terms, while the double pole term satisfies Eq. (7.13).

20.2.2 Using the charge current

Because the fermions are complex fields, there is yet another, non-trivial, cross-check we can
perform. If we assign the fermions some auxiliary U(1) charge, there is one more conserved
current next to the energy-momentum tensor, namely the vector charge current,

jµi = ψ̄iγ
µψi. (20.51)

As discussed in Sec. 3.2, this current, being conserved, has no suitable counterterm, provided
there is no associated propagating gauge boson. This means that for Green’s functions with
an insertion of this current, we have ∆γ = −γIR and because the IR effects are universal for a
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Figure 20.4: Two-loop Feynman diagrams and associated one-loop counterterm diagrams, up
to symmetry operations, entering the computation of the two-loop corrections to the form factor
T2,−1(1ψL

, 2ψ̄L
). The diagrams needed for the two-loop form factor jµ(1ψL

, 2ψ̄L
) are the same

after dropping all diagrams with operator insertions on a scalar leg.
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given set of external states, we should be able to reproduce the results obtained in the previous
section.

As for the energy-momentum tensor, it is convenient to perform a projection to remove all
open indices. In general, we know that

jµ(1ψL
, 2ψ̄L

) = v̄(p2)FµPLu(p1) = FL(s12)v̄(p2)γ
µPLu(p1), (20.52)

where we used a notation similar to the previous sections to denote the Green’s functions of the
charge current. To extract the scalar form factor, we perform the projection as

FL(s12) =
4

(D − 2)s212
Tr
[
γµ/p2FµPL/p1

]
, (20.53)

and equivalently for the right-handed fermion.
While it is of course possible to perform the calculation using on-shell methods with no

further complications compared to the case of the energy-momentum tensor, we choose to present
only the Feynman diagrammatic calculation. The necessary diagrams are equivalent to those in
Fig. 20.4, after replacing the energy-momentum tensor with the charge current and dropping all
diagrams where the scalar couples directly to the current.

Following all the steps described in the previous sections, we find, up to two loops,

FL(1ψL
, 2ψ̄L

) = F
(0)
L (1ψL

, 2ψ̄L
)

{
1 + δ(1) + δ(2) +

1

2

( y
4π

)2 [1
ϵ
− log

(
−s12
µ2

)
+ 1

]

+
( y
8π

)4 [18
ϵ2
− 13

ϵ
− 18 log2

(
−s12
µ2

)
+ 62 log

(
−s12
µ2

)
− 31

2
− 6π2

]
+ . . .

}
.

(20.54)
Notice the identical divergences as in Eq. (20.48), which directly leads to the same anomalous

dimension using its definition Eq. (7.7), as it should be. In fact, while the single logarithmic
term differs from that in Eq. (20.48)4, the difference is such that it compensates for the different
rational part in the one-loop expression if we chose to use the RGE in terms of the imaginary
part or the on-shell cuts, respectively.

At this point, one might ask why we used the energy-momentum tensor to calculate the
anomalous dimension instead of the vector current. Indeed, using the latter was computation-
ally easier due to the reduced number of diagrams as well as the much simpler vertex rule
for the current itself. However, usage of the current is limited to only external states that
transform non-trivially under the global symmetry, in this case only the fermions. The energy-
momentum tensor, on the other hand, covers every propagating degree of freedom, i.e., even
those transforming trivially under every internal symmetry of the theory, in this case the scalar
field. Further, we can only use the vector current to easily extract the IR anomalous dimension
if the associated symmetry is a global one or, equivalently, the corresponding gauge boson is
not allowed to propagate in the loops. Otherwise, we can find an identically conserved oper-
ator as a counterterm [293], such that the UV anomalous dimension is non-vanishing, making
it necessary to disentangle UV and IR dynamics. In the end, for a local symmetry, the vector
current cannot straightforwardly be used to extract contributions to the IR anomalous dimen-
sion proportional to the accompanying gauge coupling. However, these can be obtained using
the energy-momentum tensor, provided we focus only on marginal couplings, as explained in
Sec. 3.2. We will come back to these points in the next section, when considering a theory with
multiple gauge symmetries.

4The coefficient of the double logarithmic term has to be the same, as it is fixed, through the RGE, in terms
of the one-loop logarithm, which has to be the same as for the one-loop energy-momentum tensor because of the
universality of the IR anomalous dimension.
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Chapter 21

Infrared Divergences in an SM Toy
Model

In the last chapter, we presented a detailed discussion of the main techniques necessary to
calculate two-loop infrared anomalous dimensions in a simple toy model, which exhibits no soft
divergences.

In this section, we will change gear and turn to a more realistic toy model of the Standard
Model with multiple gauge groups. In this theory, soft divergences are expected to arise, which
manifest themselves as non-local poles, even after removing subdivergences. In this chapter, we
present only the Feynman diagrammatic calculation and discuss the subtleties arising from soft
divergences. The calculation using purely on-shell methods is left for future work.

The theory we want to investigate has a SU(N1) × SU(N2) × U(1)Y gauge symmetry and
we will present all results for general N1 and N2, each group with its associated gauge boson,
G, W and B. To make contact with the SM we can obviously just take N1 = 3 and N2 = 2.
For the matter content, we have one complex scalar H, akin to the Higgs field, transforming
as a (1,N2)YH

1, a left-handed fermion ψL transforming as a (N1,N2)YL and a right-handed
fermion ψR, transforming as (1,N2)YR . Using the Feynman diagrammatic approach, we also
need to define a gauge fixing procedure and we use the well-known Rξ gauge fixing with ξ = 1
for both non-Abelian gauge groups, also known as Feynman gauge. Of course, this introduces
ghost fields, cG and cW , which transform in the adjoint representation under the group they are
associated with and as singlets under the others. Including all possible marginal interactions
between these fields, the theory can be summarized using the following Lagrangian

L =− 1

4
GAµνGAµν −

1

4
W IµνW I

µν −
1

4
BµνBµν

− 1

2
(∂µG

Aµ)2 − 1

2
(∂µW

Aµ)2 + (∂µc̄G)(D
µcG) + (∂µc̄W )(DµcW )

+ (DµH)†(DµH)− iψ̄L /DψL − iψ̄R /DψR

+ yψ̄LψRH + yψ̄RψLH
† − λ

2
|H|4,

(21.1)

where we defined the the covariant derivative to be of the form

Dµϕ = ∂µϕ− igAaT aϕ, (21.2)

1We denote the representation of the fields under the SU(N1)×SU(N2)×U(1)Y group as (RN1(Φ), (RN2(Φ))Y ,
where the subscript indicates the charge under the Abelian group.

199



Chapter 21. Infrared Divergences in an SM Toy Model

and contractions of fundamental group indices are left implicit. Emulating the SM notations we
use gs, gw and g1 as names for the gauge couplings of the SU(N1), SU(N2) and U(1)Y groups,
respectively

Note that here we did not include any explicit coupling to gravity, including the conformal
coupling of the scalar field. In fact, when calculating the anomalous dimension of the scalar
field by using the J = 2 projector defined in the previous chapter, we do so once without and
once with the additional conformal coupling term, finding perfect agreement which serves as one
non-trivial cross-check of the method.

Further, due to the many symmetries of this theory, there are, apart from the energy-
momentum tensor, up to three conserved currents available for each of the matter fields, which
we can use to cross-check at least partial results. In addition, since the symmetries are gauged,
contrary to the charge symmetry from the last chapter, we can use our results of the infrared
anomalous dimension to obtain the UV renormalization of all the currents, by computing the
necessary counterterms. We will come back to this towards the end of this chapter.

Because we need them for the coupling renormalization, as well as the explicit computation
of the anomalous dimension, we collect the D-dimensional beta functions of all the appearing
couplings at this point:

βgs
16π2

=
g3s
3π2

(CA,2 + 1− 11CA,1)

βgw
16π2

=
g3w
3

(
CA,1 +

1

2
− 11CA,2

)

βg1
16π2

=
g31
3

(
2CA,1CA,2Y

2
L + 2CA,1Y

2
R + CA,2Y

2
H

)

βy
16π2

=
y3

2
(CA,2 + 1 + 2CA1)− 3CF,2g

2
wy − 6CF,1g

2
sy − 3(Y 2

L + Y 2
R)g

2
1y

βλ
16π2

= 2λ2(CA,2 + 4) + 4CA,1y
2λ− 12Y 2

Hg
2
1λ− 12CF,2g

2
wλ

−4CA,1y4 + 12Y 2
Hg

4
1 + 12Y 2

Hg
2
1g

2
w(1− CA,2 + 2CF,2)

+3CF,2g
4
w(C

2
A,2 + 5CA,2 − 13CF,2 − 4),

(21.3)

where subscripts denote the quadratic Casimirs in either the adjoint or fundamental represen-
tation for both the non-Abelian gauge groups. These beta functions were obtained from the
respective coupling counterterms, the two of which are related as

δi =
βi

16π2
1

2ϵ
. (21.4)

We start this chapter by presenting the calculation of infrared anomalous dimensions of all
the fields in the theory, using the two-loop energy-momentum tensor on-shell Green’s functions.
We use the same projection technique from the last chapter, but we expand on it to also remove
all appearing gauge indices, such that the resulting form factor function does not carry any
indices at all.
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21.1 Two-loop Energy-Momentum Tensor

21.1.1 Gluon External States

We start by calculating the anomalous dimension of the “gluon” of the theory, that is, the SU(N1)
gauge boson. Because it is not coupled to the scalar, we can cross-check a large part of the results
with the literature on infrared divergences in QCD (see, e.g., [301,302]). As discussed in 16, we
can avoid using explicit counterterm diagrams by performing the UV and IR renormalization of
any amplitude or form factor following Eq. (16.4). The crucial point is that for the last term in
this equation to give finite contributions, it does not suffice to expand the one-loop amplitude
only up to O(ϵ0). Instead, because it is multiplied by a divergent counterterm, we have to
compute the higher-order terms such that it is possible to cancel the highest order pole in the
counterterm, which, at one loop and in the presence of soft divergences, are of order O(ϵ2).
Fortunately, we consider only three-point functions, hence only the scalar massless bubble and
triangle master integrals are needed, which are known to all orders in ϵ

B0(p
2) = − (4π)ϵ−2

ϵ(2ϵ− 1)

Γ(1− ϵ)2Γ(ϵ+ 1)

Γ(1− 2ϵ)
(−p2)−ϵ,

C0(p
2) = −2(4π)ϵ−2

ϵ
(2ϵ− 3)(2ϵ− 1)

Γ(2− ϵ)Γ(ϵ+ 1)Γ(−ϵ)
Γ(4− 2ϵ)

(−p2)−ϵ−1.

(21.5)

While the higher-order terms of the one-loop form factors are needed for the two-loop renormal-
ization, they are not particularly illuminating. Hence, we will not present them at this point.
Instead, we quote only terms up to order O(ϵ0) at this point and show the full form factor in
terms of the one-loop master integrals in App. IV.A.

In the following we always normalize by the tree level form factor which, after contracting
color indices, reads

T
(0)
G (s12) = 2CA,1CF,1. (21.6)

Here we opted for a slightly decluttered notation for the form factor compared to the last chapter.
While the superscript denotes the loop order, as usual, the subscript simply shows the chosen
external states. Because in this chapter we only project onto the traceless component, matching
this notation to the last chapter is unambiguous.

Then, up to one loop and up to O(ϵ−1), we find for the renormalized form factor

T
(1)
G (s12) =

1

ZGIR

{
1 +

(
−s12
µ2

)−ϵ ( gs
4π

)2 [
−2CA,1

ϵ2
+
βgs
g3sϵ

+O(ϵ0)
]}

(21.7)

with the infrared renormalization constant of the gluon pair, ZGIR, yet to be specified. We chose
to factor out the dependence on the kinematic variable to write the result in a more compact
way. Because of this, the relevant information necessary for the one-loop anomalous dimension
is contained entirely in the divergent terms, which generate logarithmic terms upon expanding
the prefactor in ϵ.

Because the tree-level form factor does not depend on any couplings, this one-loop form factor
is already free of UV divergences. However, the double pole generates non-local divergences of
the form log /ϵ, contrary to the last chapter, where no higher order poles were present at this
loop order. This is a direct consequence of non-zero soft divergences, which, as we will see
shortly, also manifest themselves as logarithmic terms in the anomalous dimension.
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Chapter 21. Infrared Divergences in an SM Toy Model

We will, as discussed before, extract the anomalous dimension from both the divergent
structure as well as the imaginary part using the RGE and optical theorem.

Starting with the former and requiring the finiteness of Eq. (16.4) at this loop order, we can
easily solve for ZGIR, and we get

ZGIR = 1−
( gs
4π

)2 [2CA,1
ϵ2
− βgs
g3sϵ
− 2CA,1

ϵ
log

(
−s12
µ2

)]
. (21.8)

With this, we can use its definition in terms of the renormalization constant Eq. (7.7) to
easily calculate the anomalous dimension. Keeping in mind, that now ZIR does not only implic-
itly depend on the renormalization scale through the couplings but also explicitly through the
logarithm in the last term, we find

γGIR =
( gs
4π

)2 [2βgs
g3s

+ 4CA1 log

(
−s12
µ2

)]
. (21.9)

Note that, while not constant, this is finite because the explicit dependence in the logarithmic
term cancels the implicit one in the higher pole term.

Alternatively, following Eq. (17.22), we can immediately read of the (real part of the) anoma-
lous dimension from the imaginary part of Eq. (21.7) (recall, that the tree level form factor is
independent of any coupling, so the beta function term vanishes), which reads

Im
[
T
(1)
G (s12)

]
= −π

2

( gs
4π

)2 [
−2βgs

g3s
− 4CA1 log

(
s12
µ2

)]
. (21.10)

Multiplying this expression with the appropriate factor of −2/π immediately gives the same
result as in Eq. (21.9). Before comparing this result with the literature, we will first continue
with the two-loop order. Up to the two-loop order, we find

T
(2)
G (s12) =

1

ZGIR

{
(1 + 2δgs)T

(1)
G (s12) +

(
−s12
µ2

)−2ϵ

tG2

}
, (21.11)

where we defined

tG2 =
( gs
4π

)4
[
2C2

A,1

ϵ4
− 3CA,1βgs

2gsϵ3
−

10CA,1(CA,2 + 1) +
(
π2 − 113

)
C2
A,1

6ϵ2

+
CA,1

((
π2 − 115

)
(CA,2 + 1)− CA,1

(
300ζ(3) + 11π2 − 1370

))

36ϵ

+
CA1CF,1(CA,2 + 1)

2ϵ

]

+
(gsgw
16π2

)2 CA,2CF,2
2ϵ

+
( gsg1
16π2

)2 (CA,2Y 2
L + Y 2

R

)

2ϵ
−
( gsy

16π2

)2 CA,2
2ϵ

.,

(21.12)

In these expressions, the effects of the one-loop renormalized couplings are captured by δgs ,
while tG2 contains all the genuine two-loop contributions. As before, we factored the kinematic
dependence and show only the divergent terms. Again, we can obtain ZGIR by requiring finiteness.
Here, instead of presenting ZGIR itself, we will show its logarithm, as it exhibits a few interesting
properties. We find

log
(
ZGIR
)
=−

( gs
4π

)2 [2CA,1
ϵ2
− βgs
g3sϵ
− 2CA,1

ϵ
log

(
−s12
µ2

)]
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+
( gs
4π

)4 [
−3CA,1βgs

2g3sϵ
3

+

(
C2
A,2 + CA,2(2− 17CA,1) + 3

(
18 + π2

)
C2
A,1 − 17CA,1 + 1

)

18ϵ2

−
(
3π2 − 128

)
(CA,2 + 1)CA,1 − 54(CA,2 + 1)CF,1

108ϵ
(21.13)

+
C2
A,1

(
108ζ(3) + 33π2 − 1384

)

108ϵ

+ log

(
−s12
µ2

)(
CA,1βgs
ϵ2

− CA,1
(
5CA,2 +

(
3π2 − 67

)
CA,1 + 5

)

9ϵ

)]

+
(gsgw
16π2

)2 CA,2CF,2
2ϵ

+
( gsg1
16π2

)2 (CA,2Y 2
L + Y 2

R

)

2ϵ
−
( gsy

16π2

)2 CA,2
2ϵ

.

There are a few things to notice here. While the highest pole in Eq. (21.12) is of order
O(ϵ−4), the highest pole in Eq. (21.13) is only of O(ϵ−3), as it should be [301]. Further, while
ZGIR contains higher powers of logarithms, these cancel in Eq. (21.13) such that the anomalous
dimension can contain at most linear logarithms, in accordance with the general results [273,274].
Finally, we see that all cross terms containing two different couplings have only a single pole, as
required by the finiteness of the anomalous dimension, which tells that the highest order poles
have to be related to lower loop ones. But since only gs terms appear at one-loop, all higher
pole mixed terms have to vanish at two-loops.

Then, to get the anomalous dimension, we simply take the total derivative with respect to
the renormalization scale of Eq. (21.13), yielding

γGIR =−
( gs
4π

)2 [2βgs
g3s

+ 4CA1 log

(
−s12
µ2

)]

−
( gs
4π

)4{
C2
A,1

[
1384

27
− 4ζ(3)− 11π2

9

]
− 2CF,1(CA,2 + 1)

+ CA,1(CA,2 + 1)

[
π2

9
− 128

27

]

+
1

3
log

(
−s12
µ2

)[
C2
A,1

(
4π2 − 268

3

)
+

20CA,1(CA,2 + 1)

3

]}

+ 2
(gsgw
16π2

)2
CA,2CF,2 + 2

( gsg1
16π2

)2 (
CA,2Y

2
L + Y 2

R

)
− 2

( gsy

16π2

)2
CA,2.

(21.14)

As it should be, this result is finite and contains at most linear logarithms, providing an excellent
consistency check.

Of course, as required by the optical theorem, we can use the imaginary part of the renor-
malized two loop-form instead to arrive at the same result. We get

− 2

π
Im
[
T
(2)
G (s12)

]
=
( gs
4π

)4{
4C2

A,1 log
3

(
−s12
µ2

)

+
4

3
[CA,1(CA,2 + 1)− 22CA,1CF,1 − 11] log2

(
−s12
µ2

)

+
1

3

[
C2
A,1(46− 10π2)− 5CA,1(CA,2 + 1)

]
log

(
−s12
µ2

)
(21.15)

+
C2
A,1

27

(
1384− 108ζ(3) + 99π2

)
− 2CF,1(CA,2 + 1)
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−CA,1(CA,1 + 1)

27

(
128 + 9π2

)}

− 2
(gsgw
16π2

)2
CA,2CF,2 − 2

( gsg1
16π2

)2 (
CA,2Y

2
L + Y 2

R

)
+ 2

( gsy

16π2

)2
CA,2.

Plugging this back into Eq. (17.25), we exactly recover the result in Eq. (21.14), as expected. At
this point, we want to stress the importance of the last term on the left-hand side in Eq. (17.25).
This term is crucial to get the correct terms with more powers of π2, showing the need to
appropriately include all higher derivative terms in the expansion of Eq. (17.16).

To conclude this section, we compare our result to the literature, see e.g., [273,274,301,302].
To do so, we bring the anomalous dimension into the form [274]

γIR =
1

2
log

(
−s12
µ2

)∑

i,j

γjcuspC
j
i +

∑

i

γicoll, (21.16)

where i runs over all external states, j enumerates all the gauge groups they are charged under,
and Cij denotes the quadratic Casimir in the representation of the particle i corresponding to
the gauge group j. We want to stress that the knowledge of the cusp and collinear anomalous
dimensions is sufficient to derive the infrared divergences of any n-point amplitude in our theory,
using the results in [273,274,303]. For this reason, we will only present the full result up to two
loops by showing the values for the collinear anomalous dimension of the other fields as well as
the cusp anomalous dimensions. Because the latter is independent of the external fields, we will
only present it once when it is first encountered.

By extracting their values for γ
SU(3)
cusp and γgcoll from our result for a pair of gluons, we find

γSU(3)
cusp = 4

( gs
4π

)2
+

[(
268

9
− 4π2

3

)
CA,1 −

20

9
(CA2 + 1)

]( gs
4π

)4
, (21.17)

and

γgcoll =
βgs
g3s

( gs
4π

)2
−
{
C2
A,1

[
692

27
− 2ζ(3)− 11π2

18

]
− CF,1(CA,2 + 1)

+CA,1(CA,2 + 1)

[
π2

18
− 64

27

]}( gs
4π

)4

+ CA,2CF,2

(gsgw
16π2

)2
+
(
CA,2Y

2
L + Y 2

R

) ( gsg1
16π2

)2
− CA,2

( gsy

16π2

)2
.

(21.18)

The terms containing only gs perfectly agree with the literature results [273,274,301,302], after
replacing Nf → (CA,2 + 1)/2, to correctly count the number of Weyl fermions in the theory
charged under the SU(3) group.

21.1.2 W External States

We continue with the calculation of the infrared anomalous dimension for the case of an external
pair of “W bosons”, i.e., the gauge boson of the SU(N2) gauge group. Conceptually, it is very
similar to the gluon, as it is just another non-Abelian gauge boson, which allows for a considerable
amount of possible cross-checks, after augmenting the counting of the number of contributing
Weyl fermions. A new contribution, however, arises due to the presence of the charged scalar,
which, as we will see, modifies both the cusp and collinear anomalous dimension.

We again normalize to the tree level form factor, which for the W boson reads

T
(0)
W (s12) = 2CA,2CF,2. (21.19)
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Continuing up the loop orders, we get

T
(1)
W (s12) =

1

ZWIR

{
1 +

(
−s12
µ2

)−ϵ (gw
4π

)2 [
−2CA,2

ϵ2
+
βgw
g3wϵ

+O(ϵ0)
]}

, (21.20)

which is in perfect analogy to the result in Eq. (21.7), where the contribution of the scalar
field is obviously included in the beta function for gw. Hence, the renormalization constant is
also equivalent to Eq. (21.8) after making the suitable replacements, leading to the one-loop
anomalous dimension

γWIR =
(gw
4π

)2 [2βgw
gw

+ 4CA2 log

(
−s12
µ2

)]
. (21.21)

Using the imaginary part, which again is completely analogous to the last section,

Im
[
T
(1)
W (s12)

]
= −π

2

(gw
4π

)2 [
−2βgw

gw
− 4CA2 log

(
s12
µ2

)]
, (21.22)

immediately gives the same result for the anomalous dimension.

Continuing to the two-loop order, we can split the two loop form factor into pieces originating
from the one-loop renormalized couplings and from genuine two-loop diagrams, respectively,

T
(2)
W (s12) =

1

ZWIR

{
(1 + 2δgw)T

(1)
W (s12) +

(
−s12
µ2

)−2ϵ

tW2

}
, (21.23)

with

tW2 =
( gs
4π

)4
[
2C2

A,2

ϵ4
− 3βgwCA,2

2g3wϵ
3
− CA,2

((
π2 − 113

)
CA,2 + 10CA,1 + 5

)

6ϵ2

−
C2
A,2

(
300ζ(3) + 11π2 − 1370

)

36ϵ

+
CA,2

(
2
(
π2 − 115

)
CA,1 + π2 − 58

)

72ϵ
+

(CA,1 + 2)CF,2
2ϵ

+
(gsgw
16π2

)2 CA,3CF,3
2ϵ

+
(gwg1
16π2

)2 (CA,3Y 2
L + 2Y 2

H

)

2ϵ
−
( gwy
16π2

)2 CA,3
4ϵ

.

(21.24)

Note that because the scalar couples directly to the W boson, the form factor will, in general, be
more sensitive to how the scalar is coupled to gravity. In fact, while the term containing the one-
loop form factor is independent of if the scalar is coupled minimally or conformally, at least at
this order, tW2 is not. This dependence, however, will cancel in the calculation of the anomalous
dimension, as it should, so we chose not to show it explicitly here. The cancellation, in the

end, comes from the higher-order terms in T
(1)
W , which are such that already the renormalization

constant ZWIR is already independent of the scalar-gravity coupling. Here, the logarithm of ZWIR
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then turns out to be

log
(
ZWIR

)
=−

(gw
4π

)2 [2CA,2
ϵ2
− βgw
g3wϵ
− 2CA,2

ϵ
log

(
−s12
µ2

)]

+
(gw
4π

)4 [
−3βgwCA,2

2g3wϵ
3

+
12π2C2

A,2 − 4CA,2(17CA,1 − 108CF,2 + 7)

72ϵ2

+
4CA,1(CA,1 + 1) + 217

72ϵ2

+
C2
A,2

(
108ζ(3) + 33π2 − 1384

)
+ 54(CA,1 + 2)CF,2

108ϵ

+
CA,2

(
−6π2CA,1 + 256CA,1 − 3π2 + 176

)

216ϵ

+CA,2 log

(
−s12
µ2

)(
βgw
g3wϵ

2
−
(
3π2 − 67

)
CA,2 + 5CA,1 + 4

9ϵ

)]

+
(gsgw
16π2

)2 CA,3CF,3
2ϵ

+
(gwg1
16π2

)2 (CA,3Y 2
L + 2Y 2

H

)

2ϵ
−
( gwy
16π2

)2 CA,3
4ϵ

.

(21.25)

As mentioned above, this expression is valid, regardless of how we choose to couple the scalar
field to gravity. Notice that, again, the highest pole is of order O(ϵ−3), meaning lower than the
highest pole in the form factor and that all higher powers of logarithms exactly cancel. Taking
the total derivative with respect to the renormalization scale and directly extracting the SU(2)
cusp anomalous as well as collinear anomalous dimension of the W , we find

γSU(2)
cusp = 4

(gw
4π

)2
+

[(
268

9
− 4π2

3

)
CA,2 −

20

9
(CA3 + 1) +

4

9

](gw
4π

)4
, (21.26)

and

γWcoll =
βgw
g3w

(gw
4π

)2
−
( gs
4π

)4{
C2
A,2

[
692

27
− 2ζ(3)− 11π2

18

]
− CF,1(CA,2 + 2)

+CA,1

[
(2CA,3 + 1)

π2

36
− 64CA,1 + 44

27

]}

+ CA,1CF,2

(gsgw
16π2

)2
+
(
CA,1Y

2
L + 2Y 2

H

) (gwg1
16π2

)2
− CA,1

2

( gwy
16π2

)2
.,

(21.27)

Note the similarities between these results and the gluonic cases. The coefficients of terms
containing only the adjoint Casimir are equivalent – they can arise only from diagrams with the
non-Abelian triple gauge vertices – the other terms are modified by the presence of a charged
scalar field for the SU(2).

We conclude this section by mentioning that this result can, of course, be also obtained by
using the imaginary part of the form factor and the optical theorem. While we checked this
explicitly, we do not show it here, as it does not provide any further insight.

21.1.3 B External States

At this point, the only gauge boson left is the Abelian one. Due to its Abelian nature, we expect
it to be the easiest case for calculating the infrared anomalous dimension. Because it is not
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charged under any of the gauge groups, the tree level form factor is trivial

T
(0)
B (s12) = 1. (21.28)

Since it couples only to matter field directly, also the one-loop form factor has a particularly
simple form,

T
(1)
B (s12) =

1

ZBIR

{
1 +

(
−s12
µ2

)−ϵ ( g1
4π

)2 βg1
g31ϵ

+O(ϵ0)
}
. (21.29)

Note, that this result does not exhibit any higher than single poles, such that the renormalization
constant will not contain logarithms. In fact, we easily obtain

ZBIR = 1 +
( g1
4π

)2 βg1
g31ϵ

, (21.30)

immediately giving

γBIR = 2
( g1
4π

)2 βg1
g31
. (21.31)

Indeed, this result is constant and contains no logarithms. However, recalling Eq. (21.16)
this is to be expected. The logarithmic term is conjectured to be proportional to the Casimirs of
the external states, but because the B boson is a singlet under all gauge groups, its correspond-
ing Casimirs vanish, such that there cannot be a logarithmic term in the infrared anomalous
dimension. As we will see shortly, this also applies to the two-loop result.

As before, the two-loop form factor can be written as

T
(2)
B (s12) =

1

ZBIR

{
(1 + 2δg1)T

(1)
B (s12) +

(
−s12
µ2

)−2ϵ

tB2

}
, , (21.32)

and

tB2 =
( g1
4π

)4 CA,1CA,2Y 4
L + CA,1Y

4
R + 2CA,2Y

4
H

ϵ
+

(
g21g

2
s

16π2

)2
CA,1CF,1(CA,2Y

2
L + Y 2

R)

ϵ

+

(
g21g

2
w

16π2

)2
CA,2CF,2(CA,1Y

2
L + 2Y 2

H)

ϵ
−
(
g21y

2

16π2

)2
CA,1CA,2(Y

2
L + Y 2

R)

2ϵ
.

(21.33)

As expected, the highest pole at the two-loop order is of order O(ϵ−2) and originates purely
from the one-loop renormalized couplings. Indeed, as a consequence, the renormalization con-
stant does not contain any logarithms and for the infrared anomalous dimension we find

γBcoll =
βg1
g31

( g1
4π

)2
+ 2(CA,1CA,2Y

4
L + CA,1Y

4
R + 2CA,2Y

4
H)
( g1
4π

)4

+ 2CA,1CF,1(CA,2Y
2
L + Y 2

R)

(
g21g

2
s

16π2

)2

+ 2CA,2CF,2(CA,1Y
2
L + 2Y 2

H)

(
g21g

2
w

16π2

)2

− CA,1CA,2(Y 2
L + Y 2

R)

(
g21y

2

16π2

)2

.

(21.34)

Naively, the absence of logarithmic terms might suggest a vanishing U(1) cusp anomalous di-
mension. However, recalling Eq. (21.16), the logarithmic terms are proportional to the quadratic
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Casimirs of the external states. But the Abelian gauge boson itself is not charged under any
gauge group; hence it’s corresponding Casimirs vanish, eliminating the logarithmic terms in the
anomalous dimension, even for a non-vanishing cusp anomalous dimension.

As for the other gauge bosons, we checked explicitly that the same result can be obtained
by using the imaginary part of Eq. (21.32).

21.1.4 Left-handed Fermion External States

Now that we have discussed all the gauge bosons in the theory, we can move on to the matter
fields, starting with the left-handed fermion. Because it couples to all three gauge groups, as
well as to the scalar field, this is the most computationally intensive field in the theory. However,
because it transforms in the fundamental representation of all the (non-Abelian) gauge groups,
there will be a lot of overlap between this calculation and the ones for the right-handed fermion
and the scalar, which also transform only in the fundamental representation of their respective
gauge group. Looking again at Eq. (21.16), this particularly applies to the logarithmic terms
in the infrared anomalous dimension, which will the same for all particles at a given coupling
order.

As usual, normalizing to the tree level form factor

T
(0)
ψL

(s12) = CA,1CA,2, (21.35)

the one-loop expression we find is given by

T
(1)
ψL

(s12) =
1

ZψL
IR

{
1−

(
−s12
µ2

)−ϵ [
CF,1

( gs
4π

)2( 2

ϵ2
+

3

ϵ

)

+ CF,2

(gw
4π

)2( 2

ϵ2
+

3

ϵ

)

+ Y 2
L

( g1
4π

)2( 2

ϵ2
+

3

ϵ

)
−
( y
4π

)2 1

2ϵ

]
+O(ϵ0)

}
.

(21.36)

We will postpone presenting the one-loop result for relevant the anomalous dimension to a later
point, when also the two-loop term is computed.

As already mentioned, the calculation for ψL is the most computationally demanding, gen-
erating rather large results. To make them more readable, we will collect various terms by their
respective coupling order, such that we can bring the two-loop form factor into the following
form

T
(2)
ψL

(s12) =
1

ZψL
IR

{
[1 + 2(δgs + δgw + δg1 + δy)]T

(1)
ψL

(s12) (21.37)

+

(
−s12
µ2

)−2ϵ [( gs
4π

)4
tψL

g4s
+
(gw
4π

)4
tψL

g4w
+
( g1
4π

)4
tψL

g14
+
( y
4π

)4
tψL

y4
+ tψL

mixed

]}
,
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where the individual two-loop contributions read

tψL

g4s
=
2CF,1
ϵ4

+
CF,1
ϵ3

[
βgs
2g3s

+ 6CF,1

]

+
CF,1
6ϵ2

[
14(CA,2 + 1) +

(
3π2 − 166

)
CA,1

3
−
(
2π2 − 147

)
CF,1

]

+
CF,1
12ϵ

[(
425 + 3π2

)
(CA,2 + 1) + CA,1

(
1404ζ(3)− 33π2 − 4921

)

9

]

−
C2
F,1

12ϵ
(256ζ(3)− 927) ,

(21.38)

tψL

g4w
=
2CF,2
ϵ4

+
CF,2
ϵ3

[
βgw
2g3w

+ 6CF,2

]

+
CF,2
6ϵ2

[((
6π2 − 332

)
CA,2 + 28CA,1 + 17

)

6
−
(
2π2 − 147

)
CF,2

]

+
CF,2
12ϵ

[
CA,2

(
2808ζ(3)− 66π2 − 9842

)
+
(
850 + 6π2

)
CA,1 + 3π2 + 527

18

]

−
C2
F,2

12ϵ
(256ζ(3)− 927) ,

(21.39)

tψL

g41
=
2Y 4

L

ϵ4
+
Y 2
L

ϵ3

[
βg1
2g31

+ 6Y 2
L

]

+
Y 2
L

18ϵ2
[
17CA,2Y

2
H + 28CA,1Y

2
R + Y 2

L

(
28CA,1CA,2 + 441− 6π2

)]

+
Y 2
L

108ϵ

[(
527 + 3π2

)
CA,2Y

2
H + 2

(
425 + 3π2

)
CA,1Y

2
R

]

− Y 4
L

108ϵ

[(
2
(
425 + 3π2

)
CA,2CA,1 − 2304ζ(3) + 8343

)]
,

(21.40)

tψL

y4
= −(CA,2 + 2CA,1)

8ϵ2
− (13CA,2 + 30CA,1)

16ϵ
, (21.41)

and finally, the mixed terms,

tψL

mixed =

[
CF,1CF,2

(
g2sg

2
w

16π2

)2

+ CF,1Y
2
L

(
g2sg

2
1

16π2

)2

+ CF,2Y
2
L

(
g21g

2
w

16π2

)2
]
×

[
4

ϵ4
+

12

ϵ3
− 2π2 − 147

3ϵ2
− 256ζ(3)− 927

6ϵ

]

− CF,1
(
g2sy

2

16π2

)2 [
1

ϵ3
+

3

ϵ2
+

17

2ϵ

]

− CF,2
(
g2wy

2

16π2

)2 [
1

ϵ3
+

15

4ϵ2
+

77

8ϵ

]

−
(
g21y

2

16π2

)2 [
Y 2
L

ϵ3
+

3(5Y 2
L − Y 2

R)

4ϵ2
− 22Y 2

H − 99Y 2
L + 31Y 2

R

8ϵ

]
.

(21.42)
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Using these lengthy expressions, we can easily compute the renormalization constant ZψL
IR to get

the collinear anomalous dimension the fermion, as well as the U(1) cusp term

γU(1)
cusp = 4

( g1
4π

)2
−
[
32

9
CA,2Y

2
H +

40

9
CA,1(CA2Y

2
L + Y 2

R)

]( g1
4π

)4
, (21.43)

and

γψL

coll = −3CF,1
( gs
4π

)2
− 3CF,2

(gw
4π

)2
− 3Y 2

L

( g1
4π

)2
+

1

2

( y
4π

)2

+

[
C2
F,1

(
2π2 − 24ζ(3)− 3

2

)
+ CF,1(CA,2 + 1)

(
65

54
+
π2

6

)

+ CF,1CA,1

(
26ζ(3)− 11π2

6
− 961

54

)]( gs
4π

)4

+

[
C2
F,2

(
2π2 − 24ζ(3)− 3

2

)
+ CF,2CA,1

(
65

54
+
π2

6

)

+ CF,2

(
167

54
+
π2

6

)
+ CF,2CA,2

(
26ζ(3)− 11π2

6
− 961

54

)](gw
4π

)4

+

[
Y 2
LY

2
H

(
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54
+
π2

6

)
+ Y 2

LY
2
R

(
130

54
+
π2

3

)

− Y 4
L

(
π2

3
CA,2CA,1 +

65CA,2CA,1
27

− 24ζ(3) + 2π2 − 3

2

)]( g1
4π

)4

− CA,2 + 6CA,1
8

( y
4π

)4
− CF,1(6 + π2)

3

(
g2sy

2

16π2

)2

+
CF,2(57− 4π2)

12

(
g2wy

2

16π2

)2

− 66Y 2
H +

(
4π2 − 123

)
Y 2
L − 117Y 2

R

12

(
g21y

2

16π2

)2

−
[
3 + 48ζ(3)− 4π2

]
[
CF,1CF,2

(
g2sg

2
w

16π2

)2

+ CF,1Y
2
L

(
g2sg

2
1

16π2

)2

+ CF,2Y
2
L

(
g21g

2
w

16π2

)2
]

21.1.5 Right-handed Fermion External States

Compared to the previous section, the case of the right-handed fermion is much easier to cal-
culate, as it is a singlet under the SU(N2) gauge group, eliminating a large portion of diagrams
and associated contributions. In addition, the SU(N1) sector is blind to whether we use the left-
or the right-handed fermion, so all terms containing only gs will be very similar to those in the
last section. Then, normalizing, as always, to the tree level expression

T
(0)
ψL

(s12) = CA,1CA,2, (21.44)

the only contribution at the one-loop level, we have not computed before is

T
(1)
ψR

(s12) ⊃
1

ZψR
IR

{
1−

(
−s12
µ2

)−ϵ [
Y 2
R

( g1
4π

)2( 2

ϵ2
+

3

ϵ

)
−
( y
4π

)2 CA,2
2ϵ

]
+O(ϵ0)

}
. (21.45)
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Note that we could have derived this result without the need of any computation from the
Eq. (21.36). The term proportional to g21 is the same after replacing YL → YR, while the
CA,2 comes from the fact that all SU(N2) indices have to be contracted for ψR and not for
ψL, effectively just counting the number of components in the fundamental SU(N2) multiplet
running in the loop.

Continuing to the two-loop order, we can write

T
(2)
ψR

(s12) =
1

ZψR
IR

{
[1 + 2(δgs + δg1 + δy)]T

(1)
ψR

(s12) (21.46)

+

(
−s12
µ2

)−2ϵ [( gs
4π

)4
tψL

g4s
+
( g1
4π

)4
tψR

g14
+
( y
4π

)4
tψR

y4
+ tψR

mixed

]}
,

where we already used the fact that the SU(N1) sector is blind to the chirality of the fermions.
The remaining contributions read

tψR

g41
=
2Y 4

R

ϵ4
+
Y 2
R

ϵ3

[
βg1
2g31

+ 6Y 2
R

]

+
Y 2
R

18ϵ2
[
17CA,2Y

2
H + 28CA,1CA,2Y

2
L + Y 2

R

(
28CA,1 + 441− 6π2

)]

+
Y 2
R

108ϵ

[(
527 + 3π2

)
CA,2Y

2
H + 2

(
425 + 3π2

)
CA,1CA,2Y

2
L

]

− Y 4
R

108ϵ

[(
2
(
425 + 3π2

)
CA,1 − 2304ζ(3) + 8343

)]
,

(21.47)

tψR

y4
= −CA,2(2CA,1 + 1)

8ϵ2
− CA,2(30CA,1 + 13)

16ϵ
, (21.48)

tψR

mixed =CF,1Y
2
L

(
g2sg

2
1

16π2

)2 [
4

ϵ4
+

12

ϵ3
− 2π2 − 147

3ϵ2
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(
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2
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1

ϵ3
+

3

ϵ2
+

17

2ϵ

]

+ CA,2CF,2

(
g2wy

2

16π2

)2 [
3

4ϵ2
+
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8ϵ

]

− CA,2
(
g21y

2

16π2

)2 [
Y 2
R

ϵ3
+

3(5Y 2
L − Y 2

R)

4ϵ2
− 22Y 2

H − 99Y 2
L + 31Y 2

R

8ϵ

]
.

(21.49)

Interestingly, even though ψR does not couple directly to the chiral SU(N2) sector, its form
factor does acquire divergent terms proportional to gw, mediated through the scalar field and
the Yukawa coupling.

Because we have computed all the cusp anomalous dimensions in this theory, we only need
to extract the collinear anomalous dimension of the right-handed fermion, reading
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γψR

coll = −3CF,1
( gs
4π
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− 3Y 2

R
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+
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)
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+
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)
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2
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8
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2
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(
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L
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2
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L
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21.1.6 Scalar External State

At this point, the scalar field is the last one we need to consider in this theory.

Calculating the form factors order by order, as for all other previous fields, and normalizing
to

T
(0)
H (s12) = CA,2, (21.50)

we find at the one-loop order

T
(1)
H (s12) =

1

ZHIR

{
1−

(
−s12
µ2

)−ϵ
CA,2

[
CF,2

(gw
4π

)2( 2

ϵ2
+

4

ϵ

)
(21.51)

+ Y 2
H

( g1
4π

)2( 2

ϵ2
+

4

ϵ

)
−
( y
4π

)2 CA,1
ϵ

]
+O(ϵ0)

}
.

Next, the two-loop form factor can be written as

T
(2)
H (s12) =

1

ZHIR

{
[1 + 2(δgw + δg1 + δy)]T

(1)
H (s12) (21.52)

+

(
−s12
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)−2ϵ
[(gw

4π

)4
tHg4w +
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4π

)4
tHg14 +

( y
4π

)4
tHy4 +

(
λ
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tHλ2 + tHmixed

]}
,
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with the individual, genuine two-loop contributions given by

tHg4w =
2CF,2
ϵ4

+
CF,2
ϵ3

[
βgw
2g3w

+ 8CF,2

]

+
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3ϵ2
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)
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(
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)
CF,2

]

+
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]

−
C2
F,2

12ϵ
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(21.53)

tHg41
=
2Y 4

H
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+
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L
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H
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H

(
10CA,2 + 288− 3π2

)]
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(21.54)

tHy4 = −CA,2(2CA,1 + 1)

4ϵ

(
1

ϵ
+
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2

)
, tHλ2 =

CA,2 + 1

4ϵ
, (21.55)

tHmixed =CF,2Y
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+
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2
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+
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(
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2
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2
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+
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2
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R
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]
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(21.56)

Note that, similarly to the g2w contribution to the ψR anomalous dimension, we see that, for
the scalar, a contribution proportional to g2s is generated even though it is not charged under
the respective gauge group, using the Yukawa coupling as a mediator.

Having said this, we are now in the position to finally compute the last missing infrared
anomalous dimension, the collinear one of the scalar field
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γHcoll =
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+
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+
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(21.57)

This completes the computation of all the relevant, infrared anomalous dimensions for every
particle in our SM toy model.

To conclude this section, we want to mention that this theory naturally allows for cross-
checking large parts of the results because all matter fields are charged under at least one
internal symmetry group. As explained in Sec. 20.2.2, we can calculate the matrix elements of
the spin-1 currents, and the anomalous dimension obtained should coincide with the IR anoma-
lous dimension due to their non-conservation property. However, care has to be taken when
considering contributions containing the gauge coupling corresponding to the spin-1 current,
as these terms potentially contain UV pieces with counterterms of the form ∂νF

νµ. So, to not
having to deal with these complications, we use the spin-1 currents only to cross-check the terms
not containing these couplings, i.e., we use the SU(N1) current to check all terms free of gs in
the fermion anomalous dimensions.

21.2 UV Renormalization of the U(1) Current

Of course, there are many useful applications for the results from the previous section, take
e.g., the UV running of some higher-dimensional operators, which we could embed into our toy
model in a way reminiscent of the SMEFT. In this section, we want to present an application that
neatly fits into the discussion of conserved currents beyond tree level and does not require the
addition of any extra operators or similar. Instead, we want to calculate the UV renormalization
of a conserved current and for simplicity we will consider the one associated to the U(1) gauge
symmetry in our toy theory and we will closely follow the discussion in [293] on the general
features.

As mentioned in Chapter 19, the charge current does not renormalize if the accompanying
symmetry is not gauged, while there exists a potential counterterm in the presence of a gauge
field, given by

∂νF
νµ. (21.58)
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jµ

Figure 21.1: The non-1PI, one-loop diagram, contributing to the matrix element of the charge
current. Shrinking the loop, it is obvious why the operator ∂νF

νµ is needed as a counterterm.

But this operator does not come with its own, independent renormalization constant, as is
usually the case for composite operators, but it is related to the wave function renormalization of
the gauge field. This can easily be seen by looking at the equation of motion for the renormalized
gauge field itself [293]

0 =
δS

δBµ
= g1Zψψ̄γ

µψ + ZB∂νF
νµ, (21.59)

where the counterterm operator simply arises from the kinetic term of the gauge field after using
the antisymmetry of the field strength tensor as well as integrating by parts once. We also ignored
the term coming from the gauge fixing term, as it vanishes in physical matrix elements [293] as
well as the overall scaling dimension of the coupling in dimensional regularization. In total, we
get that the full, renormalized current is given by

jµ = Zψψ̄γ
µψ +

ZB − 1

g1
∂νF

νµ = ψ̄0γ
µψ0 +

1− Z−1
B

g1,0
∂νF

νµ
0 , (21.60)

where in the last term we have rewritten everything in terms of bare fields and couplings, using
the relation between the coupling and gauge field renormalization as dictated by the Ward
identity. The above equation directly shows that to obtain finite matrix elements, it does not
suffice to just use the current as it is obtained from the Noether procedure, but also the the
gauge counterterm has to be included. In fact, diagrammatically, it is clear why exactly this
additional term is needed by considering the possible divergent loop diagrams obtained from a
single insertion of the Noether current. The particularly relevant diagram at the one-loop order
is shown in Fig. 21.1. While all the divergences from irreducible diagrams with an internal gauge
field would be cancelled by the Noether current operator itself, we know that they contribute
only to the IR divergences due to the non-renormalization. The reducible diagram, Fig. 21.1, on
the other hand, cannot be renormalized by the Noether current, and it is clear that the operator
∂νF

νµ is needed instead. Note that this also diagrammatically confirms the expectation that the
needed renormalization constant is just given by the field renormalization constant, as coupling
the gauge field back to the current, the diagram is just the one-loop self energy attached to the
tree level vertex.

Following the general discussion, we expect that this holds also at higher loops and that the
UV divergence originates from reducible diagrams corresponding to the self energy diagrams of
the respective gauge field. We will check this explicitly in the following. Here, for simplicity,
we choose to present the results using ψR as external states because this greatly reduces the
number of diagrams to be calculated. We comment on different choices for the external states
towards the end of this chapter. Using the same projection procedure as in Sec. 20.2.2 as well as
contracting all color indices, we find that the current form factor up to two-loops and normalized
to the tree-level form factor of the Noether current is given by

FR(s12) =
(
ZψR
IR

)−1
[
1 + F

(1)
R + F

(2)
R +

1− Z−1
B

g1,0

(
−g1,0 + F

(1)
∂F

)]
(21.61)
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Here F
(i)
R and F

(i)
∂F are the bare form factors of the Noether current and counterterm operator

at the i-loop order, respectively, and the effect of the renormalized couplings is already included
in F 2

R.
At the one-loop order, we then have

FR(s12) =
(
ZψR
IR
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]

= −
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2
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2
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3ϵ
− δ(1)B +O(ϵ0),

(21.62)

immediately giving the needed one-loop UV counterterm. In fact, its value matches perfectly
the one-loop renormalization of the gauge field, as expected.

Using this result and continuing to the two-loop order, we find

FR(s12) =
(
ZψR
IR

)−1
[
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(21.63)

Then, the total UV renormalization constant is given by

ZB = 1 + δ
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(21.64)

This result is just the field renormalization of the Abelian gauge field, as we have checked
explicitly by computing the corresponding off-shell two-point function. Interestingly, it has only
single poles, even at two-loops. To conclude this section, we want to stress that for this calcula-
tion, we did not have to worry about disentangling UV and IR divergences at any intermediate
steps. Instead, we simply computed the full divergent structure carrying it through the calcula-
tion and simply subtracting all IR poles using the factor ZψR

IR , which we already know from the
energy-momentum matrix element. Notice also that the infrared subtraction was particularly
easy because the external states are exactly the ones we used for the energy-momentum tensor,
such that we did not have to worry about the combinatorics of the infrared divergences from
different numbers and species of fields.

Finally, we want to mention that due to its universal character of being the field renormal-
ization of the external gauge boson, the same result should be reproduced for any of the three
matter fields. In fact, we checked this explicit by a direct computation, finding perfect agree-
ment, which serves as yet another non-trivial cross-check of the IR divergences calculated in
the previous section. For the scalar, we contracted the Lorentz index by multiplying the matrix
elements with

PµH = − 1

s12
(p1 − p2)µ, (21.65)
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to project onto the respective scalar form factor. Note that this projector does not explicitly
depend on the number of spacetime dimensions, simply because no traces of metrics will appear
during the projection.
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Chapter 22

Conclusions

In this part of the thesis, we have addressed the problem of disentangling IR and UV divergences
in loop amplitudes. Of course, this can easily be done by simply using different regulators for
both regimes, such that the different divergences have a different analytic form. However,
in practice it is often more convenient to use the same regulator, in particular dimensional
regularization, but this mixes UV and IR dynamics and from the result of a loop calculation
alone it cannot be determined from which regime they arise.

We showed that conserved currents comprise a special class of operators, which, apart from
a few well-understood exceptions, are UV finite, such that divergences arising in their matrix
element are of infrared nature. In fact, we showed that the traceless energy-momentum tensor is
always UV finite, provided we consider only theories of marginal couplings, making it a perfect
candidate for studying infrared divergences in any given theory. This also presents a great
opportunity for any higher loop calculation to be done, since the infrared divergences are fixed
by the external states of an amplitude rather than by the details of the operators involved in
the scattering. This means, if one has calculated the infrared divergences, in a given theory, for
each kind of particle in the theory, using e.g., the energy momentum tensor, subtracting them
from any other amplitude in the theory is trivial.

We apply this fact by calculating the infrared divergences and associated anomalous dimen-
sions up to two loops in two toy models, which greatly differ in complexity, one containing a
Dirac fermion and a real scalar with a Yukawa like coupling and a scalar quartic and the other
being a miniature SM, with one left- and one right-handed quark, the Higgs and the same gauge
groups as the SM. We studied the first one in great detail, also highlighting the rather modern
on-shell methods to calculate the infrared anomalous dimension directly from on-shell cuts be-
tween lower-loop amplitudes. In the calculation we encounter divergences in certain phase space
integrals, but we find that they are spurious and cancel if the correct one-loop renormalization of
the theory is properly accounted for. In the end, we found the cancellation of all divergences as
well as logarithmic terms, explicitly showing that in this simple toy model only collinear and no
soft divergences arise, even at the two-loop order. In this theory, we also found a one-to-one cor-
respondence between the on-shell cuts and the full two-loop Feynman diagrammatic approach,
we used to cross-check all our results. As a further non-trivial cross-check, we used a physical
approach for infrared divergences, in that they have to cancel in any physical observable, like
total cross-sections. We found that, as dictated by the KLN theorem, the infrared divergences
in the two-loop matrix elements are exactly such that they cancel the divergences arising from
the soft and collinear regions of phase-space integrals with matrix elements with additional final
states.

While being much closer to a realistic theory, our SM toy model is also much more compli-
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cated due to the presence of many fields and couplings. In particular, we expect the presence
of gauge field to lead to a much richer infrared divergent structure, including soft divergences.
While this leaves a lot to discover, especially in the context of computing the infrared anoma-
lous dimension in such theories using on-shell methods, we use only the standard diagrammatic
approach here, leaving the development of the on-shell methods for future work. We found
excellent agreement of our results with the literature, as far as they are available, like the pure
QCD like sector of our model, but also augmented them with to our knowledge, so far unknown
contributions, in particular terms with mixed interactions as well as effects from a scalar trans-
forming non-trivially under a non-Abelian gauge group. The results for the cusp anomalous
dimensions are shown in Eq. (21.17), Eq. (21.26) and Eq. (21.43) while the collinear anomalous
dimensions of all fields are given in Eq. (21.18), Eq. (21.27), Eq. (21.34), Eq. (21.44), Eq. (21.50)
and Eq. (21.57).

Looking ahead, not only can these results be used, as mentioned, whenever the higher loop
running of operators or couplings needs to be computed, the presented method in general can
be straightforwardly applied to any theory that comes to mind. While we leave all these ap-
plications for future investigation, we want to propose a few potential directions. The first,
and probably phenomenologically most interesting, is the computation of the loop running of
higher-dimensional operators, as the ones in the SMEFT, which will provide the theoretical
precision needed to match current and especially future experiments. Second, the UV finiteness
of conserved currents is only given under certain assumptions, like the absence of gauge fields for
spin-1 currents, or the limitation to only marginal couplings for the energy-momentum tensor.
Using the methods presented in this part of the thesis, the renormalization of currents can be
performed in a general setting, by simply subtracting the known IR structure. This has already
been started in this thesis, by renormalizing the current associated to the Abelian gauge symme-
try of our SM toy model, confirming the result expected from general considerations. However,
it would be interesting to use this also directly for the energy-momentum tensor if a propagating
graviton is included in the theory.
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IV.A All Order Form Factor for the SM Toy Model

In this appendix, we gather all the one-loop form factors needed for the computation of the
infrared divergences presented in 21. We chose to present them as all order expression in ϵ by
giving them in terms of the scalar one-loop basis integrals 21.5. Using a slight abuse of notation,
we do only present the one-loop piece, ignoring the tree-level part and the multiplied infrared
renormalization constant. They are

T
(1)
G = −

( gs
4π

)2
[
(CA,2 − 1)(4ϵ2 − 9ϵ+ 4)− 4CA,1(2ϵ

4 + 6ϵ2 − 23ϵ+ 11)

2(ϵ− 1)(2ϵ− 3)(3ϵ− 2)
B0(p

2)

+ 2CA,3 p
2C0(p

2)

]
,

(IV.A.1)

T
(1)
W = −

(gw
4π

)2
[
4CA,2

(
2ϵ4 + 6ϵ2 − 23ϵ+ 11

)

2(ϵ− 1)(2ϵ− 3)(3ϵ− 2)
B0(p

2)

− CA,1
(
4ϵ2 − 9ϵ+ 4

)
+ 4ϵ3 + 4ϵ2 − 4ϵ+ 2

2(ϵ− 1)(2ϵ− 3)(3ϵ− 2)
B0(p

2)

+ 2CA,3 p
2C0(p

2)

]
,

(IV.A.2)

T
(1)
B = −

( g1
4π

)2
[
CA,1(CA,2Y

2
L + Y 2

R)
(
4ϵ2 − 9ϵ+ 4

)

2(ϵ− 1)(2ϵ− 3)(3ϵ− 2)

+
CA,2Y

2
H

(
4ϵ3 − 4ϵ2 − 4ϵ+ 2

)

2(ϵ− 1)(2ϵ− 3)(3ϵ− 2)

]
B0(p

2),

(IV.A.3)

T
(1)
ψL

=

[
CF,1

( gs
4π

)2
+ CF,2

(gw
4π

)2
+ Y 2

L

( g1
4π

)2]
×

[
ϵ+ 3

ϵ− 1
B0(p

2)− 2p2C0(p2)

]
−
( y
4π

)2 B0(p
2)

2(ϵ− 1)
,

(IV.A.4)

T
(1)
ψR

=

[
CF,1

( gs
4π

)2
+ Y 2

R

( g1
4π

)2] [ϵ+ 3

ϵ− 1
B0(p

2)− 2p2C0(p2)

]
−
( y
4π

)2 B0(p
2)

2(ϵ− 1)
, (IV.A.5)

T
(1)
H =

[
CF,2

(gw
4π

)2
+ Y 2

H

( g1
4π

)2] [4B0(p
2)

ϵ− 1
− 2p2C0(p2)

]
−
( y
4π

)2 CA,1B0(p
2)

(ϵ− 1)
. (IV.A.6)
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IV.B Loop Integral Reduction

In general, Feynman integrals are complicated functions of momenta, which we can write, at
any loop order L, to be of the form

∫ L∏

l=1

dDkl
Sa11 · · ·Sann
Db1

1 · · ·Dbm
m

, (IV.B.1)

where Si and Di denote scalar products of momenta and propagators, respectively, and both
can depend on external and loop momenta. Evaluating them in this form turns out to be a
complicated task, so it will be beneficial to find ways of simplifying them.

A large complication arises from the non-trivial numerator. However, we have to realize that
the denominator, i.e., the propagators are just linear combinations of momenta and masses.
This allows to express the numerator in terms of propagators, cancelling those already present
or introducing new ones,

Si = Si({Di}), (IV.B.2)

so we can always turn a loop integral into one containing only (possibly non-positive) powers
of propagators and no additional scalar products,

I =

∫ L∏

l=1

dDkl
1

Db1
1 · · ·Dbm

m

. (IV.B.3)

Even though scalar integrals are already easier to evaluate than their tensorial counterparts,
we can still try to simplify them even further. In fact, not all scalar integrals are linearly inde-
pendent, and one possibility to generate relations among them is to use so-called IBP identities.
To derive them, we use the fact that Feynman integrals are convergent in D dimensions, such
that the integrands vanish at the boundaries and so it directly follows that, using integration
by parts on the integrand,

∫ L∏

l=1

dDkl
∂

∂kµ

(
vµ

Db1
1 · · ·Dbm

m

)
= 0, (IV.B.4)

with vµ either a loop or external momentum.

This allows us to relate different scalar Feynman integrals already at the integrand level,
with the hope that we generate ones that can be evaluated more easily. To demonstrate this
explicitly, we show the easiest example of one-loop tadpole integrals,

I(n) =

∫
dDk

vµ
(k2 +m2)n

, (IV.B.5)

where we used a massive propagator, such that the integral is not scaleless and vanishes, and
we already performed a Wick rotation. Then, choosing vµ = kµ the IBP identity reads

∫
dDk

∂

∂kµ

(
kµ

(k2 +m2)n

)
= 0. (IV.B.6)

Using the derivatives

∂

∂kµ
kµ = D,

∂

∂kµ

1

(k2 +m2)n
= − −2n

(k2 +m2)n+1
kµ, (IV.B.7)
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as well as the relation

k2

(k2 +m2)n+1
=

1

(k2 +m2)n
− m2

(k2 +m2)n+1
, (IV.B.8)

we find

∫
dDk

∂

∂kµ

(
kµ

(k2 +m2)n

)
=

∫
dDk

D − 2n

(k2 +m2)n
+

2nm2

(k2 +m2)n+1
= 0. (IV.B.9)

But the two terms in the integrand are again just tadpole integrals, but with different
exponents, such that we find the recursion relation

I(n+ 1) =
2n−D
2nm2

I(n), (IV.B.10)

which allows us to calculate any tadpole integral in terms of the n = 1 case, which is the easiest
to evaluate.

While the one-loop tadpole integrals can easily be evaluated using the standard methods
like the Feynman parameterization for any n, the above procedure works equivalently for any
number of propagators at any loop order.

Another set of relations can be derived by imposing Lorentz invariance. Scalar integrals
being scalar have to be invariant under any Lorentz transformation of the E external momenta

pµ → pµ + δpµ = pµ + δϵµνp
µ, (IV.B.11)

where δϵµν represents the infinitesimal generators of the Lorentz group.

I(pi + δpi) = I(pi) + δϵµν

E∑

j=1

pνj
∂

∂pµj
I(pi)

!
= I(pi), (IV.B.12)

such that
E∑

j=1

(
pνj

∂

∂pµj
− pµj

∂

∂pνj

)
I(pi)

!
= 0, (IV.B.13)

where we used the fact that δϵµν is antisymmetric. Because the integration in I(pi) is independent
of the external momenta, we can let the derivatives act directly on the integrand, just like
for the IBP identities. To obtain scalar relations, the above equation can be projected using
antisymmetric combinations of the external momenta, e.g., for calculating the renormalization
of the energy-momentum tensor we have two independent external momenta from which we can
construct a single antisymmetric combination such that there exists a single Lorentz-invariance
relation.

While it can be shown, that Lorentz-invariance and IBP identities are not linearly inde-
pendent, using both in unison can help to find all integral relations, as is implemented in the
computer program Kira [296].

IV.C Derivations of Important Formulas

IV.C.1 Imaginary Part of Logarithms and their Derivatives

Provided the generic complex logarithm of the form
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log

(
− si
µ2

)
≡ log

(
si
µ2

)
+ ikπ, si > 0, k ∈ Z, (IV.C.1)

we want to prove the relation between the imaginary part of an arbitrary power of the
logarithm and a series of its derivatives,

2Im

[
logn

(
− si
µ2

)]
= i
(
eikπµ∂µ − 1

)
logn

(
− si
µ2

)
, (IV.C.2)

which gives Eq. (17.14) for the choice k = −1.
We start by using the series expression of the exponential function,

(
eikπµ∂µ − 1

)
logn

(
− si
µ2

)
=




n∑

j=1

(kiπ)j

j!
(µ∂µ)

j


 logn

(
− si
µ2

)
, (IV.C.3)

where we already used the fact that applying the derivative more than n times trivially gives
zero.

We then define −2x ≡ log(−si/µ2) such that the derivative is just µ∂µ = ∂x. This very
much simplifies taking the derivatives and we find




n∑

j=1

(ikπ)j

j!
(µ∂µ)

j


 logn

(
− si
µ2

)
= (−2)n

n∑

j=1

n!

j!(n− j)! (ikπ)
jxn−j . (IV.C.4)

Using the definition of the binomial coefficient, we can identify the above sum as the binomial
sum, up to the fact that our sum starts at j = 1 instead of j = 0. However, we can trivially
recover the binomial sum by just adding and subtracting the j = 0 term such that

(−2)n
n∑

j=1

n!

j!(n− j)! (ikπ)
jxn−j =

(
logn

(
s

µ2

)
+ ikπ

)n
−
(
log

(
s

µ2

)
− ikπ

)n

=

(
logn

(
− s

µ2

))∗
− logn

(
− s

µ2

)
,

(IV.C.5)

where in the last line we used Eq. (IV.C.1) for the logarithm and its complex conjugate. This
concludes the proof of Eq. (17.14), as can be easily seen by plugging the above result back in
and using the definition of the imaginary part.

Given a choice of branch, it is clear from Eq. (IV.C.1) that the analogous relation for the
complex conjugate logarithm can be obtained by just setting k → −k.

IV.C.2 Loop Parameterization and Phase Space Integrals

We start by expressing the integral over the phase space of two particles as an integral over only
angular variables. We will work in arbitrary D dimensions and we will assume one of the two
particles to be massive. This will be useful for the computation of the three-particle phase space
later, and the massless limit can be taken straightforwardly in the end.

We start with the expression

∫
dLIPS

(D)
2 =

∫
dDp1d

Dp2δ
D(P − p1 − p2)δ+(p21 −m2)δ+(p22), (IV.C.6)
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where for now we ignored factors of (2π), which we will reconstruct in the final result. P is the
momentum that is injected into the {p1, p2} system; for 2 → 2 scattering, it would correspond
to the total momentum of the initial states.

Then, using

δ+(p21 −m2) =
1

2E1
δ(p01 − E1), (IV.C.7)

with the usual relation E2
1 = p2 +m2. We use this to evaluate the integral over the temporal

component of p1,

∫
dLIPS

(D)
2 =

∫
dD−1p1

2E1
δ+((P − p1)2), (IV.C.8)

where we also used the overall momentum conserving delta function to get rid of the integration
over p2. Expanding the argument of the delta function and expressing the integral over spatial
components in D-dimensional spherical coordinates, we arrive at

∫
dLIPS

(D)
2 =

∫
dΩD−1dp1

pD−2
1

2E1
δ+
(
P 2 +m2 − 2

√
P 2

√
p21 +m2

)
, (IV.C.9)

where in a slight abuse of notation we will denote the absolute value of p1 with just p1 in the rest
of this calculation. To get to this form of the argument in the delta function, we also assumed
the rest frame of P . The differential solid angle is given by

dΩD =

D−2∏

i=0

sini(ϕi+1)dϕi+1, (IV.C.10)

with the azimuthal angle 0 ≤ ϕ1 ≤ 2π and polar angles 0 ≤ ϕi>1 ≤ π. Integrating this expression
gives the surface area of a D-dimensional unit ball,

ΩD =

∫
dΩD =

2πd/2

Γ(d/2)
. (IV.C.11)

From the definition of the differential solid angle, it is clear that we can factor out the inte-
gration over the lower-dimensional sphere surface, keeping only the integrals of high dimensional
ones. Then, after simplifying the delta function as

δ+
(
P 2 +m2 − 2

√
P 2

√
p21 +m2

)
=

√
q2 +m2

2
√
P 2q

δ(p1 − q), q =
P 2 −m2

2
√
P 2

, (IV.C.12)

and after reconstructing the appropriate factors of (2π), we arrive at our final expression:

∫
dLIPS

(D)
2 =

42−D
√
π
1−D

Γ(D−3
2 )

1√
P 2

(
P 2 −m2

√
P 2

)D−3 ∫
dϕdθ sinD−3 θ sinD−4 ϕ. (IV.C.13)

We already suggestively renamed the angular variables and, in fact, in the limit D → 4 we
recover the usual integral over angles in spherical coordinates,

∫
dLIPS2 =

1

32π2
P 2 −m2

P 2

∫ 2π

0

∫ π

0
dθ sin θ =

1

8π2
P 2 −m2

P 2

∫ 2π

0

∫ π
2

0
dθ cos θ sin θ. (IV.C.14)
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Note that an additional factor of 1/2 has to be included in the D → 4 limit to compensate for
the fact that in this limit ϕ becomes the azimuthal angle and therefore has to be integrated up to
2π instead of just π. In the last equality we changed variables as θ → θ/2 and used the relevant
double angle identity. The m → 0 limit of the above phase space integral exactly reproduces
Eq. (17.23), corresponding to the rotation of loop momentum spinors given in Eq. (17.24).

The reason we kept one of the momenta to be massive is that this way we can reuse the
result to easily calculate the three-particle phase space. First, we need to realize that the three-
particle phase space can be simplified by factoring into two two-particle phase space factors, one
of two massless and one of one massless and one massive momentum, as well as an integral over
the energy at which the separation of the two factors takes place. Operationally, this can be
achieved by inserting factors of unity in the right form at the correct places. We will show this
explicitly now. Again, we will ignore factors of (2π) for now and reconstruct them only at the
end of the calculation.

We start with

∫
dLIPS

(D)
3 =

∫
dDp1d

Dp2d
Dp3 δ

D(P − p1 − p2 − p3)
3∏

i=1

δ+(p2i )

=

∫
dDp1d

Dp2d
Dp3

∫
dDq δ(D)(q − p1 − p2)δD(P − q − p3)

3∏

i=1

δ+(p2i ),

(IV.C.15)
where we introduced the momentum q with the additional constraint q = p1+ p2. Collecting all
terms containing p1 or p2, we see that they form an integral like in Eq. (IV.C.6) with P → q
and m→ 0, while the remaining terms do not allow for such an identification yet, since q is not
constrained to be on-shell so far. We can, however, introduce such a constraint at the cost of
also introducing one more integration variable like

∫
dLIPS

(D)
3 =

∫ P 2

0
ds12

∫
dLIPS

(D)
(1;2)dLIPS

(D)
(12;3), (IV.C.16)

where we defined

dLIPS
(D)
(1;2) = dDp1d

Dp2 δ
D(q − p1 − p2)δ+(p21)δ+(p22),

dLIPS
(D)
(12;3) = dDqdDp3 δ

D(P − q − p2)δ+(q2 − s12)δ+(p23).
(IV.C.17)

We also already used that even though, formally, s12 has to be integrated over the entire real
axis, the momentum conserving delta function forces it to lie in the interval [0, P 2].

Before we continue, a few comments are in order. First, we note that this factorization of
the phase space has a clear physical interpretation. If we interpret P as the momentum of a
massive particle, we can treat it as decaying, in its rest frame, into an on-shell, massless particle
characterized by p3, as well as an intermediate, off-shell particle with momentum q. The way the
energy is distributed among p3 and q is governed by s12. Then, because of Lorentz invariance, we
can boost ourselves into the rest frame of q, where it further decays into two massless particles
with momenta p1 and p2. To capture all possible ways this two-step decay can happen, we have
to integrate over all possible ways to distribute P in the first decay, i.e., we integrate over s12.
This also explains the integration boundaries. If p3 inherits all of P then nothing is left over for
q and therefore s12 = 0 and vice versa in the case of s12 = P 2. Second, the procedure of dividing
the n-particle phase space into phase spaces with lower phase spaces can straightforwardly be
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generalized to any n. E.g, the four-particle phase space can be factored into a three- and a
two-particle, which can be further decomposed into only two-particle expressions.

Using Eq. (IV.C.13) and reconstructing all factors of (2π) we finally arrive at

∫
dLIPS

(D)
3 =

27−4Dπ−D

Γ(D−3
2 )2

(P 2)D−3

∫ 1

0
dλ λD/2−2(1− λ)D−3

×
∫ π

0
dθdϕ sinD−3 θ sinD−4 ϕ

∫ π

0
dθ′dϕ′ sinD−3 θ′ sinD−4 ϕ′,

(IV.C.18)

where (θ, ϕ) and (θ′, ϕ′) are the angles between p1 and p2, as well as between (p1 + p2) and p3,
respectively. In addition, we changed the variables from s12 to the dimensionless variable λ,
defined as

λ =
s12
P 2

. (IV.C.19)

In the limit D → 4, this reduces to

∫
dLIPS3 =

P 2

2048π5

∫ 1

0
dλ (1− λ)

∫ 2π

0
dϕdϕ′

∫ π

0
dθdθ′ sin θ sin θ′, (IV.C.20)

where we included an additional factor of 1/2 for both ϕ and ϕ′ for the same reason as in
Eq. (IV.C.14).

IV.D Projection Procedure for Tµν

In this appendix, we show how to effectively project onto the scalar form factors in Eq. (20.3).
We will treat each case of external states separately:

Scalars:

For external scalars, no polarization vectors or spinors are necessary, such that the energy-
momentum tensor can be written purely in terms of momenta and we can write, using the
decomposition Eq. (20.3),

Sµν = T2,i(s12) Tµν,2(1ϕ, 2ϕ) + T0,i(s
2
12) Tµν,0(1ϕ, 2ϕ), (IV.D.1)

where Sµν is an a priori general tensor built from only momenta and scalar products. In practice,
it will be a linear combination of some tensor loop integrals.

Requiring symmetry in the Lorentz indices and the mass dimension of the energy-momentum
tensor, we can find explicit expressions for the J = 2 and J = 0 pieces,

Tµν,2(1ϕ, 2ϕ) = p1µp2ν −
1

4
gµν s12 +

D − 2

2(D − 1)

(
1

2
gµν s12 − p1µp2ν − p1µp1ν

)
+ (p1 ↔ p2),

Tµν,0(1ϕ, 2ϕ) = −
D − 2

2(D − 1)

(
1

2
gµν s12 − p1µp2ν − p1µp1ν

)
+ (p1 ↔ p2). (IV.D.2)

Note that the J = 0 piece, or in other words the trace, is precisely the one generated by the
additional conformal coupling term in Eq. (20.1) and it is precisely what is subtracted from the

minimal coupling piece to get the traceless J = 2 part. Then, we define some projectors P
(i)
µν
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P
(2)
ϕ,µν = 4

D − 1

(D − 2)s212
Tµν,2(1ϕ, 2ϕ), P

(0)
ϕ,µν = 4

D − 1

(D − 2)2s212
Tµν,0(1ϕ, 2ϕ), (IV.D.3)

such that the scalar form factors can easily be obtained by projecting with

Ti,0(s12) = P
(i)
ϕ,µν Sµν . (IV.D.4)

Fermions:

We start by discussing the case of a left-handed fermion with its anti-particle as an ex-
ternal state. The right-handed fermion can then be readily obtained from it. Again, using the
symmetry of the energy-momentum tensor and the fixed mass dimension, we find that in general

Tµν(1ψL
, 2ψ̄L

) = v̄(p2)Fµνu(p1) = T2,−1(s12) [(p1 − p2)µv̄(p2)γνPLu(p1) + (µ↔ ν)] . (IV.D.5)

Note that this is already traceless after using the Dirac equation, so there is no J = 0 piece
for fermions. To extract the scalar form factor, we use an approach analogous to the projection
of the QED vertex function. To do so, we multiply the above equation by complex conjugate
spinors, sum over spins and trace over fermion indices. In the end, we find

T2,−1(s12) =
4

(D − 2)s212
(p1 − p2)µ Tr

[
γν/p2FµνPL/p1

]
. (IV.D.6)

Notice that the prefactor depends on the number of space-time dimensions to cancel the depen-
dence arising from the fermion trace. For the right-handed fermion, the projection procedure is
the same after replacing the helicity projector accordingly.

Vectors:

For external vector bosons, we do not distinguish between the different helicity states, as
these correspond to the same particle and therefore the two helicity states couple in the same
way. This is not the case for fermions, where left- and right-handed fermions are entirely different
particles, that can couple differently to other particles. Using the same arguments as before, we
can write

Tµν(1V , 2V ) = ϵα(p1)ϵ
β(p2)Vµναβ

= T2,2(s12)ϵ
α(p1)ϵ

β(p2)
[1
2
s12 (gµαgνβ + gµβgνα − gµνgαβ)

+ p1ν(p2µgαβ − p2αgµβ) + p1µ(p2νgαβ − p2αgνβ)
+ p1β(p2αgµν − p2νgµα − p2µgαν)

≡ T2,2(s12)ϵα(p1)ϵβ(p2)Tµναβ
]
.

(IV.D.7)

Again, this is traceless on its own, indicating the absence of a J = 0 term. Then, to extract
the scalar form factor, it is enough to focus only on the four index tensor, which, as in the scalar
case, are built from only scalar products and momenta. Then, a suitable projection is

T2,2(s12) =
4

3D2 − 14D + 16
TµναβVµναβ (IV.D.8)
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Despite irrefutable observations that cannot be explained by the Standard Model, signalling
its incompleteness, physics beyond it has yet to be discovered. As already mentioned in the
introduction, there exist hints at for new physics at various scales, and not only at those scales
inaccessible to current experiments. In this thesis, we chose three benchmark experiments at
vastly different energy scales and investigated their potential for probing physics beyond the
SM: Starting at high energies, we explored the phenomenology of CH models in the limit of
a fully composite, right-handed top quark at both current and future colliders in a model-
independent EFT approach. Continuing down the energy ladder, we investigated, again in an
EFT approach, how CP-violating new physics can generate contributions to the EDMs of the
neutron and leptons both at tree level and beyond. In particular, we performed the full 1-loop
computation in the second part. In the third part, we arrived at the lowest scale considered in
this thesis, where we used the non-relativistic torsion balance experiment to constrain massive
higher-spin fields coupling directly to matter. Finally, we presented a method to efficiently
extract IR divergences at high loops in massless theories in the fourth part, by exploiting the
non-renormalization property of conserved current.

In part I we studied generic CH models that feature partial compositeness, such that not
only the Higgs, but potentially also the fermions are composite states. In fact, the degree
of compositeness, or equivalently the mixing angle between the elementary fermions and the
massive resonances from the new strong sector, is closely related to the measured fermion mass
or Yukawa coupling. Further, we took the left- and right-handed chiralities of the fermions to
carry different degrees of compositeness, which are, however, not unrelated as their product has
to reproduce the Yukawa coupling, modulo a factor of the new strong coupling. In particular,
we assume that, due to its large mass compared to all other fermions, only the top quark
contains a significant admixture of the composite resonances, while all other fermions are taken
to be practically elementary. Further, we assume that the the right-handed top quark is fully
composite, leaving its left-handed counterpart only the minimal degree of compositeness, as this
is favored by fine-tuning arguments.

Because, eventually, we wanted to rely on the least number of assumptions on the CH model
itself, we adopted the EFT point of view, where integrating out the massive resonances generates
many higher-dimensional operators built from SM states. Performing naive dimensional analysis,
the relative expected size of these operators can be estimated, such that the dominant operators
in a given process can easily be determined. While the sizes of operators containing fermions
depend on the respective mixing angles, in the limit of a fully composite right-handed top quark
we find that one of the most dominant for strong couplings is a four-fermion operator of the form
Ott = (t̄RγµtR)(t̄RγµtR). While this is not the only operator with its scaling with the strong
coupling and resonance mass, g∗ and m∗, all but a four-Higgs operator either experience inferior
experimental sensitivities or their power counting estimates have to be corrected by additional
loop factors for most realistic models.

Then, we started chapter 3 by focussing on the production of four top quarks at hadron
colliders, from which we set constraints on the g∗ − m∗ plane. We find that already at the
LHC, the scale suppressing the four-top operator has to be Λ/

√
|ctt| > 0.73TeV, compatible

with the value coming from Higgs measurements constraining the aforementioned four-Higgs
operator. Taking this as an exciting glance at the potential reach of four top operators at
hadron colliders, we performed realistic analyses of the four-top production process at the FCC-
hh, mainly leptonic decay channels. Because of the strong energy growth of the top scattering
induced by Ott, we expect a great improvement at the 100 TeV collider compared with the
LHC, if we appropriately focus the analysis on high-energy events. Indeed, these expectations
were satisfied and we find Λ/

√
|ctt| > 6.5TeV, increasing the reach of the LHC by an order of
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magnitude and providing a superior probe of the relevant parameter space compared to the Higgs
measurements at the same collider and even including the leptonic phase of the FCC. Further,
we found that, against expectations, even future lepton colliders show a significant reach into
the CH parameter space, even though four-top production at such machines is kinematically
disfavored if not completely forbidden. Instead, Ott enters the top pair-production process
through its RG mixing with semi-leptonic four fermion operators and due to its power counting
size, this contribution dominates over the tree level one despite it being only a one-loop effect.
Further, in accordance with the energy growth of the operator, we find that the highest-energy
runs of the respective colliders give the highest sensitivity, e.g., at a CLIC-like collider we find
Λ/
√
|ctt| > 7.7TeV.

But even though these results look very promising, we believe that they can still be improved
and there is much still to be learned. For instance, we focused mainly on the leptonic decay
channels of the four-top system, but the fully hadronic final state might offer unique chances for
discovery as well. On the one hand, it has the largest branching ratios of all the decay channels
of the four tops, but due to the high multiplicities of jets and other particles, it is also a very
busy one. Nevertheless, this can also be of an advantage, since there are very few other SM
processes that can generate this many particles in the final state, making a targeted study of
the fully hadronic signature worthwhile, also with the growing popularity of machine learning
methods for high-energy applications. Finally, we want to mention that the analysis presented
in the first part of this thesis does not rely directly on the helicity of the top quarks, but only
on their high-energy behavior such that in principle the same constraint on the scale of the
operator with left-handed quarks would have been obtained. So one way to further improve the
bounds is to incorporate the condition of chirality into the analysis itself, in principle allowing
for a significant reduction of the non-four-top background processes.

In part II we decreased the energy of interest all the way down to the mass of the electron,
at which its electric moment is measured. Because EDMs in general are CP violating and
possess only tiny SM backgrounds, they pose as an excellent point to look for new physics. In
chapter 8 we performed the full 1-loop calculation of both lepton as well as the neutron EDM
in the dimension-6 Warsaw basis of the SMEFT. Apart from showing the conceptual details
of the theory, such as removing the appearing redundant operators with the appropriate field
redefinitions, our main focus lies on the completeness of the result, i.e., also keeping all the terms
beyond the RG logarithms, which have not been considered in the previous literature. We found
that by including these not only rational but also non-rational, but finite and renormalization
scale independent, contributions, we can set constraints on operator coefficients through the
dipole, which are not seen by only their RG mixing. Further, assuming that the scale at which
new physics has to set in is ∼ 5 TeV, the bounds on operators which do not contribute already
at tree level are changed by 10− 20%.

Then, in part III, we arrive at the final destination of our journey through the energy ranges,
the non-relativistic torsion balance experiments. However, before we get to those, we discuss
general features of the gravitational EFT that contains higher dimensional operators built only
from Riemann tensors on top of the leading term corresponding to the classical theory of GR. Up
to dimension eight and with up to four Riemann structures, this EFT generates contributions
to both the triple-graviton vertex as well as the four-graviton scattering amplitude. Further, we
showed, how a tower of massive new fields with increasing spin S > 2 can be used to generate
an gravitational EFT by integrating out these massive fields, already at tree level in the four-
graviton amplitude. By explicitly performing the matching onto the EFT we find that only
operators with at least four Riemann tensors are generated, while the cubic operator does not
acquire any contributions. Having explicit expressions for the EFT coefficients in terms of the
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higher-spin couplings and masses, we directly plug them into the causality constraints they have
to obey [258]. We find that the lowest-spin field trivially satisfies a positivity constraint, while
higher-spin parameters can be related to this lowest-spin one using other bounds.

Next, we investigated how this tower of higher-spin particles can be used to cure the bad
high-energy behavior of the four-graviton scattering in the presence of higher-dimensional mod-
ifications of the triple-graviton vertex [244]. We explicitly took the mS → 0 limit, which is
equivalent to the high-energy limit, and matched the relevant structure of Mandelstam invari-
ant to the one generated by an R3 insertion. Indeed, we found a closed form for a certain class
of terms in the amplitude with vanishing total helicity, collecting contributions from all spins in
the infinite tower of states, see Eq. (12.38). Using this expression, we straightforwardly found
an infinite set of equations, which both relates the Wilson coefficient of the cubic operator to a
linear combination of the couplings and masses of all particles with an even spin, as well as these
parameters with each other by requiring the cancellation of the acausal high-energy behavior
of R3 and spurious higher-order terms individually. However, we think that it is worthwhile to
investigate further the complete structure of Eq. (12.37), as this would allow us to map out the
full pattern of relations between all the infinite degrees of freedom in the tower of states with
S > 4. Further, an analogous study of the remaining two inequivalent helicity configurations of
the four gravitons has yet to be performed. We have also seen that precisely specifying the UV
limit is crucial, as the naive E →∞ would imply a vanishing of all higher spin couplings.

Finally, we turned to probing these higher-spin particles at extremely low energies using a
torsion balance experiment, looking for deviations from the Newtonian potential. To do so,
we modelled the experimental test masses as massive neutral scalars, interacting through an
exchange of a massive higher-spin particle. We obtained the scattering amplitude in the t-
channel in a closed form for an arbitrary exchanged spin, from which we found a Yukawa-like
interaction potential by Fourier-transforming the amplitude into position space. While we are
confident in our result, as it reproduces the relevant results in the literature on massive on-
shell amplitudes, there is still some discrepancy with the known potentials for explicit values
of S. While we believe the source of these differences to lie in the prescription chosen for the
symmetrization of the little group indices appearing in calculations with massive spinor helicity
variables, showing this explicitly is left for future work. Nevertheless, we use our result for the
potential to constrain the new fields, which can trivially done by comparing with experimental
results due to the analytic form of the potential. While the quantitative results presented might
change based on the resolution of the aforementioned discrepancy, we believe that the qualitative
statements remain largely unchanged. We found that for an increasing value of S the bound
becomes both weaker and the features of the boundary of the exclusion region get flattened out
more and more. While the latter is true for any S, the former is only true up to a maximum S,
which we find is around S ∼ 100, at which point the growth of the combinatorial factors in the
potential overtake the suppression with a growing power of the scale, such that the constraints
become stronger again.

In the final part, part IV, we stepped away from experimental probes at different scales
and introduced a method to effectively calculate infrared divergences and the accompanying
anomalous dimensions in massless theories. What allows us to do so is the fact that conserved
currents do not get UV-renormalized apart from a few exceptions in the presence of identically
conserved counterterms for scalar and gauge theories, as shown in chapter 19. But to start
this part, we first used the optical theorem in chapter 17 to show how the renormalization of
amplitudes can be performed by using on-shell cuts or equivalently the imaginary part of the
amplitude itself. We also explicitly applied the method up to two loops, showing various ways of
parameterizing the appearing phase space integrals to simplify the calculation as far as possible.
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We then presented the calculation in two different toy models, vastly varying in complexity,
highlighting the various aspects of the computation.

In chapter 20, we considered a simple theory of a neutral scalar with both a quartic self-
coupling as well as a Yukawa-like coupling to a Dirac fermion. We first employed the on-shell
approach to directly calculate the infrared anomalous dimension from on-shell cuts of two-loop
matrix elements of the energy-momentum tensor. We found that while most of the phase-space
integrals were straightforward to evaluate and gave finite results, another subset of diagrams
was divergent in four dimensions. However, we found that performing the calculation in D
dimensions and including all relevant lower-loop counterterm diagrams, these divergences exactly
cancelled, as required by the finiteness of the anomalous dimension. In the end, we found that
this theory does not have any soft divergences, as expected in a theory without gauge bosons,
and the collinear anomalous dimension coincides with twice the field anomalous dimension for
both the scalar and the fermion. Further, we performed the same calculation using the standard
Feynman diagrammatic approach, confirming the result of the on-shell computation. Finally,
for the scalar, we computed a subset of the squared matrix elements up to the two-loop order
including real radiation diagrams, where we found that the infrared divergences cancel only
if those in the loop-amplitudes are exactly the ones we calculated with Feynman diagrams or
on-shell cuts.

Finally, in chapter 21, we considered a much more realistic model with all the SM gauge
groups, a Higgs-like scalar and two fermions mimicking a left-handed quark doublet and a right-
handed down quark. While this theory exhibits a much richer infrared structure, the loop
integrals become much more complicated. We used only a Feynman diagrammatic approach
because for this the methods are more refined and worked out and leave the computation from
the on-shell side for a future work. The gauge bosons generate soft divergences in amplitudes with
either matter or non-Abelian gauge fields and we confirmed the general structure of the infrared
anomalous dimension, i.e., terms with at most one power of logarithms. For the QCD-like sector
of the theory, we recovered the well-known results, and we also presented the contributions of
a charged scalar in the weak-like sector as well as the mixed contributions to the collinear
anomalous dimensions of all fields. We cross-checked a large part of the results by calculating
the IR anomalous dimensions using the equally conserved gauge currents. However, due to the
existence of identically conserved currents already with marginal couplings, the contributions
to the IR divergences with certain coupling dependencies cannot straightforwardly be extracted
from the poles of the matrix elements. This highlights one main advantage of using the energy-
momentum tensor: It couples equally to every propagating degree of freedom in the theory, even
those neutral under any symmetry group. In addition, because there are no counterterms with
only marginal couplings, its matrix elements will always capture all possible coupling orders
in a single computation. We then concluded this last part by applying the results to the full
two-loop computation of the U(1) gauge current matrix element. Since we already computed
the universal IR divergences, we can easily subtract them, such that all remaining poles must
necessarily correspond to UV ones. In fact, by doing so, we confirmed the general result that the
renormalization of this current is simply the field renormalization of the associated gauge boson.
At last, we want to mention that this strategy can be used for any massless theory at a priory
any loop order: i) Compute all the cusp and collinear anomalous dimensions using the energy-
momentum tensor at the desired loop order ii) Compute the matrix element of the operator
we want to renormalize at the same loop order iii) Subtract the IR divergences by constructing
them from the cusp and collinear anomalous dimension iv) The remaining divergences can only
be of UV nature. Interesting applications would be, e.g., the higher-loop renormalization of the
SMEFT or of the energy-momentum tensor in the presence of a propagating graviton through
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an identically conserved counterterm operator.
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Higgs View, JHEP 09 (2019) 041 [arXiv:1903.07725].

[46] K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for Zbb̄,
Phys. Lett. B 641 (2006) 62 [arXiv:hep-ph/0605341].

[47] J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra and A. Wulzer, The Other Natural
Two Higgs Doublet Model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403].

[48] D. Liu, A. Pomarol, R. Rattazzi and F. Riva, Patterns of Strong Coupling for LHC
Searches, JHEP 11 (2016) 141 [arXiv:1603.03064].

[49] C. Degrande, J.-M. Gérard, C. Grojean, F. Maltoni and G. Servant, Non-resonant New
Physics in Top Pair Production at Hadron Colliders, JHEP 03 (2011) 125
[arXiv:1010.6304].

241

https://doi.org/10.1016/0550-3213(82)90345-5
https://doi.org/10.1016/0550-3213(82)90345-5
https://doi.org/10.1016/0370-2693(84)91177-8
https://doi.org/10.1016/0370-2693(84)91177-8
https://doi.org/10.1016/0370-2693(84)91178-X
https://doi.org/10.1016/0370-2693(84)91178-X
https://doi.org/10.1016/0550-3213(84)90389-4
https://doi.org/10.1016/0370-2693(84)90341-1
https://doi.org/10.1016/0370-2693(84)90341-1
https://doi.org/10.1016/0550-3213(85)90221-4
https://doi.org/10.1016/0550-3213(85)90221-4
https://doi.org/10.1142/9789813233348_0007
https://arxiv.org/abs/1811.04279
https://doi.org/10.1103/PhysRevD.19.1277
https://doi.org/10.1103/PhysRevD.19.1277
https://doi.org/10.1103/PhysRevD.19.1277
https://arxiv.org/abs/hep-ph/0202255
https://doi.org/10.1088/1126-6708/2007/05/074
https://arxiv.org/abs/hep-ph/0612180
https://doi.org/10.1007/JHEP11(2019)082
https://doi.org/10.1007/JHEP11(2019)082
https://arxiv.org/abs/1906.02805
https://doi.org/10.1007/JHEP09(2019)041
https://arxiv.org/abs/1903.07725
https://doi.org/10.1016/j.physletb.2006.08.005
https://arxiv.org/abs/hep-ph/0605341
https://doi.org/10.1016/j.nuclphysb.2011.07.008
https://arxiv.org/abs/1105.5403
https://doi.org/10.1007/JHEP11(2016)141
https://arxiv.org/abs/1603.03064
https://doi.org/10.1007/JHEP03(2011)125
https://arxiv.org/abs/1010.6304


Bibliography

[50] B. Lillie, J. Shu and T.M. Tait, Top Compositeness at the Tevatron and LHC, JHEP 04
(2008) 087 [arXiv:0712.3057].

[51] M. Farina, C. Mondino, D. Pappadopulo and J.T. Ruderman, New Physics from High
Energy Tops, JHEP 01 (2019) 231 [arXiv:1811.04084].

[52] K. Kumar, T.M. Tait and R. Vega-Morales, Manifestations of Top Compositeness at
Colliders, JHEP 05 (2009) 022 [arXiv:0901.3808].

[53] D. Liu and R. Mahbubani, Probing top-antitop resonances with tt̄ scattering at LHC14,
JHEP 04 (2016) 116 [arXiv:1511.09452].

[54] R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking
after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [arXiv:hep-ph/0405040].

[55] G. Panico, M. Riembau and T. Vantalon, Probing light top partners with CP violation,
JHEP 06 (2018) 056 [arXiv:1712.06337].

[56] G. Panico, A. Pomarol and M. Riembau, EFT approach to the electron Electric Dipole
Moment at the two-loop level, JHEP 04 (2019) 090 [arXiv:1810.09413].

[57] ATLAS collaboration, Search for pair production of up-type vector-like quarks and for
four-top-quark events in final states with multiple b-jets with the ATLAS detector, JHEP
07 (2018) 089 [arXiv:1803.09678].

[58] ATLAS collaboration, Search for four-top-quark production in the single-lepton and
opposite-sign dilepton final states in pp collisions at

√
s = 13 TeV with the ATLAS

detector, Phys. Rev. D 99 (2019) 052009 [arXiv:1811.02305].

[59] CMS collaboration, Search for physics beyond the Standard Model in events with two
leptons of same sign, missing transverse momentum, and jets in proton–proton collisions
at
√
s = 13 TeV, Eur. Phys. J. C 77 (2017) 578 [arXiv:1704.07323].

[60] CMS collaboration, Search for Standard Model production of four top quarks with
same-sign and multilepton final states in proton–proton collisions at

√
s = 13 TeV, Eur.

Phys. J. C 78 (2018) 140 [arXiv:1710.10614].

[61] ATLAS collaboration, Search for new phenomena in events with same-charge leptons
and b-jets in pp collisions at

√
s = 13 TeV with the ATLAS detector, JHEP 12 (2018)

039 [arXiv:1807.11883].

[62] CMS collaboration, Search for production of four top quarks in final states with
same-sign or multiple leptons in proton-proton collisions at

√
s = 13 TeV, Eur. Phys. J.

C 80 (2020) 75 [arXiv:1908.06463].

[63] ATLAS collaboration, Evidence for tt̄tt̄ production in the multilepton final state in
proton–proton collisions at

√
s = 13 TeV with the ATLAS detector, Eur. Phys. J. C 80

(2020) 1085 [arXiv:2007.14858].

[64] M. Cepeda, S. Gori, P. Ilten, M. Kado, F. Riva et al., Report from Working Group 2:
Higgs Physics at the HL-LHC and HE-LHC, arXiv:1902.00134.

[65] J. Ellis, C.W. Murphy, V. Sanz and T. You, Updated Global SMEFT Fit to Higgs,
Diboson and Electroweak Data, JHEP 06 (2018) 146 [arXiv:1803.03252].

242

https://doi.org/10.1088/1126-6708/2008/04/087
https://doi.org/10.1088/1126-6708/2008/04/087
https://arxiv.org/abs/0712.3057
https://doi.org/10.1007/JHEP01(2019)231
https://arxiv.org/abs/1811.04084
https://doi.org/10.1088/1126-6708/2009/05/022
https://arxiv.org/abs/0901.3808
https://doi.org/10.1007/JHEP04(2016)116
https://arxiv.org/abs/1511.09452
https://doi.org/10.1016/j.nuclphysb.2004.10.014
https://arxiv.org/abs/hep-ph/0405040
https://doi.org/10.1007/JHEP06(2018)056
https://arxiv.org/abs/1712.06337
https://doi.org/10.1007/JHEP04(2019)090
https://arxiv.org/abs/1810.09413
https://doi.org/10.1007/JHEP07(2018)089
https://doi.org/10.1007/JHEP07(2018)089
https://arxiv.org/abs/1803.09678
https://doi.org/10.1103/PhysRevD.99.052009
https://arxiv.org/abs/1811.02305
https://doi.org/10.1140/epjc/s10052-017-5079-z
https://arxiv.org/abs/1704.07323
https://doi.org/10.1140/epjc/s10052-018-5607-5
https://doi.org/10.1140/epjc/s10052-018-5607-5
https://arxiv.org/abs/1710.10614
https://doi.org/10.1007/JHEP12(2018)039
https://doi.org/10.1007/JHEP12(2018)039
https://arxiv.org/abs/1807.11883
https://doi.org/10.1140/epjc/s10052-019-7593-7
https://doi.org/10.1140/epjc/s10052-019-7593-7
https://arxiv.org/abs/1908.06463
https://doi.org/10.1140/epjc/s10052-020-08509-3
https://doi.org/10.1140/epjc/s10052-020-08509-3
https://arxiv.org/abs/2007.14858
https://arxiv.org/abs/1902.00134
https://doi.org/10.1007/JHEP06(2018)146
https://arxiv.org/abs/1803.03252


Bibliography

[66] O. Domènech, A. Pomarol and J. Serra, Probing the SM with Dijets at the LHC, Phys.
Rev. D 85 (2012) 074030 [arXiv:1201.6510].

[67] ATLAS collaboration, Search for new phenomena in dijet events using 37 fb−1 of pp
collision data collected at

√
s = 13 TeV with the ATLAS detector, Phys. Rev. D 96

(2017) 052004 [arXiv:1703.09127].

[68] S. Alioli, M. Farina, D. Pappadopulo and J.T. Ruderman, Precision Probes of QCD at
High Energies, JHEP 07 (2017) 097 [arXiv:1706.03068].

[69] M. Farina, G. Panico, D. Pappadopulo, J.T. Ruderman, R. Torre and A. Wulzer, Energy
helps accuracy: electroweak precision tests at hadron colliders, Phys. Lett. B 772 (2017)
210 [arXiv:1609.08157].

[70] ATLAS collaboration, Modelling of rare top quark processes at
√
s = 13 TeV in ATLAS,

.

[71] CMS collaboration, Using associated top quark production to probe for new physics
within the framework of effective field theory, .

[72] CMS collaboration, Observation of four top quark production in proton-proton collisions
at
√
s = 13TeV, .

[73] ATLAS collaboration, Observation of four-top-quark production in the multilepton final
state with the ATLAS detector, arXiv:2303.15061.

[74] CMS collaboration, Measurement of the Higgs boson production rate in association with
top quarks in final states with electrons, muons, and hadronically decaying tau leptons at√
s = 13 TeV, arXiv:2011.03652.

[75] J.A. Dror, M. Farina, E. Salvioni and J. Serra, Strong tW Scattering at the LHC, JHEP
01 (2016) 071 [arXiv:1511.03674].

[76] ATLAS collaboration, Analysis of tt̄H and tt̄W production in multilepton final states
with the ATLAS detector, .

[77] CMS collaboration, Measurement of top quark pair production in association with a Z
boson in proton-proton collisions at

√
s = 13 TeV, JHEP 03 (2020) 056

[arXiv:1907.11270].

[78] ATLAS collaboration, Measurements of the inclusive and differential production cross
sections of a top-quark-antiquark pair in association with a Z boson at

√
s = 13 TeV with

the ATLAS detector, .

[79] CMS collaboration, Measurement of the cross section for top quark pair production in
association with a W or Z boson in proton-proton collisions at

√
s = 13 TeV, JHEP 08

(2018) 011 [arXiv:1711.02547].

[80] ATLAS collaboration, Measurement of the tt̄Z and tt̄W cross sections in proton-proton
collisions at

√
s = 13 TeV with the ATLAS detector, Phys. Rev. D 99 (2019) 072009

[arXiv:1901.03584].

[81] R. Frederix, D. Pagani and M. Zaro, Large NLO corrections in tt̄W± and tt̄tt̄
hadroproduction from supposedly subleading EW contributions, JHEP 02 (2018) 031
[arXiv:1711.02116].

243

https://doi.org/10.1103/PhysRevD.85.074030
https://doi.org/10.1103/PhysRevD.85.074030
https://arxiv.org/abs/1201.6510
https://doi.org/10.1103/PhysRevD.96.052004
https://doi.org/10.1103/PhysRevD.96.052004
https://arxiv.org/abs/1703.09127
https://doi.org/10.1007/JHEP07(2017)097
https://arxiv.org/abs/1706.03068
https://doi.org/10.1016/j.physletb.2017.06.043
https://doi.org/10.1016/j.physletb.2017.06.043
https://arxiv.org/abs/1609.08157
https://arxiv.org/abs/2303.15061
https://arxiv.org/abs/2011.03652
https://doi.org/10.1007/JHEP01(2016)071
https://doi.org/10.1007/JHEP01(2016)071
https://arxiv.org/abs/1511.03674
https://doi.org/10.1007/JHEP03(2020)056
https://arxiv.org/abs/1907.11270
https://doi.org/10.1007/JHEP08(2018)011
https://doi.org/10.1007/JHEP08(2018)011
https://arxiv.org/abs/1711.02547
https://doi.org/10.1103/PhysRevD.99.072009
https://arxiv.org/abs/1901.03584
https://doi.org/10.1007/JHEP02(2018)031
https://arxiv.org/abs/1711.02116


Bibliography

[82] LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 4.
Deciphering the Nature of the Higgs Sector, arXiv:1610.07922.

[83] CMS collaboration, Measurement of top quark-antiquark pair production in association
with a W or Z Boson in pp collisions at

√
s = 8 TeV, Eur. Phys. J. C 74 (2014) 3060

[arXiv:1406.7830].

[84] A. Broggio, A. Ferroglia, R. Frederix, D. Pagani, B.D. Pecjak and I. Tsinikos, Top-quark
pair hadroproduction in association with a heavy boson at NLO+NNLL including EW
corrections, JHEP 08 (2019) 039 [arXiv:1907.04343].

[85] A. Kulesza, L. Motyka, D. Schwartländer, T. Stebel and V. Theeuwes, Associated top
quark pair production with a heavy boson: differential cross sections at NLO+NNLL
accuracy, Eur. Phys. J. C 80 (2020) 428 [arXiv:2001.03031].

[86] R. Frederix and I. Tsinikos, Subleading EW corrections and spin-correlation effects in
tt̄W multi-lepton signatures, Eur. Phys. J. C 80 (2020) 803 [arXiv:2004.09552].

[87] G. Bevilacqua, H.-Y. Bi, H.B. Hartanto, M. Kraus and M. Worek, The simplest of them
all: tt̄W± at NLO accuracy in QCD, JHEP 08 (2020) 043 [arXiv:2005.09427].

[88] A. Denner and G. Pelliccioli, NLO QCD corrections to off-shell t̄tW+ production at the
LHC, JHEP 11 (2020) 069 [arXiv:2007.12089].

[89] S. von Buddenbrock, R. Ruiz and B. Mellado, Anatomy of inclusive tt̄W production at
hadron colliders, Phys. Lett. B 811 (2020) 135964 [arXiv:2009.00032].

[90] Q.-H. Cao, S.-L. Chen and Y. Liu, Probing Higgs Width and Top Quark Yukawa Coupling
from tt̄H and tt̄tt̄ Productions, Phys. Rev. D 95 (2017) 053004 [arXiv:1602.01934].

[91] J. Alwall et al., The automated computation of tree-level and next-to-leading order
differential cross sections, and their matching to parton shower simulations, JHEP 07
(2014) 079 [arXiv:1405.0301].

[92] A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 - A
complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250
[arXiv:1310.1921].

[93] NNPDF collaboration, Parton distributions with QED corrections, Nucl. Phys. B 877
(2013) 290 [arXiv:1308.0598].
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[144] I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik and N. Košnik, Physics of leptoquarks in
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